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ABSTRACT

TORUS KNOTS AND CONTACT SURGERIES

IREM OZGE SARAC
Master of Science, Department of Mathematics
Supervisor: Assoc. Prof. Dr. Sinem ONARAN
July 2018, 64 pages

A closed curve homeomorphic to the unit circle S! in a 3-manifold is called a knot. In
particularly, a knot that can be drawn on a torus without intersecting itself is called
a torus knot. In this thesis, we study torus knots and their topological properties,
invariants and polynomials. We study Dehn surgery on torus knots in topological 3-
manifolds. Then, we study contact 3-manifolds. We study a special class of Legendrian
knots which have topological knot type as torus knots. The aim of this thesis is to
study lens spaces by using contact surgery techniques. For this purpose, obtaining lens
spaces L(4m+3,4) by Legendrian surgery along the negative torus knots T(2, —(2m+1))

where m > 1 are studied in detail.

Keywords: Torus knot, contact structure, Legendrian knot, contact surgeries



OZET

TORUS DUGUMLERI VE KONTAKT AMELIYATLAR

IREM OZGE SARAC
Yiiksek Lisans, Matematik Bolumii
Tez Danigmani: Dog¢. Dr. Sinem ONARAN
Temmuz 2018, 64 sayfa

3-manifoldlar icerisinde kendi kendisini kesmeyen kapali egrilere diigiim denir. Ozel
olarak, 2-boyutlu torus iizerinde kendi kendisini kesmeyecek sekilde c¢izilebilen diigiim
tiplerine torus diiglimleri denir. Bu tezde topolojik 3-manifoldlar icerisindeki torus
diigiimlerinin yam sira kontakt 3-manifoldlar igerisindeki Legendre torus diigtimleri
caligilacaktir. Torus diigimlerinin topolojik ozellikleri, degismezleri ve polinomlar:
calisihp hesaplanacaktir. Torus diigiimlerine yapilan topolojik Dehn ameliyatlar: ve
Legendre diigiimlerine yapilan kontakt ameliyatlar caligilacaktir. Bu tezde Legen-
dre torus diigiimleri de ¢aligilmigtir. Bu tezin amaci lens uzaylarini kontakt ameliyat
tekniklerini kullanarak galigmaktir. Bu amacla, m > 1 olmak iizere L(4m + 3,4)
lens uzaylarmin T(2, —(2m + 1)) negatif torus diigiimlerine Legendre kontakt ameliyat

yapilarak elde edilme teknigi detayh olarak incelenmigtir.

Anahtar Kelimeler: Torus diigiimii, kontakt yapi, Legendre diigtimii, kontakt ameliy-

atlar
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1 INTRODUCTION

Knot theory is one of the main fields of topology in mathematics. A knot in a
3-manifold can be thought as a simple knotted circle which is a main example of 1-
manifolds. Classification of knots is an important problem in knot theory. W. Thurston
divides all knots into three groups which are torus knots, satellite knots and hyperbolic
knots [1]. Torus knots are a member of special class of knots where one can draw on a
torus without any self-intersection. In this thesis, torus knots are studied in detail.

Distinguishing two knots is another important problem in knot theory. Invariants
are used to show that two knots are different. Polynomials are one of the most im-
portant invariants. The first polynomial invariant was invented by J. Alexander in
1928 [2]. It is called Alexander polynomial which is an invariant such that each knot
corresponds to a polynomial. He showed that if the Alexander polynomials of two
knots are different, then they are different. Another powerful polynomial invariant was
introduced by V. Jones [3]. He also gave a formula for Jones polynomials of torus knots
[4].

Several techniques are used to obtain 3-manifolds. However, the most important
technique is Dehn surgery which was introduced by Max Dehn. Dehn surgery applied
to a knot is an operation such that a tubular neighborhood of the knot is taken out in
a given manifold, and by using homeomorphism of its neighborhood it is glued back.
So, a new 3-manifold is formed, and this provides to understand 3-manifolds better.
Lickorish and Wallace demonstrated that each closed, orientable 3-manifold is attained
by surgery applied to some links in S* [5] [6].

Dehn surgery on a 3-manifold can give a different 3-manifold, but Kirby moves on
a 3-manifold do not change the manifold. These moves were defined by Robion Kirby.
[7]. The first move is taking a connected sum with S* or canceling. The second move
is done by sliding one component of the framed link on another.

Lens spaces can be obtained by an operation called Dehn surgery applied to knots
in many ways. Moser classified the lens spaces that are result of Dehn surgery ap-
plied to torus knots [8]. Unlike Moser, Bailey & Rolfsen presented the first example
for obtaining the lens space L(23,7) by an integral surgery along an iterated cable
knot which is not a torus knot [9]. The fact that surgeries on which knots give lens

spaces is an important problem. Culler, Gordon, Luecke and Shalen showed that there
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are at most two surgery coefficients which give a lens space in case of different knots
from torus knots [10]. In the simplest sense, the lens space L(m,n) is constructed by
(—m/n)-surgery along an unknot in 3-sphere. Rasmussen reached an important con-
clusion about this problem. He showed that there is only one way to obtain the lens
space L(4m+3,4) by a single integral surgery on 3-sphere. He showed that —(4m + 3)-
surgery along T(2,—(2m + 1)) is the only integral surgery which gives L(4m + 3,4) in
[11].

Contact structures take place on smooth and odd dimensional manifolds, and these
are maximally non-integrable two plane fields distributed all over the manifold. Marinet
gave a proof that there is a contact structure on every 3-manifold [12]. There are two
categories for contact 3-manifolds which are overtwisted and tight [13], [14]. Similar to
topological 3-manifolds, contact 3-manifolds include knots which are Legendrian knots
and transverse knots.

A knot in a contact 3-manifold that it is tangent to contact planes everywhere is
a special kind of knots that are called Legendrian knots. Similar to topological knots,
Legendrian knot classification is an important problem. Many mathematicians studied
on Legendrian knot classification in tight contact 3-manifolds. The first Legendrian
knot classification result was given by Eliashberg & Fraser. They classified Legendrian
unknots in standard tight S® [15], see also [16]. After Eliashberg and Fraser, Legendrian
torus knots were classified based on Legendrian isotopy by Etnyre and Honda. They
also classified the figure eight knot in standard tight contact S? [17]. Their classification
theorems of Legendrian torus knots are given in this thesis. Legendrian torus knots
which exist in other contact 3-manifolds different than S® are also studied. Onaran
classified Legendrian positive torus knots in universally tight contact lens spaces [18].
Moreover, Legendrian knot classification problem in overtwisted contact 3-manifolds
is another important problem. Classification of exceptional unknots in overtwisted S*
was given by Eliashberg and Fraser [16]. The first nontrivial knot type classification
was done by Geiges and Onaran [19]. Exceptional torus knots were classified in over-
twisted S* in [19].

Contact surgery is a surgery operation which can be applied to Legendrian knots
in contact 3-manifolds. Similar to Dehn surgery which is a topological operation, a

contact surgery applied to Legendrian knots constructs new contact 3-manifolds. The



fact that every closed contact 3-manifolds can be formed by (£1)-contact surgery in
standard tight contact S® was shown by Ding & Geiges [20].

In this thesis, lens spaces obtained by a single contact surgery with contact framing
(—1) applied to a single Legendrian negative torus knot are studied. Also, contact
surgery techniques given by Geiges and Onaran in [21] are studied.

In Section 2 Background section, the main definitions and examples are well noted.
After defining knots which are the fundemental examples of 1-manifolds, definitions
and examples of torus knots are given. Some polynomial invariants of torus knots are
introduced, and examples are given. Also, definition of surfaces is given, and then
Seifert surfaces for torus knots are constructed. Dehn surgery and Kirby moves are
presented with main examples. Contact 3-manifolds are introduced. Legendrian knots
in contact 3-manifolds and their classical invariants are given with examples.

In Section 3 Legendrian Torus Knots section, definition of Legendrian torus knots
and classification theorems of Legendrian torus knots in [17] are given. Also, contact
surgery techniques and classical invariants of Legendrian knots from surgery diagrams
are introduced. In the same section, lens spaces are studied by using contact surgery
techniques. The proof of obtaining lens spaces L(7,4) by contact (—1)-surgery along
Legendrian left handed trefoil in some contact structure on 3-sphere [21] is given. Also,
the general case, the proof of obtaining lens spaces L(4m+3,4) by contact surgery with
contact framing (—1) applied to Legendrian T(2, —(2m + 1)) in some contact structure
on 3-sphere [21] is studied in detail.

Finally in Section 4 Conclusion section, contact surgery techniques are analyzed to
obtain lens spaces from Legendrian negative torus knots. Some open problems about

Legendrian torus knots are listed.



2 BACKGROUND

2.1 Knots in the 3-Sphere

Definition 2.1.1. [22] A simple closed curve in 3-sphere S® which does not have a

self-intersection is called a topological knot in S® up to isotopy.

Example 2.1.1. Some examples of knots are given in the Figure 1. The unknot or
the trivial knot which has no crossing is the simplest knot. The next one is a right
handed trefoil knot which has 3 crossings. Also, figure eight is another example of a

knot which has 4 crossings.

Figure 1: Unknot, right handed trefoil knot and figure 8 knot in S®.

2.2 Knot Types in the 3-Sphere

Before 1974, it had been known to exist only two classes of knots which were torus
and satellite knot. Robert Riley proved that figure 8 knot was hyperbolic [23]. After
Robert Rilley, William Thurston showed that all knots are either torus knots, sattelite

knots or hyperbolic knots [1].

Definition 2.2.1. [24] A knot which one can draw on the torus so that it has no

self-intersecting is called a torus knot.
Torus knots will be studied comprehensively in Chapter 2.3.

Definition 2.2.2. [22] Assume that K is a knot inside a solid torus and K, is any
knot different from the unknot. The solid torus is cut from a meridian of it. A knot
which is obtained from gluing the solid torus which has the form of the knot K is

named as a satellite knot. The second knot K5 is called the companion knot.

Example 2.2.1. [22] Let K; be a trefoil in a solid torus and K, be a figure 8. The

composite knot K;# K in the Figure 2 is an example of satellite knots.

4
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Figure 2: The composite knot Ki# K.

Definition 2.2.3. [22] Consider a knot K in the 3-sphere S3. Tt is called a hyperbolic
knot on condition that 3-manifold S®\ K is a hyperbolic 3-manifold. (A 3-manifold is

called a hyperbolic if there is a metric which has a constant curvature —1 on it.)
Example 2.2.2. [23] Figure 8 is an example of hyperbolic knots.

Theorem 2.2.1. [1] “(Classification of Knots) All knots fall into three categories of
knots that are satellite knots, hyperbolic knots, and the last category that is the torus

knots.”

2.3 Torus Knots in the 3-Sphere

Example 2.3.1. Right handed trefoil is the main example of torus knots.

(7
Figure 3: Right handed trefoil on a torus.

Every torus knot is represented by (I, m)-torus knot for relatively prime integers I

and m.

Definition 2.3.1. [22] A (I, m)-torus knot means that the knot on the torus that
wraps [ times in the meridional direction and m times in the longitudinal direction
for relatively prime integers [ and m. It is denoted by T(I,m). If both [ and m are
positive, T(I,m) is called a positive torus knot. If one of these two integers is negative,

it is called a negative torus knot.



In this thesis, negative torus knots are denoted by T(l,—m) for positive integers
[,m. Also, the positive torus knots T(l,m) where m > [ > 0, and the negative torus

knots T(l, —m) where m > [ > 0 will be studied.

Longitude

Meridian

Figure 4: A longitude and meridian on a torus.

Example 2.3.2. Right handed trefoil is a positive torus knot denoted by T(2, 3). Left
handed trefoil is a negative torus knot denoted by T(2, —3). Both of them intersect the

longitude 2 times and the meridian 3 times.

Figure 5: T(2,3) and T(2, —3).

Theorem 2.3.1. [22] “A torus knot T(l,m) and a torus knot T(m,l) are equal for

relatively prime integers [, m.”

The process of proving this theorem is given in [22]. Assume that a (m,n)-torus
knot is taken. In this process, a disk which does not intersect the knot is removed from
the torus. The torus with one boundary is converted to two interconnected bands.
The shorter band represents a meridian of the torus, and the longer one represents
a longitude of the torus. The two bands is turned inside out one by one, and this
corresponds to a new torus. Then, the longer band represents a meridian of the new
torus and the shorter one represents a longitude of the new torus. So, the torus knot

T(l,m) equals the torus knot T(m, ) on the new torus [22].

6



Figure 6: Torus with one boundary and two interconnected bands.

In knot theory, distinguishing knots is the most important problem. To show that
two knots are not same, some invariants of knots are needed. Invariants of knots do not
change under isotopy, and they are independent of knot diagrams. Crossing number,

unknotting number and knot polynomial are some examples of invariants of knots.

Definition 2.3.2. [22] The minimum crossing number considered in all topological
diagrams of a given knot K is named as the crossing number of the knot K. It is

denoted by cg.

Example 2.3.3. Since knots with crossing number 1 and knots with crossing number
2 are isotopic to the simplest knot which is the unknot, the first nontrivial knot that is

the right handed trefoil knot has crossing number equals to 3, and given in Figure 7.

Figure 7: Right handed trefoil T(2,3) with 3 crossings.

Definition 2.3.3. [22] Consider a knot K. If one can find a topological diagram of
K so that changing ¢ crossings converts K into the unknot, and there is no diagram
such that changing crossings less than ¢ converts the knot K into the unknot, then the

number ¢ is named as the unknotting number for K . It is denoted by u.

Theorem 2.3.2. [25]“The crossing number of a torus knot T(I,m) is ¢ = min{l(m —

1),m(l — 1)} wherel, m>2.”



Example 2.3.4. The crossing number of a right handed trefoil T(2,3) which is given
in Figure 7 can be found as 3 = min{2(3 — 1),3(2 — 1)} by Theorem 2.3.2.

1
Theorem 2.3.3. [26] “The unknotting number of a torus knot T(l,m) is u = §(l -

1)(m — 1) for positive integer | and m.”

Example 2.3.5. The unknotting numbers of T(2,3) knot is 1 by Theorem 2.3.3.

— / — —
Figure 8: Unknotting number is 1.

2.3.1 Seifert Surfaces of Torus Knots
Definition 2.3.4. [27] Topological connected 2-manifold is called a surface.

Example 2.3.6. 2-dimensional sphere S? and torus 7?2 are examples of surfaces.

Figure 9: 2—dimensional sphere S? and torus 772

Definition 2.3.5. [22] If a consistent normal vector can be chosen at each point on
a surface, then the surface is called an orientable surface. Otherwise, it is called a

non-orientable surface.

Definition 2.3.6. [22][28] A surface with n-boundary is a surface such that one can
obtain by taking out the interiors of n disjoint disks from a surface without boundary.

Also, a compact surface without boundary is called closed surface.

Example 2.3.7. 2-dimensional sphere S? is an orientable surface without boundary

since it has an outward normal vector at each point on it. However, Mobius band is

8



a non-orientable surface with 1-boundary since it does not have a consistent normal

vector at each point on it.

o
CEEERE

Figure 10: Orientable surface S? and non-orientable surface Mobius band.

Definition 2.3.7. [22] The number of holes in a surface is called the genus. A surface
with genus g is denoted by ¥,. Use X7 to denote a genus g surface with n-boundary

components.

Definition 2.3.8. Take two surfaces S; and S;. Take a disc D; on S; and a disc Dy on
Ss. The interior of these discs are removed from the surfaces. Then, two surfaces with
boundary S; \ int(D;) and Sy \ int(Ds) are glued via a homeomorphism along their
boundaries. This operation is called connected sum of two surfaces and the resulting

new surface is denoted by S1#.S55.

Definition 2.3.9. [29] Consider a genus ¢ closed surface ¥,. One can define the Euler
characteristic of ¥, is by x(3,) =V — E+ F, where V' is the total number of vertices,
E' is the total number of edges and F' is the total number of faces in a triangulation of

Xy
Lemma 2.3.1. [22] “The Euler characteristic of a closed orientable surface of genus ¢
is x(2,) =2 —2¢.7

Proof. Apply induction on the genus g.

i) Closed surfaces with genus g = 0 homeomorphic to the 2-dimensional surface S2.
Closed surfaces with genus g = 1 homeomorphic to the torus 72. Triangulations

of the surfaces S? and T? are given in Figure 11, respectively.



\4

\ %

Figure 11: Triangulations of the surfaces S? and T?, respectively.

The Euler characteristics of S? and T2 are x(S?) =V —E+F =6—12+8 =2
and x(T?) =V —E+F =1-3+42=0. So, the formula x(3,) = 2 — 2¢ is true
for genus g =0 and g = 1.

ii) Assume that the given formula x(X,) = 2 — 2g is true for genus g = n — 1. By

the assumption,
X(Bw-1) =2-2(n—1).

A surface with genus g = n is obtained from the surface ¥, _; by taking a con-

necting sum with torus 72. So,

XEn) = XxECp-ny#T?) =2-2n—-1)—1+0—-1=2—2n.

]

In 1934 the following theorem was proved by Herbert Seifert with an algorithm
which is called Seifert Algorithm. Seifert Algorithm is an algorithm that constructs an
orientable surface with boundary for a given knot such that the surface has a boundary

as the given knot. Seifert algorithm has several steps:
1) Determine an orientation for a projection of the knot K.

2) Resolve all crossings of K to find Seifert circles which are obtained from elimi-

nating the crossings as shown in Figure 12.
3) All Seifert circles are boundaries of disks at different heights in a plane.

4) Connect disks via twisted bands corresponding to the crossing of K to obtain a

surface which has a boundary component K [30].

10
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Figure 12: Eliminating crossings.

Theorem 2.3.4. [30] “Every oriented knot in S® is a boundary of an orientable sur-

face.”

In other words, this theorem says that for every knot K in S® there exists an orientable

surface X such that 90X = K.

Definition 2.3.10. [24] Consider a knot in S®. An orientable surface with one bound-

ary component that is the given knot is called a Seifert surface.

If a disk is removed from a surface without boundary, the Euler characteristic
decreases by 1 since removing a disk means removing a face in a triangulation of the
given surface. Therefore, the Seifert surface has Euler characteristic that is x(X}) =

X(Xg) —1=1-2g.

Example 2.3.8. A Seifert surface of T(2, 3) is obtained by Seifert algorithm in Figure

D00 ez

Figure 13: Seifert algorithm.

A Seifert surface is homotopic to the one in Figure 14:

T
<

Figure 14: Homotopy.
11



So, the Euler characteristic of a Seifert surface given in Figure 13 is
X(T(2,3))=V-E+F=2-3+0=-1.
Then, x(T(2,3)) = 1 — 2g = —1 and the genus of this Seifert surface of T(2,3) is 1.

Example 2.3.9. The Seifert circles of T(2,5) are obtained by resolving crossings of

T(2,5) in Figure 15.

Figure 15: T(2,5) and Seifert circles of it.

A Seifert surface of T(2,5) is obtained by connecting these two Seifert circles via

5 twisted bands. A Seifert surface of T(2,5) which is constructed using Figure 15 is

—
~——

Figure 16: Homotopy type of a Seifert surface of T(2,5).

homotopic to Figure 16:

So, the Euler characteristic is in Figure 16
Xx(T(2,5))=V-E+F=2-5+0=-3.
Then, x(T(2,5)) = 1 — 2g = —3 and the genus of this Seifert surface of T(2,5) is 2.

Example 2.3.10. A Seifert circles of (2, m)-torus knot are obtained by resolving cross-

ings of T(2,m) in Figure 17 where m > 2.

12
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Figure 17: T(2,m) and Seifert circles of T(2,m).

A Seifert surface of T(2,m) is obtained by connecting these two Seifert circles via

m twisted bands. The Euler characteristic of T(2,m) is
X(T(2,m)) =V -E4+F=2—m+0=2—m.

Then, x(T(2,m)) =1 — 29 = 2 —m and the genus of this Seifert surface of T(2,m) is
(m—1)/2.

Example 2.3.11. The Seifert circles of (3,4)-torus knot are obtained by resolving
crossings of T(3,4) in Figure 18.

C\/—\
q\ﬁ
Figure 18: T(3,4) and Seifert circles of it.

A Seifert surface of T(3,4) is obtained by connecting these 3 Seifert circles via 5
twisted bands. A Seifert surface of T(3,4) obtained from Figure 18 is homotopic to the
following graph given in Figure 19:

—_——

Figure 19: Homotopy type.
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So, the Euler characteristic of the Seifert surface in Figure 18 is
X(T(3,4) =V -FE+F=3-8+0=—5.
Then, x(T(3,4)) = 1 — 2g = —5 and the genus of this Seifert surface of T(3,4) is 3.

Definition 2.3.11. Consider all Seifert surfaces of a given knot. Then, the genus for
the given knot is the genus of the Seifert surfaces among all which has the minimal
genus.

—1)(m—1)

l
Theorem 2.3.5. [24] “The genus of a torus knot T(l,m) is ( for coprime

positive integers [, m.”
2.3.2 Seifert Framing of Knots

Definition 2.3.12. [22] [28] A set which consists of disjoint knots is called as a a link.

Example 2.3.12. Unlink and Hopf link in Figure 20 are examples of links, respectively.

Both have two link components which are unknots.

OO W

Figure 20: Unlink and Hopf link.

Definition 2.3.13. [22] [28] A sign with £1 value for each crossing of a given knot
or link can be given in Figure 21. The linking number between L, and Ly, denoted by

lk(Lq, Ls), is defined as the half of the total sign of each crossings between L; and Ls.

XX

Figure 21: +1 crossing and —1 crossing.

