Basit öğe kaydını göster

dc.contributor.authorÖzkahya, Lale
dc.contributor.authorYoung, Michael
dc.date.accessioned2019-12-13T06:51:43Z
dc.date.available2019-12-13T06:51:43Z
dc.date.issued2013
dc.identifier.issn0012-365X
dc.identifier.urihttps://doi.org/10.1016/j.disc.2013.06.015
dc.identifier.urihttp://hdl.handle.net/11655/18665
dc.description.abstractA k-matching in a hypergraph is a set of k edges such that no two of these edges intersect. The anti-Ramsey number of a k-matching in a complete s-uniform hypergraph H on n vertices, denoted by ar(n, s, k), is the smallest integer c such that in any coloring of the edges of H with exactly c colors, there is a k-matching whose edges have distinct colors. The Turan number, denoted by ex(n, s, k), is the the maximum number of edges in an s-uniform hypergraph on n vertices with no k-matching. For k >= 3, we conjecture that if n > sk, then ar(n, s, k) = ex(n, s, k 1) + 2. Also, if n = sk, then ar(n, s, k) = {ex(n, s, k - 1) + 2 if k < c(s) ex(n, s, k - 1) + S + 1 if k >= c(s,) where c(s) is a constant dependent on s. We prove this conjecture k = 2, k = 3, and sufficiently large n, as well as provide upper and lower bounds. (C) 2013 Elsevier B.V. All rights reserved.
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.isversionof10.1016/j.disc.2013.06.015
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleAnti-Ramsey Number of Matchings in Hypergraphs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalDiscrete Mathematics
dc.contributor.departmentBilgisayar Mühendisliği
dc.identifier.volume313
dc.identifier.issue20
dc.identifier.startpage2359
dc.identifier.endpage2364
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster