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ABSTRACT

SOME FAMILIES OF COMBINATORIAL MATRICES

AND THEIR ALGEBRAIC PROPERTIES

Talha ARIKAN
Doctor of Philosophy, Department of Mathematics
Supervisor: Prof. Dr. Adnan TERCAN
Co-Supervisor: Prof. Dr. Emrah KILIC

2018 September, 130 Pages

In this thesis, we will study some properties of certain families of combinatorial matri-
ces. While some of the families will be examined throughout this thesis are new and
firstly investigated, the others are the generalizations of some of the previously known
matrices. We gather our studies into six different groups. They are non-symmetric band
matrices with Gaussian ¢-binomial entries, generalization of the super Catalan matrix,
families of Max and Min matrices, a non-symmetric variant of the Filbert matrix, a
nonlinear generalization of the Filbert matrix and some certain Hessenberg matrices.
For all matrices will be studied except the Hessenberg matrices, we present explicit
formulae for the LU-decompositions, determinants, inverse and LU-decompositions of
the inverses of the matrices as well as the Cholesky decompositions when the matrix is
symmetric. Additionally, we evaluate some certain Hessenberg determinants via gen-
erating function method. We use some new and existing methods to prove our claims.
Particularly, we present a new method to evaluate determinants of some Hessenberg

matrices whose entries consist of terms of higher order linear recursive sequences.



Keywords: LU and Cholesky decomposition, inverse matrix, determinant, Fibonacci
numbers, Gaussian ¢-binomial and Fibonomial coefficients, Zeilberger’s algorithm, Fil-

bert matrix, Hessenberg matrices.
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OZET

KOMBINATORYAL MATRISLERIN BAZI AILELERI

VE ONLARIN CEBIRSEL OZELLIKLERI

Talha ARIKAN
Doktora, Matematik Boliimii
Tez Danmismani: Prof. Dr. Adnan TERCAN
Ikinci Tez Damigsmani: Prof. Dr. Emrah KILIC

Eyliil 2018, 130 Sayfa

Bu tez caligmasinda belirli kombinatoryal matris ailelerinin bazi 6zelliklerini calisa-
cagiz. Tez boyunca incelenecek matris ailelerinin bazilari yeni ve ilk olarak arastirila-
cak olup digerleri ise daha 6nceden bilinen bazi matrislerin genellemeleri olacaktir.
Calhigmalarimizi, girdileri Gauss g-katsayilari olan simetrik olmayan bant matrisleri,
siiper Catalan matrisinin genellemesi, Max ve Min matris aileleri, Filbert matrisinin
simetrik olmayan bir varyanti, Filbert matrisinin lineer olmayan bir genellemesi ve
bazi Hessenberg matrisleri olmak iizere alt1 farkhi grupta bir araya getirdik. Hessen-
berg matrisleri disindaki calisacagimiz tiim matrislerin, LU-ayrisimlari, determinant-
lar1, tersleri ve terslerinin LU-ayrigimlar: i¢in net formiiller verecegiz. Bunun yaninda
matrislerin simetrik olmalar1 durumunda Cholesky ayrigimlar i¢in de ilgili formiil-
leri sunacagiz. Ayrica baz belirli Hessenberg determinantlarini iirete¢ fonksiyonlari
yardimiyla hesaplayacagiz. Bu iddialarimiz ispatlamak icin baz yeni ve daha 6nce-
den kullanilan metotlar1 kullanacagiz. Ozel olarak, girdileri yiiksek mertebeden lineer
indirgeme dizilerinin terimlerinden olugan bazi Hessenberg matrislerinin determinant-

larin hesaplamak icin yeni bir yontem verecegiz.

il



Anahtar Kelimeler: LU ve Cholesky ayrisimi, ters matris, determinant, Fibonacci
sayilari, Gauss ¢-binom ve Fibonomial katsayilari, Zeilberger’in algoritmasi, Filbert

matrisi, Hessenberg matrisleri.
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1 INTRODUCTION

A matrix is a rectangular array of any algebraic objects for which addition and multi-
plication are defined. Matrices are the main subject of the fundamental mathematical
branch linear algebra. Historically, it was not the matrix but a certain number associ-
ated with a square array of numbers called the determinant that was first recognized.
The term matrix was coined by James Joseph Sylvester in 1850. Then Arthur Cayley
developed algebraic properties of matrices. He firstly applied them to the study of
systems of linear equations. So matrices are mostly used as a way to describe systems

of linear equations as well as to represent data in a tabular view.

Matrix arises in several branches of science, as well as different mathematical disci-
plines. For example, they are frequently used in physics, computer graphics, probabil-
ity theory and statistics. Moreover, in some social sciences like economics, the scientists
often use matrices. Thus, manipulating matrices has drawn interest. A major branch
of numerical analysis is devoted to the development of efficient algorithms for the com-
putations of some properties of matrices. So certain matrices with known properties

are important to check accuracy of newly developed algorithms.

In literature, there are various special matrices. Band, Toeplitz, Pascal, Lehmer,
Hilbert, Filbert and Hessenberg matrices are some examples of these special matrices
and the main interest of this thesis. Combinatorial matrices are the matrices whose
entries consist of some combinatorial numbers. Pascal and Filbert matrices are the
common examples of the combinatorial matrices. Band, Toeplitz and Hesssenberg ma-
trices are mainly used in numerical analysis. Thus several authors have been studied
certain properties of them. Pascal, Lehmer, Hilbert and Filbert matrices have nice
algebraic properties so they are useful to test accuracy of algorithms. Some authors

studied various generalizations and variants of these kinds of matrices.

The aim of this thesis is to present some new combinatorial matrix families, which
have not been studied before, and some generalizations of already known combina-
torial matrices and their properties. We study some certain properties such as LU-
decompositions, determinants, inverses etc. of these families of combinatorial matrices.
We hope that the matrices we have studied in this thesis could be also used as test ma-

trices. We will give some new methods and use existing methods to prove our claims.



Especially, we present a new computational method to evaluate certain Hessenberg
determinants. We derive explicit formula related with the properties of these matrices
and our main tool for finding them is to guess relevant quantities. This was done by
experiments with a computer algebra system and spotting patterns. This becomes in-
creasingly complicated when more new parameters are introduced. We have frequently

used computer algebra systems Mathematica and Maple for our calculations.

In Section 2, we provide some essential information, which will be used throughout the
thesis. In Section 3.1, we present some basic notions about matrices and introduce some
special kinds of matrix families. Besides, in Section 3.2, we present previous studies
related to these kinds of matrix families. This main section is divided into parts and
each part includes a special family. Moreover, at the end of each this part, we indicate

our motivation and brief introduction to our problem related to that matrix family.

Section 4 is devoted to the results which obtained in this thesis. In Section 4.1, we
present some auxiliary results, which we use to prove some of our main results. On the
other hand, these auxiliary results could be also applied to other matrices which are
not considered in this thesis. In Sections 4.2-4.7, we provide our main results. Fach

section includes the results for a special family of combinatorial matrices.

In Section 4.2, we present a class of non-symmetric Toeplitz band matrices with upper
bandwidth s and lower bandwidth r whose entries are defined via the Gaussian ¢-
binomial coefficients. We provide explicit formulae for the LU-decomposition, determi-
nant and LU-decomposition of the inverse matrix. The case r = s is the generalization
of the results given in [1]. Furthermore, we derive some complementary results related

to matrix which includes usual binomial coefficients. Our results are presented in [2].

In Section 4.3, we obtain the generalizations with two additional parameters of the
results in [3]. We also present the idea how one can obtain similar generalizations by

the help of already known results. In |4], we publish our studies.

In Section 4.4, we define two new families of the matrices, which are called Max and
Min matrices, whose entries run in left-reversed and up-reversed L-shaped pattern,
respectively. Our results also cover the results given in [5]. In [5] the authors used a
method based on another auxiliary matrix family. But we use elementary linear algebra

tools to derive our results which are simpler and more convenient. As an application,



we obtain a sequential generalization of the Lehmer matrix and its reciprocal analogue.

In Section 4.5, we define a new non-symmetric matrix via g-integers. Non-symmetric
variants of the Filbert and Lilbert matrices come out as corollaries for the special
choices of the parameters. We derive explicit formulee for the LU-decompositions,

inverse matrices L' and U~! and inverses for whole matrices.

Some authors have studied many generalizations and variant of the Filbert matrix as
we do in Section 4.5. But so far no one has studied a generalization or variant where the
indexes of the recursive sequence are in nonlinear form. In Section 4.6, we introduce a
new nonlinear generalization of the Filbert matrix with indexes in geometric progression
for some parameters as well as a nonlinear generalization of the Lilbert matrix. As in
Section 4.5, we present the LU-decompositions, inverse matrices L= and U~! and
inverses for the nonlinear generalizations of the Filbert and Lilbert matrices as well as
we provide the Cholesky decompositions when the matrices are symmetric. We present

our results in [6].

Finally, in Section 4.7, we present the generating function method to evaluate the de-
terminant of new three classes of the Hessenberg matrices. This method was introduced
in [7]. We extend it and obtain some further results. We also provide many special
examples to see how the method works. By the help of our results, many determinantal
formula which have been found in the previous studies, can be easily retrieved. As an
application, we give a new and an elegant method to compute the determinants of
the Hessenberg matrices whose entries consist of the terms of the higher order linear
recursive sequences, which based on to find an adjacency-factor matrix. Our results

are published in [8].



2 PRELIMINARIES

In this section, we will present some fundamental notions, which will be used through-

out the thesis.

2.1 Linear Recursive Sequences

A recursive sequence is defined by a rule which gives the next term as a function of
the previous terms. This rule is called the recurrence relation of the corresponding
sequence. If we denote the nth term of a given sequence by u,, such a recurrence
relation is of the form

Up = f(unfla Up—2y - - - 7unfk>7

where f is a function with &k inputs.

Definition 2.1. For any reals p; such that i € {1,2,....;k} and px # 0, the kth order

linear recursive sequence {u,} with constant coefficients is defined by the rule for n > k,

Up = P1Up—1 + PaUn—2 + -+ PrUn—k (2]‘>

with arbitrary initial values vy for 0 <t < k and assumed that at least one of them s

different from zero.

It is obviously seen that the terms of the kth order linear recursive sequence {u,}
defined by the rule (2.1) are uniquely determined by the coefficients p;’s and its initial
values. We give the most common special cases of the sequence {u,} with Table 1.
These number sequences have been studied by many authors. We refer to [9, 10, 11, 12]

for more details about them.

Now we shall give two important definitions about linear recursive sequences.

