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ABSTRACT 

 

EXAMPLE BASED SOFT-BODY SIMULATION ON GRAPHICS 

PROCESSING UNITS 

 

Emircan KOÇ 

 

Master of Science, Computer Engineering Department 

Supervisor: Assist. Prof. Dr. Adnan Özsoy 

June 2019, 70 pages 

 

Nowadays Soft-body Physics Simulations are used in lots of different areas such 

as movies, videos and video games. Depending on the application, use of 

simulation improves realism, fun and teaching factor thus creates more quality in 

the product. Generally, Soft-body Physics Simulations are very resource 

consuming operations. In this thesis we proposed a Soft-body Physics Simulation 

algorithm. Aim of this proposed algorithm is to address three of the big problems 

of Soft-body Physics Simulations; performance, visual quality and ease of use. 

Proposed algorithm uses precomputed soft-body physics simulation results and 

creates its outputs by using precomputed simulation results as examples for a 

potential solution. Method of using examples simplifies and reduces expensive 

computations thus improves performance. Visual quality depends on given 

examples. By simply improving visual quality of examples, visual quality of 

simulation can be increased. Algorithm only creates results by using examples 

so there cannot be any unexpected outputs, thus this improves ease of use. 

Proposed Soft-body Physics Simulation algorithm includes independent tasks 

and can be implemented fully in parallel. As a result, it can use full potential of 

graphical processing units, which became exceedingly popular in parallel 

computation for very promising performance. Proposed algorithm has a time 
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complexity of 𝑂(𝑛) where n being the number of vertices. Even in cases that 

contains three dimensional models that have millions of triangles proposed 

algorithm computes result in couple of milliseconds. It can easily be used in real-

time applications. 

 

 

Keywords: General purpose graphics processing unit, physics simulation, soft-

body physics simulation, NVIDIA CUDA, real time applications 
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ÖZET 

 

GRAFİK İŞLEMCİ ÜNİTELERİ ÜZERİNDE ÖRNEK TABANLI YUMUŞAK 

NESNE SİMÜLASYONU 

 

Emircan KOÇ 

 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Dr. Öğr. Üyesi Adnan Özsoy 

Haziran 2019, 70 sayfa 

 

Yumuşak Nesne Fiziği Simülasyonu günümüzde filmler, videolar, bilgisayar 

oyunları gibi çeşitli alanlarda kullanılmaktadır. Kullanıldığı alana göre gerçekçiliği, 

eğlence ve öğreticilik faktörünü geliştirip üretilen ürünün kalitesini artırmakta ve 

hedefini daha iyi şekilde gerçekleştirmesini sağlamaktadır. Genel olarak 

Yumuşak Nesne Fiziği Simülasyonu bilgisayarların kaynaklarını kullanma 

açısından oldukça ağır bir işlemdir. Bu sebep doğrultusunda bu tez kapsamında 

yeni bir Yumuşak Nesne Simülasyonu algoritması önerilmiştir. Önerdiğimiz 

algoritma ile Yumuşak Nesne Simülasyonlarının önemli problemlerinden olan 

performans, görsel kalite ve kolay kullanılabilirlik alanlarında geliştirme 

hedeflenmiştir. Algoritmamız önceden hesaplanmış Yumuşak Nesne Fiziği 

Simülasyon sonuçları kullanılarak çalışmaktadır. Bu önceden hesaplanmış 

sonuçlardan örnek alarak sonuçlar oluşturmaktadır. Çok sayıda hesaplamayı 

sadeleştirdiği için performans sağlamaktadır. Verilmiş örneklerin kalitesi ne kadar 

yüksekse bizim çözümümüzün verdiği sonuç da o kadar görsel kaliteye sahip 

olmaktadır. Önceden hesaplanmış örneklerin dışına çıkmadığı için beklenmedik 

sonuçlar oluşmamaktadır bu sayede kullanım kolaylığı yüksek ölçüde sağlanmış 

olmaktadır. Yumuşak Nesne Fiziği Simülasyonu algoritması önerimiz tamamen 

paralelleştirilebilir bir yapıdadır bu sebeple grafik işlem ünitelerinin tüm gücünü 

kullanmaya müsait olarak tasarlanmıştır. Aynı zamanda modelde n tane köşe 

olduğu durumda, zaman karmaşıklığı 𝑂(𝑛) olduğu için milyonlarca üçgene sahip 
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üç boyutlu modellerde bile birkaç milisaniyede sonuç verebildiği için gerçek 

zamanlı uygulamalarda kolaylıkla kullanılabilir. 

 

 

Anahtar Kelimeler: Genel amaçlı grafik işlem ünitesi, fizik simülasyonu, 

yumuşak nesne fiziği simülasyonu, NVIDIA CUDA, gerçek zamanlı uygulamalar 
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1. INTRODUCTION 

With the rise of the internet, video sharing platforms, social media, interactive 

applications and videos visual contents are heavily produced and consumed. 

Every day humanity spends countless of hours watching videos and consuming 

social media content. Great proportion of these applications use computer 

generated imagery to increase realism and immersion. They use computer 

generated imagery from simple cut, blend effects and filters to realistic three-

dimensional animated characters and scenery. These improvements increased 

qualities of the content that is shared in social media, video sharing platforms and 

video games. 

 

Physics simulations occupy an important part of the CGI industry. While 

generating computer generated imagery, physics simulations are heavily used. 

Those simulations are used for explosions, collisions, water and smoke 

simulations, breaking and deforming bodies. Also, support CGI effects for various 

stunts and crashes. So, increase in content creation rate often causes an 

increase in need for physics simulation solutions. Because of this growing need 

for physics simulations there is a growing need for improved physics simulations. 

Three of the important needs of users in physics simulations are visual quality, 

performance and ease of use. 

 

By looking with a visual quality perspective movie industry is a constantly growing 

industry where lots of money is invested to improve quality of the images and 

they increased their usage of computer-generated imagery to perfect the 

expected results for users. Because of the huge investment in the area and 

remarkably high interest from developers working on it, the visual quality 

increased tremendously. Since increasing visual quality will cost more time and 

more money, it became infeasible for amateur or inexperienced users to create 

content that offers same amount of visual quality. 
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Another important subject is performance of the application. Using a simulation 

that takes long to compute is not affordable for every user. While using an 

interactive application or rendering a video one of the main concerns is 

processing time. Most of the interactive application users or video content 

creators do not have access to a greater computing power. It is both costly and 

hard to support to use high performance computing systems. So, it is either not 

affordable to use a high-performance computer or not affordable to wait a home 

computer to complete the processing for most of the users of physics simulations. 

Especially for video games industry time constraints for computing a frame 

shrinking constantly. It has been shrunk to about four milliseconds in some cases 

and in that four millisecond the application must compute lots of key features, 

most important ones are animations, artificial intelligence, networking, rendering, 

game logic and all the physics simulations. Since there are lot of key features to 

compute in a frame, developers cannot spend much resources just for physics 

simulations. And every small improvement will help to create resources for other 

systems and with more resources other areas of the video game can be 

improved. 

 

Ease of use for a solution is especially important it can propose lots of 

improvements but if it is harder to use, the contribution may not be valuable. For 

most of the professional industries there are lots of experienced users for physics 

simulation software. But for everyday users or inexperienced users, complex and 

bloated solutions are not easily usable. Most of the time their needs are bounded 

by a small part of their entire application or video. 

 

Physics simulations can be coarsely divided into certain categories according to 

their target body type. They are rigid body simulations, smoke and fluid 

simulations and soft body simulations. 

 

Rigid body simulations often focus on the physics bodies that are not deformable. 

They focus on computing various physics properties such as velocity, 

acceleration and momentum. After detecting collisions, they aim to compute 
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resulting velocity and position of the shapes as realistic as possible. They often 

depend on conservation of the momentum principle, conservation of the energy 

principle and various kinds of equations and formulas that scientists have found 

such as static and dynamic friction, inertia computations, aerodynamics and air 

friction. 

 

Smoke and fluid simulations often aim for simulating behaviors of gasses and 

fluids. They simulate diffusions and shape adaptations of these gasses and fluids 

also pressure computations of these are quite different from solids. In smoke and 

fluid simulations developers use the same principles of rigid body simulations use 

but in addition they also use other principles of fluids such as surface tension, 

density, viscosity and different pressure models. Also, for gasses they use 

properties such as compressibility and expandability, diffusivity and different 

pressure models for gasses. 

 

Soft body simulations are a blend of these two simulation types. They aim for 

solid matter but instead of keeping properties of these solids they deform and 

break those bodies. They focus on material properties of physics bodies such as 

malleability of metals, viscosity of soft solid materials and breaking points of 

materials. Also, they focus on breaking pattern and behaviors of physics shapes. 

 

In this thesis, we are proposing a soft-body physics simulation solution algorithm 

for deforming shapes that shows metallic behavior. At the event of physical 

collision, they bend and deform according to their given properties. Proposed 

solution is offering a soft body simulation solution that addresses these three 

prominent issues; visual quality, performance and ease of use. We define two 

versions for the algorithm; one works on CPU and other works on GPU hardware. 

We visualized the results for easier understanding. The proposed solution is 

aiming for creating a bigger user base by improving visual quality, performance 

and ease of use. The algorithm uses pre-computed data to look-up and uses 

basic linear shape matching technique to compute results. The results are 

promising, offering linear time complexity also offering a linear scaling factor 
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depending on the core count of the hardware. Proposed solution can reach 1 

million vertices for simulation in modern CPUs that contain 4 physical and 8 

logical cores, and those results are mostly under 3 milliseconds. By using modern 

graphical processing units, the solution is capable of simulating 10 million vertices 

under 1 millisecond. Thus, offers a usable solution even in video games that have 

extremely limited time constraints. These extremely limited time constraints can 

be as limited as 4 milliseconds to render an application frame. To be able to be 

used in a real time application as a soft body physics simulation solution 

component, solution must generate results in sub real times. 
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2. BACKGROUND 

2.1. Representing Three Dimensional Shapes in Computer Generated 

Imagery with Triangulation Approach 

In fields such as movies, videos and video games three dimensional objects are 

heavily used. To be able to render any kind of object into screen many 

generalized approaches have been used. One of the used approaches is 

triangulation approach. In this approach every represented object consists of 

multiple triangles. Since theoretically there is no bound on how small a triangle 

can be and how many triangles can be used, any kind of shape can be 

represented with this approach. There are many kinds of approaches to represent 

a three-dimensional shape, but they are out of the scope for this work. 

 

2.2. Physics Simulations 

Physics simulation solutions are software that supplies ability to solve various 

physics problems. There are certain fields that physics simulation solutions are 

addressing, and they offer various features to use. 

 

2.2.1. Collision Detection 

Collision detection is one of the most important problems that physics simulations 

address. It is detecting if two collision shapes are intersecting with each other. 

Most of the collision detection systems split given complex shapes into certain 

primitive shapes. These shapes are triangles, planes, spheres, capsules, boxes 

and convex meshes in three-dimensional geometry. These shapes are called 

primitives because they can be represented by simple mathematical equations 

and by using these mathematical equations, algorithms to detect intersection can 

be developed. Couple of the important general-purpose collision detection 

algorithms and approaches are Separating Axis Theorem, Gilbert–Johnson–

Keerthi distance algorithm and Minkowski Portal Refinement. For specific cases 

more specific algorithms can be developed such as capsule versus sphere 

collision. 
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2.2.1.1. Collision Detection Optimizations 

These algorithms are mostly developed with performance in mind but checking 

every pair of objects with a collision detection algorithm creates algorithms that 

have time complexity of 𝑂(𝑛2). Space partitioning techniques are used for these 

situations. Such as Binary Space Partitioning, Quadtrees, Bounding Volume 

Hierarchies. 

 

To simplify the collision detection algorithms various preliminary collision shapes 

are used such as axis aligned bounding boxes and bounding spheres. Prior to 

execute expensive collision detection algorithms these approaches execute a 

coarse collision detection and offers an early out mechanism. 

 

2.2.2. Collision Response 

While detecting collision, these software computes every needed property of 

collision to handle collision response correctly. The purpose of collision response 

phase is altering the properties of collided shapes according to detected collision. 

This altering can mean different in different simulations, for rigid body simulation 

solutions this altering means only changing the velocity and momentum of the 

collided shapes. In soft-body simulation solutions velocity and momentum may 

be changed as in rigid body simulations. Also, shape of the object and mass of 

the object may be changed, even it can be fractured to smaller pieces. 

 

2.2.2.1. Collision Response for Rigid Bodies 

Main areas of research in rigid body collision response field are simulating 

massive number of objects, numerical stability problems in cases like stacking 

big number of objects on top of each other, correctly transferring momentum and 

velocity according to the rules of conservation of energy and conservation of 

momentum especially for fast moving objects. 
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2.2.2.2. Collision Response for Soft-Bodies 

In the other field of rigid body simulations there is the soft-body simulations. 

Collision responses for soft-body simulations often focus on changing various 

properties of physics bodies mostly it is the shape of the object. In soft body 

simulation solutions, physics bodies often composed by smaller pieces. As 

mentioned in related work section, various simulations handle bodies as multiple 

small particles. Other solutions use triangles of the mesh or even some of them 

divide meshes into tetrahedrons or spheres. Because of the handling bodies as 

small pieces, the main challenge of the soft body simulation solutions is often not 

massive number of objects to simulate but massive number of pieces because 

using a greater number of pieces to simulate the body, allows simulation to be 

more realistic. 

 

We can coarsely divide soft body simulations to two categories based on different 

main ideas and approaches. 

 

There are realistic soft body simulations that try to implement physical properties 

as realistic as possible to do simulations as in the real world. And others try to 

simplify the computations by using approximations, various techniques and 

precomputed helper data. 

