dc.contributor.author | Furedi, Zoltan | |
dc.contributor.author | Ozkahya, Lale | |
dc.date.accessioned | 2019-12-13T06:51:34Z | |
dc.date.available | 2019-12-13T06:51:34Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0166-218X | |
dc.identifier.uri | https://doi.org/10.1016/j.dam.2016.10.013 | |
dc.identifier.uri | http://hdl.handle.net/11655/18644 | |
dc.description.abstract | We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length l. In particular we prove that the upper bound for C2k+1-free hypergraphs is of the order O(k(2)n(1+1/k)), improving the upper bound of Gyori and Lemons (2012) by a factor of Theta (k(2)). Similar bounds are shown for linear hypergraphs. (C) 2016 Elsevier B.V. All rights reserved. | |
dc.language.iso | en | |
dc.publisher | Elsevier Science Bv | |
dc.relation.isversionof | 10.1016/j.dam.2016.10.013 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | On 3-Uniform Hypergraphs Without A Cycle Of A Given Length | |
dc.type | info:eu-repo/semantics/article | |
dc.relation.journal | Discrete Applied Mathematics | |
dc.contributor.department | Bilgisayar Mühendisliği | |
dc.identifier.volume | 216 | |
dc.identifier.startpage | 582 | |
dc.identifier.endpage | 588 | |
dc.description.index | WoS | |