Anti-Ramsey Number of Matchings in Hypergraphs
dc.contributor.author | Özkahya, Lale | |
dc.contributor.author | Young, Michael | |
dc.date.accessioned | 2019-12-13T06:51:43Z | |
dc.date.available | 2019-12-13T06:51:43Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0012-365X | |
dc.identifier.uri | https://doi.org/10.1016/j.disc.2013.06.015 | |
dc.identifier.uri | http://hdl.handle.net/11655/18665 | |
dc.description.abstract | A k-matching in a hypergraph is a set of k edges such that no two of these edges intersect. The anti-Ramsey number of a k-matching in a complete s-uniform hypergraph H on n vertices, denoted by ar(n, s, k), is the smallest integer c such that in any coloring of the edges of H with exactly c colors, there is a k-matching whose edges have distinct colors. The Turan number, denoted by ex(n, s, k), is the the maximum number of edges in an s-uniform hypergraph on n vertices with no k-matching. For k >= 3, we conjecture that if n > sk, then ar(n, s, k) = ex(n, s, k 1) + 2. Also, if n = sk, then ar(n, s, k) = {ex(n, s, k - 1) + 2 if k < c(s) ex(n, s, k - 1) + S + 1 if k >= c(s,) where c(s) is a constant dependent on s. We prove this conjecture k = 2, k = 3, and sufficiently large n, as well as provide upper and lower bounds. (C) 2013 Elsevier B.V. All rights reserved. | |
dc.language.iso | en | |
dc.publisher | Elsevier Science Bv | |
dc.relation.isversionof | 10.1016/j.disc.2013.06.015 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Anti-Ramsey Number of Matchings in Hypergraphs | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Discrete Mathematics | |
dc.contributor.department | Bilgisayar Mühendisliği | |
dc.identifier.volume | 313 | |
dc.identifier.issue | 20 | |
dc.identifier.startpage | 2359 | |
dc.identifier.endpage | 2364 | |
dc.description.index | WoS | |
dc.description.index | Scopus |