 

2.2.3. Realistic Soft-Body simulations 

These simulations are often based on real properties of materials and they use 

realistic energy transfer models to deform the soft bodies. To be able to be 

physically correct, these solutions execute computationally heavy calculations. 

So, they mostly do not fit to real time application constraints. 

 

2.2.4. Approximate Soft-Body simulations 

The other main category is approximated solutions. These solutions depend on 

a simplification idea for the physics simulations. There are solutions that use 

skeletons like in skeletal animations, there are some that uses springs or various 
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joints to approximate the solution. Also, these simplifications can be used with 

the data driven solutions. 

 

In data driven solutions there are examples. These examples are results of 

precomputed collisions. The most important challenges in data driven solutions 

are searching for the most suitable example, using that example properly and 

handling the artifacts correctly. 

 

2.3. Data Driven Shape Matching 

Data driven idea can be explained very simply. It is using couple of look up tables 

that happens to be meshes. And matching the initial vertices of the mesh with 

look up data's vertex positions with given blend weight. Matching process can be 

detailed but we will only use linear interpolation of two three-dimensional 

positions as in Equation 2.1. 

 

 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑉𝑏𝑎𝑠𝑒 × (1 − 𝑊𝑒𝑖𝑔ℎ𝑡)  +  𝑉𝑒𝑥𝑎𝑚𝑝𝑙𝑒  ×  (𝑊𝑒𝑖𝑔ℎ𝑡) (2.1) 

 

We call our data driven approach as Example Based approach. And we refer 

precomputed look up tables for precomputed collision result meshes as 

Examples. Example Based ideas often supply high performance. With other 

solutions you either do real physics computations or more computationally heavy 

collision approximations in run time. By using precomputed collision examples 

cost of simulation in run time can be reduced to faster than real time levels. 

 

Example based physics simulations are mostly easier to implement and manage 

compared to fully physics simulations. They do not require complicated physics 

knowledge to properly implement. 

 

Also, one of the crucial reasons to use an example-based solution is that user 

have more control over collision results. The solution only uses given examples. 

Results cannot be different than blended versions of given examples. In video 

games there are a lot of edge cases since video game player has the control. In 

various cases realistic solutions can result to unwanted deformations such as 
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shown in Figure 2.1. Unwanted results do not necessarily mean unrealistic 

results. In various cases such as making the video game more fun the video 

game designers may not want to deform certain objects more than certain 

threshold. It is particularly challenging to alter the result in an unrealistic way in 

realistic solutions. And by doing that, user can break the solution in various edge 

cases and cannot know. It is risky to depend on robustness of unrealistically 

altered solutions. But if you are using example-based solutions all you must do is 

arranging given examples according to design needs. You have full control over 

simulation results. 

 

 

Figure 2.1. Unwanted Deformation Result 

 

Example based shape matching is faster, controllable and less complicated to 

implement but there are some problems and limitations with it. 

For cases that user did not supply a precomputed example collision result, the 

solution result will not be as plausible or realistic. To generate higher precision 

and more realistic results user needs to supply more precomputed example 

collision results. So, memory usage of the solution may increase. And with lots of 
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examples run-time performance of the choosing the example phase will decrease 

too. 

 

Example Based Shape Matching is suitable for real time applications such as 

video games, virtual reality applications or any other application that needs real 

time rendering of soft physics bodies. It supplies faster than real time solution, so 

user applications will have enough time left for other needed computations. 

It is also usable in offline rendered applications such as movies. But since they 

do not have time constraints as strict as real time applications, they can use more 

complicated and realistic soft body physics solutions. 

 

2.4. Parallel Programming Models 

Parallel programming approaches can be explained in three main topics. Single 

instruction multiple data, Single instruction multiple threads and Simultaneous 

multi-threading. 

• Single instruction multiple data (SIMD): Small amount of data processed 

in the same time in parallel. Often in the same thread and same processing 

core. Often called as vector parallelism. 

• Simultaneous Multi-Threading (SMT): Decoupled instructions on different 

threads on different processing cores run in the same time in parallel. 

Often called hardware threading. 

• Single instruction multiple threads (SIMT): Hybrid approach between 

vector parallelism and hardware threading. 

 

2.4.1. Comparison between SIMD and SIMT 

Both approaches depend on the idea of fetching one instruction and processing 

multiple data with that instruction. These approaches have their advantages and 

disadvantages over each other. Since SIMT works on threads it is offering 

different register sets, multiple control flow paths and can fetch from different 

addresses of memory freely. But SIMD is limited to same register set, none of the 

different parallel processing units can divert to different control flow paths and 
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fetching is mostly limited to registers. Addressing to memory in a SIMD instruction 

is highly limited. SIMD offers lower latency while SIMT offers more flexibility. 

 

2.4.2. Comparison between SIMT and SMT 

SMT is the approach of multi-threading used in modern CPUs. Main advantage 

of the SMT is being able to do different works on different processing cores. And 

when work needed to be done is not enough and cannot occupy most of the 

processing unit it still tries to finish the work as fast as possible. In this kind of 

processing units there are lots of complex features are used such as out of order 

execution, branch prediction, speculative execution, register renaming, caches 

and prefetching. Aim of all these techniques and features is maximizing 

throughput without context switch to another thread. By these techniques and 

features SMT is supplying full flexibility over different threads without sacrificing 

much from performance. But these techniques and features makes every 

processing unit expensive, hard to produce and improve. So, because of their 

complexity and higher production cost per processing core in processing units 

created to work with SMT approach cannot have many numbers of processing 

cores compared to processing units that created to work with SIMT approach. In 

current generation of CPUs often processing core counts are lower than sixteen. 

There are other greater CPUs that have about hundred processing cores. But 

they are not affordable compared to SIMT units that have same count of 

processing cores [28]. 

 

In the other hand SIMT sacrifices flexibility over different threads but massively 

simplifies the implemented architecture over the processing unit. With this 

simplification, processing units that created to work with SIMT approach can have 

vast number of processing units, vast number of register sets. With the vast 

number of processing units and register count main aim of this approach is the 

generate gain from having vast number of threads working at the same time. 

Since this architecture hardware do not have complex techniques and features 

to deal with, such as handling stalling and increasing cycle per instruction value, 

these SIMT hardware depend on fast context switches between threads. If there 

are enough threads to context switch, these SIMT hardware do not lose 
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performance. In cases that do not have enough threads to occupy whole 

hardware, performance drops greatly. Since SIMT approach executes same 

instruction on different threads at the same time in the cases that there are lots 

of control flow divergence and different threads goes into different control flows 

performance also reduces greatly. 

 

Modern GPUs uses single instruction multiple threads (SIMT) approach. Modern 

GPU hardware contains many thousands of processing cores [26] with a very 

affordable costs compared to CPUs that have significantly less processing core 

counts. 