Definition 2.3.14. [28] Consider a null-homologous knot in a 3-manifold, and consider

a Seifert surface of the given knot. Take a parallel push of the knot which stays on

14



the Seifert surface, and the linking number of the knot and its parallel push off is zero.

Then, the parallel push off is the Seifert framing of the knot.

Example 2.3.13. A Seifert surface of an unknot U is a disc. The Seifert framing of
U is given in Figure 22.

Figure 22: Seifert framing of the unknot.

2.3.3 Some Polynomials of Torus Knots

In knot theory, classifying knots is the fundamental aim. There are some invariants
to show whether any two knots are different or not. Polynomials are one of the most
important invariants. Each knot corresponds to a polynomial which is an invariant
for the knot since it is the same for any diagram of the knot. In this section, some

polynomials of T(l, m)-torus knots will be studied.

2.3.3.1 Alexander Polynomial of Torus Knots

In 1928, J. Alexander discovered the first polynomial invariant which corresponds to
knots [2]. This polynomial is called Alexander polynomial. Alexander defined it by
labeling the regions which are bounded by the arcs of a knot diagram. After Alexander,
K. Reidemeister gave a first description of the Alexander polynomial based on the arcs.
Now, there are many definitions of it in different ways [31].

Consider an oriented knot K which has n crossings that are labelled 1,2,... n.
Let each arc of it be labelled 41, %s, ..., y,. Form an n x n matrix M where r*" row
represents " crossing, and i*" column represents arc y; of K. If the linking number of
h

r'" crossing is positive, as appearing in Figure 23 (a), the entries of M are

mey=1—7

my; = —1

15



My = T
and m,; = 0 for s # ¢, 7, k. Otherwise,
my; = 1— T

mm- =T
My = —1

and m,s = 0 for s # i, j, k. See Figure 23 [31].

Figure 23: Positive and negative crossing.

Definition 2.3.15. [31] Form the (n—1) x (n—1) matrix from the associated matrix M
described above by deleting n' row and n'* column of M. It is named as the Alexander
matrix of the knot. It is denoted by Ax. The Alexander matrix has determined denoted
by Ak(t). This determinant is called the Alexander polynomial of the knot.

Example 2.3.14. The associated matrix M of trefoil T(2, 3) obtained by Figure 24 is:

Figure 24: A labelling of the arcs and crossings of trefoil.
16



Then, the Alexander matrix of T(2,3) is:

1-7 -1
AT(2,3) = ]
T —T

The Alexander polynomial of T(2,3) is Az (t) = |Ares| =72 — 7+ 1.

Example 2.3.15. The associated matrix M of T(2,5) obtained by Figure 25 is:

l—7 7 0 0 —1
-1 1-7 7 0 0
M = 0 -1 1-7 7 0
0 0 -1 1-7 7
T 0 0 -1 1-7

3x3
y1
1
5
Ys
Y2

2
4 \)

Y e

Figure 25: A labeling of the arcs and crossings of T(2,5).

Then, the Alexander matrix of T(2,5) is

3x3

Thus, the Alexander polynomial of T(2,5) is Aq5)(7) = |Ar@s)| = -7 41,

Torus knots T(2,3) and T(2,5) are different torus knots because of their different

Alexander polynomials.

Example 2.3.16. [31] The Alexander matrix of T(2, m) by Figure 26 where ged(2, m) =

17



1 is:

1—7 -1 0 0 T
T 1—-7 -1 0 0
0 T 1—7 -1 0
AT(Q,m):
1—¢ -1
0 0 T 1—7

(m—1)x(m—1)

1
N
J

(
Y (')

Figure 26: A labeling of the arcs and crossings of T(2,m).

By induction on m > 0, the Alexander polynomial of T(2,m) is
Aoy (7) = [Azgm)| = 7" =" 4T =T L

Then, the Alexander polynomial of T(2,m) is

(T™+1)

Ar(z,m) (1) = m

Theorem 2.3.6. “/2/] Consider a torus knot T(l,m). The formula of Alexander poly-

nomaial which is
(Tllml —1)(r—1)
(= 1) = 1)

R

Arm)(T) =

2.3.3.2 Jones Polynomial of Torus Knots
V. Jones discovered another knot polynomial which is called Jones polynomial in 1984
[3]. He found the new polynomial for knots when he was studying on operator algebra

which is not related to knot theory.

Definition 2.3.16. [22] Consider an oriented knot or link diagram. One of crossings

on the knot diagram is resolved according to K, K_ and K| given in Figure 27.

18



AKX H

Figure 27: Resolving link or knot projections.

The Jones polynomial of K is a Laurent polynomial such that it satisfies the fol-

lowing conditions:
1) Vi(7) =1, where u is a trivial knot
2) T Wi, (1) — Vi (1) = (1% — 77Y2)V, (1) (Skein relation).

Example 2.3.17. The red crossing of positive Hopf link H in Figure 28 is a positive
crossing. So, let say H = K,. Then, K_ and K is obtained by resolving the red
crossing of H according to Figure 28. Here K _ is the unlink with two components usy

and K is the unknot wu.

Q@ d

Figure 28: K., K_ and K.

Fu

Then, Hopf link satisfies the Skein relation:
T WVy(r) =7V, = (7'1/2 — 7'_1/2)Vu(7')

T Wy (r) + 7'(—7_1/2 — 71/2) = (7'1/2 — 7_1/2).

1/2 5/2

Therefore, the Jones polynomial of Hopf link is V(1) = =72 — 7

Example 2.3.18. Consider the right handed trefoil 7'(2, 3) in Figure 29. Since the red

crossing in Figure 29 is a positive crossing, assume that K, is T(2,3). To find Jones
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polynomial of T(2,3), the red crossing is resolved according to K_ and K,. As seen in

Figure 29, K_ and Kj are the unknot v and the positive Hopf link H, respectively.

P

K,=T(3,2) K .=u Ko=H

Figure 29: The right handed trefoil (K ), the unknot (K _) and the positive Hopf link
(Ko) -

By the Skein relation,
7—_1%(2’3) -7V, = (7’1/2 — T_I/Q)VH
Vi (t) = =742 — /2 computed in Example 2.3.17.
T W — 7 = (712 — 77V/2) (=712 - 75/2)
The Jones polynomial of T(2,3) is Vi3 (1) = =7 + 7% 4+ 7.

Lemma 2.3.2. “[4] Consider a torus knot T(l,m). The Jones polynomial is

H1-1)(m—1)/2

: - (1 o Tm-‘,—l o Tm-‘,—l + Tl—l—m).n
-7

Vv(l,m) (7—) -

2.4 Dehn surgery along a knot

Dehn surgery was introduced by Max Dehn in 1910. When he started to study for
constructing Poincaré spaces, he found a new method that is called Dehn surgery, and
today his method is very useful to study 3-manifolds. Roughly, Dehn surgery applied to
a knot in S? is an operation such that a tubular neighbourhood of the knot is removed,
and then glued back it to the knot exterior along their boundaries via a homoeomor-
phism. Generally, Dehn surgery along a link in a 3-manifold is an operation such that
a tubular neighbourhood of each component of the link is removed, and then these

neighbourhoods are glued back via homeomorphisms of their neighbourhoods. After
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Dehn, Lickorish and Wallace demonstrated that each closed, orientable 3-manifold is
attained by surgery applied to some links in S? [5] [6], for this reason Dehn surgery is

important to understand topological 3-manifolds.

Definition 2.4.1. [32] Consider a closed and orientable topological 3—manifold M.
Consider a knot K C M. N(K) is a tubular neighbourhood of K. i.e. N(K) = S'x D?.
The boundary is a torus d(N(K)) = S' x S'. The tubular neighbourhood N(K) is
removed from M. A new solid torus is glued to the knot exterior M \ N(K) via a
diffeomorphism h : 9(S' x D?) — 9(M \ N(K)). Then, a new closed orientable 3-
manifold M’ is obtained where M’ = M U, (S' x D?). This operation is named as
Dehn surgery applied to the given knot K. The new manifold M’ changes depending

on the diffeomorphism h.

If M = S3, a surgery applied to the knot K is identified by coprime integers
(p,q). A solid torus S' x D? can be considered as the union of a 3-dimensional 2-
handle and a 3-handle. Since a 3-handle is glued by an unique way, the gluing map is
determined by the gluing curve {a} x D? that is an embedded simple closed curve in
I(S*\ N(K)), and let B = h({a} x 0D?) € 9(S*\ N(K)). Homology class of the curve
B € Hi(0(S*\ N(K),Z)) = H (S x SY,Z) 2 Z ® Z, and there are two homological
generator curves on 9(S®\ N(K)) which are meridian m and longitude 1. A meridian
m is a curve on (S \ N(K)) which bounds a disc in (S? \ N(K)), and it is a basis
element for H;(9(S* \ N(K). A longitude 1 is another curve on (S*\ N(K)) which is
determined according to the Seifert framing of K, i.e. [k(K,1) = 0. Then, curves on
9(S* \ N(K)) are identified by two coprime integers p and ¢, and the gluing map is
defined by the following homeomorphism.

h:0(S' x D*) — 9(S* \ N(K))
{a} x OD* — B = qm + pl
This operation is named as (p/q)-surgery along K [33].

Example 2.4.1. [28] [34] Consider an unknot K in S? and the tubular neighbourhood
of K; N(K) = S' x D?. N(K) is removed from S then a solid torus S*\ N(K) =
S1 x D? is obtained. The gluing map for the 0-surgery on K is:

h:9(S' x D?) — 9(S* x D*); h(a) = qmu+pl = m
21



Figure 30: Obtaining S* x S? by a Dehn Surgery .

Then, 0-surgery on K is S* x S2.

Example 2.4.2. [28] [34] The result of co-surgery on the unknot K is S3. The gluing

map for the 1/0 = oo-surgery is:

h:9(S' x D*) — 9(S' x D*); h(a) = qm+ pl = L.

1/0

Figure 31: Obtaining S® by a Dehn Surgery .

Thus, S? is obtained by 1/0-Dehn Surgery.

Example 2.4.3. [28] The conclusion of (+1)-surgery applied to T(2,3) and (—1)-
surgery applied to T(2, —3) in S? is the Poincaré manifold, respectively [28]. However,

these Poincaré manifolds have opposite orientations.

-

Figure 32: Obtaining Poincaré manifold by a Dehn surgery.

+1

Example 2.4.4. [28] The lens space L(m,n) is a result of a Dehn surgery with Seifert

framing (—m/n) applied to an unknot in S°.
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Figure 33: Obtaining L(m,n).

Theorem 2.4.1. “[32] Every lens space L(m,n) is a result of a surgery diagram as in

Figure 34 where —m/n = [s1,...,Sg| is the continued fraction decomposition.
1
[517---75k] =81 — 1 7
2T T
S3 —...—
Sk

OIS

Figure 34: Surgery diagram for L(m,n) .

Example 2.4.5. In Figure 35, the result of each three surgery diagrams in S® is the

lens space L(7,4) .

Figure 35: Obtaining L(7,4) from different Dehn Surgery diagrams.

As seen in Figure 35, there are many ways to obtain L(7,4). However, Rasmussen
showed that the only way to obtain L(7,4) by applying an integral surgery on an only
one knot in S? is a surgery with framing (—7) applied to the left handed trefoil given
in Figure 36 [11].
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Figure 36: Obtaining L(7,4) by a Dehn Surgery .

2.5 Kirby Moves

Different surgeries applied to different knots may result in the same manifold. Kirby
moves are used for showing the resulting manifolds that are the same. For more

explanation see [7], [32] and [34].

Definition 2.5.1. [7][32] Kirby moves are the following two operations on a given link

L such that the manifold stay the same.

1) Kirby move 1 (KM1): Attach or remove an unknot with Seifert framing £+1 which
have no intersection with the other components of £. This movement equivalent

to taking a connected sum of S® and a manifold or canceled, which results in the

same manifold M; M = M+#S3.

Lol ©+1

Figure 37: Kirby move 1.

2) Kirby move 2 (KM2): Slide one components of a link over another. Given L,
and Ly which are knots with Seifert framing f; and fs, respectively. Sliding L,
over Lo is substituting Ly U Ly for Ly U Ly where Ly = Li#.L5 and L is a
parallel push of Ly such that it links with L, with fs times. The band ¢ connects
Ly to L as in Figure 38. After this slide, the framing of L; unchanges while the

framing of L, changes and the framing of L is:
fo=fi+ fa+2lk(Ly, Ly)
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f, times

Figure 38: Kirby move 2.

Definition 2.5.2. [7] [32] The operation removing an unknot with the framing +1
from a link £ is named as blow-down, otherwise adding an unknot with framing +1 to

L is named as blow-up, see Figure 39.

iy —- | I
one full left
? or right twist

Figure 39: General £1 blowing up/blowing down.

Example 2.5.1. After blow-downs, the given framed link converts into an unlink with
three components whose framings are 1. Since (+1)-surgery on the unknot is S, the

framed link in Figure 40 represents S°.

QD= 0000

Figure 40: Converting a framed link into an unlink via blow-down.

2.6 Contact 3-manifolds

Assume that M is a 3-manifold. Consider its tangent space T,M at p € M. More-
over, consider its tangent bundle TM. TM =, ¢, T, M.
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Definition 2.6.1. [35] A 2-plane field £ on a 3-manifold M is named as a contact
structure if there exists a 1-form o : TM — R such that locally £ = kera = {v €

TM | a(v) =0} and a A da # 0. Also, such 1-form « is named as a contact form.

Definition 2.6.2. [35] A 3-manifold M is named as a contact 3-manifold if there exists
a contact structure £ on M. It is denoted by the pair (M, &).

Example 2.6.1. [36] Let &g = kera in R3 where 1-form « = dz — ydz. Since

aNda = (dz—ydx) ANd(dz — ydzx)
= (dz —ydz) Nd(dz) — d(ydz) (since d is a linear map)
= (dz —ydz) A\ (—dy A dzx) (since d(dz) = 0)
= (dz —ydz) A (dx A dy) (since —dy A dx = dx A dy)
= (dzNdx Ndy) — (ydxz A dx A dy) (since dx A dx = 0)

N S

~~
=0

= dzNdx Ndy #0,

the 1-form « is a contact form. So, £44 is a contact structure on R3. Also, &sta, at any

point p is generated by the following set:

0

9 9,9\ crRre
ay’ax+yaz}c

keray, = span{

0
} at each point p € R3.

where a, : T,R* — R and T,R? = span{%, %, p

~N
-

Figure 41: Standard contact structure on R3.
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Example 2.6.2. [36] For a 1-form oy = dz+zdy, & = kera; is also a contact structure

on R3. Indeed, 1-form «; is a contact form:

ar ANdoy = (dz + zdy) A d(dz + xdy)
= (dz + xdy) Nd(dz) + d(zdy) (since d is a linear map)
= (dz + xdy) A (dz A dy) (since d(dz) = 0)
= (dzNdx Ndy) + £a:dy Adx N\ dyl (since dy A dy = 0)

~~
=0

= dzNdx Ndy #0.

So, & is a contact structure on R3?. At any point p, &1, is generated by the following

set:

o 9 0
8z’ By 02

; 66 g} at each point p € R3.

keray, = span{ } Cc TR?

where ay, : T}, R?® — R and T,R® = span{

Example 2.6.3. [36] An another sample of a contact structure on R? is the symmetric
contact structure &gym = keras where 1-from oy = dz — ydx + xdy. Indeed, 1-from

= dz — ydzr 4 xdy is a contact form:

as Nday = (dz — ydx + xdy)

d
dz — ydx + zdy) A d(dz) — d(ydzx) + d(xdy) (since d is a linear map)
(—dy A dx + dx A dy) (since d(dz) = 0)

(2dz A dy) (since —dy A dz = dz A dy)

> > > >

( )
( )
= (dz — ydz + xdy)
(dz — ydz + xdy)
(

dz A\ 2dz A dy) = 2dx A dy A\ dz # 0.

S0, Esym 1s a contact structure on R®. At any point p, &, is generated by the following

sets:

0 o 0 0" .
Esym, = kerayp, = span{x% + yay,y8 8_} if y #0

0 o o0 0.
Esym, = kerap, = span{xa— + yay & — (9_} ifx#0
g 9.
gsymp — keTOQp = Span{a a—} if x = Yy = 0.
o 0 0

where ap, : T,R* — R and T,R® = span{ } at any point p € R3. In

oz’ By’ 0z
cylindrical coordinates, we put x = rcost) and y = rsinf) where r and 6 are as in the

Figure 42.
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(%,y,2)=(r,6,2)

Figure 42: Cylindrical coordinates.
Then, we find dx = cosfdr — rsinfdf and dy = sinfdr + rcosfdf). Now, substitute
x, Yy, dr and dy in the 1—form .

ag =dz —ydr +xdy = dz — rsinf(cosfdr — rsinfdf) + rcosf(sinfdr + rcosfde)
= dz+r*df.

Therefore, the contact 1-form ay = dz + r?d6 is in cylindrical coordinates.

Figure 43: Symmetric contact structure on R3.

Example 2.6.4. [35][36] For a 1-form a3 = cosrdz + rsinrdf in R® with cylindrical

coordinates, &,; = keras is another contact structure on R?. Indeed, 1—form as is a
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contact form:

dOz3

d(cosrdz + rsinrdd)
—sinrdr A\ dz + cosrd(dz) + (sinr 4+ rcosr)dr A\ df + rsinrd(df)
—sinrdr A dz + (sinr 4 rcosr)dr A df (since d(dz) = d(df) = 0).

Now, we will compute az A das.

as N dOég

= (cosrdz + rsinrdd) A (—sinrdr A dz + (sinr + rcosr)dr A\ df)

= cosrsinrdz A dr A\ df + rcos*rdz A dr A df — rsin®rdd A dr A dz
= cosrsinrdz A dr A df + rcos*rdz A dr A df + rsin*rdz A dr A df
= (cosrsinr +r)dz A dr A df

+1)dz/\dr/\d9¢0(1fr>o,wﬂm)

cosrsinr
T

So, &, is a contact structure on R3. Also, ot, at any point p is generated by the

following set:

where ag, : T,R* — R and T,R® = spcm{

keras, = spcm{%, —rsmr% + cosr%} C TR?
o 0 0

T 8_} at each point p = (1,0, z) € R3.
r 2

Figure 44: The overtwisted contact structure on R3.

Example 2.6.5. [36] [33] Consider 1-form o~ = xdy — ydx + wdz — zdw on the unit
3-sphere S® C R%.

a~ A da™

(xdy — ydz + wdz — zdw) N d(zdy — ydx + wdz — zdw)

(xdy — ydz + wdz — zdw) A (2dz A\ dy + 2dw A dz)

2xdy N dw N\ dz — 2ydz A dw N dz + 2wdx N dy N\ dz — 2dx A dy A dw.
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The tangent space T,5® can be generated by the following set

9 om0 0 w0 0w
81‘1 Y1 83/1’ 81'2 Y2 83/2’ 833'1 Y2 8y2 '

On this basis for the tangent space T,5%, a™ A da™ # 0. So, a™ is a contact form and
Esta = ker(a™) is a contact structure on S3. This contact structure £44 is called the

standard contact structure on S3, and this contact 3-manifold is denoted by (52, £yq).

Definition 2.6.3. [35] Consider two contact 3—manifolds (M?!, &) and (M?,£%). As-
sume there exists a map ® : M' — M? which is a diffeomorphism such that d®,(¢)) =
§§>(p) for all p € M" where d®,, : T,M" — Tp(,)M?, then the two contact 3—manifolds

are called contactomorfic.

[33] In the previous examples of contact structures on R3, (R? £yy), (R? &) and

(R?, &s,m) are all contactomorfic contact structures on R3.

Example 2.6.6. [33] (R?,¢;) and (R3, &,,,) are contactomorphic via a diffeomorphism
Y Ty

D : (R%&) = (R &ym) such that (z,y,2) = (x,§,z + 7) = (2/,y,7'). The
differential of ® for a point p € R? is a linear map d®, : T,R* — Tp,)R? as the
following;:

1 0 O Wy

d®,(wy, we, w3) = 0 1/2 0 Wy

y/2 x/2 1 w3

) I, ’ [w]p

o o0 0

where w = (wy,wq, w3) € T,R* and § = { /} is a basis for T,R*. From

oz’ oy 9z
Example 2.6.2 and Example 2.6.3, the contact plane £, and &y, at any point p are

generated by the sets {g 2.0 } and {:1:’ 9 0 , 0.0 } where ¢y’ # 0,

e oz oy a0 Yoy Y or T or
respectively.
1 0 0 1 1
d<I>p(£) = 0 1/2 0 0[=1] 0
ox
y/2 x/2 1 0 y/2
0 yo
T 9 20«
9,0
~ or Yoy



and

1 0 O 0 0
0 0
di)p(a—y—x&) 0 1/2 0 1= 172
_ 19 _z90
20y 207
_ 10 49
20y 20
where y' # 0. So,
0 ,0 10 20
4,(6,) = span{ gy G g T )
9 / 0 10 x 0 x 0 ’ 0
= wnige o (Gay ~ 709) T apaw Vo))
= s an{i+ 0 1 /i_|_ /i)}
- o T e ey Y o T oy
= {i_|_ /i /i /i}
= span B y@z”xax’ yay’
= gsymp-
Therefore, the diffeomorphism @ is a contactomorphism from (R3, ;) to (R3, Eaym)-

Theorem 2.6.1.

(Darbouz’s Theorem)[37] “Let M be a contact 3-manifold M and

p be a point on M. Then, there exists a neighbourhood U C M of p such that it is

contactomorphic to a neighbourhood V' of p; = (0,0,0) in (R, £4q).”

