Basit öğe kaydını göster

dc.contributor.advisorSaysel, Mustafa Yiğit
dc.contributor.authorÖzgür, Ümit
dc.date.accessioned2019-12-06T07:42:15Z
dc.date.issued2019
dc.date.submitted2019-10-02
dc.identifier.citation1. Morgano SM, VanBlarcom CW, Ferro KJ, Bartlett DW. The history of The Glossary of Prosthodontic Terms. J Prosthet Dent. 2018;119(3):311-2. 2. Buser D, Sennerby L, De Bruyn HJP. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. 2017;73(1):7-21. 3. Misch CEJID. Contemporary implant dentistry. 1999;8(1):90. 4. Breine U, Brånemark P-IJSjop, surgery r. Reconstruction of alveolar jaw bone. 1980;14(1):23-48. 5. Raghoebar GM, Batenburg RH, Vissink A, Reintsema HJJoo, surgery m. Augmentation of localized defects of the anterior maxillary ridge with autogenous bone before insertion of implants. 1996;54(10):1180-5. 6. Sindet-Pedersen S, Enemark HJJoO, Surgery M. Reconstruction of alveolar clefts with mandibular or iliac crest bone grafts: a comparative study. 1990;48(6):554-8. 7. Khoury FJIJoO, Implants M. Augmentation of the sinus floor with mandibular bone block and simultaneous implantation: a 6-year clinical investigation. 1999;14(4). 8. Lopes N, Oliveira DM, Vajgel A, Pita I, Bezerra T, de Holanda Vasconcellos RJJJoO, et al. A new approach for reconstruction of a severely atrophic mandible. 2009;67(11):2455-9. 9. Geng J-P, Tan KB, Liu G-RJTJopd. Application of finite element analysis in implant dentistry: a review of the literature. 2001;85(6):585-98. 10. Ertem SY, Uckan S, Ozden UAJJoC-MS. The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis. 2013;41(3):e54-e8. 11. Cawood JI, Howell RA. A classification of the edentulous jaws. International journal of oral and maxillofacial surgery. 1988;17(4):232-6. 12. Block MS, Kent JN. Endosseous Implants for Maxillofacial Reconstruction, 1e. 1995. 13. Enlow DH, Bianco HJ, Eklund SJTJopd. The remodeling of the edentulous mandible. 1976;36(6):685-93. 14. Tolstunov LJJoOI. Combination syndrome: classification and case report. 2007;33(3):139-51. 15. Linkow L, Chercheve R. Theory and techniques of oral implantology, Mosby, St. Louis; 1970. 16. Albrektsson T, Brånemark P-I, Zarb GA. Tissue-integrated Prostheses: Osseointegration in Clinical Dentistry: Quintessence; 1985. 86 17. Misch CE. Bone density: a key determinant for treatment planning. Contemporary implant dentistry: Mosby, St. Louis; 2008. p. 130-46. 18. Misch C, Judy KJTIjooii. Classification of partially edentulous arches for implant dentistry. 1987;4(2):7. 19. Albaker AM. The oral health-related quality of life in edentulous patients treated with conventional complete dentures. Gerodontology. 2013;30(1):61-6. 20. Brunello DL, Mandikos MN. Construction faults, age, gender, and relative medical health: factors associated with complaints in complete denture patients. J Prosthet Dent. 1998;79(5):545-54. 21. Misch CE. Contemporary implant dentistry-E-Book: Elsevier Health Sciences; 2007. 22. Berretin-Felix G, Nary Filho H, Padovani CR, Trindade Junior AS, Machado WMJJoAOS. Electromyographic evaluation of mastication and swallowing in elderly individuals with mandibular fixed implant-supported prostheses. 2008;16(2):116-21. 23. Parithimarkalaignan S, Padmanabhan TJTJoIPS. Osseointegration: an update. 2013;13(1):2-6. 24. Albrektsson T, Jansson T, Lekholm UJDCoNA. Osseointegrated dental implants. 1986;30(1):151-74. 25. Ring ME. Dentistry: an illustrated history: Abrams New York:; 1985. 26. Abraham CMJTodj. Suppl 1: A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. 2014;8:50. 27. Maggiolo GJModaCLS, Nancy, France. Manuel de l'art dentaire. 1809. 28. Greenfield EJTIjooii. Implantation of artificial crown and bridge abutments. 1913. 1991;7(2):63. 29. Linkow L, Dorfman JJTNYsdj. Implantology in dentistry. A brief historical perspective. 1991;57(6):31-5. 30. Burch RJAd. Dr. Pinkney Adams--a dentist before his time. 1997;68(3):14-5. 31. Formiggini MJASIA. Implanti alloplastici endomascellari con viti metallich cave. 1955;3:10. 32. Chercheve RJJID숲. Implantation technIque.[French. 1963;5:539. 33. Gershkoff A, Goldberg NJDD. The implant lower denture. 1949;55:490. 34. Branemark P-IJJpD. Osseointegration and its experimental background. 1983;50:399-410. 35. Branemark P. Introduction to Osseointegration: Branemark PI, Zarb GA, Albrektsson T. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago, Illinois, Quintessence Publishing Co. Inc; 1985. 87 36. English CJTJotADA. An overview of implant hardware. 1990;121(3):368. 37. Kent JN, Block MS, Misiek DJ, Finger IM, Guerra L, Larsen HJTJotADA. Biointegrated hydroxylapatite-coated dental implants: 5-year clinical observations. 1990;121(1):138-44. 38. Kirsch A, Ackermann KJDCoNA. The IMZ osteointegrated implant system. 1989;33(4):733-91. 39. Krekeler G, Schilli W, Sutter FJDQ. ITI-Implant type H: technical development, animal experiments and clinical results. 1984;35(12):2253. 40. Patrick D, Zosky J, Lubar R, Buchs AJTJooi. Longitudinal clinical efficacy of Core-Vent dental implants: a five-year report. 1989;15(2):95-103. 41. Bosker H, van Dijk LJJoO, Surgery M. The transmandibular implant: a 12-year follow-up study. 1989;47(5):442-50. 42. Laney WJTIjoo, implants m. In recognition of an implant pioneer: Professor Dr. André Schroeder. 1993;8(2):135. 43. Tanahashi M, Kokubo T, Nakamura T, Katsura Y, Nagano MJB. Ultrastructural study of an apatite layer formed by a biomimetic process and its bonding to bone. 1996;17(1):47-51. 44. Winn SR, Schmitt JM, Buck D, Hu Y, Grainger D, Hollinger JOJJoBMRAOJoTSfB, The Japanese Society for Biomaterials,, et al. Tissue‐engineered bone biomimetic to regenerate calvarial critical‐sized defects in athymic rats. 1999;45(4):414-21. 45. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RDJIJoO, Implants M. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. 2000;15(5). 46. RAVNHOLT GJEJoOS. Corrosion current and pH rise around titanium coupled to dental alloys. 1988;96(5):466-72. 47. Schenk RK, Buser DJP. Osseointegration: a reality. 1998;17(1):22-35. 48. Kobayashi E, Matsumoto S, Doi H, Yoneyama T, Hamanaka HJJobmr. Mechanical properties of the binary titanium‐zirconium alloys and their potential for biomedical materials. 1995;29(8):943-50. 49. Niinomi MJMS, A E. Mechanical properties of biomedical titanium alloys. 1998;243(1-2):231-6. 50. Noumbissi S, Scarano A, Gupta SJM. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. 2019;12(3):368. 51. Cranin AN, Schnitman PA, Rabkin M, Dennison T, Onesto EJJobmr. Alumina and zirconia coated vitallium oral endosteal implants in beagles. 1975;9(4):257-62. 52. Özkurt Z, Kazazoğlu EJJooi. Zirconia dental implants: a literature review. 2011;37(3):367-76. 88 53. Adatia ND, Bayne SC, Cooper LF, Thompson JYJJoPI, Esthetic, Dentistry R. Fracture resistance of yttria‐stabilized zirconia dental implant abutments. 2009;18(1):17-22. 54. Chiapasco M, Casentini P, Zaniboni M, Corsi E, Anello TJCoir. Titanium–zirconium alloy narrow‐diameter implants (S traumann R oxolid®) for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. 2012;23(10):1136-41. 55. Saini M, Singh Y, Arora P, Arora V, Jain KJWJoCCW. Implant biomaterials: A comprehensive review. 2015;3(1):52. 56. Wataha JJJoor. Materials for endosseous dental implants. 1996;23(2):79-90. 57. Hench LL, Wilson JJS. Surface-active biomaterials. 1984;226(4675):630-6. 58. Biesbrock AR, Edgerton MJIJoO, Implants M. Evaluation of the clinical predictability of hydroxyapatite-coated endosseous dental implants: a review of the literature. 1995;10(6). 59. Lemons JEJTJotADA. Dental implant biomaterials. 1990;121(6):716-9. 60. Meijer G, Dalmeijer R, De Putter C, VAN BLITTERS WIJK CJJoor. A comparative study of flexible (Polyactive®) versus rigid (hydroxylapatite) permucosal dental implants. II. Histological aspects. 1997;24(2):93-101. 61. Meijer G, Heethaar J, Cune M, De Putter C, Van Blitterswijk CJIjoo, surgery m. Flexible (Polyactive®) versus rigid (hydroxyapatite) dental implants. 1997;26(2):135-40. 62. Chapman R, Kirsch AJTIjoo, implants m. Variations in occlusal forces with a resilient internal implant shock absorber. 1990;5(4):369-74. 63. Cranin ANJTJoOI. Glossary of implant terms. 2007:0_1. 64. Branemark P-IJSJPRSS. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. 1977;16. 65. Jayesh RS, Dhinakarsamy V. Osseointegration. Journal of pharmacy & bioallied sciences. 2015;7(Suppl 1):S226-S9. 66. Albrektsson T, Brånemark P-I, Hansson H-A, Lindström JJAOS. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. 1981;52(2):155-70. 67. Chavez H, Ortman LF, DeFranco RL, Medige JJJoPD. Assessment of oral implant mobility. 1993;70(5):421-6. 68. Chen Y-Y, Kuan C-L, Wang Y-BJJDS. Implant occlusion: biomechanical considerations for implant-supported prostheses. 2008;3(2):65-74. 69. Misch CJDT. Early bone loss etiology and its effect on treatment planning. 1996;15(6):44-51. 89 70. Ishigaki S, Nakano T, Yamada S, Nakamura T, Takashima FJCoir. Biomechanical stress in bone surrounding an implant under simulated chewing. 2003;14(1):97-102. 71. Şahin S, Cehreli MC, Yalçın EJJod. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. 2002;30(7-8):271-82. 72. Kim Y, Oh TJ, Misch CE, Wang HLJCoir. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. 2005;16(1):26-35. 73. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85(6):585-98. 74. Bidez M, Misch CJTJooi. Force transfer in implant dentistry: basic concepts and principles. 1992;18(3):264-74. 75. Borchers L, Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. Journal of dental research. 1983;62(2):155-9. 76. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14(2):103-9. 77. Gehrke SA, Dedavid BA, Aramburu JSJ, Perez-Diaz L, Calvo Guirado JL, Canales PM, et al. Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. Biomed Res Int. 2018;2018:4265474. 78. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. 2002;29(6):565-74. 79. Binon PPJIJOMI. Implants and components: entering the new millennium. 2000;15:76-94. 80. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari HJIJoO, Implants M. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. 2003;18(3). 81. Lee J-H, Frias V, Lee K-W, Wright RFJTJopd. Effect of implant size and shape on implant success rates: a literature review. 2005;94(4):377-81. 82. Nelson SJ. Wheeler's Dental Anatomy, Physiology and Occlusion-E-Book: Elsevier Health Sciences; 2014. 83. Himmlova L, Dostálová Tj, Kácovský A, Konvic̆ková SJTJopd. Influence of implant length and diameter on stress distribution: a finite element analysis. 2004;91(1):20-5. 84. Karoussis IK, Brägger U, Salvi GE, Bürgin W, Lang NPJCoir. Effect of implant design on survival and success rates of titanium oral implants: a 10‐year prospective cohort study of the ITI® Dental Implant System. 2004;15(1):8-17. 90 85. Brunski JBJIJoO, Implants M. Biomaterials and biomechanics in dental implant design. 1988;3(2). 86. Brunski JJTIjooii. Biomechanical considerations in dental implant design. 1988;5(1):31. 87. Yadav P, Tahir M, Shetty P, Saini V, Prajapati DJIJOIR. Implant design and stress distribution. 2016;7(2):34-9. 88. Strong J, Misch C, Bidez M, Nalluri PJCCED. Functional surface area: thread-form parameter optimization for implant body design. 1998;19(3):4-9. 89. Misch CE, Bidez MJCid. A scientific rationale for dental implant design. 2008;3:220-9. 90. Stanford CM. Surface modifications of dental implants. Australian dental journal. 2008;53 Suppl 1:S26-33. 91. Kelly EJTJoPD. Changes caused by a mandibular removable partial denture opposing a maxillary complete denture. 1972;27(2):140-50. 92. Jameson WS. Various clinical situations and their influence on linear occlusion in treating combination syndrome: A discussion of treatment options. 2003. 93. Jalbout Z, Tabourian G. Glossary of implant dentistry: ICOI; 2004. 94. Saunders TR, Gillis RE, Desjardins RPJJoPD. The maxillary complete denture opposing the mandibular bilateral distal-extension partial denture: treatment considerations. 1979;41(2):124-8. 95. Palmqvist S, Carlsson GEJTJopd. The combination syndrome: a literature review. 2003;90(3):270-5. 96. Hoexter DLJJooi. Bone regeneration graft materials. 2002;28(6):290-4. 97. Misch CE, Dietsh FJId. Bone-grafting materials in implant dentistry. 1993;2(3):158-67. 98. Lane JMJWJoM. Bone graft substitutes. 1995;163(6):565. 99. Garg AK. Bone biology, harvesting, and grafting for dental implants: rationale and clinical applications. 2004. 100. Buser D, Dula K, Belser U, Hirt H-P, Berthold HJIJoP, Dentistry R. Localized ridge augmentation using guided bone regeneration. I. Surgical procedure in the maxilla. 1993;13(1). 101. Ozaki W, Buchman SR, Goldstein SA, Fyhrie DPJP, surgery r. A comparative analysis of the microarchitecture of cortical membranous and cortical endochondral onlay bone grafts in the craniofacial skeleton. 1999;104(1):139-47. 102. Capelli MJIJoP, Dentistry R. Autogenous bone graft from the mandibular ramus: a technique for bone augmentation. 2003;23(3):277-86. 91 103. Moy P, Palacci PJEids, management ht. Minor bone augmentation procedures. 2001:137-58. 104. Harsha BC, Turvey TA, Powers SKJJoo, surgery m. Use of autogenous cranial bone grafts in maxillofacial surgery: a preliminary report. 1986;44(1):11-5. 105. Iizuka T, Smolka W, Hallermann W, Mericske‐Stern RJCoir. Extensive augmentation of the alveolar ridge using autogenous calvarial split bone grafts for dental rehabilitation. 2004;15(5):607-15. 106. Ilankovan V, Stronczek M, Telfer M, Peterson L, Stassen L, Ward-Booth PJBJoO, et al. A prospective study of trephined bone grafts of the tibial shaft and iliac crest. 1998;36(6):434-9. 107. Catone GA, Reimer BL, McNeir D, Ray RJJoo, surgery m. Tibial autogenous cancellous bone as an alternative donor site in maxillofacial surgery: a preliminary report. 1992;50(12):1258-63. 108. Yates DM, Brockhoff II HC, Finn R, Phillips CJJoO, Surgery M. Comparison of intraoral harvest sites for corticocancellous bone grafts. 2013;71(3):497-504. 109. Cheung LK, Samman N, Tideman HJJoC-MS. The use of mouldable acrylic for restoration of the temporalis flap donor site. 1994;22(6):338-41. 110. Kainulainen VT, Sàndor GK, Oikarinen KS, Clokie CMJIJoO, Implants M. Zygomatic bone: an additional donor site for alveolar bone reconstruction. Technical note. 2002;17(5). 111. Keller E, Van Roekel N, Desjardins R, Tolman DJIJoO, Implants M. Prosthetic-surgical reconstruction of the severely resorbed maxilla with iliac bone grafting and tissue-integrated prostheses. 1987;2(3). 