 

2.5. Effectiveness of Graphical Processing Units 

GPUs have lots of processing units. Every one of them can be slower than the 

average CPUs' processing units but since there are thousands of processing 

units on them [26] it is possible to process thousands of independent data on 

different processing units on GPUs at the same time. Modern GPU’s uses single 

instruction multiple threads (SIMT) approach. For algorithms that are doing same 

independent computation over a large data set GPUs are best fit. If these 

computations depend on each other and a synchronization between GPU threads 

needs to be done, full effectiveness of GPUs cannot be used. There are many 

framework and platforms to create opportunity for using full effectiveness of 

GPUs. 
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2.6. NVIDIA CUDA 

NVIDIA CUDA is an application development platform that opens ways to use 

NVIDIA’s CUDA compatible graphical processing units. It allows developers to 

use GPUs as general-purpose graphical processing units (GPGPU). CUDA 

allows developers to create applications not using traditional rendering pipeline 

and let them access to many features of the GPU such as different memory types 

on the hardware, customizable block and grid sizes, certain level of 

synchronization over different threads. In CUDA, CPU and GPU are called as 

HOST and DEVICE respectively. 

By offering these feature CUDA is opening ways use full effectiveness of modern 

GPUs. 

 

2.7. Compute Shaders 

Compute shaders differ from other shaders that are found in various graphics 

frameworks. Often shaders have certain sets of inputs and outputs and order of 

the execution is fixed in the rendering pipeline. With the era of the general-

purpose GPUs compute shaders have arrived. They offer an interface to GPU 

and open ways to use many features of GPUs. They are highly customizable, 

they do not depend on any other part of the rendering pipeline, but they can be 

integrated into rendering pipeline. These features increase possibilities of GPU 

usage fields tremendously. In a sense NVIDIA CUDA and compute shaders of 

various rendering frameworks such as OpenGL and DirectX are remarkably 

similar in many ways. 

 

2.8. Real-time application constraints 

A real-time application can be defined as an application that responses in the 

time frame that users sense as instant. To generate this feeling generating about 

thirty frames per second for application is enough, this means that application 

should do every computation in about thirty-three milliseconds of time. Thirty 

frames per second creates the feeling of instant only visually, in video games 

since users also expect their input to be processed instantly, their expected 

latency is mostly lower. So, sixty frames per second is widely accepted as target 
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frame count to process in a second for video games. It shrinks the time frame for 

processing single video game frame to be computed only about sixteen 

milliseconds. With the rise of social media and streaming platforms in recent 

years professional video gaming have risen. Professional video game players 

often have more capability visually and physically. So, they want as low latency 

as possible to be able to be better at the competition. Because of this situation 

professional gaming hardware products are produced to handle up to two 

hundred and forty frames per second video gaming experience. To be able to 

keep up with a hundred and forty-four hertz of frame rate real-time application 

need to finish its tasks in about seven milliseconds. And at two hundred and forty 

frames per second, solution only has a little more than four milliseconds.
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3. RELATED WORK 

Soft body simulation is an active research field. We can divide the research field 

as realistic soft body simulations and approximate soft body simulations. For 

approximate soft body simulations literature has good amount of work. Most of 

the literature for approximate soft body physics simulation solutions, make use of 

mesh simplification techniques and other ways to simplify the solution to create 

satisfactory performance results without sacrificing realistic visual quality. 

Although the prior approach is more exact in terms of showing the real effect of 

the impact, the latter has the potential to simulate faster since there are less 

demanding physical calculations at run time. We mostly looked at approximated 

soft body simulation solutions in this section. 

 

Physics simulations of deformable bodies dates to early days of the computer 

graphics field. One such work by Terzopoulos et al. [1], in which researchers 

pushed the limits for approximate physics simulations. Since the nature of soft 

body simulations are processing power demanding, notable examples of 

simplifications have created. 

 

Barzel et al. [2] creates base idea for model simplifications and simplification 

bigger models by using constraints between smaller pieces. This work can be 

regarded as the revelation for the field. Following this approach many 

simplification method and approaches have been proposed. 

 

One simplification example, using a skeleton by Capell et al. [3], by Kim et al. [4], 

by Liu et al. [5] and by Rumman et al. [6]. These approaches achieved plausible 

simulation results with skeleton based simplifications. 

 

Using a simplified version of the original simulation mesh by creating a tetrahedral 

mesh used by Alliez et al. [7] and by Wojtan et al. [8]. Tetrahedral mesh 

simplifications also used for liquid simulations by Ando et al. [9]. 

 



   
 

16 
 

Clavet et al. [10] is one of the notable examples on dividing bodies into small 

components. It connects and disconnects components at run-time to create more 

fluid simulation look. Also works on rendering part of the fluid. 

 

Example based approaches in another words shape matching is newer in this 

field. Müller et al. [11] is one of the influential works in example-based solutions. 

It only depends on the examples and simplifies the solution. 

 

Wang et al. [12] shows that examples can be used as a helper component to 

whole simulation. In this work we can see examples as a helping component. 

 

Müller et al. [13] uses both, spheres to divide the mesh into smaller components 

and uses example-based approach 

 

Zhu et al. [14] is one of the inspiring approaches. Keeps examples as divided into 

tetrahedrons and does the shape matching in reduced tetrahedron space to gain 

performance.  

 

Using lattice deformers to reduce needed computing power needs are used in by 

Rivers et al. [15] and by Patterson et al. [16]. 

 

Also, there are various methods that are not straight forward in soft body 

simulations. For example, Molino et al. [17], Irving et al. [18], Teran et al. [19], 

Budsberg et al. [20], and Saket et al. [21]. 

 

Dvorožňák et al. [22] proposes an example-based approach that aims to create 

two dimensional animations using previously hand drawn example drawings. This 

work perfectly fits our approach for examples and perfectly solves another 

problem in another field. But can be regarded as a proof of concept for our 

proposed solution. 

 

Jones et al. [23] and Koyama et al. [24] are the most inspiring works for our 

proposed approach. They both create the idea and the baseline for this work. 
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The difference of our method is we created the solution idea according to SIMT 

parallelization approach and designed the baseline algorithm to work on GPU's 

as efficient as possible with SIMT parallelization approach. Our focus is to 

achieve collision result deformation simulation in faster than real-time. Although 

there are several earlier works that aims the real-time, our aim is to generate 

results in a small fraction of the real time budget. Our aim is to use this solution 

as a part to real time applications. Since real time applications do a lot of other 

computations, the budget we can get is rarely enough. 

 

Our approach uses precomputed collision examples. At the time of the collision, 

the system finds the best fit from precomputed collision examples and blend the 

current state of the mesh to chosen example vertex by vertex. Approach does 

not use a mesh simplification technique that can create unpredicted results. 

 

Blending vertex by vertex is a straightforward process so the solution can work 

with models that have millions of vertices. To achieve our faster than real-time 

goal we got inspired from earlier works and produced a solution that can work 

fully parallel on GPUs with the SIMT parallelization approach. 
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4. PROPOSED MODEL 

 

Figure 4.1. Base model and Example Shapes 

 

4.1. Example based soft body physics simulation 

As told in the introduction section we are proposing a solution algorithm that uses 

precomputed collision result meshes that aims visual quality, performance and 

ease of use. Proposed algorithm works with help of a collision detection tool. 