Definition 2.2. The characteristic polynomial of the sequence {u,} defined by
(2.1) is the polynomial

flx)=a" —pia" ' —ppat? — o =y
and the equation

k

k—1 k—2
r —nx — P2

— e — =0

is called characteristic equation of the sequence {u,}.

4



Coefficients Initials Sequence Name
pr=p=1 u =0, uy =1 Fibonacci Seq. {F,}
pr=p=1 u =2, uy =1 Lucas Seq. {L,}
pr=2,pp=1 ug =0, u; =1 Pell Seq. {P,}

pr=1, pp =2 u =0, uy =1 Jacobsthal Seq. {J,}
P1=D, P2=¢q up =0, uy =1 Gen. Fibonacci Seq. {U,(p,q)}
P1 =D, P2 =¢ up =2, up =p Gen. Lucas Seq. {V,.(p,q)}
P1L=Dp, p2=—(q Uy =a, uy =b Horadam Seq. {W,,}
=2 p=-1 up =0, up =1 Natural Numbers N
pr=p2=p3=1 up =0, uy =uy =1 | Tribonacci Seq. {T,}
pr=0,pao=p3s=1|uy=3,u; =0,uy =2 | Perrin Seq. {P,}

Table 1: Some particular linear recursive sequence examples

It is possible to derive any term of the sequence {u,} by the help of its recurrence
relation. Nevertheless, it is not useful to compute higher terms. So one needs a closed

formula such that
u, = g(n) (2.2)

to compute any desired term of the sequence {u,} with less computation.

Definition 2.3. Such an explicit formula given by (2.2) is called Binet formula of
the linear recursive sequence {u,}.
The following theorem provides us how to find the Binet formula of the linear recursive

sequence {uy,}.

Theorem 2.1. Let the characteristic polynomial of the sequence {u,} factor over the

complex number as
f@)=(x—r)™(x—r)™ ... (x —ra)™,
where r1,7ra,...,7rq are distinct nonzero complex numbers and mq,ms, ..., my are pos-
iiwe integers such that my + mo + --- + mgq = k. Then there exist polynomials
g1(n), g2(n), ..., ga(n) with degg; < m; — 1 for all i € {1,2,...,d} such that
un = g1(n)ry + g2(n)ry + -+ - + ga(n)ry,

forn > 0.



One can easily find the proof of the above theorem in any textbook about difference
equations. As a special case, when m; = my = --- = my, = 1, i.e. the characteristic

polynomial has no multiple root, the Binet formula of the sequence {u,,} takes the form
Uy = 117 + Cory + -+ - F Ty
where for all ¢ € {1,2,...,k}, ¢;’s are constants determined according to the initial

values of the sequence {u,}.

Now we will apply the above theorem to the generalized Fibonacci sequence {U,(p, q)},

which is defined by the recurrence relation for n > 2,

Un(p, @) = pUn-1(p, @) + qUn—2(p, ),

in order to find its Binet formula for the case p*>+4q # 0. The characteristic polynomial
of it is
fla)=2* —pr —q= (v —a)(z - p),

where o, f = (p F/p*+ 4q) /2. So the Binet formula is of the form

Un(p> q) = Clan + CZﬁn-

Since Uy(p, q) = 0 and Uy (p, q) = 1, finally the Binet formula of the sequence {U,(p, q)}

is found as
a” — Bn
a—p
Similarly, the Binet formula of the generalized Lucas sequence {V,,(p,q)} is

Un(p,q) =

Vn(pv Q) ="+ Bn-

Throughout the thesis, we will frequently study the generalized Fibonacci sequence
{Un(p,1)} and Lucas sequence {V,,(p,1)} and briefly denote them by {U,} and {V,},

respectively, unless otherwise specified. They satisfy the recurrence relations for n > 2,

Un = pUn—l + Un—27
Vn = an—l + Vn—27

with initial values Uy = 0, U; = 1 and V[, = 2, V] = p, respectively. Especially, their

Binet formulae are
a — /Bn

S

and V,, = o" + (", (2.3)



where «, f = (p F \/Z)/Q and A = p? + 4, respectively.

We need the following known identity including the generalized Fibonacci numbers for

later use.

Proposition 2.1. For integers n,m and k, the following equation holds.

UmUn = (_1)n+kUm—n+kUk + Um-i—kUn—k’- (2‘4)

The proof can be immediately done by the Binet formula. For the numerous identities

and properties, we refer to comprehensive books [11, 12].

2.2 Binomial Coefficients

The binomial coefficients occur in almost all areas of mathematics. The binomial coef-
ficients get their name from the binomial theorem, which describes the expansion of
the powers of a binomial (z + y). Also, the binomial coefficients have a combinatorial
interpretation, which counts the number of the ways of choosing k£ objects among n ob-
jects without replacement, and are denoted by the symbol (Z) From the combinatorial

meaning of them, it is easily seen that they are defined by the ratio for 0 < k < n,

(4)

with (8) = 1, which represents the empty choice. The integers n and k are called the
upper index and the lower index, respectively. The indexes are restricted to be non-
negative integers by the combinatorial interpretation. Since the binomial coefficients
have many usages besides its combinatorial interpretation, it is useful to define them

for any real upper index. So for any real r and integer k, they are formally defined by

—1)...(r— 1
(r) r(r—1) k|(r k+1) ifr> 0.
k 0 itk <0,

The two variable sequence {(2)

x>0 1S also a recursive sequence which satisfies the

recurrence relation for 1 < k <n —1,

n\ (n-—1 n n—1
k) \ k k—1
with (8) = (Z) = 1. This relation is easily verified by the definition of the binomial

coefficients. By the help of this relation, one can prove that each binomial coefficient
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with integer indexes is an integer. More explanation and information can be found in

the book "Concrete Mathematics" written by Graham, Knuth and Patashnik [13].

Recall the well-known Vandermonde’s identity for later use.

Proposition 2.2. For nonnegative integers k,m and n,

(") -2 (6 23

We will recall three different proofs for the Vandermonde’s identity in the forthcoming

subsections. For many variants of it, we refer to [13, p. 169].

By replacing each integer appearing in the numerator and denominator of (Z) with its
respective generalized Fibonacci number, i.e. replace i by U;, we can define a recursive
analogue of the binomial coefficients, which is called generalized Fibonomial coefficients

introduced by Jarden and Motzkin [14]. Formally, we have the following definition.

Definition 2.4. For integers such that 0 < k < n, the generalized Fibonomial

coefficients are defined by

{n} B UnUp 1 ... Uy
kl,  (UUy...Up) (UhUy...Uy_y)
with {Z}U = {S}U =1 and 0 otherw:se.

When the case p = 1, i.e. U, = F,, the generalized Fibonomial coefficients {Z}U are
reduced to the usual Fibonomial coefficients {Z}F We refer to [15, 16, 17, 18] for more

details about the generalized and usual Fibonomial coefficients.

The generalized Fibonomial coefficients satisfy the following recurrence relation for

n n—1 n—1
L e Yy

with {Z}U = {S}U = 1. This relation follows by the equation U, = Uy, 1U,_\ +

1<k<n-—1,

UrUn—k—1 (This can be shown by taking m = 1 in (2.4) and using the fact that U_, =
(—1)"*'U,). Surprisingly, as in the binomial coefficients, the generalized Fibonomial
coefficients are always integers. From the recurrence relation, it is easy to see this fact
by induction. On the other hand, this is not always true for the generalized Fibonomial

coeflicients defined by the sequence {U,(p,q)}.



2.3 ¢-World

In classical ¢g-analysis, the ¢g-analogue of a nonnegative integer, g-integer, is defined

by
n -1

q .
1—¢ k=0

3

[n]y =

From the above definition, it is easily seen that

(lllgi[”]q =n.

For nonnegative integer n, the g-Pochhammer symbol is defined as

(239)n = (1 = 2)(1 —2q)... (1 —2¢""")
with (x;¢)o = 1. So one can derive the g-analogue of n! as follows

(G Dn
[MJ_(l—w”

Now we can move on the g-analogue of the binomial coefficient.

Definition 2.5. For nonnegative integers such that n > k, the Gaussian gq-binomaal

coefficients are defined by

r]_ﬂM[MJ (9w

kI, [Flalln =kl (4 Q)k(@ @)ns

and 0 otherwise.

Obviously, we have

pnlil,= ()

The Gaussian g-binomial coefficients satisfy the following two equivalent recurrence
k], k], L[k—1],
= q
k], ko], k—1],

with [g‘]q = 1. Inductively, by the above relations, it is seen that every Gaussian

relations for 1 < k < n,

and

g-binomial coefficient is a polynomial in q.



It is possible to extend Definition 2.5 for any real upper index by considering

-4

where r is an arbitrary real and £ > 0 is an integer.

The Binet formulae given by (2.3) can be rewritten as

1 1=q"
=Vl — 2.6
U, =« - (2.6)
and
Vo =a"(1+¢") (2.7)

with ¢ = 8/a = —a~2, so that a = ig™'/?, where i = v/—1. The RHS of the equa-
tions (2.6) and (2.7) are the ¢-forms of the generalized Fibonacci and Lucas numbers,

respectively.

Thus, by the help of the g-forms, the link between the generalized Fibonomial and

Gaussian ¢-binomial coefficients is found as

U kR | sk(n—k)  Lk(k—n) [T 2.8
A e

As it is seen from the above relationship, if we have an identity including generalized
Fibonacci numbers then we can convert it into the g-form or vice versa. Since there
are many useful identities and tools in g-analysis, studying the ¢-form of an identity
is more advantageous than studying the original form. In this thesis, we will often use
this idea. In other words, we will prove some ¢-identities for general parameter ¢ then
the identities including the generalized Fibonacci numbers or Fibonomial coefficients

would come out as corollaries for special value of q.

Now we shall give some known identities. The following theorems are the one version

of the Cauchy binomial theorem and Rothe’s formula.

Theorem 2.2. Forn >0,

imqqmwk g a)n k]i[luxq. (2.9

k=0

Theorem 2.3. Forn > 0,

> m (~1)"q)a* = (2:19), = 1:[(1 — zq"). (2.10)

10



For the proofs of the above theorems and more identities, we refer to [19]. Furthermore,

one can look at [20, 21| for more information about the g-analysis.

Now we present the g-analogue of the Vandermonde’s identity (2.5).

Theorem 2.4 (¢-Vandermonde identity). For nonnegative integers k,m and n,

m-+n u m n ,

[ k L - % [k; - d} . [d} qqd(m_w)' 24
A proof of this identity can be found in [22]. We will provide a computer-based proof
of it later. Now suppose that we verify this identity. Then if we let ¢ — 1 in the
equation (2.11), we will get the Vandermonde’s identity (2.5). This approach gives us
another advantage of studying ¢-identities. In other words, if we have a g-identity and
the limit ¢ — 1 is applicable to it, then we achieve another useful identity, as well.

Thus studying in g-world enables us to obtain more general results.

2.4 Generating Functions

Generating functions are one of the most useful inventions in mathematics. The gen-
erating function is a way of encoding a sequence {a,},>0 by treating them as the co-
efficients of a power series. Briefly, generating functions transform the problems about
the sequences into the problems about power series or functions. In this manner, ma-
nipulating infinite sequences gets easier. Wilf’s book "Generatingfunctionology" (23]
is totally devoted to the generating functions. We refer to it in order to get more

information about the generating functions.

For a given sequence {a, },>0, the generating function of {a, },>¢ is the power series

Ax) == Z a,z". (2.12)

n>0

It is sometimes called ordinary generating function to distinguish from other types

of generating functions (see [13, 22, 23]).

In general, the power series (2.12) is considered as a formal power series, i.e. an
algebraic object. Thus we are not worried about the convergence. The power series

(2.12) may also be considered as an analytic function on the interval of convergence of

11



it. This treatment allows us to get some asymptotic information about the terms of

the sequence (see [24]).

Now, we shall compute the generating function of the Fibonacci sequence as an illus-

tration. Let F'(x) =} -, Fn2". So we have

Flz)= Fy, + B + FK2* + -+ + Fua" +
—zF(z) = - Fyx — Fa* — - — F,_a2" —
—2?F(z) = — x> — - — F,oa" —

After adding these three equations, we obtain

Fx)1 -2 —2?) = Fy+ (F, — Fy)v + (Fy — Fy — Fy)a® + - - -

+(Fn_anl_an2)xn+"' .

Since for n > 2, F,,— F,,_1 — F,,_o = 0 by its recurrence relation, the generating function
of the Fibonacci numbers is
x
F(z) =

1—x—a?

Similarly, the generating function of the Lucas numbers is

L(z) = 2—x

1l -z —a?
By the above approach, one can easily compute the generating function of the kth

order linear recursive sequence {u, }, defined by (2.1), as

Z w " = p(x)

L —p1o — ppa? — -+ — pra®’

where p(z) is a polynomial, which will be determined according to the initial values of

the sequence {u,} such that degp(x) < k.

Let A(z) = >_,-pa,2" and B(z) = ) . b,2". Then for any complex constants c;
and co, the following properties hold.

c1A(z) + o B(x) = Z(Clan + coby )",

n>0

A(z)B(z) =Y (Z akbn_k> ", (2.13)

n>0 \k=0

12



The proofs are straightforward. Both of the above equations can be inductively gen-
eralized by considering arbitrary finite number of generating functions. We can select

just even powers or odd powers out of the power series A(z) as follows

S aprtn = AOTACD) s AB A

n>0 n>0
respectively. For more properties and some special generating functions, we refer to

23].

We would like to recall the following useful theorem.

Theorem 2.5. Let A(x) = ) ~an2" and B(x) = 3, . bya™ be analytic complex
functions in a non-empty open neighborhood D of zero. If A(x) = B(z) for all x € D,
then a, = b, for alln € Z.

The proof of this theorem can be found in [25]. In [23], the author gave a method

called "Snake Oil", which is based on this theorem.

Now we will present another proof of the Vandermonde’s identity (2.5) by the help of
Theorem 2.5. By the binomial theorem, we know that

Z (m 2— n)xk _ (1 + x)m+n

k>0

and by the identity (2.13), we write

> (i (ZL) (k " d)) o = (1+2)"(1 +2)",

k>0 \d=0

Since the both sides of (2.5) have the same generating function (1+z)™" for all x € C,
they must be equal for all nonnegative integers k, m and n by Theorem 2.5. We will

also use this argument in Section 4.7.

2.5 Hypergeometric Series

Hypergeometric series appear in many areas of mathematics such as combinatorics,
analysis, applied mathematics etc. The history of hypergeometric series was launched
many years ago by Euler, Gauss, and Riemann. Although the topic is very old, it is

still the subject of a lot of ongoing research. There are many books devoted only to

13



the hypergeometric series. Since we encountered some hypergeometric sums, which
are truncated hypergeometric series, in this thesis, we would like to give very brief

introductory information about them.

Definition 2.6. The series

S

k>0

is called hypergeometric series if to = 1 and the ratio ty 1/t is a rational function

of k, i.e.

terr  p(K)
SR (2.15)

where p(k) and h(k) are polynomials of k. In this case, t; is called hypergeometric
term. The functions generated by hypergeometric terms are called hypergeometric

functions and truncated hypergeometric series are called hypergeometric sums.

For example, since

(dTl) (k:—?;—l) (m — d)(k — d)

<T§)<kﬁd) (d+1)(n—k+d+1)

the sum on the RHS of the Vandermonde’s identity (2.5) is a hypergeometric sum.

Consider the hypergeometric function

> et (2.16)

If the polynomials in (2.15) are completely factored, then we write

e _ p(k) (Kt a)(k+as).. (k+an) (2.17)
te h(k)  (k+0)(k+by) ... (k+bn)(k+1) '

where the factor (k + 1) in the denominator is presented for some historical reasons
of notation. If —1 is not a root of the polynomial h(k), then we can multiply both
the numerator and denominator with the factor (k + 1) for the convenience. Then the

hypergeometric function (2.16) is notationally shown as

a a/ .. an . n k
St | U]y e

k>0 bl b2 bm k>0

where (a)y is the usual Pochhammer symbol defined by (a), = (a)(a+1)...(a +

k — 1), also known as rising factorial.

14



In general, the first term ¢, doesn’t have to be 1. If it is not equal to 1 but different
from zero and t;, satisfies the equation (2.17), then the hypergeometric function (2.16)

is represented as follows

al a2 . e CLTL
E tr2¥ =tg X o Fon 12
k>0 by by -+ by

For more extensive knowledge about hypergeometric series, we refer to [26, 27]. Nowa-
days, hypergeometric series are also well understood from an algorithmic point of view.
There are some algorithms [28] to deal with the hypergeometric series, sums or func-
tions and also their implementations to computer algebra systems, such as Maple and
Mathematica. The most efficient and modern of them is celebrated Zeilberger’s algo-

rithm. We will mention about it after a while.

Inherently, the most natural question is "What is the ¢g-analogue of the hypergeometric

series?".

Definition 2.7. The series

> ti(q)

k>0

is called q-hypergeometric series if the ratio t,1/ty is a rational function of ¢*, i.e.

trei1(q) _ p(x)
te(q)  h(z)

where p(x) and h(x) are polynomials of x and x = ¢*. In this case, t,(q) is called

qg-hypergeometric term. The functions generated by q-hypergeometric terms are
called q-hypergeometric functions and truncated q-hypergeometric series are called

q-hypergeometric sums.

As an example, since

[dT{ Jf [{k‘ - Z} J Q _ gk (¢* —d")(¢" —q)
m n (1 _ qdqm7k+1)(1 _ qu)a
dj,lk—d],

the sum on the RHS of the ¢-Vandermonde’s identity (2.11) is a g-hypergeometric sum.

In order not to get out of the subject of our thesis, we don’t want to give more details.

For more details, see [19, 27, 29].

Naturally, there is g-analogue of the Zeilberger’s algorithm, which deals with the ¢-

hypergeometric series, sums and functions.
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2.5.1 Zeilberger’s Algorithm

Since the people have encountered hypergeometric sums and series in many areas of
mathematics, some mechanical methods to deal with them have been derived. The
first mechanical method for hypergeometric sums was discovered by Sister Mary Ce-
line Fasenmyer [30] in 1945. Such methods serve to compute them directly or prove

equalities [28].

One of the most popular mechanical methods is Gosper’s algorithm [31], which com-
putes some indefinite hypergeometric sums in terms of another hypergeometric term.
This method based on rewriting the hypergeometric term into telescoping form. Unfor-
tunately, it can find closed forms for only a few classes of the hypergeometric sums we
meet in practice. Namely, it is applicable to the limited numbers of the hypergeometric

sums.

In 1991, Doron Zeilberger |32, 33, 34| showed how to extend Gosper’s algorithm so
that it becomes even more effective, making it succeed in vastly more cases. With
Zeilberger’s extension, we can also handle hypergeometric series, not just sums. For
very brief and understandable introduction, we refer to [13]. In a few words, it produces
a polynomial recurrence for the hypergeometric series or sums. In the following years,

some authors also did some improvements on Zeilberger’s algorithm.

Moreover, as with Gosper’s original method or other algorithms, for Zeilberger’s al-
gortihm, the calculations can be done by the help of computers. Maple packages of
the Zeilberger’s algorithm have been written by Zeilberger [35] and Koornwinder [36].
Paule and Schorn [37] implemented Zeilberger’s algorithm for the Mathematica sys-
tem. Thus one can easily manage these types of sums or series by using the computer

algebra systems without much time-consuming.

Now by using the Mathematica implementation of Zeilberger’s algorithm, we will prove
the Vandermonde’s identity (2.5) (We refer to [37] for the guide of Mathematica pack-
age). Let’s denote the RHS of (2.5) by Sk, then the algorithm produces the following
recurrence relation

m+n—k

i
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So after solving this relation by going backward, we obtain

(m+n—k)(m+n—k+1)...(m+n)
(k+1)!

Skt1 = So-

Since Sy = 1, the proof of (2.5) follows. For many other examples and the Mathematica
package, see [38].

2.5.2 ¢-Zeilberger Algorithm

Since the ¢-hypergeometric series have lots of applications on many areas of mathe-
matics, such as combinatorics, partition theory etc., people need similar mechanical
methods for the g-hypergeometric series or sums as an extension of Zeilberger’s algo-

rithm.

Zeilberger also observed that his algorithm can be carried over to the ¢g-hypergeometric
cases. He and Wilf [39, 40] extended his algorithm for the ¢-hypergeometric series and
sums and wrote Maple package for this algorithm. Furhermore, Koornwinder [36] wrote
another Maple package for this algorithm. Afterwards, Paule and Riese [41]| developed
the Mathematica implementation of the g-Zeilberger algorithm. We refer to [41] for

the user guide of this package and some applied examples.

The g-Zeilberger algorithm is the g-analogue of Zeilberger’s algorithm. In other words,
the g-Zeilberger algorithm performs some computations for ¢g-hypergeometric series and

sums as same as Zeilberger’s algorithm does for the hypergeometric series and sums.

As we seen before, the sum on the RHS of the ¢-Vandermonde identity (2.11) is a ¢-
hypergeometric sum. Now we shall apply this algorithm to this sum as an illustration
by using Mathematica implementation. Denote the RHS of (2.11) by S;. Then ¢-

Zeilberger algorithm gives the recurrence relation

1— qm+7z—k+1
Sy = —————Sk-1.
k 1 — k—1
By solving this relation and the fact that Sy = 1, we obtain

m-i—n—k-i—l;q)k B |:m+ n:|
(¢; @) kol

g, - 4

which is the LHS of (2.11). Thus we provide a computer based proof for the g¢-
Vandermonde identity. We will use this algorithm to prove some of our results through-

out the thesis.
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It is worthwhile to mention that we encountered some cases in which although the
summand term is g-hypergeometric, the g-Zeilberger algorithm does not work in gen-
eral. This is interesting weakness of the ¢-Zeilberger algorithm. For this reason, we

used different approaches to prove those identities.

Lastly, for the interested readers, we refer to [38] for the Mathematica packages of

various symbolic computation methods and their user friendly guides.
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3 LITERATURE REVIEW

In this section, firstly, we will present some basic definitions and notions about matrix
theory and special kinds of matrix families. Afterwards, we will provide some historical

background about these kinds of special matrix families.

3.1 About Matrices

Not only in every area of mathematics but also in fundamental sciences and engineering,
somehow matrices occur and are used. Thus they have an important duty and have

been studied for years.

As mentioned in Introduction, we will study some special combinatorial matrices in
this thesis. Before giving previous works in the literature related to our thesis, we will
recall some fundamental notions and the definitions of some special matrices, which we

will study.

In general, we will obtain some algebraic properties of some combinatorial matrices such
as LU-decomposition, Cholesky decomposition, inverse, determinant etc. Firstly, we

would like to mention about these basic concepts and explain why these are important.

If the entries of a matrix are some combinatorial numbers such as Fibonacci numbers,
binomial coefficients etc., then we call combinatorial matrix. Also in the literature,
there is combinatorial matrix theory which investigates the combinatorial meanings of

the matrices [42]. So the both differ from each other.

The inverse of a square matrix A is a matrix B if the equation
A-B=B-A=1,
holds, where I is the identity matrix, whose (7, j)th entry is [¢ = j]. Here [-] denotes

the Iverson notation which means:

1 if P is true,

0 otherwise,

where P is a statement that can be true or false. The inverse of the matrix A is
denoted by A~!. The inverse matrices are frequently used especially in solving linear

system of equation and obtaining inverse transformations. There are some methods to
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compute the inverse of a given matrix. It is worth mentioning that it is getting harder
to identify the inverse matrix for the higher order matrix. So the matrices, whose

inverses are explicitly known, are important.

It is often useful to summarize a multivariate phenomenen with a singular number. For
the matrices, determinant is an example of this and it is denoted by det A or |A] for
a given square matrix A. Another example of this is permanent and it is denoted by
perA. For more details and explanations about determinant and permanent, we refer

to [43].

There are various different methods to evaluate the determinant of a matrix. Also in
the literature, there are many determinant formulae of some special matrices. Krat-
tenthaler’s surveys [44, 45| are elegant sources to find some of determinant evaluation
methods and get the idea where we need determinants. Also they are comprehensive

databases for some known determinant formulse.

For a square matrix A, LU-decomposition refers to the factorization of A into two

factors, a lower unit triangular matrix L and an upper triangular matrix U such that
A=1L-U.

The LU-decomposition can be considered as the matrix form of Gaussian elimination.
Computer algebra systems usually use it to solve square systems of linear equations.
Also it helps to find the inverse matrix and compute the determinant of the matrix.
For example, since det L = 1 and U is a triangular matrix, we can easily compute the
determinant of A by the formula det A = detU. On the other hand, if we know the
inverse matrices L=! and U™}, then we may find a formula for the inverse matrix A~!
by the fact A=! = U1 L~!. We will also use these advantages of the LU-decomposition

to evaluate the determinant and inverse of a matrix.

There may not exist the LU-decomposition of any square matrix A. The matrix should
satisfy some conditions to have LU-decomposition. However, there is an alternative
decomposition by the help of the permutation matrix, which is a square matrix that has
exactly one entry of 1 in each row and each column and 0’s elsewhere. We refer to [46]
for the necessary and sufficient conditions for the existence of the LU-decomposition

and this alternative decomposition.
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The Cholesky decomposition of a symmetric positive-definite matrix A, that is a
matrix such that for every non-zero column vector z, 27 Az > 0, is a factorization of
the form

A=C-CT, (3.1)

where C is a lower triangular matrix and C7 is the transpose of the matrix C. The
Cholesky decomposition is unique for a symmetric positive-definite matrix. It is pos-
sible to extend this definition for complex valued matrix by considering Hermitian
matrix and conjugate transpose instead of symmetric matrix and transpose, respec-
tively. In this thesis, we are always interested in real valued matrix. Note that
when the matrix is not positive-definite but symmetric matrix, we still use the phrase
"Cholesky decomposition" only to point out the relation (3.1). Cholesky decomposi-
tion has similar advantages with the LU-decomposition, but it is more efficient than
the LU-decomposition. For example, the Cholesky decomposition is nearly twice as
efficient as the LU-decomposition for solving systems of linear equations. Thus LU-
decomposition and Cholesky decomposition help to simplify computations, both theo-

retically and practically.

For more details, explanations, examples and advantages about the notions given just

above, we refer to [43, 47].

Nowadays, computer is one of the best friends of the scientists. Since the notions,
mentioned just above, are many advantages in matrix theory, one desire to compute
them easily and correctly. In the literature, there are many different methods and
algorithms to evaluate them. Thus people need some special matrices, whose certain
algebraic properties are explicitly known, to apply these methods and algorithms to
see the accuracy and efficiency. These types of matrices are known as test matrices.
Briefly, test matrices are key to test the accuracy of an algorithm or a method. In this
thesis, we will provide many explicit formula for some algebraic properties of various
special combinatorial matrices. We hope that some matrices, we studied, will be used

as test matrices.

Before mentioning about some special matrix families, we would like to give some

notations and remarks, we will regularly use from now on.

Remarks:
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1)

5)

Now,

In general, the size of the matrices does not really matter, so that we may think
about an infinite matrix M and restrict it whenever necessary to the first NV rows,

respectively, columns and use the notation My.

We denote the (k, 7)th entry of a given matrix M and its inverse M~ by M}, and
Mk_jl, respectively. If the size of the matrix M is IV, then we denote its (k, j)th
entry by (My)gj. Furthermore, [My;], [My;lo<kj<n—1 and [My;]i<k j<n mean an
infinite matrix M, a matrix M of size N whose indexes start at 0 and a matrix
M of size N whose indexes start at 1, respectively. Unless otherwise specified,

we assumed that the indexes start at 1.

We use the letters L, U and A, B for the LU-decompositions of a given matrix and
its inverse, respectively. Also the letter C' is used for the Cholesky decomposition.
For the related matrix to given matrix M, we may frequently use calligraphic
letter M. In that cases, we apply the same representation to the factor matrices

coming from LU-decomposition and Cholesky decomposition.

Since we will study many matrices, distinguishing them from each other is diffi-
cult. For this reason, the letter, which identifies the matrix, is only valid in the
related subsection. In other words, we may use same letter for different matrices

in different subsections.

We denote a sequence whose first term starts at the index 1 by {a,}. Moreover,

{an}n>0 stands for the sequence whose first term is ay.

we will introduce some special matrix families, which we will encounter through-

out the thesis.

3.1.1

Special Matrices

Diagonal Matrix

A diagonal matrix is a square matrix in which the entries outside of the main diagonal

are all zero. The matrix D(a,) = [Dy;] stands for a diagonal matrix constructed via a

given

sequence {a,}, and is defined by
ag if k= j,
Dy =
0 otherwise.
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Toeplitz Matrix

A Toeplitz matrix is a square matrix in which the entries on each descending diagonal
from left to right are constant. It satisfies that My; = My 141 for all k,j > 1. In
general, by considering this relation, the definition could be extended for the nonsquare

matrices. As an example, any square Toeplitz matrix of size N is of the form:

a’O a—l a_2 ... ... a‘f(N*l)

aq ap a_q

az ai
My =
a_q a_o
aq Qo a_q
aN—l DY ... a2 al CLO

Band Matrix
A band matrix is a matrix whose nonzero entries are confined between an upper and
a lower diagonal bands, comprising the main diagonal and zero outside. Formally, if

M is a band matrix than there are nonnegative integers r and s such that
My =0ifj<k—rorj>k+s.

The quantities » and s are called the lower bandwidth and upper bandwidth,
respectively. Moreover, the bandwidth of this band matrix is equal to r + s+ 1. As

an example, when r =2,s =3 and N = 6:

ay; aip a3z ayy 0 0

a1 Qg agz agy ags 0

31 (32 ag3 aA34 G35 0G3¢
0 ag a4z as ass age
0 0 as3 asa ass ase

0 0 0 Qgq Qg5 Qg

where a;;’s are arbitrary nonzero reals.

Diagonal matrices, upper and lower triangular matrices are most known examples of
band matrices. When r = s = 1, then the corresponding band matrices are called the

tridiagonal matrices.
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Furthermore, kth diagonal band which is above (rsp. below) the main diagonal is called

kth superdiagonal (rsp. kth subdiagonal).

Another important class of band matrices is the family of Toeplitz band matrices,

which are both Toeplitz and band matrices.

Hankel Matrix
A Hankel matrix is a square matrix in which each ascending skew-diagonal from left
to right is constant. This could be considered as an upside down Toeplitz matrix. For

a given sequence {a,},>0, Hankel matrix is of the form

apg ap Qo
a; az ag

ag asz Qa4

Formally, any Hankel matrix M is defined for a given sequence {a,},>0, as follows for
k.j=0,

Mkj = Mjk = Of4j—2-

Hankel matrices have very important applications, especially in operator theory. For

more details about them, see [48].

Considering some particular number sequences instead of {a,}n>o, there are many
special matrices with nice algebraic properties. Some authors also studied the Hankel

matrix by considering the reciprocal sequence of {a,},>o of the form

1 1 1
ao ai a2
1 1 1

Some of the known examples of the Hankel matrices are Hilbert and Filbert matrices,

which we will discuss in Section 3.2.4.

Hessenberg Matrix

An upper Hessenberg matrix has zero entries below the first subdiagonal, and a
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lower Hessenberg matrix has zero entries above the first superdiagonal. The lower

Hessenberg matrix Hy is of the form

hN—l,l hN—1,2 hN—l,B . hN—l,N

th hNZ hNB hNN

Similarly, the upper Hessenberg matrix of size N could be considered as transpose of the
matrix Hy. In this thesis, we will study the lower Hessenberg matrices. Nevertheless,
one can easily adapt our results to the upper Hessenberg matrices, as well. A triangular
matrix is both lower and upper Hessenberg matrix. Moreover, a Hessenberg matrix is

a band matrix whose one of the upper or lower bandwidth is 1.