112. Misch CM, Misch CE, Resnik RR, Ismail YHJIJoO, Implants M. Reconstruction of maxillary alveolar defects with mandibular symphysis grafts for dental implants: a preliminary procedural report. 1992;7(3). 113. Montazem A, Valauri DV, St-Hilaire H, Buchbinder DJJoo, surgery m. The mandibular symphysis as a donor site in maxillofacial bone grafting: a quantitative anatomic study. 2000;58(12):1368-71. 114. Jensen J, Sindet-Pedersen SJJoO, Surgery M. Autogenous mandibular bone grafts and osseointegrated implants for reconstruction of the severely atrophied maxilla: a preliminary report. 1991;49(12):1277-87. 115. Misch CMJJoOI. Use of the mandibular ramus as a donor site for onlay bone grafting. 2000;26(1):42-9. 116. Misch CJPp, PPAD ad. Ridge augmentation using mandibular ramus bone grafts for the placement of dental implants: presentation of a technique. 1996;8(2):127-35; quiz 38. 117. Clavero J, Lundgren SJCid, research r. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. 2003;5(3):154-60. 92 118. Felice P, Iezzi G, Lizio G, Piattelli A, Marchetti CJJoO, Surgery M. Reconstruction of atrophied posterior mandible with inlay technique and mandibular ramus block graft for implant prosthetic rehabilitation. 2009;67(2):372-80. 119. Misch CJDiu. The use of ramus grafts for ridge augmentation. 1998;9(6):41. 120. Misch CMJIJoO, Implants M. Comparison of intraoral donor sites for onlay grafting prior to implant placement. 1997;12(6). 121. Andrade MGS, Sá CN, Marchionni AMT, dos Santos Calmon TCB, Sadigursky MJC, banking t. Effects of freezing on bone histological morphology. 2008;9(4):279-87. 122. Kumar P, Vinitha B, Fathima GJJop, sciences b. Bone grafts in dentistry. 2013;5(Suppl 1):S125. 123. Rodgers MM, Cavanagh PRJPT. Glossary of biomechanical terms, concepts, and units. 1984;64(12):1886-902. 124. Craig RG, Welker D, Rothaut J, Krumbholz KG, Stefan KP, Dermann K, et al. Dental materials. 2000. 125. Maurer P, Holweg S, Knoll W-D, Schubert JJBJoO, Surgery M. Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. 2002;40(1):76-83. 126. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Coomans M, Lieven S, et al. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. 1998;9(6):407-18. 127. Caputo AA, Standlee JP. Biomechanics in clinical dentistry: Quintessence Publishing (IL); 1987. 128. Cowin SC. Bone mechanics handbook: CRC press; 2001. 129. Elert GJFJ. The physics hypertextbook. 1998;9:2008. 130. Beer FP, Johnston Jr E. Mechanics of Materials, 1981. McGraw-Hill, New York; 1974. 131. Greaves GN, Greer A, Lakes RS, Rouxel TJNm. Poisson's ratio and modern materials. 2011;10(11):823. 132. Assunção WG, Barão VAR, Tabata LF, Gomes EA, Delben JA, dos Santos PHJJoCS. Biomechanics studies in dentistry: bioengineering applied in oral implantology. 2009;20(4):1173-7. 133. Geramy A, Morgano SMJTJopd. Finite element analysis of three designs of an implant-supported molar crown. 2004;92(5):434-40. 134. Strang G, Fix GJ. An analysis of the finite element method: Prentice-hall Englewood Cliffs, NJ; 1973. 135. Clough R, Martin H, Topp L, Turner MJJotAS. Stiffness and deflection analysis of complex structures. 1956;23(9). 93 136. Farah J, Craig RG, Sikarskie DLJJoB. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. 1973;6(5):511-20. 137. Korioth TW, Hannam AGJJoop. Mandibular forces during simulated tooth clenching. 1994;8(2). 138. Bilgin MS, Baytaroğlu EN, Erdem A, Dilber EJEjod. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. 2016;10(2):286. 139. Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita TJJop, et al. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. 2016;46(3):152-65. 140. Schwartz‐Arad D, Levin LJJop. Intraoral autogenous block onlay bone grafting for extensive reconstruction of atrophic maxillary alveolar ridges. 2005;76(4):636-41. 141. Ferrara ED, Stella JPJJoo, surgery m. Restoration of the edentulous maxilla: the case for the zygomatic implants. 2004;62(11):1418-22. 142. Parel SM, Brånemark P-I, Ohrnell L-O, Svensson BJTJopd. Remote implant anchorage for the rehabilitation of maxillary defects. 2001;86(4):377-81. 143. Candel-Martí E, Carrillo-García C, Peñarrocha-Oltra D, Peñarrocha-Diago MJJoOI. Rehabilitation of atrophic posterior maxilla with zygomatic implants. 2012;38(5):653-7. 144. Ali SA, Karthigeyan S, Deivanai M, Kumar AJTJoIPS. Implant rehabilitation for atrophic maxilla: a review. 2014;14(3):196-207. 145. Candel E, Peñarrocha D, Peñarrocha MJJoOI. Rehabilitation of the atrophic posterior maxilla with pterygoid implants: a review. 2012;38(S1):461-6. 146. Peñarrocha‐Diago M, Uribe‐Origone R, Guarinos‐Carbó JJJoPI, Esthetic, Dentistry R. Implant‐Supported Rehabilitation of the Severely Atrophic Maxilla: A Clinical Report. 2004;13(3):187-91. 147. Kahnberg K-E, Nilsson P, Rasmusson LJIJoO, Implants M. Le Fort I osteotomy with interpositional bone grafts and implants for rehabilitation of the severely resorbed maxilla: a 2-stage procedure. 