While the simulation taking place for each detected collision, proposed solution 

is getting called and generating results by using base model and examples. 

 

In the Figure 4.1. base mesh shown at top and eight different precomputed 

collision result have shown at bottom. 

 

Using the properties of the collision from collision detection, most similar 

precomputed collision result mesh is chosen among all of user have provided. 

After that proposed fully parallel algorithm deforms every single vertex that are 

affected according to precomputed collision result. Also, to not lose the results of 

earlier collisions proposed algorithm chooses the correct blending results for 

already deformed vertices. 

 

We refer pre-computed collision results as examples. We are using them as 

examples to generate new collision results in the run-time. Supplying more 

deformation results will increase the simulation's visual correctness. And since 
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proposed algorithm only blends supplied meshes it is not able to create results 

that cannot be predicted at the beginning. Results can only be in the borders of 

supplied precomputed collision results. This allows users to feel free while 

creating precomputed collision result meshes and do not require much tweaking 

to solve edge case situations. Since proposed algorithm only uses supplied 

precomputed collision result meshes and only using simple linear blending 

equation, it is not possible for it to produce unexpected results. This predictability 

increases maintainability and ease of use. Since every single computation done 

for each vertex is completely independent to other vertices, algorithm can be 

implemented fully parallel hence increases performance. 

 

We implemented proposed algorithm both on CPUs using Simultaneous Multi-

Threading (SMT) parallelism approach and on GPUs using Single Instruction 

Multiple Thread (SIMT) approach. In this section we will explain both 

implementations. Since the algorithm designed for SIMT approach it fits to SMT 

approach easily, so implementations are mostly similar on both architectures. 

 

4.2. Pre-Solution Stage 

This stage is not causally related with the algorithm, but it is about the supplying 

necessary data to the algorithm. 

 

4.2.1. Creating the example shapes 

Proposed algorithm requires examples to work with. A base mesh and multiple 

collision result mesh need to be provided by user. To create the example shapes 

users can use various other techniques such as they can create every single 

example by hand in a 3D modelling software or use a non-approximated soft body 

physics simulation application to deform base mesh and save results as 

examples. Creating by hand requires more time and effort but since the user will 

have full control over results, we encourage users to create their example shapes 

by hand and tweak them as their liking. 
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For base mesh and every other example shape, the vertex count, vertex order 

and vertex hierarchy need to be the same. Proposed algorithm interprets all data 

according to that assumption. 

 

4.3. Initialization Stage 

4.3.1. Pre-Processing example shapes 

The straightforward approach to sending the example is sending every vertex of 

the model. Then blend base model and chosen example with each other. But to 

support multiple collisions we had to keep already collided vertices unchanged 

and should not blend them with the new example. At first, to know which vertices 

to blend we can keep a ledger, a bit array, for each example that shows affected 

vertices. In the deformation phase we read the bit array ledger to get if the current 

vertex is affected from the example. But for the SIMT implementation in the GPU 

this solution increases branching and causes divergency. Threads that assigned 

to non-deformed vertices were just waiting idle. 

 

As an alternative we can only send deformed vertices of the example shape. This 

will help us on idle thread problem explained in earlier paragraph. To be able to 

send only the deformed vertices a basic mapping array will be built before 

keeping example shape data either in CPU or GPU. This solution will reduce the 

idle threads heavily. Also, will reduce the memory usage for keeping example 

shape data and shorten the time needed to move the example shape data to 

GPU memory. 

 

Since this data is a three-dimensional vector for each vertex that is affected by 

example and one mapping data. We expect this data to be small. 

For example: If we have a model that has a hundred thousand (100000) vertices. 

And have 100 different examples for simulation. If we assume that every example 

on average effects 50% of vertices. And we use 3 dimensional vectors of 4-byte 

floats for every single vertex and mapping index which is 4 bytes. If user is sure 

that vertex count is lower than biggest representable number by 2 bytes (65536) 

then mapping index can be 2 bytes. Even it can be 1 byte in low vertex counts. 
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Our data becomes: 

For each vertex: 

 3 × 4 bytes +  1 × 4 bytes ≈  16 bytes 

 

(4.1) 

For each example that containing 100000 vertices and 50% average effect 

 100000 × 0.5 × (3 × 4 bytes + 1 × 4 bytes) ≈ 780 kilobytes 

 

(4.2) 

For 100 examples 

 100 × (100000 × 0.5 × (3 × 4 bytes +  1 × 4 bytes))  ≈  78 megabytes 

 

(4.3) 

For most of the modern systems this memory footprint is very affordable. These 

steps were the offline part of the solution. We do these steps once on the 

initialization stage and keep the precomputed data to runtime usage. Also, since 

examples does not change in any case, they can be shared between multiple 

instances of same base mesh. Even if the user is deforming multiple models, 

required memory for example shapes may be constant. 

 

4.4. Runtime Stage 

While the simulation is running for each collision detected, proposed solution 

algorithm does a deformation to collided mesh. We can get the collision result 

data from any kind of collision detection algorithm. Using the collision result it 

provided, proposed solution algorithm starts the processing. Runtime stage has 

three main phases. 

• Finding the best matching example for the given collision. 

• Sending the chosen example index and blend weight to hardware for 

applying the deformation. 

• Applying the deformation using chosen example and blend weight. 

 

4.4.1. Finding the best matching example for the given collision 

At first by using the collision point we search for the closest vertex we use that 

vertex as collided vertex. Using the applied impulse, impulse apply time and mass 
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of the collided vertex, proposed solution algorithm computes the needed 

displacement of collided vertex. To be able to do that it uses the Equation 4.4. 

 

 
𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 × 𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒

𝑀𝑎𝑠𝑠
 

 

(4.4) 

• Impulse is applied impulse vector as the result of the collision. 

• Delta Time is time elapsed between start time and end time of the applied 

impulse. 

• Mass is the mass of the collided vertex. 

• Target displacement is the target displacement vector for the collided 

vertex for proposed algorithm. It will try to choose the best fit precomputed 

collision result mesh according to this value. 

 

As seen on Figure 4.2. Find best example and blend weight algorithm we use the 

cosine similarity formula of three-dimensional vectors and we use displacement 

magnitudes for computing the outBlendWeight. Cosine similarity formula can be 

seen at Equation 4.5. 

 

 
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 =

𝑉1 ⋅ 𝑉2

|𝑉1| ⋅ |𝑉2|
 

 

(4.5) 

 

 

Figure 4.2. Algorithm for finding example 
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To clarify the blend weight computation; If we need a displacement that is 0.8 

meters but in example that vertex is displaced 2.0 meters. So, we need to use 

0.4 as the blend weight to be able to displace by needed distance. 

