

EXAMPLE BASED SOFT-BODY SIMULATION ON

GRAPHICS PROCESSING UNITS

GRAFİK İŞLEMCİ ÜNİTELERİ ÜZERİNDE ÖRNEK

TABANLI YUMUŞAK NESNE SİMÜLASYONU

EMİRCAN KOÇ

Assist. Prof. Dr. ADNAN ÖZSOY

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2019

 i

This work titled “EXAMPLE BASED SOFT-BODY SIMULATION ON

GRAPHICS PROCESSING UNITS” by EMİRCAN KOÇ has been approved as

a thesis for the Degree of Master of Science in Computer Engineering by the

Examining Committee Members mentioned below.

 ii

 iii

 iv

ABSTRACT

EXAMPLE BASED SOFT-BODY SIMULATION ON GRAPHICS

PROCESSING UNITS

Emircan KOÇ

Master of Science, Computer Engineering Department

Supervisor: Assist. Prof. Dr. Adnan Özsoy

June 2019, 70 pages

Nowadays Soft-body Physics Simulations are used in lots of different areas such

as movies, videos and video games. Depending on the application, use of

simulation improves realism, fun and teaching factor thus creates more quality in

the product. Generally, Soft-body Physics Simulations are very resource

consuming operations. In this thesis we proposed a Soft-body Physics Simulation

algorithm. Aim of this proposed algorithm is to address three of the big problems

of Soft-body Physics Simulations; performance, visual quality and ease of use.

Proposed algorithm uses precomputed soft-body physics simulation results and

creates its outputs by using precomputed simulation results as examples for a

potential solution. Method of using examples simplifies and reduces expensive

computations thus improves performance. Visual quality depends on given

examples. By simply improving visual quality of examples, visual quality of

simulation can be increased. Algorithm only creates results by using examples

so there cannot be any unexpected outputs, thus this improves ease of use.

Proposed Soft-body Physics Simulation algorithm includes independent tasks

and can be implemented fully in parallel. As a result, it can use full potential of

graphical processing units, which became exceedingly popular in parallel

computation for very promising performance. Proposed algorithm has a time

 v

complexity of 𝑂(𝑛) where n being the number of vertices. Even in cases that

contains three dimensional models that have millions of triangles proposed

algorithm computes result in couple of milliseconds. It can easily be used in real-

time applications.

Keywords: General purpose graphics processing unit, physics simulation, soft-

body physics simulation, NVIDIA CUDA, real time applications

 vi

ÖZET

GRAFİK İŞLEMCİ ÜNİTELERİ ÜZERİNDE ÖRNEK TABANLI YUMUŞAK

NESNE SİMÜLASYONU

Emircan KOÇ

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Adnan Özsoy

Haziran 2019, 70 sayfa

Yumuşak Nesne Fiziği Simülasyonu günümüzde filmler, videolar, bilgisayar

oyunları gibi çeşitli alanlarda kullanılmaktadır. Kullanıldığı alana göre gerçekçiliği,

eğlence ve öğreticilik faktörünü geliştirip üretilen ürünün kalitesini artırmakta ve

hedefini daha iyi şekilde gerçekleştirmesini sağlamaktadır. Genel olarak

Yumuşak Nesne Fiziği Simülasyonu bilgisayarların kaynaklarını kullanma

açısından oldukça ağır bir işlemdir. Bu sebep doğrultusunda bu tez kapsamında

yeni bir Yumuşak Nesne Simülasyonu algoritması önerilmiştir. Önerdiğimiz

algoritma ile Yumuşak Nesne Simülasyonlarının önemli problemlerinden olan

performans, görsel kalite ve kolay kullanılabilirlik alanlarında geliştirme

hedeflenmiştir. Algoritmamız önceden hesaplanmış Yumuşak Nesne Fiziği

Simülasyon sonuçları kullanılarak çalışmaktadır. Bu önceden hesaplanmış

sonuçlardan örnek alarak sonuçlar oluşturmaktadır. Çok sayıda hesaplamayı

sadeleştirdiği için performans sağlamaktadır. Verilmiş örneklerin kalitesi ne kadar

yüksekse bizim çözümümüzün verdiği sonuç da o kadar görsel kaliteye sahip

olmaktadır. Önceden hesaplanmış örneklerin dışına çıkmadığı için beklenmedik

sonuçlar oluşmamaktadır bu sayede kullanım kolaylığı yüksek ölçüde sağlanmış

olmaktadır. Yumuşak Nesne Fiziği Simülasyonu algoritması önerimiz tamamen

paralelleştirilebilir bir yapıdadır bu sebeple grafik işlem ünitelerinin tüm gücünü

kullanmaya müsait olarak tasarlanmıştır. Aynı zamanda modelde n tane köşe

olduğu durumda, zaman karmaşıklığı 𝑂(𝑛) olduğu için milyonlarca üçgene sahip

 vii

üç boyutlu modellerde bile birkaç milisaniyede sonuç verebildiği için gerçek

zamanlı uygulamalarda kolaylıkla kullanılabilir.

Anahtar Kelimeler: Genel amaçlı grafik işlem ünitesi, fizik simülasyonu,

yumuşak nesne fiziği simülasyonu, NVIDIA CUDA, gerçek zamanlı uygulamalar

 viii

ACKNOWLEDGEMENT

I want to thank to my supervisor Assist. Prof. Dr. Adnan Özsoy for his continuous

believe in me in the creation of this work. He created time for me every time I

needed, even in his most busy times. He gave his energy and will power to me

for this work. Without his support, insight and experience this work could not be

this successful even this work might not be finished.

I also want to thank to my family, friends and colleagues. They gave ideas, they

gave power and energy to me. They supported me until the end.

 ix

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZET .….….….…………………………………………….….…………….…….………vi

ACKNOWLEDGEMENT .. viii

TABLE OF CONTENTS .. ix

FIGURES .. xi

TABLES .. xiii

ABBREVIATIONS ... xiv

1. INTRODUCTION ... 1

2. BACKGROUND... 5

2.1. Representing Three Dimensional Shapes in Computer Generated

Imagery with Triangulation Approach ... 5

2.2. Physics Simulations .. 5

2.2.1. Collision Detection .. 5

2.2.1.1. Collision Detection Optimizations 6

2.2.2. Collision Response ... 6

2.2.2.1. Collision Response for Rigid Bodies 6

2.2.2.2. Collision Response for Soft-Bodies 7

2.2.3. Realistic Soft-Body simulations ... 7

2.2.4. Approximate Soft-Body simulations ... 7

2.3. Data Driven Shape Matching .. 8

2.4. Parallel Programming Models ... 10

2.4.1. Comparison between SIMD and SIMT 10

2.4.2. Comparison between SIMT and SMT 11

2.5. Effectiveness of Graphical Processing Units 12

2.6. NVIDIA CUDA .. 13

2.7. Compute Shaders ... 13

2.8. Real-time application constraints ... 13

3. RELATED WORK .. 15

4. PROPOSED MODEL .. 18

4.1. Example based soft body physics simulation 18

 x

4.2. Pre-Solution Stage ... 19

4.2.1. Creating the example shapes .. 19

4.3. Initialization Stage .. 20

4.3.1. Pre-Processing example shapes ... 20

4.4. Runtime Stage ... 21

4.4.1. Finding the best matching example for the given collision 21

4.4.2. Sending the chosen example index and blend weight to

hardware for applying the deformation ... 23

4.4.3. Applying the deformation using chosen example and blend

weight …..…….….….…….…….……….…….….…….……….......….23

4.5. The CPU implementation ... 24

4.6. The GPU implementation ... 24

4.6.1. Usage of the Deformed Result Model 25

4.7. Challenges ... 26

5. TESTS AND ANALYSIS .. 30

5.1. Test Implementation .. 30

5.2. Common GPU Results ... 30

5.3. Common CPU Results ... 33

5.4. GPU to CPU Memory Copy ... 35

5.5. GPU and CPU Comparison ... 36

5.6. Hardware Utilization Tests ... 37

5.6.1. CPU Utilization Test ... 37

5.6.2. GPU Utilization Tests ... 38

5.6.2.1. GPU Utilization Test software.. 40

5.7. Visual Tests ... 40

6. CONCLUSION ... 43

REFERENCES .. 46

APPENDIX ... 49

CURRICULUM VITAE.. 53

PUBLICATIONS ... 54

 xi

FIGURES

Figure 2.1. Unwanted Deformation Result ... 9

Figure 4.1. Base model and Example Shapes ... 18

Figure 4.2. Algorithm for finding example ... 22

Figure 4.3. Deformation algorithm .. 24

Figure 4.4. Before and After the deformation. Sphere at top hits to cylinder and

deforms the cylinder according to collision properties and given examples of

the cylinder. ... 26

Figure 4.5. Correction for choosing most displaced candidate 27

Figure 4.6. Result of blending multiple different examples choosing most

displaced candidate .. 28

Figure 4.7. Result of blending multiple different examples and blending

candidates ... 29

Figure 5.1. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected

vertices takes about 1.57 milliseconds .. 31

Figure 5.2. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected

vertices takes about 0.97 milliseconds .. 31

Figure 5.3. Comparison for different GPUs for Block size of 1024 until 10 million

vertex count .. 32

Figure 5.4. Scaling the algorithm over multiple logical cores 33

Figure 5.5. Comparison for different CPUs until 1 million vertex count 34

Figure 5.6. On NVIDIA GTX1060(6GB) GPU, copying 10 million vertices from

GPU memory to CPU memory takes 64.001808 milliseconds 36

Figure 5.7. Comparison between best CPU and worst GPU of our tests 37

Figure 5.8. All eight logical cores on i5-8300H spiked to 100% utilization when

proposed solution algorithm started .. 38

Figure 5.9. GPU Utilization test tool ... 40

Figure 5.10. Results of Visual Tests ... 41

Figure 5.11. Results of Visual Tests ... 42

Figure 8.1. On NVIDIA GTX960 GPU proposed solution for 10 million affected

vertices takes about 6.031723 milliseconds .. 49

Figure 8.2. On NVIDIA GTX1050Ti GPU proposed solution for 10 million affected

vertices takes about 5.551942 milliseconds .. 49

 xii

Figure 8.3. On NVIDIA GTX1060 (6GB) GPU proposed solution for 10 million

affected vertices takes about 3.467258 milliseconds 50

Figure 8.4. On NVIDIA GTX1660Ti GPU proposed solution for 10 million affected

vertices takes about 2.088206 milliseconds .. 50

Figure 8.5. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected

vertices takes about 1.566714 milliseconds .. 51

Figure 8.6. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected

vertices takes about 0.970039 milliseconds .. 51

 xiii

TABLES

Table 5.1. Relation between core count, core speed and processing time for

various modern GPU models………………………………………………………..32

Table 5.2. Relation between core count and processing time for Intel® i7

6700 with 4 physical and 8 logical cores……………………………………………34

Table 5.3. Relation between core count, core speed and processing time for

various modern CPU models………………………………………………………..35

Table 5.4. Utilization compared to vertex count on NVIDIA GTX 1050 Ti

GPU…..39

Table 6.1. Processing time for 500 thousand deformed vertices in various

modern GPU models………………………………………………………………....44

 xiv

ABBREVIATIONS

𝑂 Big O notation for algorithm time complexity.

For example: 𝑂(𝑛), 𝑂(𝑛2), 𝑂(𝑛 ⋅ 𝑙𝑜𝑔(𝑛))

CPU Central Processing Unit

GPU Graphical Processing Unit or Graphics Processing Unit

GPGPU General Purpose Graphical Processing Unit

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SMT Simultaneous Multi-Threading

FPS Frames Per Second

MS Milliseconds

BSP Binary Space Partitioning

BVH Bounding Volume Hierarchies

CGI Computer Generated Imagery

MHz Megahertz

GHz Gigahertz

1

1. INTRODUCTION

With the rise of the internet, video sharing platforms, social media, interactive

applications and videos visual contents are heavily produced and consumed.

Every day humanity spends countless of hours watching videos and consuming

social media content. Great proportion of these applications use computer

generated imagery to increase realism and immersion. They use computer

generated imagery from simple cut, blend effects and filters to realistic three-

dimensional animated characters and scenery. These improvements increased

qualities of the content that is shared in social media, video sharing platforms and

video games.

Physics simulations occupy an important part of the CGI industry. While

generating computer generated imagery, physics simulations are heavily used.

Those simulations are used for explosions, collisions, water and smoke

simulations, breaking and deforming bodies. Also, support CGI effects for various

stunts and crashes. So, increase in content creation rate often causes an

increase in need for physics simulation solutions. Because of this growing need

for physics simulations there is a growing need for improved physics simulations.

Three of the important needs of users in physics simulations are visual quality,

performance and ease of use.

By looking with a visual quality perspective movie industry is a constantly growing

industry where lots of money is invested to improve quality of the images and

they increased their usage of computer-generated imagery to perfect the

expected results for users. Because of the huge investment in the area and

remarkably high interest from developers working on it, the visual quality

increased tremendously. Since increasing visual quality will cost more time and

more money, it became infeasible for amateur or inexperienced users to create

content that offers same amount of visual quality.

2

Another important subject is performance of the application. Using a simulation

that takes long to compute is not affordable for every user. While using an

interactive application or rendering a video one of the main concerns is

processing time. Most of the interactive application users or video content

creators do not have access to a greater computing power. It is both costly and

hard to support to use high performance computing systems. So, it is either not

affordable to use a high-performance computer or not affordable to wait a home

computer to complete the processing for most of the users of physics simulations.

Especially for video games industry time constraints for computing a frame

shrinking constantly. It has been shrunk to about four milliseconds in some cases

and in that four millisecond the application must compute lots of key features,

most important ones are animations, artificial intelligence, networking, rendering,

game logic and all the physics simulations. Since there are lot of key features to

compute in a frame, developers cannot spend much resources just for physics

simulations. And every small improvement will help to create resources for other

systems and with more resources other areas of the video game can be

improved.

Ease of use for a solution is especially important it can propose lots of

improvements but if it is harder to use, the contribution may not be valuable. For

most of the professional industries there are lots of experienced users for physics

simulation software. But for everyday users or inexperienced users, complex and

bloated solutions are not easily usable. Most of the time their needs are bounded

by a small part of their entire application or video.

Physics simulations can be coarsely divided into certain categories according to

their target body type. They are rigid body simulations, smoke and fluid

simulations and soft body simulations.

Rigid body simulations often focus on the physics bodies that are not deformable.

They focus on computing various physics properties such as velocity,

acceleration and momentum. After detecting collisions, they aim to compute

3

resulting velocity and position of the shapes as realistic as possible. They often

depend on conservation of the momentum principle, conservation of the energy

principle and various kinds of equations and formulas that scientists have found

such as static and dynamic friction, inertia computations, aerodynamics and air

friction.

Smoke and fluid simulations often aim for simulating behaviors of gasses and

fluids. They simulate diffusions and shape adaptations of these gasses and fluids

also pressure computations of these are quite different from solids. In smoke and

fluid simulations developers use the same principles of rigid body simulations use

but in addition they also use other principles of fluids such as surface tension,

density, viscosity and different pressure models. Also, for gasses they use

properties such as compressibility and expandability, diffusivity and different

pressure models for gasses.

Soft body simulations are a blend of these two simulation types. They aim for

solid matter but instead of keeping properties of these solids they deform and

break those bodies. They focus on material properties of physics bodies such as

malleability of metals, viscosity of soft solid materials and breaking points of

materials. Also, they focus on breaking pattern and behaviors of physics shapes.

In this thesis, we are proposing a soft-body physics simulation solution algorithm

for deforming shapes that shows metallic behavior. At the event of physical

collision, they bend and deform according to their given properties. Proposed

solution is offering a soft body simulation solution that addresses these three

prominent issues; visual quality, performance and ease of use. We define two

versions for the algorithm; one works on CPU and other works on GPU hardware.

We visualized the results for easier understanding. The proposed solution is

aiming for creating a bigger user base by improving visual quality, performance

and ease of use. The algorithm uses pre-computed data to look-up and uses

basic linear shape matching technique to compute results. The results are

promising, offering linear time complexity also offering a linear scaling factor

4

depending on the core count of the hardware. Proposed solution can reach 1

million vertices for simulation in modern CPUs that contain 4 physical and 8

logical cores, and those results are mostly under 3 milliseconds. By using modern

graphical processing units, the solution is capable of simulating 10 million vertices

under 1 millisecond. Thus, offers a usable solution even in video games that have

extremely limited time constraints. These extremely limited time constraints can

be as limited as 4 milliseconds to render an application frame. To be able to be

used in a real time application as a soft body physics simulation solution

component, solution must generate results in sub real times.

5

2. BACKGROUND

2.1. Representing Three Dimensional Shapes in Computer Generated

Imagery with Triangulation Approach

In fields such as movies, videos and video games three dimensional objects are

heavily used. To be able to render any kind of object into screen many

generalized approaches have been used. One of the used approaches is

triangulation approach. In this approach every represented object consists of

multiple triangles. Since theoretically there is no bound on how small a triangle

can be and how many triangles can be used, any kind of shape can be

represented with this approach. There are many kinds of approaches to represent

a three-dimensional shape, but they are out of the scope for this work.

2.2. Physics Simulations

Physics simulation solutions are software that supplies ability to solve various

physics problems. There are certain fields that physics simulation solutions are

addressing, and they offer various features to use.

2.2.1. Collision Detection

Collision detection is one of the most important problems that physics simulations

address. It is detecting if two collision shapes are intersecting with each other.

Most of the collision detection systems split given complex shapes into certain

primitive shapes. These shapes are triangles, planes, spheres, capsules, boxes

and convex meshes in three-dimensional geometry. These shapes are called

primitives because they can be represented by simple mathematical equations

and by using these mathematical equations, algorithms to detect intersection can

be developed. Couple of the important general-purpose collision detection

algorithms and approaches are Separating Axis Theorem, Gilbert–Johnson–

Keerthi distance algorithm and Minkowski Portal Refinement. For specific cases

more specific algorithms can be developed such as capsule versus sphere

collision.

6

2.2.1.1. Collision Detection Optimizations

These algorithms are mostly developed with performance in mind but checking

every pair of objects with a collision detection algorithm creates algorithms that

have time complexity of 𝑂(𝑛2). Space partitioning techniques are used for these

situations. Such as Binary Space Partitioning, Quadtrees, Bounding Volume

Hierarchies.

To simplify the collision detection algorithms various preliminary collision shapes

are used such as axis aligned bounding boxes and bounding spheres. Prior to

execute expensive collision detection algorithms these approaches execute a

coarse collision detection and offers an early out mechanism.

2.2.2. Collision Response

While detecting collision, these software computes every needed property of

collision to handle collision response correctly. The purpose of collision response

phase is altering the properties of collided shapes according to detected collision.

This altering can mean different in different simulations, for rigid body simulation

solutions this altering means only changing the velocity and momentum of the

collided shapes. In soft-body simulation solutions velocity and momentum may

be changed as in rigid body simulations. Also, shape of the object and mass of

the object may be changed, even it can be fractured to smaller pieces.

2.2.2.1. Collision Response for Rigid Bodies

Main areas of research in rigid body collision response field are simulating

massive number of objects, numerical stability problems in cases like stacking

big number of objects on top of each other, correctly transferring momentum and

velocity according to the rules of conservation of energy and conservation of

momentum especially for fast moving objects.

7

2.2.2.2. Collision Response for Soft-Bodies

In the other field of rigid body simulations there is the soft-body simulations.

Collision responses for soft-body simulations often focus on changing various

properties of physics bodies mostly it is the shape of the object. In soft body

simulation solutions, physics bodies often composed by smaller pieces. As

mentioned in related work section, various simulations handle bodies as multiple

small particles. Other solutions use triangles of the mesh or even some of them

divide meshes into tetrahedrons or spheres. Because of the handling bodies as

small pieces, the main challenge of the soft body simulation solutions is often not

massive number of objects to simulate but massive number of pieces because

using a greater number of pieces to simulate the body, allows simulation to be

more realistic.

We can coarsely divide soft body simulations to two categories based on different

main ideas and approaches.

There are realistic soft body simulations that try to implement physical properties

as realistic as possible to do simulations as in the real world. And others try to

simplify the computations by using approximations, various techniques and

precomputed helper data.

2.2.3. Realistic Soft-Body simulations

These simulations are often based on real properties of materials and they use

realistic energy transfer models to deform the soft bodies. To be able to be

physically correct, these solutions execute computationally heavy calculations.

So, they mostly do not fit to real time application constraints.

2.2.4. Approximate Soft-Body simulations

The other main category is approximated solutions. These solutions depend on

a simplification idea for the physics simulations. There are solutions that use

skeletons like in skeletal animations, there are some that uses springs or various

8

joints to approximate the solution. Also, these simplifications can be used with

the data driven solutions.

In data driven solutions there are examples. These examples are results of

precomputed collisions. The most important challenges in data driven solutions

are searching for the most suitable example, using that example properly and

handling the artifacts correctly.

2.3. Data Driven Shape Matching

Data driven idea can be explained very simply. It is using couple of look up tables

that happens to be meshes. And matching the initial vertices of the mesh with

look up data's vertex positions with given blend weight. Matching process can be

detailed but we will only use linear interpolation of two three-dimensional

positions as in Equation 2.1.

 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑉𝑏𝑎𝑠𝑒 × (1 − 𝑊𝑒𝑖𝑔ℎ𝑡) + 𝑉𝑒𝑥𝑎𝑚𝑝𝑙𝑒 × (𝑊𝑒𝑖𝑔ℎ𝑡) (2.1)

We call our data driven approach as Example Based approach. And we refer

precomputed look up tables for precomputed collision result meshes as

Examples. Example Based ideas often supply high performance. With other

solutions you either do real physics computations or more computationally heavy

collision approximations in run time. By using precomputed collision examples

cost of simulation in run time can be reduced to faster than real time levels.

Example based physics simulations are mostly easier to implement and manage

compared to fully physics simulations. They do not require complicated physics

knowledge to properly implement.

Also, one of the crucial reasons to use an example-based solution is that user

have more control over collision results. The solution only uses given examples.

Results cannot be different than blended versions of given examples. In video

games there are a lot of edge cases since video game player has the control. In

various cases realistic solutions can result to unwanted deformations such as

9

shown in Figure 2.1. Unwanted results do not necessarily mean unrealistic

results. In various cases such as making the video game more fun the video

game designers may not want to deform certain objects more than certain

threshold. It is particularly challenging to alter the result in an unrealistic way in

realistic solutions. And by doing that, user can break the solution in various edge

cases and cannot know. It is risky to depend on robustness of unrealistically

altered solutions. But if you are using example-based solutions all you must do is

arranging given examples according to design needs. You have full control over

simulation results.

Figure 2.1. Unwanted Deformation Result

Example based shape matching is faster, controllable and less complicated to

implement but there are some problems and limitations with it.

For cases that user did not supply a precomputed example collision result, the

solution result will not be as plausible or realistic. To generate higher precision

and more realistic results user needs to supply more precomputed example

collision results. So, memory usage of the solution may increase. And with lots of

10

examples run-time performance of the choosing the example phase will decrease

too.

Example Based Shape Matching is suitable for real time applications such as

video games, virtual reality applications or any other application that needs real

time rendering of soft physics bodies. It supplies faster than real time solution, so

user applications will have enough time left for other needed computations.

It is also usable in offline rendered applications such as movies. But since they

do not have time constraints as strict as real time applications, they can use more

complicated and realistic soft body physics solutions.

2.4. Parallel Programming Models

Parallel programming approaches can be explained in three main topics. Single

instruction multiple data, Single instruction multiple threads and Simultaneous

multi-threading.

• Single instruction multiple data (SIMD): Small amount of data processed

in the same time in parallel. Often in the same thread and same processing

core. Often called as vector parallelism.

• Simultaneous Multi-Threading (SMT): Decoupled instructions on different

threads on different processing cores run in the same time in parallel.

Often called hardware threading.

• Single instruction multiple threads (SIMT): Hybrid approach between

vector parallelism and hardware threading.

2.4.1. Comparison between SIMD and SIMT

Both approaches depend on the idea of fetching one instruction and processing

multiple data with that instruction. These approaches have their advantages and

disadvantages over each other. Since SIMT works on threads it is offering

different register sets, multiple control flow paths and can fetch from different

addresses of memory freely. But SIMD is limited to same register set, none of the

different parallel processing units can divert to different control flow paths and

11

fetching is mostly limited to registers. Addressing to memory in a SIMD instruction

is highly limited. SIMD offers lower latency while SIMT offers more flexibility.

