SEYİTGAZİ (ESKİŞEHİR) VE ILICA, KÖPRÜÖREN (KÜTAHYA) ÇEVRESİNDE YER ALAN BAZALTİK BİLEŞİMLİ LAVLARIN JEOKİMYASI VE MANTO KAYNAK KARAKTERİSTİĞİ

GEOCHEMISTRY AND MANTLE SOURCE CHARACTERISTICS OF BASALTIC LAVAS SITUATED IN SEYİTGAZİ (ESKİŞEHİR) AND ILICA, KÖPRÜÖREN (KÜTAHYA)

DİHAK ASENA ÇÖMEZ

DOÇ. DR. BİLTAN KÜRKCÜOĞLU Tez Danışmanı

Hacettepe Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin Jeoloji Mühendisliği Anabilim Dalı için öngördüğü YÜKSEK LİSANS TEZİ olarak hazırlanmıştır.

DİHAK ASENA ÇÖMEZ'in hazırladığı "SEYİTGAZİ (ESKİŞEHİR) VE ILICA, KÖPRÜÖREN (KÜTAHYA) ÇEVRESİNDE YER ALAN BAZALTİK BİLEŞİMLİ LAVLARIN JEOKİMYASI VE MANTO KAYNAK KARAKTERİSTİĞİ" adlı bu çalışma aşağıdaki jüri tarafından JEOLOJİ ANABİLİM DALI'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Doç. Dr. Kaan SAYIT Başkan

Muy

Doç. Dr. Biltan KÜRKCÜOĞLU Danışman

Prof Dr. Abidin TEMEL Üye

Prof. Dr. Tekin YÜRÜR Üye

Doç. Dr. H. Evren ÇUBUKÇU Üye

and annul

Bu tez Hacettepe Üniversitesi Fen Bilimleri Enstitüsü tarafından YÜKSEK LİSANS TEZİ olarak onaylanmıştır.

Prof. Dr. Menemşe GÜMÜŞDERELİOĞLU

Fen Bilimleri Enstitüsü Müdürü

YAYINLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI

Enstitü tarafından onaylanan lisansüstü tezimin/raporumun tamamını veya herhangi bir kısmını, basılı (kağıt) ve elektronik formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma iznini Hacettepe üniversitesine verdiğimi bildiririm. Bu izinle Üniversiteye verilen kullanım hakları dışındaki tüm fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da bir bölümünün gelecekteki çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hakları bana ait olacaktır.

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin tek yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı bulunan ve sahiplerinden yazılı izin alınarak kullanması zorunlu metinlerin yazılı izin alarak kullandığımı ve istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt ederim.

- Tezimin/Raporumun tamamı dünya çapında erişime açılabilir ve bir kısmı veya tamamının fotokopisi alınabilir.
 (Bu seçenekle teziniz arama motorlarında indekslenebilecek, daha sonra tezinizin erişim statüsünün değiştirilmesini talep etseniz ve kütüphane bu talebinizi yerine getirse bile, tezinin arama motorlarının önbelleklerinde kalmaya devam edebilecektir.)
- Tezimin/Raporumun- 01/09/2020 tarihine kadar erişime açılmasını ve fotokopi alınmasını (İç Kapak, Özet, İçindekiler ve Kaynakça hariç) istemiyorum. (Bu sürenin sonunda uzatma için başvuruda bulunmadığım taktirde, tezimin/raporumun tamamı her yerden erişime açılabilir, kaynak gösterilmek şartıyla bir kısmı ve ya tamamının fotokopisi alınabilir)
- □ Tezimin/Raporumun tarihine kadar erişime açılmasını istemiyorum, ancak kaynak gösterilmek şartıyla bir kısmı veya tamamının fotokopisinin alınmasını onaylıyorum.
- □ Serbest Seçenek/Yazarın Seçimi

03/07/2018

Dihak Asena ÇÖMEZ

Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında,

• tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,

• görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,

• başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,

- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,
- kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- ve bu tezin herhangi bir bölümünü bu üniversitede veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

3102/FOI2

DİHAK ASENA ÇÖMEZ

ÖZET

SEYİTGAZİ (ESKİŞEHİR) VE ILICA, KÖPRÜÖREN (KÜTAHYA) ÇEVRESİNDE YER ALAN BAZALTİK BİLEŞİMLİ LAVLARIN JEOKİMYASI VE MANTO KAYNAK KARAKTERİSTİĞİ

Dihak Asena Çömez

Yüksek Lisans, Jeoloji Mühendisliği

Tez Danışmanı, Doç. Dr. Biltan Kürkçüoğlu

Haziran 2018, 84 sayfa

Bu tez çalışmasında, Eskişehir ilinin güneyinde bulunan Seyitgazi ilçesi ve çevresinde yer alan bazaltik lavlar ile Kütahya ilinin Ilıca ve Köprüören ilçeleri ve çevrelerinde yer alan bazaltik lavların jeokimyasal özelliklerinin belirlenmesi, oluşumu ile gelişimi sırasında etkili olan jeokimyasal süreçler tanımlanarak, türedikleri kabuk ve/veya manto kaynak bileşenlerinin belirlenmesi amaçlanmıştır.

Örnekler hem alkali hem subalkali karaktedirler ve bazaltiktrakiandezit, bazaltikandezit, trakiandezit ve andezit olarak sınıflandırılmıştır. Mineraloji ve petrografi incelemeleri sonucunda örneklerin plajiyoklaz, olivin, klinopiroksen, ortopiroksen ve Fe-Ti oksit minerallerinden oluştuğu belirlenmiştir. Örneklerin hesaplanan sıcaklık değerleri 1055-1223 ^oC aralığında, derinlik değerleri ise 25-12 km aralığında değişmektedir ve basınç değeri 12 kbar'dır.

Primitif manto ile normalize edilmiş çoklu element diyagramına göre Seyitgazi örneklerinin LIL elementler bakımından, HFS elementlerine göre zenginleşme gösterdikleri, Ta, Nb, P, Ti elementlerinde hafif negatif anomalilere sahip oldukları, Ilıca ve Köprüören örneklerinin ise LIL elementlerce Seyitgazi örneklerine benzer bir trend göstermekle birlikte, HFS elementlerinde fakirleşme ve Pb elementinde zenginleşme ile Seyitgazi örneklerinden ayrıldıkları belirlenmiştir. Örnekler düşük Nb/La, yüksek Ba/Nb, düşük Zr/Ba ve yüksek Ba/La oranlarına sahiplerdir. Bu oranlar dalma-batma ve/veya kabuksal kirlenme süreçlerinden etkilenmiş litosferik bir kaynağı işaret etmektedir.

Ayrıca Ilıca ve Köprüören örnekleri yüksek La/Yb(N) oranlarına sahipken Seyitgazi örnekleri de daha yüksek La/Yb(N) oranları ile temsil edilmektedir, ayrıca Seyitgazi örneklerinin Tb/Yb(N) oranları 2.2-2.24 aralığında Ilıca ve Köprüören örneklerinin Tb/Yb(N) oranları ise 1.5-1.78 arasında değişim göstermektedir.

Eldeki tüm verileri değerlendirilmesi ile, bazaltik kayaçların, farklı dereceki kısmı ergimeler ile birlikte litosferik malzemelerin katkısı ile oluşabileceği gibi, zaman içersinde manto kaynak bileşeninde meydana gelebilecek değişimlerde bu gelişime neden olabileceği düşünülmektedir.

Anahtar Kelimeler: Bazalt, iz elementler, jeotermometre, jeobarometre, Orta-Batı Anadolu

ABSTRACT

GEOCHEMISTRY AND MANTLE SOURCE CHARACTERISTICS OF BASALTIC LAVAS SITUATED IN SEYİTGAZİ (ESKİŞEHİR) AND ILICA, KÖPRÜÖREN (KÜTAHYA)

Dihak Asena Çömez

Master of science, Geological Engineering

Supervisor: Assoc. Prof. Biltan Kürkcüoğlu

June 2018, 84 pages

This thesis aims to determine the geochemical properties of the basaltic rocks which are situated in Seyitgazi (Eskişehir) and Ilıca, Köprüören (Kütahya) region and the mantle or crustal sources from which they are derived, and also the geochemical processes effective throughout its evolutionary history.

Samples have both alkaline and sub-alkaline nature and they are classified as basaltictrachyandesite, basalticandesite, trachyandesite and andesites. As a result of mineralogical studies, it was determined that the samples contained plagioclase, olivine, clinopyroxene, orthopyroxene and Fe- Ti oxide minerals. The calculated temperature values of the samples are in the range of 1055-1223 ⁰C and the depth values are in the range of 25-12 km and the pressure value is 12 kbar.

The primitive mantle normalised multi-element patterns of Seyitgazi basaltic rocks show enrichments in the LILE, relative to the HFS elements and have slightly negative Ta, Nb, P, Ti anomalies whereas Ilica samples display the LIL element signature which is similar to Seyitgazi samples but distinct from them with the depletion of HFS elements and the enrichments in Pb contents. Samples have low Nb/La, Nb/U and high Ba/Nb, low Zr/Ba and high Ba/La ratios. This ratios suggest that basaltic rocks were derived from a lithospheric source(s) affected by subduction and lithospheric contributions.

Moreover, Ilıca and Köprüören samples have high La/Yb(N) content whereas Seyitgazi lavas are represented by higher La/Yb(N) ratios. Tb/Yb(N) ratios of Seyitgazi and Ilıca, Köprüören samples range between 2.2-2.24 and 1.5-1.78 respectively.

All these geochemical features suggest that basaltic rocks are originated from either the combined effects of the different degrees of melting in source region with the significant amount of lithospheric contributions or change in the nature of the source in time.

Keywords: Basalt, trace elements, geothermometer, geobarometer, Central-Western Anatolia

iv

TEŞEKKÜR

Tez çalışmamın her aşamasında her türlü desteğini esirgemeyen, bilgi ve deneyimlerini benimle paylaşan, eleştirileri ile beni yönlendiren danışman hocam Sayın Doç. Dr. Biltan KÜRKCÜOĞLU'na,

Arazi çalışmalarıma eşlik eden, bilgi ve deneyimlerini benimle paylaşan, yapıcı eleştirileri ile katkıda bulunan Sayın Prof. Dr. Tekin YÜRÜR'e

Mikroprob analizlerimi gerçekleştirmemde yardımcı olan eleştirileri ile katkıda bulunan Sayın Doç. Dr. H. Evren ÇUBUKÇU'ya

Yapıcı eleştirileri ile tezime katkıda bulunan Sayın Prof. Dr. Abidin TEMEL ve Sayın Doç. Dr. Kaan SAYIT'a

Mikroprob analizlerimi değerlendirme aşamasında beni yönlendiren bilgi ve birikimlerini esirgemeyen her soruma büyük bir sabırla cevap veren Sayın Dr. Deniz Güllü KÜLAHÇI'ya

Laboratuar çalışmaları sırasında yardımları ile destek olan Araştırma Görevlisi Sayın Caner DİKER'e

Tezimin başlangıcından itibaren her konuda beni destekleyen değerli Araştırma Görevlisi Sayın Yağmur İNAL EMİROĞLU'na,

Tez döneminde beni destekleyen değerli arkadaşım Banu KORKMAZ'a

Hayatım boyunca desteklerini maddi manevi esirgemeyen çok sevdiğim annem Ayşe ÖNDER, babam H. Hüseyin ÖNDER ve abim Yusuf Tuğbay ÖNDER'e

Hep yanımda olan sevgili eşim Serhat Sami ÇÖMEZ'e

Çok teşekkür ederim.

ÖZET	i
ABSTRACT	iii
TEŞEKKÜR	v
İÇİNDEKİLER	vi
ŞEKİLLER DİZİNİ	viii
ÇİZELGELER	x
KISALTMALAR	xi
1. GİRİŞ	1
1.1. Çalışmanın Amacı	1
1.2. Çalışma Alanı	1
1.3. Önceki Çalışmalar	3
1.4. Laboratuvar Çalışmaları ve Analitik Yöntemler	7
2. GENEL JEOLOJİ	9
2.1. Stratigrafi	9
3. MİNERALOJİ-PETROGRAFİ	13
3.1. Mineral Kimyası	17
3.1.1. Feldispat Mineralleri	17
3.1.2. Piroksen Mineralleri	19
3.1.3. Olivin Mineralleri	20
3.2. Sıcaklık ve Basınç Hesaplamaları	22
3.2.1. Kristal-Eriyik Dengesi	22
3.2.1.1. Olivin – Tüm kayaç Dengesi	22
3.2.1.2. Klinopiroksen – Tüm kayaç Dengesi	23

İÇİNDEKİLER

3.2.1.3. Feldispat – Tüm kayaç Dengesi	24
3.3.Jeotermometre ve Jeobarometre Hesaplamaları	25
3.3.1. Olivin-Eriyik Jeotermometresi	25
3.3.2. Klinopiroksen-Eriyik Jeotermometresi	26
3.3.3. Plajiyoklaz-Eriyik Jeotermometresi	26
4. JEOKİMYA	28
4.1. Ana Element Jeokimyası	28
4.2. İz ve Nadir Toprak Element Jeokimyası	31
5. TARTIŞMA	44
5.1. Fraksiyonel Kristalleşme	44
5.2 Kabuksal Kirlenme	45
5.3. Manto kaynak karakteristiği ve kısmi ergime	48
5.4 Tektonizma	50
5.4.1. Eskişehir Fay Zonu	51
6. SONUÇLAR	52
7. KAYNAKLAR	54
EKLER	66
ÖZGEÇMİŞ	84

ŞEKİLLER DİZİNİ

Şekil 1. 1. Çalışma alanının yer bulduru haritası
Şekil 2. 1. Çalışma alanının genelleştirilmiş stratigrafik istifi 10
Şekil 2. 2. Ilıca bölgesinde bazaltlar 11
Şekil 2. 3. Çalışma bölgesinin Jeoloji Haritası (1/500.000 ölçekli Türkiye Jeoloji haritasından sadeleştirilerek) 12
Şekil 3. 1. A; ES2016-7 lav örneğine ait plajiyoklaz, klinopiroksen, olivin mineralleri ve glomeroporfirik doku I. Nikol (a), II. Nikol (b) görüntüsü. B; ES2016-7 lav örneğinin plajiyoklaz, klinopiroksen mineralleri ve glomeroporfirik doku I. Nikol (a), II. Nikol (b) görüntüsü. C; ES2016-2 lav örneğinin plajiyoklaz, olivin minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü (ol: olivin; plj: plajiyoklaz; kpr: klinopiroksen)
Şekil 3. 2. A; ES2016-7 lav örneğinin olivin, plajiyoklaz minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü, iddingisitleşme görülmektedir. B; ES2016-10 lav örneğinin olivin, plajiyoklaz minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü, iddingisitleşme görülmektedir (ol: olivin; plj: plajiyoklaz)
Şekil 3. 3. ES2016-7 lav örneğinin klinopiroksen mineralinin I. Nikol, II. Nikol görüntüsü (Kpr: klinopiroksen)
Şekil 3. 4. ES2016-7 lav örneğinin ortopiroksen mineralinin I. Nikol, II. Nikol görüntüsü (Opr: ortopiroksen)
Şekil 3. 5. Mineral analiz sonuçlarına göre oluşturulan feldispat diyagramları (Ab: Albit, An: Anortit, Or: Orbit)
Şekil 3. 6. Mineral analiz sonuçlarına göre oluşturulan piroksen diyagramları (Morimoto, 1989). (En: Enstatite, Wo: Wollastonite, Fs: Ferrosillite)
Şekil 3. 7. Mineral analiz sonuçlarına göre oluşturulan olivin diyagramları (Fo: Forsterit, Tp: Tefroyit, Fa: Fayalit)
Şekil 3. 8. Olivin-eriyik Fe/Mg denge diyagramı
Şekil 3. 9. Mg # (Tüm kayaç)'a karşı Mg # Klinopiroksen diyagramı 24
Şekil 3. 10. Feldspat-eriyik dengesi. (a) plajiyoklaz-eriyik dengesi 25

Şekil 4. 1. Toplam Alkali (%diyagramı Na ₂ O+K ₂ O) – Silis diyagramı [83]. Alkali-subalkali ayrım çizgisi [84]. Tp: Tefrit, Tb: Trakibazalt, Bta: Bazaltik trakiandezit, Ba: Bazaltikandezit, Ta: Trakiandezit, A: Andezit, D: Dasit, R: Riyolit)
Şekil 4. 2. Örneklerin AFM diyagramı 30
Şekil 4. 3. Örneklerin SiO ₂ - ana element diyagramları
Şekil 4. 4. Örneklerin SiO ₂ - iz element diyagramları
Şekil 4. 5. Örneklerin ilksel mantoya göre normalize edilmiş spider diyagramları
Şekil 4. 6. Seyitgazi örneklerinin ilksel mantoya göre normalize edilmiş spider diyagramları
Şekil 4. 7. Ilıca ve Köprüören örneklerinin ilksel mantoya göre normalize edilmiş spider diyagramları
Şekil 4. 8. Nadir toprak element diyagramı 40
Şekil 4. 9. Seyitgazi Köprüören örneklerinin nadir toprak element diyagramları
Şekil 4. 10. Ilıca ve Köprüören örneklerinin nadir toprak element diyagramları
Şekil 5. 1. Nb/Y - Th/Y diyagramı46
Şekil 5. 2. Ba/La - Nb/La diyagramı47
Şekil 5. 3. Tb/Yb(N)-La/Yb(N) diyagramı50

ÇİZELGELER

Çizelge 2. 1. Örneklerin koordinatları 12
Çizelge 3. 1. Örneklerin sıcaklık, basınç ve derinlik sonuçları27
Çizelge 4. 1. Bazaltik lav örneklerinin ana, iz, nadir toprak element analiz sonuçları
Çizelge 4. 2. Örneklerin uyumsuz iz element oranları

KISALTMALAR

К	Kuzey
G	Güney
D	Doğu
В	Batı
C°	Santigrad
Km	Kilometre
Kbar	Kilobar

1. GİRİŞ

1.1. Çalışmanın Amacı

Bu tez çalışmasında, Eskişehir ilinin güneyinde bulunan Seyitgazi ilçesi ve çevresinde yer alan bazaltik lavlar ile Kütahya ilinin Ilıca ve Köprüören ilçeleri ve çevrelerinde yer alan üzerlerinde günümüze kadar jeokimyasal bir çalışma gerçekleştirilmemiş olan bazaltik lavlar üzerinde çalışılmıştır. Eskişehir ilinin güneyinde ve kuzeybatısında yer alan genellikle bazaltik bileşimli magmatizma ve beraberinde bulunan piroklastik kayaçlar üzerinde detaylı jeokimyasal çalışmalar Telsiz [1] tarafından gerçekleştirilmiştir, bu çalışma alanının güneyinde ve kuzeybatısında bulunan bazaltik birimler üzerinde herhangi bir veri bulunmamaktadır. Bu çalışma ile yukarıda belirtilen lokasyonlardan alınan örnekler üzerinde gerçekleştirilen analizler ile bazaltik kayaçların jeokimyasal karakteri, oluşumu ile gelişimi sırasında etkili olan jeokimyasal süreçler tanımlanarak, türedikleri kabuk ve/veya manto kaynak bileşenlerinin belirlenmesi amaçlanmıştır.

1.2. Çalışma Alanı

Çalışma alanı, Eskişehir ilinin güneyinde Seyitgazi ilçesi ve çevresinde yer alan bazaltik lavlar ile yaklaşık KB-GD doğrultulu hat üzerinde Kütahya ili Ilıca ve Köprüören çevresinde bulunan bazaltik lavları kapsamaktadır. Çalışma alanı 1/100.000 ölçekli İ23, İ24 ve J25 paftalarında yer almaktadır (Şekil 1.1).

Şekil 1. 1. Çalışma alanının yer bulduru haritası [2].

1.3. Önceki Çalışmalar

Çalışma bölgesi, Orta Anadolu'nun batı kesimi ile Batı Anadolu arasında bir geçiş alanı özelliği taşıdığı düşüncesi ile her iki bölgeye ait önceki çalışmalar özetlenmeye çalışılmıştır.

Çalışma bölgelerinde günümüze kadar, bölgenin jeolojik evrimini, bölgenin yakın çevresinde yer alan volkanik kayaçların özelliklerini, tektonik gelişimini ele alan birçok çalışma gerçekleştirilmiştir. Anadolu, Permiyen'de Gondvana'nın bir parçası idi [3], [4], [5]. Geç Triyas'da riftleşmesi, Gondvana'nın Kimmeriyen Kıtası'nın Neotetis ve Okyanusunun oluşumunu başlatmıştır. Erken Jura'da Kimmeriyen'in riftleşmesi Neotetis'in iki kolu arasında Anatolit-Torid kuşağının oluşmasına neden olmuştur [3]. Bunu takiben, Orta Jura'da Kimmeriyen Kıtası ve Avrasya Kıtası'nın çarpışması, bölgesel yükselme ve Paleotetis Okyansu'nun kapanmasına sebep olmuştur [6]. Gec Kretase'den Paleosen'e devam eden Neotetis plakasının kuzey eğimli dalma-batma hareketi ile Pontid yayı oluşmuş [6], Neotetis okyanusunun kuzeye eğimli dalma-batma hareketi ile bu okyanusun Avrasya ve Arap plakaları'nın Miyosen'de çarpışmasına kapanması, neden olmuştur [7], [3]. Bu çarpışma sonucu, Anadolu Bloğu üzerinde Miyosen-Kuvaterner aralığında önemli yapısal değişimler Neotektonik olarak adlandırılan yeni bir tektonik gerçekleşmiştir. dönemi başlatmıştır, Anadolu Bloğu, kuzeyde sağ yanal doğrultu atımlı Kuzey Anadolu Fayı ve doğuda sol yanal doğrultu atımlı Doğu Anadolu Fayı ile sınırlanmıştır [8], [9], [10], [11]. Avrasya ve Afrika levhasının çarpışması Doğu Anadolu'da Orta-Geç Miyosen'de kıta kabuğunun kalınlaşıp kısalmasına sebep olmuştur [7], [3], [12], [13], [14]. Anadolu Bloğu'nun batıya doğru olan hareketinin, bu çarpışma sonucunda gerçekleştiği düşünülmekle [8], [9], [10], [11] birlikte, Ege yayının güneybatıdan çekilerek güneye ilerlemesinden kaynaklandığı yönündeki diğer bir görüş ile de açıklanmaya çalışılmıştır [15].

Batı Anadolu'da, çarpışma sonrasında Geç Eosen'den itibaren yoğun volkanik aktiviteler yer almıştır, Batı Anadolu'nun Geç Senozoik volkanikleri, orojenik süreçlerin etkisi ile önce kalınlaşmış daha sonra ise incelmiş kıtasal kabukta yer almışlardır [4], [16]. Batı Anadolu'da Senozoyik volkanizması, K-G doğrultulu sıkışma rejiminin K-G genişleme rejimine yer bırakması ile Erken Miyosen'de asit-ortaç kalkalkali karakterden, Geç Miyosen'de baskın mafik özellikte alkali karaktere geçiş göstermektedir [17], [18], [19], [20]. Batı Anadolu'da volkanik kayaçların kökeni üzerinde çalışan Güleç [18] kalkalkali karakterdeki kayaçların sıkışma rejimi sırasında büyük ölçüde kabuksal kirlenmeye maruz kalmış ve sığ mantodan oluştuğunu, alkali karakterdeki kayaçların litosferin incelmesi esnasında daha derin ve izotopik olarak tüketilmiş bir kaynaktan geldiğini belirtirken; Seyitoğlu vd. [21], [22] ise kalkalkalin kayaçların önceki dalma-batma sürecinin katkısı ile uyumsuz elementlerce zenginleşmiş metasomatize litosferik bir mantodan türediği önermiştir. Ersoy vd. [23] da bölgedeki şoşonitik ultrapotasik ve yüksek K içerikli kalkalkalin kayaçların aslında ilksel manto benzeri jeokimyasal özellikler gösteren litosferik bir mantodan türediğini ve bu kaynağın dalma-batma bileşenleri ile metasomatize olduğunu belirtmiştir. Ayrıca Seyitoğlu vd. [21], [22], [24], bölgedeki açılmanın Geç Oligosen-Erken Miyosen (20-24Ma) aralığında başladığını belirterek volkanizmanın bu farklı kimyasal ve izotopik özelliklerini genişlemeli tektonik rejimin etkisinde litosferdeki incelme ile astenosferin yukarı hareketi yönünde değerlendirmiştir. Güleç [18] ise volkanik kayaçların kimyasal ve izotopik bileşiminde gözlemlenen farklılıkları, sıkışmalı rejimden genişlemeli rejime yönelmenin getirisi olarak yorumlanmıştır. Subalkalin volkanitlerden alkalin volkanitlere jeokimyasal açıdan incelendiğinde açılma ile kabukta geçerken incelmeye bağlı olarak kabuksal kirlenmenin ve asimilasyonun etkisi azalmış ve en genç alkalin volkanitler zenginleşmiş astenosferik bir kaynaktan, kabuksal kirlenme ya da asimilasyon etkisinde kalmadan gelişmiştir [25]. Batı Anadolu volkanizması, majör-iz element ve

izotopik karakterlerine ve yaş ayrımlarına dayanılarak Erken-Orta Miyosen yaşlı kalkalkalin ve şoşonitik lavlar (21.3-15.2), Geç Miyosen yaşlı alkalin kayaçlar (11.4-8.3) olarak iki farklı grupta sınıflandırılmıştır [4]. Aldanmaz vd. [4], alkali bazalt ve bazanitlerin kaynak bölgesinin alkali dalma-batma içeriği taşımadığını, karakterdeki magmanın kabuksal kirlenme sürecine maruz kalmadığını ve Geç-Miyosen alkalın kayaçların aynı kaynaktan türemediğini belirtmiştir. Diğer taraftan, Alıcı vd. [26] Kula'da bulunan Kuvaterner yaşlı volkanik kayaçların genişleme rejimi ile ilişkili alkali volkanizmanın iyi bir örneği olduğunu belirtmiştir. Kula volkaniklerinin kaynağı için Güleç [18] ve Seyitoğlu ve Scott [21] sadece astenosferi önerirken Alıcı vd. [25] iki farklı kaynak bileşenini önermektedir. Araştırmacılar başlıca OIB-benzeri astenosferik manto kaynağının yanında az miktarda litosferik kaynak bileşenlerinin bulunduğunu savunmaktadır. Diğer taraftan, Innocenti vd. [27] Miyosen'den günümüze Batı Anadolu'da volkanizmayı kalkalin-şoşonitik (21-16 Ma), lamproyitik ve OIB tipi magmalar ile tanımlamıştır. Kalkalkalin ve şoşonitik birleşiminde kayaçlar heterojen manto kaynağı; ultrapotasik ve lamproyitik kayaçlar filogopitik litosferik kaynağı, Kula volkanikleri ise OIB tipi kökeni göstermektedir [27].