 𝑛𝑒𝑒𝑑𝑒𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ×  𝑏𝑙𝑒𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡 

 

(4.6) 

So, to be able to find the blend weight the Equation 4.6. becomes: 

 
𝑏𝑙𝑒𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡 =  

𝑛𝑒𝑒𝑑𝑒𝑑𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 

 

(4.7) 

4.4.2. Sending the chosen example index and blend weight to hardware for 

applying the deformation 

For the GPU implementation the example data already in the GPU memory we 

sent the data at the time of initialization phase. Also, for the CPU implementation 

the data is in the accessible memory. At this stage we just need to send the index 

of the chosen example and blending weight from current state of the model to 

given example shape. 

 

Until this step SMT implementation on CPU and SIMT implementation on GPU 

works similar and all earlier computations are done on CPU in single thread. After 

this step is done the system executes a parallel for in the CPU for SMT 

implementation and executes a GPU kernel for SIMT implementation to deform 

the current model. 

 

4.4.3. Applying the deformation using chosen example and blend weight 

Using the results of Find best example and blend weight algorithm seen on Figure 

4.2. our system gets the precomputed collision result mesh index. By using these 

data both implementations blend the current mesh to the example shape using 

the technique of linear interpolation of two three dimensional positions as in 

Equation 2.1. shown in section 2.3. Data Driven Shape Matching. 
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4.5. The CPU implementation 

Since the proposed model designed the SIMT approach in mind this 

implementation uses the full power of the CPU and SMT parallelization approach. 

None of the threads need to synchronize with each other so no waiting or locking 

needed. 

Deform with example algorithm shown in Figure 4.3. is used for each vertex in 

this implementation. Deform with example algorithm is called for each vertex in a 

parallel for loop. 

 

4.6. The GPU implementation 

We implemented the GPU version using SIMT approach by using NVIDIA CUDA 

platform. None of the thread synchronization methods available is used so that 

full processing power of the GPU can be used. Our choice of NVIDIA CUDA is 

only arbitrary. Proposed solution algorithm can be implemented by using OpenCL 

or DirectX’s and OpenGL’s compute shaders or any kind of GPU platform and 

framework. 

Deform with example algorithm shown in Figure 4.3. is used for each vertex in 

this implementation too. In the deform kernel deform with example algorithm is 

called for every single thread. 

 

 

Figure 4.3. Deformation algorithm 
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4.6.1. Usage of the Deformed Result Model 

After we finished the deformation of the model usage of it depends on users aim 

of using this simulation system. If user’s aim is to use an offline system, they can 

save deformation result model for future use in any format they want. 

 

For real-time usage most user will want to render the result deformed vertices 

using a GPU. Copying vertex data between CPU and GPU is overly expensive. 

Profile results are shown at 5. Test and Analysis section, it takes tens of 

milliseconds for certain vertex counts, as a result memory copy is not a possibility 

for real time applications. For our CPU implementation there is not an affordable 

straightforward solution, we must send vertices to GPU by copying the result 

deformed model data to be able to render. But for our GPU implementation there 

are fast solutions for quickly rendering result data. Since the result vertices 

computed by GPU the result data already in the GPU memory, we can use the 

data by passing data pointers. NVIDIA CUDA supports memory sharing between 

OpenGL and DirectX. Users can use these frameworks and assign those 

frameworks’ memory to CUDA as computation result memory. By that after our 

computations have completed the results become ready to render immediately. 

Similar cases also possible if proposed solution is implemented OpenGL’s or 

DirectX’s compute shaders. Those compute shaders can work on same memory 

with the rendering pipeline so there will not be any need for copying memory. 
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Figure 4.4. Before and After the deformation. Sphere at top hits to cylinder and deforms 
the cylinder according to collision properties and given examples of the cylinder. 

 

4.7. Challenges 

If a vertex needs to be blended but it was already blended to another example 

because of an earlier collision, we should not blend the vertex directly to the given 

example. It can cause that vertex's displacement to decrease. So, we had to keep 

track of the vertices that already blended to something else. For this info we used 

a bit buffer. One bit for each vertex that tells if given vertex is blended or not. But 

we needed to write to this bit buffer in parallel in a GPU thread. Such an 

instruction would require locking or atomic operation because multiple GPU 

threads can change the different bits in the same byte. If we do not use atomic 

operations these two threads might affect each other. There were two practical 

solutions to this. We could either synchronize the threads or use whole bytes for 

every different vertex to separate the access of the threads. Since memory was 

not our biggest issue, we have chosen the latter. We could easily use the prior 

solution in a lower memory situation. But then we realized we do not need extra 

data to understand if the vertex is displaced before. We do not need the exact 
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knowledge. By computing the current displacement of the vertex comparing to 

undeformed original mesh we can easily say if the vertex displaced or not. 

 

Since we can properly understand that if a vertex is displaced because of an 

earlier collision. We were able to produce ideas to solve multiple collision cases. 

At first, we tried blending these vertices current displacement with newly 

computed displacement from new example as seen in Figure 4.5. But this 

blending caused already displaced vertices to artificially lost their already 

displaced positions. Because of that kind of artifacts if a vertex is already 

displaced, we compare the new displacement and old displacement and we 

choose the biggest displacement for every point. 

 

Figure 4.5. Correction for choosing most displaced candidate 

 

But after we try proposed solution with more complex examples. Not blending 

and directly choosing the most displaced one between earlier displacement and 

newly created displacement have created different problems. After multiple 

blending towards different examples these artifacts can be seen in Figure 4.6. 
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Figure 4.6. Result of blending multiple different examples choosing most displaced 
candidate 

 

To be able solve this issue we had to fall back to the blending solution we initially 

tried. It created more stable solutions but created artifacts as the older blending 

of examples loses their effect. 

 

In the Figure 4.7. we presented image that uses the blending solution. Figure 4.6. 

and Figure 4.7. are results of same simulations. Only difference is usage of the 

blending solution. 

 

As a result, it creates more stable solution results, but solution results lose 

deformation effects of earlier collisions. As we can see at the right images in both 

Figure 4.6. and Figure 4.7. If we look at the left side of cylinder at both images 

we can easily see when we activated the blending solution left side of the cylinder 

lost the displacement. 
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Figure 4.7. Result of blending multiple different examples and blending candidates 
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5. TESTS AND ANALYSIS 

5.1. Test Implementation 

We implemented various tests and profiling helpers for testing and analyzing 

proposed solution. We ran our test implementations on various hardware and 

gathered profiling results. 

 

Test tool generates random meshes and random examples with various vertex 

count for them. It starts with 10000 vertex count and by increasing 10000 at each 

step it goes up to 10 million vertex count for GPU and goes up to 1 million vertex 

count for CPU. For each step it generates a completely new random mesh and 

random examples. For each step it does the simulation 75 times and gather the 

profiling results for them. To stay statistically correct it excludes the outlier values 

and do not add them to average. 

 

For GPU's we did this analysis for different block sizes and gathered results. We 

also implemented a multithreaded CPU implementation for the algorithm to be 

able to compare and prove that the proposed solution can use the power of CPU 

too. 