2.4.2. Comparison between SIMT and SMT

SMT is the approach of multi-threading used in modern CPUs. Main advantage

of the SMT is being able to do different works on different processing cores. And

when work needed to be done is not enough and cannot occupy most of the

processing unit it still tries to finish the work as fast as possible. In this kind of

processing units there are lots of complex features are used such as out of order

execution, branch prediction, speculative execution, register renaming, caches

and prefetching. Aim of all these techniques and features is maximizing

throughput without context switch to another thread. By these techniques and

features SMT is supplying full flexibility over different threads without sacrificing

much from performance. But these techniques and features makes every

processing unit expensive, hard to produce and improve. So, because of their

complexity and higher production cost per processing core in processing units

created to work with SMT approach cannot have many numbers of processing

cores compared to processing units that created to work with SIMT approach. In

current generation of CPUs often processing core counts are lower than sixteen.

There are other greater CPUs that have about hundred processing cores. But

they are not affordable compared to SIMT units that have same count of

processing cores [28].

In the other hand SIMT sacrifices flexibility over different threads but massively

simplifies the implemented architecture over the processing unit. With this

simplification, processing units that created to work with SIMT approach can have

vast number of processing units, vast number of register sets. With the vast

number of processing units and register count main aim of this approach is the

generate gain from having vast number of threads working at the same time.

Since this architecture hardware do not have complex techniques and features

to deal with, such as handling stalling and increasing cycle per instruction value,

these SIMT hardware depend on fast context switches between threads. If there

are enough threads to context switch, these SIMT hardware do not lose

12

performance. In cases that do not have enough threads to occupy whole

hardware, performance drops greatly. Since SIMT approach executes same

instruction on different threads at the same time in the cases that there are lots

of control flow divergence and different threads goes into different control flows

performance also reduces greatly.

Modern GPUs uses single instruction multiple threads (SIMT) approach. Modern

GPU hardware contains many thousands of processing cores [26] with a very

affordable costs compared to CPUs that have significantly less processing core

counts.

2.5. Effectiveness of Graphical Processing Units

GPUs have lots of processing units. Every one of them can be slower than the

average CPUs' processing units but since there are thousands of processing

units on them [26] it is possible to process thousands of independent data on

different processing units on GPUs at the same time. Modern GPU’s uses single

instruction multiple threads (SIMT) approach. For algorithms that are doing same

independent computation over a large data set GPUs are best fit. If these

computations depend on each other and a synchronization between GPU threads

needs to be done, full effectiveness of GPUs cannot be used. There are many

framework and platforms to create opportunity for using full effectiveness of

GPUs.

13

2.6. NVIDIA CUDA

NVIDIA CUDA is an application development platform that opens ways to use

NVIDIA’s CUDA compatible graphical processing units. It allows developers to

use GPUs as general-purpose graphical processing units (GPGPU). CUDA

allows developers to create applications not using traditional rendering pipeline

and let them access to many features of the GPU such as different memory types

on the hardware, customizable block and grid sizes, certain level of

synchronization over different threads. In CUDA, CPU and GPU are called as

HOST and DEVICE respectively.

By offering these feature CUDA is opening ways use full effectiveness of modern

GPUs.

2.7. Compute Shaders

Compute shaders differ from other shaders that are found in various graphics

frameworks. Often shaders have certain sets of inputs and outputs and order of

the execution is fixed in the rendering pipeline. With the era of the general-

purpose GPUs compute shaders have arrived. They offer an interface to GPU

and open ways to use many features of GPUs. They are highly customizable,

they do not depend on any other part of the rendering pipeline, but they can be

integrated into rendering pipeline. These features increase possibilities of GPU

usage fields tremendously. In a sense NVIDIA CUDA and compute shaders of

various rendering frameworks such as OpenGL and DirectX are remarkably

similar in many ways.

2.8. Real-time application constraints

A real-time application can be defined as an application that responses in the

time frame that users sense as instant. To generate this feeling generating about

thirty frames per second for application is enough, this means that application

should do every computation in about thirty-three milliseconds of time. Thirty

frames per second creates the feeling of instant only visually, in video games

since users also expect their input to be processed instantly, their expected

latency is mostly lower. So, sixty frames per second is widely accepted as target

14

frame count to process in a second for video games. It shrinks the time frame for

processing single video game frame to be computed only about sixteen

milliseconds. With the rise of social media and streaming platforms in recent

years professional video gaming have risen. Professional video game players

often have more capability visually and physically. So, they want as low latency

as possible to be able to be better at the competition. Because of this situation

professional gaming hardware products are produced to handle up to two

hundred and forty frames per second video gaming experience. To be able to

keep up with a hundred and forty-four hertz of frame rate real-time application

need to finish its tasks in about seven milliseconds. And at two hundred and forty

frames per second, solution only has a little more than four milliseconds.

15

3. RELATED WORK

Soft body simulation is an active research field. We can divide the research field

as realistic soft body simulations and approximate soft body simulations. For

approximate soft body simulations literature has good amount of work. Most of

the literature for approximate soft body physics simulation solutions, make use of

mesh simplification techniques and other ways to simplify the solution to create

satisfactory performance results without sacrificing realistic visual quality.

Although the prior approach is more exact in terms of showing the real effect of

the impact, the latter has the potential to simulate faster since there are less

demanding physical calculations at run time. We mostly looked at approximated

soft body simulation solutions in this section.

Physics simulations of deformable bodies dates to early days of the computer

graphics field. One such work by Terzopoulos et al. [1], in which researchers

pushed the limits for approximate physics simulations. Since the nature of soft

body simulations are processing power demanding, notable examples of

simplifications have created.

Barzel et al. [2] creates base idea for model simplifications and simplification

bigger models by using constraints between smaller pieces. This work can be

regarded as the revelation for the field. Following this approach many

simplification method and approaches have been proposed.

One simplification example, using a skeleton by Capell et al. [3], by Kim et al. [4],

by Liu et al. [5] and by Rumman et al. [6]. These approaches achieved plausible

simulation results with skeleton based simplifications.

Using a simplified version of the original simulation mesh by creating a tetrahedral

mesh used by Alliez et al. [7] and by Wojtan et al. [8]. Tetrahedral mesh

simplifications also used for liquid simulations by Ando et al. [9].

16

Clavet et al. [10] is one of the notable examples on dividing bodies into small

components. It connects and disconnects components at run-time to create more

fluid simulation look. Also works on rendering part of the fluid.

Example based approaches in another words shape matching is newer in this

field. Müller et al. [11] is one of the influential works in example-based solutions.

It only depends on the examples and simplifies the solution.

Wang et al. [12] shows that examples can be used as a helper component to

whole simulation. In this work we can see examples as a helping component.

Müller et al. [13] uses both, spheres to divide the mesh into smaller components

and uses example-based approach

Zhu et al. [14] is one of the inspiring approaches. Keeps examples as divided into

tetrahedrons and does the shape matching in reduced tetrahedron space to gain

performance.

Using lattice deformers to reduce needed computing power needs are used in by

Rivers et al. [15] and by Patterson et al. [16].

Also, there are various methods that are not straight forward in soft body

simulations. For example, Molino et al. [17], Irving et al. [18], Teran et al. [19],

Budsberg et al. [20], and Saket et al. [21].

Dvorožňák et al. [22] proposes an example-based approach that aims to create

two dimensional animations using previously hand drawn example drawings. This

work perfectly fits our approach for examples and perfectly solves another

problem in another field. But can be regarded as a proof of concept for our

proposed solution.

Jones et al. [23] and Koyama et al. [24] are the most inspiring works for our

proposed approach. They both create the idea and the baseline for this work.

17

The difference of our method is we created the solution idea according to SIMT

parallelization approach and designed the baseline algorithm to work on GPU's

as efficient as possible with SIMT parallelization approach. Our focus is to

achieve collision result deformation simulation in faster than real-time. Although

there are several earlier works that aims the real-time, our aim is to generate

results in a small fraction of the real time budget. Our aim is to use this solution

as a part to real time applications. Since real time applications do a lot of other

computations, the budget we can get is rarely enough.