Erkül vd. [19], Bigadiç'te yaptığı çalışmalar ile Batı Anadolu'nun tektonik rejimini yorumlamıştır ve bölgedeki alkali volkanik kayaçların yaşının 19.7-0.4 Ma olduğunu ve Batı Anadolu'daki K-G açılma rejimi ile direk ilişkisini belirtmiştir. Batı Anadolu'da Tersiyer açılma tektonizmasının ilk evresi Erken Miyosen'den önce başlayan Menderes Çekirdek Kompleksi'nin kuzey kesimindeki açılma tektonizması olduğu belirtilmiştir [28]. Çoban [29] Batı Anadolu'yu sismik açıdan aktif ve genişleyen kıtasal bir bölge olarak belirtmiştir.

Diğer taraftan, Orta Anadolu'da Erken-Orta Miyosen aralığında geniş çapta volkanizma gelişmiştir [7], [3], [11]. Orta Anadolu'da Erciyes, Hasandağ gibi Stratovolkanların yanısıra, monojenetik çıkış merkezleri (Hasandağ güneyi monojenetik yapılar, Karapınar, Eğrikuyu, Erkilet) ile

akma bazaltları şeklinde (Sivas Güneyi) yaygın magmatik faaliyet görülmektedir. Erciyes, Hasandağ strato volkanları, monojenetik çıkış merkezleri üzerinde gerçekleştirilen çalışmalarda Orta Anadolu'daki Kuvaterner yaşlı alkalin ve kalkalkalin volkanizmalarının oluşumları ile gelişimlerinde etkili olan jeodinamik süreçleri değerlendirilmiştir [30], [31], [32], [33], [34], [35], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46].

Bölgede Geç Miyosen-Kuvaterner aralığında, özellikle Kapadokya bölgesinde yer alan stratovolkanların gelişiminde dalma-batma ile ilişkili süreçlerin varlığına işaret edilirken [30], [31], [13], Kapadokya bölgesindeki volkanizmanın kıta içi aktivite ile ilişkili olduğu belirtilmiştir [47], [34], [36], [36], [38]; [39]. Erciyes ve Hasandağ stratovolkanları, büyük oranda andezitik lavlar ile temsil edilmekle birlikte, volkanik gelişimin farklı evrelerinde toleyitik ve kalkalkali bazaltlar bulunmaktadır [34], [36], [42], [38] ve her iki stratovolkanının son evrelerinde ise alkali bazaltlara rastlanılmaktadır [36], [37], [42]. Hasandağ volkanik sisteminde bazaltik ürünlerin dalma-batma ya da kabuksal kirlenme ile zenginleşmiş bir üst manto kaynağından türediği ileri sürülmektedir [42].

İlbeyli vd. [48], Orta Anadolu'da birçok volkanik faaliyet ile birlikte gözlemlenen alkali ve kalkalkalin magmatizmanın, Orta Anadolu'nun altında bulunan manto kaynağının çarpışma öncesinde heterojen olduğunu ve magmanın önceki dalma-batma etkisinin de görüldüğü zenginleşmiş kaynaktan türediğini önermekle birlikte, Alıcı Şen vd. [40] Orta Anadolu volkanizmasının, eski bir dalma-batma'nın etkilerinin görüldüğü litosferik manto kaynağından türediği belirtmekte, bununla birlikte Güçtekin ve Köprübaşı [49] bu volkanik ürünlerin metasomatize bir manto kaynağından kısmi ergimeler ile oluştuğunu olmuş önermektedir. Kürkçüoğlu vd. [38] kalkalkali magmaların fakirleşmiş ve zenginleşmiş astenosferik kaynakların kısmi ergimesi ile ilişkili olduğunu ileri sürmüştür ve Kürkçüoğlu [39] kalkalkali lavlar ise kısmı ergime ve

AFC süreçlerinin etkisi altında gelişmişlerdir. Dogan-Kulahcı vd. [50] alkali ve kalkalkali karakterdeki magmatizmanın eş zamanlı ve farklı kaynak magmalarından geliştiğini belirtmiştir. Temel vd. [13], Miyosen'den Kuvaterner'e ignimbiritlerin düşen ⁸⁷Sr/⁸⁶Sr değerleri sıkışmalı tektonik rejimden açılma tektonik rejimine geçişi ile alakalı olabileceğini belirtmiştir.

Temel vd. [51], Çamlıdere bölgesinde alkali ve kalkalkali özellikteki volkanik kayaçların fraksiyonel kristalleşme ile kabuksal kirlenme ve/veya dalma-batma sürecinin etkisi altında olduğu belirtilmiştir. Ankara'nın güney batısında Balkuyumcu bölgesinde volkanizma alt kıtasal kabuğun kısmi ergimesi ile oluşmuştur [52]. Temel vd. [53], Polatlı bölgesinde Alt-Orta Miyosen yaşlı bazaltik volkanizmanın gerilme ilişkili kıtaiçi ortamda oluştuğunu belirtmiştir. Oğlakçı (Eskişehir) alkalın volkanik kayaçlarının OIB-benzeri bir manto kaynağından AFC süreci ile oluştuğu ileri sürülmüştür [53].

1.4. Laboratuvar Çalışmaları ve Analitik Yöntemler

Çalışma alanında bulunan bazaltik lavlardan sistematik örnek alımı gerçekleştirilerek jeokimyasal özelliklerin belirlenmesi amacı ile toplanan örnekler üzerinde optik mikroskop incelemeleri, mineral kimyası çalışmaları, temel jeokimyasal analizleri (ana, iz, nadir toprak element) gerçekleştirilmiştir.

Optik mikroskop incelemeleri, Hacettepe Üniversitesi, Jeoloji Mühendisliği Bölümü İncekesit ve Parlatma laboratuvarlarında hazırlanan ince kesitler üzerinde alttan aydınlatmalı polarizan mikroskop kullanılarak, gerçekleştirilmiş, kayaçlardaki mineraller ile bu kayaçların dokuları belirlenmiştir.

Mineral kimyası çalışmaları Hacettepe Üniversitesi, Jeoloji Mühendisliği Bölümü, İncekesit-Parlatma laboratuvarında hazırlanan 5 ince kesit örneği üzerinde, parlatma ve karbon kaplama süreçleri sonrasında Elektron Mikroskopi laboratuvarında Carl Zeiss EVO EP SEM entegre

Bruker Xflash 3001 SDD (Silicon Drift Detector) EDS (Energy Dispersive Spectrometer) kullanılarak gerçekleştirilmiştir.

Jeokimyasal analizleri için 13 örnek, Hacettepe Üniversitesi, Jeoloji Bölümü'nde Öğütme laboratuarında küçük parçalara ayrılıp öğütüldükten sonra ACME Laboratuvarı'nda (Kanada) Perkin-Elmer ELAN9000 ICP-MS kütle spektrometresinde ve ICP-OES cihazında gerçekleştirilmiştir.

2. GENEL JEOLOJİ

2.1. Stratigrafi

Çalışma bölgesinin en yaşlı birimleri, Triyas yaşlı metamorfik şistmermer ile bunların üzerinde bulunan Kretase yaşlı ofiyolitik melanjdır ve bu birimler tektonik dokanaklıdır [54], [55], [56]. Birimin üzerine Gözler vd. [54] tarafından Eosen yaşlı kabul edilen ve çakılları tamamen ofiyolitik kayaçlardan oluşan konglomeratik birim, açısal uyumsuzlukla gelmektedir [1]. Oluşum zamanı Erken-Orta Miyosen olarak değerlendirilen istif konglomera, kumtaşı, çamurtaşı, piroklastik ve kireçtaşından oluşmaktadır [57]. Bu istifteki kireçtaşlarını, yaşı Ocakoğlu [57] tarafından 15.7± 0.7 My olarak belirlenen bazaltik trakiandezitler kesmiştir. Bu birimlerin üzerine uyumsuz olarak Pleyistosen yaşlı Alüvyonlar gelmektedir [57] (Şekil 2.1).

Bu çalışma kapsamında Eskişehir ili Seyitgazi ve Kütahya ili Köprüören ve Ilıca bölgelerinde yer alan bazaltik bileşimli volkanikler üzerinde çalışılmıştır. Çalışma alanındaki volkanik kayaçlar genellikle bazalt blokları ve akıntılar şeklinde görülmektedir (Şekil 2.2). Eskişehir Seyitgazi yolunda bazaltik kayaçların Miyosen yaşlı kireçtaşları ile dokanak halinde olduğu görülmektedir. Eskişehir iline 43 km uzaklıkta güneyde bulunan Seyitgazi ilçesinin kuzey ve güney (Kesenler ve Örencik) kısımlarından alınan örnekler bazaltiktraki andezit, trakiandezit bileşimindedir ve porfirik doku gösteren bu kayaçların kırık yüzeyleri siyaha yakın koyu gri renklerde gözlenmektedir.

Ilıca bölgesi çalışma alnındaki en geniş hacme sahip lavların bulunduğu bölgedir. Genellikle blok ve akıntılar şeklinde görülmektedirler. Kütahya ilinin Ilıca ve Köprüören bölgelerinden alınan örnekler, bazaltikandezit, bazaltiktraki andezit ve andezit bileşimindedir. Bazaltik kütlelerle birlikte serpantinitlere rastlanmıştır. Bu bölgeden toplanan porfirik dokudaki örneklerin kırık yüzeyleri gri renkte gözlenmektedir.

Şekil 2. 1. Çalışma alanının genelleştirilmiş stratigrafik istifi. (Telsiz, [1]'den sadeleştirilerek alınmıştır).

Çalışma alanındaki bazaltik bileşimli volkaniklerin dağılımı ile faylar ile olan ilişkisi ve çalışma alanından alınan örneklerin lokasyonları Şekil 2.3'te ve Çizelge 2.1'de verilmiştir. Şekil 2.3'ten görüleceği gibi, bazaltik bileşimli volkanikler farklı lokasyonlarda bulunmakta ve bu kesimlerde malzemenin yeryüzüne çıktığı belirlenmiştir. Diğer taraftan, özellikle çalışma bölgesinin kuzeyinde, batı ve güneybatı kesimlerinde doğrultu atımlı faylar yer almakta ve çalışma bölgesi ve çevresinde yer alan andezitik bileşimli volkanikleri kesmektedir (Şekil 2.3). Çalışma bölgesinin jeoloji haritası 1/500 000 ölçekli Türkiye Jeoloji haritasından sadeleştirilerek oluşturulmuştur.

Şekil 2. 2. Ilıca bölgesinde bazaltlar.

Şekil 2. 3. Çalışma bölgesinin Jeoloji Haritası (1/500.000 ölçekli Türkiye Jeoloji haritasından sadeleştirilerek alınmıştır).

Telsiz [1] çalışmasında bazaltik lav örneklerinin 40Ar/39Ar yaş tayini ile 16.6-17.6 (Alt Miyosen) aralığında olduğunu belirtmiştir.

ÖRNEKLER	BÖLGE	DOĞU YÖNÜ	KUZEY YÖNÜ
ES2016-1	36S	298586.46 d D	4373288.01 m K
ES2016-2	36S	300125.45 d D	4361372.09 m K
ES2015-3	36S	299856.45 d D	4361821.09 m K
ES2016-8	36S	295557.48 d D	4365521.06 m K
ES2016-9	36S	297140.47 d D	4365667.06 m K
ES2016-3	36S	249977.75 d D	4387583.90 m K
ES2017-4	36S	251977.73 d D	4389393.89 m K
ES2016-4	36S	249535.75 d D	4386829.90 m K
ES2016-5	36S	249474.75 d D	4386724.90 m K
ES2016-6	36S	249147.75 d D	4385532.91 m K
ES2017-2	36S	249353.75 d D	4389352.89 m K
ES2017-5	365	252628.73 d D	4389579.89 m K
ES2016-7	35S	735137.62 d D	4377659.21 m K

3. MİNERALOJİ-PETROGRAFİ

alanındaki bazaltik lavların mineralojik Calisma ve petrografik özelliklerini optik belirlemek amacıyla mikroskopta calışmalar adet örnekten hazırlanan incekesitler, Hacettepe yapılmıştır. 13 Üniversitesi Jeoloji Mühendisliği Bölümü'nde alttan aydınlatmalı polarizan mikroskopta incelenerek, kayaçları oluşturan mineraller ve bu kayaçların dokusal özellikler saptanmıştır.

Bazaltik lavlar üzerinde yapılan optik mikroskop çalışmalarında örneklerin olivin, klinopiroksen, pilajiyoklaz, ortopiroksen ve Fe-Ti oksit minerallerinden oluştukları, hipokristalin ve porfirik dokuda oldukları belirlenmiştir.

Plajiyoklaz

Plajiyoklaz mineralleri fenokristal olarak gözlemlenmekle birlikte, hamurda mikrolitler şeklinde de bulunmaktadırlar. Özşekilli ve yarıözşekilli olarak görülmektedirler. Hamurda ince çubuklar halinde görülmekte ve ikizlenmeye rastlanmaktadır. Örneklerde karlsbad ve polisentetik ikizlenme gözlenmektedir.

ES2016-7 lav örneğine ait plajiyoklaz, klinopiroksen, olivin mineralleri ve dokusal özellikleri Şekil 3.1'de verilmiştir ve örnekte glomeroporfirik doku gözlenmektedir.

Β.

C.

Şekil 3. 1. A; ES2016-7 lav örneğine ait plajiyoklaz, klinopiroksen, olivin mineralleri ve glomeroporfirik doku I. Nikol (a), II. Nikol (b) görüntüsü. B; ES2016-7 lav örneğinin plajiyoklaz, klinopiroksen mineralleri ve glomeroporfirik doku I. Nikol (a), II. Nikol (b) görüntüsü. C; ES2016-2 lav örneğinin plajiyoklaz, olivin minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü (ol: olivin; plj: plajiyoklaz; kpr: klinopiroksen).

Α.

Olivin

Olivin mineralleri kayaç içinde fenokristal olarak bulunmaktadır, genellikle özşekilli olup bazıları yuvarlaklaşmış ya da kenarlarından kemirilmiş olarak gözlenmiştir. Olivin minerallerinin çoğunda çatlaklar ve bu çatlaklardan itibaren iddingisitleşme gelişmiştir. Örneklere ait olivin mineralleri Şekil 3.1 ve Şekil 3.2'de görülmektedir.

Α.

в.

Şekil 3. 2. A; ES2016-7 lav örneğinin olivin, plajiyoklaz minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü, iddingisitleşme görülmektedir. B; ES2016-10 lav örneğinin olivin, plajiyoklaz minerallerinin I. Nikol (a), II. Nikol (b) görüntüsü, iddingisitleşme görülmektedir (ol: olivin; plj: plajiyoklaz).

Klinopiroksen

Klinopiroksen mineralleri genellikle fenokristal ve az da olsa mikrolit olarak bulunmaktadır. Klinopiroksenler öz şekilli ve yarı öz şekillidirler. Ayrıca örneklerin bazılarında glomeroporfirik dokularda bulunmaktadırlar. Örneklerin hepsinde klinopiroksen mevcuttur. Şekil 3.3'te ES2016-7 lav örneğine ait klinopiroksen minerali görülmektedir.

Şekil 3. 3. ES2016-7 lav örneğinin klinopiroksen mineralinin I. Nikol, II. Nikol görüntüsü (Kpr: klinopiroksen).

Ortopiroksen

Ortopiroksen mineralleri ES2016-1, ES2016-2, ES2016-3, ES2016-7, ES2017-4 örneklerinde genellikle fenokristaller halinde görülmüştür.

ES2016-7 lav örneğine ait ortopiroksen minerali Şekil 3.4'te verilmiştir.

Şekil 3. 4. ES2016-7 lav örneğinin ortopiroksen mineralinin I. Nikol, II. Nikol görüntüsü (Opr: ortopiroksen).

3.1. Mineral Kimyası

Minerallerin kimyasal bileşimleri, Hacettepe Üniversitesi Elektron mikroskopisi Laboratuvarında Carl Zeiss EVO 50 EP markalı elektron mikroskop kullanılarak, parlatılmış ve karbon ile kaplamış 5 örnek üzerinde gerçekleştirilmiştir. Analizler, minerallerin merkez ve kenar kısımlarına uygulanmıştır.

Elde edilen analiz verileri mineral sınıflandırma diyagramlarına yerleştirilerek, minerallerin türleri belirlenmiştir. Diğer taraftan, literatürden elde edilen denklemler ve mineral-tüm kayaç denge diyagramları da kullanılarak bu lavların oluşumunda etkili olan tahmini sıcaklık, basınç ve derinlik değerleri hesaplanmaya çalışılmıştır. Elde edilen veriler değerlendirilerek aşağıda basınç ve sıcaklık hesaplamaları bölümünde sunulmuştur.

3.1.1. Feldispat Mineralleri

Mikroprob analizleri plajiyoklaz mineralleri üzerinde merkez ve kenar kısımlardan ölçümler alınarak gerçekleştirilmiştir. ES2016-7, andezit örneğinde $An_{(22-42)}$; ES2016-8, bazaltiktrakiandezit örneğinde $An_{(5-66)}$; ES2017-4, bazaltikandezit örneğinde ise $An_{(45-85)}$ değerleri arasında değişmektedir. Buna göre SiO₂ değerinin yüksek olduğu örnekte albit miktarının daha fazla olduğu gözlenmektedir.

Genelde plajiyoklazlar normal zonlanma gösterseler de ES2016-7 ve ES2017-4 örneklerinde bazı plajiyoklazların Ca içerikleri, merkeze göre kenar noktalardan alınan ölçümlerde az da olsa daha yüksektir, bu durum minerallerin oluşumu sırasında ters zonlanmaların da geliştiğini göstermektedir.

Mineral analiz sonuçları kullanılarak oluşturulan plajiyoklaz sınıflamaları Şekil 3.5'de verilmiştir.

Şekil 3. 5. Mineral analiz sonuçlarına göre oluşturulan feldispat diyagramları (Ab: Albit, An: Anortit, Or: Orbit).

3.1.2. Piroksen Mineralleri

Hazırlanan ince kesitler üzerinde yapılan analizler, bazaltik örneklerin büyük çoğunluğunda, klinopiroksen ve ortopiroksen minerallerinin birilikte bulunduğunu ortaya koymaktadır.

Klinopiroksen

Analiz sonuçları klinopiroksen mineralleri için ES2016-1 bazaltiktrakiandezit örneğinde Wo_(46.16-41.08) En_(40.42-45.92) Fs_(11.09-15.43); ES2016-3 bazaltikandezit örneğinde Wo_(47.98-35.66) En_(52.48-41.67) Fs_(19.91-5.1); ES2016-7 andezit örneğinde Wo_(45.26-24.55) En_(67.33-36.68) Fs_(26.43-3.28); ES2016-8 bazaltiktrakiandezit örneğinde Wo_(50.48-33.22) En_(60.12-40.42) Fs_(13.83-4.73); ES2017-4 bazaltikandezit örneğinde Wo_(44.93-2.09) En_(79.16-41.45) Fs_(28.57-8.63) değerleri arasında değişmektedir.

Ortopiroksen

Ortopiroksen mineralleri için yapılan ölçümlerde ES2016-1 bazaltiktraki andezit örneğinde $Wo_{(3.61)} En_{(48.61)} Fs_{(47.77)}$; ES2016-3 bazaltikandezit örneğinde $Wo_{(3.61-4.25)} En_{(74.31-71.1)} Fs_{(22.08-24.65)}$; ES2016-7 andezit örneğinde $Wo_{(0.22-6.74)} En_{(17.48-72.58)} Fs_{(25-75)}$; ES2017-4 bazaltikandezit örneğinde $Wo_{(44.8-3.12)} En_{(74.75-45.54)} Fs_{(22.13-9.66)}$ değerleri arasında değişmektedir.

ES2016-3, ES2016-7, ES2016-8, Es2017-4 örneklerinin klinopiroksen minerallerinde genel olarak normal zonlanma (merkezler, kenarlara oranla Mg bakımından zengin) gözlenmekle birlikte, aynı örneklerde mineral kenar kısımlarının Mg bakımından zengin olduğu ters zonlanmalar da belirlenmiştir.

Mineral analiz sonuçları kullanılarak oluşturulan piroksen sınıflamaları Şekil 3.6'da verilmiştir.

Şekil 3. 6. Mineral analiz sonuçlarına göre oluşturulan piroksen diyagramları (Morimoto, 1989). (En: Enstatite, Wo: Wollastonite, Fs: Ferrosillite)

3.1.3. Olivin Mineralleri

ES2016-1, ES2016-2, ES2015-3, ES2016-3, ES2016-4, ES2016-7, ES2016-8, ES2016-10, ES2017-4 örneklerinde olivin gözlenmiştir.

Olivin minerallerinde, Fo içerikleri, ES2016-1 bazaltiktraki andezit örneğinde Fo%_(50.46-72), ES2016-7 andezit örneğinde Fo%₍₇₂₋₉₈₎, ES2016-8 bazaltiktrakiandezit örneğinde Fo%_(21.16-77), ES2017-4 bazaltikandezit örneğinde Fo%_(64.60-81.67), değerleri arasında değişmektedir. MgO değerlerinin genelde birbirlerine yakın olduğu görülmekte, merkez ölçümlerinde elde edilen yüksek MgO değerleri normal zonlanmaları işaret etmektedir. Mineral analiz sonuçlarına göre oluşturulan olivin diyagramları Şekil 3.7'de verilmiştir.

Şekil 3. 7. Mineral analiz sonuçlarına göre oluşturulan olivin diyagramları (Fo: Forsterit, Tp: Tefroyit, Fa: Fayalit).
3.2. Sıcaklık ve Basınç Hesaplamaları

Bu bölümde örnekler üzerinde gerçekleştirilen mineral mikroanalizlerinden elde edilen verileri değerlendirilmesi ile bazaltik kayaçların oluşumunda etkili olan, sıcaklık basınç hesaplamaları için gerekli olan mineral-eriyik ve mineral-tüm kayaç denge durumları üzerinde durulmuştur.

3.2.1. Kristal-Eriyik Dengesi

Damasceno vd. [58]'e göre magmatik sistemler fenokristal ve mineraleriyik dengesinin bileşim değişikliklerine duyarlıdır. Fenokristal ve mikrokristaller eriyik ile dengede ise magmanın sıcaklık (bazen basınç) hesaplamaları için kullanılabilmektedir.

3.2.1.1. Olivin – Tüm kayaç Dengesi

Olivin, geniş bileşim ve sıcaklık aralıklarında dahi nispeten sabit olan paylaşım katsayısı ile dengededir, olivin ile bazaltik eriyik arasındaki paylaşım katsayısı sıcaklığa bağlıdır ve 0.3 ± 0.03 değerindedir [59]. Toplis [60]) dağılım katsayısının demir zengini bileşimlerde önemli ölçüde değişiklikler gösterdiğini belirtmektedir. Putirka [61] sıcaklık ve basınçta gözlenen bu değişiklikleri araştırmıştır.

Demir ve magnezyumun bölme katsayı oranı değişim katsayısı KD olarak adlandırılmaktadır. X mol kesri, olivin (Ol) ve eriyikteki (liq) bileşenleri simgelemektedir.

$$K_{D_{Ol-liq}}^{Mg-Fe} = \frac{X_{liq}^{Mg} / X_{Ol}^{Mg}}{X_{liq}^{Fe^{+2}} / X_{Ol}^{Fe^{+2}}}$$

Şekil 3.8'de verilen olivin-eriyik denge diyagramı, Mg # $[100*Mg^{+2}/(Mg^{+2} + Fe^{+2})]$ ile olivinin yüzde forsterit (%Fo) içeriğine karşılık (e.g. Garcia, 1996) oluşturulmuştur Denge alanı mavi renkte verilen trendler (KD=0.3±0.03) [58] yardımı ile gösterilmektedir.

Şekil 3. 8. Olivin-eriyik Fe/Mg denge diyagramı. Mg#=100*Mg⁺²/ (Mg⁺² + Fe⁺²) değeri Fe⁺³/Fe⁺² =0.1 varsayılarak hesaplanmıştır. Fe/Mg için olivin ve eriğin denge aralığı (0.3 ± 0.03 [59]) gösterilmiştir. Oklar ksenokrist ve ana kütle kristalleşmesini göstermektedir.

Şekil 3.8'de görüldüğü gibi ES2017-4 örneklerinin merkez ölçümleri dengededir.

3.2.1.2. Klinopiroksen – Tüm kayaç Dengesi

arasındaki Fe-Ma Klinopiroksen ile eriyik deăisimi KDFe-Ma=(Fe_{cpx}/Fe_{lia})x(Mg_{lia}/Mg_{cpx})], magmanın sıcaklık değerini belirlemek için seçilen minerallerin kristalizasyon esnasında dengede olup olmadıklarını anlamak amacı ile kullanılmaktadır [62]. Klinopiroksen ve bazik eriyik katsayısı, olivin-eriyik arasındaki Fe/Mg dağılım deăerine göre klinopiroksen ve eriyikteki Fe⁺³ içeriğinden dolayı daha kısıtlıdır. Putirka [63]geniş aralıklı bileşimlerde klinopiroksen-eriyik dengesi için KdFe-Mg değerinin uygulamasının sağlıklı olmadığını savunmaktadır. Klinopiroksen-eriyik için dağılım katsayısı KD Fe-Mg 0.25 ± 0.05'dir [58]. Şekil 3.9'da denge aralığı Mg # (Tüm kayaç) ve Mg # Klinopiroksen arasında çizilen diyaqramda $KD=0.25 \pm 0.05$ değerleri yardımı ile gösterilmektedir.

Şekil 3. 9. Mg # (Tüm kayaç)'a karşı Mg # Klinopiroksen diyagramı. Klinopiroksen-eriyik Fe/Mg denge diyagramı. Mg#=100*Mg⁺²/ (Mg⁺² + Fe⁺²) değeri Fe⁺³/Fe⁺² =0.1 varsayılarak hesaplanmıştır. Denge aralığı Mg # (Tüm kayaç) ve Mg # Klinopiroksen arasında çizilen diyagramda KD=0.25 ± 0.05 değerleri kullanılmıştır [64]. Oklar ksenokrist ve ana kütle kristalleşmesini göstermektedir.

Şekil 3.9'da görüldüğü gibi ES2016-3, ES2016-7, ES2016-8, ES2017-4 örneklerinin merkez ve kenar ölçümleri denge alanında bulunmaktadır.

3.2.1.3. Feldispat – Tüm kayaç Dengesi

Feldispat – tüm kayaç dengesinde, plajiyoklaz mineralleri, magmanın sıcaklık değerini belirlemek için seçilen minerallerin kristalizasyon esnasında dengede olup olmadıklarını anlamak amacı ile kullanılmaktadır. Hesaplamalar için, koşullar, neredeyse kuru (KD=1-3) ve düşük basınç (<2 kbar) varsayılarak gerçekleştirilmiştir [65], [66], [67].