Lehmer Matrix

The Lehmer matrix [M;] (see [49]) is the symmetric matrix defined by

k§f 5 >k,
Myj=4q "
it <k
Equivalently, this may be written as
min(k, j
My, = Bk g)
max(k, 7)

3.2 Previous Studies

In this subsection, we present some previous studies related to our results obtained in
this thesis. We divide this subsection into different parts and each part includes some
previous results about different matrix families. At the end of each part, we provide
our motivations and what we will do in the following Results section. In other words,

we briefly indicate our problems.

3.2.1 Band Matrices

Band matrices and their special cases such as Toeplitz band matrices, symmetric

Toeplitz band matrices, especially tridiagonal matrices have been extensively studied
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by many authors [50, 1, 51, 52, 53, 54, 55|. These matrices arise in many areas of math-
ematics and its applications. Especially, the band matrices have many applications in
numerical analysis. The matrices from finite element or finite difference problems are
often banded. Tridiagonal matrices are used in telecommunication system analysis, for
solving linear recurrence systems with non-constant coefficients, etc. For these reasons,

the band matrices with known algebraic properties are important.

In 1972, for r > 0 and 1 < k,j7 < N, Hoskins and Ponzo [1] defined the N x N
symmetric Toeplitz band matrix My = [My;] of bandwidth 2r + 1 via the binomial

Mij(—l)Hk_j( 2 )

r+k—j

coeflicients as

For example, when » = 3 and N =7, M is of the form

-20 15 -6 1 0 0
15 =20 15 —6 1 0
-6 15 =20 15 —6 1

= o O O

1 -6 15 =20 15 -6
15
0 0 1 -6 15 =20

o o O —
e}
—_
|
(=}
—_
ot
|
[\
e}

The authors gave formule for the determinant, the inverse matrix and the LU-decomposition

of the matrix My. For example, they gave
N —1
2r+d—1\(d+r—1
det My = (=1)N*r—!
o= con ) ()

and

(My")s = (—1)’“<k e 1) (j +r— 1)

r r

al (d+r— 1—k> (d+r— 1—j> <d+r—1)‘1(d+2r— 1)‘1
<3 |
r—1 r r r
d=1
The authors only considered the symmetric band matrix My with upper bandwidth r

and lower bandwidth r.

It is worthwhile to note that a non-symmetric band matrix with upper bandwidth s and

lower bandwidth r via the binomial coefficients has not been considered and studied
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up to now. In Section 4.2, we will consider non-symmetric Toeplitz band matrix via

the Gaussian ¢-binomial coefficients defined by for k, 5 > 0,

ij _ (_1)r(k+j)+jik(1+rfs)+j(1fr+s)fr(lfsz)q%(kfj)(k*j*rJrS)*%Ts |:7, —:—l_i ]{;:| . (33)
J a

We will obtain some algebraic properties of the matrix H. Also we will provide some
further results derived from this matrix. Our results do not only generalize the results

of Hoskins and Ponzo but also include new families of the band matrices.

3.2.2 Pascal Matrices

The Pascal matrices are defined via the binomial coefficients [56, 57]. They are mainly
three kinds: the first is the left adjusted Pascal matrix Py, the second is the right
adjusted Pascal matrix () and the third is the symmetric Pascal matrix Sy. They

are defined by for 0 < k,j7 < N,

[k B k [kt
P“‘(j)’Q’”_(N—l—j) a“ds’”_( k )

respectively. In [58|, the author studied the reciprocal of the symmetric Pascal matrix

k+j -1 . . . .
( & ) and its some parametric generalizations.
k,j=0

Recently, Prodinger [3] defined a matrix whose entries consist of the super Catalan

2i)1(27)!

numbers M
ilgl(i + 5)!
g-analogues whose (k, 7)th entries are defined by

(IE) =) () ()
] [5]L0], = B, B T,

respectively. Then he gave some algebraic properties of these matrices.

} . He also defined its reciprocal analogue as well as their
§,j>0

and

In Section 4.3, we will study parametric generalizations of the just above matrices,
introducing two additional parameters. We also mention how one can obtain further

generalizations of these types of matrices.

3.2.3 Max and Min Matrices

In the literature, for some special sequences {a, }, some authors studied the matrices

[max(ay, a;)]1<kj<n and [min(ag, a;)]i<k j<n. We listed them below:
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e The author of [59] studied the matrix
max(N +1—-Fk N +1— j)]lgk,jgNa
which is called the Franc matrix.

e The author of [60] gave the Cholesky decomposition of the matrix

1
max(k + 1,7+ 1) ], 5o

which is called the loyal companion of the Hilbert matrix.

e In [61], the author found eigenvalues and eigenvectors of the matrices
[min<k7j)]1gk,jgjv and [min(2k — 1,25 — 1)]1§k,j§N‘

e Fonseca [62] studied the general cases of the matrices considered in [61] by defining
the matrix [min(ak —b,aj —b)],; ;o for a > 0 and a # b. Then he computed

eigenvalues and eigenvectors of this general matrix by computing its inverse.

Recently, Mattila and Haukkanen [5] studied more general matrix families. Let T =
{ai,as,...,ay} be a finite multiset of real numbers, such that a; < ay < -+ < ay.
They considered the matrices [max(ag, a;)]1<k j<n and [min(ay, a;)]1<x <y defined on

the set T'. Clearly, they may be written explicitly as

a as a3z -+ GN a a ap --- ai
a az as -+ an ay az az -+ Q2
asg ag ag -+ Ay and | a1 ay az -+ az |,
ay any any -+ anN a; Qaz agz --- an

respectively. They computed the determinants, inverses, Cholesky decompositions of
these matrices and examined the positive definiteness of them. They used the meet
and join matrices, see [63], as a tool to obtain their results. Moreover, they indicated

that it is difficult to verify their results by using only basic linear algebra methods.

In Section 4.4, we will introduce more general families by considering the matrices
[amax(k,j)} and [amin(m)}, whose entries run in left-reversed and up-reversed L-shaped

pattern, respectively, as well as their reciprocal analogues for an arbitrary sequence
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{a,}. These matrices cover the all previous studied matrices and also generalize the
results in [5]. We use basic linear algebra methods to prove our results, which also yield
new and alternative proofs for the results in [5]. We will also present some interesting

and useful applications of our results.

3.2.4 Hilbert, Filbert Matrices and Their Variants

The Hilbert matrix H = [Hy;| is defined with entries

1
Hyj = ——.
U k-1
As a recursive analogue of the Hilbert matrix, Richardson |64] defined and studied the
Filbert matrix R = [Ry;] with entries

1

= )
Fryj

Ry;

where F), is the nth Fibonacci number. Clearly, both the Hilbert and Filbert matrices

are the examples of the Hankel matrices.

After the Filbert matrix, several generalizations and variants of it have been investi-

gated and studied by some authors. We briefly summarize some of these:

e In [65], Kili¢ and Prodinger studied a generalization of the Filbert matrix by

1
Bt jtr

defining the matrix [ }, where » > —1 is an arbitrary integer parameter.

e After this, Prodinger [66] defined a new generalization of the generalized Filbert
matrix by introducing 3 additional parameters by taking its (k,j)th entry as

Ex(ktgyor

, where r > —1 and A > 1 are arbitrary integers and x,y are any reals.

e In another study [67], Kili¢ and Prodinger obtained two variants of the generalized

M} and [M

where s, r
X (k+5)+s Lx(k+.i)+s] ’ ’

Filbert matrix by considering the matrices [
and \ are integer parameters such that s # r, and s > —1 and A > 1. The
second matrix is the first instance, where the entries of the matrix include the

Lucas numbers.

e Kilig and Prodinger [68] gave a further generalization of the Filbert matrix by
defining the matrix ) with entries

1

= )
FretjirFrqjirst - Fegjirida

Qr;
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where r > —1 and d > 1 are arbitrary integers. The generalized Filbert matrix

is the particular case, when d = 1, of the matrix Q.

In another paper [69], Kili¢ and Prodinger introduced the matrix G as a para-

metric generalization of the matrix () by

1

Pyt Pt e - - - Fa(erjd—1)1r

Gy
where r > —1,d > 1 and A > 1 are integer parameters.

Kilig and Prodinger [70] gave new four variants of the Filbert matrix, by defining
the matrices P, T, Y and Z with entries

1 Fpspjir 1 Lt pjsr
Ty = —HWt y =~ and Zy; = et

j )
Fktpgr Fktpjrs Lvypjvr

Lktpjts
respectively, where s, , A and p are integer parameters such that s # r, r;s
> —1land A\, u > 1. When A = p =1, the matrix Y is also known as generalized

Lilbert matrix, which is the Lucas analogue of the generalized Filbert matrix.

More recently, as the Lucas analogue of the matrix G, Kili¢ and Prodinger |71]
defined the matrix W by

1
Wk | = )
L D) tr DAkt 1)4r - - - IAGetjrd—1)+r

where \ and r are arbitrary integers and d is a positive integer.

The authors of the all-above mentioned works have studied various properties of the

given matrices such as LU and Cholesky decompositions, determinants, inverses, etc.

All these results yield some further combinatorial identities, as well. In many of them,

firstly the authors converted the entries of the matrices into ¢-forms and obtained

related results for these ¢-forms. Afterwards, they proved all their claims in the g¢-

forms by the means of the celebrated g-Zeilberger algorithm for the general parameter

g. But only in |67, 70|, ¢-Zeilberger algorithm did not work and because of that they

used some traditional methods. We will encounter the same situation in Section 4.5.

In Section 4.5, we will introduce a new non-symmetric variant of the Filbert matrix

defined by the entries for k, 7 > 0,

Uni—pj+d
Unkypj+d
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with positive integers A\, u and d, where U, stands for the nth generalized Fibonacci
number. Note that the interesting feature of this matrix is that it includes some zero
terms as entries. Specially, when A = o = 1, then the entries on the dth superdiagonal
are all zero. Furthermore, it would be never a symmetric matrix for any choice of
the parameters. For this reason, we will also obtain related results for the transposed

matrix.

If we look closely, the indexes of the Fibonacci or Lucas numbers in the Filbert or
Lilbert matrix and all its generalizations or variants, studied before, are in the linear
forms. Any nonlinear forms of the indexes have not been studied anywhere, yet. In
Section 4.6, we will present a new generalization of the Filbert matrix whose indexes
will be in the nonlinear form. This will be the first example in the literature. In brief,
we will study the matrix as a nonlinear generalization of the Filbert matrix defined

with the entries
1

Uk(k+7’)"+u(j+s)m+c

Y

where A\, u, n and m are positive integers, r, s and c are any integers such that
AME4+7r)"4+u(j+s)™ +c¢ > 0 for all positive integers k and j. Moreover, we will present

its Lucas analogue.

3.2.5 Hessenberg Matrices

Hessenberg matrices were firstly investigated by Karl Hessenberg (1904-1959), a Ger-

man engineer.

They are one of the most important matrices in numerical analysis [47, 72|. For ex-
ample, the Hessenberg decomposition played an important role in computation of the

matrix eigenvalues [47]. So in applied mathematics, they have important role.

In [73, 74], authors introduced a constructive way to compute the inverse of the finite

and infinite Hessenberg matrices, respectively.

Note that we indicated that we would use N for the order of the matrices. However,
in the sections about Hessenberg, matrices we prefer to use n rather than N. Because
we will consider the value of the determinant of the matrices as the sequences indexed

with their order.
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Cahill et al. |75] gave a recurrence relation for the determinant of the matrix defined

by (3.2) as follows for n > 0,

n—1 n—1
det Hy = hyg det Hy oy 4+ <(—1)”‘T e | ] i det Hrl) ,

r=1 j=r
where Hy = 1. Unfortunately, this result is not useful for the higher order Hessenberg

matrices.

In |76, 77, 78, 79, 80|, the authors gave the relationships between some certain recursive
sequences and the determinants or permanents of some certain Hessenberg matrices.
Meanwhile, some authors computed the determinants and permanents of various type
of tridiagonal matrices which are indeed Hessenberg matrices [81, 82, 83, 84]. For

example, in [83], Kili¢ provided the formula

2 1 0
-1 2 1
-1 2 " = Int1,
1
0 -1 2

where P, is the nth Pell number given in Table 1. The authors of the all works
mentioned above used the cofactor expansion of the determinant as their main tool

and then evaluated the determinants recursively.

The authors of [85] gave an algorithm to compute determinant of the Hessenberg

matrices.

Moreover, the authors of [86, 87| evaluated the determinants of some special families

of the Hessenberg matrices by using the combinatorial approaches.

Recently, Macfarlane [88]| considered the Hessenberg matrix whose entries consist of
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the terms of the sequence {W,,}:

Wy Wy Wiy
—X W1 W2
—X W1
M, =
0

Wn—2
Wn73
Wn—4

Wpoe W,

Wih—o Wy

Wi—s W2
Wy,  Ws
4%} Wy
—x Wy

where {W,,} is the Horadam sequence given in Table 1. Again by using the cofactor

expansion of the determinant, he showed that the sequence {det M, } satisfies the

recurrence relation for n > 2,

det M,, = (b+ pz)det M,,_1 — qx (a + x) det M,,_.

More recently, by using generating functions, Merca [89] showed that the determinant

of an n x n Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions

of n.

In the literature, Getu |7] firstly computed the determinants of a class of the Hessenberg

matrices by using the generating functions. He considered the infinite matrix

bo
b
by
bs
by

Then he showed that if the equation

holds then

a, = (—1)"det R,,,

where A (x), B(z) and C (x) are the generating functions of the sequences {a, 1}

{bn}nzg and {Cn—i-l}nzo, I’eSpectively.

1
(&1
Co
C3

Cq
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As it is seen, the determinants of the Hessenberg matrices have drawn attentions of
many researchers. In Section 4.7, we will use the generating functions to determine
the relationships between the determinants of the new three classes of the Hessenberg
matrices whose entries are terms of the certain number sequences and the generating
functions of these sequences. This method is more efficient and applicable than cofactor
expansion and the determinants of many previously studied Hessenberg matrices are
easily computed by this method. Furthermore, we will give an elegant method to
evaluate the determinants of the Hessenberg matrices whose entries consist of the

terms of the higher order linear recursive sequences.
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4 RESULTS

In this section, we present the results which are obtained in our thesis. Firstly, in the
following subsection we give some auxiliary results for further use. The next subsections
are devoted to our main results. In each these subsections, we present some results for

the different combinatorial matrix families.

4.1 Auxiliary Results

The following propositions are the general results about some matrix families. We use
them as tools to prove some of our results. They may apply to other matrices which are
not considered throughout the thesis, as well. All of them are new and useful results

about some special matrix families.
Firstly, we shall start with a proposition about Toeplitz matrices.
Proposition 4.1. If M is a Toeplitz matriz of order N, then there exist the following

relationships between the factor matrices coming from the LU-decompositions of the

matrices M and M=, for 0 <k, < N —1,
(Z) Akj = L;flflfj,Nflka

(i1) A,Zjl = LN_1-jN—1—k;

(m) Bkj = U]?fl—l—j,N—l—kf

(iv) B;;jl =UN_1-jN-1-k;

(v) Mk_jl = MJ\_flflfj,Nflfk'

Proof. For the claims (i) and (ii), consider

k k
Z Adele = Z L]_\[1,1,d7N,1,kLN—1—j,N—1—d
d=j d=j
N—1—j
= Linypbnva—ja=[N—=1—-4N—-1—k]=[k=j],
d=N—1—k

which gives us AA™! = I, as claimed. For the claims (iii) and (iv), we have

J J

-1 _ -1 ‘
E :Bkdij - E :UNflfd,NflkaN—l—LN—l—d
d=k

d=k
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N—-1—-k
= UinyiUnv-1-ja=[N—1—4, N —=1—k] = [k = j],

d=N—-1—j
as desired.

For the LU-decomposition of M1, we should show that M~! = A+ B or equivalently
M = B7t+« A7 So it is sufficient to show that

-1 4—-1 __
E B,, Adj = My;.
max(k,j)<d<N-1
Thus consider
-1 4—1
5 Bkd Adj = E UNflfd,NflkaNflfj,Nflfd
max(k,j)<d<N-1 max(k,j)<d<N-1

= E Ly_1-jaUagn-1-k

0<d<N-—-1-max(k,j)

= E Ly_1-jaUsn—1--

0<d<min(N—1—j,N—1—F)
Since M = L+U and M is a Toeplitz matrix, we have Zogdgmin(k i) LiqUg4j = My; and
Mkj = MN,1,j7N,1,k. Finally, we obtain
—1 4-1
Z Byg Ay = My-1-jn-1-1 = Myj,
max(k,j)<d<N-1

which completes the proof. By the fact M~! = A-B = U~'. L' and the relationships

(i) and (iii), we have

-1 _ -1 -1
Mkj = E LN—I—d,N—l—kUN—l—j,N—l—d

0<d<min(k,j)

_ -1 1
= E , Ld,NflkaNflfj,d

N—1—min(k,j)<d<N—1

_ -1 —1 _ a1
= E , Ld,N—l—kUN—l—j,d = MN—l—j,N—l—k‘

max(N—1—j,N—1—k)<d<N—1

So the claim (v) follows. O
By the above proposition, one can easily derive the LU-decomposition of the inverse

of a Toeplitz matrix from its LU-decomposition.

The next proposition is about the matrices whose entries include separable factors with

respect to the indexes k£ and j.
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Let H = [Hy;] be a square matrix, whose LU-decomposition, inverse, LU-decomposition
of its inverse and Cholesky decomposition are known with the matrices L = [Ly;],

U = [Uy], H' = [Hy;'], A= [Ay;], B = [By;] and C = [C;], respectively.

Proposition 4.2. Assume that H = [Hy;| is a square matriz and there exist the
sequences {s,} and {m,} with nonzero terms such that Hy; = Hyjspm;. Then for the
matric H, one can determine the LU-decomposition, inverse, LU -decomposition of its

wnverse and Cholesky decomposition as shown

Sk
,ij = Lk]s_ and uk:j = Ukjskmj,
J
_ _1 5k _ _ 11
Loj=1L = and U = U ——,
Sj S5 My
HoL = o1 1
ki M osimy
m; 11
J
Akj = Akj_ and Bkj = Bkj__;
my. S5 My
m,
-1 _ 411y -1 _ p-1 )
A = Ay p— and By = By spm,

and when for all k > 1, s;, = my,
ij = ijsk.

Proof. By the assumption for the matrix H, firstly we can write
H = D(sy,)«H+D(m,),

where D(a,) is the diagonal matrix defined as before. Since the LU-decomposition of

the matrix H is known, namely H = L - U, we can write

H = D(sn)+L-U+D(my) = D(sn)~ LD <i> . D(s,) U+ D(my).

Sn

Here we see that D(s,,)+LD (ﬁ) is a unite lower triangular matrix and D(s,,)-U-D(m,,)

is an upper triangular matrix. So we have

L=D(s,)*L+D (i) and U = D(s,) + U+ D(my,),

Sn

which gives the LU-decomposition of the matrix 7. Moreover, by the rule of the inverse

of the multiplication of the matrices, we may immediately derive

H =D (min) CH'-D (i) . (4.1)



The matrices A and B follow after applying the LU-decomposition to the matrix H!.
The relations of the inverse matrices £71, U=, A~! and B~! can be easily derived as

in (4.1). For the Cholesky decomposition of H, consider
H = D(s,)+ H+D(s,) = D(s,)+ C+CT « D(5,)" = (D(s5,,) + C) (D(s,)+ C)",
then the claim follows. O

This proposition is very useful to obtain new matrix identities. We will frequently use

it in the forthcoming subsections.

Finally, we have the following proposition to derive the LU-decomposition of the trans-

posed matrix.

Proposition 4.3. Let K be a nonsingular square matriz whose LU -decomposition
is known with the matrices L = [Ly;|, U = [Uyj|, respectively. Then for the LU -

decomposition of the transposed matriz KT, we have
K'=r.U

where

U.
L;ﬁ = U—] and U,/Cj = L]I{:Ukk
J

Proof. Since K is nonsingular, for all £ > 1, we have Uy # 0. Then consider

1
KT =UT.[7 = UT-D<U—) D(Upy) - L7
Then L' = U" - D(5—) and U’" = D(Uyy,) « L*, which completes the proof. O

We have the following useful corollary.

Corollary 4.1. Let S be a nonsingular symmetric matriz. Then S can be written as

S:UT-D(U1 )-U,

where U is the factor matriz coming from the LU-decomposition of the matriz S. Fur-

thermore, the Cholesky decomposition of S is derived as

1

Ji
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Proof. Since S is a nonsingular symmetric matrix, by Proposition 4.3, the factor matrix

L of S is equal to U« D (U,m

oo )-ren () o)
(i) (o (i)

Thus C =UT - D (\/&7), which completes the proof. n

L) So the first claim follows. Consider

The above corollary allows us to derive the Cholesky decomposition of a matrix from
its LU-decomposition if it is symmetric. Remind that the Cholesky decomposition
means that the matrix satisfies the relation (3.1). If the matrix S is a positive definite,
ie. for all n > 0, U,, > 0, then our result is valid for the general theory and also
provides an alternative proof for the fact that the matrices comes from the Cholesky

decomposition of a positive definite matrix consist of real entries.

Now we are ready to move to our main results.

4.2 A Family of the Non-Symmetric Band Matrices

As mentioned in Section 3.2.1, in this section we introduce a class of non-symmetric
Toeplitz band matrices with upper bandwidth s and lower bandwidth r whose entries
are defined via the Gaussian ¢-binomial coefficients to obtain the generalizations of
the results of [1]. The case s = r gives us the g-analogue of the result of [1]. When
s =1+ 1, we have a Toeplitz band matrix with even number of bands, which has not

been studied before.

Briefly, we define a matrix H with bandwidth r + s + 1 via the Gaussian g-binomial
coefficients. We provide explicit formulae for the LU-decomposition, determinant and
LU-decomposition of the inverse matrix H~'. Furthermore, we derive some comple-
mentary results for the work [1] related to the case of bandwidth r+s+1. We presented

obtained results in [2].

Our main tool is usually to guess relevant quantities. Then we use the g-Zeilberger
algorithm to prove our claims. All identities we obtain hold for the general quantity ¢,

so that results about the Fibonomial coefficients come out as corollaries for the special
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choice of ¢q. Finally, by the help of the limit ¢ — 1, we derive further results including

the usual binomial coeflicients.

For nonnegative arbitrary integers r and s, we define the matrix H = [Hk’j]kj>0 with

upper bandwidth s and lower bandwidth r by

r+s

ij _ (_1)T(k+j)+jik(l+T*S)+j(1*T+S)*T(l*S*T)q%(k*j)(k*j*T‘f’S)*%Ts |:7, ik

L. (4.2)

For example, when » = 2 and s = 4, the matrix H is of the form

-], -2 3], [, e[, -1 0
i3], —a '), —aefy], o[, i [,

Loig ], —a'f, —1

| i,

a*[1,

—ig = [,

i 0 Lig [l —a'[3],

When ¢ = /a, where o, f = (p F \/p? + 4)/2, we get the Fibonomial analogue of the
matrix f and denote it by H = [Hy;l; .-, where

Hyj = (1) R ED GG RG] TS L
r+j—kJ,

For r =2 and s = 4, we have

_{S}U _{S}U {Z}U {g}U -1 0
e —Ghe -Gl {8

L A -1

- - (3, |- @3

{ito

o,

0 1 {?}U _{g}U_

Before giving main results, it is worthwhile to note that one may ignore some power

terms which are separable with respect to the indexes by the help of Proposition 4.2.
We prefer this way because as it is seen in (4.3), the sign pattern from the lowest

subdiagonal "+ + — — + + — — --- " looks nicer.
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4.2.1 Main Results

Now we shall start with the matrices L and U as well as their inverses.

Theorem 4.1. For k,7 >0,

)

-1
Lk.:(_l)r(kﬂ)ﬂikﬂﬂr8)(kj)q§(kj)(kj+sr){ r } { k } [5“{7]
J . . .
k=gl lk—J),lk—J

q

Y

_ _ ' i 1 ) 1
Ly = (_1)r<k+y>i<k—a><r—1—s>q;<k—g)(s—r+1>[ I } [5 ﬂ] {5 * }
q q

r—1 J ko1,

Ukj _ (_1)r(k+j)+jik(1+r—8)+j(1—r+8)—T(l—s—r)q%(k—j)(/f—j—r-f—s)—%7“5
x{ s ] ['r—l—erk} |:S+k:|_1
gkl Lor+g I Ll

Uk_jl — (_1)(k+j)(r+1)ik—j—r+(k+r—j)(r—s)q%<k—j)(s—r—1>+érs

Xj—k—i—s—l r+k] [r+s+4]7"
s—1 Lk, r '

q

and

As their Fibonomial analogues, for the matrix H, we have the following corollary.

Corollary 4.2. For k,j > 0,

-1
Lon = (1) kD)) hG+ D+ G ) T k s+ k
kj ( ) 1 k? o ]{Z o k o ;
J)u J)u J)u

B o [E=dr =1 (s+4) [s+k "
-t L
U U U

-1
Ui = (—1) E+)Hi+D) i GH)+R(R+D+r(=1) )5 r+st+k| fs+k
ki = (—1) 1 : . .
J=kjyU r+7 JoU J Ju

. L
%ﬂ:%_DUMWHHWA)j_k+S—1 r+k st
J s—1 ol k Sy r ’

Consequently, we could give the values of the determinants of the matrices Hy and

and

Hy. They are simply evaluated as the products of the main diagonal entries of the

upper triangular matrices U and U, respectively.

Theorem 4.2. For N > 1, we have

N—-1 -1

+s+d| [s+d
det Hyv = ir(r-l—s—l)N —%Nrs | | |:T :| |: :| .
" ! d=0 d q d q
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As the Fibonomial analogue, we have

Corollary 4.3. For N > 1,

N-—1
+s+d s+d
det — sr(r—1)N | | r
CtHy =1 i r+d J, d

Specially, when r = s = 3, we have the following nice formula

-1

U

NUN 1 UR o UR s UR iy Unss
U; U22 U§’ U42 Us

det HN = (—1)

Now recall a result from [1]. For r = 3, the determinant of the matrix they studied is

equal to
N+1(N+2?(N+33(N+4)?2N+5
1 22 33 42 5

As it is seen, there is a remarkable similarity.

Moreover, when » = 5 and s = 4, we have

2 3 4 4 3 2
UniiUnoUnis Un s Un s U6 Un i Ungs

det Hy = : :
S s A 1 7 N 77 S 77 B I 1 1

For the inverse matrix A !, unfortunately there isn’t any explicit formula. Nevertheless

by the LU-decomposition, we get the following theorem.

Theorem 4.3. For 0 <k,; < N —1,

(Hil)kj — (_1)r(j+k)+kik(1+rfs)+j(1fr+s)+r(rfsfl)q%((kfj)(sfr)+rsfjfk) |:T + k:| |:S +J:|
k oL J g
= yfd—k+s—11 [d—j+r—1] [r+s+d] [s+d] "
X q .
s—1 r—1 r d
d=0 q q q q

Although there is no closed formula for the inverse matrix, we may express it in an-
other way. The following theorem helps us to express the matrix H;,l by its LU-

decomposition and moreover we can explicitly find the inverses of these factor matrices.
Theorem 4.4. For 0 <k, < N —1,

Agj = (1) D= =1=) g5 (k=) s=r+1)

[ =1] [sHN -1k s+N—1—4]"
r—1 g s g S

)
q

Al;jl = (_1)r(k+j)+jik+j+(rfs)(kfj)q%(k*j)(kfﬂsﬂ")
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X[ r } [N—l—]} [s+N—1—]}1
k—jl,l k=i |, k—j .

Bkj _ (_1)(k+j)(r+1)ik—j—r—l—(k—&-r—j)(r—s)q%(k—j)(s—r—l)—&-%rs

s—1 T T

y [j—k:%—s—l} [r+N—1—j] [r+s+N—1—k}1
q q q

and

Bk_jl _ (_1)r(k+j)+jik(l—i—r—s)—i—j(l—r—l—s)—T(l—s—r)q%(k—j)(k—j—T—i-s)—%7‘5

x[ s ] [7’+8+N—1_]’LF+N_1_J,]_1.

J—kJ, s+k—j st+k—j ],

As the Fibonomial analogue, we have

Corollary 4.4. For 0 <k,j <N —1,
. Ny —1
Akj:(_1>(k+j)T{k_j+r_1} {3+N—1—k} {S—I—N—l—j} |
Al;jl - (_1)r(k+j)+j(k+1)ik(kz+1)+j(j+1)
SRR R N ey
E=3)oU k=3 Ju k—3j _—

. | — k —1
Bkj _ (_1)(]+k)(r+1)ir(r—1) {] +s }
s—1 U

y r+N—-1—j r+s+N—-1—Fk]""
r U r U

Bk_jl — (—1)T(k+j)+j(k+1)ij(j+1)+k(k+1)+r(r71)

s r+s+N—1-—34] (s+N—-1—31""
Ji—kJy s+k—j U s+k—j .

Specially, when the case p = 1, i.e. U, = F,,, our results become valid for the usual

and

Fibonomial coeflicients.
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4.2.2 Proofs

Now we will give the proofs of our main results.

To show H = LU, it is sufficient to prove that the following equation holds.
> LUy = Hy,.
0<d<min(k,j)
Thus we need to show
Z (_1)r(k+d)+di(d+k)+(r—s)(k—d)q%(k—d)(k—d+s—r) { r ] { k ]
0<d<min(k,j) k—d],lk—d],

s+ k]! Ny ,
X _1)r(d+a)+ijd(tr—s)+i(1l—r+s)—r(1—s—7)
IR

5¢ q%(d—j)(d—j—T-‘y—S)—%TS |: S :| |:7“ + S + d:| |:5 + d:|
'j q q -

-1
—d r+7 J 1,

_ (_1)r(k+j)+jik(1+7'—s)+j(1—r+s)—r(l—s—v-)q%(k—j)(k‘—j—r—i—s)—%rs r + S
r+j—kJ,

After some simplifications, we have the following equation to prove

Z C]—d(k+j)+d2[ r ] [ k ] {s+k]1{ s ] {r—l—s—l—d] [s—l—d]l
j—s<d<k k—df lk—dl lk—d], lj—dl,l v+j J,L J I

T
1 r+j—kl,

Let’s denote the LHS of the above equation by SUM;. Then the Mathematica package
of the g-Zeilberger algorithm produces the recursion

(1 —q7+h+)

SUM;, = SUM;_;.