Our approach uses precomputed collision examples. At the time of the collision,

the system finds the best fit from precomputed collision examples and blend the

current state of the mesh to chosen example vertex by vertex. Approach does

not use a mesh simplification technique that can create unpredicted results.

Blending vertex by vertex is a straightforward process so the solution can work

with models that have millions of vertices. To achieve our faster than real-time

goal we got inspired from earlier works and produced a solution that can work

fully parallel on GPUs with the SIMT parallelization approach.

18

4. PROPOSED MODEL

Figure 4.1. Base model and Example Shapes

4.1. Example based soft body physics simulation

As told in the introduction section we are proposing a solution algorithm that uses

precomputed collision result meshes that aims visual quality, performance and

ease of use. Proposed algorithm works with help of a collision detection tool.

While the simulation taking place for each detected collision, proposed solution

is getting called and generating results by using base model and examples.

In the Figure 4.1. base mesh shown at top and eight different precomputed

collision result have shown at bottom.

Using the properties of the collision from collision detection, most similar

precomputed collision result mesh is chosen among all of user have provided.

After that proposed fully parallel algorithm deforms every single vertex that are

affected according to precomputed collision result. Also, to not lose the results of

earlier collisions proposed algorithm chooses the correct blending results for

already deformed vertices.

We refer pre-computed collision results as examples. We are using them as

examples to generate new collision results in the run-time. Supplying more

deformation results will increase the simulation's visual correctness. And since

19

proposed algorithm only blends supplied meshes it is not able to create results

that cannot be predicted at the beginning. Results can only be in the borders of

supplied precomputed collision results. This allows users to feel free while

creating precomputed collision result meshes and do not require much tweaking

to solve edge case situations. Since proposed algorithm only uses supplied

precomputed collision result meshes and only using simple linear blending

equation, it is not possible for it to produce unexpected results. This predictability

increases maintainability and ease of use. Since every single computation done

for each vertex is completely independent to other vertices, algorithm can be

implemented fully parallel hence increases performance.

We implemented proposed algorithm both on CPUs using Simultaneous Multi-

Threading (SMT) parallelism approach and on GPUs using Single Instruction

Multiple Thread (SIMT) approach. In this section we will explain both

implementations. Since the algorithm designed for SIMT approach it fits to SMT

approach easily, so implementations are mostly similar on both architectures.

4.2. Pre-Solution Stage

This stage is not causally related with the algorithm, but it is about the supplying

necessary data to the algorithm.

4.2.1. Creating the example shapes

Proposed algorithm requires examples to work with. A base mesh and multiple

collision result mesh need to be provided by user. To create the example shapes

users can use various other techniques such as they can create every single

example by hand in a 3D modelling software or use a non-approximated soft body

physics simulation application to deform base mesh and save results as

examples. Creating by hand requires more time and effort but since the user will

have full control over results, we encourage users to create their example shapes

by hand and tweak them as their liking.

20

For base mesh and every other example shape, the vertex count, vertex order

and vertex hierarchy need to be the same. Proposed algorithm interprets all data

according to that assumption.

4.3. Initialization Stage

4.3.1. Pre-Processing example shapes

The straightforward approach to sending the example is sending every vertex of

the model. Then blend base model and chosen example with each other. But to

support multiple collisions we had to keep already collided vertices unchanged

and should not blend them with the new example. At first, to know which vertices

to blend we can keep a ledger, a bit array, for each example that shows affected

vertices. In the deformation phase we read the bit array ledger to get if the current

vertex is affected from the example. But for the SIMT implementation in the GPU

this solution increases branching and causes divergency. Threads that assigned

to non-deformed vertices were just waiting idle.

As an alternative we can only send deformed vertices of the example shape. This

will help us on idle thread problem explained in earlier paragraph. To be able to

send only the deformed vertices a basic mapping array will be built before

keeping example shape data either in CPU or GPU. This solution will reduce the

idle threads heavily. Also, will reduce the memory usage for keeping example

shape data and shorten the time needed to move the example shape data to

GPU memory.

Since this data is a three-dimensional vector for each vertex that is affected by

example and one mapping data. We expect this data to be small.

For example: If we have a model that has a hundred thousand (100000) vertices.

And have 100 different examples for simulation. If we assume that every example

on average effects 50% of vertices. And we use 3 dimensional vectors of 4-byte

floats for every single vertex and mapping index which is 4 bytes. If user is sure

that vertex count is lower than biggest representable number by 2 bytes (65536)

then mapping index can be 2 bytes. Even it can be 1 byte in low vertex counts.

21

Our data becomes:

For each vertex:

 3 × 4 bytes + 1 × 4 bytes ≈ 16 bytes

(4.1)

For each example that containing 100000 vertices and 50% average effect

 100000 × 0.5 × (3 × 4 bytes + 1 × 4 bytes) ≈ 780 kilobytes

(4.2)

For 100 examples

 100 × (100000 × 0.5 × (3 × 4 bytes + 1 × 4 bytes)) ≈ 78 megabytes

(4.3)

For most of the modern systems this memory footprint is very affordable. These

steps were the offline part of the solution. We do these steps once on the

initialization stage and keep the precomputed data to runtime usage. Also, since

examples does not change in any case, they can be shared between multiple

instances of same base mesh. Even if the user is deforming multiple models,

required memory for example shapes may be constant.

4.4. Runtime Stage

While the simulation is running for each collision detected, proposed solution

algorithm does a deformation to collided mesh. We can get the collision result

data from any kind of collision detection algorithm. Using the collision result it

provided, proposed solution algorithm starts the processing. Runtime stage has

three main phases.

• Finding the best matching example for the given collision.

• Sending the chosen example index and blend weight to hardware for

applying the deformation.

• Applying the deformation using chosen example and blend weight.

4.4.1. Finding the best matching example for the given collision

At first by using the collision point we search for the closest vertex we use that

vertex as collided vertex. Using the applied impulse, impulse apply time and mass

22

of the collided vertex, proposed solution algorithm computes the needed

displacement of collided vertex. To be able to do that it uses the Equation 4.4.

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 × 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒

𝑀𝑎𝑠𝑠

(4.4)

• Impulse is applied impulse vector as the result of the collision.

• Delta Time is time elapsed between start time and end time of the applied

impulse.

• Mass is the mass of the collided vertex.

• Target displacement is the target displacement vector for the collided

vertex for proposed algorithm. It will try to choose the best fit precomputed

collision result mesh according to this value.

As seen on Figure 4.2. Find best example and blend weight algorithm we use the

cosine similarity formula of three-dimensional vectors and we use displacement

magnitudes for computing the outBlendWeight. Cosine similarity formula can be

seen at Equation 4.5.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 =

𝑉1 ⋅ 𝑉2

|𝑉1| ⋅ |𝑉2|

(4.5)

Figure 4.2. Algorithm for finding example

23

To clarify the blend weight computation; If we need a displacement that is 0.8

meters but in example that vertex is displaced 2.0 meters. So, we need to use

0.4 as the blend weight to be able to displace by needed distance.

 𝑛𝑒𝑒𝑑𝑒𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 × 𝑏𝑙𝑒𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡

(4.6)

So, to be able to find the blend weight the Equation 4.6. becomes:

𝑏𝑙𝑒𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡 =

𝑛𝑒𝑒𝑑𝑒𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

(4.7)

4.4.2. Sending the chosen example index and blend weight to hardware for

applying the deformation

For the GPU implementation the example data already in the GPU memory we

sent the data at the time of initialization phase. Also, for the CPU implementation

the data is in the accessible memory. At this stage we just need to send the index

of the chosen example and blending weight from current state of the model to

given example shape.

Until this step SMT implementation on CPU and SIMT implementation on GPU

works similar and all earlier computations are done on CPU in single thread. After

this step is done the system executes a parallel for in the CPU for SMT

implementation and executes a GPU kernel for SIMT implementation to deform

the current model.

4.4.3. Applying the deformation using chosen example and blend weight

Using the results of Find best example and blend weight algorithm seen on Figure

4.2. our system gets the precomputed collision result mesh index. By using these

data both implementations blend the current mesh to the example shape using

the technique of linear interpolation of two three dimensional positions as in

Equation 2.1. shown in section 2.3. Data Driven Shape Matching.

24

4.5. The CPU implementation

Since the proposed model designed the SIMT approach in mind this

implementation uses the full power of the CPU and SMT parallelization approach.