Şekil 3.10'da görüldüğü gibi sadece ES2017-4 merkez ölçümleri denge alanına yerleşmiştir.

Şekil 3. 10. Feldspat-eriyik dengesi (a) plajiyoklaz-eriyik dengesi, KD değerleri [65].

3.3.Jeotermometre ve Jeobarometre Hesaplamaları

Çalışma bölgesinde gelişmiş magmatik faaliyetin, oluşum sıcaklık ve basınç koşullarını belirlemek amacıyla, detayı aşağıda verilen dengedeki mineral–tümkayaç denge diyagramlarından itibaren sıcaklık hesaplamaları yapılmıştır. Mineral-mineral ve mineral-eriyik sıcaklık ölçümleri gerçekleştirilmiştir. Tüm örnekler için cam analizleri yapılması mümkün olmadığından, eriyik içeriği için cam bileşimi yerine tüm kayaç bileşimi kullanılarak gerçekleştirilmiştir. Jeotermometre verileri Putirka [63]'den yararlanılarak hesaplanmıştır.

3.3.1. Olivin-Eriyik Jeotermometresi

Günümüze kadar gerçekleştirilen deneysel çalışmalarda olivinin, farklı bileşimlerdeki bazaltik eriyiklerden ilk ya da erken kristalleşen faz olduğu görülmüştür. Olivin ve bazaltik eriğiyin beraber bulunması sıcaklık değişiminin bir fonksiyonudur ve bazaltik bileşimli magmalardaki fraksiyonel kristalleşme süreci ve denge durumunu anlamak için olivineriyik Fe/Mg denge diyagramından (Şekil 3.8) yararlanılmaktadır [59].

Jeotermometre hesaplamalarında değerlendirilen mineraller için denge koşulları en önemli faktördür [63]. Putirka vd. [68]'e göre su içeriğine bağlı olarak H₂O içeriği % 0-18.6 (ağırlık) aralığında değiştiğinde jeotermometre hesaplamaları için en iyi sonuçları formül 22 vermektedir [63]. Putirka [63]'de kullanılan formül 22'e göre (EK-5) ve KD 0.30±0.03 koşullarını sağlayan ölçüm ES2017-4'e aittir ve tahmini sıcaklık değeri 1123C^o olarak belirlenmiştir.

3.3.2. Klinopiroksen-Eriyik Jeotermometresi

yaygın Magmatik kayaçlarda olarak bulunan klinopiroksen, kristalizasyon koşullarını ve magma üretim süreçlerini aydınlatma amacı ile kullanılmaktadır [69]. Bu nedenle, yalnızca klinopiroksen ya da klinopiroksen-eriyik dengesi için kullanan termobarometre ve barometre modelleri [70], [71], [72], [73], [74], [63] tarafından geliştirilmiştir. Bu çalışmada Putirka [63] tarafından önerilen klinopiroksen-eriyik dengesi kullanılmıştır Şekil 3.9'da dengede olan örneklerden Kd koşulunu sağlayan ES2016-1, ES2016-7, ve ES2016-8 örnekleri üzerinde yapılan hesaplamalarda sıcaklık değerleri sırası ile 1096, 1223 ve 1055 °C'dir. Putirka [63]'e göre, ES2016-1, ES2016-7 ve ES2016-8 örneği için hesaplanan tahmini derinik sırasıyla 25, 21 km ve 14 km'dir.

3.3.3. Plajiyoklaz-Eriyik Jeotermometresi

Plajiyoklaz-eriyik jeotermometreleri, magmatik sistemler için gerçekleştirilen ilk jeotermometre çalışmalarındandır. Bu çalışmaların ilk örneklerini [75], [76], [77], [78] vermiştir. Daha sonra bu araştırmacılara [79], [80], [81], [82] da katılmıştır. Putirka [61] bu yukarıda adı geçen araştırmacıların çalışmaları arasından sıcaklık (T) tahmini için kullanılabilirliğe en uygun olanlar [81] ve [82]'nin MELTS/pMELTS modelleri olduğunu belirtmiştir. Fakat bu modeller düşük sıcaklık değerleri T (<1100 C°) ve su içeren sistemler için doğru

sonuçlar veremediği belirlenmiştir. Putirka [63]'e göre Plajiyoklaz-eriyik dengesi için testlerde, Equation 23 ve Equation 24a (EK-5) kullanılarak hesaplanan sıcaklık (T), değerleri ile eriyiğin yüksek plajiyoklaz doygunluğuna ulaşması için gereken sıcaklık (T) değeri ile karşılaştırılabilir. Bu çalışmada plajiyoklaz-eriyik jeotermometre hesaplamalarından Equation 23'ten yararlanılmıştır. Es17-4 örneğinin sıcaklığı 1182C° olarak hesaplanmıştır.

Jeotermometre hesaplamaları olivin-eriyik, klinopiroksen-eriyik, plajiyoklaz-eriyik arasında gerçekleştirilmiştir. Tahmini jeotermometre SiO₂ içeriği ile birlikte sıcaklık, basınç ve derinlik değerleri Çizelge 3.1'de verilmiştir.

			Sıcaklık (C	°)	Basınç (kbar)	d(km)	
Örnekler	SiO2		Putirka Eq (32d-33- 34)cpx-liq (±45)	Putirka 2008 olivin liquid Eq22 (±45)	Putirka 2008 Eq23 Plj (±43)	Putirka 2008 cpx- liquid Eq 32a-32b- 32c) (±3)	
ES2016-1 (Seyitgazi)	50.1	Bta	1096	-	-	-	25
ES2016-3 (Ilıca)	53.96	Ва	-	-	-	-	-
ES2016-7 (Köprüören)	57.39	A	1223	-	-	12	21
ES2016-8 (Seyitgazi)	50.63	Bta	1055	-	-	-	12
ES2017-4 (Ilıca)	54.7	Ва	-	1223	1182	-	-

Çizelge 3. 1. Orneklerin sıcaklık, basınç ve	derinlik	sonuçları.
---	----------	------------

4. JEOKİMYA

13 örnek üzerinde major (ana), iz ve nadir toprak element (NTE) analizleri gerçekleştirilmiş ve elde edilen veriler, Çizelge 4.1'de sunulmuştur. Elde edilen verilerin değerlendirilmesiyle, kayaçların jeokimyasal özellikleri ve oluşumlarında etkili olan süreçler belirlenmeye çalışılmıştır.

4.1. Ana Element Jeokimyası

Çalışma bölgesinden alınan lav örnekleri üzerinde, ana element analizleri gerçekleştirilmiştir (Çizelge 4.1).

Örneklerin ateşte kayıp değerleri, SiO₂ ve MgO içerikleri sırası ile %0.7-3.2, %50,1 - %58,26 ve %3.07 -%7.52 arasında değişmektedir. Ateşte kayıp değerleri dikkate alınarak, susuz baza göre hesaplanan Toplam Alkali (%Na₂O+K₂O) Silis (SiO₂) (TAS) diyagramında [83], örnekler bazaltik trakiandezit, bazaltikandezit ve andezit bileşimindedirler ayrıca alkali-subalkali ayrım trendine göre [84], Seyitgazi örnekleri alkali ve subalkali, Ilıca ve Köprüören örnekleri ise subalkali niteliktedir (Şeki4.1).

Alkali karakterdeki örnekler bazaltik trakiandezit bileşimindedirler. Bu örnekler, $Na_2O - K_2O \le 2$ değerlerine göre bazaltik trakiandezitler şoşonit olarak isimlendirilmektedir [85]. Örneklerin FeOt, Na_2O+K_2O and MgO (AFM) diyagramında kalkalkalin seri kısmında bulundukları Şekil 4.2'de görülmektedir.

Calışma bölgesine ait bazaltik örneklerin, SiO₂ artışına karşı major oksit değişim diyagramları incelenmiş ve Şekil 4.3'te sunulmuştur. Fraksiyonel kristalleşme, magmanın belirli veya tek bir sıcaklık derecesinde kristalleşmediği tersine bir sıcaklık aralığı içinde gerçekleştiği ve oluşan minerallerin, magma odasında farklı kesimlerde birikerek uzaklaşması ve temasının kesilmesi ile magma bileşiminin sürekli olarak değişmesi esasına dayanmaktadır. Fraksiyonel kristallesmenin etkin olduğu durumlarda, uyumlu elementlerin oluşan ilk

minerallerin bünyelerine katılarak ortamdan uzaklaşması ile uyumsuz elementlerin sıvı fazda kalıp zenginleşmeleri beklenmektedir.

Şekil 4. 1. Toplam Alkali (%diyagramı Na_2O+K_2O) – Silis diyagramı [83]. Alkali-subalkali ayrım çizgisi [84]. Tp: Tefrit, Tb: Trakibazalt, Bta: Bazaltik trakiandezit, Ba: Bazaltikandezit, Ta: Trakiandezit, A: Andezit, D: Dasit, R: Riyolit).

Şekil 4. 2. Örneklerin FeOt, Na2O+K2O and MgO (AFM) diyagramı. [86].

Fraksiyonel kristalleşmenin görüldüğü durumlarda Fe₂O₃, MgO, CaO, P_2O , MnO ve TiO₂'nin sıvı fazdan ilk önce ayrılan olivin, klinopiroksen, Ca-plajiyoklaz ve opak minerallerin bünyesine katılarak eriyiğin bu elementlerce fakirleşmesine; Na₂O ve K₂O'nin fraksiyonel kristalleşme sürecinin ilerlemesi ile Na-plajiyoklaz, K-feldispat ve mika minerallerinin bünyesine katılması ile eriyiğin Na₂O ve K₂O'ca zenginleşmesine sebep olacaktır. Beklenen durum Fe₂O₃, MgO, CaO, P_2O , MnO ve TiO₂ ile SiO₂ arasında negatif; Na₂O ve K₂O ile SiO₂ arasında pozitif korelasyon olacak şekildedir.

Şekil 4.3.'te Fe₂O₃, MgO, CaO, P₂O, MnO ve TiO₂ ile SiO₂ arasında negatif korelasyon gözlenmekle birlikte Na₂O, K₂O ve Al₂O₃ ile SiO₂ arasında belirgin bir trend gözlenmemektedir.

4.2. İz ve Nadir Toprak Element Jeokimyası

Çizelge 4.1'de verilen analiz sonuçları kullanılarak SiO₂ - iz element değişim diyagramları oluşurulmuş ve Şekil 4.4'te sunulmuştur.

K ve Rb elementlerinin iyonik yarıçapları benzerdir ve buna bağlı olarak fraksiyonel kristalleşme süreci ile K-feldispat, hornblend ve mika grubunun yapısına katılabilirler. Buna bağlı olarak Rb elementinin, SiO₂ ile çizilen diyagramında pozitif korelasyon beklenmektedir.

Rb elementinin aksine fraksiyonel kristalleşmenin gerçekleştiği durumlarda SiO₂'nin artışı ile Sr element içeriğinin azalması beklenir ve Sr ve SiO₂ diyagramında negatif korelasyon gözlenmektedir. Bu negatif korelasyonun sebebi Sr elementinin, Ca-plajiyoklazlardaki Ca'un yerini alarak Ca-plajiyoklazlar ile eriyiğin yapısından çıkmasıdır.

Ba, K-feldispat ve mika gibi minerallerin yapısına katılması ile SiO₂ ile beraber değerlendirildiğinde aralarında pozitif korelasyon görülebilir. Bu pozitif korelasyonun fraksiyonlanma sürecinin son safhalarında oluşan minarallerin yapısına katılması beklenen Ta, Y, Hf ve Nb elementleri için de geçerlidir.

Şekil 4.4'te uyumsuz elementlerin, SiO2 artışına karşı değişim diyagramlarında, Rb ve U'da önemli bir değişim gözlenmemekte, Sr'un SiO2 artışına karşı azalan bir trend ve Ba, Zr, Nb, Y, Th, Ce azalan yönelimler görülmektedir. Bu yönelimler, bazaltik kayaçların oluşumunda fraksiyonel kristalleşme süreçleri ile birlikte başka jeokimyasal süreçlerinde varlığına işaret etmektedir.

Seyitgazi					Ilica							Köprüören
ES2016-1	ES2016-2	ES2015-3	ES2016-8	ES2016-9	ES2016-3	ES2017-4	ES2016-4	ES2016-5	ES2016-6	ES2017-2	ES2017-5	ES2016-7
Bta	Та	Та	Bta	Bta	Ва	Ва	Ва	Ва	А	Ва	Ва	А
50.1	58.26	58.26	50.63	51.55	53.96	54.7	55.03	53.97	55.51	54.88	54.57	57.39
16.6	14.88	14.71	14.64	15.06	16.15	16.51	15.08	16.52	14.69	16.65	16.22	15.7
8.77	6.21	6.25	6.95	7.3	7.35	7.57	7.82	7.54	6.85	7.81	7.74	7.15
5.89	4.09	4.86	7.52	4.83	5.03	5.2	5.07	4.54	4.85	3.07	4.32	4.52
7.87	6.04	5.92	7.83	8.58	8.13	8.22	8	7.97	8.53	7.67	7.64	6.9
3.16	2.67	2.78	2.4	2.47	3.04	3.11	2.64	3.08	2.7	3.11	2.93	2.77
3.12	3.46	3.58	4.25	4.84	2.23	2.18	2.08	2.38	2.2	2.3	2.23	1.97
1.34	0.87	0.88	1.36	1.36	0.93	0.96	0.85	0.94	0.8	0.98	0.98	0.82
0.61	0.36	0.38	0.54	0.68	0.24	0.27	0.21	0.26	0.2	0.27	0.26	0.16
0.14	0.11	0.1	0.11	0.14	0.1	0.12	0.13	0.12	0.12	0.09	0.13	0.09
0.006	0.038	0.036	0.052	0.039	0.01	0.007	0.007	0.008	0.04	0.008	0.006	0.023
1.8	2.7	1.9	3.2	2.6	2.4	0.7	2.7	2.2	3.1	2.7	2.6	2
99.57	99.79	99.77	99.62	99.63	99.71	99.67	99.71	99.7	99.71	99.71	99.71	99.76
0	8.2	6.19	0	0	1.02	1.5	1.17	1.01	5.41	4.96	4.69	9.71
42.48	39.68	39.3	31.57	29.9	48.25	49.66	49.66	48.98	43.01	49.69	48.01	46.72
21.05	23.06	23.77	27.73	31.22	15.79	15.5	15.5	16.68	15.62	16.21	15.79	14.26
2.63	0	0	2.19	2.93	0	0	0	0	0	0	0	0
11.83	8.65	9.1	16.14	19.4	13.31	12.79	12.82	12.28	17.05	10.72	10.61	8.09
0	14.37	16.54	0	0	15.43	15.17	15.86	14.83	12.18	10.83	12.9	14.77
13.98	0	0	13.83	8.06	0	0	0	0	0	0	0	0
2.54	1.65	1.67	2.58	2.58	1.77	1.82	1.82	1.79	1.52	1.86	1.86	1.56
2.12	1.68	1.77	1.78	1.83	1.87	0.84	1.83	1.88	1.65	1.73	1.51	1.51
1.41	0.83	0.88	1.25	1.58	0.56	0.63	0.63	0.6	0.46	0.63	0.6	0.37
98.04	98.12	99.22	97.07	97.5	98	97.91	99.29	98.05	96.9	96.63	95.97	96.99
	Seyitgazi ES2016-1 Bta 50.1 16.6 8.77 5.89 7.87 3.16 3.12 1.34 0.61 0.14 0.006 1.8 99.57 0 42.48 21.05 2.63 11.83 0 13.98 2.54 2.12 1.41 98.04	Seyitgazi ES2016-1 ES2016-2 Bta Ta 50.1 58.26 16.6 14.88 8.77 6.21 5.89 4.09 7.87 6.04 3.16 2.67 3.12 3.46 1.34 0.87 0.61 0.36 0.14 0.11 0.006 0.038 1.8 2.7 99.57 99.79 0 8.2 42.48 39.68 21.05 23.06 2.63 0 11.83 8.65 0 14.37 13.98 0 2.54 1.65 2.12 1.68 1.41 0.83 98.04 98.12	Seyitgazi ES2016-1 ES2016-2 ES2015-3 Bta Ta Ta 50.1 58.26 58.26 16.6 14.88 14.71 8.77 6.21 6.25 5.89 4.09 4.86 7.87 6.04 5.92 3.16 2.67 2.78 3.12 3.46 3.58 1.34 0.87 0.88 0.61 0.36 0.38 0.14 0.11 0.1 0.006 0.038 0.036 1.8 2.7 1.9 99.57 99.79 99.77 0 8.2 6.19 42.48 39.68 39.3 21.05 23.06 23.77 2.63 0 0 11.83 8.65 9.1 0 14.37 16.54 13.98 0 0 2.54 1.65 1.67 2.12 <t< td=""><td>Seyitgazi ES2016-1 ES2016-2 ES2015-3 ES2016-8 Bta Ta Ta Bta 50.1 58.26 58.26 50.63 16.6 14.88 14.71 14.64 8.77 6.21 6.25 6.95 5.89 4.09 4.86 7.52 7.87 6.04 5.92 7.83 3.16 2.67 2.78 2.4 3.12 3.46 3.58 4.25 1.34 0.87 0.88 1.36 0.61 0.36 0.38 0.54 0.14 0.11 0.1 0.11 0.006 0.038 0.036 0.052 1.8 2.7 1.9 3.2 99.57 99.79 99.77 99.62 0 8.2 6.19 0 42.48 39.68 39.3 31.57 21.05 23.06 23.77 27.73 2.63 0</td><td>SeyitgaziES2016-1ES2016-2ES2015-3ES2016-8ES2016-9BtaTaTaBtaBta50.1$58.26$$58.26$$50.63$$51.55$16.614.8814.7114.6415.06$8.77$$6.21$$6.25$$6.95$$7.3$$5.89$$4.09$$4.86$$7.52$$4.83$$7.87$$6.04$$5.92$$7.83$$8.58$$3.16$$2.67$$2.78$$2.4$$2.47$$3.12$$3.46$$3.58$$4.25$$4.84$$1.34$$0.87$$0.88$$1.36$$1.36$$0.61$$0.36$$0.38$$0.54$$0.68$$0.14$$0.11$$0.11$$0.11$$0.14$$0.006$$0.038$$0.036$$0.052$$0.039$$1.8$$2.7$$1.9$$3.2$$2.6$$99.57$$99.79$$99.77$$99.62$$99.63$0$8.2$$6.19$00$42.48$$39.68$$39.3$$31.57$$29.9$$21.05$$23.06$$23.77$$27.73$$31.22$$2.63$00$2.19$$2.93$$11.83$$8.65$$9.1$$16.14$$19.4$0$14.37$$16.54$00$13.98$00$13.83$$8.06$$2.54$$1.65$$1.67$$2.58$$2.58$$2.12$$1.68$$1.77$$1.78$$1.83$$1.41$$0.83$</td><td>SeyitgaziIlicaES2016-1ES2016-2ES2015-3ES2016-8ES2016-9ES2016-3BtaTaTaBtaBtaBa50.1$58.26$$58.26$$50.63$$51.55$$53.96$16.614.8814.7114.6415.0616.158.776.216.256.95$7.3$$7.35$$5.89$4.094.86$7.52$4.83$5.03$$7.87$6.04$5.92$$7.83$8.588.13$3.16$2.67$2.78$$2.4$$2.47$$3.04$$3.12$$3.46$$3.58$$4.25$$4.84$$2.23$$1.34$$0.87$$0.88$$1.36$$1.36$$0.93$$0.61$$0.36$$0.38$$0.54$$0.68$$0.24$$0.14$$0.11$$0.11$$0.11$$0.14$$0.1$$0.066$$0.038$$0.036$$0.052$$0.039$$0.01$$1.8$$2.7$$1.9$$3.2$$2.6$$2.4$$99.57$$99.79$$99.77$$99.62$$99.63$$99.71$$0$$8.2$$6.19$$0$$0$$1.02$$42.48$$39.68$$39.3$$31.57$$29.9$$48.25$$21.05$$23.06$$23.77$$27.73$$31.22$$15.79$$2.63$$0$$0$$2.19$$2.93$$0$$11.83$$8.65$$9.1$$16.14$$19.4$$13.31$$0$$14.37$$16.54$$0$<</td><td>IlicaSeyitgaziIlicaES2016-1ES2016-2ES2015-3ES2016-8ES2016-9ES2016-3ES2017-4BtaTaTaTaBtaBtaBaBa50.158.2658.2650.6351.5553.9654.716.614.8814.7114.6415.0616.1516.518.776.216.256.957.37.357.575.894.094.867.524.835.035.27.876.045.927.838.588.138.223.162.672.782.42.473.043.113.123.463.584.254.842.232.181.340.870.881.361.360.930.960.610.360.380.540.680.240.270.140.110.10.110.140.10.120.0060.0380.0360.0520.0390.010.0071.82.71.93.22.62.40.799.5799.7999.7799.6299.6399.7199.6708.26.19001.021.542.4839.6839.331.5729.948.2549.6621.0523.0623.7727.7331.2215.7915.52.63002.192.930011.83<td< td=""><td>IncaSeyitgaziIncaES2016-1ES2016-2ES2016-3ES2016-3ES2017-4ES2016-4BtaTaTaBtaBtaBaBaBaSo.1$58.26$$58.26$$50.63$$51.55$$53.96$$54.7$$55.03$16.6$14.88$$14.71$$14.64$$15.06$$16.15$$16.51$$15.08$$8.77$$6.21$$6.25$$6.95$$7.3$$7.35$$7.57$$7.82$$5.89$$4.09$$4.86$$7.52$$4.83$$5.03$$5.2$$5.07$$7.87$$6.04$$5.92$$7.83$$8.58$$8.13$$8.22$$8$$3.16$$2.67$$2.78$$2.4$$2.47$$3.04$$3.11$$2.64$$3.12$$3.46$$3.58$$4.25$$4.84$$2.23$$2.18$$2.08$$1.34$$0.87$$0.88$$1.36$$1.36$$0.93$$0.96$$0.85$$0.61$$0.36$$0.38$$0.54$$0.68$$0.24$$0.27$$0.21$$0.14$$0.11$$0.11$$0.14$$0.11$$0.12$$0.13$$0.006$$0.038$$0.036$$0.052$$0.039$$0.01$$0.007$$1.8$$2.7$$1.9$$3.2$$2.6$$2.4$$0.7$$2.7$$99.57$$99.79$$99.77$$2.99$$48.25$$49.66$$49.66$</td><td>IlicaIlicaES2016-1ES2016-2ES2015-3ES2016-3ES2017-4ES2016-4ES2016-5BtaTaTaBtaBtaBaBaBaBaBaBa50.1$58.26$$58.26$$50.63$$51.55$$53.96$$54.7$$55.03$$53.97$16.6$14.88$$14.71$$14.64$$15.06$$16.15$$16.51$$15.08$$16.52$$8.77$$6.21$$6.25$$6.95$$7.3$$7.35$$7.57$$7.77.22$$7.54$$5.89$$4.09$$4.86$$7.52$$4.83$$5.03$$5.2$$5.07$$4.54$$7.87$$6.04$$5.92$$7.83$$8.58$$8.13$$8.22$$8$$7.97$$3.16$$2.67$$2.78$$2.4$$2.47$$3.04$$3.11$$2.64$$3.08$$3.12$$3.46$$3.58$$4.25$$4.84$$2.23$$2.18$$2.08$$2.38$$1.34$$0.87$$0.88$$0.54$$0.68$$0.24$$0.27$$0.21$$0.26$$0.14$$0.11$$0.11$$0.14$$0.11$$0.12$$0.13$$0.12$$0.006$$0.038$$0.036$$0.052$$0.039$$0.01$$0.007$$0.008$$1.8$$2.7$$1.9$$3.2$$2.6$$2.4$$0.7$$2.7$$2.2$$99.57$$99.79$$99.77$$29.9$</td><td></td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<>	Seyitgazi ES2016-1 ES2016-2 ES2015-3 ES2016-8 Bta Ta Ta Bta 50.1 58.26 58.26 50.63 16.6 14.88 14.71 14.64 8.77 6.21 6.25 6.95 5.89 4.09 4.86 7.52 7.87 6.04 5.92 7.83 3.16 2.67 2.78 2.4 3.12 3.46 3.58 4.25 1.34 0.87 0.88 1.36 0.61 0.36 0.38 0.54 0.14 0.11 0.1 0.11 0.006 0.038 0.036 0.052 1.8 2.7 1.9 3.2 99.57 99.79 99.77 99.62 0 8.2 6.19 0 42.48 39.68 39.3 31.57 21.05 23.06 23.77 27.73 2.63 0	SeyitgaziES2016-1ES2016-2ES2015-3ES2016-8ES2016-9BtaTaTaBtaBta50.1 58.26 58.26 50.63 51.55 16.614.8814.7114.6415.06 8.77 6.21 6.25 6.95 7.3 5.89 4.09 4.86 7.52 4.83 7.87 6.04 5.92 7.83 8.58 3.16 2.67 2.78 2.4 2.47 3.12 3.46 3.58 4.25 4.84 1.34 0.87 0.88 1.36 1.36 0.61 0.36 0.38 0.54 0.68 0.14 0.11 0.11 0.11 0.14 0.006 0.038 0.036 0.052 0.039 1.8 2.7 1.9 3.2 2.6 99.57 99.79 99.77 99.62 99.63 0 8.2 6.19 00 42.48 39.68 39.3 31.57 29.9 21.05 23.06 23.77 27.73 31.22 2.63 00 2.19 2.93 11.83 8.65 9.1 16.14 19.4 0 14.37 16.54 00 13.98 00 13.83 8.06 2.54 1.65 1.67 2.58 2.58 2.12 1.68 1.77 1.78 1.83 1.41 0.83	SeyitgaziIlicaES2016-1ES2016-2ES2015-3ES2016-8ES2016-9ES2016-3BtaTaTaBtaBtaBa50.1 58.26 58.26 50.63 51.55 53.96 16.614.8814.7114.6415.0616.158.776.216.256.95 7.3 7.35 5.89 4.094.86 7.52 4.83 5.03 7.87 6.04 5.92 7.83 8.588.13 3.16 2.67 2.78 2.4 2.47 3.04 3.12 3.46 3.58 4.25 4.84 2.23 1.34 0.87 0.88 1.36 1.36 0.93 0.61 0.36 0.38 0.54 0.68 0.24 0.14 0.11 0.11 0.11 0.14 0.1 0.066 0.038 0.036 0.052 0.039 0.01 1.8 2.7 1.9 3.2 2.6 2.4 99.57 99.79 99.77 99.62 99.63 99.71 0 8.2 6.19 0 0 1.02 42.48 39.68 39.3 31.57 29.9 48.25 21.05 23.06 23.77 27.73 31.22 15.79 2.63 0 0 2.19 2.93 0 11.83 8.65 9.1 16.14 19.4 13.31 0 14.37 16.54 0 <	IlicaSeyitgaziIlicaES2016-1ES2016-2ES2015-3ES2016-8ES2016-9ES2016-3ES2017-4BtaTaTaTaBtaBtaBaBa50.158.2658.2650.6351.5553.9654.716.614.8814.7114.6415.0616.1516.518.776.216.256.957.37.357.575.894.094.867.524.835.035.27.876.045.927.838.588.138.223.162.672.782.42.473.043.113.123.463.584.254.842.232.181.340.870.881.361.360.930.960.610.360.380.540.680.240.270.140.110.10.110.140.10.120.0060.0380.0360.0520.0390.010.0071.82.71.93.22.62.40.799.5799.7999.7799.6299.6399.7199.6708.26.19001.021.542.4839.6839.331.5729.948.2549.6621.0523.0623.7727.7331.2215.7915.52.63002.192.930011.83 <td< td=""><td>IncaSeyitgaziIncaES2016-1ES2016-2ES2016-3ES2016-3ES2017-4ES2016-4BtaTaTaBtaBtaBaBaBaSo.1$58.26$$58.26$$50.63$$51.55$$53.96$$54.7$$55.03$16.6$14.88$$14.71$$14.64$$15.06$$16.15$$16.51$$15.08$$8.77$$6.21$$6.25$$6.95$$7.3$$7.35$$7.57$$7.82$$5.89$$4.09$$4.86$$7.52$$4.83$$5.03$$5.2$$5.07$$7.87$$6.04$$5.92$$7.83$$8.58$$8.13$$8.22$$8$$3.16$$2.67$$2.78$$2.4$$2.47$$3.04$$3.11$$2.64$$3.12$$3.46$$3.58$$4.25$$4.84$$2.23$$2.18$$2.08$$1.34$$0.87$$0.88$$1.36$$1.36$$0.93$$0.96$$0.85$$0.61$$0.36$$0.38$$0.54$$0.68$$0.24$$0.27$$0.21$$0.14$$0.11$$0.11$$0.14$$0.11$$0.12$$0.13$$0.006$$0.038$$0.036$$0.052$$0.039$$0.01$$0.007$$1.8$$2.7$$1.9$$3.2$$2.6$$2.4$$0.7$$2.7$$99.57$$99.79$$99.77$$2.99$$48.25$$49.66$$49.66$</td><td>IlicaIlicaES2016-1ES2016-2ES2015-3ES2016-3ES2017-4ES2016-4ES2016-5BtaTaTaBtaBtaBaBaBaBaBaBa50.1$58.26$$58.26$$50.63$$51.55$$53.96$$54.7$$55.03$$53.97$16.6$14.88$$14.71$$14.64$$15.06$$16.15$$16.51$$15.08$$16.52$$8.77$$6.21$$6.25$$6.95$$7.3$$7.35$$7.57$$7.77.22$$7.54$$5.89$$4.09$$4.86$$7.52$$4.83$$5.03$$5.2$$5.07$$4.54$$7.87$$6.04$$5.92$$7.83$$8.58$$8.13$$8.22$$8$$7.97$$3.16$$2.67$$2.78$$2.4$$2.47$$3.04$$3.11$$2.64$$3.08$$3.12$$3.46$$3.58$$4.25$$4.84$$2.23$$2.18$$2.08$$2.38$$1.34$$0.87$$0.88$$0.54$$0.68$$0.24$$0.27$$0.21$$0.26$$0.14$$0.11$$0.11$$0.14$$0.11$$0.12$$0.13$$0.12$$0.006$$0.038$$0.036$$0.052$$0.039$$0.01$$0.007$$0.008$$1.8$$2.7$$1.9$$3.2$$2.6$$2.4$$0.7$$2.7$$2.2$$99.57$$99.79$$99.77$$29.9$</td><td></td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td<>	IncaSeyitgaziIncaES2016-1ES2016-2ES2016-3ES2016-3ES2017-4ES2016-4BtaTaTaBtaBtaBaBaBaSo.1 58.26 58.26 50.63 51.55 53.96 54.7 55.03 16.6 14.88 14.71 14.64 15.06 16.15 16.51 15.08 8.77 6.21 6.25 6.95 7.3 7.35 7.57 7.82 5.89 4.09 4.86 7.52 4.83 5.03 5.2 5.07 7.87 6.04 5.92 7.83 8.58 8.13 8.22 8 3.16 2.67 2.78 2.4 2.47 3.04 3.11 2.64 3.12 3.46 3.58 4.25 4.84 2.23 2.18 2.08 1.34 0.87 0.88 1.36 1.36 0.93 0.96 0.85 0.61 0.36 0.38 0.54 0.68 0.24 0.27 0.21 0.14 0.11 0.11 0.14 0.11 0.12 0.13 0.006 0.038 0.036 0.052 0.039 0.01 0.007 1.8 2.7 1.9 3.2 2.6 2.4 0.7 2.7 99.57 99.79 99.77 2.99 48.25 49.66 49.66	IlicaIlicaES2016-1ES2016-2ES2015-3ES2016-3ES2017-4ES2016-4ES2016-5BtaTaTaBtaBtaBaBaBaBaBaBa50.1 58.26 58.26 50.63 51.55 53.96 54.7 55.03 53.97 16.6 14.88 14.71 14.64 15.06 16.15 16.51 15.08 16.52 8.77 6.21 6.25 6.95 7.3 7.35 7.57 $7.77.22$ 7.54 5.89 4.09 4.86 7.52 4.83 5.03 5.2 5.07 4.54 7.87 6.04 5.92 7.83 8.58 8.13 8.22 8 7.97 3.16 2.67 2.78 2.4 2.47 3.04 3.11 2.64 3.08 3.12 3.46 3.58 4.25 4.84 2.23 2.18 2.08 2.38 1.34 0.87 0.88 0.54 0.68 0.24 0.27 0.21 0.26 0.14 0.11 0.11 0.14 0.11 0.12 0.13 0.12 0.006 0.038 0.036 0.052 0.039 0.01 0.007 0.008 1.8 2.7 1.9 3.2 2.6 2.4 0.7 2.7 2.2 99.57 99.79 99.77 29.9		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Çizelge 4. 1. Bazaltik lav örneklerinin ana, iz, nadir toprak element analiz sonuçları ve CIPW norm değerleri.

	ES2016-1	ES2016-2	ES2015-3	ES2016-8	ES2016-9	ES2016-3	ES2017-4	ES2016-4	ES2016-5	ES2016-6	ES2017-2	ES2017-5	ES2016-7
	Bta	Та	Та	Bta	Bta	Ва	Ва	Ва	Ва	А	Ва	Ва	А
Ва	1866	803	594	1295	1702	1103	1255	1145	1241	1166	1384	1201	1980
Sc	18	17	17	20	21	21	21	23	21	24	22	22	20
Ве	1	7	5	3	5	2	2	3	2	3	2	3	2
Со	36.1	43.2	41.3	38.9	34.9	27.7	31.8	31.9	29.3	33.2	24.6	27.1	40.1
Ni	13.2	63.8	43.8	129.9	33	6.3	4.2	3.3	5.4	19.2	30.6	3.2	23.2
Cs	2.3	12.9	12.7	6.6	1.9	17.9	5	18	13	42.9	25.6	1.9	24.2
Ga	19.9	18.5	21.3	15.4	16.1	17.1	17.3	15.5	17.4	15.7	17.7	17	15
Hf	7.3	5.9	5.8	11.5	13.6	4.3	4.5	3.5	4.4	3.6	4.4	4.1	4.5
Nb	25.4	13.8	14.2	28.6	32	11.1	11.7	8.5	11.7	9.6	11.5	11	10
Rb	83.1	147.9	160.4	148.2	139.1	78.8	72.4	66.6	88.1	94	80.5	67.6	76.3
Sn	2	7	6	4	4	1	2	1	2	1	2	1	2
Sr	1532.2	329.6	352.4	815.3	950.3	938.6	1073.7	1007.5	1034.2	937.9	1062.1	1033.9	561.6
Та	1.4	1.7	1.5	1.7	2	1	1.1	0.9	0.9	1	0.9	0.9	1.1
Th	24.9	10.9	11.3	18.5	21.7	15.7	19.1	13.5	18.6	17.2	19	14.2	10.5
U	5.9	7.2	7.2	5.4	6.8	6.1	6.4	5	6.8	7.4	6.8	5	3.4
Pb	5	3.8	2.4	2.2	2.9	7.6	15.7	13.1	14.1	18.8	27	12.9	6.6
V	184	120	114	179	210	186	193	185	194	171	200	197	150
W	73.3	162.7	176.3	56.4	58.9	66.6	135	108.1	56.8	81.7	59.1	68.2	205.8
Zr	313.3	209.3	221.2	439.7	524.9	161.7	167.2	135.5	169.3	140.4	170.8	162.5	172.9
Y	31.1	23.8	24.8	24	25	24.7	25.7	21.2	26.2	22.7	26.5	25.5	24.2
La	113.1	22.1	21.6	70.8	86.1	44	50.9	38.2	50.7	44.6	52.4	42.2	30.9
Ce	214	44.4	47.7	140.2	164.7	82	91.3	70.3	92.5	79.8	93.5	74.6	57.3
Pr	24.2	5.96	5.91	16.14	18.83	9.06	10.36	7.78	10.19	8.83	10.68	8.62	6.66
Nd	91	24.3	24.4	60.6	68.5	33.6	38.3	29.6	38.8	32.5	40.3	32.7	26.5
Sm	14.48	4.52	5.01	9.74	10.93	6.34	7.4	5.45	6.92	6.01	7.35	6.24	4.89
Eu	3.8	1.16	1.13	2.33	2.79	1.6	1.83	1.45	1.83	1.52	1.84	1.66	1.31

Çize	lge	4.1.	devam	ediyor.
------	-----	------	-------	---------

	ES2016-1	ES2016-2	ES2015-3	ES2016-8	ES2016-9	ES2016-3	ES2017-4	ES2016-4	ES2016-5	ES2016-6	ES2017-2	ES2017-5	ES2016-7
	Bta	Та	Та	Bta	Bta	Ва	Ва	Ва	Ва	А	Ва	Ва	А
Gd	10.46	4.71	4.56	7.35	8.29	5.71	6.33	5	6.56	5.37	6.46	5.58	5.06
Tb	1.27	0.74	0.74	0.92	1	0.78	0.84	0.7	0.88	0.76	0.89	0.82	0.77
Dy	6.26	4.54	4.36	4.83	5.02	4.63	4.86	3.87	4.91	4.25	4.94	4.67	4.58
Но	1.1	0.9	0.88	0.88	0.85	0.87	0.95	0.78	0.99	0.83	0.97	0.91	0.88
Er	3.08	2.59	2.46	2.44	2.4	2.53	2.82	2.28	2.78	2.48	2.83	2.54	2.63
Tm	0.4	0.33	0.33	0.33	0.33	0.36	0.38	0.29	0.38	0.32	0.36	0.36	0.39
Yb	2.63	2.25	2.17	1.91	2.04	2.37	2.39	1.92	2.37	1.94	2.32	2.37	2.39
Lu	0.39	0.32	0.31	0.32	0.31	0.36	0.36	0.3	0.36	0.31	0.37	0.34	0.37

Şekil 4. 3. Örneklerin SiO_2 - ana element diyagramları.

Şekil 4. 4. Örneklerin SiO₂ - iz element diyagramları.

Örneklerin oluşumda etkli olan jeokimyasal süreçleri ile kaynak bileşenleri ile olan benzerlik veya farklılıklarını belirlemek için ilksel manto verileri ile normalize edilmiş [87] çoklu element diyagramları çizilmiştir (Şekil 4.5).

Şekil 4. 5. Örneklerin ilksel mantoya göre normalize edilmiş spider diyagramları (Normalizsyon değerleri: [87].

Şekil 4.5'de çalışma alanındaki alınan tüm örnekler görülmekte, genel olarak, tüm bölgeler benzer element dağılımı vermekle birlikte, bazaltik kayaçlar arasındaki benzerlik ve farklılıkları daha iyi değerlendirebilmek için diyagramlar Seyitgazi, Ilıca ve Köprüören için ayrıca çizilmiştir (Şekil 4.6; Şekil 4.7).

Şekil 4. 6. Seyitgazi örneklerinin ilksel mantoya göre normalize edilmiş spider diyagramları [87].

Şekil 4. 7. Ilıca ve Köprüören örneklerinin ilksel mantoya göre normalize edilmiş spider diyagramları [87].

Seyitgazi bazaltik kayaçları (50.1-58.26% SiO₂) HFS elementlerine göre LIL elementlerce (Rb, Ba, Th, U) zenginleşmiş olmakla birlikte negatif Ta, Nb, P, Ti anomalileri ile temsil edilmektedir. Ilıca örnekleri ise Seyitgazi örneklerinin LIL elementlerine benzer zenginleşme göstermektedir fakat HFS elementlerinde gösterdiği fakirleşme ve Pb içeriğinde ki zenginleşme ile Seyitgazi örneklerinden ayrılmaktadır. Ilıca örnekleri ve Köprüören örneğinin olduğu çoklu element diyagramında iki bölgeden alınan örnekler birbirleri ile uyum göstermektedir ve Ilıca örneklerinde görülen Pb zenginleşmesi Köprüören örneğinde de görülmektedir.

Diğer taraftan, Seyitgazi örnekleri içinde ES2015-3 ve ES2016-2 örnekleri, Rb ve U 'da gözlenen benzer içerikler dışında LIL ve HFS elementlerde gözlenen fakirleşmeler ile diğer Seyitgazi örneklerinden ayrılmaktadır.

Ba, Rb, Th ve K gibi yüksek uyumsuz elementlerde zenginleşme görülmesi okyanusal yaylar, aktif kıta kenarları, kıtaiçi magmatizmanın bir göstergesidir [88]. Dalma-batma sürecinde dalan plaka mantoda kısmi ergimeye uğrar. Kısmi ergime akışkanlar ve uçucu bileşenlerde zenginleşmelere yol açar [88].

Ta, Nb, P ve Ti elementlerinde negatif anomali görülmesi dalma-batma ile veya kabuksal kontaminasyon ile ilişkilendirilmektedir [89], [90], [91], [92], [93]. Bu elementlerin hareketsizliklerinin daha yüksek olması nedeni ile dalan dalan plakanın dehidrasyonundan kaynaklanan akışkanlarla taşınamazlar ve bu akışkanların yardımı ile taşınıp zenginleşen LIL elementlere göre fakirleşirler [94], [88]. Bu fakirleşme, derinliğe duyarlı ilmenit, tifanit (sfen), rutil gibi minerallerin yapısına katılabilmelerinden dolayı da gerçekleşebilmektedir [95], [89].

Diğer taraftan, Nb, Ta'de görülen negatif anomaliler ve Pb değerinde görülen pozitif anomali için iki farklı süreç açıklaması vardır. Bu iki süreç manto kaynağındaki dalmış sedimanlardan dolayı gerçekleşen sığ seviyedeki kabuksal kirlenme ve iz element paterninde Nb-Ta elementlerine komşu diğer elementlerin sıvı kaynaklı zenginleşmesi olarak açıklanmıştır [96].

Spider diyagramlara ek olarak örneklerin nadir toprak değişim diyagramları da incelenmiş ve Şekil 4.8, 4.9 ve 4.10'da sunulmuştur.

Şekil 4.8'de çalışma alanındaki alınan tüm örnekler görülmekte, genel olarak, tüm bölgeler benzer element dağılımı vermekle birlikte, bazaltik kayaçlar arasındaki benzerlik ve farklılıkları daha iyi değerlendirebilmek için diyagramlar Seyitgazi, Ilıca ve Köprüören için ayrıca çizilmiştir (Şekil 4.9; Şekil 4.10).

Şekil 4. 8. Nadir toprak element diyagramı (Normalizasyon değerleri: [97]).

Nadir toprak elementlerin bulunduğu (NTE) diyagramda (Şekil 4.10) soldan sağa doğru (hafif NTE'den ağır NTE'e gittikçe) elementlerin uyumsuzlukları azalmaktadır [88]. Ağır nadir toprak elementlere göre daha uyumsuz olan hafif nadir toprak elementler, kısmi ergime veya magma farklılaşması süreçlerinde eriyik fazda bulunmayı tercih etmektedirler [98], [99]. Hafif nadir toprak elementlerinde görülen zenginleşme, düşük dereceli kısmi ergime veya kabuksal kirlenme süreçleriyle ilgili olduğu düşünülmektedir. Kısmi ergime derecesi LREE/HREE (Ör:La/Yb) değerleri ile elde edilebilmektedir ve yüksek LREE/HREE değerleri düşük dereceli kısmi ergimeler ile oluştuğunu işaret etmektedir [100], [101].

Şekil 4. 9. Seyitgazi Köprüören örneklerinin nadir toprak element diyagramları [97].

Şekil 4. 10. Ilıca ve Köprüören örneklerinin nadir toprak element diyagramları [97].

Örneklerin kökenine yaklaşımlarda bulunmak için uyumsuz iz element oranları incelenmiştir.

Örneklerin Nb/La oranı Seyitgazi 0.22-0.65, Ilıca ve Köprüören 0.21-0.26, Nb/U oranı Seyitgazi 1.91-5.29, Ilıca ve Köprüören 1.29-2.94 ve Ba/Nb oranı Seyitgazi 41.83-73.46, Ilıca ve Köprüören 99.36-198 değerleri arasında değişmektedir. Örneklerin Zr/Ba oranı Seyitgazi 0.16-0.37, Ilıca ve Köprüören 0.08-0.14 ve Ba/La oranı Seyitgazi 16.49-36, Ilıca ve Köprüören 24.47-64 değerleri arasında değişmektedir. Sun and McDonough [87]'ye göre normalize edilmiş Seyitgazi ve Ilıca örneklerinin La/Yb(N) değerleri sırası ile 7.05-30.86; 12.77-16.49 arasında değişirken Köprüören'den alınan örnek için değer 9.28'dir.

Yüksek Ba/Nb ve düşük Nb/La değeri dalma-batma magmatizması için karakteristikdir [102], [103]. Ba/Nb oranının 28'den büyük olması yay magmatizmasının karakteristik bir örneğidir [99]. Yüksek Ba/La değerleri litosferi işaret etmektedir [104]. Benzer şekilde düşük Nb/U oranları da kabuktan gelen katkıyı ifade etmektedir. Çizelge 4.2'de çalışma bölgesine ait örneklerin uyumsuz iz element oranları verilmiştir.

Çizelge 4. 2.	Örneklerin	uyumsuz iz	element	oranları
---------------	------------	------------	---------	----------

Г

	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20	ES20
	16-1	16-2	15-3	16-8	16-9	16-3	17-4	16-4	16-5	16-6	17-2	17-5	16-7
	Bta	Та	Та	Bta	Bta	Ва	Ва	Ва	Ва	А	Ва	Ва	А
La/Yb	43.0	9.8	10.0	37.1	42.2	18.6	21.3	19.9	21.4	23.0	22.6	17.8	12.9
La/Nb	4.5	1.6	1.5	2.5	2.7	4.0	4.4	4.5	4.3	4.6	4.6	3.8	3.1
Nb/La	0.2	0.6	0.7	0.4	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.3
Th/Y	0.8	0.5	0.5	0.8	0.9	0.6	0.7	0.6	0.7	0.8	0.7	0.6	0.4
Nb/Y	0.8	0.6	0.6	1.2	1.3	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.4
Ba/Nb	73	58	42	45	53	99	107	135	106	121	120	109	198
Zr/Ba	0.2	0.3	0.4	0.3	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ba/Zr	6.0	3.8	2.7	2.9	3.2	6.8	7.5	8.5	7.3	8.3	8.1	7.4	11.5
Nb/Th	1.0	1.3	1.3	1.5	1.5	0.7	0.6	0.6	0.6	0.6	0.6	0.8	1.0
La/Ta	80.8	13.0	14.4	41.6	43.1	44.0	46.3	42.4	56.3	44.6	58.2	46.9	28.1
Nb/U	4.3	1.9	2.0	5.3	4.7	1.8	1.8	1.7	1.7	1.3	1.7	2.2	2.9
Ba/La	16.5	36.3	27.5	18.3	19.8	25.1	24.7	30.0	24.5	26.1	26.4	28.5	64.1
Ba/Ta	1333	472	396	762	851	1103	1141	1272	1379	1166	1538	1334	1800
Th/Nb	1.0	0.8	0.8	0.6	0.7	1.4	1.6	1.6	1.6	1.8	1.7	1.3	1.1
Nb/Ta	18.1	8.1	9.5	16.8	16.0	11.1	10.6	9.4	13.0	9.6	12.8	12.2	9.1
Ta/Yb	0.5	0.8	0.7	0.9	1.0	0.4	0.5	0.5	0.4	0.5	0.4	0.4	0.5
_{La/Yb} (N)	31	7	7	27	30	13	15	14	15	16	16	13	9
Ba/Th	75	74	53	70	78	70	66	85	67	68	73	85	189
Dy/Yb	2.4	2.0	2.0	2.5	2.5	2.0	2.0	2.0	2.1	2.2	2.1	2.0	1.9
Th/La	0.2	0.5	0.5	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3
Zn/Fe	12.4	6.9	5.7	9.3	10.4	6.8	9.6	8.4	12.3	7.3	12.1	6.5	8.8
Y/Nb	1.2	1.7	1.7	0.8	0.8	2.2	2.2	2.5	2.2	2.4	2.3	2.3	2.4
_{Tb/Yb} (N)	2.2	1.5	1.6	2.2	2.2	1.5	1.6	1.7	1.7	1.8	1.8	1.6	1.5

5. TARTIŞMA

Magma, eriyik halden katılaştığı evreye kadar farklı jeokimyasal süreçlerin etkisi altında kalmakta, türediği kaynağın ve kaynak bölgenin özelliklerine bağlı olarak ilksel bileşiminde önemli değişiklikler göstermektedir. Bu bölümde bazaltik volkanizmanın evrimi ve gelişimi sırasında etkili olan jeokimyasal süreçler tartışılmış ve oluşumunda etkili olan kaynak bileşenleri belirlenmeye çalışılmıştır.

5.1. Fraksiyonel Kristalleşme

Fraksiyonel kristalleşmenin etkin olduğu durumlarda soğumakta olan eriyikten olivin, piroksen, Ca-plajiyoklaz gibi mineraller öncelikli olarak ayrılmaktadır ve geride kalan eriyiğin ve oluşan kristallerin bileşimleri oluşum aşamalarından dolayı birbirlerine göre farklılık göstermektedir. Fraksiyonel kristalleşme süreci devam ettikçe SiO₂ artışı ile major oksitlerin içeriklerinde de değişimler gözlenmesi beklenmektedir. Böylece tek bir magma kaynağından oluşan farklı bileşimlerde kayaçların kaynağı açıklanabilmektedir.

Şekil 4.3'te Fe₂O₃, MgO, CaO, P₂O, MnO ve TiO₂ ile SiO₂ arasında görülen negatif korelasyon ile Şekil 4.4'te Sr ve SiO₂ arasındaki negatif trend fraksiyonel kristalleşme süreci ile uyumluluk göstermektedir. Şekil 4.4'te Ba, Zr, Nb, Y, Th, Ce elementleri ile SiO₂ arasında gözlemlenen negatif yönelimler fraksiyonel kristalleşme süreçlerinde beklenmemektedir. Bu durum, fraksiyonel kristalleşme süreçleri ile birlikte başka jeokimyasal süreçlerin varlığına işaret etmektedir.

5.2 Kabuksal Kirlenme

Magmanın yüzeye doğru hareketi sırasında ve magma odalarında depolanma sürecinde kabuk malzemesi, magma ile etkileşime girebilmektedirler.

Çalışma bölgesindeki bazaltik kayaçların çoklu element diyagramları bu kayaçların LIL ve LREE elementler bakımından, HFS elementlerine ve HREE' lere göre zenginleşmiş olduğunu göstermektedir (Şekil 4.5). LIL ve LREE'lerde görülen zenginleşmeler dalma-batma, kabuksal kirlenme yada düşük dereceli kısmi ergime ile açıklanmaktadır [105]. Buna göre LIL ve LREE görülen zenginleşmeler magmatik farklılaşma veya kısmi ergime sırasında LREE ve LIL elementlerin eriyik fazı tercih etmesinden kaynaklandığını işaret etmektedir.

Th/Y ve Nb/Y oranları kabuksal kirlenme ve kaynağın heterojenliğinin yorumlanması için belirleyici olarak kullanılabilmektedir [95]. Düşük Nb/Y oranında Th/Y değerinin artması dama-batma zenginleşmesini ve/veya kabuksal kirlenmeyi işaret ederken, Nb/Y artışına göre Th/Y artışı kıta-içi zenginleşmeyi göstermektedir.

Th/Y oranı Seyitgazi bazaltik örnekleri için 0.45-0.86, Ilıca ve Köprüören bazaltik ürünleri için ise 0.43-0.75 aralığında, Nb/Y oranı Seyitgazi için 0.57-1.28, Ilıca ve Köprüören için 0.40-0.45 değerleri arasında değişmektedir.

Şekil 5.1'de görüldüğü gibi Ilıca bazaltik örnekleri yüksek Th/Y oranı ile dalma- batma zenginleşmesinin etklilerini göstermekte, buna karşın Seyitgazi örnekleri ile Köprüören örneği artan Th/Y oranı ile birlikte Nb/Y oranındaki artış ile temsil edilmektedir. Bu durum, bu bazaltik ürünlerin oluşumunda kıta-içi zenginleşme süreçlerinin varlığına da işaret etmektedir. Diğer taratan, çalışma bölgelerinin kuzeyinde bulunan bazaltik bileşimli kayaçlar Telsiz [1] benzer Nb/Y içeriğine sahiptirler.

Şekil 5. 1. Nb/Y - Th/Y diyagramı (Veri: [106], [107], [108], [39], [109], [1], [110], [111].

Yüksek LREE/HREE oranları, magmanın zenginleşmiş bir manto kaynağı yada düşük dereceli kısmi ergimenin sonucu olduğunu göstermektedir.

Diğer taraftan yüksek Ba/Nb(>28) ve Ba/Ta (>450) değerleri dalmabatma ilişkili magmatizmayı göstermektedir [99], [112]. Örneklerin Ba/Nb ve Ba/Ta oranları dalma-batma ilişkili magmatizmayı işaret etmektedir.

Yüksek La/Nb >1 oranının da bazaltik ürünlerin oluşumunda litosferden gelen katkıyı gösterdiği birçok araştırmacı tarafından belirtilmektedir [103], [113]. Kıtasal kabuk Nb ve Ta elementlerince diğer yüksek uyumsuz elementlere göre, örneğin La elementine kıyasla tüketilmişlerdir [114]. La/Ta ve La/Nb oralarının sırası ile 22 ve 1.5'tan büyük olması, kayaçların oluşumu sırasında önemli düzeyde kabuksal katkı içerdiğine işaret etmektedir [115]. Bazaltik kayaçların La/Ta oranı Seyitgazi için 13-80, Ilıca ve Köprüören için 4.72-5.46 arasında, La/Nb oranları ise Seyitgazi için 1.52-4.45, Ilıca ve Köprüören için 3.09-4.64 arasında değişmektedir. Seyitgazi, Ilıca ve Köprüören örneklerinin La/Nb değerleri kabuksal katkıyı işaret etmektedir.

Benzer şekilde Nb/La Ba/La oranları, bazaltik lavların türediği kaynak bileşenlerine, önemli yaklaşımlarda bulunmamızı sağlamaktadır.

Şekil 5.2 'de çalışma bögesine ait örnekelerin Nb/La-Ba/La diagramı görülmekte, iki örnek dışında tüm örnekler düşük Nb/La oranları ile litosfer bölgesi içerisinde yer almaktadır. Ilıca örnekleri yüksek Ba/La oranları ile diğer bazaltik lavlardan ayrılırlar, bu durum bu ürünlerin oluşumunda farklı düzeydeki kabuksal katkıdan olabileceği gibi, bazaltik lavların oluşumundaki kaynak bölge özelliği ve kısmi ergime derecesindeki farklılaşmalarla da ilgili olabilir.

Şekil 5. 2. Ba/La - Nb/La diyagram (Veri: [116], [106], [107], [108], [4], [39], [1], [110], [111])

Th, Ta ve Tb gibi uyumsuz ve hareketliliği olmayan elementlerin Th/Yb ve Ta/Yb oranları kısmi ergime ve fraksiyonel kristalleşme süreçlerinde değişiklik göstermezler.

Dalma-batma etkisi ile metasomatize olmuş kaynakta Th, Ta'dan daha fazla zenginleştiği için Th/Yb oranı Ta/Yb oranından daha büyük olacaktır [95]. Seyitgazi ile ılıca ve Köprüören bazaltik kayaçlarınının Th/Yb oranları sırasıyla 4.84-10.63 ve 4.4-8.86 arasında, Ta/Yb oranları ise 0.53-0.98 ve 0.37-0.51 aralığında değişmektedir. Uyumsuz iz element oranlarında gözlenen tüm bu değişler bazaltik lavaların oluşumunda kabuksal kirlenme sürecinin etkili olduğunu düşündürmektedir.

5.3. Manto kaynak karakteristiği ve kısmi ergime

Magma, kısmi ergimenin gerçekleşmesi için beklenen üç koşul sıcaklık artması, basınç azalması ve ortama uçucu bileşen gelmesi ile oluşmaktadır. Kısmi ergime etkisi ile oluşan eriyiğin bileşimi, mantonun kimyasına, mineralojisine, ergime derecesine, ergimenin gerçekleştiği derinliğe ve yüzeye doğru olan hareketin hızına bağlı farklılıklar göstermektedir [88].

Seyitgazi, Ilıca ve Köprüören bazaltik kayaçları genelde yüksek LIL element ve LREE içeriğine sahipken Ilıca ve Köprüören bazaltları, Seyitgazi'ye göre daha düşük HFS element ve HREE içeriğine sahiptirler (Şekil 4.6; Şekil 4.7). Bu patern dalma-batma, kabuksal katkı gibi magmatik farklılaşma süreçleri ile ilişkilendirilebilinir.

Zr/Ba değerleri litosferik (0.3-0.5) ve astenosferik (>0.5) kaynakları ayırt etmek için belirleyicidir [90], [39]. Düşük Zr/Ba oranları dalmabatma sürecinde eriyiğe karışmış, Ba elementince zenginleşmiş bir litosferik kaynağı işaret etmektedir [90]. Tüm bazaltik örnekler düşük Zr/Ba (0.08-0.37) değerleri ile temsil edilmekte ve ürünlerin oluşumu sırasında Ba elementince zenginleşmiş litosferik bir kaynaktan önemli bir katkı gerçekleştiğini düşündürmektedir.

Hafif nadir toprak ve ağır nadir toprak elementlerin birbirlerine göre olan oranları, ergime derecesini yorumlamak için kullanılmaktadır. Kısmi ergime derecesi için REE/REE La/Yb_(N) oranına bakıldığında Seyitgazi bazaltik lavlarının 7.04 –30.86, Ilıca ve Köprüören örneklerinin ise 9.27-16.49 aralığında değiştiği (Çizelge 4.2.) görülmekte, Seyitgazi lavlarının Ilıca ve Köprüören lavlarına göre daha düşük kısmı ergime derecelerinde oluştuğu söylenebilmekle birlikte bu bölgedeki lavlar için 2 farklı kısmi ergime derecesi de öngörülmektedir (Çizelge 4.2.). Ayrıca bu durum, Şekil 4.9' da hafif nadir toprak elementlerde gözlenen farklı derecelerdeki zenginleşmeler ile de desteklenmektedir.

Spinel peridodit kaynağı sığ derinlikleri ve litosferik karakteri gösterirken granat peridodit kaynağı daha derin bir kaynağı işaret etmektedir [88], [117], [118].

Örneklerin türediği manto kaynak bileşenine yaklaşımlarda bulunmak için, Tb/Yb(N)-La/Yb(N) diyagramı oluşturulmuş ve Şekil 5.3'te verilmiştir. Yüksek basınçlarda manto peridoditinde granatın, spinele göre dengede olmasından dolayı nadir toprak elementleri kullanılmaktadır, Spinel peridotit – Granat peridotit ayrım değeri Wang vd. [119]'dan alınmıştır.

Tb/Yb(N) Seyitgazi için 1.5-2.24, Ilıca için 1.5-1.78 değerleri arasında değişirken Köprüören örneğinde 1.47 değerindedir. Seyitgazi'nin kuzey bölgesinden alınan örneklerin granat peridotit gibi bir manto kaynağından buna karşın (Şekil 5.1.) diğer örneklerin ise spinel peridodit tipi bir manto kaynağından türediği düşünülmektedir. Ayrıca, yüksek Tb/Yb(N) değerleri, granat alanında mantoda düşük dereceli kısmi ergimenin gerçekleştiğine işaret etmektedir [120].

Şekil 5. 3. Tb/Yb(N) - La/Yb(N) diyagramı (Veri: [119], [39], [109], [1], [110], [111]).

5.4 Tektonizma

Arap, Afrika ve Avrasya levhallarının hareketine bağlı olarak Anadolu Bloğu'nun batıya doğru ilerleyişi ile kıta içi deformasyonların sonucunda Anadolu Bloğu içersinde, çek ayır havzalar ve ters faylar gelişmiştir [8], [7], [3], [11], [14], [121], [122].

Çalışma alanı, Triyas sonunda başlayan K-G sıkışmanın etkisi ile çarpışma tektoniğinden, Neojen sonlarında oluşan D-B yönlü sıkışmaların etkisi ile K-G açılma tektoniğine geçiş gösteren tektonik süreçlerin etkisi altında kaldığı belirtilmiştir [54]. Bölgedeki en önemli yapısal unsur çalışma alanını kuzeyinde yer alan Eskişehir Fay zonudur. Çalışma alanında ise bazaltik lavların B ve KB kesimlerinde, bazaltik lavları ve miyosen yaşlı volkanik kayaçları kesen farklı fay sistemleri gelişmiştir.

5.4.1. Eskişehir Fay Zonu

Günümüze kadar gerçekleştirilen çalışmalarda Eskişehir fay zonu için farklı görüşler ileri sürülmüştür. Batıda Uludağ, doğuda Kaymaz arasında bulunan, BKB- DGD doğrultulu Eskişehir fay zonu, Ege-Batı Anadolu bloğunu, Orta Anadolu bloğundan ayıran doğrulu atımlı (sağ yönlü) bir fay zonudur. Bu fay Eskişehir ve çevresinde K-B ve KB-GD yönlü farklı faylar ile temsil edilmektedir [10], [123], [124]. Ayrıca Eskişehir fay zonunun transtansiyonal (yanal-genişlemeli) bir fay zonu olduğu belirtilmiştir [125]. Seyitoğlu vd. [126] Eskişehir fay zonunun Anadolu'nun iç deformasyonunda önemli rol oynadığını belirtmektedir. Çalışma bölgesinde farklı lokasyonlarda farklı hacimlerde bazaltik Bölgede gelişen bazaltik volkanik faaliyetlerin etkinlikler gelişmiştir. Eskişehir fay zonu ve bununla birikte bölgede yer alan diğer doğrultu atımlı faylar ile ilişkili olabileceği düşünülmekle birlikte, volkanizmatektonizma ilişkisinin ortaya konulabilmesi için detaylı çalışmaların yapılması ve fayların aktivitelerinin belirlenmesi gerekmektedir.

6. SONUÇLAR

- Çalışma alanındaki lav örnekleri Seyitgazi, Ilıca ve Köprüören bölgelerinde bulunmaktadır. En büyük hacme sahip lavlar Ilıca bölgesindedir.
- Örnekler hipokristalin porfirik dokudadır. Örneklerin olivin, piroksen, plajiyoklaz ve Fe-Ti oksit mineralleri içerdiği belirlenmiştir.
- Örnekler bazaltiktrakiandezit, bazaltikandezit, trakiandezit ve andezit bileşiminde olup, alkali ve subalkali karakterde oldukları belirlenmiştir.
- 4. Jeotermometre ve jeobarometre hesaplamaları gerçekleştirilerek bazaltik bileşimli kayaçların oluşum sıcaklıkları, oluşma derinlikleri belirlenmeye çalışılmıştır. Ilıca ve Köprüören kesiminde sıcaklık değerleri 1223 ^oC, Seyitgazi kesiminde ise sıcaklık 1055 ^oC olarak hesaplanmıştır. Köprüören örneğinin basınç hesaplaması 12 kbar'dır. Seyitgazi'nin kuzey ve güneyi kesimlerinde sırası ile 25 ve 12 km'lik derinlikler, Köprüören'de ise 21 km derinlik hesaplanmıştır.
- Örnekler için çizilen Harker diyagramları, fraksiyonel kristalleşme süreçleri ile birlikte başka jeokimyasal süreçlerin varlığına işaret etmektedir.
- 6. Seyitgazi örnekleri HFS elementlerine göre, LIL elementlerce zenginleşmiş olmakla birlikte negatif Ta, Nb, P, Ti anomalileri göstermektedir. Ilıca ve Köprüören örnekleri ise Seyitgazi örneklerinin LIL elementlerine benzer zenginleşme göstermektedir fakat HFS elementlerinde fakirleşme ve Pb içeriğinde zenginleşme

ile ayrılmaktadır. LIL ve HFS elementlerdeki bu değişimler, örneklerin oluşumunda dalma-batma ve/veya kabuksal kirlenme süreçlerinin etkili olduğunu düşündürmektedir.

- 7. Yüksek La/Yb(N) oranları sahip Seyitgazi lavlarının Ilıca ve Köprüören lavlarına göre daha düşük kısmı ergime derecelerinde oluştuğu söylenebilmekle birlikte bu bölgedeki lavlar için 2 farklı kısmi ergime dereceside öngörülmektedir. Ayrıca bu durum, Seyitgazi örneklerini hafif nadir toprak elementlerinde gözlenen farklı derecelerdeki zenginleşmeri ile de desteklenmektedir.
- Tb/Yb(N)-La/Yb(N) oranları örneklerin granat ve spinel peridotit gibi manto kaynaklarından türemiş olabileceğini göstermekle birlikte, daha detaylı değerlendirmeler için Sr-Nd–Pb izotop analizlerine ihtiyaç duyulmaktadır.
- 9. Elde edilen tüm verilerin değerlendirilmesi ile çalışma bölgesindeki bazaltik kayaçların, manto kaynağından farklı kısmi ergime dereceleri ve sonrasında gelişen kabuksal kirlenme ile gibi, oluşabileceği içerisinde bileşiminde zaman kaynak gelişebilecek değişimler ile de oluşabileceği düşünülmektedir.

7. KAYNAKLAR

- [1] Telsiz, S. "Eskşehir Yöresindeki Volkanik Kayaçların Petrolojisi ve Jeokimyası" Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Fakültesi, Ankara, Türkiye, **2011**.
- [2] "b14.jpg (3508×2479)." [Online]. Available: http://www.kgm.gov.tr/SiteCollectionImages/KGMimages/Haritala r/b14.jpg. [Accessed: 18-May-**2018**].
- [3] Sengör A. M. C., and Yilmaz, Y., "Tethyan evolution of Turkey: A plate tectonic approach," *Tectonophysics*, vol. 75, no. 3–4, **1981**.
- [4] Aldanmaz, E., Pearce, Thirlwall, and J. . Mitchell, "Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey," J. Volcanol. Geotherm. Res., vol. 102, no. 1–2, pp. 67–95, 2000.
- [5] Piper, J. D. A., Gürsoy, H., Tatar, O., İşseven, T., and Koçyiğit, A., "Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, southern Turkey," *Geol. J.*, vol. 37, no. 4, pp. 317–336, Oct. **2002**.
- [6] Okay, A. I., Harris, N. B. W., and Kelley, S. E., "Exhumation of blueschists along a Tethyan suture in northwest Turkey," *TectonophysicsTectonophysics*, vol. 285, no. 285, pp. 275–299, 1998.
- [7] Şengör, A.M.C., Türkiyenin Neotektoniğinin Esasları. Geological Society of Turkey, 40pp, **1980**.
- [8] Mckenzie, D., "Active Tectonics of the Mediterranean Region," vol. 30, pp. 109–185, **1972**.
- [9] Sengör, A. M. C., "The North Anatolian transform fault: its age, offset and tectonic significance," J. Geol. Soc. London., vol. 136, no. 3, pp. 269–282, May 1979.
- [10] Şengör, A. M. C., Görür, N. and Şaroğlu, F. "Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study," **1985**.
- [11] Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F. and A. M. C. Şengör, "Shortening of continental lithosphere: the neotectonics of Eastern Anatolia — a young collision zone," *Geol. Soc. London, Spec. Publ.*, vol. 19, no. 1, pp. 1–36, Jan. **1986**.
- [12] Fytikas, M., Giuliani, O., Innocenti, G. Marinelli, and R. Mazzuoli, "Geochronological data on recent magmatism of the Aegean Sea," *Tectonophysics*, vol. 31, no. 1–2, pp. T29–T34, Mar. **1976**.
- [13] Temel, A., Gündoğdu, M. N., Gourgaud, A. and J.-L. Le Pennec, "Ignimbrites of Cappadocia (Central Anatolia, Turkey): petrology and geochemistry," J. Volcanol. Geotherm. Res., vol. 85, no. 1–4, pp. 447–471, Oct. 1998.

- [14] Yürür, M.T., and Chorowicz, J., "Recent volcanism, tectonics and plate kinematics near the junction of the African, Arabian and Anatolian plates in the eastern Mediterranean," J. Volcanol. Geotherm. Res., vol. 85, no. 1–4, pp. 1–15, Oct. 1998.
- [15] JChorowicz, J., Dhont, D., and Gündoğdu, N., "Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model," J. Struct. Geol., vol. 21, no. 5, pp. 511–532, May 1999.
- [16] Dilek Y., and Altunkaynak, S. "Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia," *Int. Geol. Rev.*, vol. 49, **2007**.
- [17] Yilmaz, Y., "Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review," J. Volcanol. Geotherm. Res., vol. 44, no. 1–2, pp. 69–87, 1990.
- [18] Güleç, N., "Crust-mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics," *Geol. Mag.*, vol. 128, no. 5, p. 417, Sep. **1991**.
- [19] Erkül, F., Helvaci, C. and H. Sözbilir, "Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey," *Geol. J.*, vol. 40, no. 5, pp. 545–570, **2005**.
- [20] Altunkaynak, Ş. and Genç, Ş. C. "Petrogenesis and timeprogressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey)," *Lithos*, vol. 102, no. 1–2, pp. 316–340, Apr. **2008**.
- [21] Seyitoģlu, G. and Scott, B. C. "Late Cenozoic volcanic evolution of the northeastern Aegean region," J. Volcanol. Geotherm. Res., vol. 54, no. 1–2, pp. 157–176, Dec. 1992.
- [22] Seyitoglu, G., Anderson, D., Nowell, G., and B. Scott, "N," vol. 273, no. 96, **1997**.
- [23] Ersoy, E. Y., Helvacı, C., and M. R. Palmer, "Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia: Implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings," J. Volcanol. Geotherm. Res., vol. 198, no. 1–2, pp. 112–128, Dec. **2010**.
- [24] Seyitoğlu, G., Işik, V. and I. Çemen, "Complete tertiary exhumation history of the Menderes massif, western Turkey: An alternative working hypothesis," *Terra Nov.*, vol. 16, no. 6, pp. 358–364, **2004**.

- [25] Altunkaynak, Ş., and Dilek, Y. "Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications," in Special Paper 409: Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, pp. 321–351, 2006.
- [26] Alıcı, P., Temel, A. and Gourgaud, A. "Pb-Nd-Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case study of Kula region (western Anatolia, Turkey)," J. Volcanol. Geotherm. Res., vol. 115, no. 3-4, pp. 487-510, Jun. 2002.
- [27] Innocenti, F., Agostini, S., Vincenzo G. DI, Doglioni, C., Manetti, P.,Savaşçın, M.Y. "Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution," *Mar. Geol.*, vol. 221, no. 1–4, pp. 397–421, **2005**.
- [28] Isik, V. Tekeli, O. and Seyitoglu, G. "The40Ar/39Ar age of extensional ductile deformation and granitoid intrusion in the northern Menderes core complex: Implications for the initiation of extensional tectonics in western Turkey," J. Asian Earth Sci., vol. 23, no. 4, pp. 555–566, 2004.
- [29] Çoban, H., "Basalt magma genesis and fractionation in collisionand extension-related provinces: A comparison between eastern, central and western Anatolia," *Earth-Science Rev.*, vol. 80, no. 3– 4, pp. 219–238, **2007**.
- [30] Pasquarè, G., Geology of Cenozoic volcanic area of Central Anatolia: *Atti.accad. Naz. Lincei* **9**, 53-294, **1968**.
- [31] Innocenti, F., Mazzuoli, R., Pasquarè, G., Radicati Di Brozolo, and L. Villari, "The Neogene calcalkaline volcanism of Central Anatolia: geochronological data on Kayseri—Nigde area," *Geol. Mag.*, vol. 112, no. 4, p. 349, Jul. **1975**.
- [32] Ercan, T., Tokel, S., Can, B., Fişekçi, A., Fujitani, T., Notsu, K., Selvi, Y., vOlmez, M., Matsuda, J.I., Ui, T., Yıldırım, T., Akbaşlı, A. Hasandağı-vKaracadağ Orta Anadolu dolaylarındaki Senozoyik yaşlı volkanizmaninvkökeni ve evrimi, *Jeomorfoloji Dergisi* 18, 39-54, 1990.
- [33] Ercan, T., Tokel, S., Matsuda, J.I., Ui, T., Notsu, K., Fujitani, T., Erciyes Dağı Orta Anadolu Pliyo-Kuvaterner volkanizmasina ilşkin yeni jeokimyasal, izotopik, radyometrik veriler ve jeotermal enerji açısından önemi, Türkiye 6. Enerji Kongresi, Teknik oturum tebliğleri, **1994**.
- [34] Notsu, K., Fujitani, T., T. Ui, J. Matsuda, and T. Ercan, "Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey," J. Volcanol. Geotherm. Res., vol. 64, no. 3–4, pp. 171–191, Mar. 1995.

- [35] Aydar, E., Gourgaud, A., Deniel, C., Lyberis, N., and Gundogdu, "Le volcanisme quaternaire d'Anatolie centrale (Turquie): association de magmatismes calco-alcalin et alcalin en domaine de convergence," *Can. J. Earth Sci.*, vol. 32, no. 7, pp. 1058– 1069, Jul. **1995**.
- [36] Kürkcüoglu, B., Şen, E., Temel, A., Aydar, E., and Gourgaud, A.,, "Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey," J. Volcanol. Geotherm. Res., vol. 85, no. 85, pp. 473–494, **1998**.
- [37] Kürkcüoglu, B., Şen, E., Temel, A., Aydar, E., and Gourgaud, A., "Trace-element modeling and source constraints for tholeiitic and cale-alkaline basalts from a depleted asthenospheric mantle source, Mt. Erciyes stratovolcano, Turkey," *Int. Geol. Rev.*, vol. 43, no. 6, pp. 508–522, **2001**.
- [38] Kürkcüoglu, B., Şen, E., Temel, A., Aydar, E., and Gourgaud, A., "Interaction of Asthenospheric and Lithospheric Mantle: The Genesis of Calc-alkaline Volcanism at Erciyes Volcano, Central Anatolia, Turkey," *Int. Geol. Rev.*, vol. 46, no. 3, pp. 243–258, Mar. 2004.
- [39] Kürkcüoglu, B., "Geochemistry and petrogenesis of basaltic rocks from the Develidağ volcanic complex, Central Anatolia, Turkey," J. Asian Earth Sci., vol. 37, no. 1, pp. 42–51, Jan. **2010**.
- [40] A. Şen, P., Temel, A. and Gourgaud, A., "Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia," *Geol. Mag.*, vol. 141, no. 1, pp. 81–98, Jan. 2004.
- [41] Şen, E., Kürkcüoğlu, B., Aydar, E., Gourgaud, A., and Vincent, "Volcanological evolution of Mount Erciyes stratovolcano and origin of the Valibaba Tepe ignimbrite (Central Anatolia, Turkey)," *J. Volcanol. Geotherm. Res.*, vol. 125, no. 3–4, pp. 225–246, Jul. 2003.
- [42] Deniel, C., Aydar, E., and A. Gourgaud, "The Hasan Dagi stratovolcano (Central Anatolia, Turkey): evolution from calcalkaline to alkaline magmatism in a collision zone," J. Volcanol. Geotherm. Res., vol. 87, no. 1–4, pp. 275–302, Dec. 1998.
- [43] Doğan, U., "Climate-controlled river terrace formation in the Kızılırmak Valley, Cappadocia section, Turkey: Inferred from Ar-Ar dating of Quaternary basalts and terraces stratigraphy," *Geomorphology*, vol. 126, no. 1–2, pp. 66–81, Mar. **2011**.
- [44] Gencalioglu Kuscu, G. and Geneli, F., "Review of post-collisional volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy Volcanic Complex," *Int. J. Earth Sci.*, vol. 99, no. 3, pp. 593–621, Apr. **2010**.
- [45] Gencalioglu-Kuscu, G. "Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)," Int. J. Earth Sci., vol. 100, no. 8, pp. 1967–1985, Nov. 2011.
- [46] Kürkçüoğlu, B.,Pickard, M., Şen, P.,Hanan B.,Sayıt, K., Plummer, C.,Şen,E.,Yürür, T., Furman, T. "Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere," *Lithos*, vol. 232, pp. 229–241, Sep. **2015**.
- [47] Aydar E. and Gourgaud, A., "The geology of Mount Hasan stratovolcano, central Anatolia, Turkey," J. Volcanol. Geotherm. Res., vol. 85, no. 1–4, pp. 129–152, Oct. 1998.
- [48] Ilbeyli, N., Pearce, J. A., Thirlwall, M. F. and J. G. Mitchell, "Petrogenesis of collision-related plutonics in Central Anatolia, Turkey," *Lithos*, vol. 72, no. 3–4, pp. 163–182, Feb. **2004**.
- [49] Güçtekin, A. and Köprübaşı, N. Geochemical Characteristics of Mafic and Intermediate Volcanic Rocks from the Hasandağ and Erciyes Volcanoes (Central Anatolia, Turkey), *Turkish Journal of Earth Sciences* 18, 1-27 (2009).
- [50] Dogan-Kulahci, G., Temel, A., Gourgaud A., Varol E., Guillou H., Deniel C., "Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a postcollisional Quaternary basaltic volcanism" *Journal of Volcanology and Geothermal Research*, vol. 356, pp. 56-74, **2018**
- [51] Temel, A., Varol, E., Yürür, T., Çamlıdere yöresi volkanik kayaçların kökeni ve tektonikle ilişkisi, TÜBİTAK, Proje No: 101Y043.160, **2006**.
- [52] Varol, E. Temel, A. Gourgaud, A., and H. Bellon, "Early Miocene adakite-like volcanism in the Balkuyumcu region, central Anatolia, Turkey: Petrology and geochemistry," J. Asian Earth Sci., vol. 30, no. 5–6, pp. 613–628, Jul. 2007.
- [53] Temel, A., "Post-Collisional Miocene Alkaline Volcanism in the Oglakçi Region, Turkey: Petrology and Geochemistry," Int. Geol. Rev., vol. 43, no. 7, pp. 640–660, Jul. 2001.
- [54] Gözler, M.Z., Cevher, F., Ergül, E., ve Asutay, H.J.,. Orta Sakarya ve Güneyinin Jeolojisi, MTA Derleme No:9973, 87s, **1996**.

- [55] Göncüoğlu, M. C., Turhan, N., Şentürk, K., Özcan, A., Uysal, Ş, Yaliniz, M. K. A geotraverse across Northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: Bozkurt, E., Winchester, J. A., Piper, J. D. A. (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area, 173. Geological Society, London, pp. 139–161, Special Publication, 2000.
- [56] Okay, A. I., Monod, O. and P. Monié, "Triassic blueschists and eclogites from northwest Turkey: Vestiges of the Paleo-Tethyan subduction," *Lithos*, vol. 64, no. 3–4, pp. 155–178, **2002**.
- [57] Ocakoğlu, F.,. A re-evaluation of the Eskişehir Fault Zone as a recent extensional structure in NW Turkey. Journal of Asian Earth Sciences, 31, 91-103, 2007.
- [58] Damesceno, D., SCOATES, J. S., WEIS, D., F. A. FREY, and A. GIRET, "Mineral Chemistry of Mildly Alkalic Basalts from the 25 Ma Mont Crozier Section, Kerguelen Archipelago: Constraints on Phenocryst Crystallization Environments," *J. Petrol.*, vol. 43, no. 7, pp. 1389–1413, Jul. **2002**.
- [59] Roeder P. L. and Emslie, R. F. "Olivine-liquid equilibrium," *Contrib. to Mineral. Petrol.*, vol. 29, no. 4, pp. 275–289, **1970**.
- [60] Toplis, M. J. "The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems," *Contrib. to Mineral. Petrol.*, vol. 149, no. 1, pp. 22–39, Mar. 2005.
- [61] Putirka, K. D. "Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations," Am. Mineral., vol. 90, no. 2–3, pp. 336–346, 2005.
- [62] Mollo, S. Putirka, K., Misiti, M. Soligo, and P. Scarlato, "A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at posteruptive conditions," *Chem. Geol.*, vol. 352, pp. 92–100, **2013**.
- [63] Putirka, K. "Thermometers and Barometers for Volcanic Systems," *Rev. Mineral. Geochemistry*, vol. 69, no. 1, pp. 61–120, **2008**.
- [64] Toplis M. J. and Carroll, M. R. "An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral- Melt Equilibria in Ferro-Basaltic Systems," J. Petrol., vol. 36, no. 5, pp. 1137–1170, **1995**.
- [65] Sisson T. W. and Grove, T. L. "Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism," *Contrib. to Mineral. Petrol.*, vol. 113, no. 2, pp.

143–166, Feb. **1993**.

- [66] Feeley T. C., and Dungan, M. A. "Compositional and Dynamic Controls on Mafic—Silicic Magma Interactions at Continental Arc Volcanoes: Evidence from Cordon El Guadal, Tatara-San Pedro Complex, Chile," J. Petrol., vol. 37, no. 6, pp. 1–7, **1996**.
- [67] FERLA P., and MELI, C. "Evidence of Magma Mixing in the 'Daly Gap' of Alkaline Suites: a Case Study from the Enclaves of Pantelleria (Italy)," J. Petrol., vol. 47, no. 8, pp. 1467–1507, Aug. 2006.
- [68] Putirka, K., Perfit, M., Ryerson, F. J., and M. G. Jackson, "Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling", (eds: Putirka, K., Tepley, F.), *Mineralogical Society of America* 69, 61-120 **2008**.
- [69] Masotta, M., Mollo, S., Freda, M. Gaeta, and G. Moore, "Clinopyroxene-liquid thermometers and barometers specific to alkaline differentiated magmas," *Contrib. to Mineral. Petrol.*, vol. 166, no. 6, pp. 1545–1561, **2013**.
- [70] Nimis, P., "A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling," *Contrib. to Mineral. Petrol.*, vol. 121, no. 2, pp. 115–125, Aug. **1995**.
- [71] Nimis, P., and Ulmer, P., "Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems," *Contrib. to Mineral. Petrol.*, vol. 133, no. 1–2, pp. 122–135, Oct. **1998**.
- [72] Nimis P., and W. R. Taylor, "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer," *Contrib. to Mineral. Petrol.*, vol. 139, no. 5, pp. 541–554, Sep. **2000**.
- [73] Putirka, K., Johnson, M., Kinzler, J. Longhi, and D. Walker, "Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0—30 kbar," *Contrib Miner. Pet.*, vol. 123, pp. 92–108, **1996**.
- [74] Putirka, K. D., Mikaelian, H., Ryerson, F. and H. Shaw, "New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho," Am. Mineral., vol. 88, no. 10, pp. 1542–1554, Oct. **2003**.
- [75] Bowen NL., The melting phenomena of the plagioclase feldspars. Am J Sci 35:577-599, **1970**.
- [76] Kudo AM, Weill DF., An igneous plagioclase thermometer. Contrib Mineral Petrol 25:52-65 **1970**.

- [77] Mathez EA., Refinement of the Kudo-Weill plagioclase thermometer and its applications to basaltic rocks.Contrib Mineral Petrol 41:61-72, **1973**.
- [78] Drake, M. J. "Plagioclase—melt equilibria," *Geochim. Cosmochim. Acta*, vol. 40, no. 4, pp. 457–465, Apr. **1976**.
- [79] Loomis, T. P. "An empirical model for plagioclase equilibrium in hydrous melts," *Geochim. Cosmochim. Acta*, vol. 43, no. 11, pp. 1753–1759, Nov. **1979**.
- [80] Glazner, A. F. "Activities of olivine and plagioclase components in silicate melts and their application to geothermometry," *Contrib. to Mineral. Petrol.*, vol. 88, no. 3, pp. 260–268, Dec. **1984**.
- [81] Sugawara, T. "Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications," *Contrib. to Mineral. Petrol.*, vol. 141, no. 6, pp. 659–686, Sep. 2001.
- [82] Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. and V. C. Kress, "The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa," *Geochemistry, Geophys. Geosystems*, vol. 3, no. 5, pp. 1–35, May 2002.
- [83] Le Bas, M. J., Le Maitre, R. W., Streckeisen, and Zanettin, "A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram," J. Petrol., vol. 27, no. 3, pp. 745–750, Jun. 1986.
- [84] Miyashiro, A. "Nature of alkalic volcanic rock series," *Contrib. to Mineral. Petrol.*, vol. 66, no. 1, pp. 91–104, **1978**.
- [85] LeMaitre, R. W. "Igneous Rocks: A classification and glossary of terms," Int. Union Geol. Sci. Subcomm. Syst. Igneous Rocks, pp. 32–39, 1989.
- [86] Irvine T. N. and Baragar, W. R. A. "A Guide to the Chemical Classification of the Common Volcanic Rocks," *Can. J. Earth Sci.*, vol. 8, no. 5, pp. 523–548, May **1971**.
- [87] Sun and McDonough, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes, in Magmatism in the Ocean Basins, Geological Society of London (1989), vol. 42, pp. 313–345. 1989.
- [88] Wilson, M., Igneous Petrogenesis: London, Unwin-Hyman, 465, 1989.
- [89] Ringwood, A. E., "Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle," *Chem. Geol.*, vol. 82, pp. 187–207, Jan. **1990**.

- [90] Menzies, M. A., Kyle, P. R., Jones, M. and G. Ingram, "Enriched and depleted source components for tholeiitic and alkaline lavas from Zuni-Bandera, New Mexico: Inferences about intraplate processes and stratified lithosphere," J. Geophys. Res. Solid Earth, vol. 96, no. B8, pp. 13645–13671, **1991**.
- [91] Hawkesworth, C. J. Gallagher, K., Hergt, J. M. and F. McDermott, "Mantle and Slab Contributions in ARC Magmas," *Annu. Rev. Earth Planet. Sci.*, vol. 21, no. 1, pp. 175–204, May **1993**.
- [92] Thirwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P., Arculus, R.J., High field strength element anomalies in arc lavas: Source or Process?, Jour. Petrol., 35, 3, 819-838. 1994.
- [93] Pearce J. A. and Peate, D. W. "Tectonic Implications of the Composition of Volcanic ARC Magmas," Annu. Rev. Earth Planet. Sci., vol. 23, no. 1, pp. 251–285, May 1995.
- [94] Pearce, J.,A. Trace element characteristics of lavas from destructive plate boundaries, (eds: Thorpe, R.S.) Andesites, John Wiley&Sons, 525-548, **1982**.
- [95] Pearce, J.A., The role of subcontinental lithosphere in magma genesis destructive plate margins. In continental basalt and mantle xenolits, C. J. Hawkesworth and M.J. Nory (eds), 230-249, 1983.
- [96] Lustrino M. and Wilson, M. "The circum-Mediterranean anorogenic Cenozoic igneous province," *Earth-Science Rev.*, vol. 81, no. 1–2, pp. 1–65, Mar. **2007**.
- [97] Boynton W. V. Chapter 3. Cosmochemistry of the rare earth elements: Meteorite studies, In *Rare Earth Element Geochemistry* (P. Henderson, ed.), (Developments in Geochemistry 2), pp. 115-1522, Elsevier, Amsterdam, **1985**.
- [98] Rollinson, H. R., Using Geochemical Data: Evaluation, *Presentation, Interpretation.* Taylor and Francis, **2014**.
- [99] Fitton, J.G., James, D., Kempton, P.D., Ormerod, D.S., and Leeman, W.P., The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States, Journal of Petrology, Special Issue, 331-349, **1988**.
- [100] Fitton, J. G., James, D., Leeman, W. P. "Basic magmatism associated with Late Cenozoic extension in the western United States: Compositional variations in space and time," J. Geophys. Res. Solid Earth, vol. 96, no. B8, pp. 13693–13711, Jul. 1991.
- [101]Barragan, R., Geist, D., Hall, M., Larson, P., and Mark Kurz, "Subduction controls on the compositions of lavas from the Ecuadorian Andes," *Earth Planet. Sci. Lett.*, vol. 154, no. 1–4, pp. 153–166, Jan. **1998**.

- [102]Kempton, P. D., Fitton, J. G., Hawkesworth, C. J. and Ormerod, D. S. "Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States," J. Geophys. Res. Solid Earth, vol. 96, no. B8, pp. 13713– 13735, Jul. **1991**.
- [103]DePaolo D. J. and Daley, E. E. "Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension," *Chem. Geol.*, vol. 169, no. 1–2, pp. 157– 185, Aug. **2000**.
- [104]Kokfelt, T. F., Holm, P. M., Hawkesworth, C. J., and D. W. Peate, "A lithospheric mantle source for the Cape Verde Island magmatism: Trace element and isotopic evidence from the Island of Fogo," 1998.
- [105]Pearce, J. A., Bender, J., De Long, S., Kidd, W. "Genesis of collision volcanism in Eastern Anatolia, Turkey," J. Volcanol. Geotherm. Res., vol. 44, no. 1–2, pp. 189–229, Dec. 1990.
- [106]Gibson, S., Thompson, R., Leat, P., Morisson, M., Hendrtey G., Dicko, A., Mitchell J. "Ultrapotassic Magmas along the Flanks of the Oligo-Miocene Rio Grande Rift, USA: Monitors of the Zone of Lithospheric Mantle Extension and Thinning Beneath a Continental Rift," J. Petrol., vol. 34, no. 1, pp. 187–228, Feb. **1993**.
- [107]Chen, C.-Y., Frey, F. A. "Trace element and isotopic geochemistry of lavas from Haleakala Volcano, east Maui, Hawaii: Implications for the origin of Hawaiian basalts," J. Geophys. Res. Solid Earth, vol. 90, no. B10, pp. 8743–8768, Sep. 1985.
- [108]Chen, C.-Y., Frey, F. A., and M. O. Garcia, "Evolution of alkalic lavas at Haleakala Volcano, east Maui, Hawaii," *Contrib. to Mineral. Petrol.*, vol. 105, no. 2, pp. 197–218, **1990**.
- [109]Aldanmaz, E. "Mantle source characteristics of alkali basalts and basanites in an extensional intracontinental plate setting, Western Anatolia, Turkey: Implications for multi-stage melting," Int. Geol. Rev., vol. 44, no. 5, pp. 440–457, 2002.
- [110] Furman, T., Hanan, B., Pickard, M., Kürkcüoğlu, B., Sayıt, K., Sen, E., Alici Sen, P., Yürür, T. Evolution of mafic lavas from Central Anatolia: Mantle source domains (İncelemede)
- [111] Gall,H., Kürkcüoglu,B., Hanan,B., Sayıt, K., Yürür, T., Pickard, M., Furman, T.(basılmamış veri)
- [112]Gill, J.B., *Orogenic Andesites and Plate Tectonics*, vol. 16. Berlin, Heidelberg: Springer Berlin Heidelberg, **1981**.

- [113]Huang, Y., Hawkesworth, C., Smith, I., Van Calsteren, P., Black, "Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: Implications for mantle enrichment processes," *Chem. Geol.*, vol. 164, no. 3–4, pp. 219– 238, **2000**.
- [114]Barth, M. G., Mcdonough, W. F., and Rudnick, R. L., "Tracking the budget of Nb and Ta in the continental crust," *Chem. Geol.*, vol. 165, pp. 197–213, **2000**.
- [115] Hart, W. K., Woldegabriel, G., Walter, R. C., and Mertzman, S. A., "Basaltic Volcanism in Ethiopia: Constraints on Continental Rifting and Mantle Interactions," *J. Geophys. Res.*, vol. 94, no. 10, pp. 7731–7748, **1989**.
- [116]Ormerod, D. S., Rogers, N. W., and Hawkesworth, C. J., "Melting in the lithospheric mantle: Inverse modelling of alkali-olivine basalts from the Big Pine Volcanic Field, California," *Contrib. to Mineral. Petrol.*, vol. 108, no. 3, pp. 305–317, Sep. **1991**.
- [117]McDonough, W. F., "Constraints on the composition of the continental lithospheric mantle," *Earth Planet. Sci. Lett.*, vol. 101, no. 1, pp. 1–18, Nov. **1990**.
- [118]Stern, R. Kilian, B. Olker, E. H. Hauri, and T. Kurtis Kyser, "Evidence from mantle xenoliths for relatively thin (," *Dev. Geotecton.*, vol. 24, pp. 217–235, Jan. **1999**.
- [119]Wang, K., Plank, T., Walker, J.D., and E. I. Smith, "A mantle melting profile across the Basin and Range, SW USA," J. Geophys. Res. Solid Earth, vol. 107, no. B1, p. ECV 5-1-ECV 5-21, Jan. 2002.
- [120]X. Ma, B. Chen, J.-F. Chen, and W.-J. Qu, "Petrogenesis and geodynamic significance of the late Palaeozoic Dongwanzi Complex, North China Craton: constraints from petrological, geochemical, and Os-Nd-Sr isotopic data," *Int. Geol. Rev.*, vol. 56, no. 12, pp. 1521–1540, Sep. **2014**.
- [121]Dhont, D., Chorowicz, J., Yürür, T. J.-L. Froger, O. Köse, and N. Gündogdu, "Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey," *J. Volcanol. Geotherm. Res.*, vol. 85, no. 1–4, pp. 33–54, Oct. **1998**.
- [122]Biryol, C., BeckS. L., Zandt, G., and Özacar, A.A., "Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography," *Geophys. J. Int.*, vol. 184, no. 3, pp. 1037–1057, Mar. **2011**.
- [123] Şaroğlu, F., Emre, Ö. ve Boray, A. 1: 1 000 000 Türkiye diri fay haritası. MTA, Ankara, **1992**.

- [124]Barka, A., Reilinger, R., Şaroğlu, F. ve Şengör, A.M.C., The İsparta angle: its importance in the neotectonics of the eastern Mediterranean region. IESCA-1995 Proceedings, **1995**.
- [125]Altunel, A., Barka, E., "Eskişehir fay zonimun İnönü-Sultandere arasında neotektonik aktivitesi," *Springs*, vol. 41, no. 2, pp. 41– 52, **1998**.
- [126]Seyitoğlu G., Ecevitoğlu G., Kaypak B., Güney Y., Tün M., Esat K., Avdan U., Temel A., Çabuk A., Telsİz S., Uyar Aldaş G., 'Determining the main strand of the Eskişehir strike-slip fault zone using subsidiary structures and seismicity: A hypothesis tested by seismic reflection studies' *Turkish Journal of Earth Sciences*, vol. 396, pp:159-185, 2015

EKLER

EK 1. Feldispat mineralleri için mikroprob analiz sonuçları (Hesaplamalar 320'e göre düzenlenmiştir).

	Es7-29	Es7-29k	Es7-31	Es7-31k	Es7-201	Es7-201k	Es8-21	Es8-21k	Es8-22	Es8-22k	Es8-27	Es8-27k
SiO2	54.15	53.24	66.57	66.03	54.55	54.82	52.39	53.33	57.72	67.11	54.68	60.52
Al2O3	3.73	3.4	5.68	6.74	4.99	3.1	28.58	29.51	27.85	18.76	27.77	25.39
FeO	6.03	7.32	12.35	11.99	0.05	0.05	1.61	0.02	0.18	0.67	0.02	0.37
MgO	32	31.12	10.04	8.04	36.23	37.08	0.01	0.01	0.11	0.01	0	0.22
CaO	1.64	1.09	1.27	3.29	1.31	1.01	12.99	13.07	9.54	1.03	13.03	6.91
Na2O	1.25	1.28	1.86	1.41	2.41	1.8	3.35	3.07	4.08	3.34	3.27	4.86
K2O	0.22	0.1	0.45	1.52	0.01	0.21	0.31	0.11	0	8.94	0.91	1.56
Toplam	99.02	97.55	98.22	99.02	99.55	98.07	99.24	99.12	99.48	99.86	99.68	99.83
Si	10.06247	10.03578	12.28169	12.2084	9.898272	9.9517	9.569831	9.646672	10.26801	12.05004	9.904869	10.76754
Al	0.816915	0.75536	1.235065	1.468721	1.067154	0.663257	6.152903	6.291253	5.839115	3.970052	5.928681	5.32405
Fe	0.937102	1.153952	1.905504	1.853959	0.007587	0.007591	0.245949	0.003026	0.026779	0.10061	0.00303	0.055053
Mg	8.863362	8.743698	2.760932	2.215726	9.798858	10.03322	0.002723	0.002696	0.029167	0.002676	0	0.058342
Ca	0.326519	0.220139	0.251039	0.651736	0.25468	0.196444	2.542278	2.533026	1.818303	0.198151	2.528848	1.317206
Na	0.450368	0.467815	0.66534	0.505462	0.847878	0.633552	1.186457	1.076703	1.407251	1.162785	1.148469	1.676506
К	0.052151	0.024046	0.105907	0.358503	0.002315	0.048631	0.072235	0.025382	0	2.047718	0.210278	0.354057
An	39.38527	30.91841	24.55663	42.99899	23.05059	22.35804	66.88497	69.68222	56.37181	5.813179	65.04916	39.34577
Ab	54.32422	65.70434	65.08358	33.34839	76.73991	72.10713	31.21459	29.61953	43.62819	34.11272	29.5419	50.07832
Or	6.290512	3.377255	10.35979	23.65262	0.2095	5.534837	1.900441	0.698252	0	60.0741	5.408937	10.57591

EK 1. Devam ediyor.

	Es17-4-	Es17-4-						
	18	18k	19	19k	23	23k	25	25k
SiO2	56.51	59.88	58.13	60.09	57.97	66.96	51.6	48.63
Al2O3	27.88	25.42	25.98	22.35	25.15	18.51	29.87	31.09
FeO	0.69	1.43	1.76	1.17	1.47	0.77	1.47	1.4
MgO	0.2	0.1	0.08	0.01	0.01	0.01	0	0
CaO	3.99	4.92	4.96	4.35	4.25	3.21	1.74	1.64
Na2O	3.99	4.92	4.96	4.35	4.25	3.21	1.74	1.64
K2O	0.21	0.78	0.27	3.13	0.51	6.49	0.34	0.41
Toplam	93.47	97.45	96.14	95.45	93.61	99.16	86.76	84.81
Si	10.11128	10.67738	10.42469	10.87071	10.45526	11.95653	9.425808	8.986303
Al	5.879435	5.342202	5.491158	4.765353	5.34603	3.895453	6.430816	6.771104
Fe	0.103251	0.213247	0.26396	0.177013	0.221724	0.114986	0.224569	0.216356
Mg	0.2	0.1	0.08	0.01	0.01	0.01	0	0
Ca	1.840391	1.364078	1.491017	1.523478	1.994202	0.573943	2.924001	3.239054
Na	1.38422	1.700981	1.72463	1.525795	1.486181	1.111338	0.616268	0.587587
К	0.047933	0.177423	0.061767	0.722323	0.117336	1.47831	0.079228	0.096648
An	56.23732	42.06895	45.4937	40.39345	84.45557	60.06128	80.78473	82.55966
Ab	42.29799	52.45924	52.62167	40.4549	15.54443	33.16819	17.02634	14.9769
Or	1.464691	5.471814	1.884632	19.15164	0	6.770526	2.188925	2.463439

	Es1-6	Es1-6k	Es1-8	Es1-8k	Es1-10	Es1-10k	Es1-12	Es1-20	Es1-20k	Es7-7k	Es7-8	Es7-15	Es7-15k	Es7-18	Es7-18k
SiO2	39.26	37.05	38.28	36.09	38.45	36.74	39.73	37.65	37.65	53.33	55.93	51.02	57.26	52.24	59.19
TiO2	0	0.14	0	0	0.12	0	0	0	0	0.04	0.05	0.12	0.1	0.01	0.01
Al2O3	0	0.04	0.1	0.11	0.08	0.21	17.52	0.15	0.15	3.38	3.74	3.18	2.92	3.89	5.63
FeO	25.26	25.37	24.49	26.61	24.33	25.04	24.66	25.36	25.36	16.22	12.87	16.08	14.11	6.59	7.01
MnO	0.61	0.67	0.28	0.95	0.27	1.23	0.34	0.9	0.9	0.05	0.16	1.57	0.12	0.75	0.01
MgO	34.87	34.75	35.23	34.71	35.64	35.05	14.29	34.83	34.83	26.05	25.17	25.85	24.52	32.57	26.31
CaO	0	0.25	0.24	0	0.17	0.1	1.47	0	0	0.74	1.97	1.59	0.07	2.28	0.65
Toplam	100	98.27	98.62	98.47	99.06	98.37	98.01	98.89	98.89	99.81	99.89	99.41	99.1	98.33	98.81
Si	0.653408	0.616626	0.637097	0.600649	0.639927	0.611467	0.66123	0.626612	0.626612	0.000832	0.002663	0.02613	0.001997	0.012482	0.000166
Fe2	0.351585	0.353116	0.340868	0.370376	0.338641	0.348523	0.343234	0.352977	0.352977	0.225761	0.179133	0.223812	0.196392	0.091724	0.09757
Mn	0.008599	0.009445	0.003947	0.013392	0.003806	0.017339	0.004793	0.012687	0.012687	0.751794	0.788446	0.71923	0.807195	0.736428	0.834402
Mg	0.865024	0.862048	0.873955	0.861055	0.884126	0.86949	0.354494	0.864032	0.864032	0.646226	0.624395	0.641264	0.608271	0.807968	0.652675
Ca	0	0.004458	0.00428	0	0.003031	0.001783	0.026213	0	0	0.013196	0.035129	0.028353	0.001248	0.040657	0.011591
Fo	70.6022	70.3937	71.70794	69.1709	72.08098	70.38395	50.46025	70.26384	70.26384	74.04975	77.48917	72.27886	75.43464	88.76187	86.9786
Fa	28.69595	28.83503	27.96819	29.75327	27.60871	28.21246	48.8575	28.70441	28.70441	25.86948	22.23091	25.22654	24.35557	10.07662	13.00261
Тр	0.701854	0.771267	0.323865	1.075829	0.310311	1.403594	0.682255	1.031743	1.031743	0.080767	0.279917	2.494601	0.209789	1.161504	0.018786

EK 2. [Devam	ediyor.
----------------	-------	---------

										Es17-4-		Es17-4-	Es17-4-	Es17-4-
	Es7-19	Es7-19k	Es7-22	Es7-22k	Es8-1	Es8-11	Es8-15	Es8-15k	Es17-4-7	7k	Es17-4-8	8k	28	28k
SiO2	56.2	55.73	55.28	49.91	38.2	41.55	21.45	22.97	39.92	39.85	38.05	37.64	41.17	48.21
TiO2	0.01	2.41	0.89	0.01	0	0	0.02	0.02	1.53	0.01	0.01	0.01	0.01	0.01
Al2O3	3.94	7.51	2.61	3.32	38.2	24.48	21.45	22.97	0	0	0	0	0.18	1.3
FeO	2.5	0.87	4.3	8.12	20.61	58.09	56.16	61.23	16.49	20.9	21.86	22.1	17.26	24.8
MnO	1.14	0.02	0.55	1.46	0.004793	0	0.1062915	0.001974	0.01	0.9	1.16	1.85	0.17	0.01
MgO	33.96	30.24	33.84	29.59	39.49	9.38	9.61	9.48	41.27	38.34	38.77	38.3	41.08	25.41
CaO	0.09	1.65	1.06	6.26	0.35	1.31	0.72	1.18	0.64	0	0	0	0.12	0.25
Toplam	97.84	98.43	98.53	98.67	136.8548	134.81	109.51629	117.852	99.86	100	99.85	99.9	99.99	99.99
Si	0.018973	0.000333	0.009154	0.024299	0.635766	0.69152	0.3569943	0.382292	0.010652	0	0	0	0.001997	0.004161
Fe2	0.034797	0.012109	0.05985	0.11302	0.286864	0.437603	0.7816719	0.85224	0.021296	0.000139	0.000139	0.000139	0.000139	0.000139
Mn	0.792252	0.785627	0.779283	0.703582	0.004793	0	0.1062915	0.001974	0	0	0	0	0.002537	0.018326
Mg	0.84245	0.750167	0.839473	0.734043	0.979633	0.232691	0.2383965	0.235172	1.02379	0.951105	0.961772	0.950113	1.019077	0.630349
Ca	0.001605	0.029423	0.018902	0.111628	0.006241	0.02336	0.012839	0.021042	0.011412	0	0	0	0.00214	0.004458
Fo	94.3058	98.37505	92.54709	84.60185	77.05822	22.28743	21.165213	21.58756	81.67779	75.80385	74.99861	74.00816	80.76953	64.6066
Fa	3.895218	1.587974	6.598145	13.02602	22.56476	77.44252	69.398061	78.23128	18.31096	23.18496	23.72622	23.9604	19.04052	35.37895
Тр	1.79898	0.036973	0.854763	2.37213	0.377017	0.270046	9.4367263	0.181165	0.011247	1.011189	1.2751 <u>6</u> 4	2.031437	0.18994	0.014449

	Es1-1	Es1-2(1k)	Es1-4	Es1-4k	Es1-14	Es1-14k	Es1-15	Es1-15k	Es1-16	Es1-16k	Es3-1	Es3-1k
SiO2	51.87	49.78	47.9	54.57	51.11	52.59	50.74	50.8	48.09	48.69	51.51	52.82
TiO	0.53	1.23	1.44	0.33	1.43	0.92	0.87	0.81	0.53	0.41	1.27	0.37
Al2O3	5.07	3.85	6.05	2.72	4.03	2.91	2.81	3.26	3.25	4.83	4.29	3.74
FeO	8.22	6.65	8.4	7.13	8.31	6.8	7.27	8.17	8.16	7.24	5.52	5.55
MnO	0.15	0	0.64	0.01	0.06	0.07	0	0.16	0.32	0.26	0.01	0.08
MgO	14.29	14.36	13.51	15.46	14.81	14.21	14.62	14.44	13.49	13.04	14.5	16.04
CaO	18.4	21.58	20.01	19.77	20.12	20.54	21.21	20.92	20.99	19.39	22.56	20.65
Na2O	0.1	0	0.04	0	0.06	0.14	0	0	0.25	0.29	0.13	0.06
Total	98.63	97.45	97.99	99.99	99.93	98.18	97.52	98.56	95.08	94.15	99.79	99.31
Si	1.949	1.89	1.819	2.017	1.897	1.977	1.924	1.912	1.867	1.888	1.9	1.95
Al	0.051	0.11	0.181	0	0.103	0.023	0.076	0.088	0.133	0.112	0.1	0.05
Al	0.174	0.062	0.09	0.117	0.073	0.106	0.05	0.057	0.016	0.109	0.087	0.113
Fe3	0	0	0.012	0	0	0	0	0	0.125	0.057	0.780031	0
Fe2	0.197	0.186	0.209	0.18	0.212	0.183	0.202	0.22	0.127	0.155	15.49662	9.124867
Mn	0.005	0	0.021	0	0.002	0.002	0	0.005	0.011	0.009	0.416017	0.160085
Mg	0.609	0.717	0.627	0.694	0.673	0.683	0.723	0.695	0.706	0.658	40.30161	47.11846
Ca	0.741	0.878	0.814	0.776	0.8	0.827	0.862	0.844	0.873	0.806	47.98279	43.59658
Na	0.007	0	0.003	0	0.004	0.01	0	0	0.019	0.022	0.009	0.004
Total	3.733	3.843	3.776	3.784	3.764	3.811	3.837	3.821	3.877	3.816	107.0731	102.117
Ae	0	0	1.279318	0	0	0	0	0	12.83368	5.822268	0	0
Aug	82.2449	93.57513	89.1258	88.19374	92.37996	89.09465	94.87179	94.1358	85.52361	83.04392	90.98446	88.55117
Wo	41.08	46.16	43.6	42.17	42.55	44.97	44.92	44.05	45.23	44.68	47.98	43.6
En	44.35	42.74	40.97	45.92	43.62	43.28	43.04	42.28	40.47	41.8	42.87	47.12
Fs	14.58	11.09	15.43	11.9	13.83	11.75	12.04	13.67	14.3	13.53	9.14	9.28
Mg#	75.61437	79.39453	74.12791	79.41729	76.06679	78.81188	78.1457	75.91378	74.66539	76.23862	82.41986	83.77609

EK 3. Piroksen mineralleri için mikroprob analiz sonuçları (Hesaplamalar katyon 4 ve 60'e göre düzenlenmiştir).

EK 3.	Devam	ediyor.
-------	-------	---------

	Es3-1	Es3-1k	Es3-4	Es3-4k	Es3-6	Es3-6k	Es3-9	Es3-9k	Es3-10	Es3-10k	Es3-11	Es3-11k	Es3-14	Es3-14k
SiO2	51.51	52.82	55.39	55.65	54.97	54.42	52.71	50.57	53.46	53.6	50.2	50.66	52.57	53.93
TiO	1.27	0.37	0.66	0.13	0.01	0.15	0.45	1.6	0.63	0.01	0.07	1.07	0.08	0.01
Al2O3	4.29	3.74	2.15	3.35	2.7	3.68	3.38	2.05	1.79	3.01	2.49	3.73	2.34	3.45
FeO	5.52	5.55	3.11	3.73	3.8	5.51	7.44	8.29	7.1	7.75	8.53	8.32	10.22	8.39
MnO	0.01	0.08	0.01	0.01	0.01	0.04	0.01	0.09	0.02	0.01	1.07	0.46	0.73	0.15
MgO	14.5	16.04	17.91	17.39	17.37	16.14	14.76	15.46	16.69	15.84	15.27	15.46	14.88	14.56
CaO	22.56	20.65	20.14	19.38	20.48	19.11	21.1	21.1	18.61	18.92	22.23	19.58	17.88	18.4
Na2O	0.13	0.06	0	0	0	0.04	0.06	0	0	0	0	0.34	0.12	0.29
Total	99.79	99.31	99.37	99.64	99.34	99.09	99.91	99.16	98.3	99.14	99.86	99.62	98.82	99.18
Si	1.9	1.95	2	2	2	2	1.951	1.887	2	1.994	1.86	1.878	1.982	2
Al	0.1	0.05	0	0	0	0	0.049	0.09	0	0.006	0.109	0.122	0.018	0
Al	0.087	0.113	0.092	0.142	0.116	0.159	0.098	0	0.079	0.126	0	0.041	0.086	0.151
Fe3	0.780031	0	0	0	0	0	0	3.051882	0	0	8.601087	2.363445	0	0
Fe2	15.49662	9.124867	5.117039	6.256983	6.25	9.352518	12.22754	10.12208	11.68421	12.86706	4.448838	11.18697	16.92065	14.43642
Mn	0.416017	0.160085	0	0	0	0.05534	0	0.152594	0.052632	0	1.680672	0.735294	1.208618	0.277624
Mg	40.30161	47.11846	52.47686	52.06704	50.75431	48.92086	43.27485	43.74364	49	46.87667	41.67079	44.85294	43.93064	44.69739
Ca	47.98279	43.59658	42.4061	41.67598	42.99569	41.67128	44.49761	42.92981	39.26316	40.25627	43.59862	40.86134	37.94009	40.58856
Na	0.009	0.004	0	0	0	0.003	0.004	0	0	0	0	0.024	0.009	0.021
Total	107.0731	102.117	102.092	102.142	102.116	102.162	102.102	101.977	102.079	102.126	101.969	102.065	102.095	102.172
Ae	0	0	0	0	0	0	0	3.886555	0	0	14.83402	4.707113	0	0
Aug	90.98446	88.55117	90.63136	85.74297	88.4	84.0201	90.07092	96.11345	91.94699	87.4	85.16598	91.00418	91.17949	84.82412
Wo	47.98	43.6	42.41	41.68	43	41.67	44.5	42.93	39.26	40.26	43.6	40.86	37.94	40.59
En	42.87	47.12	52.48	52.07	50.75	48.92	43.27	43.74	49	46.88	41.67	44.85	43.93	44.7
Fs	9.14	9.28	5.12	6.26	6.25	9.41	12.23	13.33	11.74	12.87	14.73	14.29	18.13	14.71
Matt	02 41000	02 77600	01 11521	00 27202	90 02502			76 05 422	00 74500	79 46204	76 15170		72 10244	
ivig#	82.41986	83.77609	91.11231	89.27203	89.03592	83.95062	11.90935	/0.85433	80.74588	78.46291	/0.151/6	10.19850	72.19344	/3.58085

ER J. Devalli eulyoi	EΚ	3.	Devam	ediyor	۰.
-----------------------------	----	----	-------	--------	----

	Es3-18	Es3-18k	Es3-21	Es3-21k	Es3-22	Es3-22k	Es3-23	Es3-23k	Es7-1	Es7-1k	Es7-13	Es7-13k	Es7-16	Es7-16k
SiO2	54.93	52.72	55.81	53.73	50.59	56.77	51.38	54.5	55.67	54.96	52.33	54.7	53.36	51.74
TiO	1.04	0.5	0.63	0.7	0.14	0.12	1.06	0.37	0.26	0.02	0.08	0.11	0.32	1.37
Al2O3	1.44	0.95	2.35	1.28	3.13	2.06	1.5	2.89	1.82	2.76	2.24	2.6	3.5	3.93
FeO	5.53	8.93	6.44	6.82	10.78	7.83	8.69	6.55	3.13	4.01	5.94	4.5	8.95	9.88
MnO	0.01	0.63	0.01	0.1	1.67	0.2	0.49	0.06	0.03	0.03	0.1	0.09	0.22	0.25
MgO	16.02	14.7	16.42	15.02	15.22	16.58	15.06	16.72	19.57	19.09	17.45	18.08	14.44	11.57
CaO	20.68	20.99	17.9	20.7	18.03	16.27	21.47	16.91	19.47	18.15	21.64	19.34	18.04	19.85
Na2O	0	0	0.03	0	0.43	0.16	0.01	0.37	0.01	0.01	0.08	0.04	0.88	0.84
Total	99.65	99.42	99.59	98.35	99.99	99.99	99.66	98.37	99.96	99.03	99.86	99.46	99.71	99.43
Si	2	1.978	2	2	1.88	2	1.919	2	2.011	2.007	1.912	1.989	1.976	1.951
Al	0	0.022	0	0	0.12	0	0.066	0	0	0	0.088	0.011	0.024	0.049
Al	0.062	0.02	0.099	0.056	0.017	0.086	0	0.125	0.077	0.118	0.008	0.1	0.129	0.126
Fe3	0	0	0	0	6.56747	0	1.965726	0	0	0	0.083	0	0	0
Fe2	9.105691	14.24212	10.98463	11.30667	10.62083	13.41463	11.69355	11.27946	0.075	0.093	0.085	0.11	0.221	0.268
Mn	0	1.017294	0	0.16	2.719343	0.348432	0.806452	0.112233	0.001	0.001	0.003	0.003	0.007	0.008
Mg	47.15447	41.81078	49.91463	44.48	43.25295	50.58072	42.2379	51.29068	0.84	0.787	0.819	0.784	0.634	0.559
Ca	43.73984	42.92981	39.10074	44.05333	36.8394	35.65621	43.29637	37.31762	0.749	0.708	0.847	0.754	0.716	0.802
Na	0	0	0.002	0	0.031	0.011	0.001	0.026	0.001	0.001	0.006	0.003	0.063	0.061
Total	102.062	102.02	102.101	102.056	102.048	102.097	101.986	102.151	3.754	3.715	3.851	3.754	3.77	3.824
Ae	0	0	0	0	13.5737	0	2.515723	0	0	0	8.341709	0	0	0
Aug	93.6214	97.92961	89.92879	94.26817	84.62354	91.3219	97.48428	87.34818	92.2379	88.17635	90.85427	89.93964	86.89024	86.77859
Wo	43.74	42.93	39.1	44.05	36.84	35.66	43.3	37.32	39.59	37.94	42.73	40.23	39.84	45.26
En	47.15	41.81	49.91	44.48	43.25	50.58	42.24	51.29	55.39	55.47	47.93	52.29	44.35	36.68
Fs	9.11	15.26	10.98	11.47	19.91	13.76	14.47	11.39	5.02	6.59	9.33	7.47	15.8	18.06
	00.04500			70 7000	74 56465	70.00044		04 07000	04 76066			07 705		
Mg#	83.81503	/4.59165	81.96262	/9./3231	/1.56197	/9.03811	/5.56357	81.97309	91.76883	89.45549	83.92226	87.735	/4.20857	67.56757

EK 3. Devam ediyor.	
---------------------	--

	Es7-17	Es7-17k	Es7-21	Es7-21k	Es7-24	Es7-24k	Es7-28	Es7-28k	Es7-30	Es7-30k	Es7-32	Es7-32k	Es7-3	Es7-3k	Es7-5
SiO2	50.38	52.1	52.43	51.03	50.97	52.55	55.12	52.04	52.32	53.74	51.34	51.04	53.43	54.15	63.41
TiO	3.39	0.41	0.01	0.01	0.01	0.61	0.5	0.4	0.32	0.01	1.48	2.04	0.02	0.08	0.04
Al2O3	8.4	4.87	4.57	2.5	3.82	3.13	3.94	5.14	3.28	3.08	4.18	4.46	5.92	2.59	5.64
FeO	4.36	6.66	7.46	8.02	11.85	10.07	6.22	10.06	4.3	2.07	6.95	5.85	17.99	15.83	25.1
MnO	0.01	0.49	0.98	2.26	2.4	1.4	0.41	3.08	1	0.02	0.02	0.02	0.03	0.04	0.05
MgO	16.49	19.04	17.75	18.93	17.44	19.16	18.96	13.34	22.33	24.13	18.21	18.14	22.46	25.8	3.25
CaO	14.93	14.61	14.74	15.63	11.89	11.58	13.09	10.05	14.89	14.66	15.88	16.38	0.09	1.15	1.74
Na2O	1.97	1.32	1.8	1.62	1.61	1.49	1.75	5.04	1.37	1.73	1.7	1.81	0.02	0.02	0.03
Total	99.93	99.5	99.74	100	99.99	99.99	99.99	99.15	99.81	99.44	99.76	99.74	99.96	99.66	99.26
Si	1.816	1.882	1.89	1.844	1.866	1.908	1.98	1.876	1.852	1.871	1.851	1.836	1.958	1.957	2.568
Al	0.184	0.118	0.11	0.106	0.134	0.092	0.02	0.124	0.137	0.126	0.149	0.164	0.042	0.043	0
Al	0.173	0.089	0.084	0	0.031	0.042	0.147	0.094	0	0	0.029	0.025	0.214	0.067	0.21
Fe3	0	0.095	0.163	0.192	0.215	0.122	0	0.303	0.116	0.057	0.169	0.166	0	0	0
Fe2	0.095	0.074	0.044	0	0.091	0.117	0.129	0	0	0	0.031	0.008	0.243	0.238	0.64
Mn	0	0.015	0.03	0.069	0.074	0.043	0.012	0.094	0.03	0.001	0.001	0.001	0.001	0.001	0.001
Mg	0.64	0.716	0.679	0.739	0.589	0.659	0.698	0.498	0.845	0.942	0.73	0.745	0.541	0.692	0.148
Ca	0.577	0.566	0.569	0.605	0.466	0.451	0.504	0.388	0.565	0.547	0.613	0.631	0.004	0.045	0.059
Na	0.138	0.092	0.126	0.113	0.114	0.105	0.122	0.352	0.094	0.117	0.119	0.126	0.001	0.001	0.002
Total	3.623	3.647	3.695	3.668	3.58	3.539	3.612	3.729	3.639	3.661	3.692	3.702	3.004	3.044	3.628
Ae	0	9.753593	16.80412	20.62299	23.21814	12.97872	0	33.85475	12.07076	5.705706	17.62252	17.58475	0	0	0
Aug	80.94714	81.10883	74.53608	79.37701	73.43413	82.55319	84.9076	55.64246	87.92924	94.29429	79.35349	79.76695	78.55711	93.27984	78.95792
Wo	36.2	31.32	32	31.27	25.12	24.55	29.34	25.83	29.74	29.39	34	35.43	0.22	2.35	6.74
En	55.58	56.72	53.66	52.66	51.32	56.45	59.08	47.74	62	67.33	54.3	54.63	68.82	72.58	17.49
Fs	8.22	11.95	14.34	16.07	23.56	19	11.58	26.43	8.26	3.28	11.7	9.94	30.96	25.07	75.77
N 4 - 11	07 44000	02 00522	00.04.000	00 00000	72 205 44	77 24 54 2	04 4426	70.00440	00.2002	05 42024	02 2264	04 60200	CO 04042	74 07400	40 77204
Mg#	87.11898	83.60522	80.91603	80.80888	/2.39544	//.21519	84.4426	/0.29412	90.2682	95.43031	82.3381	84.68233	69.01012	/4.3/132	18.//301

EK 3. Devam ediyor.	
---------------------	--

	Es8-2k	Es8-5	Es8-5k	Es8-6	Es8-6k	Es8-8	Es8-8k	Es8-9	Es8-9k	Es8-12	Es8-12k	Es8-16	Es8-16k	Es8-18	Es8-18k
SiO2	53.87	52.78	51.28	62.59	62.88	50.93	52.41	50.3	49.97	52.72	52.81	54.02	49.41	55.47	55.87
TiO	0	1.11	2.38	0.2	0.27	1.33	0.3	0.73	1.7	1.63	1.4	0.69	2.7	0.43	0.83
Al2O3	1.88	3.68	6.04	23.06	23.23	2.72	2.74	4.7	4.29	4.03	4.19	2.22	4.81	2.54	2.58
FeO	3.56	5.72	6.33	0.79	0.57	5.12	6.34	5.2	8.03	5.57	6.47	4.13	7.12	6.47	7.73
MnO	0	0	0	0.48	0.02	0	0.07	0.03	0.09	0	0	0.33	0.26	0.02	0.15
MgO	19.2	16.06	12.88	3.54	4.07	15.96	16.73	15.82	13.49	14.99	14.8	16.34	13.79	16.5	14.95
CaO	19.68	20.09	19.02	2.95	3.29	23.09	20.55	21.9	21.32	21.05	20.33	21.76	21.67	18.56	17.51
Na2O	0	0.02	0.45	4.17	3.08	0	0	0	0.27	0	0	0.01	0.24	0.01	0.38
Total	98.19	99.46	98.38	97.78	97.41	99.15	99.14	98.68	99.16	99.99	100	99.5	100	100	100
Si	1.98	1.949	1.916	2	2	1.885	1.938	1.864	1.866	1.948	1.955	1.979	1.838	2	2
Al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe3	0	0	0	0	0.042	0	0.033	0.021	0	0	0	0	0	0	0
Fe2	0.143	0.163	0.013	0.009	0.107	0.164	0.112	0.205	0.143	0.162	0.112	0.195	0.158	0.194	0.111
Mn	0	0	4.276316	0.311526	0	0.103413	0.052493	0.161464	0	0	0.531067	0.430339	0.055556	0.293083	0.052687
Mg	47.62931	42.78043	55.59211	60.12461	45.03582	47.67322	45.87927	40.41981	45.11196	44.81624	47.37122	41.15116	49.27778	46.77608	48.68282
Ca	42.83405	45.40573	33.22368	34.89097	46.8782	42.08893	45.6168	45.90958	45.49427	44.21284	45.35316	46.4766	39.83333	39.39039	44.36249
Na	0.001	0.033	0.258	0.19	0	0	0	0.02	0	0	0.001	0.017	0.001	0.026	0.001
Total	92.58736	90.33116	95.27911	97.5261	94.06302	91.91456	93.63156	88.60085	92.61523	91.13907	95.32344	90.2491	91.16367	88.67955	95.21
Ae	0	0	0	0	4.361371	0	3.370787	2.212856	0	0	0	0	0	0	0
Aug	88.75129	80.49303	11.60896	12.286	95.22326	94.24242	89.58121	91.99157	87.12042	85.63996	92.276	94.65066	89.05775	88.79753	91.89744
Wo	40.03	42.83	45.41	33.22	34.89	46.88	42.09	45.62	45.91	45.49	44.21	45.35	46.48	39.83	39.39
En	54.34	47.63	42.78	55.59	60.12	45.04	47.67	45.88	40.42	45.11	44.82	47.37	41.15	49.28	46.78
Fs	5.63	9.54	11.81	11.18	4.98	8.09	10.24	8.5	13.67	9.39	10.97	7.28	12.37	10.89	13.83
N 4 44	F0 (1720		50 (2202		44 70400	50 42022	FF 43330		C1 24C77	F0 40722	F7 07077	F7 4420C	CA 44444	F2 02702	F2 04224
ivig#	50.61728	55.574	59.62382	45.45455	44.70109	59.12932	55.12339	58.05938	61.246//	58.40733	57.87077	57.11286	61.11111	52.93782	53.94331

EΚ	3.	Devam	ediyor.

				Es16-8-		Es16-8-		Es16-8-		Es16-8-		Es16-8-		Es16-8-
	Es8-20	Es8-20k	Es16-8-1	1k	Es16-8-4	4k	Es16-8-5	5k	Es16-8-6	6k	Es16-8-7	7k	Es16-8-8	8k
SiO2	54.39	52.82	55.56	52.33	53.57	53.33	54.3	48.52	52.01	53.08	52.11	48.24	54.45	53.94
TiO	0.88	1.33	0.01	1.1	0.86	0.77	0.16	2.48	1.18	0.9	0.26	1.92	0.26	0.64
Al2O3	2.03	3.49	1.89	2.18	1.84	4.67	2.55	4.27	2.54	2.52	3.44	6.22	4.03	3.84
FeO	4.27	2.86	5.01	4.47	5.17	6.52	4.24	7.52	5.96	4.18	7.86	4.85	3.5	3.57
MnO	0.02	0.01	0.05	0.01	0.01	0.01	0.01	0.27	0.11	0.01	1.26	0.01	0.01	0.01
MgO	16.93	15.27	16.2	15.86	15.8	15.65	16.33	13.19	15.68	15.76	14.71	14.42	16.85	17.15
CaO	21.46	23.93	21.15	24.04	22.54	19.03	22.39	23.62	22.5	23.42	20.35	23.74	20.86	20.77
Na2O	0.01	0.01	0	0	0	0.02	0	0	0	0	0	0	0.05	0.05
Total	99.99	99.72	99.87	99.99	99.79	100	99.98	99.87	99.98	99.87	99.99	99.4	100.01	99.97
Si	1.991	1.936	2	1.923	1.972	1.964	1.987	1.813	1.918	1.948	1.935	1.774	1.982	1.963
Al	0	#REF!	0	0.077	0.028	0.036	0.013	0.187	0.082	0.052	0.065	0.226	0.018	0.037
Al	0	#REF!	0.08	0.017	0.052	0.167	0.097	0.001	0.028	0.057	0.086	0.044	0.155	0.128
Fe3	0	0	0	0	0	0	0	0.051	0	0	0	0.104	0	0
Fe2	0.084	0.111	0.151	0.137	0.159	0.201	0.13	0.184	0.184	0.128	0.244	0.045	0.107	0.109
Mn	0	0.052687	0.002	0	0	0	0	0.009	0.003	0	0.04	0	0	0
Mg	44.79055	48.68282	0.869	0.869	0.867	0.859	0.891	0.735	0.862	0.862	0.814	0.79	0.914	0.931
Ca	50.48335	44.36249	0.816	0.946	0.889	0.751	0.878	0.946	0.889	0.921	0.81	0.935	0.813	0.81
Na	0.001	0.001	0	0	0	0.001	0	0	0	0	0	0	0.004	0.004
Total	97.3499	#REF!	3.918	3.969	3.967	3.979	3.996	3.926	3.966	3.968	3.994	3.918	3.993	3.982
Ae	0	0	0	0.077	0.028	0.036	0.013	0.187	0.082	0.052	0.065	0.226	0.018	0.037
Aug	90.96573	91.89744	0.08	0.017	0.052	0.167	0.097	0.001	0.028	0.057	0.086	0.044	0.155	0.128
Wo	44.36	50.48	44.39608	48.46311	46.42298	41.4688	46.23486	49.14286	45.87203	48.19466	42.45283	49.89328	44.32933	43.78378
En	48.68	44.79	47.27965	44.51844	45.27415	47.43236	46.91943	38.18182	44.47884	45.10727	42.66247	42.15582	49.83642	50.32432
Fs	6.95	4.73	8.324266	7.018443	8.302872	11.09884	6.845708	12.67532	9.649123	6.698064	14.8847	7.950907	5.834242	5.891892
Mg#	55.89997	61.04592	85.19608	86.38171	84.50292	81.03774	87.26738	75.7732	82.40918	87.07071	76.93762	84.13206	89.52008	89.51923

EK 3.	Devam	ediyor.	
-------	-------	---------	--

		Es16-8-	Es16-8-	Es16-8-	Es16-8-	Es16-8-	Es16-8-	Es16-8-	Es16-8-	Es17-4-	Es17-4-	Es17-4-	Es17-4-
	Es16-8-9	9k	10	10k	11	11k	13	13k	14k	22	22k	24	24k
SiO2	54.45	53.02	55.84	51.79	52.88	52.68	53.7	53.32	54.82	55.93	55.48	55.31	52.39
TiO	0.75	1.06	0.01	1.94	1.52	0.96	0.01	0.45	0	0.58	1.13	0.65	1.76
Al2O3	3.22	5.27	2.78	3.83	4.58	3.98	3.22	3.62	3.52	1.47	0.84	1.83	2.31
FeO	4.22	5.25	3.09	5.85	4.64	3.46	3.42	2.75	3.91	13.19	13.12	6.71	5.96
MnO	0.21	0.32	0.01	0.01	0.01	0.01	0.01	0.01	0	0.78	0.51	0.35	0.01
MgO	16.69	15.24	16.58	14.37	14.95	15.86	15.79	15.89	15.71	26.5	26.47	16.51	15.77
CaO	20.45	19.75	21.69	22.11	21.41	23.04	23.83	23.61	22.02	1.53	2.23	18	21.58
Na2O	0	0.1	0	0	0	0	0	0.05	0	0.01	0.01	0.63	0.16
Total	99.99	100.01	100	99.9	99.99	99.99	99.98	99.7	99.98	99.99	99.79	99.99	99.94
Si	1.993	1.95	2	1.92	1.949	1.928	1.962	1.944	2	2	2	2	1.933
Al	0.007	0.05	0	0.08	0.051	0.072	0.038	0.056	0	0	0	0	0.067
Al	0.132	0.178	0.117	0.087	0.148	0.1	0.101	0.1	0.151	0.062	0.036	0.078	0.033
Fe3	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe2	0.129	0.161	0.093	0.181	0.143	0.106	0.105	0.084	0.119	0.196	0.199	0.166	0.161
Mn	0.007	0.01	0	0	0	0	0	0	0	0.024	0.016	0.011	0
Mg	0.91	0.835	0.885	0.794	0.821	0.865	0.86	0.863	0.854	0.702	0.718	0.727	0.757
Ca	0.802	0.778	0.833	0.878	0.845	0.903	0.933	0.922	0.861	0.059	0.086	0.697	0.853
Na	0	0.007	0	0	0	0	0	0.004	0	0.001	0.001	0.044	0.011
Total	3.98	3.969	3.928	3.94	3.957	3.974	3.999	3.973	3.985	3.044	3.056	3.723	3.815
Ae	0.007	0.05	0	0.08	0.051	0.072	0.038	0.056	0	0	0	0	0
Aug	0.132	0.178	0.117	0.087	0.148	0.1	0.101	0.1	0.151	93.54167	96.22246	91.96704	96.52997
Wo	43.39827	43.60987	45.99669	47.38262	46.71089	48.1857	49.15701	49.33119	46.94656	3.12	4.48	38.7	44.8
En	49.24242	46.80493	48.86803	42.84943	45.38419	46.15795	45.31085	46.17442	46.56489	74.75	74.1	49.42	45.54
Fs	7.359307	9.585202	5.135284	9.767944	7.90492	5.65635	5.532139	4.494382	6.48855	22.13	21.42	11.88	9.66
Mg#	87.58422	83.83534	90.4908	81.4359	85.16598	89.08342	89.11917	91.12988	87.76978	5.458437	7.770035	52.15879	57.77778

