Basit öğe kaydını göster

dc.contributor.authorCetin, Meral
dc.date.accessioned2019-12-16T08:35:26Z
dc.date.available2019-12-16T08:35:26Z
dc.date.issued2016
dc.identifier.issn1303-5010
dc.identifier.urihttps://doi.org/10.15672/HJMS.2015609964
dc.identifier.urihttp://hdl.handle.net/11655/19571
dc.description.abstractOutliers and multi-collinearity often have large influence in the model/variable selection process in linear regression analysis. To investigate this combined problem of multi-collinearity and outliers, we studied and compared Liu-type S (liuS-estimators) and Liu-type Least Trimmed Squares (liuLTS) estimators as robust model selection criteria. Therefore, the main goal of this study is to select subsets of independent variables which explain dependent variables in the presence of multi-collinearity, outliers and possible departures from the normality assumption of the error distribution in regression analysis using these models.
dc.language.isoen
dc.publisherHacettepe Univ, Fac Sci
dc.relation.isversionof10.15672/HJMS.2015609964
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleRobust Model Selection Criteria For Robust S And Lts Estimators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalHacettepe Journal Of Mathematics And Statistics
dc.contributor.departmentİstatistik
dc.identifier.volume45
dc.identifier.issue1
dc.identifier.startpage153
dc.identifier.endpage164
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster