Mutations In Cspp1 Cause Primary Cilia Abnormalities And Joubert Syndrome With Or Without Jeune Asphyxiating Thoracic Dystrophy
Göster/ Aç
Tarih
2014Yazar
Tuz, Karma
Bachmann-Gagescu, Ruxandra
O'Day, Diana R.
Hua, Kiet
Isabella, Christine R.
Phelps, Ian G.
Stolarski, Allan E.
O'Roak, Brian J.
Dempsey, Jennifer C.
Lourenco, Charles
Alswaid, Abdulrahman
Boennemann, Carsten G.
Medne, Livija
Nampoothiri, Sheela
Stark, Zornitza
Leventer, Richard J.
Topcu, Meral
Cansu, Ali
Jagadeesh, Sujatha
Done, Stephen
Ishak, Gisele E.
Glass, Ian A.
Shendure, Jay
Neuhauss, Stephan C. F.
Haldeman-Englert, Chad R.
Doherty, Dan
Ferland, Russell J.
Üst veri
Tüm öğe kaydını gösterÖzet
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain similar to 5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.