None of the threads need to synchronize with each other so no waiting or locking

needed.

Deform with example algorithm shown in Figure 4.3. is used for each vertex in

this implementation. Deform with example algorithm is called for each vertex in a

parallel for loop.

4.6. The GPU implementation

We implemented the GPU version using SIMT approach by using NVIDIA CUDA

platform. None of the thread synchronization methods available is used so that

full processing power of the GPU can be used. Our choice of NVIDIA CUDA is

only arbitrary. Proposed solution algorithm can be implemented by using OpenCL

or DirectX’s and OpenGL’s compute shaders or any kind of GPU platform and

framework.

Deform with example algorithm shown in Figure 4.3. is used for each vertex in

this implementation too. In the deform kernel deform with example algorithm is

called for every single thread.

Figure 4.3. Deformation algorithm

25

4.6.1. Usage of the Deformed Result Model

After we finished the deformation of the model usage of it depends on users aim

of using this simulation system. If user’s aim is to use an offline system, they can

save deformation result model for future use in any format they want.

For real-time usage most user will want to render the result deformed vertices

using a GPU. Copying vertex data between CPU and GPU is overly expensive.

Profile results are shown at 5. Test and Analysis section, it takes tens of

milliseconds for certain vertex counts, as a result memory copy is not a possibility

for real time applications. For our CPU implementation there is not an affordable

straightforward solution, we must send vertices to GPU by copying the result

deformed model data to be able to render. But for our GPU implementation there

are fast solutions for quickly rendering result data. Since the result vertices

computed by GPU the result data already in the GPU memory, we can use the

data by passing data pointers. NVIDIA CUDA supports memory sharing between

OpenGL and DirectX. Users can use these frameworks and assign those

frameworks’ memory to CUDA as computation result memory. By that after our

computations have completed the results become ready to render immediately.

Similar cases also possible if proposed solution is implemented OpenGL’s or

DirectX’s compute shaders. Those compute shaders can work on same memory

with the rendering pipeline so there will not be any need for copying memory.

26

Figure 4.4. Before and After the deformation. Sphere at top hits to cylinder and deforms
the cylinder according to collision properties and given examples of the cylinder.

4.7. Challenges

If a vertex needs to be blended but it was already blended to another example

because of an earlier collision, we should not blend the vertex directly to the given

example. It can cause that vertex's displacement to decrease. So, we had to keep

track of the vertices that already blended to something else. For this info we used

a bit buffer. One bit for each vertex that tells if given vertex is blended or not. But

we needed to write to this bit buffer in parallel in a GPU thread. Such an

instruction would require locking or atomic operation because multiple GPU

threads can change the different bits in the same byte. If we do not use atomic

operations these two threads might affect each other. There were two practical

solutions to this. We could either synchronize the threads or use whole bytes for

every different vertex to separate the access of the threads. Since memory was

not our biggest issue, we have chosen the latter. We could easily use the prior

solution in a lower memory situation. But then we realized we do not need extra

data to understand if the vertex is displaced before. We do not need the exact

27

knowledge. By computing the current displacement of the vertex comparing to

undeformed original mesh we can easily say if the vertex displaced or not.

Since we can properly understand that if a vertex is displaced because of an

earlier collision. We were able to produce ideas to solve multiple collision cases.

At first, we tried blending these vertices current displacement with newly

computed displacement from new example as seen in Figure 4.5. But this

blending caused already displaced vertices to artificially lost their already

displaced positions. Because of that kind of artifacts if a vertex is already

displaced, we compare the new displacement and old displacement and we

choose the biggest displacement for every point.

Figure 4.5. Correction for choosing most displaced candidate

But after we try proposed solution with more complex examples. Not blending

and directly choosing the most displaced one between earlier displacement and

newly created displacement have created different problems. After multiple

blending towards different examples these artifacts can be seen in Figure 4.6.

28

Figure 4.6. Result of blending multiple different examples choosing most displaced
candidate

To be able solve this issue we had to fall back to the blending solution we initially

tried. It created more stable solutions but created artifacts as the older blending

of examples loses their effect.

In the Figure 4.7. we presented image that uses the blending solution. Figure 4.6.

and Figure 4.7. are results of same simulations. Only difference is usage of the

blending solution.

As a result, it creates more stable solution results, but solution results lose

deformation effects of earlier collisions. As we can see at the right images in both

Figure 4.6. and Figure 4.7. If we look at the left side of cylinder at both images

we can easily see when we activated the blending solution left side of the cylinder

lost the displacement.

29

Figure 4.7. Result of blending multiple different examples and blending candidates

30

5. TESTS AND ANALYSIS

5.1. Test Implementation

We implemented various tests and profiling helpers for testing and analyzing

proposed solution. We ran our test implementations on various hardware and

gathered profiling results.

Test tool generates random meshes and random examples with various vertex

count for them. It starts with 10000 vertex count and by increasing 10000 at each

step it goes up to 10 million vertex count for GPU and goes up to 1 million vertex

count for CPU. For each step it generates a completely new random mesh and

random examples. For each step it does the simulation 75 times and gather the

profiling results for them. To stay statistically correct it excludes the outlier values

and do not add them to average.

For GPU's we did this analysis for different block sizes and gathered results. We

also implemented a multithreaded CPU implementation for the algorithm to be

able to compare and prove that the proposed solution can use the power of CPU

too.

5.2. Common GPU Results

We did these tests on selected modern hardware. Since we implemented the

solution on CUDA platform we had to run only on NVIDIA GPUs.

We used from NVIDIA GeForce, GTX960, GTX1050Ti, GTX1060(6GB version),

GTX1660Ti, GTX1080Ti and GTX2080Ti for generating profiling results because

about 50% of video game players are using same or similar GPUs [25].

In Figure 5.1. and Figure 5.2. we can see that highest ranked GPU's of last two

NVIDIA GPU generation are performing around one millisecond for ten million

deformed vertices.

31

Figure 5.1. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected
vertices takes about 1.57 milliseconds

Figure 5.2. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected
vertices takes about 0.97 milliseconds

32

Figure 5.3. Comparison for different GPUs for Block size of 1024 until 10 million vertex
count

In Figure 5.3. we can see the profiling result over various NVIDIA GPUs. Detailed

profiling results shown at appendix section. Results for every GPU can be found

there.

Table 5.1. Relation between core count, core speed and processing time for

various modern GPU models

 GPU Model CUDA Core Count Core Clock Speed

(MHz)

Processing Time in MS

for 10 million vertices

GTX 960 1024 1178 6.031723

GTX 1050 Ti 768 1290 5.551942

GTX 1060 (6GB) 1280 1506 3.467258

GTX 1660 Ti 1536 1500 2.088206

GTX 1080 Ti 3584 1582 1.566714

RTX 2080 Ti 4352 1350 0.970039

33

Table 5.1. shows that proposed algorithm scales related to core count and core

speed. That means with the developed technology of the feature with GPUs that

have more core count and faster cores, this algorithm will still use the near full

potential of the GPU and scale linearly depending on new GPUs core count and

core speed.

5.3. Common CPU Results

In Figure 5.4. and Figure 5.5. scaling behavior of the algorithm can easily be

seen. In Figure 5.4. it is shown that related to the physical core count the slope

of the graph changes near linearly. Table 5.2. also supports that proposed

algorithm scales in the order of 𝑂(𝑛) time complexity depending on the physical

core count. And proves that proposed algorithm scales perfectly between multiple

CPU cores because we can clearly see a consistent performance increase

according to physical core count increase supported by multiple performance test

result graphs.

Figure 5.4. Scaling the algorithm over multiple logical cores

34

Table 5.2. Relation between core count and processing time for Intel® i7 6700

with 4 physical and 8 logical cores

Logical Core Count
Processing Time in MS for

1 million vertices

Time gain multiplier

compared to 1 logical

core

1 7.275815 x1

2 3.647204 x1.995

3 2.532911 x2.873

4 1.945698 x3.739

5 2.063421 x3.526

6 1.881683 x3.867

7 1.77668 x4.095

8 1.745447 x4.169

Figure 5.5. Comparison for different CPUs until 1 million vertex count

35

Table 5.3. Relation between core count, core speed and processing time for

various modern CPU models

 CPU Model Physical - Logical

Core Count

Core Clock

Speed (MHz)

Processing Time in MS

for 1 million vertices

i7-4790K 4 - 8 4000 2.718998

i5-8300H 4 - 8 2300 2.053142

i7-6700 4 - 8 3400 1.745447

i7-8700K 6 - 12 3700 1.909862

i7-6950X 10 - 20 3000 1.027708

Xeon Platinum 8160* 32 - 64 2100 0.190181

*Two Xeon Platinum 8160 processors are used. Each of these CPUs have 24 physical
and 48 logical cores. That sums up to 48 – 96 however those CPUs were limited to

32 – 64 in total because of reasons we have not control over.

5.4. GPU to CPU Memory Copy

As stated in the 4.6.1. Usage of the Deformed Result Model section copying data

from GPU memory to CPU memory takes tens of milliseconds. For real time

applications copying memory from GPU to CPU is not a feasible possibility.

Solutions should find ways to avoid doing memory copies from device to host

memory.

Performance results for copying result from GPU memory to CPU memory can

be seen on Figure 5.6.

These tests have done on NVIDIA GeForce GTX 1060(6GB) the have memory

type of GDDR5, bus 192 bit and bandwidth of 192.2 GB/s and Intel® Core i7 6700

and Kingston DDR4 memory working at 1200MHz.

36

Figure 5.6. On NVIDIA GTX1060(6GB) GPU, copying 10 million vertices from GPU
memory to CPU memory takes 64.001808 milliseconds

5.5. GPU and CPU Comparison

As expected mostly GPU implementations performed better than CPU

implementations. But for one case CPU was faster than the GPU it is the

comparison between an older GPU NVIDIA GTX 960 and modern overly

expensive server CPU of Intel. Intel® Xeon® Platinum 8160. Firstly, we need to

say that Xeon processor around 11 times expensive than GTX 960 GPU.

According to amazon.com prices Xeon processor costs around 4.499.00$ and

GTX 960 GPU costs 388.00$. We used two Xeon processes at the same time

while measuring performance. Without considering the cost of motherboard and

other hardware that is compatible with Xeon processor we can easily say that

testing hardware that contains Xeon processor costs at least 22 times more than

testing hardware that contains GTX 960. Used Xeon processor is a very high-end

processor. Until around 5 million vertex count Xeon processor performed better

than the GTX 960. But after 5 million with increased vertex counts GTX 960

dominated the Xeon processor because we started to fully utilize the GTX 960

GPU around 5 million vertex count. Detailed explanation and test results of

utilization have shown at the GPU utilization tests section.

37

Figure 5.7. Comparison between best CPU and worst GPU of our tests

5.6. Hardware Utilization Tests

Utilizing the hardware is especially important. If an algorithm is using half of the

potential of hardware it is working on, it is not completely correct to compare

different hardware while testing the performance of the solution.

5.6.1. CPU Utilization Test

According to CPU utilization tests proposed solution utilizes all the logical cores

on CPU. Even in Xeon processor that has 64 logical cores utilization was 100%

it was rarely dropping down to 99% for some logical cores. This shows that our

implementation uses the full potential of CPUs at least up to 64 logical cores.

Since proposed solution was implemented according to SIMT parallelization

approach there is not any dependency between threads, so it was expected to

reach near perfect utilization on hardware that is produced for SMT parallelization

approach. Utilization of 100% can be seen on Figure 5.8. for Intel® Core i5-8300H

4 physical 8 logical core processor.

38

Figure 5.8. All eight logical cores on i5-8300H spiked to 100% utilization when
proposed solution algorithm started

5.6.2. GPU Utilization Tests

In hardware that are working with the SIMT parallelization approach utilization

depends on having enough thread to utilize the system, having less control flow

diversion and better memory access pattern and memory usage. All of these is

for utilizing every core in the GPU constantly. If we analyze the proposed solution

according to this data, its control flow diversion is low because we only have one

control flow diversion point (if-else block). Since proposed solution does not

access big memories latency because of memory accesses can be hidden when

there are enough number of threads. After our GPU utilization tests, we found out

that with the increased vertex count and increased thread count utilization of

proposed solution on GPU increases.

39

Table 5.4. Utilization compared to vertex count on NVIDIA GTX 1050 Ti GPU

Vertex Count GPU Load

1 million 56%

2 million 69%

3 million 77%

4 million 88%

5 million 89%

6 million 92%

7 million 92%

8 million 93%

9 million 94%

10 million 95%

As shown in Table 5.4. proposed solution can use the potential of GPU in big

vertex counts until 95%. Around 4.5 million vertices count the memory controller

load of GPU hits 100% percent for NVIDIA GTX 1050 Ti for proposed solution.

Because of this increase in GPU load cannot hit to 100%. With our memory

access pattern in NVIDIA GTX 1050 Ti it is not possible to use more than 95%

percent of potential computing power of the GPU. We only used the global

memory to keep example shapes. We are accessing the global memory with an

aligned and coalesced pattern, but we are not using any of the shared memory

or constant memory. Without the power of different memory types our test

environment can utilize the GPU at 95% of full potential. This situation is not bad

for testing performance over different GPU models. Results will not differ greatly

if we hit to 100% utilization. But it is good to use full potential of the hardware. By

using shared and constant memories users can implement versions of our

proposed solution algorithm that uses 100% potential of GPUs.

40

5.6.2.1. GPU Utilization Test software

All the utilization tests have done using the 2.21.0 version of the GPU-Z Video

card Information Utility by the TechPowerUp.

Figure 5.9. GPU Utilization test tool

5.7. Visual Tests

We implemented a testing tool to see the results of the cases that considerable

number of collisions have happened. Our tool chooses random example and

random weight for each test. Testing tool did 75 randomly created collisions to

generate each result. These results can be seen in the Figure 5.10. and Figure

5.11.

41

Figure 5.10. Results of Visual Tests

42

Figure 5.11. Results of Visual Tests

43

6. CONCLUSION

Proposed solution algorithm offers real time, visually pleasing and easy to use

solution. With all implementation details shared it is easy to implement and

simple to maintain. It is easily usable and can easily be implemented to an

existing software as extension. Since it is producing predictable results and

generating results fast enough for any kind of application, iterating and tweaking

results going to be fast and painless process. This will allow users to spend

more time for other important topics of their content and contribute to creation of

more quality content.

In current generation of real time applications such as video games it is only

feasible to render couple of million vertices in real time. According to results

from GPU implementation proposed solution can deform 10 million vertices

under one millisecond. Depending on the example if algorithm is deforming 10

million vertices full model can have much more vertices in various cases, more

than 100 million. Having models that contain 100 million vertices in real time is

not feasible in current generation of video gaming, but still proposed solution is

able to deform them under 1 millisecond making solution feasible for using in

time constrained video games. In current generation of video games single

model mostly contains couple of hundred thousand vertex maybe 1 million

vertices at most at best level of detail option. Of course, there are exceptions, it

depends on the context of the video game and complexity of the scene. In the

cases that model have 1 million vertices and given collision is deforming 50% of

the vertices, 500 thousand vertices will be deformed. If we analyze the profile

result for 500 thousand deformed vertex case from Table 6.1. We conclude that

proposed solution perfectly fits to real time application time constraints. Even in

older NVIDIA GTX 960 GPU solution converges in about 300 microseconds. To

be able to spend whole millisecond in NVIDIA GTX 960 GPU we need to

deform about 1.7 million vertices according to our profiling data. But in the

newer NVIDIA RTX 2080Ti GPU we were not able to spend 1 millisecond even

with 10 million deformed vertex count.

44

Table 6.1. Processing time for 500 thousand deformed vertices in various modern

GPU models

GPU Model CUDA Core Count Core Clock

Speed (MHz)

Processing Time in MS

for 500 thousand vertices

GTX 960 1024 1178 0.333733

GTX 1050 Ti 768 1290 0.35219

GTX 1060 (6GB) 1280 1506 0.213597

GTX 1660 Ti 1536 1500 0.140712

GTX 1080 Ti 3584 1582 0.110823

RTX 2080 Ti 4352 1350 0.08893

According to data gathered in profiling and tests, proposed solution is usable in

real time applications. But those results do not mean the solution only aims for

real time applications. It is also usable for offline rendered and very demanding

applications such as movies. Since they need long rendering hours, they use

big computing power farms. These farms cost a lot and rendering process takes

lots of time. With this algorithm computation time can be reduced. This will

result to decreased costs and in case of any mistake it will be much easier to

correct the mistake and re-render the whole movie scene.