2.7 Tight and Overtwisted Contact Manifolds

2.7.1

Overtwisted Contact Manifolds

Definition 2.7.1. [35] Suppose that there is a disk D which is embedded in (M, ).

Assume that its boundary which is denoted by OD is tangent to contact planes &

everywhere such that contact framing and Seifert framing of 0D are equal. Then D is

called an overtwisted disc.

Example 2.7.1. In Example 2.6.4, the disc D = {(r,0,2) € R3|z = 0,7 < 7} is an

overtwisted disc in (R?,&,). Its boundary D is tangent to the contact planes every-

where.
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Figure 45: The overtwisted disc in (R3, &y).

Definition 2.7.2. [35] If there exists an overtwisted disc in a contact 3-manifold, then

such a contact 3-manifold is called an overtwisted contact manifold.

Example 2.7.2. In Example 2.6.4, the contact manifold (R3, &) is an example of an

overtwisted contact 3-manifold since it has an embedded overtwisted disc in (R?, &,;).

2.7.2 Tight Contact Manifolds

Definition 2.7.3. [35] If a contact 3-manifold (M, &) does not have any overtwisted

disc in it, then it is called a tight contact 3-manifold.

Example 2.7.3. In Example 2.6.1 and Example 2.6.3, the contact 3-manifolds (R3, £4)
and (R?, &) are examples of tight contact manifolds [14]. In these two contactomor-

phic contact manifolds, the contact planes twists slowly.

2.8 Legendrian knots in the 3—sphere

In a contact 3-manifold, a knot which is tangent to contact 2-planes in each place
is called a Legendrian knot [38]. We will study Legendrian knots in contact S3 in this

section.

Definition 2.8.1. [35][38] Let L be a knot in (M, ¢) which is an embedded S*. The
knot is called a Legendrian knot provided that the tangent space at p is in §;
T,L € &, for all p € L. In other words, an embedded curve ¢ : S' — M which is a
parameterization of L satisfies this condition: ¢'(0) € yp) where ¢’ : TyS* — T, M

is a linear map for all 8 € S*.

32



Darboux proved that every contact structure is locally contactomorphic to (R3, £.4).
We can think a Legendrian knot L in R? as a Legendrian knot in S® since S? is obtained
from R? by adding a point at infinity to R3, L C S% = R* U {p}.

Front projection is a projection map such that it projects curves in R? to xz-plane.

It is useful to picturize the knots.

Definition 2.8.2. [35] Let ¢(0) = (x(0),y(0),2(0)) be a parameterized curve in

(R3,&sa). The front projection of the curve ¢ is the curve ¢;(6) = (x(6), z(0)).

Take a Legendrian knot L in (R?,&yy). A parameterization ¢ of L is defined as:
p: St = R0 = (2(0),y(0), 2(0)).

Suppose that ¢ is a C' immersion which means that ¢ is differentiable and its
derivative dpp : T,S1 — T, R? is an injective map for each point p € S*. By definition
of a Legendrian knot, ¢'(0) = (2'(0),y'(0),2'(0)) € &sta - Since {ua = ker(dz — ydz),

the following equation is obtained:

Z(0) —y(0)'(6) = 0. (1)

Legendrian knots in (R?,&,;4) can be pictured by their front projections. The image
of gr(0) : St = R?: 0 — (2(0),2(0)) where ¢ is a parameterization of L is named as
the front projection of L. Though ¢ was an immersion, the front projection ¢y is not
an immersion. If 2/(f) vanishes, 2/(f) also vanishes from Equation (1). So, if the front
projection ¢ was an immersion, then z/(#) must never 0. Thus, the front projection
of L does not have vertical tangencies.

For a generic C'!' smooth L if /() = 0, then the point 6 is an isolated point where
there exists a well-defined horizontal tangent line in the front projection of L. Such
points are named as generalized cusps.

Moreover, y-coordinate of ¢ can be regenerated from Equation (1):

W0 = )

Thus, a front projection of a Legendrian knot has three properties. The first one is
that it does not have vertical tangencies. The second one is that its sole non-smooth
points are generalized cusps, and the third one is that the slope of the overcrossing is

smaller than the slope of the undercrossing in the front projection. [38].
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Example 2.8.1. The front projections of a Legendrian unknot and a Legendrian right

handed trefoil are given in Figure 46, respectively.

/_\/

BN

Figure 46: Legendrian unknot and Legendrian right handed trefoil knot.

Theorem 2.8.1. [38] For every topological knot K C S3, there exists a Legendrian
knot representing the knot K.

Proof. Any topological knot K can be converted into a Legendrian representative by

the following movements.

)= (=<

T
/\/HX X\\S\
/ .

Figure 47: The movements of converting any topological knot into a Legendrian knot.

]

Example 2.8.2. Topological left handed trefoil is converted into Legendrian left
handed trefoil by the movements in Figure 47.
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Figure 48: A Legendrian realization of a left handed trefoil knot.

2.8.1 Contact Framing of Legendrian Knots

Definition 2.8.3. [33] [35] Consider a Legendrian knot L C (M, &). Consider a non-
zero vector field v and perpendicular to L. Parallel push of L in the direction v which

stays in £ is called a contact framing of L.

0
Example 2.8.3. Let L be a Legendrian unknot in (R?,£yy). The vector field v = 5
z

is perpendicular to the standard contact planes £;4. The parallel push of L in direction

v is the contact framing of L seeing in Figure 49.

Figure 49: Contact framing of a Legendrian unknot.

2.9 Invariants of Legendrian Knots
2.9.1 Topological Knot Type

[38] Legendrian knot’s topological knot type is an invariant for the knot.

Example 2.9.1. Legendrian left handed trefoil is given in Figure 50. It is different
from the knot in Figure 51 since both have different knot types. The knot type of the
Legendrian knot in Figure 51 is a right handed trefoil.

35



(G

Figure 50: The knot type of Legendrian left handed trefoil.

oz — oo

Figure 51: The knot type of Legendrian right handed trefoil.

2.9.2 Thurston-Bennequin Invariant

Definition 2.9.1. [38] Consider a Legendrian knot L in (M, &). Assume that L is null-
homologous. Measurement of the twisting contact plane & around L is called Thurston-
Bennequin invariant denoted by tb(L) . In other words, Thurston-Bennequin invariant

is the twisting contact framing as regards the Seifert framing of the knot.

Consider a Legendrian knot which is null-homologous in (R?, £y4). Take a non-zero
vector field v transverse to £;4. Take a parallel push of the knot in the direction of v
which stays in contact planes. Then, Thurston-Bennequin invariant tb(L) is defined
as the linking between the knot and its parallel push off. Crossings between the knot
and its parallel push off are obtained at the crossings and the cusps of the knot. In

this situation, the following formula is obtained:
1
tb(L) = lk(L, L) = writhe(yps(L)) — §(total number of cusps in ¢s(L)).

Here writhe number is the right number which is sum of signs of each crossing in the

front projections.

Example 2.9.2. Consider a Legendrian unknot U in Figure 52(a). The vector field
0
v = 2 is always perpendicular to 4. A parallel push of U in the direction g is U’
z

z
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in Figure 52(b). Then, the Thurston-Bennequin invariant of U is (k(U,U’) = —2, or

to(U) = writhe(ys(L)) — %(# cusps) =0 — %4 = -2

(@) (b)

Figure 52: Legendrian unknot and parallel push off of it.

2.9.3 Maximal Thurston-Bennequin Invariant

Definition 2.9.2. The maximal Thurston-Bennequin invariant of the knot type K is
the maximum of Thurston-Bennequin invariants over all Legendrian presentation of

the knot type K. It is denoted by maximaltb(K).

2.9.4 Rotation Number Invariant

Definition 2.9.3. [38] Consider an oriented Legendrian knot which is null-homologous.
Consider its Seifert surface E;. A trivial two dimensional tangent bundle is obtained
by the restriction of contact planes £ to E;. A trivialization £|; = L x R? is derived

from the trivialization of & |2£1, . Take a vector field v which has the following properties:
1) It is non-zero,
2) It is tangent to the knot,
3) It points in the same direction as the knot.

Then, v can be considered as the set of non-zero vectors in R%2. The winding number

of v is defined as the rotation number of L. It is denoted by rot(L).

Consider an oriented Legendrian knot in (R3,&,4). The vector field w = — is
a non-zero part of £u4. The trivialization of the knot is formed by using w. Tyake
a vector field v which satisfies three conditions above. Then, the rotation number
rot(L) is equivalent to the signed number of how many times w and v point in the

same direction. If v passes w counter clockwise, it is called (+1). Otherwise, it is (—1).
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If the cusp is going down, the intersection will be positive. Otherwise, it is negative.
In this process, the number of times v intersects both w and —w is counted. For this
reason, it must be divided by two to find rot(L). Let C, be the total number of up
cusps in the front projection. Let Cj; be the total number of down cusps in the front

projection. Then, rotation number of the knot is
1
rot(L) = §(Cd — Cy).
Example 2.9.3. The Legendrian unknots with two different orientations U; and U, are
1
given in Figure 53. The rotation number of U; in Figure 53(a) is rot(U;) = 5(3—1) =1,

1
and the rotation number of U, in Figure 53(b) is rot(Us) = 5(1 —3) = —1. Therefore,

the rotation number depends on the orientation.

J T
@) (b)

Figure 53: Oppositely oriented Legendrian unknot.

Example 2.9.4. Consider Legendrian right handed trefoil and Legendrian left handed
trefoil in Figure 54 in (R3,£,4). They are different Legendrian knots because their

classical invariants are different.

Figure 54: Legendrian trefoil knots.

Classical invariants for the Legendrian right trefoil L, are the following:

1

tb(L,) = writhe(¢(L,)) (#cusps in (L)) =3 — 54 =1

1
2
1 1
rot(L,) = §(Cd —-C,) = 5(2 —2)=0.
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Classical invariants for the Legendrian left handed trefoil L; are the following:

tb(Ly) = writhe(of(Ly)) — %(#cusps in pp(ly)) =-3— %6 = —6

rot(Ly) = %(Cd _0) = %(4 _9) =1,

2.10 Stabilizations

Stabilization for Legendrian knots is defined in (R3,&yy), and performed locally
on the front projection of Legendrian knots. By Darboux’s theorem, Legendrian knot

stabilization operation can be done locally in any contact 3-manifold (M, ¢) [38].

Definition 2.10.1. [38] Consider an oriented Legendrian knot. The operation to
convert the knot into another Legendrian knot having equal topological knot type with
L by locally applying the movements in Figure 55 is called a stabilization. Adding
down cusps is named as a positive stabilization, and adding up cusps is named as a

negative stabilization. They are denoted by P, (L) and N_(L), respectively.