 

5.2. Common GPU Results 

We did these tests on selected modern hardware. Since we implemented the 

solution on CUDA platform we had to run only on NVIDIA GPUs. 

 

We used from NVIDIA GeForce, GTX960, GTX1050Ti, GTX1060(6GB version), 

GTX1660Ti, GTX1080Ti and GTX2080Ti for generating profiling results because 

about 50% of video game players are using same or similar GPUs [25]. 

 

In Figure 5.1. and Figure 5.2. we can see that highest ranked GPU's of last two 

NVIDIA GPU generation are performing around one millisecond for ten million 

deformed vertices. 

 



   
 

31 
 

 

Figure 5.1. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected 
vertices takes about 1.57 milliseconds 

 

Figure 5.2. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected 
vertices takes about 0.97 milliseconds 
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Figure 5.3. Comparison for different GPUs for Block size of 1024 until 10 million vertex 
count 

 

In Figure 5.3. we can see the profiling result over various NVIDIA GPUs. Detailed 

profiling results shown at appendix section. Results for every GPU can be found 

there. 

 

Table 5.1. Relation between core count, core speed and processing time for 

various modern GPU models 

     GPU Model CUDA Core Count Core Clock Speed 

(MHz) 

Processing Time in MS 

for 10 million vertices 

GTX 960 1024 1178 6.031723 

GTX 1050 Ti 768 1290 5.551942 

GTX 1060 (6GB) 1280 1506 3.467258 

GTX 1660 Ti 1536 1500 2.088206 

GTX 1080 Ti 3584 1582 1.566714 

RTX 2080 Ti 4352 1350 0.970039 
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Table 5.1. shows that proposed algorithm scales related to core count and core 

speed. That means with the developed technology of the feature with GPUs that 

have more core count and faster cores, this algorithm will still use the near full 

potential of the GPU and scale linearly depending on new GPUs core count and 

core speed. 

 

5.3. Common CPU Results 

In Figure 5.4. and Figure 5.5. scaling behavior of the algorithm can easily be 

seen. In Figure 5.4. it is shown that related to the physical core count the slope 

of the graph changes near linearly. Table 5.2. also supports that proposed 

algorithm scales in the order of 𝑂(𝑛) time complexity depending on the physical 

core count. And proves that proposed algorithm scales perfectly between multiple 

CPU cores because we can clearly see a consistent performance increase 

according to physical core count increase supported by multiple performance test 

result graphs. 

 

 

Figure 5.4. Scaling the algorithm over multiple logical cores 
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Table 5.2. Relation between core count and processing time for Intel® i7 6700 

with 4 physical and 8 logical cores 

Logical Core Count 
Processing Time in MS for 

1 million vertices 

Time gain multiplier 

compared to 1 logical 

core 

1 7.275815 x1 

2 3.647204 x1.995 

3 2.532911 x2.873 

4 1.945698 x3.739 

5 2.063421 x3.526 

6 1.881683 x3.867 

7 1.77668 x4.095 

8 1.745447 x4.169 

 

 

Figure 5.5. Comparison for different CPUs until 1 million vertex count 
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Table 5.3. Relation between core count, core speed and processing time for 

various modern CPU models 

     CPU Model Physical - Logical 

Core Count 

Core Clock 

Speed (MHz) 

Processing Time in MS 

for 1 million vertices 

i7-4790K 4 - 8 4000 2.718998 

i5-8300H 4 - 8 2300 2.053142 

i7-6700 4 - 8 3400 1.745447 

i7-8700K 6 - 12 3700 1.909862 

i7-6950X 10 - 20 3000 1.027708 

Xeon Platinum 8160* 32 - 64 2100 0.190181 

*Two Xeon Platinum 8160 processors are used. Each of these CPUs have 24 physical 
and 48 logical cores. That sums up to 48 – 96 however those CPUs were limited to    

32 – 64 in total because of reasons we have not control over. 

 

5.4. GPU to CPU Memory Copy 

As stated in the 4.6.1. Usage of the Deformed Result Model section copying data 

from GPU memory to CPU memory takes tens of milliseconds. For real time 

applications copying memory from GPU to CPU is not a feasible possibility. 

Solutions should find ways to avoid doing memory copies from device to host 

memory. 

Performance results for copying result from GPU memory to CPU memory can 

be seen on Figure 5.6. 

These tests have done on NVIDIA GeForce GTX 1060(6GB) the have memory 

type of GDDR5, bus 192 bit and bandwidth of 192.2 GB/s and Intel® Core i7 6700 

and Kingston DDR4 memory working at 1200MHz. 
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Figure 5.6. On NVIDIA GTX1060(6GB) GPU, copying 10 million vertices from GPU 
memory to CPU memory takes 64.001808 milliseconds 

 

5.5. GPU and CPU Comparison 

As expected mostly GPU implementations performed better than CPU 

implementations. But for one case CPU was faster than the GPU it is the 

comparison between an older GPU NVIDIA GTX 960 and modern overly 

expensive server CPU of Intel. Intel® Xeon® Platinum 8160. Firstly, we need to 

say that Xeon processor around 11 times expensive than GTX 960 GPU. 

According to amazon.com prices Xeon processor costs around 4.499.00$ and 

GTX 960 GPU costs 388.00$. We used two Xeon processes at the same time 

while measuring performance. Without considering the cost of motherboard and 

other hardware that is compatible with Xeon processor we can easily say that 

testing hardware that contains Xeon processor costs at least 22 times more than 

testing hardware that contains GTX 960. Used Xeon processor is a very high-end 

processor. Until around 5 million vertex count Xeon processor performed better 

than the GTX 960. But after 5 million with increased vertex counts GTX 960 

dominated the Xeon processor because we started to fully utilize the GTX 960 

GPU around 5 million vertex count. Detailed explanation and test results of 

utilization have shown at the GPU utilization tests section. 
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Figure 5.7. Comparison between best CPU and worst GPU of our tests 

 

5.6. Hardware Utilization Tests 

Utilizing the hardware is especially important. If an algorithm is using half of the 

potential of hardware it is working on, it is not completely correct to compare 

different hardware while testing the performance of the solution. 

 

5.6.1. CPU Utilization Test 

According to CPU utilization tests proposed solution utilizes all the logical cores 

on CPU. Even in Xeon processor that has 64 logical cores utilization was 100% 

it was rarely dropping down to 99% for some logical cores. This shows that our 

implementation uses the full potential of CPUs at least up to 64 logical cores. 

Since proposed solution was implemented according to SIMT parallelization 

approach there is not any dependency between threads, so it was expected to 

reach near perfect utilization on hardware that is produced for SMT parallelization 

approach. Utilization of 100% can be seen on Figure 5.8. for Intel® Core i5-8300H 

4 physical 8 logical core processor. 
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Figure 5.8. All eight logical cores on i5-8300H spiked to 100% utilization when 
proposed solution algorithm started 

 

 

5.6.2. GPU Utilization Tests 

In hardware that are working with the SIMT parallelization approach utilization 

depends on having enough thread to utilize the system, having less control flow 

diversion and better memory access pattern and memory usage. All of these is 

for utilizing every core in the GPU constantly. If we analyze the proposed solution 

according to this data, its control flow diversion is low because we only have one 

control flow diversion point (if-else block). Since proposed solution does not 

access big memories latency because of memory accesses can be hidden when 

there are enough number of threads. After our GPU utilization tests, we found out 

that with the increased vertex count and increased thread count utilization of 

proposed solution on GPU increases. 
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Table 5.4. Utilization compared to vertex count on NVIDIA GTX 1050 Ti GPU 

Vertex Count GPU Load 

1 million 56% 

2 million 69% 

3 million 77% 

4 million 88% 

5 million 89% 

6 million 92% 

7 million 92% 

8 million 93% 

9 million 94% 

10 million 95% 

 

As shown in Table 5.4. proposed solution can use the potential of GPU in big 

vertex counts until 95%. Around 4.5 million vertices count the memory controller 

load of GPU hits 100% percent for NVIDIA GTX 1050 Ti for proposed solution. 

Because of this increase in GPU load cannot hit to 100%. With our memory 

access pattern in NVIDIA GTX 1050 Ti it is not possible to use more than 95% 

percent of potential computing power of the GPU. We only used the global 

memory to keep example shapes. We are accessing the global memory with an 

aligned and coalesced pattern, but we are not using any of the shared memory 

or constant memory. Without the power of different memory types our test 

environment can utilize the GPU at 95% of full potential. This situation is not bad 

for testing performance over different GPU models. Results will not differ greatly 

if we hit to 100% utilization. But it is good to use full potential of the hardware. By 

using shared and constant memories users can implement versions of our 

proposed solution algorithm that uses 100% potential of GPUs. 
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5.6.2.1. GPU Utilization Test software 

All the utilization tests have done using the 2.21.0 version of the GPU-Z Video 

card Information Utility by the TechPowerUp. 

 

 

 

Figure 5.9. GPU Utilization test tool 

 

5.7. Visual Tests 

We implemented a testing tool to see the results of the cases that considerable 

number of collisions have happened. Our tool chooses random example and 

random weight for each test. Testing tool did 75 randomly created collisions to 

generate each result. These results can be seen in the Figure 5.10. and Figure 

5.11. 
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Figure 5.10. Results of Visual Tests 
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Figure 5.11. Results of Visual Tests



   
 

43 
 

6. CONCLUSION 

Proposed solution algorithm offers real time, visually pleasing and easy to use 

solution. With all implementation details shared it is easy to implement and 

simple to maintain. It is easily usable and can easily be implemented to an 

existing software as extension. Since it is producing predictable results and 

generating results fast enough for any kind of application, iterating and tweaking 

results going to be fast and painless process. This will allow users to spend 

more time for other important topics of their content and contribute to creation of 

more quality content. 

In current generation of real time applications such as video games it is only 

feasible to render couple of million vertices in real time. According to results 

from GPU implementation proposed solution can deform 10 million vertices 

under one millisecond. Depending on the example if algorithm is deforming 10 

million vertices full model can have much more vertices in various cases, more 

than 100 million. Having models that contain 100 million vertices in real time is 

not feasible in current generation of video gaming, but still proposed solution is 

able to deform them under 1 millisecond making solution feasible for using in 

time constrained video games. In current generation of video games single 

model mostly contains couple of hundred thousand vertex maybe 1 million 

vertices at most at best level of detail option. Of course, there are exceptions, it 

depends on the context of the video game and complexity of the scene. In the 

cases that model have 1 million vertices and given collision is deforming 50% of 

the vertices, 500 thousand vertices will be deformed. If we analyze the profile 

result for 500 thousand deformed vertex case from Table 6.1. We conclude that 

proposed solution perfectly fits to real time application time constraints. Even in 

older NVIDIA GTX 960 GPU solution converges in about 300 microseconds. To 

be able to spend whole millisecond in NVIDIA GTX 960 GPU we need to 

deform about 1.7 million vertices according to our profiling data. But in the 

newer NVIDIA RTX 2080Ti GPU we were not able to spend 1 millisecond even 

with 10 million deformed vertex count. 
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Table 6.1. Processing time for 500 thousand deformed vertices in various modern 

GPU models 

GPU Model CUDA Core Count Core Clock 

Speed (MHz) 

Processing Time in MS 

for 500 thousand vertices 

GTX 960 1024 1178 0.333733 

GTX 1050 Ti 768 1290 0.35219 

GTX 1060 (6GB) 1280 1506 0.213597 

GTX 1660 Ti 1536 1500 0.140712 

GTX 1080 Ti 3584 1582 0.110823 

RTX 2080 Ti 4352 1350 0.08893 

 

According to data gathered in profiling and tests, proposed solution is usable in 

real time applications. But those results do not mean the solution only aims for 

real time applications. It is also usable for offline rendered and very demanding 

applications such as movies. Since they need long rendering hours, they use 

big computing power farms. These farms cost a lot and rendering process takes 

lots of time. With this algorithm computation time can be reduced. This will 

result to decreased costs and in case of any mistake it will be much easier to 

correct the mistake and re-render the whole movie scene. 

Our CPU implementation is slower compared to GPU implementation. Since 

proposed solution scales according to physical core count and perfectly fits to 

the SIMT parallelization approach it was expected at the beginning. But in 

various cases user might want to implement their solution on CPU. To create an 

early idea about performance of the CPU version we did tests and supplied the 

results in this work. The only difference of result between GPU and CPU 

version is performance. There is not any visual difference between created 

results of GPU and CPU. It is perfectly safe to expect same result from other 

hardware. This may help users in various cases for example if they do not have 

access to GPU or they only have access to a fast GPU and slow CPU, and they 

are not able to run the proposed solution on both hardware. 
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This algorithm is usable for many industries ranging from real time video game 

industry to highly demanding offline rendered professional movie industry. For 

every industry it supplies an improvement. 
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APPENDIX 

 

Figure 0.1. On NVIDIA GTX960 GPU proposed solution for 10 million affected vertices 
takes about 6.031723 milliseconds 

 

Figure 0.2. On NVIDIA GTX1050Ti GPU proposed solution for 10 million affected 
vertices takes about 5.551942 milliseconds 
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Figure 0.3. On NVIDIA GTX1060 (6GB) GPU proposed solution for 10 million affected 
vertices takes about 3.467258 milliseconds 

 

 

Figure 0.4. On NVIDIA GTX1660Ti GPU proposed solution for 10 million affected 
vertices takes about 2.088206 milliseconds 
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Figure 0.5. On NVIDIA GTX1080Ti GPU proposed solution for 10 million affected 
vertices takes about 1.566714 milliseconds 

 

 

Figure 0.6. On NVIDIA RTX2080Ti GPU proposed solution for 10 million affected 
vertices takes about 0.970039 milliseconds 
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