
TAGGING AND ACTION GRAPH GENERATION FOR
RECIPES

YEMEK TARİFLERİNİ ETİKETLEME VE ÇİZGE ÜRETİMİ

Mehmet ÖZGEN

Prof. Dr. Pınar Duygulu ŞAHİN

Supervisor

Asst. Prof. Dr. Gönenç ERCAN

Co-advisor

Submitted to Graduate School of Science and Engineering of

Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2019









ABSTRACT

Tagging and Action Graph Generation For Recipes

Mehmet ÖZGEN

Master of Science,Computer Engineering Department
Supervisor: Prof. Dr. Pınar Duygulu ŞAHİN
Co-advisor: Asst. Prof. Dr. Gönenç ERCAN

09/09/2019, 76 pages

Processing instructions is significant to accomplish daily tasks. Instructions can be found in

many different forms for a variety tasks. Machine understanding of instructions, similarly,

can be beneficial for artificial agents/robots to perform a task automatically. Building systems

checking if a task is carried-out in conformity with the instructions is important for many

mission critical tasks, for instance factories, workers who repair the electronic devices etc.

In this thesis, it is aimed to automatically extract the steps of a certain task with the aid of

instructions. Instructions dataset is needed to train model and extract the steps of a task.

Recipes are the examples of instructions that are easy to follow and can be found in large

quantities. Understanding of how to cook a recipe step by step requires extraction of course

of actions, ingredients, tools and, the relationships between each other through Natural Lan-

guage Processing (NLP) Techniques.

Supervised and rule-based model is proposed to clarify and extract actions and components.

Instead of a fully supervised method, NLP Techniques are used to find relations between

components and actions in the text. The workflow of the recipes are finally produced by a

rule-based method. When compared to a state-of-the-art unsupervised method which models

i



the task as a whole, the proposed method benefits from the output of smaller and well-studied

NLP Techniques.

Keywords: text mining, part of speech tagging, word embedding, collocation, conditional

random fields (CRF), semantic, long short-term memory (LSTM), deep learning

ii



ÖZET

Yemek Tariflerinin Etiketlenmesi ve Çizge Üretimi

Mehmet ÖZGEN

Yüksek Lisans,Bilgisayar Mühendisliği
Danışman: Prof. Dr. Pınar Duygulu ŞAHİN

Yrd. Danışman: Yrd. Doç. Dr. Gönenç ERCAN
09/09/2019, 76 Sayfa

Hayatın içinde birçok farklı formda bulunan talimatlar günlük hayattaki işlerimizi yerine

getirebilmek için önemlidir. Bu talimatların makinenelere öğretilerek otomatik olarak robot-

lara yaptırılması faydalı olabirir. Sistemlerin doğru işlediğini talimatlara göre kontrol edecek

sistem tasarımları özellikle kritik görevler için çok önemlidir.

Bu tezde, bir görevin iş adımlarını talimatlardan faydalanarak otomatik olarak çıkarmak

amaçlanmaktadır. Tarifler, takip edilmesi kolay ve çok miktarda bulunabilen talimatlara

örnektir. Bir tarifi nasıl adım adım pişireceğinizi anlamak, doğal dil işleme teknikleri ile

eylemlerin, işlemlerin, araçların ve aralarındaki ilişkilerin çıkarılmasını gerektirir.

Eylemleri ve bağlı bileşenleri netleştirmek ve çıkarmak için denetimli ve kural tabanlı bir

model önerlmiştir. Tamamiyle denetimli öğrenme yerine, daha basit doğal dil işleme teknikleri

kullanılarak eylemler ve bileşenleri arasında isim varlık ilişkisi bulunur ancak tariflerin iş

akışı sonunda kural tabanlı bir yöntemle üretilir. Önerilen modeli denetimsiz öğrenme yöntemleriyle

karşılaştırıldığında sistemin bütününü çözmek yerine daha küçük ve iyi çalışılmış doğal dil

işleme yöntemlerinin çıktısını kullanmaktadır.

iii



Keywords: metin madenciliği, part of speech tagging, word2vec, NLTK, collocation finder,

linear conditional random fields (crf), semantik, long short-term memory (LSTM), derin

öğrenme

iv



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my master thesis supervisor Prof. Dr. Pınar Duygulu

ŞAHİN and my co-advisor Gönenç ERCAN for their precious advices, guidance and their

everlasting patience. Since I started working with them, I have learned priceless information

from them.

I would also like to thank my thesis committee members for accepting to be in my thesis

committee.

In addition, I would like to thank my dear friends , Sinan GÖKER and Mehmet Mert ONAĞ

for providing me with continuous encouragement throughout my years of study and through

the process of researching and writing this thesis. I would also like to thank to my all friends

and colleagues for good wishes.

I would finally like to express my appreciate to my beloved family for believing and support-

ing me for all my life.

v



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. METHODOLOGY AND IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Ingredient Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Directive Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Recipe Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4. Action Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. EXPERIMENTAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4. Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2. Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



A APPENDIX RECIPE PARSER OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B APPENDIX, ALGORITHMS OF UPDATE TAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



FIGURES

Page

1.1. General Framework of The Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. An example sentence for PoS tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Tagger Context [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Conditional Random Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Example of LSTM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5. Example of LSTM Memory Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6. Example Implementations of Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7. Models Of Word2Vec [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1. An Example Recipe Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Action graph for the recipe given in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Framework of The Proposed Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4. Epoch/Loss Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5. Epoch/Accuracy Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6. The Example of Sentence Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7. The Example of Real Sentence Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8. The Example of An Action Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9. The Action Graph of Amish Meatloaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1. Action Graph Of Easy Whole Banana Muffins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.2. Napa Slaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.3. Action Graph Of Taco Soup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



TABLES

2.1. Universal Part of Speech Tagset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. Sample Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Different Tagged Sample Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3. Tag Definition of CRF/Bi-LSTM Model For Ingredients . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4. Feature Functions Of ”1 teaspoon sugar” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5. Hot Chicken Salad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6. Sample Sentence, Stopwords Filtered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7. Sample Sentence, Stopwords Not Filtered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8. Labeled Sample Sentence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9. Tag Definition of The Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10. Bi LSTM/CRF Tags Updated Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11. Example Results of Updating Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12. The Output sentence of the model I proposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13. Tagged Sentence Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.14. The Shape Definitions of Action Graph Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15. The Directive of Amish Meatloaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.16. Parsed Directive of Amish Meatloaf 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17. Parsed Directive of Amish Meatloaf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. The Details of the Greene Ingredient Dataset used for Training and Testing . . . 39

4.2. Kiddon Dataset for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3. Experiment Results of Parsing Ingredient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4. Parsed Ingredient Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5. Experiment Results of Parsing Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6. Experiment Results of Generating Action Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7. Wrong Parsed Sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.1. Easy Whole Banana Muffins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



1.2. Napa Slaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.3. Napa Slaw(continue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.4. Taco Soup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



1. INTRODUCTION

1.1. Overview

Using instructions which aid us in our daily life, is becoming increasingly more common

and effective. One such domain is the maintenance of safety-critical hardware components,

which require well defined step-by-step guides to be carried out. Because safety-critical

hardware components must be maintained step by step according to technical orders. Ex-

tracting these guides, especially for tasks that require a particular order of steps is sine qua

non for teaching a robot or a computer how to perform a given task.

In this long-term goal of learning how to perform a task from raw textual resources, cooking

recipes can be considered as a stepping-stone because there are many resources available

on the Internet. One big challenge for building a clear step-by-step model for recipes is the

ambiguity in natural language. Even the most exact recipe can involve ambiguity that must be

resolved by the reader. A clear recipe model should correctly segment the text into actionable

steps. Then the dependencies between these steps, ingredients, and tools involved in each

step should be identified. The resulting model showing all of these components is called an

action graph, which is a machine-interpretable version. The accuracy of the action graph

depends on the effectiveness of natural language processing methods for the segmentation

and named entity recognition.

To extract how to cook a recipe step by step and to find named entity recognition, there are

many NLP approaches. Supervised NLP approaches handle to find named entity recogni-

tion by using labeled data. However, like finding labeled data for generating action graph

is a tough and complicated issue. Alternatively, unsupervised NLP approaches like Kiddons

et.al.[2] model do not need any labeled data to find named entity recognition and to generate

action graph. As a whole, an unsupervised model can be developed; still, it is difficult to

learn because of too many parameters, and its performance can be lower than supervised

approaches. As a solution to this, the unsupervised method can be divided into sub-problems

that can be solved in supervised NLP approaches. In the cooking domain, the general point

of view of tagging recipes, extracting ingredients, actions, tools, and the relations of them-

selves depends on only directive parsing. However, a recipe can be divided into two parts:

ingredients and directive. Now, there are two sub-problems to solve: ingredient parsing

and directive parsing. Ingredients can be parsed with supervised methods and labeled with

1



”NUMBER, UNIT, NAME, COMMENT and QUANTITY” with the help of labeled data[3].

Actions can be found with the most straightforward way which does not need any recipe

dataset to train. Tools can be found by using a dictionary. After all, processes are finished,

finding the relations of actions are utilized for generating consistent action graph.

1.2. Motivation

Attributing machine-readable format to an instruction entails many NLP processes. Directly

using the unsupervised model, which is depended on probabilistic is a kind of executive

way[2] that needs more parameters to solve and needs well stacked and clean data to process.

However, supervised and rule-based hybrid model is another approach to overcome these

handicaps more accurate and safe outcomes. If there are some labeled data for sub-problems

of the model that can be found easily on the Internet, then the model can be designed with

supervised approaches with the help of labeled data. The other part can be a rule-based

model.

The hybrid proposed model should solve one of the main problems, which is named entity

recognition, in a recipe. Finding tools and ingredients with the directive is not an efficient

way. As Leonardo Da Vinci said, ”Simplicity is the ultimate sophistication.”[4], a recipe

can be split into two part as ingredients and directive. With the division of a recipe, the

problem is separated into two part; ingredient parsing and directive parsing which of them

can be determined with a supervised approach. Rather than other implemented approaches,

the proposed model does not need recipe dataset to train. PoS Tagging is a simple way of

tagging words according to their lexical categories. However, this technique is not satisfying

when it comes to finding name or entity recognition, in particular, finding tools and ingre-

dients in a recipe, because standard PoS Tagging is trained in the different dataset such as

news. Adapting PoS Tagging increases the results of the next named entity recognition pro-

cesses correctly. Especially for directives, with the aid of labeled data, it is used Conditional

Random Fields (CRF)[5] or Long Short-Term Memory(LSTM)[6] techniques to overcome

named entity recognition problem for ingredients.

However, while parsing directive, some obstacles occur. One of the obstacles is finding

action. At the end of everything, the model generates an action graph. If a sentence in the

directive does not have any word tagged with ”VERB,” this action in the sentence will be

2



neglected. This is an undesirable situation. Collocation approach is implemented to solve

this ambiguity. Another problem is finding tools which are related to the action. For finding

tools, a self-made tool dictionary shall be used1. Generating action graph, updating tools,

ingredients, and actions is inefficient. Because the relationships between the actions are not

still generated. Using the word embedding approach like word2Vec[7], helps to find relations

between the actions. Thus, the information to be used in action graph generation is provided.