. Py /%
N_
e E— \}

Figure 55: Positive and negative stabilization.

v

In the positive stabilization, the number of down cusps are increased by 2. In the
negative stabilization, the number of up cusps are increased by 2. Although the knot

type stays equal after the stabilization, the other two invariants alter as:
tb(P.(L)) =tb(L) — 1, tb(N_(L))=tb(L)—1

and

rot(P, (L)) =rot(L)+1, rot(N_(L))=rot(L)— 1.

Example 2.10.1. Consider the given Legendrian T(2, 3) in (R3, £) in Figure 54. Thurston-
Bennequin invariant of Legendrian T(2,3) is tb = 1. Rotation number of Legendrian
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T(2,3) is rot = 0. After a positive stabilization P, in Figure 56(a), the classical in-
variants are tb(P;) = 0 and rot(Py) = 1. After a negative stabilization N_ in Figure
56(b), the classical invariants are tb(/N_) = 0 and rot(N_) = —1.

o o

() (b)

Figure 56: A positive stabilization P, of Legendrian T(2,3). A negative stabilization
N_(L) of Legendrian T(2, 3).

2.11 Classification Types of Legendrian Knots

Legendrian knots are classified by two ways which are by contactomorphism and

by Legendrian isotopy.

Definition 2.11.1. [38] Consider two oriented Legendrian knots L; and Ly in (M3, €).
If there exists a map ¢ from (M, §) to (M, &) so that ¢p(L;) = Ly and so that ¢ is a
contactomorphism and ¢ is isotopic to the identity function, then two knots Ly, Lo are

called Legendrian isotopic knots.

Definition 2.11.2. [38] Consider two Legendrian knots L; & Ly in (M,&). On the
condition that there is a contactomorphism ¢ from (M, &) to (M, ) such that ¢(L;) =

Lo, then Ly and Lo are equivalent up to contactomorphism.

2.12 Homotopy Invariants of Contact Structures

There can be one contact structure or more on a 3-manifold. Some invariants are
necessary to distinguish contact structures on 3-manifolds. There are two homotopy
invariants of contact structures on closed, orientable 3-manifolds. These are the ds-
invariant and the ds-invariant and these invariants are defined in [39].

The Euler class ds-invariant determines the homotopy over 2-skeleton of a closed,
orientable 3-manifold. The other one is ds-invariant of £ which is a rational number such

that it determines the homotopy obstruction over the 3-skeleton of the 3-manifold. In
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other words, any two homotopic 2-plane fields over the 2-skeleton of a closed, orientable
3-manifold are homotopic over the 3-manifold if and only if their ds-invariants are the
same [39)].

These two homotopy invariants of £ can be computed by using surgery diagrams.
In this thesis, calculation of these two invariants will not be given. Calculation of these
invariants are given in detail [39], [40].

Followings are two useful lemmas for determining types of contact 3-manifolds.

Lemma 2.12.1. [40] The ds-invariant of &,y given in Example 2.6.5 on S? is d3(£q) =
1

5
Lemma 2.12.2. [40] The ds-invariant of &,; on S® obtained by contact surgery with
contact framing (41) applied to the unknot with tb(L) = —2 and rot(L) = 1 in
(53, &sta) is d3(Eor) = % Note that &, is overtwisted.

2.13 Knots in Overtwisted Contact 3-Manifolds

Definition 2.13.1. [16] Take a Legendrian knot K in an overtwisted (M,¢). If the
complement (M \ K, |y k) is tight, then it is called an exceptional knot . Otherwise,

it is called a loose knot.

Example 2.13.1. Boundary of an overtwisted disc in an overtwisted manifold is an

example of a loose knot. In fact, it is a loose unknot.

3 Legendrian Torus Knots

3.1 Classification of Legendrian torus knots in (53, &)

Classification problem is an important problem for Legendrian knots. Classification
problem is studied by many mathematicians. For example, in 1998, Eliashberg and
Fraser classified Legendrian unknot in (5%, &y4) [15]. Then, in 2001 Etnyre & Honda
gave the classification of Legendrian torus knots. They also classified Legendrian figure
eight knot in (S3,&,4) in the same paper. Many mathematicians studied other Leg-
endrian knots in other contact 3-manifolds, too. Linear Legendrian curves in contact

3-torus T° were classified by Ghiggini in [41]. Furthermore, Legendrian torus knots
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in other contact 3-manifolds are studied by Onaran. Legendrian positive torus knots
in universally tight contact structures on lens spaces were classified in [18]. Recently,
classification problem of Legendrian knots in overtwisted S3’s has also been studied.
Eliashberg and Fraser classified exceptional unknots in overtwisted S*’s in [16]. Clas-
sification of Legendrian rational unknots in lens spaces L(p, 1) for odd p was done by
Etnyre and Baker in [42]. The same classification for any value of p was done by Geiges
and Onaran in [43]. First nontrivial knot type classifications was also done by Geiges
and Onaran. Exceptional Legendrian torus knots in overtwisted S%’s are classified in

[19].

Definition 3.1.1. [17] Assume that S* is formed by two solid tori U and V| i.e.
S3 = U Up V where T is the common boundary of solid tori U and V. If u and \ are
the unique curves which bound a disk in U and V', respectively, and p and \ are two
homological generator curves on 7', then any simple closed curve on T is in the form
lpp+m for relatively prime integers [ and m. The simple closed curve [+ mA is called
a (I, m)-torus knot in S3. A Legendrian T(I,m) torus knot in (S, &) is a Legendrian
knot having knot type as T(l,m) torus knot.
Etnyre and Honda classified Legendrian torus knots in (53, &.q4) in [17].

Theorem 3.1.1. “/17] Two oriented Legendrian torus knots in (S, €4q) are Legen-

drian isotopic if and only if they have the same classical invariants.”

Example 3.1.1. By Theorem 3.1.1, the following two realizations of Legendrian left
handed trefoil in (53, £y4) with tb = —6 and rot = 1 are Legendrian isotopic because

their classical invariants are the same.

“x%//\” @

Figure 57: Two realizations of Legendrian left handed trefoil in (53, &.q).

There are two types of Legendrian torus knots: positive Legendrian torus knots

and negative Legendrian torus knots.
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3.1.1 Positive Legendrian Torus Knots

Definition 3.1.2. A Legendrian torus knot T(I,m) in (53, £,q) where ged(l,m) =1 is

called a positive Legendrian torus knot if [,m >0 .

In this thesis, positive Legendrian torus knots T(l, m) where m > [ > 0 are studied.

The following theorem of Etnyre and Honda is about Legendrian positive torus knots.

Theorem 3.1.2. [17] “If L is an oriented Legendrian T(l,m) knot where m > 1> 0,
then the rotation number of L with maximaltb(L) = Im — [ — m is rot(L) = 0. If
tb(L) = ml —m — [ — k where k is a non-negative integer, then rot(L) € {—k,—k +
2,...,k}.”

Legendrian right handed trefoil in standard contact S has the maximal Thurston-
Bennequin invariant maximaltb(L,) = 1. Theorem 3.1.2 gives a table of the invariants
of Legendrian torus knots which have the same topological knot type. In this table,
every dot represents a pair of invariants of Legendrian torus knots, and every arrow
corresponds to a stabilization. For example, a table of the invariants of Legendrian
T(2,3) where the knot is denoted by L, is given Figure 58. Its maximal Thurston-
Bennequin invariant maximaltb(L,) = 1 which is unique and it has the rotation number

rot(L;) = 0.

rot= -3 -2 -1 0 1 2 3

th= 1 A

Figure 58: Table of some Legendrian right handed trefoils with pairs of invariants.

The unique positive Legendrian T(2, 3) knot with maximaltb(L,) = 1 and rot(L,) =
0, the positive Legendrian T(2,3) knot with maximaltb(L,) = 0 and rot(L,) = 1, and
the positive Legendrian T(2,3) knot with maximaltb(L,) = 0 and rot(L,) = —1 are
given in Figure 59(a), Figure 59(b) and Figure 59(c), respectively.
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Figure 59: Three Legendrian realizations of positive right handed trefoil.

3.1.2 Negative Legendrian Torus Knots

Definition 3.1.3. A Legendrian torus knot T(l,m) in (5%, £sq) where ged(l,m) = 1 is

called a negative Legendrian torus knot if | <0 and m > 0, or [ > 0 and m < 0.

In this thesis, negative Legendrian torus knots T(l, —m) where m > [ > 0 are
studied. The following theorem of Etnyre and Honda is about Legendrian negative

torus knots.

Theorem 3.1.3. [17] “If L is an oriented Legendrian T(l, —m) where m > 1 > 0, then
the rotation number of L with maximaltb(L) = —Im is rot(L) € {(m —1—2lk) : k €

y
Z,ngg(ml—>}. ”

Legendrian left handed trefoil in standard contact S® has the maximal Thurston-
Bennequin invariant maximaltb(L;) = —6. Theorem 3.1.3 gives a table of the invariants
of Legendrian torus knots which have the same topological knot type. For example,
a table of the invariants of Legendrian T(2, —3) where the knot is denoted by L; is
given Figure 60. There are two Legendrian T(2, —3) with maximaltb(L,) = —6. Their

rotation numbers are rot(L,) = %1.

rot= -3 -2 -1 0 1 2 3
tb= -6
-8 ° ° ° °

Figure 60: Table of some Legendrian left handed trefoils with pairs of invariants.
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The negative Legendrian T(2, —3) with maximaltb(L,) = —6, and rot(L,) = —1 can
be seen in Figure 61(a). The negative Legendrian T(2, —3) with maximaltb(L,) = —6,

and rot(Ly) = 1 can be seen in Figure 61(b).

&> <&

Figure 61: Table of some Legendrian left handed trefoils with pairs of invariants.

3.2 Contact Surgery in Contact 3-Manifolds Along Legen-

drian Knots

Contact surgery applies to Legendrian knots while Dehn surgery applies to topo-
logical knots. To apply a contact surgery to a Legendrian knot L in (M,¢), first a
tubular neighbourhood of the Legendrian knot is removed. Then, a new tight solid
torus is glued to the exterior M \ L along the boundaries via a homeomorphism of the
tight solid torus such that one can extended the contact structure on M over the solid
torus [20], [40].

When a contact 3-manifold (S3,&,4) is considered, contact surgery applied to a
Legendrian knot L is determined by coprime integers (p,q). Take a tubular neigh-
bourhood N(L). Homological generators of (S \ N(L),&q) are the meridian m and
the longitude ! which come from the contact framing. Contact surgery applied to L
is gluing a tight solid torus (S* x D? ¢’) to (S \ N(L), &xq) along boundaries via the
gluing map g:

g:0(S" x D*,¢&) = 0((S*\ N(L)), &sta)

{a} x OD* — qm + pl.
Therefore, after the contact surgery along L, a new contact 3-manifold (M, &) = ((S?\
N(L)), &xa) Uy (S* x D% ¢') is formed.
Definition 3.2.1. A contact surgery with contact framing (—1) applied to a Legen-

drian knot is called a Legendrian surgery.
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Theorem 3.2.1. [20] “Every closed and contact 3-manifold can be formed by contact

)

surgery with contact framing (1) applied to a Legendrian link in (S, &4q).

Theorem 3.2.2. [/0] “Contact surgery with contact framing (+1) applied to a Legen-
drian unknot with tb = —1 and rot = 0 is the tight contact 3-manifold (S* x S? &).”

Theorem 3.2.3. [44] “If a contact manifold (M, &) is formed by a Legendrian surgery
in a tight (M,§), then (My,&) is also tight.”

Observe that the result of a contact surgery can be overtwisted although the man-

ifold on which the surgery is applied is tight.

Example 3.2.1. [40] In Figure 62, the Legendrian unknot L in the standard contact

structures on S produces an overtwisted S3.

+1 -1

(a) (b)

Figure 62: (a) Contact (+1)-surgery and (b) —1-Dehn surgery.

The classical invariants of L in Figure 62(a) is tb(L) = —2 and rot(L) = 1,
and contact framing of L is (+1). By definition of Thurston-Bennequin invariant, L
has Seifert framing —1. So, the contact (+1)-surgery applied to the Legendrian knot
L corresponds to topological Dehn surgery with surgery coefficient —1 applied to a
topological unknot in Figure 62(b). Thus, the resulting manifold is S®. In Figure
63(a), Legendrian unknot L’ with contact framing ¢ and tb(L') = —1 is the boundary
of an overtwisted disc. Indeed, its Seifert framing is also ¢ by Kirby move 1 as seeing
Figure 63(b) after converting the contact surgery diagram into topological surgery
diagram. Since tb(L’) = ¢ — ¢ = 0, L’ bounds an overtwisted disc by definition of an

overtwisted disc. Therefore, S* in Figure 62(a) is an overtwisted manifold.
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Figure 63: (a) Contact surgery diagram and (b) topological surgery diagram.

Lemma 3.2.1. “[45] (Cancellation Lemma) Take a Legendrian knot in (M, £) and take
its parallel push. Then, contact surgery with contact framing (—1) applied to the knot
and contact surgery with contact framing (+1) applied to its parallel push off cancel

each other. The resulting manifold (M, &) and (M, €) are contactomorphic.”

Lemma 3.2.2. Consider a loose knot. Then, contact (p/q)-surgery applied to the

loose knot always results in an overtwisted contact 3-manifold.

Proof. Since the given knot is a loose knot, the complement of the knot is an overtwisted
contact 3-manifold. So, an overtwisted disc exists in the complement. Contact (p/q)-
surgery along the loose knot can be done far away from this overtwisted disc in the
complement. Then, the overtwisted disc in the complement of L remains after the
contact (p/q)-surgery along the loose knot so that the resulting manifold is overtwisted.

Therefore, any contact surgery along a loose knot is always overtwisted. O

3.3 Classical Invariants of Legendrian Knots from Surgery Di-

agrams

Definition 3.3.1. [43] [46] Let the surgery link £ = K; U K, U ... UK, in (5%, &)
be a contact (£1)-surgery representation of closed and contact 3-manifold (M, £) such
that £ is an oriented link with the integral surgery coefficients f; = tb(K;) + 1 of each
components K; where i = 1,2,...,n. Take a Legendrian knot Ky in (53, £y) disjoint

from £. Then the matrix
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is called the linking matriz of £, and the matrix

¢

0 i=7=0

Ao = (aiz) = 9 f; i=3j#0

(K, Kj) si# ]
is called an extended linking matriz. In other words, Ay is the linking matrix of KqU K.

Lemma 3.3.1. [46] [43] “ Let the surgery link £ = K;UK,U...UK,, be a contact (£)-

surgery representation of (M, ¢). Take a Legendrian knot Ky in (53, &,4) disjoint from
detA(]

detA
where tbg(Kj) is the Thurston-Bennequin invariant of K, before the surgery. The

L. The Thurston-Bennequin invariant of Ky in (M, &) is tb(Ky) = tby(Ky) +

rotation number of Ky in (M, &) is rot(Ky) = roto(Ky)— < rot, A~ -1k > where
roty(K)p) is the rotation number of K before the surgery, rot is the vector of rotation

numbers, and [k is the vector of linking numbers between Ky and K; fori =1,2,...,n.”

Lemma 3.3.1 above is Lemma 6.6 of [46] and Lemma 2 of [43]. This lemma extended
to more general contact 3-manifolds in [47], see Lemma 6.4 of [47]. See also Theorem

4.3 in [48] for computing rotation number in contact surgery diagrams.

3.4 Contact Surgery along Legendrian Torus Knots

Before studying contact surgery along Legendrian torus knots, Dehn surgery along
torus knots is studied in this section. In 1971, Moser studied Dehn surgery applied to

torus knots.

Theorem 3.4.1. “ [8] Take a torus knot T(l,m) in S® where |m| > 1 > 0 and M is
the new manifold which is obtained by a topological Dehn surgery with framing (—q/p)
applied to the torus knot. Assume o = Imp + q.

1) When |o| # 0, M is a Seifert manifold such that it is singularly fibered by simple

closed curves over S? with singularities of types a; =m, as =1 and az = |o].

2) When o = %1, there are only two singular fibers of types ccy = m and ay = [,

and M s the Lens space L(|q|, pl?).

3) When |o| =0, M is L(I,m)#L(m,l), and it is not singularly fibered.”
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It is shown that there are different ways to obtain lens space L(7,4) in Example
2.4.5. Similarly, there are different ways to obtain the lens space L(7,4) by a surgery
along a (I, m)-torus knot T(I,m) in S? for relatively prime integer I, m.

At this point, Rasmussen gave an important result. He proved that the only way
to obtain the lens space L(7,4) by an integral surgery on S® is (—7)-surgery along
a left handed trefoil knot. Rasmussen gave the generalization of this result in [11].
Rasmussen states his result in [11] in terms of positive torus knots, here in this thesis,

the same result in terms of negative torus knots is stated.

Corollary 3.4.1. [11] “The sole way to obtain the lens space L(4m + 3,4) by a topo-
logical integral surgery applied to a single knot in S? is an integral surgery with framing

—(4m + 3) applied to T(2, —(2m + 1)).”

In contact perspective, there are three tight contact structures on contact L(7,4).
Plamenevskaya claimed that only one tight contact structure of the total three tight
contact structures on the contact lens space L(7,4) can be realized by contact surgery
with contact framing (—1) applied to a Legendrian T(2, —3) in some contact structure
on S? using Rasmussen’s result [49]. Geiges and Onaran showed that there is a mistake
in Plamenevskaya’s result in [21]. They showed that all three contact structures which
are tight on the lens space L(7,4) can be obtained by a single contact surgery with
contact framing (—1) applied to a Legendrian left handed trefoil in S3. Also, they
generalized the result for the lens spaces L(4m + 3,4) in [21].

In this chapter, the results of Geiges and Onaran and their surgery techniques in

[21] are studied in detail.

3.4.1 Contact Structures on Contact Lens Spaces

Honda, independently Giroux gave the exact number of tight contact structures

that can exist on special class of 3-manifolds which are lens spaces [50] [51].

Theorem 3.4.2. “/50] [51] Let L(p, q) be a lens space where p > q > 0 and ged(p, q) =

1. The exact number of contact structures which are tight on a given lens space is

(ro—l)(rl—l)...(rk—l)
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where the r; > 2 which are the terms in the following continued fraction expansion

1
=T — 1 = [7”0,...,7“]6}.
7”1——1

7”2—..._
Tk

”

q

3.4.2 Contact Lens Space L(7,4)

In this section, contact 3-manifold L(7,4) and the three tight contact structures on
it analyzed by using contact surgery techniques in [21] for understanding lens spaces

and contact surgery techniques better.

Theorem 3.4.3. [21] All three tight contact structures on the lens space L(7,4) can
be formed via an only one (—1)-contact surgery applied to a Legendrian realization of
T(2,—3) in some contact structure on S3.

Proof. There are three different tight contact structures &;, &, & on L(7,4) by Theorem
1

3.4.2 where the continued fraction is ;1 =2 - 1= 2,4]. Their ds-invariants are
d3(&) = d3(&) = —2/7 and d3(&3) = 0 which are calculated in [21]. Two of them have
the same ds-invariants but their ds-invariants are different. Using their ds-invariants,
they are distinguished. The contact structure &3 is different from & and & since
d3(§3) = 0 # —2/7 = d3(&1) = d3(&2).

There are many ways to obtain the lens space L(7,4). However, Rasmussen showed
in Corollary 3.4.1 that there is an only one way to obtain L(7,4) by an integral surgery
on S? that is a (—7)-surgery along T(2, —3) in S® .

Legendrian T(2, —3) having Thurston-Bennequin invariant tb = sf —cf = =7 —
(—1) = —6 in (S, &4a) or an exceptional left handed trefoil knot in an overtwisted S®
have to be considered if a single (—1)-contact surgery along Legendrian left handed
trefoil T(2, —3) in some contact structure on S is used for getting L(7,4).

The maximal Thurston-Bennequin invariant of Legendrian T(2, —3) in (5%, yq) is

maximaltb = —6 by Theorem 3.1.3. There are two different realizations of T(2, —3)

with maximaltb = —6. Their rotation numbers are +1 which are shown in Figure 64.
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Figure 64: Two different realizations of Legendrian left handed trefoil with ¢tb = —6 in
(Sgu gstd)-

The results of (—1)-contact surgeries along the two Legendrian left handed trefoils
in (53, &q) give two different contact structures & and & on the lens space L(7,4) such
that ds(&1) = d3(&2) = —2/7, but their do-invariants are different because their rotation
numbers are different. So, & and & are different by Lisca and Mati¢ [52]. In this
thesis, calculation of dz-invariant will not be done, but the detailed calculations of ds-
invariants can be found in [21]. Also, these two different contact manifolds (L(7,4), &)
and (L(7,4),&) are tight by Theorem 3.2.3.

The other realization of T(2, —3) is an exceptional knot K which is given in Figure
65 in an overtwisted contact S3. The given surgery diagram is overtwisted S* since its
ds-invariant is 3/2 which is different from —1/2. This invariant is calculated in detail

in [21].

Figure 65: An exceptional left handed trefoil in an overtwisted S3.

Contact surgery with contact framing (—1) is applied to the knot K in Figure 65 to

show that it is an exceptional knot in an overtwisted contact S®. By the cancellation
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lemma, contact surgery with contact framing (—1) cancels contact surgery with contact
framing (+1) applied to the parallel push off of the knot. Contact surgery with contact
framing (+1) applied to Legendrian unknot results in the tight S' x S? by Theorem
3.2.2. By Wand’s theorem, remaining other contact surgeries with contact framing
(—1) result in a tight contact structure by Theorem 3.2.3. So, contact surgery with
contact framing (—1) applied to the knot K is a tight contact manifold. So, K must
be an exceptional knot in an overtwisted S® by Lemma 3.2.2.

Kirby moves is used to show that the exceptional realization of the left handed trefoil
K in Figure 65 corresponds to a topological left handed trefoil as seeing in Figure 66 and
67. To find the Thurston-Bennequin invariant of the knot K in the surgered manifold,
the linking matrix of the surgery is formed as follows according to Definition 3.3.1.
Seifert framings of K; for each i = 1,2,3,4,5 are obtained as 0,0, —3, —3, —2 from
Figure 65, respectively. Also, the linking numbers (k(K;, K;) = —1 for i,j = 1,2,3,4
and (k(Ks5, K;) =0 for j = 1,2,3 and lk(Kj5, Ky) = —1. Then, using Definition 3.3.1
the linking matrix and the extended linking matrix of the knot K can be found as the

following.

A=] -1 -1 =3 -1 0
~1 -1 -1 -3 -1

o
|
|
—_
|
—_
=]
|
—_
|
—_
o o ] ]

Thus, using Lemma 3.3.1 the Thurston-Bennequin invariant of the exceptional left

det A
handed trefoil in the surgery diagram in Figure 65 is tb(K) = tbo(K) + de tAO =
e
5
-1+ == —6 where the Thurston-Bennequin invariant of K before the surgery is
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thy(K) = —1.

Contact surgery with contact framing (—1) applied to the exceptional left handed
trefoil knot K in the overtwisted S® gives another tight contact structure &3 on L(7,4)
such that d3(&3) = 0. The detailed calculations of ds-invariants can be found in [21].

Therefore, the three different tight contact structures &, &, £ on L(7,4) can be
observed by contact surgery with contact framing (—1) applied to the Legendrian left
handed trefoil knots in Figure 64, and the exceptional Legendrian T(2, —3) in Figure
65. The tight contact structures &; and & on L(7,4) come from contact surgery with
contact framing (—1) applied to Legendrian left handed trefoil knots in the standard
tight contact S® in Figure 64(a) and Figure 64(b), respectively. The other tight contact
structure &3 on the contact lens space L(7,4) is obtained by contact (—1)-surgery along

exceptional left handed trefoil in an overtwisted contact structure on S® in Figure 65.

O - GO
LG O-B=00

0 T D)

e_1 _1 T -1&_//_1

Figure 66: Kirby moves for the exceptional left handed trefoil in an overtwisted S®.
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Figure 67: Handle slides for the exceptional left handed trefoil in an overtwisted S3.

]

3.4.3 Contact Lens Spaces L(4m + 3,4)

In this section, contact 3-manifold L(4m + 3,4) where the integer m > 1 and the
number of tight contact structures on it analyzed by using contact surgery techniques
in [21] for understanding lens spaces and contact surgery techniques better. Note that

m =1 case, L(7,4) case, is already studied in previous Section 3.4.2.

Theorem 3.4.4. “ [21] FEach tight contact structures on the lens space L(4m + 3,4)
can be formed via a single Legendrian surgery along a suitable Legendrian realization

of T(2,—(2m + 1)) in some contact structure on S where m > 1.”

Proof. There are 3m tight contact structures &, &, ..., &3, on L(4dm + 3,4) by The-

4 3 1
orem 3.4.2 where the continued fraction is — o, +1—-=[m+1,4].

Similar to the case where m = 1, the lens space L(7,4), there are many ways to
obtain the lens space L(4m+3,4) for m > 1. However, Rasmussen showed in Corollary
3.4.1 that there is an only one way to obtain L(4m + 3,4) by an integral surgery on S*
that is a —(4m + 3)-surgery along a negative torus knot T(2, —(2m + 1)) in S .

Legendrian T(2, —(2m + 1)) with tb = sf —cf = —(4dm + 3) — (—1) = —(4m + 2)
in (5%, &qa), or an exceptional T(2, —(2m + 1)) in some overtwisted contact structures
on S? should be found if a (—1)-contact surgery along a Legendrian T(2, —(2m + 1))

in some contact structure on S® is used for getting L(4m + 3,4).
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The maximal Thurston-Bennequin invariant for Legendrian T(2,—(2m + 1)) in
(53, &stq) is maximaltb = —(4m + 2) by Theorem 3.1.3. There are 2m Legendrian
T(2,—(2m + 1)) with maximaltb = —(4m + 2) such that their rotation numbers are in

the following set
rot € {—=2m+1,-2m+3,...,2m —3,2m — 1}.

The results of contact (—1)-surgery along these 2m Legendrian negative torus knots
T(2,—(2m + 1)) in (S3,&q) give 2m different contact structures &, &, ..., &, on
L(4m + 3,4). These 2m contact structures are different since they come from 2m
Legendrian T'(2, —(2m + 1)) knots having the same Thurston-Bennequin invariant but
having different rotation numbers. Then, this will correspond to different contact
structures on L(4m + 3,4) by [52]. In other words, these 2m contact structures are
different by their different rotation numbers. Also, the 2m different contact structures
are tight by Theorem 3.2.3.

The remaining m realizations of T(2, —(2m + 1)) have to be exceptional knots in
some overtwisted contact structures on S® in Figure 68, and they are given in [46].
This surgery diagrams in Figure 68 give overtwisted contact structures on S® since

ds =2a+3/2 # —1/2 for a € Ny. It is calculated in detail in [21].

Figure 68: Exceptional realizations of T(2, —(2m + 1)) where m = a+b+ 1, a,b € Ny.

Similar to the case L(7,4), contact surgery with contact framing (—1) applied to the
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exceptional torus knots K in Figure 68 gives a tight contact manifold by the cancella-
tion lemma. So, the realisations of T(2, —(2m + 1)) must be exceptional in overtwisted
S3 by Lemma 3.2.2.

The exceptional torus knots K in Figure 68 correspond to the topological torus
knots T(2, —(2m + 1)) by Kirby moves. The given surgery diagram in Figure 68 cor-
responds to the topological surgery diagram which is similar to the surgery diagram
in Figure 66 where the —(m + 1) = —n-framing occurs instead of the (—2)-framing.
The exceptional torus knots K in Figure 68 separates from the surgery link by using
1 4+ n handle slides instead of the 1 4+ 2 slides in Figure 67. Then, the topological
T(2, —(2m+1)) in S? is obtained. The surgery linking matrix and the extended matrix
of K are used for showing Thurston-Bennequin invariant of the knot K in Figure 68.

By using Definition 3.3.1, the linking matrix of K is

0 -1 -1 -1 0
-1 0 -1 -1 0
A= -1 -1 -3 -1 0
-1 -1 -1 -3 —1

0 0 0 -1 —(m+1)

Also, by using Definition 3.3.1 again, the extended linking matrix of K is

0 -1 -1 -1 —1
-1 0 -1 -1 -1
-1 -1 0 -1 -1
~1 -1 -1 -3 —1
-1 -1 -1 -1 -3 -1

0 0 0 0 -1 —(m+1)

o o o O

Thus, the classical invariants of K can be computed by Lemma 3.3.1.

tb(K) = tbg(K =
(K) of )_I_detA -1

=—(4m+2)

where the Thurston-Bennequin invariants of the knot K in unsurgered manifold is by

tbo(K) = —1. The rotation numbers can be computed by

rot(K) = rotg(K)— < rot, A" - lk >
56



rot(K) =0— < (0,0,1,1,b —a)", A" - (=1,-1,-1,-1,0)" >
rot(K)=—(4m+3)+2(b—a)=—(4m+3) +2(m — 1 — 2a)

for the integer m > 1 and for the numbers a, b € NU {0}, a + b = m — 1 by Lemma
3.3.1. So, the rotation numbers of K in modulo(4m + 3) is:

rot(K)=—(4m+3)+2(m —1—2a) = 2(m — 1 — 2a) mod(4m + 3)

where 0 < a < m — 1. Then, there are m distinct rotation numbers of K in the

following set
rot(K) € {—2m+2,—-2m+6,...,2m —6,2m — 2}.

Contact surgery with contact framing (—1) applied to the exceptional negative
torus knots T(2,—(2m + 1)) in some overtwisted contact structures on S* gives the
other m tight contact structures &omi1, .. , &m on L(4dm + 3,4). These m tight
contact structures are different since they are obtained by Legendrian 7'(2, —(2m+ 1))
having the same Thurston-Bennequin invariant but having different rotation numbers.
So, Eam1, -+ - 5 E3m are different by Lisca and Mati¢ [52]

Therefore, the 3m tight contact structures &;,&, ..., &3, on L(4m + 3,4) can be
observed by a single contact surgery with contact framing (—1) applied to Legendrian
T(2,—(2m + 1)) in (S3,&4q) and the exceptional negative torus knots in Figure 68 in
some overtwisted contact structures on S®. The tight contact structures &, ..., &,
on L(4m + 3,4) come from contact surgery with contact framing (—1) applied to
Legendrian T(2, —(2m + 1)) with Thurston-Bennequin invariant tb = —(4m + 2) in a
standard contact structure on S® and their rotation numbers are in the set {—2m +
1L,—2m+3,...,2m — 3,2m — 1} . The other m tight contact structure &,41, .., &3m
on L(4m + 3,4) come from contact surgery with contact framing (—1) applied to
exceptional negative torus knot T(2, —(2m+ 1)) in some overtwisted contact structures

on S? in Figure 68. O
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4 Conclusion

During the historical development of contact topology, lens spaces are obtained by
surgery, but deciding which knots are used is the real problem. Many mathematicians
studied on this problem. As noted by Moser in [8], the lens spaces obtained by Dehn
surgery along torus knots were classified. In another respect, Rasmussen showed in
[11] that there is only one way to produce a special class of lens spaces which are
L(4m + 3,4) by an integral surgery.

This thesis helps to understand lens spaces by using contact surgeries. This study
highlighted the importance of learning contact surgery techniques.

There are lots of ways to obtain lens spaces, but how to obtain a lens space by a
single contact surgery along a single knot is a problem. Also, how to obtain all tight
contact structures on the lens space is another problem. In this thesis, the lens spaces
that are obtained by a contact surgery with contact framing (—1) applied to a single
Legendrian negative torus knot are studied. Also, the techniques for obtaining all tight
contact structures on the lens space are learned.

For this purpose, it is studied how to be formed lens spaces L(4m+3,4) by a contact
surgery with contact framing (—1) applied to a single Legendrian negative torus knot.
Also, the fact that tight contact structures which are different on L(4m + 3,4) result
from Legendrian surgery along Legendrian realisations of Legendrian negative torus
knot is examined to understand 3-manifold L(4m + 3,4) better. The contact surgery
techniques given by Geiges and Onaran are learned during the study [21].

For future research, the question of how to classify negative Legendrian torus knots
in universally tight lens spaces will be studied. It would be also interesting to study
on surgeries along positive Legendrian torus knots. In the future work, the following
listed open problems are planned to be studied.

Open Problem 1: Classify negative Legendrian torus knots in universally tight

lens spaces.

Open Problem 2: Study surgeries along positive Legendrian torus knots.
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