EK 3. Devam ediyor	۰.
---------------------------	----

		Es17-4-		Es17-4-		Es17-4-		Es17-4-		Es17-4-		Es17-4-		Es17-4-
	Es17-4-1	1k	Es17-4-2	2k	Es17-4-3	3k	Es17-4-4	4k	Es17-4-5	5k	Es17-4-6	6k	Es17-4-9	9k
SiO2	52.3	51.04	53.16	56.73	51.98	50.98	52.73	54.77	52.24	56.65	51.39	55.06	54.24	54.12
TiO	1.27	1.37	1.2	0.17	1.13	1.56	0.51	2.45	0.01	0.01	0.82	2.43	0.93	2.62
Al2O3	2.64	5.58	2.84	2.94	3.96	1.82	1.48	3.37	4.08	1.72	2.73	1.68	1.45	1.51
FeO	5.41	7.46	6.26	7.1	7.64	9.17	7.77	5.13	7.85	6.11	9.09	5.97	6.21	5.28
MnO	0.01	0.01	0.01	0.01	0.09	0.89	0.27	0.01	0.28	0.01	1.18	0.01	0.01	0.01
MgO	16.63	13.87	16.59	14.89	15.63	15.35	15.95	15.08	15.63	16.71	14.37	16.07	16.7	16.21
CaO	21.6	20.5	19.94	17.93	19.39	20.18	21.02	19.04	19.81	18.79	20.22	18.71	20.32	20.19
Na2O	0.13	0	0	0	0.06	0	0	0.12	0.11	0	0	0.07	0.11	0
Total	99.99	99.83	100	99.77	99.88	99.95	99.73	99.97	100.01	100	99.8	100	99.97	99.94
Si	1.918	1.895	1.955	2	1.92	1.901	1.949	2	1.924	2	1.919	2	1.995	2
Al	0.082	0.105	0.045	0	0.08	0.08	0.051	0	0.076	0	0.081	0	0.005	0
Al	0.032	0.139	0.078	0.122	0.092	0	0.013	0.145	0.101	0.072	0.039	0.072	0.058	0.066
Fe3	0	0	0	0	0	0.014	0.021	0	0	0	0.003	0	0	0
Fe2	0.144	0.191	0.156	0.184	0.188	0.209	0.188	0.126	0.196	0.158	0.233	0.148	0.158	0.133
Mn	0	0	0	0	0.003	0.028	0.008	0	0.009	0	0.037	0	0	0
Mg	0.789	0.632	0.733	0.689	0.686	0.705	0.756	0.662	0.694	0.77	0.665	0.714	0.758	0.728
Ca	0.849	0.815	0.786	0.677	0.767	0.806	0.832	0.745	0.782	0.711	0.809	0.728	0.801	0.799
Na	0.009	0	0	0	0.004	0	0	0.008	0.008	0	0	0.005	0.008	0
Total	3.823	3.777	3.753	3.672	3.74	3.743	3.818	3.686	3.79	3.711	3.786	3.667	3.783	3.726
		-	-	-	-			-	-	-		-	-	-
Ae	0	0	0	0	0	1.508621	2.147239	0	0	0	0.319149	0	0	0
Aug	96.68394	85.55094	91.93382	87.73869	90.47619	98.49138	96.52352	84.45874	89.80827	92.8	95.53191	92.29122	94.04517	92.88026
Wo	44.13	44.93	41.63	40.59	41.1	40.85	42.47	43.24	41.35	40.17	41.92	40.92	42	43.07
En	47.25	42.28	48.15	46.88	46.09	43.23	44.87	47.65	45.37	49.66	41.45	48.9	47.98	48.14
Fs	8.63	12.79	10.22	12.53	12.81	15.91	12.66	9.11	13.27	10.17	16.63	10.17	10.02	8.79
Mg#	56.50013	59.64504	54.58527	54.63132	55.36836	56.79707	56.85691	55.80305	55.89729	52.92958	58.4562	53.79528	54.88925	55.46703

EK 3.	Devam	ediyor.
-------	-------	---------

	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-
	10	10k	11	11k	12	12k	13	13k	14	14k	15	15k	16	16k
SiO2	57.72	57.25	56.31	55.3	55.28	56.06	56.96	54.68	55.43	56.2	58.22	49.83	56.99	57.08
TiO	0.18	0.01	0.14	0.01	1.87	0.01	0.01	0.01	1.1	0.01	0.27	2.61	0.14	0.51
Al2O3	0.97	1.14	1.23	2.85	1.43	1.56	1.18	1.01	1.58	2.13	2.71	0.76	0.9	1.13
FeO	10.93	12.76	12.29	15.93	13.05	14.17	12.46	15.93	6.06	6.66	11.8	16.39	12.79	11.98
MnO	0.26	0.08	1.07	1.12	0.4	0.8	0.7	0.59	0.14	0.6	0.01	1.96	0.26	0.02
MgO	28.26	27.51	27.64	23.14	26.14	25.15	27.43	26.33	16.08	16.15	24.77	24.46	27.36	27.8
CaO	1.59	1.24	1.31	1.11	1.83	2.25	1.25	1.05	19.45	18.25	1.95	3.25	1.54	1.49
Na2O	0	0	0	0	0	0	0	0.01	0.01	0.01	0.12	0.01	0.01	0.01
Total	99.91	99.99	99.99	99.46	100	100	99.99	99.61	99.85	100.01	99.85	99.27	99.99	100.02
Si	2	2	2	2	2	2	2	1.978	2	2	2	1.83	2	2
Al	0	0	0	0	0	0	0	0.022	0	0	0	0.033	0	0
Al	0.04	0.047	0.051	0.121	0.061	0.066	0.049	0.021	0.067	0.089	0.11	0	0.037	0.047
Fe3	0	0	0	0	0	0	0	0.021	0	0	0	0.061	0	0
Fe2	0.169	0.197	0.182	0.236	0.192	0.219	0.189	0.23	0.157	0.168	0.186	0.15	0.197	0.183
Mn	0.008	0.002	0.032	0.034	0.012	0.024	0.021	0.018	0.004	0.018	0	0.061	0.008	0.001
Mg	0.778	0.754	0.731	0.609	0.684	0.691	0.741	0.71	0.742	0.725	0.697	0.656	0.754	0.756
Ca	0.059	0.046	0.05	0.043	0.071	0.086	0.047	0.041	0.752	0.696	0.072	0.128	0.058	0.056
Na	0	0	0	0	0	0	0	0.001	0.001	0.001	0.008	0.001	0.001	0.001
Total	3.054	3.046	3.046	3.043	3.02	3.086	3.047	3.042	3.723	3.697	3.073	2.92	3.055	3.044
Ae	0	0	0	0	0	0	0	2.138493	0	0	0	7.035755	0	0
Aug	95.94732	95.29058	94.70954	87.47412	93.48986	93.2377	94.99489	95.72301	93.06418	90.93686	88.92246	92.96424	96.25506	95.23327
Wo	3.2	2.48	2.62	2.38	3.76	4.6	2.51	2.09	41.69	39.34	4.29	6.3	3.1	3.01
En	79.16	77.28	76.61	69.05	74.68	71.51	76.78	72.41	47.95	48.45	75.52	65.93	76.44	78.06
Fs	17.63	20.24	20.77	28.57	21.56	23.89	20.71	25.5	10.37	12.21	20.19	27.77	20.46	18.92
Matt	E 276622	1 212012	1 525042	1 57727	6 512721	0 211670	1 250120	2 92/016	EA 74347	E2 0E222	7 207004	11 77067	E 22072	E 00706
ivig#	5.520033	4.515045	4.525043	4.37732	0.542724	0.2110/9	4.330438	5.654910	54.74247	33.05233	1.291904	11./2002	5.52072	3.00/00

	EΚ	3.	Devam	ediyor.
--	----	----	-------	---------

	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-	Es17-4-		Es16-1-		Es16-1-		Es16-1-		Es16-1-
	17	17k	26	26k	27	27k	Es16-1-5	5k	Es16-1-6	6k	Es16-1-7	7k	Es16-1-8	8k
SiO2	57.66	54.15	53.56	56.08	52.8	54.39	51.96	47.91	51.47	50.06	51.6	49.84	51.53	51.03
TiO	0.01	0.59	0.01	0.32	0.16	0.01	0.52	1.71	0.5	0.72	0.93	1.17	0.18	1.38
Al2O3	2.52	2.97	1.09	1.17	0.93	1.61	2.88	6.21	7.7	7.34	7.88	7.68	4.74	4.49
FeO	5.64	6.52	15.95	13.04	16.77	14.13	8.86	8.42	5.59	6.7	6.15	6.96	7.29	7.38
MnO	0.02	0.63	1.16	0.94	1.5	0.87	0.36	0	0	0	0	0	0.61	0
MgO	17.08	15.12	26.64	26.79	26.68	27.26	14.24	12.41	15.2	14.69	14.95	14.5	16.02	14.87
CaO	16.82	19.02	1.56	1.42	1.16	1.64	21.18	23.27	19.47	20.38	18.31	19.78	19.61	20.55
Na2O	0.25	0.94	0.01	0.01	0.01	0.01	0	0	0.07	0.04	0.18	0.07	0	0.3
Total	100	99.94	99.98	99.77	100.01	99.92	100	99.93	100	99.93	100	100	99.98	100
Si	2	1.989	1.937	2	1.914	1.954	1.935	1.79	1.884	1.841	1.894	1.837	1.895	1.885
Al	0	0.011	0.046	0	0.04	0.046	0.065	0.21	0.116	0.159	0.106	0.163	0.105	0.115
Al	0.103	0.118	0	0.049	0	0.022	0.061	0.063	0.216	0.159	0.235	0.171	0.1	0.08
Fe3	0	0	0.063	0	0.079	0.03	0	0.054	0	0	0	0	0	0
Fe2	0.14	0.165	0.197	0.196	0.183	0.196	0.236	0.194	0.132	0.167	0.139	0.169	0.178	0.192
Mn	0.001	0.02	0.036	0.028	0.046	0.026	0.011	0	0	0	0	0	0.019	0
Mg	0.756	0.681	0.704	0.718	0.688	0.726	0.677	0.641	0.638	0.654	0.6	0.628	0.698	0.69
Ca	0.625	0.749	0.06	0.054	0.045	0.063	0.845	0.931	0.764	0.803	0.72	0.781	0.773	0.813
Na	0.017	0.067	0.001	0.001	0.001	0.001	0	0	0.005	0.003	0.013	0.005	0	0.021
Total	3.642	3.8	3.044	3.046	2.996	3.064	3.83	3.883	3.755	3.786	3.707	3.754	3.768	3.796
Ae	0	0	6.53527	0	8.315789	3.080082	0	5.672269	0	0	0	0	0	0
Aug	89.68969	87.75934	93.46473	94.91173	91.68421	94.66119	93.73717	87.71008	78.09331	83.77551	75.87269	82.33471	89.7541	91.68399
Wo	37.36	41.68	2.98	2.85	2.2	3.19	13.34087	10.98528	8.576998	10.26429	9.442935	10.67593	10.67146	11.18881
En	52.78	46.08	71.3	75.15	70.65	74	0.62182	0	0	0	0	0	1.139089	0
Fs	9.86	12.24	25.72	22.01	27.14	22.81	86.03731	89.01472	91.423	89.73571	90.55707	89.32407	88.18945	88.81119
Mg#	49.61652	55.71178	5.531915	5.033676	4.166667	5.67474	59.79673	65.21861	56.15806	58.11235	55.05111	57.70128	55.03789	58.01807

EK 3.	Devam	ediyor.
-------	-------	---------

		Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-
	Es16-1-9	9k	10	10k	12	12k	13	13k	14	14k	15	15k	16
SiO2	53.41	50.66	53.61	52.53	49.1	50.04	48.17	49.9	51.22	53.1	48.2	48.2	51.18
TiO	0.15	0.44	0.53	0.64	1.69	1.57	0.3	1.57	1.96	2.28	1.52	1.52	1.1
Al2O3	4.49	4.57	6.44	3.2	5.51	3.61	3.25	4.03	3.21	2.24	6.65	6.65	3.86
FeO	5.41	9.65	5.35	5.95	10.23	7.46	9.95	10.03	6.92	6.14	8.41	8.41	8.75
MnO	0.18	0.44	0.01	0.01	0.86	0.01	0.88	0.05	0.82	0.1	0.04	0.04	0.6
MgO	16.41	15.03	15.85	17.64	10.9	13.78	13.54	11.6	14.21	14.29	12.64	12.64	13.75
CaO	19.92	19.11	17.85	19.9	21.71	23.33	23.67	22.25	21.28	21.6	22.51	22.51	20.55
Na2O	0.02	0.09	0.38	0	0	0	0.01	0.03	0.35	0.24	0.02	0.02	0.19
Total	99.99	99.99	100.02	99.87	100	99.8	99.77	99.46	99.97	99.99	99.99	99.99	99.98
Si	1.954	1.878	1.957	1.918	1.859	1.861	1.798	1.88	1.903	1.974	1.798	1.798	1.908
Al	0.046	0.122	0.043	0.082	0.141	0.139	0.143	0.12	0.097	0.026	0.202	0.202	0.092
Al	0.148	0.078	0.234	0.056	0.105	0.019	0	0.059	0.044	0.072	0.09	0.09	0.078
Fe3	0	0.027	0	0	0	0.042	0.199	0	0	0	0.03	0.03	0
Fe2	0.132	0.214	0.119	0.148	0.283	0.178	0.05	0.292	0.188	0.167	0.207	0.207	0.23
Mn	0.006	0.014	0	0	0.028	0	0.028	0.002	0.026	0.003	0.001	0.001	0.019
Mg	0.71	0.655	0.632	0.778	0.536	0.717	0.715	0.603	0.687	0.694	0.629	0.629	0.642
Ca	0.781	0.759	0.698	0.778	0.881	0.93	0.947	0.898	0.847	0.86	0.899	0.899	0.821
Na	0.001	0.006	0.027	0	0	0	0.001	0.002	0.025	0.017	0.001	0.001	0.014
Total	3.778	3.753	3.71	3.76	3.833	3.886	3.881	3.856	3.817	3.813	3.857	3.857	3.804
Ae	0	2.772074	0	0	0	4.393305	20.64315	0	0	0	3.138075	3.138075	0
Aug	85.05051	89.21971	76.24365	94.29735	88.63636	93.61925	79.35685	93.81551	95.21219	92.28296	87.4477	87.4477	91.78947
Wo	8.09816	12.98544	8.062331	8.685446	16.37731	9.753425	2.871913	16.2493	10.6035	9.592188	11.9171	11.9171	13.32561
En	0.368098	0.849515	0	0	1.62037	0	1.608271	0.111297	1.466441	0.172315	0.057571	0.057571	1.100811
Fs	91.53374	86.16505	91.93767	91.31455	82.00231	90.24658	95.51982	83.6394	87.93006	90.2355	88.02533	88.02533	85.57358
N 4 44	F 4 02072		F2 0C72C	52 04 04 2		C2 0C745	C2 C1102			60 4020	64.02002	64.02002	F0 012F4
ivig#	54.83072	55.9754	52.96736	53.01012	66.57467	62.86/15	63.61193	65./311/	59.96055	60.1839	64.03983	64.03983	59.91254

EK 3. Devam ediyor	٢.
--------------------	----

	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-	Es16-1-
	17	17k	18	18k	19	19k	20	20k
SiO2	46.48	55.08	50.3	51.82	58.06	46.49	54.78	49.85
TiO	2.62	0.75	1.37	1.43	0.02	2.76	0.66	1.86
Al2O3	6.37	4.09	2.1	1.86	2.54	3.13	3.22	3.31
FeO	11.72	7.01	8.39	7.76	6.22	8.28	7.2	8.61
MnO	0.13	0.03	0.19	0.54	0.16	0.17	0.02	0.94
MgO	12.67	14.69	13.69	14.21	15.34	13.67	16.54	12.98
CaO	19.99	17.96	23.75	22.3	17.64	25.1	17.36	22.38
Na2O	0.01	0.38	0.01	0.07	0.01	0.18	0.01	0.07
Total	99.99	99.99	99.8	99.99	99.99	99.78	99.79	100
Si	1.751	2	1.879	1.933	2	1.734	2	1.87
Al	0.249	0	0.092	0.067	0	0.138	0	0.13
Al	0.034	0.175	0	0.015	0.103	0	0.139	0.016
Fe3	0.069	0	0.054	0	0	0.13	0	0.012
Fe2	0.243	0.17	0.172	0.218	0.165	0	0.165	0.233
Mn	0.004	0.001	0.006	0.017	0.005	0.005	0.001	0.03
Mg	0.576	0.634	0.73	0.71	0.726	0.76	0.677	0.657
Ca	0.807	0.699	0.95	0.891	0.651	1.003	0.679	0.9
Na	0.001	0.027	0.001	0.005	0.001	0.013	0.001	0.005
Total	3.734	3.706	3.884	3.856	3.651	3.783	3.662	3.853
Ae	7.483731	0	5.648536	0	0	14.60674	0	1.30719
Aug	88.82863	82.12462	94.35146	98.40933	89.63783	85.39326	85.83078	96.94989
Wo	14.89884	11.10385	9.252286	11.84139	10.65891	0	10.83388	12.76712
En	0.245248	0.065317	0.322754	0.923411	0.322997	0.280741	0.06566	1.643836
Fs	84.85592	88.83083	90.42496	87.2352	89.01809	99.71926	89.10046	85.58904
Mg#	61.20637	55.00766	63.43483	61.07916	53.48696	64.74078	51.20944	63.29186

	Es1-23	Es1-25	Es1-27	Es3-5	Es3-8	Es3-12
TiO2	12.18	10.27	15.28	8.16	6.32	4.65
AI2O3	1.69	2.91	3.46	1.55	1.32	1.2
FeO(T)	40.41438	35.678	39.07685	38.92425	36.91934	36.6361
Fe2O3(T)	47.51636	50.2907	38.77842	54.21792	59.17999	62.19535
MnO	0.01	1.32	0.79	0.01	0.01	0.01
MgO	1.96	3.3	4.54	1.32	1.12	0.41
Toplam	103.7707	103.7687	101.9253	104.1822	104.8693	105.1014
Ti	0.3259	0.2723	0.4032	0.2186	0.1708	0.1256
AI	0.0708	0.1209	0.1430	0.0650	0.0559	0.0508
Fe+3	1.2718	1.3338	1.0234	1.4528	1.5995	1.6807
Fe+2	1.2022	1.0516	1.1461	1.1591	1.1089	1.1002
Mn	0.0003	0.0394	0.0235	0.0003	0.0003	0.0003
Mg	0.1039	0.1734	0.2374	0.0701	0.0600	0.0219
Toplam	2.9750	2.9914	2.9765	2.9659	2.9953	2.9795
usp_crm	32.5919	27.2310	41.2620	23.8533	17.0765	13.28008
usp_and	29.89367	19.50886	33.50198	19.68351	14.8082	12.99307
usp_lind	33.67129	28.85508	43.04022	22.60838	17.43019	12.86886
usp_str	32.95778	26.90993	42.21997	22.77093	17.32772	13.02621

EK 4. Oksit mineralleri için mikroprob analiz sonuçları (Hesaplamalar katyon 3 ve 40'e göre düzenlenmiştir).

EK 5. Jeotermometre ve Jeobarometre hesaplamalarında kullanılan denklermler Putirka, 2008'de yer almaktadır.

$$T(^{\circ}C) = \{15294.6 + 1318.8P(GPa) + 2.4834[P(GPa)]^{2}\} / \{8.048$$

$$+2.8352 \ln D_{M_{g}}^{al/liq} + 2.097 \ln[1.5(C_{NM}^{L})] + 2.575 \ln[3(C_{SiO_{2}}^{liq})]$$

$$-1.41NF + 0.222H_{2}O^{liq} + 0.5P(GPa)\}$$

$$(22)$$

$$\frac{10^{*}}{T(K)} = 6.12 + 0.257 \ln \left[\frac{X_{Aa}^{Eq}}{X_{CaO}^{Eq}} \left(X_{AlO_{1s}}^{Eq} \right)^{2} \left(X_{SiO_{2}}^{Eq} \right)^{2} \right] - 3.166 \left(X_{CaO}^{Eq} \right)$$
(23)
$$-3.137 \left(\frac{X_{AlO_{1s}}^{Eq}}{X_{AlO_{1s}}^{Eq} + X_{SiO_{2}}^{Eq}} \right) + 1.216 \left(X_{Ab}^{pl} \right)^{2}$$

$$-2.475 \times 10^{-2} (P(\text{kbar})) + 0.2166 (H_2 O^{kq})$$

$$\frac{10^{4}}{T(\mathrm{K})} = 6.4706 + 0.3128 \ln \left(\frac{X_{Aa}^{pl}}{X_{CaO}^{liq} \left(X_{AbO_{1s}}^{liq} \right)^{2} \left(X_{SiO_{2}}^{liq} \right)^{2}} \right) - 8.103 \left(X_{SiO_{2}}^{liq} \right)$$

$$+ 4.872 \left(X_{KO_{as}}^{liq} \right) + 1.5346 \left(X_{Ab}^{pl} \right)^{2} + 8.661 \left(X_{SiO_{2}}^{liq} \right)^{2}$$

$$- 3.341 \times 10^{-2} \left(P(\mathrm{kbar}) \right) + 0.18047 \left(\mathrm{H}_{2} \mathrm{O}^{liq} \right)$$

$$(24a)$$

$$P(\text{kbar}) = 3205 + 0.384T(\text{K}) - 518\ln T(\text{K}) - 5.62(X_{M_g}^{cpx}) + 83.2(X_{N_a}^{cpx})$$

$$+68.2(X_{DiHd}^{cpx}) + 2.52\ln (X_{Al(VI)}^{cpx}) - 51.1(X_{DiHd}^{cpx})^2 + 34.8(X_{EaFs}^{cpx})^2$$
(32a)

$$P(\text{kbar}) = 1458 + 0.197T(\text{K}) - 2411nT(\text{K}) + 0.453(\text{H}_2\text{O}^{Eq})$$
(32b)
+55.5($X_{Al(VI)}^{cpx}$) + 8.05(X_{Fe}^{cpx}) - 277(X_{K}^{cpx}) + 18(X_{Jd}^{cpx}) + 44.1(X_{DiHd}^{cpx})
+2.21n(X_{Jd}^{cpx}) - 17.7(X_{Al}^{cpx})² + 97.3($X_{Fe(M2)}^{cpx}$)²
+30.7($X_{Mg(M2)}^{cpx}$)² - 27.6(X_{DiHd}^{cpx})²

$$P(\text{kbar}) = -57.9 + 0.0475T(\text{K}) - 40.6(X_{\text{FeO}}^{liq}) - 47.7(X_{CaTs}^{cpx})$$

$$+0.676(\text{H}_2\text{O}^{liq}) - 153(X_{CaO_{03}}^{liq}X_{SiO_2}^{liq}) + 6.89\left(\frac{X_{\text{Al}}^{cpx}}{X_{\text{AIO}_{15}}^{liq}}\right)$$
(32c)

$$T(K) = \frac{93100 + 544 P(kbar)}{61.1 + 36.6 (X_{Ti}^{cpx}) + 10.9 (X_{Fe}^{cpx}) - 0.95 (X_{AI}^{cpx} + X_{Cr}^{cpx} - X_{Na}^{cpx} - X_{K}^{cpx}) + 0.395 [\ln(a_{En}^{cpx})]^{2}} (32d)$$

$$\frac{10^{4}}{T(K)} = 7.53 - 0.14 \ln\left(\frac{X_{Jd}^{cpx} X_{CaO}^{lig} X_{Fm}^{lig}}{X_{DiHd}^{cpx} X_{AI}^{lig}}\right) + 0.07 (H_{2}O^{liq}) - 14.9 (X_{CaO}^{liq} X_{SiO_{2}}^{lig}) \qquad (33)$$

$$-0.08 \ln(X_{TiO_{2}}^{lig}) - 3.62 (X_{NaO_{ns}}^{lig} + X_{KO_{ns}}^{lig}) - 1.1 (Mg \#^{liq})$$

$$-0.18 \ln(X_{EnFs}^{cpx}) - 0.027 P(kbar)$$

$$\frac{10^{4}}{T(K)} = 6.39 + 0.076 (H_{2}O^{liq}) - 5.55 (X_{CaO}^{liq} X_{SiO_{2}}^{lig}) - 0.386 \ln(X_{MgO}^{liq}) \qquad (34)$$

$$-0.046 P(kbar) + 2.2 \times 10^{-4} [P(kbar)]^{2}$$

ÖZGEÇMİŞ

Kimlik Bilgileri

Adı Soyadı:	Dihak Asena Çömez
Doğum Yeri:	South Glamagan
Medeni Hali:	Evli
E-posta:	dihakonder@gmail.com
Adresi:	
Eğitim	
Lise:	Bülent Ecevit Anadolu Lisesi
Lisans:	Hacettepe Üniversitesi Jeoloji Mühendisliği

Yabancı Dil ve Düzeyi

İngilizce, B seviye

İş Deneyimi

Süleyman Demirel Üniversitesi, Gönen Meslek Yüksek Okulu, Ücretli Öğretim

Elemanı (2014-2015)

Deneyim Alanları

Tezden Üretilmiş Projeler ve Bütçesi

Tezden Üretilmiş Yayınlar

Tezden Üretilmiş Tebliğ ve/veya Poster Sunumu ile Katıldığı Toplantılar

Çömez, D. A., Kürkçüoğlu, B., Yürür, T., 2018. <u>Geochemical constraints for</u> <u>basaltic lavas from western part of Central Anatolia: The Significance of</u> <u>garnet - spinel stability field.</u> European Geoscinces Union (EGU) General Assembly 2018, 8-13 April, Vienna, Austria.(Poster)

HACETTEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS/DOKTORA TEZ ÇALIŞMASI ORJİNALLİK RAPORU

HACETTEPE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI BAŞKANLIĞI'NA

Tarih: 03/07/2018

Tez Başlığı : Seyitgazi (Eskişehir) ve Ilıca, Köprüören (Kütahya) Çevresinde Yer Alan Bazaltik Bileşimli Lavların Jeokimyası ve Manto Kaynak Karakteristiği

Yukarıda başlığı gösterilen tez çalışmamın a**) Kapak sayfası, b) Giriş, c) Genel Jeoloji d) Mineraloji-Petrografi e) Jeokimya f) Tatışma g) Sonuçlar** kısımlarından oluşan toplam **54** sayfalık kısmına ilişkin, 03/07/2018 tarihinde tez danışmanım tarafından *Turnitin* adlı intihal tespit programından aşağıda belirtilen filtrelemeler uygulanarak alınmış olan orijinallik raporuna göre, tezimin benzerlik oranı % 4 'tür.

Uygulanan filtrelemeler:

- 1- Kaynakça hariç
- 2- Alıntılar hariç/dâhil
- 3- 5 kelimeden daha az örtüşme içeren metin kısımları hariç

Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Tez Çalışması Orjinallik Raporu Alınması ve Kullanılması Uygulama Esasları'nı inceledim ve bu Uygulama Esasları'nda belirtilen azami benzerlik oranlarına göre tez çalışmamın herhangi bir intihal içermediğini; aksinin tespit edileceği muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve yukarıda vermiş olduğum bilgilerin doğru olduğunu beyan ederim.

Gereğini saygılarımla arz ederim.

03-07-2018	
Deto	-
Tarih ve İmza	

Adı Soyadı:	Dihak Asene ÇÖMEZ	
Öğrenci No:	N14122058	
Anabilim Dalı:	Jeololoji Mühendisliği	
Programı:	Jeololoji Mühendisliği	

Doktora

Statüsü: 🛛 Y.Lisans

🗌 Bütünleşik Dr.

DANIŞMAN ONAYI

UYGUNDUR.

Doc. Dr. Biltan KÜRKCÜOĞLU

(Unvan, Ad Soyad, İmza)