Human Tubb3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, And Axon Guidance
Tarih
2010Yazar
Tischfield, Max A.
Baris, Hagit N.
Wu, Chen
Rudolph, Guenther
Van Maldergem, Lionel
He, Wei
Chan, Wai-Man
Andrews, Caroline
Demer, Joseph L.
Robertson, Richard L.
Mackey, David A.
Ruddle, Jonathan B.
Bird, Thomas D.
Gottlob, Irene
Pieh, Christina
Traboulsi, Elias I.
Pomeroy, Scott L.
Hunter, David G.
Soul, Janet S.
Newlin, Anna
Sabol, Louise J.
Doherty, Edward J.
de Uzcategui, Clara E.
de Uzcategui, Nicolas
Collins, Mary Louise Z.
Sener, Emin C.
Wabbels, Bettina
Hellebrand, Heide
Meitinger, Thomas
de Berardinis, Teresa
Magli, Adriano
Schiavi, Costantino
Pastore-Trossello, Marco
Koc, Feray
Wong, Agnes M.
Levin, Alex V.
Geraghty, Michael T.
Descartes, Maria
Flaherty, Maree
Jamieson, Robyn V.
Moller, H. U.
Meuthen, Ingo
Callen, David F.
Kerwin, Janet
Lindsay, Susan
Meindl, Alfons
Gupta, Mohan L
Jr.
Pellman, David
Engle, Elizabeth C.
Üst veri
Tüm öğe kaydını gösterÖzet
We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.