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ABSTRACT

ALMOST P-ARY PERFECT SEQUENCES AND THEIR APPLICATIONS TO
CRYPTOGRAPHY

Biisra OZDEN
Master of Science, Department of Mathematics
Supervisor: Assoc. Prof. Dr. Oguz YAYLA
June 2019, 47 pages

In this thesis we study almost p-ary sequences and their autocorrelation coefficients. We
first study the number ¢ of distinct out-of-phase autocorrelation coefficients for an almost
p-ary sequence of period n + s with s consecutive zero-symbols. We prove an upper bound
and a lower bound on /. It is shown that ¢ can not be less than min{s, p,n}. In partic-
ular, it is shown that a nearly perfect sequence with at least two consecutive zero sym-
bols does not exist. Next we define a new difference set, partial direct product difference
set (PDPDS), and we prove the connection between an almost p-ary nearly perfect se-

quence of type (1,72) and period n + 2 with two consecutive zero-symbols and a cyclic

<n +2,p,n, %f_? + 79,0, "_;1_1 + 71, ”_;2_2, ”_;1_1) PDPDS for arbitrary integers 7,
and ,. We show that the almost p-ary sequences of type (71, 72) and period n + 2 with two
consecutive zero-symbols are symmetric sequences except for zero entries. Then we prove
a necessary condition on 7, for the existence of such sequences. In particular, we show that
they don’t exist for 7, < —3.

Perfect sequences are very important for achieving non-linearity in a cryptosystem, and they
are important in Code Division Multiple Access (CDMA) to ensure a proper communication.
In this thesis, we show a method for obtaining cryptographic functions from almost p-ary
nearly perfect sequences (NPS) of type (71, 72). In fact, most of the cases we obtain functions
with the highest non-linearity, i.e. generalized bent functions. We use almost p-ary NPS of

type (71, 72) in CDMA communication. We simulate the bit-error-rate (BER) performance

of CDMA with these sequences.

Keywords: Almost p-ary sequence, Nearly perfect sequence, Partial direct product differ-

ence set, cryptographic functions, generalized bent function, CDMA, bit-error-rate.

vil



OZET

NEREDEYSE P-ARY DIiZIiLER VE ONLARIN KRIPTOGRAFIYE
UYGULANMASI

Biisra Ozden
Yiiksek Lisans, Matematik Boliimii
Tez Damismani: Doc¢. Dr. Oguz Yayla
Haziran 2019, 47 sayfa

Bu tezde, neredeyse p-ary diziler ve onlarin kriptografiye ve iletisime uygulamalar1 calisil-
mustir. Tezin ilk boliimiinde neredeyse p-ary diziler ve onlarin otokorelasyon katsayilari ¢ali-
silmustir. Tlk olarak, n+ s periyotlu ardisik s sifir sembollii neredeyse p-ary dizinin tepe digin-
daki otokorelasyon katsayilarinin sayisi ¢alisilmistir ve bu sayi £ ile gosterilmektedir. ¢ sayisi
icin bir tist sinir ve bir alt sinir bulunmugtur. Bu teoreme gore ¢ sayist min{s, p, n} sayisidan
daha kii¢iik olamaz. Bu durumda en az iki ardisik sifir sembollii hemen hemen mitkemmel bir
dizi bulunmamaktadir. Yeni bir fark kiimesi tanimlanmistir ve bu kiime neredeyse direkt car-
pum fark kiimesi (NDCFK) olarak adlandirilip n+ 2 periyotlu ardisik 2 sifir sembollii (77, 72)
tipindeki neredeyse p-ary dizisi ile baglanti bulunmustur. v; ve - tamsay1 olmak iizere, n+2

periyotlu ardigik 2 sifir sembollii (71, v2) tipindeki neredeyse p-ary dizisi vardir ancak ve

ancak R kiimesi Z,, s x Z,’de, (n +2,p,n, %ﬁﬂ + 79,0, nflrl + 1, %ﬁ”? %}*1)_
NDCK’dir. Bu dizilerin simetrik oldugu gosterilmistir. Daha sonra, bir n+ 2 periyotlu ardisik
2 sifir sembollii (v, 2) tipindeki neredeyse p-ary dizinin var olabilmesini saglayan , de-
geri icin bir kosul ispatlanmistir. Bu kosula gore v < —3 i¢in n + 2 periyotlu ardigik 2 sifir
sembollii (1, 72) tipindeki neredeyse p-ary dizisi yoktur.

Tezin ikinci boliimiinde, ilk boliimde calisilmig olan dizilerin uygulamalar ¢aligilmistir. Bu
tezde, kriptografik fonksiyonlar1 n + 2 periyotlu ardigik 2 sifir sembollii (7, 2) tipindeki
neredeyse p-ary dizisinden elde etmek i¢in bir yontem verilmistir. Bu yonteme gore ¢ogu
durumda, dizilerden dogrusal olmama durumu fazla olan fonksiyonlar elde ederiz; genelles-

tirilmis bent fonksiyonlari. Son olarak, ilk boliimde calisilmis olan dizileri KBCE’de kulla-

nilmigtir ve bu dizilerin bit-hata-oran1 (BHO) performansi simiile edilmistir.

Anahtar Kelimeler: neredeyse p-ary diziler, neredeyse miikemmel diziler, konferans mat-

risleri, kriptografik fonksiyonlar, kod bolmeli ¢oklu erisim
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1 INTRODUCTION

Sequences have many applications in satellite telecommunication, cryptographic function
design, wireless networks, signal processing, radar systems, and modern cell phones (see
[1, 2, 3, 4, 5]). Sequences play an important role in the orthogonal signal design, for in-
stance, spread spectrum communication and radar systems. In radar systems, correlation
of the received signals and the transmitted signal must be zero to obtain the true echoes.
In Code Division Multiple Access (CDMA), sequences with ideal correlation are important
because a signal should not be affected by other signals in order to provide high-quality com-
munication. In cryptography, privacy is provided by "good" Boolean functions and they are
related to sequences having ideal correlation. For these reasons, sequences with the ideal
correlation have been studied by many authors [6, 7, 8, 5]. Initially, binary sequences were
widely studied, but complex sequences were started to be studied over time due to the lack
of binary sequences with the ideal correlation.

We first give the definition of p-ary sequences and then we will present examples for illus-
trating their importance in cryptography and communication. Let p be a prime number. A
p-ary sequence is a sequence whose entries are the power of primitive p-th root of unity. An
almost p-ary sequence with s zero-symbols is a sequence with the power of primitive p-th
root of unity of entries except for the s entries. It is widely used that a sequence with one

zero-symbol is called an almost p-ary sequence.

Example 1.1. Let 5, 11 be the primitive 5-th and 11-th roots of unity. Then, a = (s, (2, (2,
1,¢2,(3,...) is a 5-ary sequence of period 6 and a = (0,0,¢1,¢}4, ¢, 0,¢h,...) is an

almost 11-ary sequence with 3 zero-symbols of period 7.

We now give an example to show the relationship between a sequence and a "good" crypto-

graphic function.

Example 1.2. We choose a sequence a = (0,0,(7,1,(2,1,(z,...), where {; = 7. We
then construct a function f : Z7; — Z7 as follows f(5) =1, f(4) =0, f(3) =2, f(2) =0,
f(1) =1lasa = (0/© o), f(‘r’), g;“‘”, Cf@), Cf(Q), g;”‘”, ...). By interpolating the function

f of degree 2, we get a "good"” cryptographic function f = 5x* + 5x + 5.

One of the aim of this thesis is to get "good" cryptographic functions via designing "good"

sequences.



In the example below we show how a binary sequence is used in a signal design method,

namely in CDMA.

Example 1.3. We consider that user, sends data; = 10 to the receiver, using the
spreading code; = 1010. Here, data, is XORed by bit-bit with spreading code, and hence,

the spreading message; is obtained.

datay =111 1 0 0 0 O

spreading_code; =101 01010
&)

spreading messagey, = 0 1 0 1 1 0 1 0

Similarly, we consider that usery sends datas = 11 to the receiver, using the spreading code,
= 0000. Here, datay is XORed by bit-bit with spreading codes and hence, the spreading

messages is obtained.

datas =11 11 1111

spreading_codes = 00 0 0 0 0 0 O
S

spreading message, = 1 1 1 1 1 1 1 1

Then, we are converting these messages into signals, separately. This is accomplished
by 1 = -1 and 0 = 1 conversion. Hence, spreading message, is 1 -1 1 -1 -1 1 -1 1 and
spreading messages is -1 -1 -1 -1 -1 -1 -1 -1. It is clear that spreading code, and spread-
ing codesy are orthogonal. Spreading message, is added to spreading messages so that the

transmitted_message is obtained.

spreading messagey, = 1 -1 1 -1 -1 1 -1 1
spreading message, = —1 -1 -1 -1 -1 —-1 —-1 -1
S

transmitted message = 0 -2 0 -2 -2 0 -2 0

In the receiver; side, firstly, to obtain data,, the transmitted message and the spreading code,
are multiplied. Secondly, the transmitted message is divided into two. The elements of these

pieces are added together and divided into four.



transmitted message = 0 -2 0 -2 -2 0 -2 0

spreading_codey = -1 1 -1 1 -1 1 -1 1
&
stgnaly = 0 -2 0 -2 2 0 2 0
0-240-2_ 2404240
= —-11

Finally, we convert the signaly, this is -11, into data,. This is accomplished by -1=1 and 1=0
conversion so that signal -11 is 10 = data,. Similarly, datas can be obtained. It is means

that this communication is successful.

Another aim of this thesis is to look for "good" spreading codes enabling noiseless commu-
nication as illustrated in the example above.
For a sequence a = (ag, a1, ..., a,,...) of period n, its autocorrelation function C,(t) is

defined as i
Cg<t) = Z aim7
i=0

for 0 < t < n — 1. The values C,(t) at 1 < t < n — 1 are called the out-of-phase
autocorrelation coefficients of a. Note that the autocorrelation function of a is periodic with
n.