1999;14(4):571-8. 148. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm AJIjoid. Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. 2017;3(1):23. 149. Triplett RG, Schow SRJJoO, Surgery M. Autologous bone grafts and endosseous implants: complementary techniques. 1996;54(4):486-94. 150. Deatherage JJO, America mscoN. Bone materials available for alveolar grafting. 2010;22(3):347-52. 94 151. Nkenke E, Neukam FWJEJOI. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. 2014;7(Suppl 2):S203-S17. 152. Clementini M, Morlupi A, Agrestini C, Ottria LJO, implantology. Success rate of dental implants inserted in autologous bone graft regenerated areas: a systematic review. 2011;4(3-4):3. 153. Kuchler U, von Arx TJIjoo, implants m. Horizontal ridge augmentation in conjunction with or prior to implant placement in the anterior maxilla: a systematic review. 2014;29. 154. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard PJEJOI. The efficacy of horizontal and vertical bone augmentation procedures for dental implants-a Cochrane systematic review. 2009;2(3):167-84. 155. Ying T, Wang DM, Tong J, Wang CT, Zhang CPJJoC-MS. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. 2006;34(5):290-8. 156. Lin KY, Bartlett SP, Yaremchuk MJ, Fallon M, Grossman RF, Whitaker LAJP, et al. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. 1990;86(3):449-56. 157. Zins JE, Whitaker LAJP, surgery r. Membranous versus endochondral bone: implications for craniofacial reconstruction. 1983;72(6):778-85. 158. Rabie A-BM, Dan Z, Samman NJIjoo, surgery m. Ultrastructural identification of cells involved in the healing of intramembranous and endochondral bones. 1996;25(5):383-8. 159. Kusiak JF, Zins JE, Whitaker LAJP, surgery r. The early revascularization of membranous bone. 1985;76(4):510-6. 160. Koole R, Bosker H, van der Dussen FNJJoC-MS. Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. 1989;17:28-30. 161. Manson PNJCips. Facial bone healing and bone grafts. A review of clinical physiology. 1994;21(3):331-48. 162. Buchman SR, Ozaki WJAops. The ultrastructure and resorptive pattern of cancellous onlay bone grafts in the craniofacial skeleton. 1999;43(1):49-56. 163. Ozaki W, Buchman SRJP, surgery r. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. 1998;102(2):291-9. 164. Hendy C, Smith K, Robinson PJBJoO, Surgery M. Surgical anatomy of the buccal nerve. 1996;34(5):457-60. 165. Bell WHJTotjdbivro. Modern Practice in Orthognathic and Reconstrucitive Surgery. 1992:676-701. 95 166. Denio D, Torabinejad M, Bakland LKJJoe. Anatomical relationship of the mandibular canal to its surrounding structures in mature mandibles. 1992;18(4):161-5. 167. Rajchel JJIJAOOS. The anatomical location of the mandibular canal: its relation-ship to the sagittal ramus osteotomy. 1986;1:37-47. 168. Ekelund J-A, Lindquist LW, Carlsson GE, Jemt TJIJoP. Implant treatment in the edentulous mandible: a prospective study on Brånemark system implants over more than 20 years. 2003;16(6). 169. Demenko V, Linetsky I, Nesvit V, Linetska L, Shevchenko AJCmib, engineering b. FE study of bone quality effect on load-carrying ability of dental implants. 2014;17(16):1751-61. 170. Winkler S, Morris HF, Ochi SJAop. Implant survival to 36 months as related to length and diameter. 2000;5(1):22-31. 171. Slot W, Raghoebar GM, Vissink A, Huddleston Slater JJ, Meijer HJJJocp. A systematic review of implant‐supported maxillary overdentures after a mean observation period of at least 1 year. 2010;37(1):98-110. 172. Andreiotelli M, Att W, Strub J-RJIJoP. Prosthodontic complications with implant overdentures: a systematic literature review. 2010;23(3). 173. Cavallaro Jr JS, Tarnow DPJIJoO, Implants M. Unsplinted implants retaining maxillary overdentures with partial palatal coverage: report of 5 consecutive cases. 2007;22(5). 174. Sadowsky SJJTJopd. Treatment considerations for maxillary implant overdentures: a systematic review. 2007;97(6):340-8. 175. De Albuquerque RF, Lund JP, Tang L, Larivée J, De Grandmont P, Gauthier G, et al. Within‐subject comparison of maxillary long‐bar implant‐retained prostheses with and without palatal coverage: patient‐based outcomes. 2000;11(6):555-65. 176. Zitzmann NU, Marinello CPJTJopd. Treatment outcomes of fixed or removable implant-supported prostheses in the edentulous maxilla. Part I: patients’ assessments. 2000;83(4):424-33. 177. Dudley JJAdj. Maxillary implant overdentures: current controversies. 2013;58(4):420-3. 178. Mericske-Stern RJTJopd. Treatment outcomes with implant-supported overdentures: clinical considerations. 1998;79(1):66-73. 179. D. Mericske‐Stern R, Taylor TD, Belser UJCOIRC. Management of the edentulous patient. 2000;11:108-25. 180. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JYJTJopd. Clinical complications with implants and implant prostheses. 2003;90(2):121-32. 96 181. Stoumpis C, Kohal RJJJoor. To splint or not to splint oral implants in the implant‐supported overdenture therapy? A systematic literature review. 2011;38(11):857-69. 182. Osman RB, Payne AG, Ma SJIJoP. Prosthodontic maintenance of maxillary implant overdentures: a systematic literature review. 2012;25(4). 183. Feine J, Carlsson G, Awad M, Chehade A, Duncan W, Gizani S, et al. The McGill consensus statement on overdentures. Mandibular two-implant overdentures as first choice standard of care for edentulous patients. Montreal, Quebec, May 24-25, 2002. 2002;17(4):601. 184. Thomason JM, Feine J, Exley C, Moynihan P, Müller F, Naert I, et al. Mandibular two implant-supported overdentures as the first choice standard of care for edentulous patients-the York Consensus Statement. 2009;207(4):185. 185. Thomason J, Kelly S, Bendkowski A, Ellis JJJod. Two implant retained overdentures––A review of the literature supporting the McGill and York consensus statements. 2012;40(1):22-34. 186. Ekfeldt A, Johansson LÅ, Christiansson U, Eriksson T, Lindén U, Lundqvist S, et al. A retrospective analysis of factors associated with multiple implant failures in maxillae. 2001;12(5):462-7. 187. Kronström M, Widbom C, Söderfeldt BJCid, research r. Patient evaluation after treatment with maxillary implant‐supported overdentures. 2006;8(1):39-43. 188. Palmqvist S, Sondell K, Swartz BJIJoO, Implants M. Implant-supported maxillary overdentures: outcome in planned and emergency cases. 1994;9(2). 189. Närhi TO, Hevinga M, Voorsmit RA, Kalk WJIJoO, Implants M. Maxillary overdentures retained by splinted and unsplinted implants: a retrospective study. 2001;16(2). 190. Engquist B, Bergendal T, Kallus T, Linden UJIJoO, Implants M. A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. 1988;3(2). 191. Jemt T, Lekholm UJIJoO, Implants M. Implant treatment in edentulous maxillae: a 5-year follow-up report on patients with different degrees of jaw resorption. 1995;10(3). 192. Rangert B, Jemt TJIJoO, Implants M. Forces and Moments on Brånemark Implants. 1989;4(3). 193. van Steenberghe D, Naert I, Bossuyt M, De Mars G, Calberson L, Ghyselen J, et al. The rehabilitation of the severely resorbed maxilla by simultaneous placement of autogenous bone grafts and implants: a 10-year evaluation. 1997;1(3):102-8. 194. Watzek G, Weber R, Bernhart T, Ulm C, Haas RJIjoo, surgery m. Treatment of patients with extreme maxillary atrophy using sinus floor augmentation and implants: preliminary results. 1998;27(6):428-34. 97 195. Bedrossian E, Stumpel III L, Beckely M, Indersano TJIJoO, Implants M. The zygomatic implant: preliminary data on treatment of severely resorbed maxillae. A clinical report. 2002;17(6). 196. Keller EE, Tolman DE, Eckert SEJIJoO, Implants M. Maxillary antral-nasal inlay autogenous bone graft reconstruction of compromised maxilla: a 12-year retrospective study. 1999;14(5). 197. Raghoebar GM, Timmenga NM, Reintsema H, Stegenga B, Vissink AJCOIR. Maxillary bone grafting for insertion of endosseous implants: results after 12–124 months. 2001;12(3):279-86. 198. Keller EE, Tolman DE, Eckert SJIjoo, implants m. Surgical-prosthodontic reconstruction of advanced maxillary bone compromise with autogenous onlay block bone grafts and osseointegrated endosseous implants: a 12-year study of 32 consecutive patients. 1999;14(2). 199. Kayumi S, Takayama Y, Yokoyama A, Ueda NJIjoid. Effect of bite force in occlusal adjustment of dental implants on the distribution of occlusal pressure: comparison among three bite forces in occlusal adjustment. 2015;1(1):14. 200. Abarca M, van Steenberghe D, Malevez C, Jacobs RJJoor. The neurophysiology of osseointegrated oral implants. A clinically underestimated aspect. 2006;33(3):161-9. 201. Calandriello R, Tomatis MJCid, research r. Simplified treatment of the atrophic posterior maxilla via immediate/early function and tilted implants: a prospective 1‐year clinical study. 2005;7:s1-s12. 202. Fortin Y, Sullivan RM, Rangert BRJCid, research r. The Marius implant bridge: surgical and prosthetic rehabilitation for the completely edentulous upper jaw with moderate to severe resorption: a 5‐year retrospective clinical study. 2002;4(2):69-77. 203. Aparicio C, Perales P, Rangert BJCid, research r. Tilted implants as an alternative to maxillary sinus grafting: a clinical, radiologic, and periotest study. 2001;3(1):39-49. 204. Malevez C, Abarca M, Durdu F, Daelemans PJCoir. Clinical outcome of 103 consecutive zygomatic implants: a 6–48 months follow‐up study. 2004;15(1):18-22. 205. Aparicio C, Ouazzani W, Garcia R, Arevalo X, Muela R, Fortes VJCid, et al. A prospective clinical study on titanium implants in the zygomatic arch for prosthetic rehabilitation of the atrophic edentulous maxilla with a follow‐up of 6 months to 5 years. 