Figure 1.1. General Framework of The Proposed Model

This thesis introduces a model that labels recipe with the aid of parsing directive and in-

gredient finds relations of actions and generate action graph separately, which is a universal

machine-interpretable format. All the techniques mentioned above are gathered to form this

model whose framework is shown in Figure 1.1.. When a recipe is given to the model, the

model generates an action graph.

1.3. Research Questions

Main research questions investigated in this thesis can be listed as below.

• Can we improve rule-based and supervised methods by stacking different NLP tech-

niques like PoS tagging, named entity recognition and lexical similarity that are trained

with out-of-domain training data for building recipe action graphs?

• Is the performance between Deep learning-based and CRF based named entity recog-

nizers comparable for the cooking domain?
1http://www.enchantedlearning.com/wordlist/cookingtools.shtml

3



• Is it possible to use neural word embedding to disambiguate the dependencies between

recipe instructions and to generate the action graph?

1.4. Thesis Structure

The structure of the thesis is given as follows:

Chapter 2 describes background information of the proposed approaches from two different

aspects of labeling methods: linguistic labeling methods and sequence labeling methods and

reviews related works implemented in recipe parsing. This chapter also discusses the strong

and weak sides of those studies.

Chapter 3 explains the algorithms of the proposed approaches, the steps and the methods of

the model proposed in detail with examples.

Chapter 4 shows the evaluations of these approaches in detail. This chapter also includes a

comparison of the proposed approaches with other necessary studies. This section is finished

with error analysis.

Finally, Chapter 5 concludes the thesis with a brief summary and discussion on the proposed

ideas, contributions to literature, and discusses potential future work.

4



2. BACKGROUND AND RELATED WORK

This chapter is divided into two sections. Section 2.1., I give some information about basic

NLP methods that are implemented to the proposed model. Section 2.2. reviews related

works implemented in directive parsing and discuss about strong and weak sides of those

works.

2.1. Background

In this thesis, studies of food domain which are made especially for finding named entity

recognition and labelling are sum up the topic as Natural Language Processing (NLP) meth-

ods. In this section, some information are given about linguistic background of parsing

directives which are PoS tagging and Collocation Finder. Labeling recipe is a kind of named

entity recognition. In fact, it is further sequential labeling problem. Sequential labelling can

be roughly defined as labelling the items/events in a sequence by categorical classes. For

this reason, Conditional Random Fields (CRF) and Bi-Direction Long Short Term Memory

(BiLSTM) which of them used in ingredient parsing are introduced. To understanding the

whole proposed model, another NLP technique, Word2Vec which is utilized to find relations

of the actions.

2.1.1. Natural Language Processing (NLP) Methods

This subsection gives information about techniques in detail that are used in the proposed

model. These information are necessary to understand and comprehend my thesis.

2.1.1.1. Part Of Speech Tagging

Part of speech tagging (PoS tagging) or grammatical tagging or word-category disambigua-

tion, is a process of marking a word as corresponding to a specific part of speech which is

based on both its definition and its context. It is useful in the local context because of giving

much more information about a word and its neighbors.

5



PoS tagging is a method that marks up of words in a text as corresponding to particular part

of speech to describe the function of a particular word. In the English language, words are

divided into parts of speech. Part-of-speech categories include noun, verb, article, adjective,

preposition, pronoun, adverb and conjunction.

Table 2.1. Universal Part of Speech Tagset

Tags Colors Examples
ADJ adjective good, high, special etc.
ADP ad-position on, of, at, with, by, into etc.
ADV adverb really, already, still etc.
CONJ conjunction and, or, but etc.
DET determiner the, a, some, most etc.
NOUN noun year, home, costs etc.
NUM numeral fourth, 1991, 14:24 etc.
PRT particle at, on, out, over per etc.
PRON pronoun he, their, her, its etc.
VERB verb is, say, told etc.
. punctuation marks . , ; : etc.
X others esprit, dunno, gr8 etc.

Universal Tags and definitions are depicted on Table 2.1. that explains the tags NLTK Li-

braries simplified. Figure 2.1. shows an example sentence for part of speech tagging.

Figure 2.1. An example sentence for PoS tagging

N-grams are very powerful models and difficult to beat (at least for English) since frequently

the short-distance context is most important. NLTK library is used n-gram tagging approach

for PoS tagging. If the n-gram tagging is wanted to explain, firstly uni-gram tagging should

be explained because the n-gram tagging is a general version of the uni-gram tagging. The

uni-gram tagging is based on a simple statistical algorithm, for each token which is called as

each individual occurrence of a word form, assign the tag that is most likely for that particular

token. An n-gram tagger is a kind of a uni-gram tagger that is the current word together with

the part-of-speech tags of the n-1 previous words[1] shown in Figure 2.2..

6



Figure 2.2. Tagger Context [1]

This method is implemented to the proposed model to find actions and noun phrases whose

tags updates after this process is done.

2.1.1.2. Collocation Finder

Collocations are expressions of multiple words that frequently occur in common. A colloca-

tion is an expression that forms a specific meaning. A collocation can be noun phrase like

beautiful house, phrasal verb like make up, idioms, cliché or technical phrases.

There are many approaches to find collocations in a text corpus. The significant ones are:

• Frequency

• Mean and Variance

• Hypothesis Testing

• Mutual Information

Frequency is a straightforward method for getting collocations in a text corpus. Selecting

the most frequently occurring bigrams pass through the PoS tagging filter and it works well

especially for fixed phrases. Collocations are found by counting the number of occurrences.

Usually the collocation results in a lot of function word pairs that need to be filtered out. In

order to fix this, candidate phrases passes through part-of-speech filter which only let pass

those patterns that are most probably ”phrases”. However, many collocations consist of two

words in more flexible relationships. The method of mean and variance can find this flexible

relations. The method calculates the average and variance of the shift (marked distance)

between two words in the corpus. If high frequency and low variance occur at the same

7



time, that can be accidental. It is desired to determine whether co-occurrence is random or

more frequent than coincidence. That is called as hypothesis. Likelihood Ratios is simply a

number that tells us how much more likely one hypothesis is than the other.

For collocation discovery, for instance, two alternative hypothesis 1 - (H1) and hypothesis 2

- (H2) can be examined for the occurrence frequency of a bigram w1,w2 :

• hypothesis 1 : The occurrence of w2 is independent of the previous occurrence of w1.

• hypothesis 2 : The occurrence of w2 is dependent of the previous occurrence of w1.

The log likelihood ratio is then shown on Equation 1.

log λ = log
L(H1)

L(H2)
(1)

With the help of NLTK[8], the library’s default is trained with Brown Corpus, which is

related to the news. The collocations package in NLTK provides collocation finders which

by default consider all n-grams in a text as candidate collocations. I utilize bigram scores of

the words and get the likelihood ratio for spanning intervening words. Using NLTK gives

bigram scores of multiple words and get the likelihood ratio for finding probable tags of

words. With the light of these probable tags, if a sentence does not have any ”VERB” tag

after PoS tagging process, the word whose tag probably is ”VERB” can be found.

2.1.1.3. Linear Chain Conditional Random Fields (CRF)

Linear Chain Conditional Random Fields is a kind of Conditional Random Fields that per-

forms well on similar tasks such as PoS tagging and named-entity recognition[9].

P (y|x)α
N∏

n=1

ψ(yn, yn−1, x) (2)

In Equation 2, let N be the number of words in the phrase x. The equation introduces a

“potential” function ψ that takes two sequential labels, yn and yn−1, and the phrase, x. The

8



potential function is the weighted average of simple feature functions, each of which captures

a single quality of tags and words [3].

On the other hand, Equation 3 is the weighted average of simple feature functions, and each

of them gives information about a single attribute of the labels and words.

ψ(yt, yt−1, x) = exp
N∑

n=1

wnfn(yt, yt−1, x) (3)

I usually define feature functions to return 0 or 1. Each feature function, fk(yn, .., x), is

selected by the person who creates the model depending on which features are more useful

for detecting the relations between words and labels.

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

... ...

Figure 2.3. Conditional Random Fields

CRF++ is a basic, customized implementation of CRF for tagging sequential data[10]. It is

written in C++ language. It is easy to implement and gives us to redefine feature clusters. As

shown in Figure 2.3., it is a tool for tagging sequential data. This library is suitable to tag

ingredient phrases.

2.1.1.4. Long-Short Term Memory (LSTM)

Long Short Term Memory networks are gated Recurrent Neural Networks, able to learn

and memorize long-term dependencies in sequences. Initially proposed by Hochreiter &

Schmidhuber [11], it is commonly used for building neural networks for natural language

tasks. A common LSTM unit as shown in Figure 2.4..

9



input gate

memory cell input

output gate

memory cell output

forget gate

Figure 2.4. Example of LSTM Cell

LSTMs are clearly produced to avoid the vanishing and exploding gradient problem. They

can selectively memorize information for a long time. The LSTM is carefully arranged by

structures called gates and has the ability to add or append information to the cell state. The

logistic function consists of the neural network layer and a multiplication operation.

ft = σ(wi[ht−1 − xt] + bi)

it = σ(wf [ht−1 − xt] + bf )

ot = σ(wo[ht−1 − xt] + bo)
(4)

The equations for the gates in LSTM are shown in the Equation 4. ft represents forget gate, it
represents input gate, ot represents output gate, σ represents sigmoid function, wx represents

weights for the respective gate(x) neuron. ht−1 represents output of the previous ltsm block

(at timestamp (t − 1)), xt represents input at current timestamp and bx represents biases for

the respective gates(x).

c̃t = tanh(wc[ht−1 − xt] + bc)

ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tanh ct

(5)

The example of LSTM memory cell is shown on the Figure 2.5. and the equations for the

cell state, candidate cell state and the final output are shown in the Equation 5. Ct represents

cell state (memory) at timestamp(t) and c̃t represents candidate for cell state at timestamp(t).

10



Figure 2.5. Example of LSTM Memory Cell

2.1.1.5. Expectation Maximization (EM)

Expectation Maximization is a kind of learning method optimizing the maximum-likelihood

for the model parameters. EM can be used for incomplete data and/or latent variables. It is

an iterative method to approach the maximum likelihood. Although proposed methods are

not utilized EM, it is used in the algorithm proposed by Kiddon et al. [2], and its details are

relevant for the following discussions.

It is given a probabilistic model with some incomplete or latent variables, EM targets to find

the best parameters yielding the maximum likelihood for the complete dataset. Naturally, as

the number of parameters increases, it is more difficult to find the optimum model parame-

ters. Starting from random initial values for the model parameters, EM iteratively updates

the parameters to maximize the likelihood function.

New values are used to create a better estimation for the first set, and the process continues

until the algorithm approaches a local or global maximum. Let the set of observed variable

be the set M , missing random variables as N and the vector of unknown parameters is β,

then likelihood function is L(β;M,N) = p(M,N ; β), the maximum likelihood estimate

(MLE) of the unknown parameters is determined by maximizing the marginal likelihood of

the observed data, Equation 6.

L(β;M) = p(M |β) =
∫
p(M,N |β)dN (6)

11



However, Equation 6, especially if N is a sequence of events, the number of parameters to

solve grows exponentially with the sequence length. Namely, the EM algorithm can be very

slow depending on the model.

