Mutations In The Tgf Beta Binding-Protein-Like Domain 5 Of Fbn1 Are Responsible For Acromicric And Geleophysic Dysplasias
Göster/ Aç
Tarih
2011Yazar
Le Goff, Carine
Mahaut, Clementine
Wang, Lauren W.
Allali, Slimane
Abhyankar, Avinash
Jensen, Sacha
Zylberberg, Louise
Collod-Beroud, Gwenaelle
Bonnet, Damien
Alanay, Yasemin
Brady, Angela. F.
Cordier, Marie-Pierre
Devriendt, Koen
Genevieve, David
Kiper, Pelin Ozlem Simsek
Kitoh, Hiroshi
Krakow, Deborah
Lynch, Sally Ann
Le Merrer, Martine
Megarbane, Andre
Mortier, Geert
Odent, Sylvie
Polak, Michel
Rohrbach, Marianne
Sillence, David
Stolte-Dijkstra, Irene
Superti-Furga, Andrea
Rimoin, David L.
Topouchian, Vicken
Unger, Sheila
Zabel, Bernhard
Bole-Feysot, Christine
Nitschke, Patrick
Handford, Penny
Casanova, Jean-Laurent
Boileau, Catherine
Apte, Suneel S.
Munnich, Arnold
Cormier-Dairel, Valerie
Üst veri
Tüm öğe kaydını gösterÖzet
Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although All has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGF beta-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGF beta signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTS12 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGF beta signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.