2006;8(3):114-22. 206. Balshi TJ, Wolfinger GJ, Balshi SJIJoO, Implants M. Analysis of 356 pterygomaxillary implants in edentulous arches for fixed prosthesis anchorage. 1999;14(3):398-406. 98 207. Ahlgren F, Størksen K, Tornes KJIJoO, Implants M. A study of 25 zygomatic dental implants with 11 to 49 months' follow-up after loading. 2006;21(3). 208. Trakas T, Michalakis K, Kang K, Hirayama HJId. Attachment systems for implant retained overdentures: a literature review. 2006;15(1):24-34. 209. Çehreli MC, Karasoy D, Kökat AM, Akca K, Eckert SJIJoO, Implants M. A systematic review of marginal bone loss around implants retaining or supporting overdentures. 2010;25(2). 210. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal EJTJopd. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. 2004;91(2):144-50. 211. Himmlova L, Dostálová Tj, Kácovský A, Konvickova SJTJopd. Influence of implant length and diameter on stress distribution: a finite element analysis. 2004;91(1):20-5. 212. Brunski JBJCm. Biomechanical factors affecting the bone-dental implant interface. 1992;10(3):153-201. 213. Sertgöz A, Güvener SJTJopd. Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis. 1996;76(2):165-9. 214. Shen W-L, Chen C-S, Hsu M-LJIJoO, Implants M. Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis. 2010;25(5). 215. Rieger M, Mayberry M, Brose MJTJopd. Finite element analysis of six endosseous implants. 1990;63(6):671-6. 216. Barão VAR, Assunção WG, Tabata LF, de Sousa EAC, Rocha EPJCm, biomedicine pi. Effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures-2D FEA. 2008;92(2):213-23. 217. Menicucci G, Lorenzetti M, Pera P, Preti GJIJoO, Implants M. Mandibular implant-retained overdenture: finite element analysis of two anchorage systems. 1998;13(3). 218. Liu J, Pan S, Dong J, Mo Z, Fan Y, Feng HJJod. Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis. 2013;41(3):241-9. 219. Clelland NL, Gilat A, McGlumphy EA, Brantley WAJIJoO, Implants M. A photoelastic and strain gauge analysis of angled abutments for an implant system. 1993;8(5). 220. Weinberg LA, Kruger BJIJoP. A comparison of implant/prosthesis loading with four clinical variables. 1995;8(5). 99 221. Mericske‐Stern R, Assal P, Buergin WJCoir. Simultaneous force measurements in 3 dimensions on oral endosseous implants in vitro and in vivo. A methodological study. 1996;7(4):378-86. 222. Theocaris PS, Gdoutos EE. Matrix theory of photoelasticity: Springer; 2013. 223. Corrêa CB, Ribeiro ALR, Reis JMdSN, Vaz LGJR. Photoelasticity in Dentistry: a literature review. 2014;11(2):178-84. 224. Sadowsky SJ, Caputo AAJTJopd. Effect of anchorage systems and extension base contact on load transfer with mandibular implant-retained overdentures. 2000;84(3):327-34. 225. Cehreli MC, Akkocaoglu M, Comert A, Tekdemir I, Akca KJM, engineering b, et al. Bone strains around apically free versus grafted implants in the posterior maxilla of human cadavers. 2007;45(4):395-402. 226. More ST, Bindu RJIJESIT. Effect of mesh size on finite element analysis of plate structure. 2015;4(3):181-5. 227. Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu GJTJopd. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. 2005;93(3):227-34. 228. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo GJTJopd. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. 2008;100(6):422-31. 229. Winter W, Klein D, Karl MJJoOI. Effect of model parameters on finite element analysis of micromotions in implant dentistry. 2013;39(1):23-9. 230. Assunção WG, Gomes ÉA, Barão VAR, de Sousa EACJIJoO, Implants M. Stress analysis in simulation models with or without implant threads representation. 2009;24(6). 231. Bergkvist G, Simonsson K, Rydberg K, Johansson F, Dérand TJCid, research r. A finite element analysis of stress distribution in bone tissue surrounding uncoupled or splinted dental implants. 2008;10(1):40-6. 232. Assunção WG, Tabata L, Barao VAR, Rocha EPJJoor. Comparison of stress distribution between complete denture and implant‐retained overdenture‐2D FEA. 2008;35(10):766-74. 233. Quaresma SE, Cury PR, Sendyk WR, Sendyk CJJoOI. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. 2008;34(1):1-6. 234. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, et al. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. 2008;23(1). 235. Meijer HJ, Starmans FJ, Steen WH, Bosman FJIJoP. A three-dimensional finite element study on two versus four implants in an edentulous mandible. 1994;7(3). 100 236. Romeed S, Fok S, Wilson NJJoor. A comparison of 2D and 3D finite element analysis of a restored tooth. 2006;33(3):209-15. 237. Jemat A, Ghazali MJ, Razali M, Otsuka YJBri. Surface modifications and their effects on titanium dental implants. 2015;2015. 238. Cruz RS, Lemos CAA, Oliveira HFF, de Souza Batista VE, Pellizzer EP, Verri FRJJoOI. Comparison of the Use of Titanium–Zirconium Alloy and Titanium Alloy in Dental Implants: A Systematic Review and Meta-Analysis. 2018;44(4):305-12.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/11987