We call an almost p-ary sequence a of period n a nearly perfect sequence (NPS) of type
(71, 72) if all out-of-phase autocorrelation coefficients of a are either ; or ;. We write NPS
of type  to denote an NPS of type (v, 7). Moreover, a sequence is called perfect sequence
(PS) if it is an NPS of type (0, 0). We also note that there is another notion of almost perfect
sequences which is a p-ary sequence @ of period n having C,(t) = 0forall 1 <t <mn—1

-with exactly one exception [9].

Example 1.4. We calculate the out-of-phase autocorrelation coefficients of the sequence

a = (17 CS; <37 <37 e )
n—1

C) =) a@im=1-G+G G+6 G+G 1=G+1+1+G=1
=0

n—1

Co) =) a@im=1"G+G G+6 1+ G=G+1+G+1=1
=0



n—1

CoB3) =) am=1-G+G-1+G-G+G G=G+G+1+1=1
i=0

It is seen that the autocorrelation coefficients are equal to 1 for 1 <t < 3. That is, a is an
3-ary NPS of type (1,1) and period 4. Similarly, ((3,0,0,(3,0,(s,(s, . ..) is an almost 3-ary
NPS of type (2,2) and period 7 with 3 zero-symbols. (1,(3,(s,...) is a 3-ary NPS of type

(0,0) and period 3, in fact this is a perfect sequence.

In this thesis, almost p-ary sequence with s zero-symbols is studied and their applications
are investigated. Lately, NPSs have been worked by numerous authors. Jungnickel and Pott
[9] worked a 2-ary NPS of type |y| < 2. Ma and Ng [10] obtained a relation between a p-ary
NPS of type |y| < 1 and a direct product difference set (DPDS) and obtained nonexistence
on some p-ary NPS of type || < 1 by using character theory. Later Chee et al. [6] extended
the methods due to Ma and Ng [10] to almost p-ary NPS of types v = 0 and v = —1
with one zero-symbol. Then, Ozbudak et al. [11] proved the nonexistence of almost p-ary
NPS with one zero-symbol at certain values. Liu and Feng [8] obtained new nonexistence
results on p-ary PS and related difference sets (RDS) by using some results on cyclotomic
fields and their sub-fields. They also considered almost p-ary PS with one zero-symbol.
Chang Lv [12] obtained nonexistence of almost p-ary PS with s < 1 zero-symbol for p =
5 mod 8 (resp. p = 3 mod 4) and period p®qn’ (resp. p®q¢'n’) by considering equations
cyclotomic fields satisfied by perfect sequences. Niu et al. [13] studied a binary sequence
of the periodical with a 2-level autocorrelation value, this solves three open problems given
by Jungnickel and Pott [9]. In [14], Cesmelioglu and Olmez studied the partial geometric
difference sets, or 1% difference sets, also their applications to cryptographic function, i.e.
s-plateaued functions. In addition, they are shown that the relationship between three-valued
cross-correlation of m-sequences and vectorial s-plateaued functions, and they are proved
that the formed sets by using these sequences are partial geometric difference sets. Moreover,
Yayla [15] proved an equality between a p-ary NPS of type v and a DPDS for an arbitrary
integer . In addition, he extended this result for an almost p-ary NPS with one zero-symbol,
and proved its nonexistence cases by self-conjugacy condition.

The objective of this thesis is to analyze almost p-ary sequences with 2 zero-symbols and then
apply them to telecommunication and cryptography. Very briefly, the existence of almost p-
ary sequences with 2 zero-symbols with the aid of the results of [15] is studied in Chapter 2.

Then, these sequences are used in the Code Division Multiple Access (CDMA) to bit-error-

4



rate (BER) analysis and cryptographic bent functions in Chapter 3.

In Chapter 2, we study almost p-ary sequences and their some properties. We first prove
some bounds on the number of distinct out-of-phase autocorrelation coefficients of an almost
p-ary sequence of period n + s with s consecutive zero-symbols (see Theorem 2.10). In
particular, we prove that the number of distinct out-of-phase autocorrelation coefficients can
not be less than min{s, p, n}. It is known that there is an equivalence between perfect p-ary
sequences and some difference sets. Therefore, in this thesis we define a new difference set
called partial direct product difference set (PDPDS) (see Definition 2.14) and prove that a
p-ary NPS of type (71,72) is equivalent to a PDPDS (see Theorem 2.18). And, we show
that they exist only if p divides n — 7 — 2 and n — 73 — 1. We show that the almost p-ary
sequences of type (71, 72) and period n+2 with two consecutive zero-symbols are symmetric
sequences except for zero entries (see Theorem 2.21). Finally, we show a bound on v, for
the existence of an almost p-ary sequence of type (1, 72) with two consecutive zero-symbols
(see Theorem 2.30). As a consequence of this result we show that such sequences don’t exist
if 5 < —3 (see Corollary 2.31).

In Chapter 3, the relationship between an almost p-ary sequences of period n + s with s con-
secutive zero-symbols and cryptographic function and CDMA is studied. In cryptography,
privacy is provided by nonlinear Boolean functions. Non-linearity is satisfied by substitu-
tion boxes (s-boxes) in cryptography because they confuse a message into ciphertext. And,
maximum non-linearity is obtained by so-called Bent functions used in the s-boxes. It is well
known that one can get a generalized bent function from a PS (see [4] or Theorem 3.7 be-
low). By extending this connection, we convert a NPS of type (71, 72) to a generalized bent
function in Section 3.1.2 and also we tabulate the examples of Walsh spectrum of functions
obtained from NPSs of type (71, 72) (see Table 3.1). It is seen that generalized bent functions
can be obtained from nearly perfect sequences, and we obtain a larger set of cryptographic
functions with the similar properties of generalized bent functions. The MAGMA codes used
are given in the Appendix of the thesis.

While designing mobile communication technologies, it is aimed to provide the commu-
nication of the most possible users with the resources at hand. Different multiple access
techniques have been developed for this purpose. The first two of them are Time Division
Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) used in GSM.

In TDMA, users send and receive data over channels divided into a single frequency but



small time intervals. In FDMA, users are given different frequency ranges for data commu-
nication. With the rapid increase in the number of users in the developing world, CDMA
technology has been developed to serve more users and higher data rates in 1957. In CDMA,
instead of distributing time and frequency sources to users, users are given unique codes to
transmit data at the same frequency and time. For high-quality communication, these codes
must be orthogonal. These are orthogonal sequences, referred to herein as codes. In CDMA
technology, we examined the working performance of p-ary sequences with s consecutive
zero-symbols of type (71, 72) studied in Chapter 3 and tabulated the results (see Section 3.2).
The SAGE codes used are given in the Appendix of the thesis.

The rest of this thesis is organized as follows. In Chapter 2, almost p-ary sequences with s
zero-symbols and their properties are presented. In Chapter 3, firstly, we show a method for
obtaining cryptographic functions from almost p-ary nearly perfect sequences (NPS) of type
(71,72). Secondly, we present the BER analysis of almost p-ary nearly perfect sequences
(NPS) of type (71, 72) used in CDMA. Finally, the conclusion of this thesis and future works
are given in Chapter 4.

The contribution of this thesis as follows:

e In Chapter 2; Theorem 2.10, Theorem 2.18, Corollary 2.22, Proposition 2.26, Theorem
2.30, Table 2.3, and Corollary 2.31,

e In Section 3.1 of Chapter 3; Table 3.1,

e In Section 3.2 of Chapter 3; Figure 3.2-3.5.



2 ALMOST P-ARY SEQUENCES

Let ¢, € C be a primitive p-th root of unity for some prime number p. A sequence a =
(ag,ay,...,an_1,...) of period n with a; = (Ilji for some integer b;, i = 0,1,....,n —
1 is called a p-ary sequence. If a;; = 0 forall j = 1,2,...,s where {i1,i9,...,is} C
{0,1,...,n—1} and a; = ¢’ for some integer b;, i € {0,1,...,n—1}\{i1,%2,...,is}, then
we call a an almost p-ary sequence with s zero-symbols. For instance, a = ({3, (3, (5, ¢35, 1,
...)is a 3-ary sequence of period 5 and a = (0, (3, 1,¢3,0,0,¢2,¢8,¢8,¢2,,...) is an almost
7-ary sequence with 3 zero-symbols of period 10. It is widely used that a sequence with one
zero-symbol is called an almost p-ary sequence. But in this paper we use this notation for a
p-ary sequence with s zero-symbols, for s > 0.

For a sequence g of period n, its autocorrelation function C,(t) is defined as

n—1
Cg(t) = Z A4,
i=0

for 0 < ¢t < n — 1. The value C,(0) is called the peak autocorrelation coefficients of a.
In fact, the values C,(t) for all 1 < ¢ < n — 1 are called the out-of-phase autocorrelation
coefficients of a. Note that the autocorrelation function of a is periodic with n.

We call an almost p-ary sequence a of period n a nearly perfect sequence (NPS) of type
(71, 72) if all out-of-phase autocorrelation coefficients of a are either y; or 5. We write NPS
of type v to denote an NPS of type (v, 7). Moreover, a sequence is called perfect sequence
(PS) if it is an NPS of type (0, 0). We also note that there is another notion of almost perfect
sequences which is a p-ary sequence @ of period n having C,(t) = 0forall 1 <t <mn—1
-with exactly one exception [9].

This Chapter is organized as follows. In Section 2.1 some preliminary results are presented.
Then we present some properties of the autocorrelation coefficients of an almost p-ary se-
quence in Section 2.2. Then, we study the relation between an almost p-ary NPS and a partial

direct product difference set in Section 2.3.

2.1 Preliminaries

We first give the definition of a direct product difference set.

Definition 2.1. [/0] Let G = H X P, where the order of H and N are n and m. The R C G
set such that |R| = k, is called an (n,m, k, \1, A2, ) direct product difference set (DPDS)

7



in G relative to H and P if differences 1y Lri,ro € Rwithr = ry represent
o all non identity elements of H exactly \, times,
e all non identity elements of P exactly \, times,
e all non identity elements of G\ H U P exactly p times.