2.1.1.6. Word2Vec

Word2Vec is an algorithm and a two-layer neural network that processes text. Text and set

of vectors are the input and output of the algorithm, respectively. After training the neural

network with raw text, it can list the semantically close words to a given query word. It is a

representation learning technique, building vectors to represent the words in a language. As

seen in Figure 2.6., analogies between words can also be queried with Word2Vec.

waiter

waitress

King
Queen

preheat

preheated

mix

mixed

Male - Female Verb Tense

Figure 2.6. Example Implementations of Word2Vec

Mikolov [12] proposes two different methods to learn the word vectors, namely continuous

bag-words, and skip-gram architectures.

Figure 2.7. Models Of Word2Vec [1]

12



The graphics of the models are shown on Figure 2.7., in both models there are three layers:

Input layer, Projection layer and Output layer. Graphically, contexts, {wt−2, wt−1, wt+1, wt+2},
are given for the CBOW model to predict wt, while skip-gram model is defined wt to guess

the context, {wt−2, wt−1, wt+1, wt+2}.

According to Mikolov, skip-gram performance well with a small amount of the training data

performs well on even rare words or phrases. However, CBOW is several times faster to

train than the skip-gram, lightly better accuracy for the frequent words. By implementing

word2Vec, the similarity between words can be estimated.

2.2. Related Work

In this subsection, several studies related to named-entity recognition and action graph gen-

eration for the cooking domain are reviewed. Within this scope, different approaches have

been improved in directive named-entity recognition and graph generation. The literature is

briefly explained in two subsections as supervised and unsupervised methods below.

Algorithmic processing of instructional texts and commands expressed in natural language

have long been an interesting question [13]. In this problem, the artificial intelligence agent

(such as a robot) is trying to learn the operations corresponding to symbols that are expressed

in a domain. The system is expected to automatically interact with definitions in the physical

world as symbols to interact with objects.

Chen [14] have developed a system that can act according to the expressions expressed in

natural language in the system. Based on reinforcement learning methods, the system can

translate the sentences into natural language by using the information in the location (such

as the objects on the wall) and the state flow that is modeled. As can be seen from this study

in the literature, reinforcement learning techniques are used in problems where the current

situation can be modeled more clearly.

For a slightly different problem, a similar method for solving mathematical problems ex-

pressed in natural language is developed [15]. According to this method, the system is map-

ping the problem described in the text to a set of equations and solving them to produce the

result. Equations that can be created in the system can be given or can be learned only when

the last answer is given. In the method they developed, the solution is defined as diagrams,

13



and a probability model that maps the information given in the text to the diagram is devel-

oped. Of course, it is necessary that the structure of the questionnaire is similar and that all

of them can be transferred to the equation diagram.

Directives can also be considered as a set of steps that must be followed. From this point of

view, there are common aspects to the problems described above. Converting directives to

a computational model requires a system to create an action graph to capture the workflow

with clear steps and identifying the attributes of the steps. Cooking procedure systems are

used for a variety of applications for the cooking domain, including directive search, sum-

mary, task scheduling, visualization, and field enrichment. Recognizing the critical attributes

(ingredients, tools, etc.) and their relationship can be an essential prerequisite step for find-

ing the workflow. Extracting the named-entities from directives is a challenging task. To

overcome this, supervised and unsupervised approaches are proposed, the next subsection

will briefly overview such approaches.

2.2.1. Literature Review on Supervised Methods

Mori[16] created a labeling tool to build a corpus of graphs indicating the workflow of cook-

ing procedures. The Japanese cooking directives are first segmented to words. Then the

named entities are labeled, and finally, the predicate-argument structures are constructed.

Mori[16] represents directives as acyclic graphs where each leaf is related to a food or a

cooking tool, and each intermediate node represents a cooking action, and the root node

is the final cooking action. The model he proposed used dependency parser to find noun

phrases and actions.

Jermsurawong[17] also defined a tree based representation that stores food items and their

relationships over the description steps. This representation could show which step of the di-

rectives was related to what steps and the materials used in that step. He made a model which

is dependency tree data structure, Simplified Ingredient Merging Map in Recipes(SIMMR),

to find ingredients and represent recipes. The extracted ingredients were used to create a tree

data structure. The relationships between the actions were found using Linear SVM Rank

[18]. Two contributions of this model were the ingredient-instruction dependency tree rep-

resentation of recipe structure and the cooking recipe parser that maps text recipes into the

proposed ingredient-instruction tree structures. Although they found each ingredient which

action used with, they did not find the state of ingredients like melted cheese.

14



Malmaud [19] modeled the texts in the directives with a Markov Decision Process problem

by first finding their semantic role labels. The model he proposed maintains the relationship

between the process and the material. The purpose of this relationship is to highlight the

processes in training. The relationship means the association between actions and ingredi-

ents. A directive model based on step-by-step analysis was created. According to the model,

semantically, a sentence is divided into three parts: arguments (contents or implicit objects

such as mixtures), actions (contents and verb relations) and control structure (sequential con-

ditions, alternatives (chopping or puree)). The aim of this model was convincing; however,

the model needed videos or images to contribute parsing results and finding latent actions

in the recipe is another problem for the model. On the other hand, they found relations of

actions and components in a recipe, representation of the relations still were needed to work

on.

In order to address the ambiguities in the contents and label ingredients with specific tags,

Greene et. al.[3] created a probabilistic model for tagging sequential data. The model uses

171,224 tagged data to find out a pattern that can predict the label sequence for a sentence

they gave it. Greene considered only the ingredient parts of the recipes, not the whole in-

structive sentence. Ingredients were tagged with number, quantity, unit, name, or comment

with the help of CRF algorithms. Their point of view for tagging ingredient was a sequential

labeling problem that represented a different perspective.

2.2.2. Literature Review on Unsupervised Methods

Salvador [20] proposed a model for matching images to recipes. In this model, Word2Vec is

used to find the ingredients in the directive and for the parsing directive sentences. A skip-

instruction method (i.e., decoding/predicting previous and next sentences) is used, which

is inspired by skip-thought vectors[21]. After parsing the directive, the model matches the

images which are related to the parsed data. For cooking instructions, he used a two-stage

LSTM model which is designed to encode a sequence of sequences. In order to feed his fixed-

length joint embedding model, each sentence in the recipe is converted to a skip-instruction

vector that is jointly trained by the LSTM model. This model is satisfying to match recipe to

images, yet it is inadequate for modeling recipe as a machine-interpretable format.

To obtain information from the recipes in a machine-interpretable format, Bertini et al. [22]

used the Semantic Role Labeling model (SRL) based on Maximum Entropy Classification.

15



Nedovic[23] used a similar method to define a method of learning materials for different

types of food. Latent Dirichlet Allocation (LDA) and Deep Belief Networks (DBN) are used

in the method. It has been seen that the output of the system can group materials according

to the foods in different kitchens. With the result of the model, he found which cuisine used

the ingredients of this result. However, he focused only on the ingredient list of each recipe

and analyzed it in a bag of words methods.

In 2015, Kiddon[2] has developed a method using unsupervised learning for processing

recipes. Unlike previous supervised works, this method learns to interpret recipes using text

alone with dependency parser[24]. After the interpretation, the EM method is used. They

calculate to learn the features of the whole probability of a recipe. Prior to estimating the

parameters of the model, dependency parser tags are required.

Moreover, the generated data model has a high number of implicit variables. Because it de-

fines each probability of relation between verbs and contents as one of the parameters of the

model, when such high number of parameters are unknown, in the high dimensional space,

the number of local maximums can be high preventing finding the optimum parameters for

the model. They generate action graphs from instructional recipes with the help of unsuper-

vised EM approach.

These methods are inspired by semantic spaces used in text mining and meaning spaces that

show word meaning relations. By using these material spaces, it is possible to determine

which materials can be replaced instead of which one of them.

2.2.3. Discussion

This subsection reviews the previous studies on name-entity recognition and action graph

generation on food domain in two sub-sections as supervised and unsupervised approaches.

There are countless studies on recipe name-entity recognition and action graph generation.

Most of the work is evaluated on standard corpora like Recipe 1M [25], food 101[26] etc.

Although there are a small number of studies targeting to generate action graphs from recipes,

The data is collected for building a new corpus. Each recipe has its title, ingredients list, and

the recipe text.

Neural approaches are dominating the methods developed for NLP in recent years. The ad-

vantages of Artificial Neural Networks (ANN) are also utilized to learn and model non-linear

16



and complex relationships from the directives. Neural networks approaches have improved

the state-of-the-art in common NLP tasks like PoS tagging and named-entity recognition.

In supervised approaches, large quantities of tagged data are required for a successful learn-

ing process. Finding labeled data for tagging directives and ingredients require a lot of

manual effort for labeling the corpora. Especially for ingredients, with the help of Greene

et.al.[3] study, a dataset which is already labeled is always helpful for people who work in

this area. Unsupervised methods do not require annotated corpora. However, the dataset

for unsupervised approaches must be clean and well stacked. The results are dependable

for implemented methods, data type, and the format of data included in the dataset play an

essential role in getting good results.

In unsupervised approaches or models divide directives into sentences, and each sentence

is divided into ingredients, tools, actions, or implicit objects. These approaches or models

which depend on semantic types as Kiddon [2], performs better than a sequential baseline.

But the errors of the model are caused by missing or incorrect decisions in the segmentation

stage. The computational time of the algorithm is also a concern as the model must learn

many parameters.

The two-stage LSTM model [20] is favorable for categorizing the skip-instructions. How-

ever, it is inadequate for generating action graphs as it does not explicitly identify the at-

tributes in the directives. Even though vectors can match directives to images, The meticu-

lous data is needed for the action graph generation.

The shortcomings of current literature are summarized in the next sentences. Firstly, they try

to label action and ingredients only using direction. Implemented methods from the literature

need recipe dataset to train. Also, the general point of view of these methods, labeling recipe

is a kind of named entity recognition. In fact, it is a further sequential labeling problem.

The recipe parsing is the only question to seeks. However, the problem can be divided into

sub-problems. Rather than extracting whole relations from directions, each recipe is cate-

gorized into two parts: ingredients and direction. The proposed model, with the light of the

literature, aims to utilize: rather than labeling ingredients in the direction, tagging ingredi-

ents and direction separately, seeking actions with the most straightforward way which does

not need any recipe dataset to train, finding the relations of actions for generating consistent

action graph.

17



3. METHODOLOGY AND IMPLEMENTATION

In this chapter, the approaches that are proposed in this thesis for recipe-entity recognition

are explained in detail. For labeling ingredients; CRF and LSTM, for finding a course of

actions; PoS tagging and Collocation Finder, for generating action graph; word2vec are the

approaches to create the proposed model.