dc.description.abstractIn order to eliminate dental deficiencies, dental implants are the most widely used treatment modalities in modern dentistry. In all cases ranging from a single tooth deficiency to multiple tooth deficits and complete edentulism, dental implant treatment provide the closest results to the natural teeth by improving the functional, aesthetic, phonetic and psychological condition of the patients. In jaws with severe atrophy with complete edentulism; changes in jaw relations on transvers and sagittal plane, insufficient bone volume in the areas where will implants be placed and increasing interarc distances; makes prosthetic treatment challenging. In order to solve these problems, bone augmentation methods and different implant treatment plannings have been developed. It is possible to provide sufficient bone tissue for the placement of dental implants by reconstruction of atrophic regions through augmentation methods; factors such as increased duration of treatment and number of surgical operations, complications that may occur in the post-operative period may decrease the tolerance of patients for multiple surgical procedures. The aim of this study is to analyze and compare the severity and regional distribution of stresses under functional forces, in the cortical and cancellous bone that surrounds the implants, on the implant and prosthetic parts; when two different treatment approaches (augmentation and positional change of implants) are applied in cases such as combination syndrome where atrophy is prominent in the premaxilla. In this study, three dimensional finite element analysis method is used for this purpose. According to the results of this study; it was observed that similar stress values are obtained, when the premaxillary site is augmented with autogenous block graft taken from mandibular ramus, restored with implant therapy in the anterior site, compared with implant placement in premolar-molar site without any further augmentation procedures.tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectimplanttr_TR
dc.titleRezorbe Maksilla Modeline Uygulanan İmplantların Uygulama Bölgelerindeki Değişikliklerin Kemik ile İmplant Üzerindeki Etkisinin Sonlu Eleman Analizi ile İncelenmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetDental implantlar, modern diş hekimliğinde diş eksikliklerinin giderilmesi amacıyla en çok kullanılan tedavi yöntemidir. Tek bir diş eksikliğinden, çoklu diş eksikliklerine ve tam dişsizliklere kadar uzanan tüm durumlarda hastaların fonksiyonel, estetik, fonetik ve psikolojik durumlarının iyileştirilmesinde dental implant tedavileri ile doğal dişlere en yakın sonuçlar elde edilmektedir. Tam dişsizlik durumuyla birlikte ileri derecede atrofi görülen çenelerde, çene ilişkilerinin değişmesi, implant yerleştirilecek bölgelerde kemik dokunun yetersiz oluşu ve dental arklar arasındaki mesafelerin artışı; ideal protetik tedavi planlamalarını zorlu hale getirmektedir. Bu problemleri çözebilmek adına kemik ogmentasyon yöntemleri ve farklı implant tedavisi planlamaları geliştirilmiştir. Ogmentasyon yöntemleri sayesinde atrofik bölgelerin rekonstrüksiyonu ile dental implantların yerleşimi için yeterli kemik dokusunu sağlamak mümkün iken; tedavi sürelerinin ve geçirilen cerrahi operasyon sayısının artması, post-operatif dönemde oluşabilecek komplikasyonlar gibi etkenler hastaların ek cerrahi prosedürlere olan toleransını azaltabilmektedir. Bu çalışmanın amacı; premaksillada atrofinin belirgin şekilde görüldüğü kombinasyon sendromu gibi durumlarda, 2 farklı tedavi yaklaşımı (ogmentasyon ve implantların pozisyonel değişimi) uygulandığında, fonksiyonel kuvvetler altında implant ve protetik parçalar üzerinde, implantı çevreleyen kortikal ve kansellöz kemik dokusunda oluşan streslerin şiddetlerini ve bölgesel dağılımlarını karşılaştırmaktır. Çalışmamızda bu amaç doğrultusunda üç boyutlu sonlu elemanlar analizi yöntemi kullanılmıştır Bu çalışmanın sonuçlarına göre, mandibula ramustan elde edilen blok kemik grefti kullanılarak ogmente edilmiş premaksilla bölgesine yerleştirilen implantlar ve premaksilla ogmentasyonu yapılmaksızın sadece premolar-molar bölgeye yerleştirilen implantlar ile protetik rehabilitasyonu tamamlanan modellerde; implant, implant komponentleri ve çevre dokularda oluşan stres değerleri karşılaştırıldığında benzer sonuçlar elde edildiği gözlenmiştir.tr_TR
dc.contributor.departmentAğız Diş ve Çene Cerrahisitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2020-07-15T07:42:15Z
dc.fundingYoktr_TR
dc.subtypedentThesis


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster