Show simple item record

dc.contributor.authorFuredi, Zoltan
dc.contributor.authorOzkahya, Lale
dc.date.accessioned2019-12-13T06:51:34Z
dc.date.available2019-12-13T06:51:34Z
dc.date.issued2017
dc.identifier.issn0166-218X
dc.identifier.urihttps://doi.org/10.1016/j.dam.2016.10.013
dc.identifier.urihttp://hdl.handle.net/11655/18644
dc.description.abstractWe study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length l. In particular we prove that the upper bound for C2k+1-free hypergraphs is of the order O(k(2)n(1+1/k)), improving the upper bound of Gyori and Lemons (2012) by a factor of Theta (k(2)). Similar bounds are shown for linear hypergraphs. (C) 2016 Elsevier B.V. All rights reserved.
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.isversionof10.1016/j.dam.2016.10.013
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleOn 3-Uniform Hypergraphs Without A Cycle Of A Given Length
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalDiscrete Applied Mathematics
dc.contributor.departmentBilgisayar Mühendisliği
dc.identifier.volume216
dc.identifier.startpage582
dc.identifier.endpage588
dc.description.indexWoS


Files in this item

This item appears in the following Collection(s)

Show simple item record