We can also define the DPDSs by using the group-ring algebra notation. Let ) | ger 9 be an
element of the group ring Z[G]. If R is an (n, m, k, A1, Ay, £)-DPDS in G relative to H and
P then

RRTY = (k— A\ — Ao+ ) + MH + M P + uG\(H U P) 2.1

holds in Z|G].

Now, we are given an example of DPDS.

Example 2.2. R; set is written as Ry = {(0,2), (1,2),(2,2),(3,2),(4,0)} C Zs x Zs for
almost 3-ary sequence a = ((3,(3,¢2,¢3,1,...). Next, we are created of the difference table

for this Ry set.

Table 2.1: Difference table of the set R
0,2) | (1,2) | (2,2) | (3,2) | (4,0)

0,2) | (0,0) | (4,0) | (3,0) | (2,0) | (1.,2)
1,2) | (1,0) | (0,0) | (4,0) | (3,0) | (2,2)
(2,2) | (2,0) | (1,0) | (0,0) | (4,0) | (3.2)
3,2) | (3,0) | (2,0) | (1,0) | (0,0) | (4,2)
4,0) | 4,1) | 3,1) | (2,1) | (1,1) | (0,0)

According to this difference table, we get A\ = 3 as blue marked, Ao = 0, i = 1 as red
marked, and Ry is a (5,3,5,3,0,1)-DPDS in Zs X Z3. Here, we can see that the equation
(2.1) is satisfied.

RyRUY = (5-3-041)+3H +1G\(HUN)
where H =75, N = Z3and G = H x N.

The following result on vanishing sums of roots of unity due to Lam and Leung [16], see

also [17, Proposition 2.1].



Lemma 2.3. [16] Let m be an integer with prime factorization m = p{'p5* ... p,;*. If there
are m-th roots of unity &1,&s, ..., &, with & +E&+- - -+&, = 0, then v = pyti+poto+- - -+pety

with non-negative integers t1,to, ..., 1.

We now give the relation between an NPS and a DPDS. Let p be a prime, n > 2 be an integer,
and a = (ag, ay, ..., ay,,...) be an almost p-ary sequence of period n + s with s zero-symbol
such that a;, = 0 forall j = 1,2,...,s where {4y,42,...,4,} C {0,1,...,n 4+ s —1}. Let
H = (h) and P = (g) be the (multiplicatively written) cyclic groups of order n + s and p.
Let G be the group defined as G = H x P. We choose a primitive p-th root of 1, ¢, € C.
Fori € {0,1,...,n+s— 1}\{i1,49,...,1s} let b; be the integer in {0, 1,2,...,p — 1} such
that a; = (. The R, C G set defined as

R, ={(g"h) e G:ic{0,1,....,n4+s5—1\{i1,is,...,is}}. (2.2)

In the following we present a known result between an almost p-ary sequence of type v with

one zero-symbol and a DPDS such that v € Z.

Theorem 2.4. [15] a is an almost p-ary NPS of period n + 1 and type -y with one zero-
symbol if and only if R, defined as in (2.2) is an (n +1,p,n, ”_;’_1 + 7,0, "_Tj_l> -DPDS

in G relative to H and P. In particular, p|(n — v — 1).

Example 2.5. a = (07 <§7 g:“)?a C??v 17 C??v €37 C?n C:%a 17 Cga <§7 C:“)?a - ) is an almost 3—ary NPS Of
period 13 and type 2 with one zero-symbol. If R, is defined as in (2.2), then we are obtained
R, ={(1%1") € Zy3 x Z3 :i € {0,1,...,12}\{i;}}
= {(Z,bz) € Zis X L3t € {O, 1,..., 12}\{21}}
={(1,2),(2,2),(3,2),(4,0),(5,2),(6,1),(7,1),(8,2), (9,0), (10,2), (11, 2), (12, 2) }.

According to Theorem 2.4, R, is an (13, 3,12, % +2,0, %) = (13,3,12,5,0,3)
-DPDS in 743 X Zs.

2.2 Autocorrelation Coefficients

In this section we use the notation of the previous section. We first give an extension of a
well known divisibility result on difference sets whose proof follows by counting the number

of elements in the difference table.



Proposition 2.6. Let a is a p-ary sequence of period n + s with s zero-symbol. Let R, be a

(n+ s,p,n, A1, Ag, u)-DPDS. Then (n+ s — 1)(A; + u(p — 1)) = n?* — n.

Proof. We know that there are n> — n nonidentity elements in the difference table of R,.
They correspond to \; times nonidentity elements of Z,., x {0} and x times nonidentity

elements of Z,,+ s X Z,\(Z,+s x {0} U {0} x Z,). Hence the result follows. O

It is now clear that R, is not a DPDS if (n + s — 1) ¥ n? — n. If the zero-symbols are
consecutive we have more than the divisibility condition. The proof of the following result

follows similarly.

Proposition 2.7. Let a is a p-ary sequence of period n + s with s > 1 consecutive zero-
symbol. Let R, be a (n + s,p,n, A1, Ao, 1)-DPDS. Thenn —i = A\ + p(p — 1) for i =
1,2,...,s, and so s = 1. In addition, if s = 0 then n = \; + u(p — 1) holds.

Proof. If Ris a (n + s,p,n, A1, Ay, 1)-DPDS, then by checking the sub-diagonal entries in
difference table we have n — i = A\; + p(p — 1) for i=1,2,...,s. Thus, right hand side of this
equation is fixed and so this can only hold for one index ¢, i.e. s = 1. The later statement of

the theorem holds similarly. [

Example 2.8. LetQ = (07 Cga C??a Cga 17 C?? 437 637 Cgv 17 Cga Cga g??a e ) be a 3-(1}’y NPS Ofpe'
riod 13 and s = 1. Here we have \y = 5 and |1 = 3, then Proposition 2.7 is satisfied.
Similarly, let a = ((2,(3,(3,¢3,1,...) be a 3-ary NPS of period 5 and s = 0. In this case

we have A\ = 3 and 1 = 1, then Proposition 2.7 is also satisfied.

Now we show that if s > 2 there does not exist a nearly perfect sequence with only one

out-of-phase autocorrelation coefficient. Before that we give the following lemma.

Lemma 2.9. The number of congruence classes in a set {1,2,...,s} modulo some prime

p < s is equivalent to p.

Theorem 2.10. Let a be an almost p-ary sequence of period n + s with s consecutive zero-
symbols. Let { be the number of distinct elements in the set {C,(1), Cy(2), ..., Cy(n+s—1)}.
Then,

min{s,p,n} < <n—1+min{n, s}.
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Proof. We first consider the case n > s. Let B = {C,(1),C.(2),...,Cu(s),...,
Ca(n),...,Co(n+s—2),Cy(n+ s —1)}. Then we have
B = {asas+1 + Q5410542+ + Qpgs—20n1s-1,

asas+2 + as+las+3 +-+ an+sf3an+sflu

a’SEQS + as+1625+1 + -+ an—lan—i—la

a2sas + a23+1as+1 + -+ anJrlanflu

As420s + A5 30541 + -+ Ungs—10nys—3,

U515 + Usp2lsi1 + - + Anps—10nts—2}-
And let ¢ be the number of distinct elements in B. If all the elements in B are distinct, then
maximum value of £ is ,,,, = #B = n+s— 1. On the other hand, C,(7) is the sum of n — i
elements for i = 1,2,...,s; C,(i) is the sum of n — s elements fori = s+ 1,s +2,...,n
and C,(7) is the sum of ¢ — s elements fori = n + 1,n+ 2,...,n + s — 1. We note that
the number of summands in C,(7) equals to the number of summands in C,(n + s — ¢) for
i =1,2,..., s and the number of summands in C,(7) equals to the number of summands in
Cq(s) fori =s+1,s+2,...,n. Thus, we can decide the maximum value of ¢ by checking
the equality of C, () values fort € {1,2,...,s}. If (1) = Cy(2) then C, (1) — C,(2) = 0,

that is
asas+1 + as+1as+2 + -+ an+s—25n+s—1 - (asas—i—Q + -+ an+s—3an+s—1) == 0
Then we have,

Czs_bs+l + Cgs+1_bs+2 + ... + Czn+572_bn+sfl o (Czl))s_bs+2 + . + <£n+573_bn+571) — O

where a; = (;,’i for some integer b;, so
bs_b.s bs _bs “ .. bn s— _bn s—
Cp +1+Cp+1 +2 | +<‘p+ 2 ts—1
(Gt G2 4 GG e Qi) = 0,

Hence we get thatn — 1+ (p — 1)(n — 2) = p(n — 2) + 1 number of p-th root of unities sum

up to zero. Similarly, the number of p-th root of unities in difference

Cgu) - Cg(j)
11



is p(n — j) + j — i for j > i. By Lemma 2.3, the above equation vanishes only if p|j — 1,
thatis 2 = j mod p. If s > p then we have at least p distinct equivalence classes in the set
{1,2,...,s} modulo p by Lemma 2.9, and so ¢,,;, = p. If p > s then p { j — i for distinct
i,j €{1,2,...,s}, and so we get {,,;, = S.

Similarly, in the case of s > n, {0 = —1+1+n—1=2n—-1,/¢,,;, = pforn > pand

lypin = n for p > n. O

Example 2.11. For almost 3-ary sequences a; = (0,0, (3, (3, C3, s, - - ), a2 = (0,0,(3, G,
G, (3,0 ) a3 =1(0,0,¢3,1,(3,Gs, .. ) and ag = (0,0,¢3, (3,1, 1, . ..), the number of distinct
autocorrelation coefficients satisfies { = 2, 3,4, 5 respectively. Here we have s = 2, n = 4,

p = 3. So Theorem 2.10 is satisfied, i.e. min{2,4,3} < { <4 —1+4 min{2,4}.

Example 2.12. Almost 3-ary sequences a; = (1,0,0,1,0,1,1,...), ay = (3,0,0, (3,0, 3,
G,...) and ay = ((3,0,0,¢3,0,¢3,C3,...) are NPS of type (2,2) and period 7 with 3 zero-
symbols. Hence, Theorem 2.10 does not hold for almost p-ary sequences with non consecu-

tive zero-symbols.

Now we give a direct consequence of Theorem 2.10, which says that one can not get an NPS

of type v by adding extra zero-symbols at consecutive positions.

Corollary 2.13. For n € Z*, a prime number p, s > 2 and vy € Z, there does not exist an

almost p-ary NPS of type v and period n + s with s consecutive zero-symbols.

2.3 Partial Direct Product Difference Sets

Here we give a new difference set definition, called partial direct product difference set

(PDPDS).

Definition 2.14. Ler G = H x P be a group such that H = (h) and P = (g) are

cyclic groups with |H| = n and |P| = m. The R C G set, |R| = k, is called an

(n,m, k, A1, Ao, A3, i1, f2) partial direct product difference set (PDPDS) in G relative to

H and P if differences 7“17‘2_1, r1,79 € Rwith ri # 1o represent
e all elements of {h?, h>,... h"} exactly \, times,
e all non identity elements of P exactly \, times,

e all elements of {h , h" '} exactly )3 times,

12



e all elements of {h*,h>,... h"} x {g,9% ...,g" '} exactly u, times,
e all non identity elements of {h ,h" ™'} x {g,¢%, ..., 9?1} exactly ji, times.

In the group-ring algebra notation, if Ris an (n,m, k, A1, A2, A3, i1, p2)-PDPDS in G relative
to H and P then

RRCY = (k= X\ — Ao+ ) + (M — ) H + (Ao — 1) P + G+

(A3 = AD){R A"+ (g2 — ) {B B x g, 6%, 971 ))

(2.3)

holds in Z[G].

Now, we are given an example of PDPDS.

Example 2.15. R, set is written as Ry = {(2,2),(3,1),(4,0),(5,1),(6,2)} C Z7; x Zj3 for
almost 3-ary sequence a = (0,0,¢3,(3,1,(3,(3,...). Next, we are created of the difference

table for this R set.

Table 2.2: Difference Table of set Ro
(2,2) | 3,1) | (4,0) | (5,1) | (6,2)

(2,2) | (0,0) | (6,1) | (5,2) | (4,1)
3,1 | (1,2) | (0,0) | (6,1) 4,2)
4,0) | (2,1) | (1,2) | (0,0) | (6,2) | (5,1)
S,1) | (3.2) (1,1) | (0,0) | (6,2)
(6,2) (3,1) | (2,2) | (1,1) | (0,0)

According to this difference table, we get \y = 1 as green marked, Ay = 0, \3 =0, u; = 1
as blue marked, 15 = 2 as red marked and Ry is a (7,3,5,1,0,0,1,2)-DPDS in Z7; X Zs.
Here, we can see that the (2.3) equation is satisfied.

RoRSY =(5—1—0+1)+ (1= 1)(H x {0}) + (0 — 1)({0} x P) +1G

+(0—D{1,6}+(2—1)({1,6} x {1,2})

where H = 77, P = Zs and G = H x P.
Remark 2.16. Let G = H x P be a group such that H and P are cyclic groups with
|H| = n and |P| = m. An (n,m,k, A1, Ao, A\, t, 1)-PDPDS in G relative to H and P is
an (n,m, k, A\, Ao, 11)-DPDS in G relative to H and P. Moreover, an (n, m, k, A\, 0, A\, A\, A)-
PDPDS in G relative to H and P is an (n,m,k, \)-RDS in G relative to P. Finally, an
(n,m, k, A\, \, A\, \, \)-PDPDS in G relative to H and P is an (nm, k, \)-DS in G.
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We extend Proposition 2.6 for DPDS to PDPDS below.

Proposition 2.17. Let a = (ag,ay,...,Gn11,...) be an almost p-ary sequence of period

n + 2 such that ag = 0 and a; = 0. Let R be (n + 2, m, k, A1, A2, A1, pi1, pio)-PDPDS. Then
(n =DM+ (p— D) + 200 + (p — Dp2) = n® — n.

Proof. We know that there are n? — n non-identity elements in the difference table of R
and we know that \; times {h? k3 ... A"} x {0}, A3 times {h , A" "'} x {0}, p; times
{h% h3, ... "} x {g,9% ...,9"" '} and psy times {h ,h" "'} x {g,¢% ..., g° '} from the
definition of PDPDS. So, (n— 1)A\; +2X\3+ (n —1)(p — 1)ps +2(p — 1)z = n® —n. Hence

the result follows. [

Now we present a relation between a PDPDS and an NPS with two distinct out-of-phase
autocorrelation coefficients. Before that, we give some definitions. A character y of a group
G is group homomorphism from G to multiplicative group of a field. If x(g) = 1 for
all ¢ € G, then character Y is called principal character. Others are called nonprincipal

character.

Theorem 2.18. Let p be a prime, n € Z" such that n > 2, and a = (0,0, ..., a,11,-..) be
an almost p-ary sequence of period n + 2 with consecutive 2 zero-symbols. Let H = (h) and
P = {(g) be the (multiplicatively written) cyclic groups and |H| = n + 2, |P| = p. Let G be
the group defined as G = H x P. For2 <1i <n+1, letb; € Z, such that a; = Czl,’l Then,

a is an almost p-ary NPS of type (71,72) if and only if R defined as in (2.2) is an

n—yg — 2 n—vy —1 n—y—2 n—y —1
(n+27p7naL+72707L+717 12 ) n )
p p p p

-PDPDS in G relative to H and N.

Proof. Let A= 3""""a;h" € C[H]. Then we have
) n—1
AAT =Nt
=0

Let y be a character on P. We extend x to G such that x(h) = h. Let 0 € Gal(Q((,)\Q)
such that 0((,) = x((,). If x is a nonprincipal character on P, then we have y(R) = A,

and so

Y(RRCY) = (AA Ve,

14



Conversely, if x is a principal character on P, then we have

X(R) = H —{1,n}

and also
X(RTY) = H —{1,h"*'}.

Then

WRRD) = (H —{1,h})(H — {1,h"1}) if y is principal on P,

"y Calt)7h if x is nonprincipal on P.
So
X(RRCV) = (n—2)H +2+ {h ,h"*'} if yis pr.on P,
"o Ca(t)7h! if ) is nonpr. on P.

If a is an NPS of type (71, 72), then

n—2)H+2+{h, h"! if v is pr. on P,
n—"y + (11 —72){h "™} + v H if x is nonpr. on P.

By extending y to H we obtain

(

n? if y is pr. on P and H,

2+ h+ht if x is pr. on P and nonpr. on H,
X(RRCY) = XEP P (2.5)
n 4+ vo(n — 1) + 24, if y is nonpr. on P and pr. on H,

[ =2t h+ht if x is nonpr. on P and nonpr. on H.
First, we can consider

RREY = n—a+aoH — 2P+ 2G + 2'{h k"1 }+

(2.6)
Z({h WY x g, 9% g7
for some integers x, ', z, z/. We get the following equations by (2.5) and (2.6)
24+ h+ht=n—o+zpt+a'(h+hh (2.7)
n—y+h+h Dy —m)=n—c+2'(h+ht) =2 (h+h1) (2.8)
If we solve (2.7) and (2.8) together, then we get © = v,, z = %ﬁ‘z, Z = ”‘Tw, —

Y1 — Y2+ %f“. Now we can easily get that R is an (n + 2, p, n, %ﬁd + 72,0, %f_l +
M, %3*2, %}*)-PDPDS by using (2.3) and (2.6).

On the other hand, (n+2, p,n, %ﬁ” +72, 0, %}‘1 +7, %}’_2, %)—PDPDS satisfies
the diagram (2.4) for any character xy on G. So we get that a = (ag, ay,...,an41,...) IS an

NPS of type (71,72)- H
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Theorem 2.18 gives a necessary condition on the existence of a NPS with two distinct out-
of-phase autocorrelation coefficients. Moreover this theorem gives bound on ~;,7,. We state

this condition in Corollary 2.19. After that we give an example of Theorem 2.18.

Corollary 2.19. If a is an almost p-ary NPS of type (71, V2) and length n + 2, then p divides
n—y —2and n — v; — 1. And there exists an almost p-ary sequence of type (v1,72) and

period n+2 with two consecutive zero-symbols for —jiy < vo < n—2and —ps < v < n—1.

Example 2.20. Sequence a = (0,0, (3, (3,3, - . .) is an almost 3-ary NPS of type (2,1) and
Risan (3+2,3,3,25=2 +1,0,2=2=1 2, 3==2 3=2-1) — (5,3,3,1,0,2,0,0) PDPDS
in Zs x Zs. Similarly, a = (0,0,(2,(3,1,(3,(2,...) is an almost 3-ary NPS of type (-2,0)

and Risan (7,3,5,1,0,0,1,2) PDPDS in Z7 X Zs.

Theorem 2.21. Let R,G, H, N,n,p,b; fori = 2,3,...,n + 1 be defined as in Definition
2.14 such that p # 2. If R is a PDPDS in G relative to H and N, then by = b1, by =

bn,,bLnTHJ - b"nTwLQJrﬂ

Proof. Assume that R = {(2, b2), (3,b3),...,(n+1,b,41)} is PDPDS and p # 2. If we con-
sider to difference table of R, then we get {(1,b3—bs), (1,b4—b3), ..., (1,b,11—bn), (2,b4—
bs), (2,b5—b3), - ., (2, bps1—bn_1), - -, (1, ba—by), (1, bs—by), ..., (n+1, bu—bps1)}
without identity. Firstly, (bs — bg) 4 (by — b3) + - - - + (b1 — by,) and (by — b3 + (b5 — b3) +

+++ (bpy1 — bp—1) and (by — bs) + (b3 — by) + +(b,, — bpy1) equations must be zero in Z,
because R is PDPDS. Therefore, we get easily b,,.1 = b9, b, = b3 and so on. O

We present an important property of an almost p-ary sequence of type (71, 7y2) and period

n + 2 with two consecutive zero-symbols.

Corollary 2.22. Let p be an odd prime number. If there exist an almost p-ary sequence
of type (71,72) and period n + 2 with two consecutive zero-symbols then this sequence is

symmetric except for zero entries.

Example 2.23. a, = (0,0,¢3,1,¢2,...) and a, = (0,0,(3,(3,1,(3,(2, .. .) sequences are
almost 3-ary NPS of type (71, 72) with 2 zero-symbols. These sequences are symmetric except

for zero entries.

Remark 2.24. The converse of Corollary 2.22 is not correct. That is, a symmetric se-

quence of period n + 2 with two consecutive zero-symbols do not necessarily have to be
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an almost p-ary sequence of type (71,72) and period n + 2 with two consecutive zero-
symbols. For instance, a; = (0,0,(3,(3,(3,(3,C3,--.), ag = (0,0,¢3,¢3,1,¢3,¢2,...),
and a; = (0,0,¢2,1,¢2,1,(2,...) 3-ary sequences of period 7 with two consecutive zero-
symbols are symmetric except for zero entries, but these sequences are not almost 3-ary

sequences of type (71,72) and period 7 with two consecutive zero-symbols.

We know that A\; + (p— 1)p; = n—2and A3+ (p— 1)us = n— 1 from definition of PDPDS.
If n is odd, then \; is odd and A5 is even. If n is even, )\ is even and A5 is odd. On the other
hand, we know that an almost p-ary sequence of type (71, 72) and period n + 2 with two
consecutive zero-symbols is symmetric except for zero entries. Therefore, if n is odd, then
A1 > 1 because (2,0),(3,0),...,(n,0) is one of diagonal of difference table of R and so if
n is even, then A\; > 2, A3 > 1 because (3,0), (5,0),...,(n —1,0),(3,0),(5,0),...,(n —
1,0),(1,0), (n + 1,0) is one of diagonal of difference table of R. For all these reasons, we

get the following result.

Proposition 2.25. Let a is an almost p-ary sequence of type (71, 72) and period n + 2 with
two consecutive zero-symbols. If n is odd, then \; = 2k + 1, k € Z* U {0} and if n is even,
then \ =2k, k € Z*.

Next we obtain a generalization of a well known theorem on difference sets, see [18, Lemma

VI1.5.4] or [11, Proposition 1].

Proposition 2.26. Let R be a <n +2,p,n, %3_2 + 72,0, %f_l + ", %3—27 %ﬁ)

-PDPDS in G relative to H and N. Let s; be the number of those whose elements are 1

in the second components of R for i € Z,. Then

p—1
n—r"y —2 n—vy —1
%2:(——11——+70(n—1)+(——1L——+%)2+n 2.9)
— p p
j
and
p—1
oy — 2 -1
}:%%42<Q—ﬁL—)or—n+(ﬁ—lL—>2 (2.10)
— p p
]_
foreachi=1,2,..., fp%l}, here j — i is computed modulo p.

Proof. Let v the map from G = H x N to N sending (a, ) to i. Let A be the set consisting

of 1 (a, 1) to all elements of the R C G set. By reordering on A we have

A={x0,0,...,0,1,1,...,1,2,2,...,2,....p—Lp—1,...,p— 1x}.

.

TV TV TV TV
S0 S1 S9 Sp—1
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So,
so={(byi) e R:i=0},...,8-1=[{(byi) e R:i=p—1}

and
So+s1+s2+ -+ 501 =|R| =n. (2.11)
Let 7; be defined as
Ti=A{(B1,82) € RX R: B # Paand (B1 — o) =i} C R x R.

As Risa (n+2,p,n, %;_24—72, 0, ”_';1_1 +71, %3—27 %f_l) PDPDS, for the cardinality

|7:| of T;, using definition of PDPDS, we obtain that

n—yz—2 n—yi—1 S
+ n—1)+(—2—+m)2, i=0
I N RN SRt o

(=2=2)(n — 1) + (2=2=0)2, 1<i<p-1

Let define as 7; ; = {(p1, 52) € Ti : (1) = j} C Ti for 0 < ¢, 5 < p — 1. Then we have,
p—1
[Tl = > ITisl. (2.13)
=0

Forl1 <i<p-1land0 < j < p—1, we determine 7; ;. We know that (3;, 82) € T, ; if
only if 51 € R,¢(p1) = j and 5 € R, 1(P2) = j — i. Therefore we get that,

[{Br € B:9(Br) = j} = 55 and {Bz € R:9(Ba) = j —i}| = s,

here j — 7 is computed modulo p. Hence we obtain that
n—ryy—2 n—my—1 C
T PREE S S o
p p —
]_
with using (2.12) and (2.13). Remark that it is enough to consider the subset of equation in
(2.14) corresponding to 1 < i < [£-1] because each equation in (2.14) with [21] < i <
p — 1is the same as an equation in (2.14) with 1 < i < [21].
For 0 < j < p — 1, we determine 7, ;. We know that (0, 52) € To; if only if 3, € R,
Y(B1) = jand By € R, (52) = j and 1 # (2. Therefore we get that |7 ;| = s;(s; — 1)
for 0 < 7 < p— 1. Hence using (2.11), (2.12) and (2.13) we conclude that
n—ryp — 2 n—y —1 . .
(=22 h) -+ (TR ) 2= Tt - D= L

and therefore

e n—yy—2 n—y —1
> s’ = (L—F”}Q) (n—1)+ (L—F%)Q—l—n.
gt p p
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Example 2.27. Risa (7,3,5,1,0,0,1,2) PDPDS in Z; x Zs for almost a = (0,0,¢3, (3, 1,
(3,(3,...) 3-ary NPS of type (-2,0). Then, sy = 1, s; = 2, sy = 2 and so we obtained that

sot+st+ss=1+224+22=9,
S0S1 + 8180+ 8250 =1%24+2%x1+2%x2=28

where 1 = [%1 = 1. On the other hand, we can get these results from the equation (2.9)

and the equation (2.10).

3153 (n_—H+0) (5—1)+<%+(—2))2+5_9

and

I R e R

Using Propositions 2.17 and 2.26, we get the following result.

Corollary 2.28. Let R be a (n + 2,p,n, A1, Ao, A, g, fi2) = (n+ 2, p,n, °= 72 2 4 4,0,
%}_1 + M, %3_2, %f_l) PDPDS in G relative to H and N. Let s; be the number of

those whose elements are i in the second components of R for v € Z,. Then

p—1 p—1
(p—1) (Z sjst) +Y) st =0 (2.15)

foreachi=1,2,..., (7%11 here j — i is computed modulo p.

Proof. We multiply (2.9) by p — 1 and add to (2.10), so we get

) (Z ) +; (=222 -+ () 2) -0

) -y -1
+<”j;+72) <n_1>+(”;1+%)2+n.

Equivalently, we have
(ZSJSJ Z>+Zs] (mn—=1)4+u2)(p—1)+Mn—1)+X32+n

==+ @-1Dm)+2As+ (p— u) +n

Finally, by Proposition 2.17, we get the result

p—1 p—1
—1) <23j5ji> —|—Zsj2 =n?—n+n=n’
=0 =0
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Example 2.29. We consider the sequence in Example 2.27, a = (0,0,(3,(3,1,(3,(3,...).

Hence, we get
3—1 S0S1 + S150 + S250 —|—82+S2+S2—8*2+9—52
0 1 2

On the other hand, we can get this result from the equation 2.15.

3—-1 3-1
(3 — 1) (Z Sij_i> + 28]2 = 52.
7=0 7=0

Below we prove a bound on 7, for the existence of a p-ary NPS of type (71,72) by using

Proposition 2.6.

Theorem 2.30. Let p be an odd prime number, n € 7, 1,7V, € Z such thatn — v, — 2 =
kip and n — vy — 1 = kop for some ki, ky € N. Then, there does not exist an almost

p-ary sequence of type (V1,72) and period n + 2 with two consecutive zero-symbols for

—pk1—4++/p?k?—4pk1+8pka

Y2 < 3

Proof. Assume there exists an almost p-ary sequence of length n and type (71, 72) such that

—pk1—4+4+/p?k? —4pk1+8pka

Yo > 5 .Setn — vy, —2=pkyandn —y; — 1 = pky in (2.9), and
s0 we get i
p—1
Z s;2 = pk1yo + 3pky + pki + yoky + k1 + 2k — 2pky + (72 + 2)%. (2.16)
=0

On the other hand we know that s 4 s1 + - - - + 5,1 = n = pk; + 72 + 2, that is,

p—1
> sj=pki+m+2 (2.17)
=0

Hence (2.17) gives that

—_

p—

pki 4+ v + 2
P

(2 +2)?
82> ( (2

)’p = pki + 2k1 (72 + 2) + (2.18)

I
o

J
We consider (2.16) and (2.18) together. And we get

)_,_ (’72+2)2

Pk3 + 2k (9 + 2 < pk17ys + 3pky + pki 4+ yoki + ki + 2k — 2pka + (72 + 2)2.

Equivalently, we have
(1= p)((v2 + 2)% + pki (72 + 2) + pk1 — 2pks) < 0 (2.19)

_ _ 2_
Firstly, (2.19) holds if 7, < —ZM-VPRZWRESR: 9 o 1. But this contradicts

) _ \/2_— )
ton — v — 2 = phy. Secondly, (2.19) holds if 7, > —PUEVPHZPREIE o i

contradicts to the beginning assumption. [
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Table 2.3: Non-existence results on NPS by Theorem 2.30 for n=15

p=5 p=>5 p=5 p=3
Y1 Y2 B Comments Y1 Y2 B Comments Y1 Y2 B Comments Y1 Y2 B Comments
-10 -8 1 not exist -4 1 -1 2 7 0 -6 -7 -2 not exist
-10 -5 1 not exist -4 4 0 2 10 1 -6 -2 -1 not exist
-10 2 1 not exist -4 7 1 5 -8 -3 not exist -6 3 0
-10 1 0 -4 10 2 5 -5 -2 not exist -6 8 1
-10 4 1 -1 -8 -2 not exist 5 -2 -2 not exist -1 -7 -2 not exist
-10 7 2 -1 -5 -2 not exist 5 1 -2 -1 -2 -2 not exist
-10 10 3 -1 -2 -2 not exist 5 4 -2 -1 3 -1
-7 -8 2 not exist -1 1 -1 5 7 -1 -1 8 0
-7 -5 -1 not exist -1 4 -1 5 1 0 4 -7 -2 not exist
-7 2 1 not exist -1 7 0 8 -8 -3 not exist 4 -2 -2 not exist
-7 1 0 -1 10 1 8 -5 -3 not exist 4 3 -2
-7 7 1 2 -8 -2 not exist 8 -2 -3 4 8 0
-7 10 2 2 -5 -2 not exist 8 1 -2 9 -7 -3 not exist
-4 -8 2 not exist 2 -2 -2 not exist 8 4 -2 9 -2 -3
-4 -5 -2 not exist 2 1 -2 8 7 -2 9 3 -2
-4 -2 -1 not exist 2 4 -1 8 10 -1 9 8 -2

We tabulate some nonexistence results obtained by Theorem 2.30 for n = 15, —10 <

Y1,72 < 10, p = 3 and p = 5 respectively in Table 2.3, where B is the upper bound on
7o given in Theorem 2.30. Pairs (1, 72) not included in Table 2.3 are exclude by Corollary
2.19. The empty rows in the table are undecided cases. It is seen that the case 7, = —2 and
B = —3 appears in the table, but Theorem 2.30 does not say anything about the status of its
existence. Actually, it is easily seen that the upper bound on 5 in Theorem 2.30 is at least

—3. Hence we have the following corollary.

Corollary 2.31. Let p be an odd prime number and n € Z". Then there does not exist an
almost p-ary sequence of type (71,72) and period n + 2 with two consecutive zero-symbols

for o < —3.

We now study the the notion of multiplier of a PDPDS. Let M be a PDPDS in G relative to
H and P. Define M™ = {mr : r € R} C G form € Z. m is called a multiplier of M if
there exist g € G such that M® = M + g C G for some m € Z such that ged(m, |G|) = 1

The following result gives us a multiplier subset of a PDPDS.

Proposition 2.32. Let R be a (n + 2,p,n, %3_2 + 72,0, ”_;}_1 + 7, %ﬁ‘z, %}_1)

PDPDS in G relative to H and P. If m is a multiplier of R, then m = +1 mod (n + 2).

Proof. Let R = {(2,a,1), (3,a2),...,(n+1,a,)} be aPDPDS in G relative to H and P. Let
R, denote the set of first components of elements in R, so R, = {2,3,...,n + 1}. Similarly
Rl(m). We assume that ¢ is a multiplier of R. For g € {1,2,...,n} we get R, + g = 0. We
know that ged(m, |G|) = 1, so {0} can never be found in Rl(m). Then g must in {0,n + 1}.
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Firstly if g = {n + 1}, then we get R, + g = {1,2,...,n}. We can use the group notion
to find the relation between R and R(™). We know that R} = Z, .o — {0,1} so Rl(m) =
L2 —{0,m}. Then, we get

R™ = R, — {m} + {1}. (2.20)

by last two equations. We consider together to R, Rl(m) and (2.20),wegetm=n+1= —1
mod (n+ 2) one of the statement of result. Finally, we show the other statement of result. If

g = {0}, then we get R;+¢g = {2,3,...,n+1}. Itisnowclearthatm = 1 mod (n+2). O

2.4 Conclusion

In this chapter, we proved a lower and an upper bounds on the number of distinct out-of-
phase autocorrelation coefficients of an almost p-ary sequence of period n + s with s con-
secutive zero-symbols. Theorem 2.10 shows that the number of distinct out-of-phase auto-
correlation coefficients is between min{s,p,n} and n — 1 + min{n, s}. Therefore one can
not get an NPS of type v by adding extra zero-symbols at consecutive positions. We next
prove in Theorem 2.18 that a p-ary NPS of type (71, 72) is equivalent to a PDPDS. Then, we
obtain that they only exist when p divides n — v, — 2 and n — y; — 1. We give in Theorem
2.30 a necessary condition on ~y, for the existence of an almost p-ary NPS of type (71, 72).

In particular we show that they don’t exist for v, < —3.
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3 APPLICATIONS

There is also a close relationship between sequences and cryptography due to the relation-
ship between Hadamard matrices. In particular, the functions called bent functions are used
in block cipher cryptosystems, substitution boxes, and can be constructed with Butson-
Hadamard matrices. Therefore, we start with the definition of a Butson-Hadamard matrix.
Code Division Multiple Access (CDMA ) is the system that provides high-quality communica-
tion with orthogonal codes (sequences). Actually, CDMA system is used as third generation
(3G) communication technology. In Code Division Multiple Access (CDMA), sequences
with ideal autocorrelation are important because a signal should not be affected by other sig-
nals in order to provide high-quality communication. In CDMA, each user has his/her own
code (sequence) and autocorrelation or crosscorrelation of this codes must be zero or nearly
zero. But, there is not enough orthogonal code. Hence, in Section 3.2, p-ary sequences with
s consecutive zero-symbols of type (71, 72) application to the bit-error-rate (BER) on CDMA
are presented. The simulation results on BER analysis of CDMA with almost p-ary NPS is
given in Section 3.2. The bit-error-rate is the ratio of the number of different bits between
the bits sent and the bits received, to the total number of bits sent. It is seen that although
almost p-ary NPSs don’t have better simulation results than perfect sequences, they serve a
large set of sequences with almost ideal autocorrelation coefficients.

The rest of this chapter is organized as follows. In Section 3.1.1, we define (v, 2)-near
Butson-Hadamard (resp. Conference) matrix (see Definition 3.3). In Section 3.1.2, the
equivalence between an almost p-ary NPS of type (71,72) and a (71, 72)-near Conference
matrix and a cryptographic function is studied and some examples of cryptographic function
are presented (see Table 3.1). In Section 3.2, we study CDMA structure on the Rayleigh
channel under additive white Gaussian noise (AWGN) as a communication application (see
Figure 3.1), and we use the almost p-ary sequences in this scenario. On this structure, bit-

error-rate is calculated and simulation results are given (see Figures 3.2-3.5).

3.1 Cryptographic Application
3.1.1 Butson-Hadamard Matrices

We first give the definition of a Butson-Hadamard matrix and a near Butson-Hadamard ma-

trix.
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A Hadamard matrix is an (v X v) matrix with entries in Z, such that HHT = vI. A square

matrix H = (h;;) of order v is called circulant if h;q j11 = h;j forall 0 <4, j < v.

1 2 3 45
2 3 4 51
1 1
A= , B=13 45 1 2
1_
4 51 2 3
51 2 3 4

In the above examples, the matrix A is a Hadamard matrix of order 2 and the matrix B
is a circulant matrix of order 5, where — represents —1. Let p be a prime and &, =

{1, ¢, 5, ceey <£—1}_ The identity matrix is denoted by [ and all one matrix denoted by

Ji. Moreover, J, and J3 are defined as

o1 0 0 0 ... 0 1 o o 1 1 1 ... 10

1 0 1 0 O ... 0 O o 0 o 1 1 ... 1 1

o 1 0 1 O ... 0 O 1 0 0 O 1 ... 1 1
Jo = s =

o 0 o 1 0 ... 1 0 11 1 0 0 ... 0 1

o 0 o0 o 1 ... 0 1 11 1 1 O ... 0 O

_1 o 0 0 o0 ... 1 0 _0 11 1 1 ... 0 O_

Then it is obtained that J; = Jy + J3 + 1.

Definition 3.1. [19] Let H be a square matrix of order v with entries in ,. If HHT = v,
then H is called Butson-Hadamard matrix and it is denoted by BH (v, p). In particular,
if p = 2, then BH(v,p) is called Hadamard matrix. If HHT = (v — ) + ~J, for
v € RNZI(,), then H is called y near Butson-Hadamard matrix. Similarly, it is denoted by
BH,(v,p).

The analysis of v near Butson-Hadamard matrices is given in [19].

Example 3.2. [19, Example 5] The following matrix H is an BH (5, 5) fory = —(3—(2+2,

where (5 is a 5-th root of unity,

(11 e 1 1]
11 1 = 1
H=|1 1 1 1 =
- 1 1 1 1
1 - 1 1 1
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We extend Definition 3.3 given for v-near Butson-Hadamard matrices to (1, 7, )-near Butson

-Hadamard matrices and near Conference matrices in the following.

Definition 3.3. A (71, v2)-near Butson-Hadamard matrix is a square matrix H of order n+2
with entries in £, such that HH™ = (n + 2)I + v1J> + Y2.J3, and denoted by BH ., ,,)(n +
2,p). Similarly, a (y1,y2) near Conference matrix is a square matrix C of order n + 2 with

entries in £, U {0} such that CCT = nI + v1.J5 + 72.J5, and denoted by C,, ., (n + 2, p).

In this thesis, we study only circulant (77, ¥2)-near Conference matrices with two leading
zero entries. Please note that this kind of matrices are equivalent to nearly perfect sequences

of type (71, 72) by setting the first row of the matrix with the sequence itself.

Example 3.4. The following matrix

is an C(y, ~,)(5,5) for 11 = G+ (3, v = 1 with |y = 1.61,

00 &G G 6
G 0 0 G &
C=|G ¢ 0 0 G
G G G 00
0 G & G 0]

vao| = 1. Therefore, it satisfies

(100 0 0 (010 0 1] 0011 0
01000 10100 0001
CCT"=310 010 0|+ (E+¢&)|0o 101 0f+1f1 000
00010 00101 1100
0000 1 10010 01100

3.1.2 Generalized Bent Functions

In this section, we give a method for obtaining a generalized bent function from an almost
p-ary NPS of type (71, 72) and period n + 2 with two consecutive zero symbols. Before that
we will give the definition of a Walsh transform, because the non-linearity of a function can
be calculated by its Walsh spectrum. Then we will give the definition of generalized bent
function. Let ¢ be power of a prime number p.

-

For X\ Y € (Z,)", the dot product or scalar product of two vectors X = [z1, 22, ..

andY = [y1, 92, ...,y isdefined by > 1" | 2;y; mod p and denoted by < X, Y >.
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The nonlinearity of a Boolean function is the minimum of its distance from all affine func-

tions.
nl(f) = min{d(f, An)}
where A,, is the set of all affine functions in all Boolean functions of n variables. We take as
Pla) = (1),
Play= Y (~)< (-1

y€E(Z2)™
SRR ol
fz)=<z,y> f@)#<z,y>

=2"=2d(f, < x,y >).

So, d(f,< x,y >) = 2"71 — %F (x) is obtained. Hence, the nonlinearity of a Boolean

function f on Z, is ni(f) = 2"~ — %max{|F(:U)| cx € Zy}.

Definition 3.5. [4] Let F be functions such that F' : (Z,)" — C. The Walsh transform
F (Zy)" — C of F is defined by

F(x)= ) (" F(y)
YE(Zq)™

forall x € (Z,)", where <, > is dot product.

Definition 3.6. [4] Let f be function such that f : (Z,)" — Z,. The F : (Z,)" — C function
is defined by
P(a) = ¢

forall x € (Z,)". If |F(z)| = ¢*/? for all z € (Z,)" then f is called a generalized bent
function (GBF).

In Theorem 3.7, a well known connection between Butson-Hadamard matrices and general-

ized bent functions is given.

Theorem 3.7. [4] Let f and F be defined as in Definition 3.6. Define the matrix Hy = (h )
and h,, = F(x —y) forall x,y € (Z,)". fisa GBF ifand only if Hy is a BH (q, q) matrix.

Now we examine the functions corresponding to almost p-ary NPS of type (71,72). Note
that in Theorem 3.7, only the first row of a BH matrix is enough to obtain the truth-table of a
function. Hence we can convert a sequence into a function’s truth-table. However, since we

work p-ary sequence of type (71, 72) and period n + 2 with two consecutive zero-symbols,
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we can not directly obtain the truth-table values. Thus, we first interpolate the function f
of largest degree from an almost p-ary NPS except two zero symbols. Then we get the

truth-table, and so the Walsh transform of f is calculated by Definition 3.5.

Example 3.8. We choose a NPS a = (0,0, (5,¢2, (s, - . .). We look for a function | : Zs —
Zs. We first set f(3) = 1, f(2) = 2 and f(1) = 1 by using the direction of Theorem 3.7.
By interpolating the function f of degree 2, we get f = 3x* + 3z, and so f(0) = f(4) = 0.
Thus the truth-table is (0,1,2,1,0), the Walsh spectrum is (v/5,v/5,v/5,V/5,v/5). Therefore
the spectrum is flat, it means that this function is a generalized bent function. The matrix C

obtained from a is given below, which is the same matrix illustrated in Example 3.4.

0f0-0) fO-1) (JO=2) o10-3) SO-]
Cg(l) 0/ (0) 0/ @) ]{(3) Cg@)
C = Cg@) Cg(l) 0/ IE) Cg(S)
Cg(?’) Cg(Z) C}{(l) 070 0f @)

0/ @) Cz{ (3) Cz{ (2) I{ (1) 0f(0)

We did an exhaustive search for almost p-ary sequences of type (1, 72) and period n+2 with
two consecutive zero-symbols for p € {5,7,11}. We tabulate our results in Table 3.1. The
Boolean function f obtained from the corresponding sequence, its truth-table, Walsh spec-
trum and bentness are give in this table. It is seen that we generally obtain a bent function
from a NPS. Moreover, we obtain some other functions with 3 distinct Walsh coefficients.
These functions come from the same class of sequences, namely almost p-ary NPS with
two distinct autocorrelation coefficients, but they are not bent. These examples were found
in MAGMA programming language and Walsh transforms of the examples were again cal-
culated with MAGMA programming language (see Appendix SEQUENCE SEARCH and
WALSH TRASNFORM-MAGMA CODES).
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3.2 Communication Application

In this section, we explain how sequences are used in CDMA. First, we examine the CDMA
structure (see Figure 3.1). At the transmitter side, we first choose data from set Z,, this is
{0,1,...,p — 1}, and convert the data to complex data obtained by taking corresponding
power of (,. For example, when p = 3 and the data is (0,1,2,1, 1), the complex data is
(¢9,¢3,¢2, (3, ¢3). In the next step of CDMA, each term of the complex data is multiplied by
the sequence given to the user and then the spread message is obtained, the spread messages
of each user are add to each other to get the transmitted message. In the Rayleigh channel
the signal is multiplied by the channel coefficient and AWGN is added. So, the received
message is obtained. At the receiver side, the received message is multiplied by the user’s
sequence and cd’ is obtained. In the decision process, for each component of c¢d’, the element
closest to any of the set £, is chosen as the corresponding component of the d’. We give an

example below.

dy cdy ®
sm
Usery !
. 1
: RayleighChannel
dn cdyn ® . - )
smy K .
Usery ® R Channel |
] coef ficient
SN
S1 @ . AWGN
U o :' .: 2 1
sery d, - cd,
( ™m )
Useryn dy . ..' cdly d=data
s=sequence
® cd=complex data
sm=spread message
SN tm=transmitted message

rm=received message

Figure 3.1: Structure of CDMA
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Example 3.9. Let & = {1, G, (2} ~ {1, —0.49 + 0.867, —0.5 — 0.865} and cd’ = {—2.5 —
0.817,—1.3—0.695}. Now, we take the difference between (—2.5 — 0.815) and each element

in A, and calculate their norms.

{|—25—081j — &,

Vic12s = {[3.5 + 0.815)],]2.01 + 1.675],]2 — 0.05;]}

= {V/3.52 + 0.812,/2.012 + 1.672, /22 + (—0.05)2}
~ {3.6,2.61,2}
The minimum value is 2, obtained by the (—0.5 — 0.86j) ~ (2 € A. Hence, d = 2 for

cd = (—2.5 — 0.81j5). Similarly, the d’ for cd = (1.3 — 0.69j) is 0. Therefore, cd' =
{—=2.5—-0.815,—1.3 — 0.695} is easily converted to d' = {2,0}.
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Figure 3.2: BER performance of CDMA with a; and 2, 3, 4 users respectively
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Figure 3.4: BER performance of CDMA with a3 and 2, 3, 4 users respectively
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Figure 3.5: BER performance of CDMA with a4 and 2, 3, 4 users respectively

We simulated Figure 3.1 by using nearly perfect sequences a; = (0,0, (2,1,(2,...) of type
(—1,1), a3 = (0,0,3,1,C2, G2, C2, Gy, €2, G, 2,1, G2, ) of type (1,3), a5 = (0,0,1,Ga, 1,
...)of type (—=2,1) and a4y = (0,0,1,1,1, (s, (o, (o, 1, (o, (o, 1, (o, .. .) of type (0,—1). We
selected the number of users as 2, 3 and 4 in the simulations. We have simulated by using
the code in Appendix BER ANALYSIS-SAGE CODES where the data length fixed to 10000
and each simulation repeated 11 times.

The simulation results are given in Figures 3.2, 3.3, 3.4, 3.5, where blue lines are for the
simulation results when only AWGN is added to the transmitted message on the channel and
red lines are for the simulation results when the transmitted message is first multiplied by
channel coefficient and then AWGN is added. It is seen that the larger period of sequence
is chosen, the better bit error rate (BER) is obtained when p and the number of users are
fixed (see Figures 3.2 and 3.3 or Figures 3.4 and 3.5). On the other hand, the smaller p is
chosen, the better BER is obtained when the period of sequence and the number of users are
fixed (see Figures 3.2 and 3.4 or Figures 3.3 and 3.5). The BER performance is dependent
on the number of users for any fixed sequence. It is seen that an increase in the number of
users proportionally decreases the BER performance. We see the best simulation results is
obtained by using a4 (see Figure 3.5). Note that the increase in the number of users for this
sequence affects the BER performance very little. As a result, for a multiuser case, if p is
small, choose the period of sequence as large as possible, so that the better BER performance
is obtained.

In [20, Section 5.5], the BER performance of CDMA with M-sequence and orthogonal
Gold sequence in AWGN or Rayleigh channel is given. In both channels, orthogonal Gold
sequences have better results. The BER performance in our simulation is not as good as in
[20, Section 5.5] because we used almost p-ary NPS of type (71,72). However, for the a4
sequence we get approximately the same BER performance as in [20, Section 5.5, Fig.5.20].

For instance, in [20, Section 5.5, Fig.5.20], for dB = 8, BER ~ 0.05 where the number of
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users is 7. In Figure 3.5, for dB = 8, BER ~ 0.05 where the number of users is 4. It would

be a good future work to device an efficient method for recovering the received message.

3.3 Conclusion

The main objective of this chapter is the application of almost p-ary sequences to cryp-
tographic functions, e.g bent function, and BER analysis on CDMA wireless communica-
tion. Walsh spectrum of a function obtained from a sequence is calculated by using Butson-
Hadamard matrix. In this way, some generalized bent functions are obtained. We obtained
some generalized bent functions from an almost p-ary NPS except for that the same class
of sequence. On the other hand, we simulated BER analysis on CDMA for some of almost
p-ary NPS. According to these simulations, these sequences are not perfectly suitable for the

CDMA, but we consider that with a few adjustments, better results can be obtained.
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4 CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, we studied almost p-ary sequences and their applications to cryptography and
communication. Particularly, we studied the almost p-ary sequences with 2 zero-symbols
and their relationship between the difference sets.

Primarily, we proved a lower and an upper bounds on the number of distinct out-of-phase
autocorrelation coefficients of an almost p-ary sequence of period n + s with s consecutive
zero-symbols. First main contribution of this thesis is that one can not get an NPS of type
~ by adding extra zero-symbols at consecutive positions. Next, we presented a new type
of difference set, partial direct product difference set (PDPDS). Then, we proved that a p-
ary NPS of period n + 2 of type (1, 72) with 2 zero-symbols is equivalent to a PDPDS. We
have presented an important property of an almost p-ary sequence of type (71, 72) and period
n + 2 with 2 consecutive zero-symbols. If there exists such a sequence then this sequence
is symmetric except for zero entries. Then, we obtained a necessary condition 7y, for the
existence of an almost p-ary NPS of type (71, 72)-

Next, we studied the application of the almost p-ary sequences of type (71, 72) and period
n + 2 with 2 consecutive zero-symbols to cryptographic functions, e.g bent function, and
BER analysis on CDMA for these sequences. We presented a new definition of Butson-
Hadamard matrix for an almost p-ary sequence of type (71,72) and period n + 2 with 2
consecutive zero-symbols, this is (71, 72 )-near Butson-Hadamard matrix. Walsh spectrum of
cryptographic functions is calculated by using this Butson-Hadamard matrix. In this way, we
obtained some generalized bent functions by using interpolation. Then, we simulated BER
analysis on CDMA for some sequences of almost p-ary NPS. In these simulations, it was
seen that the family of these sequences, although, is so large, they are not perfectly proper

for the CDMA type communication.

4.2 Future Work

Based on the worked-out examples throughout this thesis, we conjecture that if an almost
p-ary sequence of type (71, 72) and period n + 2 with 2 consecutive zero-symbols exists then
it is a trivial sequence for prime p > 3. It would be nice future work to construct a class of

almost ternary sequences of type (71, v2) and period n + 2 with 2 consecutive zero-symbols.
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In Section 3.1.2 on Chapter 3, we have presented examples of Walsh spectrum of some NPSs
of type (71,72) (see Table 3.1). Some NPS of type (71, 72) in this Table 3.1 is not equivalent
to generalized bent function. Hence, we will study these sequences, and the equivalent class
of boolean functions. And we will try other methods than interpolation for bent functions to
obtain from the sequences.

In Section 3.2 on Chapter 3, we have presented simulation results of some NPSs of type
(71,72) (see Figure 3.2-3.5). But it is clear that these results are not good. this means that
NPSs of type (1,72) are not suitable perfectly in CDMA under this modulation. Therefore,

alternative modulation methods would be a another future work.
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Appendix: SEQUENCE SEARCH-MAGMA CODES

We present the used MAGMA source codes to find samples of NPSs of type (71, 72). We

obtained all examples about NPSs of type (71, 72) in this thesis with these codes.

correlation:=function(a,n,t)
sum:=0;
for i in [1..n] do
if (i+t) gt n then
ipt:= ((i+t) mod n);
else
ipt:= i+t;
end if;
sum+:=(a[1]*xComplexConjugate(a[ipt]));
end for;
return sum;

end function;

is_symm:=function (a)

n:=#a;

for i in [1..(n div 2)] do
if a[i] ne a[n+l—1i] then

return false;

end 1if;

end for;

return true;

end function;

s:=2;

set_a:={};

for n in [15] do
printf "n: %o\n",n;

for p in [17] do

ext_set:={};
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ext_set_abs:={};
ext_set_im:={};
printf "\nn: %0 p: %o\n",n,p;
pary:={};
unity :=RootOfUnity (p);
for 1 in [0..(p—1)] do
Include (~pary ,unity”i);
end for;
seq_set:=CartesianPower (pary, n);
n_seq_set:=#seq_set;
p_n_seq_set:=n_seq_set div (100);
counter:=—1;
for a in seq_set do
if not is_symm(a) then
continue a;
end if;
counter+:=1;
b:=[];
for 1 in [1..s] do
b[i]:=unity —unity ;
end for;
for 1 in [1..n] do
bl[i+s]:=a[1i];
end for;
set_gamma:={};
for t in [1..n+s—1] do
cor:=correlation(b,n+s,t);
Include (~set_gamma, cor);
end for;
nbr_set_gamma:=#set_gamma;
if nbr_set_gamma eq 2 then

a_exponent:=[];
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for i in a do
for j in [O..p—1] do
if 1 eq unity”j then

Append(~a_exponent ,j);

end 1if;
end for;
end for;
printf "a:= %o\n", a_exponent;

printf "a:= %o\n", a;
printf "correlation:= %o\n",
set_gamma;
Include (~set_a ,a_exponent);
end if;
end for; ext_set;
end for;

end for;
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Appendix: WALSH TRANSFORM-MAGMA CODES

We present the used MAGMA source codes to calculated the Walsh transform of obtained

bent functions from NPSs of type (71, 72). Results obtained using these codes, we are illus-

trated in Table 3.1.

innerproduct:=function(x,y,n)
product:=x[1]*xy[1];
for 1 in [2..n] do
product+:=x[i]*xy[i];
end for;
return product;

end function;

lex:=function(x,n,p)
a:=Integers ()!x[n];
for 1 in [2..n] do
a+:=p"(i—1)xIntegers ()!x[n—1+1];
end for;
return a;

end function;

f:=function(x, truth_table)
a:=lex(x);
return truth_table[a];

end function;

/+ FIND WALSH SPECTRUM x/
walshspec:=function (f,p,n)
K := GF(p);
w:=RootOfUnity(p);
carK:=CartesianPower (K,n);
WalshSpectrum := [];
WalshSpectrumAbs :=[];
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for x in carK do
value := 0;
for y in carK do lex(y,n,p);
value +:= (w)"(Integers ()!innerproduct(x,y,n)
+f[lex(y,n,p)+1]);
end for;
Append (~WalshSpectrum , value );// ,
Append (~WalshSpectrumAbs , Abs(ComplexField ()! value ));
end for;
printf "%o\n ", WalshSpectrumAbs;
return WalshSpectrum;

end function;

f:=[0 ,2 ,0 ,0 70]’
walshspec (f,5,1);
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Appendix: BER ANALYSIS-SAGE CODES

We present the used SAGE source codes to BER analysis using NPSs of type (71,72) in

CDMA. According to these codes, we are simulated some NPSs of type (71, 72) (see Figure
3.2-3.5).

import numpy as np

from numpy import pi, exp,sqrt
from random import choice
import random

import matplotlib.pyplot as plt

def nthRootOfUnity(p): # linear space, parallelizable
return exp(2j) x pi / p )

def crosscorrelation (al,a2):
sum=0
for 1 in range(len(al)):
sum+=al [i]*conjugate (a2[i])

return sum

def eq_func(al,a2):
sum=0
for 1 in range(len(al)):
if (al[i]==a2[1]):
sum+=1

return sum

def min_func(dsdata ,p):
pth=[0]xp
for 1 in range(p):
pth[1]+=(zp"l)
dmdsdata =[]
a=[]

42



for i in range(len(dsdata)):
for j in range(p):
a.append (abs(pth[j]—dsdata[i]))
dmdsdata.append(zp”(a.index(min(a))))
del al:]

return dmdsdata

seq =[]
def sequence(a,un):
for t in range(un):
seq.append(a[t:] + a[:t])

return seq

def main(a,s,p,rpt,un,dl): #a=sequence , rpt=repeat
n=len (a)—s
zp=nthRootOfUnity (p)
seq=sequence(a,un)
A=[0]*rpt
corr=J[]
for 1 in seq:
corrx =[]
for t in range(un):
corrx .append(crosscorrelation(seq[t],1))
corr.append(corrx)
for K in range(rpt):
data =[]
mdata_noise =[]
mdata_orj =[]
dsdata =[]
eq=[]
EbNodB_range = range(rpt)
EbNodB = EbNodB_range [K]
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EbNo=10.0%%(EbNodB/10.0)
noise_std = 1/sqrt(2*xEbNo)
noise_mean = 0
for i in range(un):
data.append(np.random. randint(p, size=dl))
for k in range(un):
datax =[]
dataxx =[]
for j in range(dl):
dataxx .append(zp~data[k][]j])
noise=complex (random. gauss (noise_mean, noise_std),
random . gauss (noise_mean ,noise_std ))
ch_coeff=sqrt(random. gauss (0,1)**2+
random . gauss (0 ,1)*%x2)/sqrt(2)
datax .append ((zp~data[k][j]+*ch_coeff)+noise)
mdata_orj.append(np. array (dataxx))
mdata_noise.append(np.array (datax))
for i in range(un):
dsdatax =[]
for t in range(dl):
dsdatax_sum=0
for un2 in range(un):
dsdatax_sum+=mdata_noise[un2 ][ t]*xcorr[1i][un2]
dsdatax .append(dsdatax_sum/n)
dsdata.append(dsdatax)
for 1 in range(un):
eq.append(eq_func(mdata_orj[i1],min_func(dsdata[i]
.p)))
sayac =[]
for 1 in range(un):
if (dl==eqli]):
sayac .append (0)
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else:
sayac.append(float(dl—eq[1])/dl)
A[K]+=(sum(sayac )/un)

return A

d1=10000

un=4

rpt=11
zp=nthRootOfUnity (p)
a=[0,0,zp"2,1,zp"2]

plt.plot(range(11), main(a,s,p,rpt,un,dl), “bo-—")
plt.axis ([0, 10, le—6, 1le—3])
plt.xscale(’linear )

plt.xlabel (’EbNo(dB) )

plt.ylabel (’BER")

plt.grid (True)

plt.show ()
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