Figure 3.1. An Example Recipe Text

Converting a recipe requires a system to build an action graph with clear steps and the at-

tributes used in these steps. Identifying attributes such as ingredients, tools, and action per-

formed in a recipe is fundamental for building the model of a given recipe. Figure 3.1. depicts

the text of an example recipe from the corpus. That is, a recipe has already been stored as

two parts. The system should address the attributes and flow of the recipe, as shown in Figure

3.2.. The steps denoted by Si are presented on a swimlane with edges showing the associ-

ated attributes and the sequence of the steps. For example, preheat step S1 is linked to S5

bakefor step indicating that steps S2 to S4 are independent from S1 and can be carried out

in parallel. Along with the circle action nodes, ingredients are related with the step in two

different levels, main ingredients which are tagged with only INGREDIENT and the other

ingredients which are tagged with INGREDIENT SPAN used during the step.

In order to detect and differentiate the recipe specific entities, instead of incurring a manual

labeling effort, an existing recipe named entity recognition corpora is utilized1. Rather than

annotating the recipes, the model is acquired using heuristics built on top of PoS tags. During

1https://open.blogs.nytimes.com/2016/04/27/structured-ingredients-data-tagging/

18



Figure 3.2. Action graph for the recipe given in Figure 3.1.

PoS tagging, thanks to word2vec, similarities of the actions are calculated. Also, probable

action whose sentence is not parsed properly by PoS tagger is found with Collocation Finder,

and the word tag is updated as ”VERB”. After PoS tagging, the proposed model depicted in

Figure 3.3. is updated according to the rule-based model. The tags of the model are shown

in Table 3.9.. Furthermore, a dictionary is extracted from a cooking website2 in order to find

tools in the sentence. Using this dictionary words tagged as NOUN or ADV (adverb) are

checked and are replaced with the TOOL tag. Updated tags are eligible to generate an action

graph.

As shown on Figure 3.3., this section divided into four parts:

• Ingredient Parsing, which is explained in Section 3.1..

• Directive Parsing which is explained in Section 3.2..

• Recipe Parsing which is explained in Section 3.3..

• Action Graph Generation which is explained in Section 3.4..

2http://www.enchantedlearning.com/wordlist/cookingtools.shtml

19



Figure 3.3. Framework of The Proposed Model

3.1. Ingredient Parsing

PoS tagging is inadequate for finding ingredients in a sentence in the direction. This thesis

investigates if only PoS tags can be used to identify the ingredients. While the PoS tags

signify the grammatical category of the word in the sentence, the ingredients that can be

formed of multiple words, tools and quantities are also expressed with nouns. Thus, it is

not possible to distinguish these attributes using only the PoS tags. Consider the example

ingredient ”1/4 cup grated Parmesan cheese”, in the sentence ”stir the mixture and 1/4 cup

of Parmesan cheese”, whose PoS tags are shown in Table 3.1.. These tags do not give any

clues to show which of words are relevant to ingredients.

Table 3.1. Sample Sentence

stir the mixture and 1/4 cup of parmesan cheese
VB DET NN CC CD NN IN NNP NN

20



The sentence with the aid of PoS tagging, which looks for the word’s position and word’s

task in the sentence is parsed. These tags are not efficient while finding which ingredient is

related to this sentence. Table 3.2. shows more efficient tags rather than Table 3.1..

Table 3.2. Different Tagged Sample Sentence

stir the mixture and 1/4 cup of parmesan cheese
VB DET NN CC NUMBER UNIT IN NAME NAME

Considering the different sentence structures in the directive sentences, instead of a heuristic-

based tagging method, a supervised method is preferred to achieve better results in the label-

ing task. An already existing labeled data from the work of Greene et al. [3] whose tags are

depicted in Table 3.3. is used to label the ingredients and quantities.

Table 3.3. Tag Definition of CRF/Bi-LSTM Model For Ingredients

Tags Meanings
NAME defines ingredients: onion, sugar etc.
UNIT defines quantity of uncountable ingredients: teaspoon, pinch, etc
QUANTITY defines quantity of countable ingredients: 1, 2, 5, 1/2
COMMENT defines ingredient status: melted, sliced etc.

3.1.1. Conditional Random Fields (CRF) Based Ingredient Parsing

The toughest aspect of the recipe parsing problem is the task of labeling ingredient compo-

nents from the ingredient phrases[3]. Recipes showing ingredients like “ 1 teaspoon brown

sugar”, should be further segmented and labeled to (brown sugar) - name, (1) - number,

(teaspoon) - unit. This kind of difficulty is referred to as a structured prediction problem

for trying to predict a structure or sequence of tags. In order to solve this problem, Greene

et.al.[3] used CRF for sequence labeling.

Let { x1, x2, ...., xN } be the list of ingredient phrases where each xi is an ordered list of

words. Related with each xi is a list of tags, yi. The aim is to utilize the data to find

a model that predicts the label sequence for the components. Greene et.al.[3] attack this

task by modeling the conditional probability of a set of tags using the given p label (which

represents the tag sequence) or the above notation p(y|x) which is shown on Equation 2.

For example, the ingredient phrase is “1 teaspoon sugar” then all possible sequences of 3

tags should be scored.

21



P (UNIT, UNIT, UNIT | 1, teaspoon, sugar)

P (QUANTITY, UNIT, UNIT | 1, teaspoon, sugar)

P (UNIT,QUANTITY, UNIT | 1, teaspoon, sugar)

P (UNIT, UNIT,QUANTITY | 1, teaspoon, sugar)

P (UNIT,QUANTITY,QUANTITY | 1, teaspoon, sugar)

P (UNIT,QUANTITY,NAME | 1, teaspoon, sugar)

...

Sample feature functions on Equation 3 for the ingredient phrase are ”1 teaspoon sugar” used

for this problem are shown on Table3.4..

Sequential Functions Conditions
If Results

f1(yt, yt−1, x) xt is capitalized and yt is NAME 1
f2(yt, yt−1, x) xt is ”1” and yt is QUANTITY 1
f3(yt, yt−1, x) xt is ”teaspoon” and yt is QUANTITY 1
f4(yt, yt−1, x) xt is ”sugar” and yt is QUANTITY 1
f5(yt, yt−1, x) xt is fraction and yt is QUANTITY 1
f6(yt, yt−1, x) yt is QUANTITY and yt−1 is UNIT 1
f7(yt, yt−1, x) yt is NAME and yt−1 is UNIT 1

All otherwise 0

Table 3.4. Feature Functions Of ”1 teaspoon sugar”

CRF, similar to logistic regression, learns large positive weights on features that capture

highly likely in the training instances, large negative weights for features that capture highly

unrelated patterns in the training instances. For example, f2 describes a likely pattern in the

data (”1” is likely a quantity), f4 describes an unlikely pattern in the data (the word “sugar”

is almost never a quantity), and f1 does not extract a typical pattern. In this situation, w2

should have a large positive number, w4 should have a substantial negative number, and w1

should be almost 0.

Although CRF is used by Greene et al. [3], state-of-the-art results in named entity recog-

nition are achieved by LSTM based models. A deep learning-based model is also used for

identifying the ingredients in the recipes to investigate this.

22



3.1.2. Long-Short Term Memory (LSTM) Based Ingredient Parsing

In order to predict sequences of tags from ingredients phrases, Bidirectional LSTM models

achieving excellent results in named entity recognition tasks are evaluated [6]. Bidirectional

LSTM uses two LSTM layers to process the sequence from both directions of the text [27].

The input sequence is fed to one LSTM layer and also the sequence reversed and fed to a

second LSTM layer. This provides the model to observe both the right and left context when

predicting the labels of a token in the sequence.

The Bidirectional LSTM based named entity recognizer is implemented using the Keras

framework. Keras is a framework, a high-level neural networks API, written in Python and

capable of running on top of TensorFlow, CNTK, or Theano backends[28].

The first layer defined in the model is the word embedding layer, which maintains the intense

relative meaning of the words [29]. This layer does not be pre-trained.

The second layer is a bidirectional LSTM layer with Time Distributed wrapper layer, which is

used around the output layer and using a recurrent neural network for the tagging task. Thus,

a value can always be estimated when an entire array is provided as an input. This requires

the LSTM hidden layer to return a value sequence (one per time) instead of a single value for

the entire input sequence. Recurrent dropout regularization method is used to impede over-

fitting training data, which is lessen their predictive abilities. Recurrent dropout parameter is

selected as recurrentdropout = 0.1.

Softmax activation function is the normalized exponential function. It calculates probabilities

of n different categories, which are the labels shown in 3.3.. In other words this function

estimates the probability of each target over all targets. General formula of Softmax activation

function for i = 1 · · ·N is shown on Equation 7:

Softmax(x)i =
ezi

N∑
n=1

ezn
(7)

The loss function is used for calculating the error of the model. The loss function, Categori-

cal Cross Entropy to solve the multi-class classification problem is used. Although intuitive,

Categorical Cross-Entropy loss and Softmax loss works better for Binary Cross-Entropy loss

in multiple-label classification problems. As illustrated in Equation 8, M is the number of

23



classes, y is the binary indicator (0 or 1) if class tag c is the true result of the classification

for observation n and p means that predicted probability observation n is of class c.

−
M∑
n

yn,c log(pn,c) (8)

An optimizer algorithm is used to learn the parameters of the neural network. During the

training period, it updates a parameter for each input and target pair. [30]. SGD (Stochas-

tic Gradient Descent), Adam (Adaptive Moment Estimation) [31]. , Adadelta [32] and

RMSProp (Root Mean Square Propagation) [33] algorithms have also been experimented.

3.1.2.1. Model Configuration

Configuration of the Bidirectional LSTM is depicted below:

• Unit, used to select the dimension of the memory cells in an LSTM. In this study, the

unit is 100.

• Activation function, used to compute hidden output: In this study, Softmax is selected.

• Loss function, used to compute the error of the model: In this study, Categorical

crossentropy is selected.

• Optimizer function, used to compute offset the loss function: In this study, RMSProp

is selected.

The other parameters are as follows:

• Epoch used to define the number of iteration for training: In this study, the epoch is 6.

• Batch size used to define the number of samples in training data in training: In this

study, the batch size is 32.

The gold standard for machine learning model evaluation is k-fold cross validation [34]. It

provides a robust prediction of a model on unseen data. It does this by dividing the training

24



Figure 3.4. Epoch/Loss Graph

Figure 3.5. Epoch/Accuracy Graph

dataset into k sub-data and takes turns training models on all sub-data except one which is

held out and assessing model performance on the held-out validation dataset. K-fold cross-

validation (k=10), is used for this model and Figure 3.4. summarizes history for average

loss, and Figure 3.5. summarizes history for average accuracy.

25



3.2. Directive Parsing

Directive or recipe is a paragraph which has just imperative sentences. To parse an imper-

ative sentence with linguistic labeling methods and to find action and other components,

without data preprocessing, PoS tagging is inefficient. Each sentence is generally related to

ingredients. Before PoS tagging, data should be ready to get the result more accurate.

In general, the algorithm for directive parsing is shown in Algorithm 1. As shown in Algo-

rithm 1, ”taggedDirective” is a list that each element is a sentence’s word-tag tuple list which

is derived from PoS tagging and preprocessing operations. If each sentence of the tagged-

Directive does not have any action, updateVerbs function runs and finds probable verb in the

sentence. Then, updateTools function finds tools in the sentence and update the tags. At the

end of the for loop, findRelatedVerbsPair function runs and finds similarity between actions

in the directive.

Algorithm 1: Pos Tagging Overview
Function updateTags taggedDirective

forall sentence in taggedDirective do
updateVerbs(sentence)
updateTools(sentence)
updateIngredients(sentence)

findRelatedVerbsPair(taggedDirective)

This section is divided into three part to get better results:

• Data Preprocessing

• Directive Tagging

• Recipe Tagging

3.2.1. Data Preprocessing

This process contains segmentation, punctuation removal, and normalization. Each directive

is segmented into sentences, and also, each sentence is divided into words. An example

directive paragraph is separated in sentences which are depicted in Table 3.5..

26



Table 3.5. Hot Chicken Salad

No Directive
1 Preheat oven to 350 degrees F (175 degrees C).

2
Combine the chicken, celery, almonds, bell pepper, onion, pimento, salt,
lemon juice, and mayonnaise.

3 Mix well and put into a 1 1/2 quart casserole dish.
4 Top with grated cheese and the crushed potato chips.
5 Bake for 25 minutes or until cheese is melted.

Then punctuation is removed from each sentence. This is done to avoid errors in tokenization.

Also, every capital letter is changed to lowercase. These are the requirement for labeling

words correctly. However, stopwords are not to be filtered. If stopwords are removed, some

positive results caused by PoS tagging can be lost. In particular, ”Mix well and put into 1 1/2

quart casserole dish”, this phrase has 2 separate sentences, ”Mix well” and ”put into 1 1/2

quart casserole dish”. PoS tagging result of sample sentence whose stopwords are filtered is

depicted on Table 3.6., and labels do not have any clues to divide the two directives correctly.

However, if a sentence has conjunction and next tag of the conjunction is ”VERB”, it can

be considered as two sentences, thus, with the help of conjunction, the sentences are divided

into two parts, and the process is continued.

Table 3.6. Sample Sentence, Stopwords Filtered

Mix well put into 1/2 quart casserole dish
NNP DET VP IN NUM NN NN NN

Table 3.7. Sample Sentence, Stopwords Not Filtered

mix well and put into 1/2 quart casserole dish
VP DET CC VP IN NUM NN NN NN

The words whose length are 2 or less are filtered, except stopwords. These words might

cause a mislabeling.

3.2.2. Directive Tagging

After data preprocessing is done, the directive is fed to the proposed model, shown on Algo-

rithm 1. There is a problem in PoS tagging for imperative sentences. To label an imperative

sentence accurately,”I would” phrase is added in front of the sentence. As the PoS tagger is

27



typically trained on news articles, it is not trained with imperative sentences and produces

errors in imperative sentences. Adding the phrase ”I would” reduces the errors and adapts

the imperative sentences to a form that PoS tagger can process more accurately.

As a result of the labeling made, I would chop green chile peppers, in the table of contents is

labeled as below in Table 3.8..

Table 3.8. Labeled Sample Sentence

chop green chile peppers
VERB NOUN NOUN NOUN

Due to PoS tagging errors actions in some of the sentences might not be labeled as a verb.

During PoS tagging, if a sentence in the directive does not have a ”VERB” tag, most prob-

able action in the sentence is tried to be found with the help of bigram collocations, which

are expressions of multiple words which commonly co-occurs. This process is inevitable

for generating action graph. Because each sentence must have at least one action. To solve

missing action problem in the recipe which relies on PoS tagging model, Collocation Finder

is a reasonable approach to solve. If the sentence does not have any action after PoS tag-

ging process, Collocation Finder finds probable action in the sentence with the help of the

likelihood ratio. Firstly, words tagged with ”NOUN and ADVERB” are filtered from the

sentence, then, Collocation Finder seeks the best word which is the most frequently tagged

with ”VERB” in the dataset. In other words, collocation searches the word which is most

frequently tagged with the verb in the default dataset, which is Brown Corpus. Not only,

NLTK[8] default trained models are used in this study for PoS tagging. But also, the default

trained model for collocation is used.

On the other hand, generating an action graph is based on the action of each sentence. The

sequence of the identified steps is mainly determined by the action in that step. If a sentence

does not have any ingredient tags, the action may not be related to the next action or may

not be relevant with the ingredients which are used before action. This action is generally

applied regardless of the order in the directive. In order to generate the graph, the relations

between the actions are found.

Each action node is generated and linked with related ingredients and tools in its sentence,

when the action node generation is finished, linking actions process begins. Actions are

generally sequential in the recipe. However, some actions are related to a specific action or

28



relevant to the next action in the recipe. ”preheat” is the action related to the ”bake for”

action. Because only after the ”preheat the oven” task, ”bake for the mixture” can be done.

This ”preheat” action should be performed before the ”bake for” action. ”preheat” action’s

result is related to the ”bake for” action. In order to find this relation and similarity about

whole actions in the directive, the word embedding (word2vec) is used. If the similarity is

bigger than a predetermined threshold value (threshold = 0.95), the pairs and the similarity

values are held in the list. Then the list is used for linking the action nodes in the graph. Using

the word2Vec [7] actions are converted into 300-dimensional vectors. If creating the word

embedding from domain-specific corpus improves the results or not, the domain-specific

word embedding is trained using the recipes crawled for this research.

The configurations of the proposed word2Vec Model is depicted as below:

• num features , used to define dimensionality of the resulting word vectors. In this

study, the num features is 300.

• min word count , is minimum word count threshold: In this study, 3 is selected.

• num workers , is the number of threads to run in parallel: In this study, 8 is selected.

• downsampling , used to downsample setting for frequent words: In this study, 0.00001

is selected.

• sg, is a number that if the value is 1, the skip-gram algorithm otherwise CBOW algo-

rithm is run: In this study, 1 is selected.

• context size , used to define context window length: In this study, 2 is selected.

Using Word2Vec, cosine similarity between action words are calculated, as shown in Equa-

tion 9. The similarity is calculated between the action which does not have any relations with

ingredients and other actions in the directive.

θ = argmax(cos(word2V ec(Ak, Vw))) (9)

Ak is the vector representation of the action word. If Ak is a phrasal verb such as ”put into”,

”bake for” etc., each word is converted to vector and averaged. Vw represents the vector array

29



of whole verbs in the directive. The similarity of cosine is calculated between the average

vector and each vector of Vw in the recipe.

θ is the maximum value between the action Ak that does not have any ingredients in its

sentence, and each action of the whole verbs of action array Vw in the recipe. That value

gives information about which action in the array Vw is most likely related with action Ak.

3.3. Recipe Parsing

When all sentences in the directive are tagged, tags are updated according to the model

depicted in Figure 3.3.. Definition of each tag is shown on Table 3.9.. The tagged sentence

is updated with the help of PoS tagger, Ingredient Tagger, and the dictionary.

Table 3.9. Tag Definition of The Proposed Model

Tags Meanings Source
PRED verb tag PoS tagger
PRED PREP verb tag with adverb PoS tagger
DOBJ whole ingredients in the sentence CRF/Bi-LSTM
NON INGREDIENT SPAN object is not related with ing. PoS tagger
NON INGREDIENT SPAN VERB verb that is not related with ing. PoS tagger
INGREDIENT SPAN object that is related with ingredient CRF/Bi-LSTM
INGREDIENTS pure ingredient CRF/Bi-LSTM
PARG object that is related with tool The Dictionary
PREP preposition PoS tagger

Using Bi-LSTM and CRF for parsing ingredient, sequential relations between words and

tags of the words are found in the ingredient list of a recipe. Then with the help of relations,

ingredients in each sentence of a directive are updated as depicted on Table 3.10..

Table 3.10. Bi LSTM/CRF Tags Updated Sentence

put the peppers into the pan
VB DET NAME ADP DET NOUN

Another problem that needs to be solved is finding tools in a directive. If tagged data is

available, supervised approaches can be used. Extracting tool is another searching field au-

tomatically. Although the proposed model catches noun phrases, it cannot decide whether it

is a tool or an implicit object. After all, if the whole tool list can be generated as a dictionary,

30



this problem can be converted as finding the word in the dictionary. Thanks to the website3,

the dictionary is generated. If the words whose tags are ”NOUN” and ”ADV” are found in

the dictionary, the tags of the words will be updated as ”TOOL” which is shown in Table

3.11..

Table 3.11. Example Results of Updating Tools

put the peppers into the pan
VB DET NAME ADP DET TOOLS

Tags of the sentence are merged by adhering to defined rules. Defined rules are:

• If ”VERB” tag’s next tag is in [”ADV”, ”ADP”, ”ADJ” , ”PRT”], the words are

merged, tagged with PRED PREP and add to the list. Else ”VERB” tag is updated

with ”PRED” and is added to the list.

• If ”NAME” tag’s next or previous tag is in [”NUM”, ”COMMENT”, ”QTY”, ”ADP”,

”DET”, ”UNIT”, ”ADJ”], the words are merged and tagged with ”INGREDIENT SPAN”

and each ”NAME” tag is updated as ”INGREDIENTS” and each of them is added to

the list.

• If ”TOOL” tag’s next or previous tag is in [”ADP”, ”DET”, ”NOUN”, ”NUM”, ”ADJ”,

”COMMENT”], the words are merged and tagged with ”NON INGREDIENT SPAN”

and each ”TOOLS” tag is updated as ”PARG” and each of them is added to the list

• If the sentence has two or more ”INGREDIENT SPAN”, also these words are concate-

nated, and each of them is added to the list.

• If the sentence has second ”VERB” tag without a conjunction, also if ”VERB” tag’s

next tag is in [”ADV” , ”ADP”, ”ADJ” , ”PRT”] or not, the words are merged, tagged

with NON INGREDIENT SPAN VERB and add to the list.

Thus, tags are updated according to neighbor tags. For instance, if the tag is ”NAME” and the

neighbor tag is ”DET” (determiners), two words are concatenated by the model and tagged

by ”INGREDIENTS”. That is depicted in the Table 3.11. and Table 3.12..

A tagged and processed sentence in the directive, shown in Table 3.13., is more readable for

computer and ready to use for the graph generation.
3http://www.enchantedlearning.com/wordlist/cookingtools.shtml

31



Table 3.12. The Output sentence of the model I proposed

put the peppers into the pan
PRED INGEDIENTS NON INGREDIENT SPAN

Table 3.13. Tagged Sentence Example

The Example of Tagged Sentence
SENT : combine the chicken , celery , almonds
, bell pepper, onion , pimento , salt , lemon juice , and mayonnaise .
PRED : combine
INGREDIENTS : chicken
INGREDIENTS : celery
INGREDIENTS : almonds
INGREDIENTS : bell pepper
INGREDIENTS : onion
INGREDIENTS : pimento
INGREDIENTS : salt
INGREDIENTS : lemon juice
INGREDIENTS : mayonnaise
DOBJ : the chicken

3.4. Action Graph Generation

A graph is a set of nodes connected by edges. Each node is called a vertex [35]. Action graph

is a kind of diagram that shows the relations between the actions. If an action is linked with

another action, action has a direct relation with the other. Also, an action in the graph, which

has one outward link with action is the beginning action. The last action in the graph is that

it is not linked to any other action. While generally actions follow the flow of the recipe and

are linked to the consecutive actions in the text, some are challenging as these actions are

independent and can be done in parallel.

To generate the graph visualization with, Graphviz [36] library is used, drawing “hierar-

chical” or layered graphics. The placement algorithm targets edge in the same directive

(from top to bottom or from left to right) and tries to avoid edge transitions and reduce edge

length. This library supports many file extensions as, ”.dot”, ”.neato”, ”.fdp”, ”.sfdp”, etc.

The graph visualization method has been implemented, generating ”.dot” files for the recipe

models with Graphviz library.

In the Action Graph Model, two main tasks must be done for creating the action graph:

32



• to create sentence nodes

• to create edges between sentence nodes

The segmented recipe, along with the resolved action links can be used to construct the

graph. A connection gives information about the origin of a given the word or word array as

either the output of a previous action or as a new ingredient or entity being introduced into

the recipe. Each node is defined as a tuple as (word, tag, index, isV erb). If the word is not

a verb, the word will be connected to the verb node in the sentence. S represents sentence,

C is the connection function between verb and words in the sentence, K represents counts

of tuples in the sentence, and W is node list without verb node of the sentence S. (VS) is the

verb of the sentence S.

Ns = CK
k=1(wk, VS) (10)

Each sentence node (Ns) is a tuple as (action node, verb, index). After Sentence Nodes (Ns)

are created with Equation 10, edges between sentence nodes are created. For this process,

action relation list (LR) is used. LR list’s each element is a tuple that (verbi, verbj, Sc). Sc

is the value of cosine similarity between (verbi) and (verbj) which is calculated with the aid

of word2Vec [7]. Action graph of a recipe Ar is generated with the Equation 11.

Ar = NK
k=1, L

N
Rn=1


if Si || S(i+1) has ingredients, C(Nk, N(k+1))

otherwise Sc > (Sc1 , Sc2 , ..., Sck) C(Nk, Nn)

(11)

K is the action node indexes in a recipe. If a sentence does not have any ingredient tags,

the model consults the related verb list (LR). If the similarity of cosine (Sc) is greater

than others, the model creates an edge between sentence nodes, otherwise, behaves like a

sequential and creates an edge between the sentence node and the next indexed sentence

node. Also, information about the shapes of nodes in the action graph is depicted in Table

3.14..

To express this process step by step, real sentence node example is shown in the Figure 3.7..

Also simple sentence node example shown on Figure 3.6.

33



Table 3.14. The Shape Definitions of Action Graph Nodes

Tags Colors
PRED circle
PRED PREP circle
DOBJ parallelogram
NON INGREDIENT SPAN box
NON INGREDIENT SPAN VERB ellipse
INGREDIENT SPAN hexagon
INGREDIENTS hexagon
PARG box

Figure 3.6. The Example of Sentence Node

Figure 3.7. The Example of Real Sentence Node

Each sentence node has one main action in order to link with other action. If an action does

not have any ingredient nodes, to link this action, related verb list as expressed before is used.

The whole directive of the Amish Meatloaf Recipe is shown in Table 3.15.. Because the first

sentence does not have any ingredients, the action graph starts with the second sentence.

With the help of related verb list, the model link preheat action with bake for action.

The whole results of the parsed directive according to the proposed model is shown in Table

3.16. and Table 3.17. that first sentence is preheat the oven to 350 degrees f ( 175 degrees c

) but action graph starts with mix together action. Because preheat action does not have any

ingredients in its sentence. Thus, according to the model, the first action must have at least

34



Table 3.15. The Directive of Amish Meatloaf

No Directive
1 preheat the oven to 350 degrees f ( 175 degrees c ).

2
in a medium bowl , mix together ground beef , crushed crackers , onion , eggs ,
3/4 cup ketchup and 1/4 cup brown sugar until well blended.

3 press into a 9x5 inch loaf pan.
4 lay the two slices of bacon over the top .
5 bake for 1 hmy in the preheated oven , or until cooked through .

6
while the loaf bakes , mix together the remaining 1 cup ketchup , vinegar ,
salt , mustard and 1/2 cup brown sugar.

7 spread over the top of the meatloaf for the last 15 minutes.

one ingredient in the sentence.

Figure 3.8. The Example of An Action Graph

The whole result of the action graph is depicted on Figure 3.9. and general example of

an action graph is shown on Figure 3.8.. On Figure 3.8., action ’s number is related to

the indexes of sentences in the recipe. Also the algorithm looks for tools relation between

actions, if one of the action node has a tool node. For instance, preheat sentence and bake

for sentence have same tool, oven. Cosine similarity between preheat and bake for is over 95

percentages. These consequences prove that bake for action is related with preheat action.

After whole linking process is done, the model is saved as a dot file.

35



Table 3.16. Parsed Directive of Amish Meatloaf 1

No Directive

1

preheat the oven to 350 degrees f ( 175 degrees c ).
PRED : preheat
PARG : oven
NON INGREDIENT SPAN : the oven

2

in a medium bowl , mix together ground beef , crushed crackers , onion , eggs ,
3/4 cup ketchup and 1/4 cup brown sugar until well blended.
PRED : mix
PRED PREP : mix together
NON INGREDIENT SPAN VERB : until blended
INGREDIENTS : beef
INGREDIENT SPAN : ground beef
INGREDIENTS : crackers
INGREDIENT SPAN : crushed crackers
INGREDIENTS : onion
INGREDIENTS : eggs
INGREDIENTS : ketchup
INGREDIENT SPAN : 3/4 cup ketchup
INGREDIENTS : brown sugar
INGREDIENT SPAN : 1/4 cup brown sugar
PARG : bowl
NON INGREDIENT SPAN : in a medium bowl
DOBJ : ground beef - crushed crackers - 3/4 cup ketchup - 1/4 cup brown sugar

3

press into a 9x5 inch loaf pan.
PRED : press
PRED PREP : press into
PARG : pan
NON INGREDIENT SPAN : into pan
NON INGREDIENT SPAN : 9x5 inch loaf pan

4

lay the two slices of bacon over the top .
PRED : lay
INGREDIENTS : bacon
INGREDIENT SPAN : the two slices of bacon
DOBJ : the two slices of bacon

36



Table 3.17. Parsed Directive of Amish Meatloaf 2

No Directive

5

bake for 1 hmy in the preheated oven , or until cooked through .
PRED : bake
PRED PREP : bake for
NON INGREDIENT SPAN VERB : until cooked
PARG : oven
NON INGREDIENT SPAN : for hmy in the preheated oven

6

while the loaf bakes , mix together the remaining 1 cup ketchup , vinegar ,
salt , mustard and 1/2 cup brown sugar.
PRED : mix
PRED PREP : mix together
NON INGREDIENT SPAN VERB : the remaining
INGREDIENTS : ketchup
INGREDIENT SPAN : 1 cup ketchup
INGREDIENTS : vinegar
INGREDIENTS : salt
INGREDIENTS : mustard
INGREDIENTS : brown sugar
INGREDIENT SPAN : 1/2 cup brown sugar
DOBJ : 1 cup ketchup - 1/2 cup brown sugar

7
spread over the top of the meat loaf for the last 15 minutes.
PRED : spread
PRED PREP : spread over

37



Figure 3.9. The Action Graph of Amish Meatloaf

38



4. EXPERIMENTAL ANALYSIS

4.1. Datasets

Two different corpora are used for the experiments. The first corpus is used to evaluate the

final action graphs. The second corpora are used to learn and evaluate the named entity

recognition task for the recipes and recognizing the ingredients.

The named entity recognition corpus is formed of 180,000 manually labeled ingredients [3].

For the CRF[5] algorithm and Bi-LSTM algorithm, 120,000 ingredients are used for training

and 60,000 for testing.

On the other hand, to evaluate parsing directive, Kiddon [2] corpus, which has 2456 direc-

tive, are used. This corpus is used only for segmentation evaluation. Also, Kiddon generates

their action graphs with the help of hand-labeled 33 recipes, which are gold standard an-

notated. 34,600 recipes from www.allrecipes.com and www.cooking.nytimes.com are col-

lected, which are not utilized in the experiment.

Table 4.1. The Details of the Greene Ingredient Dataset used for Training and Testing

Data Sets Training Set Test Set
CRF/Bi LSTM 120,000 60,000

Because the NY Times corpus consists of NY Times recipes’ ingredients, the corpus used

for both CRF and Bi LSTM algorithm, which is also shown in Table 4.1.. On Table 4.2.,

corpora of Kiddon at. al. [2] used for evaluating action graph results is shown.

Table 4.2. Kiddon Dataset for Testing

Data Sets Action Graph Gen. Directive Parsing
Test Set 33 2456

39



4.2. Evaluation Metrics

In this section, evaluation metrics are defined. Accuracy, precision, recall, and F1 score are

used for evaluation. The definition of those metrics follows:

• True positives (tp): The situation that I predict is right, and it is actually right.

• True negatives (tn): The situation that I predict is wrong, and it is actually wrong.

• False positives (fp): The situation that I predict is right, but it is actually wrong.

• False negatives (fn): The situation that I predict is wrong, but it is actually right.

Here are the details of the evaluation metrics that the study is used:

• Accuracy is the ratio of correct predictions to whole inputs.

accuracy =
tp+ tn

total
(12)

• Precision is the ratio of true positive predictions to all positive predictions. For parsing,

verb, ingredients, and tools which are segmented correctly are divided with entities

which are segmented mistakenly correct and entities which are segmented correctly.

precision =
tp

tp+ fp
(13)

• Recall is the ratio of true positive predictions to the sum of true positive and false

negative. For parsing, true labeled words are divided by the sum of true labeled words

and wrong labeled words.

recall =
tp

tp+ fn
(14)

• F1 score is the mean of precision and recall. It is used as a statistical measure to

evaluate performance.

f1 = 2 ∗ 1
1

precision
+ 1

recall

(15)

40



4.3. Experiments

The proposed model consists of 3 sub-processes. So, three processes are compared:

• To compare ingredient parsing

• To compare directive parsing

• To compare action graphs

The ingredient parsing approaches, which are Bi LSTM approach and the CRF model, are

compared. The model firstly uses CRF approach for parsing ingredients. The result is 89

percentages for accuracy. However, the result of Bi-LSTM is much better than the CRF

approach that is shown in Table 4.3..

Table 4.3. Experiment Results of Parsing Ingredient

Precision Recall F1 Accuracy
Bi LSTM 97.59 96.56 97.07 96,91

CRF 89.6 85.03 88.8 89.1

Some examples of ingredient named-entity results are shown on Table 4.4..

Table 4.4. Parsed Ingredient Phrases

1 teaspoon brown sugar - - -
NUM UNIT NAME NAME - - -
1/2 cup dry bread crumbs - -
NUM UNIT NAME NAME NAME - -
1/2 cup dry bread crumbs - -
NUM UNIT COMMENT NAME NAME - -
3/4 pound chicken breast meat finely chopped
NUM UNIT NAME NAME NAME COMMENT COMMENT

Connected with the result of ingredient labeling, the directive parsing model is compared

with Kiddon [2] segmentation model. Segmentation means that directive is divided into its

sentences, and each sentence is divided into its actions, ingredients, tools, etc. Kiddon’s

automatic segmentation (AS) result is a state-of-the-art unsupervised method for recipes.

41



However, the proposed model appears to be more productive. Because Kiddon’s segmen-

tation model is depended on Dependency parser, Standford Natural Language Processing

Group. With the help of dependency parser, they find related words for action. Also, they

implement Expectation Maximization, which is defined in Section 2.1.1.5. to their model.

This makes the model more complicated and prolongs computational time while training. In

order to find relations for actions in a recipe, This study tries to use a simpler subtask like

PoS tagging rather than a more involved Dependency parsing component which might be

susceptible to more errors.

On the other hand, the results are better than Kiddon’s result, which is shown in Table 4.5..

Three main problems for parsing directives: finding actions, finding ingredients, and finding

tools. To find tools, creating a dictionary is a convenient option and easy way because whole

utensils used in the kitchen are given on the website 1 in the alphabetical order.

Table 4.5. Experiment Results of Parsing Recipe

Precision Recall F1
Sequential baseline w/ ingredients(AS) 60.4 57.2 58.8

Kiddon et. al (AS) 68.7 65.0 66.8

The proposed model 88.64 79.47 82.10

The Table 4.5. shows sequential baseline. Since most connections are sequential, that is,

most of the expansion of the arguments depends on the output of the previous action - se-

quential connections provide a strong foundation. Generally, the model links the output of

each predicate to the first predicate-argument range of the predicate below, which is ex-

pressed in Section 3.4..

Table 4.6., shows results that evaluating relation with the help of Google word2Vec model

and the word2Vec model. By the aid of Gold Standard Annotated Dataset [2], the results

indicate that it is improved with approximately 10 points by the model. However, Google

word2Vec Corpus result is superior to the recipe Word2Vec corpus, which one thousand

times smaller than Google’s. On the other hand, when word2Vec algorithm running on the

ram is considered, the performance of the proposed word2Vec is much faster than Google’s,

which needs around 6 GB memory.

1http://www.enchantedlearning.com/wordlist/cookingtools.shtml

42



Table 4.6. Experiment Results of Generating Action Graph

Models Pecision Recall F1
The Proposed word2Vec Model Result 79.2 65.9 72.0
Google word2Vec Model Result 80.4 69.2 75.2
Kiddon Result After EM 68.2 65.0 66.8

The more the directive is parsed correctly, the more successful and logical action graph is

created. In order to evaluate the action graphs, this thesis utilizes gold standard annotations

dataset from Kiddon [2], which contains 33 hand-labeled recipes and graph files. The accu-

racy of the model which is around 80 percentages from that dataset is calculated. Also Table

4.5. shows the results of action graphs. In this case, this thesis accepts that every action is

sequential, which means actions applied in the order of the directive.

4.4. Error Analysis

An error source appears to be in finding the actions in, especially long sentences. In order to

find the action from imperative sentences, I would is added before the sentences are parsed.

Some sentences like ”I would when crisp and brown, remove to paper towels.”, it is not a

better solution for this. Because PoS tagger needs to be trained with imperative sentences.

However, this kind of dataset is not found. The output also shown on Table 4.7.. In the first

sentence, the model can not find crisp, and brown actions which effects remove action.

43



Table 4.7. Wrong Parsed Sentences

No Sentence

1

when crisp and brown , remove to paper towels.

PRED : remove

INGREDIENTS : to

2

in a skillet over medium heat , brown ground beef with onion

PRED : heat

INGREDIENTS : beef

INGREDIENT SPAN : brown ground beef

INGREDIENTS : onion

INGREDIENT SPAN : with onion

PARG : skillet

NON INGREDIENT SPAN : in a skillet

DOBJ : brown ground beef - with onion

On the other hand, The model finds heat as an action, but the right action is brown. the model

tags brown as an ingredient, as brown ground beef is in the ingredient list. Collocation finder

is used for finding action in the sentence. This gives us that the probable verb for the sentence

is heat. But the correct answer is brown.

Since the model looks at related verbs to link the actions with which does not have any

ingredients, this can also cause errors because some actions which have ingredient entities

cannot have any relation for the next actions.

If any verbs in the sentence are not found, collocation finder finds the probable verbs in the

sentence. As seen on the second row of the Table 4.7., sometimes it gives the wrong word

to tag as an action. Because verb tag of heat’s frequency is bigger than verb tag of brown’s

frequency, if the dataset is much more extensive, the results might be different.

44



5. CONCLUSION

5.1. Conclusion

In this thesis, this study presents supervised and rule-based approaches for segmenting recipes

to tag actions and ingredients. The proposed model uses Bi LSTM models to identify ingre-

dient tags, PoS tagging to find actions and Word2Vec [7] model to identify the ordering of

actions when constructing the action graph. This graph can be converted to a computer-

readable format and used by other methods as a model for the tracing the steps of carrying

out a recipe.

The proposed model performs outstanding from other models. According to Sequential base-

line, our result is 4 points better than Kiddon’s result whose model is complicated and needs

more computational time. EM model [2] calculates probabilities of a word and tag pairs.

To handle this problem, before parsing directive ingredients which is more comfortable and

lighter is parsed. While parsing directive with PoS tagging, the tags of words related to the

ingredients are updated. Thus, this process reduces the processing time on the computer. The

recipes are labeled with a specific tag. Actions in the directive and similarity with actions

that do not have any ingredients in the sentence are found. After all these processes, action

graphs are generated, which are convertible and understandable by the computer.

To answer the research questions, the study shows that the supervised and rule-based hybrid

method is improved by stacking different NLP techniques like PoS tagging (Brown Corpus),

named entity recognition and lexical similarity that are trained with out-of-domain training

data for building recipe action graphs. Bi LSTM approach is a successful neural network

method for finding named entity recognition in ingredients rather than CRF based approach

in the cooking domain. On the other hand, parsing directive can be done with PoS tagging

and Collocation Finder. Because actions in the directive from a recipe can not be found,

and these actions sufficient to generate an action graph. Collocation Finder approach is a

way to find missing actions in the sentence of a directive. Word2Vec is an approach to find

relationships between actions to create action graphs. Generating action graph from a recipe

can be done with the help of word2Vec to find cosine similarity between actions in the vector

domain.

45



5.2. Future Research

Future work includes learning a more comprehensive model of locations (e.g., identifying

nested locations such as an oven and a pan in the oven), enriching action graphs with more

excellent semantic coverage (e.g., durations, tools, amounts), and training and evaluating on

more massive datasets. It is also planned to use the techniques to support related tasks, such

as instructional recipe generation.

Time words also are significant for actions. Time of action given from the sentence gives

more information about creating edges. If time words are found by the model, time-based

action graph can be producible.

Not only recipe texts are crawled, but also videos from recipes are collected. With the help

of this dataset, a model for generating action graph from videos to compare the results of the

model produced in this thesis can be created.

These techniques implemented in this study also can be used to support related tasks, such

as instructional recipe generation.

46



A APPENDIX RECIPE PARSER OUTPUTS

Table 1.1. Easy Whole Banana Muffins

No Direction

1
SENTENCE : preheat oven to 350 degrees f ( 175 degrees c ).
PRED : preheat
PARG : oven

2

SENTENCE : mix bananas , salad dressing , and sugar
in a large bowl until smooth.
PRED : mix
INGREDIENTS : bananas
INGREDIENTS : salad
INGREDIENTS : sugar
INGREDIENT SPAN : dressing sugar
PARG : bowl
NON INGREDIENT SPAN : in large bowl
DOBJ : dressing sugar

3

SENTENCE : stir flour , baking soda , and salt into
banana mixture until batter is just moistened.
PRED : stir
NON INGREDIENT SPAN VERB : until is
NON INGREDIENT SPAN VERB : moistened
INGREDIENTS : flour
INGREDIENTS : baking soda
INGREDIENTS : salt
INGREDIENTS : banana
INGREDIENT SPAN : into banana
DOBJ : into banana

4
SENTENCE : divide batter evenly into 24 muffin cups .
PRED : divide
PRED PREP : divide batter

5

SENTENCE :bake in the preheated oven until a toothpick inserted into the
center comes out clean, about 17 minutes.
PRED : bake
PRED PREP : bake in
NON INGREDIENT SPAN VERB : until inserted
NON INGREDIENT SPAN VERB : into the comes
PARG : oven
NON INGREDIENT SPAN : in the preheated oven

47



Figure 1.1. Action Graph Of Easy Whole Banana Muffins

48



Table 1.2. Napa Slaw

No Direction

1

SENTENCE : melt butter in a large skillet over medium heat
PRED : melt
INGREDIENTS : butter
PARG : skillet
NON INGREDIENT SPAN : in large skillet

2

SENTENCE : cook and stir sunflower kernels and ramen noodles in hot
butter until sunflower kernels are lightly browned and fragrant, 3 to 5 minutes .
PRED : cook
NON INGREDIENT SPAN VERB : are
NON INGREDIENT SPAN VERB : browned
INGREDIENTS : sunflower
INGREDIENT SPAN : until sunflower
INGREDIENTS : kernels
INGREDIENTS : sunflower kernels
INGREDIENTS : ramen noodles
INGREDIENTS : butter
INGREDIENT SPAN : in hot butter
DOBJ : until sunflower - in hot butter

3

SENTENCE : remove from heat and transfer into a bowl to cool .
PRED : remove
PRED PREP : remove from
NON INGREDIENT SPAN VERB : from transfer
NON INGREDIENT SPAN VERB : cool
INGREDIENTS : into
PARG : bowl
NON INGREDIENT SPAN : a bowl

4

SENTENCE : stir sunflower seeds and ramen noodles with napa cabbage
and spring onions in a large salad bowl .
PRED : stir
INGREDIENTS : sunflower
INGREDIENTS : ramen noodles
INGREDIENTS : cabbage
INGREDIENT SPAN : with napa cabbage
INGREDIENTS : spring onions
PARG : salad bowl
NON INGREDIENT SPAN : in salad bowl
PARG : bowl
DOBJ : with napa cabbage

49



Table 1.3. Napa Slaw(continue)

No Direction

5

SENTENCE : whisk vinegar , vegetable oil , sugar , and soy sauce together
in a separate bowl until sugar has dissolved
PRED : whisk
NON INGREDIENT SPAN VERB : has
NON INGREDIENT SPAN VERB : dissolved
INGREDIENTS : vinegar
INGREDIENTS : vegetable oil
INGREDIENTS : sugar
INGREDIENT SPAN : until sugar
INGREDIENTS : soy sauce
PARG : bowl
NON INGREDIENT SPAN : in separate bowl
DOBJ : until sugar

6
SENTENCE : pour dressing over salad and toss .
PRED : pour
NON INGREDIENT SPAN VERB : dressing

50



Figure 1.2. Action Graph Of Napa Slaw

51



Table 1.4. Taco Soup

No Direction

1

SENTENCE : in a medium stock pot brown beef and onion , about 10 minutes.
PRED : stock
INGREDIENTS : beef
INGREDIENT SPAN : brown beef
INGREDIENTS : onion
INGREDIENT SPAN : and onion
PARG : pot
DOBJ : brown beef - and onion

2
SENTENCE : drain grease if needed.
PRED : drain
NON INGREDIENT SPAN VERB : if needed

3

SENTENCE : add tomatoes , tomato sauce , water , beans , corn and taco
seasoning.
PRED : add
INGREDIENTS : tomato
INGREDIENTS : sauce
INGREDIENTS : water
INGREDIENTS : beans
INGREDIENTS : corn
INGREDIENTS : taco seasoning
INGREDIENT SPAN : and taco seasoning
DOBJ : and taco seasoning

4

SENTENCE : bring to boil , reduce heat and simmer for 5 minutes .
PRED : bring
PRED PREP : bring to
NON INGREDIENT SPAN VERB : boil
NON INGREDIENT SPAN VERB : reduce

5

SENTENCE : top with cheese , corn chips , sour cream and olives .
PRED : top
PRED PREP : top with
INGREDIENTS : corn
INGREDIENT SPAN : with cheese corn
DOBJ : with cheese corn

52



Figure 1.3. Action Graph Of Taco Soup

53



B APPENDIX, ALGORITHMS OF UPDATE TAGS

Algorithm 2: The Algorithm for Preparation of Directive
1: (ingredients, directive) = readDataFromCSVFile()
2: ingredientsNewTag = calculateTAGwithCRForLSTM(ingredients)
3: tokenizedDirective = tokenizeSentence(directive)
4: taggedDirective = calculateTagswithPartOfSpeechTagger(tokenizedDirective)
5: taggedDirective = updateTagAfterCRForLSTM(taggedDirective, ingredientsNewTag)

Input: tagged directive’s sentence list taggedDirective
Input: non ingredient sentence’s verb list default empty nonIngredientVerbs
Input: directive verb list verbs
Input: tool dictionary list toolList
Output: tagged directive sentences taggedDirective

6: for sentence ∈ taggedDirective do
7: for (word, tag) ∈ sentence do
8: if tag is NOUN or ADV and word ∈toolList then
9: update word tag to TOOL

10: end if
11: if tag is VERB then
12: push word→verbs
13: end if
14: end for
15: if sentence has a verb but does not have any ingredient tags then
16: push word→nonIngredientVerbs
17: end if
18: if sentence does not have any VERB tag then
19: find the most probable word which can be verb with collocation finder
20: update word tag to VERB
21: end if
22: end for

54



Algorithm 3: The Algorithm for After Preparation of Directive
Require: non ingredient sentence’s verb list nonIngredientVerbs
Require: directive verb list verbs

for sentence ∈ taggedDirective do
id is the number which holds the word’s order in the sentence
for (word, tag, id) ∈ sentence do

if tag is VERB, check pre tag and after tag if the tag is ADP or DET then
union words and push to newTaggedDirective

end if
if
tag is NAME, check pre tag and after tag if the tag is NUM, COMMENT, QTY, ADP, DET, UNIT
then

union words and push to newTaggedDirective
end if
if tag is TOOL, check pre tag and after tag if the tag is ADP, DET, NUM then

union words and push to newTaggedDirective
end if

end for
end for
data type of each object (word1, word2, similarity precision)
generateRelatedVerbList(nonIngredientV erbs,verbs)

55



REFERENCES

[1] Word2vec model image. https://rohanvarma.me/Word2Vec/. Ac-

cessed: 2018-01-17.

[2] C Kiddon, GT Ponnuraj, L Zettlemoyer, and Y Choi. Mise en place: Unsuper-

vised interpretation of instructional recipes. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 982–992.

2015.

[3] Our tagged ingredients data is now on github. https://open.blogs.

nytimes.com/author/erica-greene/. Accessed: 2018-01-17.

[4] Leonardo da vinci quotes. https://www.goodreads.com/quotes/

9010638-simplicity-is-the-ultimate-sophistication-when-once-you-have-tasted/.

Accessed: 2018-01-17.

[5] JD. Lafferty, A McCallum, and FCN Pereira. Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data. In Proceedings of

the Eighteenth International Conference on Machine Learning, ICML ’01, pages

282–289. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

ISBN 1-55860-778-1.

[6] IH Witten, E Frank, MA Hall, and CJ Pal. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2016.

[7] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s

negative-sampling word-embedding method, 2014. Cite arxiv:1402.3722.

[8] E Loper and S Bird. Nltk: The natural language toolkit. In Proceedings of the

ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics - Volume 1, ETMTNLP ’02,

pages 63–70. Association for Computational Linguistics, Stroudsburg, PA, USA,

2002. doi:10.3115/1118108.1118117.

[9] C Sutton, A McCallum, et al. An introduction to conditional random fields. Foun-

dations and Trends R© in Machine Learning, 4(4):267–373, 2012.

[10] Crf++. https://taku910.github.io/crfpp/. Accessed: 2018-07-23.

56

https://rohanvarma.me/Word2Vec/
https://open.blogs.nytimes.com/author/erica-greene/
https://open.blogs.nytimes.com/author/erica-greene/
https://www.goodreads.com/quotes/9010638-simplicity-is-the-ultimate-sophistication-when-once-you-have-tasted/
https://www.goodreads.com/quotes/9010638-simplicity-is-the-ultimate-sophistication-when-once-you-have-tasted/
https://taku910.github.io/crfpp/


[11] S Hochreiter and J Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[12] T Mikolov, I Sutskever, K Chen, GS Corrado, and J Dean. Distributed represen-

tations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119. 2013.

[13] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenom-

ena, 42:335–346, 1990. doi:10.1016/0167-2789(90)90087-6.

[14] David L Chen and Raymond J Mooney. Learning to interpret natural language

navigation instructions from observations. In Learning to Interpret Natural Lan-

guage Navigation Instructions from Observations. 2011.

[15] M Javad Hosseini, H Hajishirzi, O Etzioni, and N Kushman. Learning to solve

arithmetic word problems with verb categorization. In EMNLP, pages 523–533.

2014.

[16] S Mori, H Maeta, Y Yamakata, and T Sasada. Flow graph corpus from recipe

texts. In LREC, pages 2370–2377. 2014.

[17] J Jermsurawong and N Habash. Predicting the structure of cooking recipes. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 781–786. 2015.

[18] Linear svm rank. https://www.cs.cornell.edu/people/tj/svm_

light/svm_rank.html#References/. Accessed: 2019-05-12.

[19] J Malmaud, E Wagner, N Chang, and K Murphy. Cooking with semantics. In

Proceedings of the ACL 2014 Workshop on Semantic Parsing, pages 33–38. 2014.

[20] A Salvador, N Hynes, Y Aytar, J Marin, F Ofli, I Weber, and A Torralba. Learn-

ing cross-modal embeddings for cooking recipes and food images. Training,

720(619-508):2, 2017.

[21] R Kiros, Y Zhu, RR Salakhutdinov, R Zemel, R Urtasun, A Torralba, and S Fidler.

Skip-thought vectors. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

and R. Garnett, editors, Advances in Neural Information Processing Systems 28,

pages 3294–3302. Curran Associates, Inc., 2015.

57

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References/
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References/


[22] E Bertini, N Elmqvist, and T Wischgoll. Classic techniques in new domains: An

alternative recipe. Eurographics Conference on Visualization, 2016.

[23] V Nedovic. Learning recipe ingredient space using generative probabilistic mod-

els. In Proceedings of Cooking with Computers Workshop (CwC), volume 1,

pages 13–18. 2013.

[24] Standford dependency parser documentation. https://nlp.stanford.

edu/software/nndep.shtml/. Accessed: 2018-07-23.

[25] Recipe 1 m. http://pic2recipe.csail.mit.edu/. Accessed: 2018-

01-17.

[26] Food 101 dataset. http://visiir.lip6.fr/explore. Accessed: 2018-

01-17.

[27] KM Hermann, T Kocisky, E Grefenstette, L Espeholt, W Kay, M Suleyman, and

P Blunsom. Teaching machines to read and comprehend. In Advances in Neural

Information Processing Systems, pages 1693–1701. 2015.

[28] Keras documentation. https://keras.io/. Accessed: 2018-07-23.

[29] JPC Chiu and E Nichols. Named entity recognition with bidirectional lstm-cnns.

arXiv preprint arXiv:1511.08308, 2015.

[30] I Goodfellow, Y Bengio, and A Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[32] MD Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[33] T Tieleman and G Hinton. Lecture 6.5-rmsprop: Divide the gradient by a run-

ning average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31, 2012.

[34] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages 532–

538. Springer US, Boston, MA, 2009. ISBN 978-0-387-39940-9. doi:10.1007/

978-0-387-39940-9 565.

58

https://nlp.stanford.edu/software/nndep.shtml/
https://nlp.stanford.edu/software/nndep.shtml/
http://pic2recipe.csail.mit.edu/
http://visiir.lip6.fr/explore
https://keras.io/
http://www.deeplearningbook.org


[35] Graph. https://xlinux.nist.gov/dads/HTML/graph.html. Ac-

cessed: 2018-07-23.

[36] Graphviz documentation. https://www.graphviz.org/about/. Ac-

cessed: 2018-07-23.

59

https://xlinux.nist.gov/dads/HTML/graph.html
https://www.graphviz.org/about/




CURRICULUM VITAE

Credentials

Name,Surname: Mehmet ÖZGEN

Place of Birth: Manisa, Turkey

Marital Status: Single

E-mail: ozgenmehmett@gmail.com

Address: Computer Engineering Dept., Hacettepe University

Beytepe-ANKARA

Education
BSc. : Electronic Engineering Dept., Turkish Airforce Academy, Turkey

MSc. : Computer Engineering Dept., Hacettepe University, Turkey

Foreign Languages
English

Work Experience
Electronic Engineer at 3rd Main Maintenance Base (2012-2015)

Software Engineer at Havelsan(...) (2015-Present)

Areas of Experiences
NLP, Machine Learning, Text Mining,

Unsupervised Learning, Semi-supervised Learning

Project and Budgets
-

Oral and Poster Presentations
Mapping Recipe Instructions to Action Graph, BYOYO2017

60



PUBLICATIONS

”Mapping Recipe Instructions to Action Graph” Tubitak Electrical and Computer Science

Journal, Manuscript Code:ELK-1908-111, Status : In Review , 2019.

61


	ABSTRACT
	ÖZET
	ACKNOWLEDGMENTS
	CONTENTS
	FIGURES
	TABLES
	1. INTRODUCTION
	1.1. Overview
	1.2. Motivation
	1.3. Research Questions
	1.4. Thesis Structure

	2. BACKGROUND AND RELATED WORK
	2.1. Background
	2.2. Related Work

	3. METHODOLOGY AND IMPLEMENTATION
	3.1. Ingredient Parsing
	3.2. Directive Parsing
	3.3. Recipe Parsing
	3.4. Action Graph Generation

	4. EXPERIMENTAL ANALYSIS
	4.1. Datasets
	4.2. Evaluation Metrics
	4.3. Experiments
	4.4. Error Analysis

	5. CONCLUSION
	5.1. Conclusion
	5.2. Future Research

	A APPENDIX RECIPE PARSER OUTPUTS
	B APPENDIX, ALGORITHMS OF UPDATE TAGS
	REFERENCES