Our CPU implementation is slower compared to GPU implementation. Since

proposed solution scales according to physical core count and perfectly fits to

the SIMT parallelization approach it was expected at the beginning. But in

various cases user might want to implement their solution on CPU. To create an

early idea about performance of the CPU version we did tests and supplied the

results in this work. The only difference of result between GPU and CPU

version is performance. There is not any visual difference between created

results of GPU and CPU. It is perfectly safe to expect same result from other

hardware. This may help users in various cases for example if they do not have

access to GPU or they only have access to a fast GPU and slow CPU, and they

are not able to run the proposed solution on both hardware.

45

This algorithm is usable for many industries ranging from real time video game

industry to highly demanding offline rendered professional movie industry. For

every industry it supplies an improvement.

46

REFERENCES

[1] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987.

Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (August 1987),

205-214.

[2] Ronen Barzel and Alan H. Barr. 1988. A modeling system based on dynamic

constraints. IGGRAPH Comput. Graph. 22, 4 (June 1988), 179-188.

[3] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović.

2002. Interactive skeleton-driven dynamic deformations. In Proceedings of the

29th annual conference on Computer graphics and interactive techniques

(SIGGRAPH '02). ACM, New York, NY, USA, 586-593.

[4] Junggon Kim and Nancy S. Pollard. 2011. Fast simulation of skeleton-driven

deformable body characters. ACM Trans. Graph. 30, 5, Article 121 (October

2011), 19 pages.

[5] Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and

control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6, Article

215 (November 2013), 8 pages.

[6] Nadine Abu Rumman and Marco Fratarcangeli. 2014. Position based skinning

of skeleton-driven deformable characters. In Proceedings of the 30th Spring

Conference on Computer Graphics (SCCG '14). ACM, New York, NY, USA, 83-

90.

[7] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun.

2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3 (July 2005), 617-

625.

[8] Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin

features. In ACM SIGGRAPH 2008 papers (SIGGRAPH '08). ACM, New York,

NY, USA, Article 47, 8 pages.

[9] Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid

simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4, Article 103 (July

2013), 10 pages.

47

[10] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based

viscoelastic fluid simulation. In Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation (SCA '05). ACM,

New York, NY, USA, 219-228.

[11] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.

2005. Meshless deformations based on shape matching. In ACM SIGGRAPH

2005 Papers (SIGGRAPH '05), Markus Gross (Ed.). ACM, New York, NY, USA,

471-478.

[12] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F. O'Brien.

2010. Example-based wrinkle synthesis for clothing animation. In ACM

SIGGRAPH 2010 papers (SIGGRAPH '10), Hugues Hoppe (Ed.). ACM, New

York, NY, USA, Article 107, 8 pages.

[13] Matthias Müller and Nuttapong Chentanez. 2011. Solid simulation with

oriented particles. In ACM SIGGRAPH 2011 papers (SIGGRAPH '11), Hugues

Hoppe (Ed.). ACM, New York, NY, USA, Article 92, 10 pages.

[14] Fei Zhu, Sheng Li, and Guoping Wang. 2015. Example-Based Materials in

Laplace-Beltrami Shape Space. Comput. Graph. Forum 34, 1 (February 2015),

36-46.

[15] Alec R. Rivers and Doug L. James. 2007. FastLSM: fast lattice shape

matching for robust real-time deformation. In ACM SIGGRAPH 2007 papers

(SIGGRAPH '07). ACM, New York, NY, USA, Article 82.

[16] Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of

complex nonlinear elastic bodies using lattice deformers. ACM Trans. Graph. 31,

6, Article 197 (November 2012), 10 pages.

[17] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm

for changing mesh topology during simulation. ACM Trans. Graph. 23, 3 (August

2004), 385-392.

[18] G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust

simulation of large deformation. In Proceedings of the 2004 ACM

SIGGRAPH/Eurographics symposium on Computer animation (SCA '04).

Eurographics Association, Goslar Germany, Germany, 131-140.

48

[19] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005.

Robust quasistatic finite elements and flesh simulation. In Proceedings of the

2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA

'05). ACM, New York, NY, USA, 181-190.

[20] Jeff Budsberg, Nafees Bin Zafar, and Mihai Aldén. 2014. Elastic and plastic

deformations with rigid body dynamics. In ACM SIGGRAPH 2014 Talks

(SIGGRAPH '14). ACM, New York, NY, USA, Article 52, 1 page.

[21] Saket Patkar, Mridul Aanjaneya, Aric Bartle, Minjae Lee, and Ronald Fedkiw.

2015. Efficient denting and bending of rigid bodies. In Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '14).

Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 87-96.

[22] Marek Dvorožňák, Pierre Bénard, Pascal Barla, Oliver Wang, and Daniel

Sýkora. 2017. Example-based expressive animation of 2D rigid bodies. ACM

Trans. Graph. 36, 4, Article 127 (July 2017), 10 pages.

[23] Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil. 2016.

Example-based plastic deformation of rigid bodies. ACM Trans. Graph. 35, 4,

Article 34 (July 2016), 11 pages.

[24] Yuki Koyama, Kenshi Takayama, Nobuyuki Umetani, and Takeo Igarashi.

2012. Real-time example-based elastic deformation. In Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '12).

Eurographics Association, Goslar Germany, Germany, 19-24.

[25] Steam Hardware & Software Survey,

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-

Welcome-to-Steam (Retrieved 6 July 2019)

[26] NVIDIA GPU specifications, https://www.nvidia.com/en-us/geforce/

(Retrieved 6 July 2019)

[27] NVIDIA CUDA documentations, https://docs.nvidia.com/cuda/ (Retrieved 6

July 2019)

[28] Intel® Core™ Processor specifications,

https://ark.intel.com/content/www/us/en/ark.html (Retrieved 6 July 2019)

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://www.nvidia.com/en-us/geforce/
https://docs.nvidia.com/cuda/
https://ark.intel.com/content/www/us/en/ark.html

49

APPENDIX

Figure 0.1. On NVIDIA GTX960 GPU proposed solution for 10 million affected vertices
takes about 6.031723 milliseconds

Figure 0.2. On NVIDIA GTX1050Ti GPU proposed solution for 10 million affected
vertices takes about 5.551942 milliseconds

50

Figure 0.3. On NVIDIA GTX1060 (6GB) GPU proposed solution for 10 million affected
vertices takes about 3.467258 milliseconds

Figure 0.4. On NVIDIA GTX1660Ti GPU proposed solution for 10 million affected
vertices takes about 2.088206 milliseconds

51

Figure 0.5. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected
vertices takes about 1.566714 milliseconds

Figure 0.6. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected
vertices takes about 0.970039 milliseconds

52

53

CURRICULUM VITAE

Name Surname : Emircan KOÇ

Place of Birth : Bursa

Date of Birth : 02/11/1992

Marital Status : Single

Correspondence Address : Çiğdem Mah. 1550/1. Cd. No:17/7 Çankaya/Ankara

Phone : 0 506 220 18 96

E-mail Address : koc.emircan@gmail.com

EDUCATIONAL BACKGROUND

Master’s Degree :

Hacettepe University, Ankara, Turkey, 2015 - 2019

 M. Sc. in Computer Engineering CGPA: 3.78 / 4.00

Bachelor’s Degree :

Hacettepe University, Ankara, Turkey, 2011 - 2015

 B. Sc. in Computer Engineering CGPA: 3.11 / 4.00

WORK EXPERIENCE

TaleWorlds Entertainment 2015 - Present

 Software Engineer

TaleWorlds Entertainment 2013 - 2015

 Part-Time Software Engineer

TaleWorlds Entertainment 2013 - 2013

 Software Engineering Intern

54

PUBLICATIONS

E. Koc and A. Ozsoy, “Approximate Data Driven Parallel Shape Matching for Soft

Body Physics Simulations”, International Conference on Artificial Intelligence and

Data Processing, 2019.

E. Koc and A. Ozsoy, “Example Based Soft-Body Simulation on Graphics

Processing Units”, The Visual Computer, International Journal of Computer

Graphics (Submitted).