By going backward, we obtain

quk(l _ q1+j7k+r) . (1 _ qr+j)
(1 —qs=atk) ... (1 — gs—7H1)

SUM;, = SUM,,

where SUM, = [:Ij] . After multiplying both the denominator and numerator of the
q

above equation with (¢; q);_k+.,, we get

sum, =g " |
r+Jj—kj,

as claimed. So the proof of the LU-decomposition of the matrix H is completed.
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Now we turn the inverse matrix L=!. Since L and L' are lower triangular matrices,
we only need to look at the entries indexed by (k,j) with & > j. So we should show
that

Z LyLy' = [k = j].

j<d<k

Then we have

3 Lde%l::(_4Ur@wjnk+¢+w—jxr—@q;(wj+o~sxjm)[s‘fﬂ}
q

j<d<k i

x Y (~1)tgrrdkel T Kl [s+k] ' [d=—j+r—1] [s+d] "
- k—d|, |d| [k—d 1 .
j<d<k L], . , )

The g-Zeilberger algorithm computes the sum on the RHS of the above equation as 0
when k£ # j and r # 0. For the case r = 0, H is an upper triangular matrix so that
the claim is clear. For the case k = 7, it is easy to see that kaL,;kl = 1. So the proof

is completed.
Since U and U~! are upper triangular matrices, we just need to look at the entries

indexed by (k,j) with j > k. Thus we have

-1
Z dechl _ (_1)r(j+k:+rf1)+ji(k7]')(7‘73+1)q%((r—s)(j—k)+k2+j> {7’ +s+ J}
q

r
x ) (1) [d—k} [s—d+k
q q

k<d<j

" s+k:_1j—d—|—r—1 r—+d
d r—1 Lol

q

k<d<j

Similarly, the g-Zeilberger algorithm computes the sum on the RHS of the above equa-
tion as 0 when k # j and s # 0. When we choose the number of superdiagonals of the
matrix H as zero, that is the case s = 0, it is easy to check because the matrix H is a
lower triangular matrix. If £ = 7, it is obvious that UkkU,;gl = 1. Finally

> UrUy' = [k = ),

k<d<j

so the proof of Theorem 4.1 is completed.

For the inverse matrix Hy', by using the fact that Hy' = Uy'« L', we can write

=

(Hy' ki = Y U Ly
0

.
Il
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d=0
-1
« d—Fk+s— 1:| |:T + k:| |:T +s+ d:| (_1)r(d+j)i(d—j)(7“—1—5)
s—1 . k . r a
. . —1
« gD s—r+D) {d —jtr- 1} {8 + ]] {s + d} |
r—1 LT, d .

After some straightforward simplifications, we obtain Theorem 4.3.

Since the matrix H is a Toeplitz matrix, Theorem 4.4 arises as a consequence of Propo-

sition 4.1.

Thus the proofs of all theorems are completed for the general real parameter g. The

proofs of all corollaries follow by choosing ¢ = 8/ a.

4.2.3 The Case Bandwidth r + s + 1 with the Binomial Coefficients

The results will be presented in this subsection are direct generalizations of the results
of [1] with upper bandwidth s and lower bandwidth r. The results for the case r = s

cover the results in [1].

For r,s > 0, we define non-symmetric Toeplitz band matrix G = [ij]kj>0 via the

Gy = (—1)“”7( rre )

r+j—~k
For example, when » =2, s =4 and N = 7, we have:

15 =20 15 —6 1 0 0
-6 15 —-20 15 -6 1 0
-6 15 =20 15 —6 1
-6 15 =20 15 —6
1 -6 15 =20 15
0 1 -6 15 -20
0 0 1 -6 15

binomial coefficients as

Gr =

o o o o =
o o o =

We list the results related to the LU-decomposition, inverse matrices L~ and U~! and

determinant of the matrix G, respectively.

Theorem 4.5. For k,7 >0,

e ()06



—1
iy S r+s+k\[(s+k
U =20 (j—k)( r+i J\ i)
-1 k—g3+r—1\(s+j\[(s+k -
ki r—1 j k
eI kEs=1\(r+k\(r+s+] -
Uy = 1)( s—1 )(k r '

Theorem 4.6. For N > 1,

N-1 -1
. r+s+d\(s+d
det Gy = (—1) H( d )( J ) .

d=0

and

Similarly, we have the following result for the LU-decomposition of the inverse matrix

Gy

Theorem 4.7. For 0 <k, < N —1,

g (Fmdtr =1\ (st N=1=k\ s+ N-1—j !
e r—1 s S ’
_ . N—1-j5\[(s+N—-1—7\"
AL (kT
b = Y (k—j)( k= )( k= ) ’
. . —1
By = (—1) J—k4+s—1\(r+ N—-1—j\(r+s+N—-1—k
/ s—1 r T

Bfl:(—l)k“” s r+s+N—-1—j5\/(s+N—-1—7 -1
K j—k s+k—j s+k—j '

The proofs of the all above theorems can be done by using Zeilberger’s algorithm similar

and

to the previous section. For example, for the LU-decomposition, we have

min(k,j) min(k,j) -1
. k\ (s+k
E I = (—1)kHitr E "

d=0

()0

Denote the sum on the RHS by SUM;. Then Zeilberger’s algorithm produces

SUMyyq = —————SUM,.
J

r+s

Tﬂ._k), as claimed. Other proofs

After solving this recursion, we obtain the SUM, = (

can be done similarly.
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On the other hand, here we would like to present a different approach to prove them.
If we perform the limit ¢ — 1 for the results in Section 4.2.1, then we get the results
for the matrices including the usual binomial coefficients. When ¢ — 1, the matrix H
takes the form
Ay = (_1)r(k’-‘rj)-‘rjik(1+r—s)+j(1—r+s)—r(l—s—r)( r + s )
r+j3—=k

So it is seen that

ij _ (_1)r(k+j)+k:+7"i/c(s—7‘—1)+j(7"—s—1)+7‘(1—s—r)ij‘

By performing the limit ¢ — 1 to the results in Section 4.2.1, we obtain the al-
gebraic properties of the matrix H. If we chose the sequences {s,} and {m,} as
{(—=1)rrFDjnls—r=btrl=s=n1 and {(—1)"+FDin(r=s=D1 " respectively and then apply
Proposition 4.2 to the results for the matrix FI, then we obtain the results for the
matrix G, as desired. This is a useful prototype to show the efficiency of Proposition

4.2.

Now we present some results about the infinity-norm of the matrix G]_Vl, which is the

maximum value of the absolute row sum, that is,

N—1
671, = mas (Z!Gk;
=0

,ogng—1>.

Firstly, we have the following lemma:

Lemma 4.1. For 0 < k < N — 1, the kth row sum, denoted by Sy, of the matrix G]_\,1

sk:<_1)r(k:r> (N_k;s—us) (r:‘—g)_l.

Proof. Let e, be the unit vector of order N, where 1 is in the kth position and e be

18

the vector of order N, where all entries consist of 1’s. Then we may write
Sp = ef Gyle.

Since there is no closed formula for G, we will use the the fact G~ = U~'L~!, where

the matrices L=! and U~! were given in Theorem 4.5. Thus we should compute

Sk = (e Uy")(Ly'e).
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Here the first parenthesis gives the kth row of the matrix of Uy' and the second
parenthesis gives the row sum of the matrix Ly'. So the sum of kth row of the matrix
LJ_VI, denoted by sy, is

sHE\ NS k—g+r—1\(s+J
=) 200

J

which, by a variant of the Vandermonde identity (for more details see the Eq. (5.26)

s+HEN T (ktr+s\  (ktr+s)r+s\
k r+s ) r r '

Consequently, we have that

in [13]), equals

(Ly'e) = [s0,51,---,sn-1]"

and

(efUNY) =10,0,...,U, U,;;H, o U,;}V_l].

Finally, we obtain

N—1 -1 N-1 .

_ [T+ s r+k Z j—k+s—1

Sk:E:Ukjlsj:(_1)< s ) ( r ) ( s—1 )
J=k j

~cr(T) ()5 0

which by the formula -, (T;gk) = (HZH), equals

_(—1y r+s\ ' (r+k\(s+N—-k—1
N 5 r s ’
as claimed. O

Before going further, we would like to recall the definition of the unimodal sequence.

Definition 4.1. A unimodal sequence is a finite sequence which first increases and
then decreases. That is, a sequence {ay, as, . .., a,} is unimodal if there exists an integer

te{2,3,...,n— 1} such that

ap <ag <o <Zapand ap > @i > -0 > Ay

In order to find the infinity-norm of the matrix G', we need the maximum value of

|Sk|. For this, we investigate the unimodality of {|Sk|}n>o-
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Lemma 4.2. The sequence {|Sk|},s, s unimodal.

Proof. Since the factor ("JS“‘”)_1 is independent from the index k, we may show that

e ={ () ()

is unimodal instead of showing the unimodality of the sequence {|Sk|},>0. Consider

(0
(k+7)(k+1)(N —k—1+s)(N —k)
(k+r+1)k(N—-k+s)(N—-Fk—1) Ok—10k+1

1 1 1 1
—(i-— V(+ V- — ) 1+ —— )
( k—i—r—l—l)( +k)< N—k+s>< +N—k—1)ak 131

S

.
—(1+—" ) (1 .
< +k2+kr+k)( +(k:—N+1)(k—N—S))ak 1k+1

> Qp—10k+1,

which gives that the sequence {ag},>¢ is strictly log-concave that means {a}n>o is
unimodal (For more detail see [90]). Finally, the sequence {|Sy|}, >, is unimodal, as

well.

Since the sequence {|Sk|},~, is unimodal, it has a maximum value for some k, where

ke {l1,2,...,N —2}. Thus we can compute the ||G]_\71Hoo:

Theorem 4.8. For N > 1,

. (r+t+1)%(s+ N —1t)2
o3l = , ,
(r+s)!
Nr ‘ o
where t = { n J and the falling factorial is defined as 2™ = x(x —1)--- (x —n+1).
r+s

Proof. We know that there exist an integer £ € {1,2,..., N — 2} so that |Sg| is
maximum. We shall find this value of k. Similarly, we only consider the sequence
{ar}nso = {("TF) (SJFN;’“*I)} instead of the sequence {Sk},>, because it is enough to

consider the factors only depend on k. Consider

E+1+r\/N—-—k—2+s
o L0
ar k+r\/N—-k—1+s

G0 )
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(k147N —-k—-1)
kE4+1)(N—k—1+s)

() ()

Nr—(k+1)(s+r)
kDN —k—1+s)

+

If Nr—(k+1)(s+r) >0, then k£ < TN—J; — 1 and so {ag}n>o is increasing for such

k’s. When £ > TN—J; — 1, the sequence {ag},>o is decreasing. Since k is an integer,

Nr

2T |, which completes the

the sequence {ay},>o takes the maximum value at k = |

proof. O

Denote the sum of the jth column entries of the matrix G' by §j, By Proposition

4.1(v), we can see that Sy = Sy_1_1. So we derive the result
IGN'[, = Sv-1-0= 51,

Nr . .
where ¢t = {TJ and ||-||, is the maximum absolute column sum norm.
r+s

At the end of this subsection, we would like to mention the relationship between
Toeplitz and Hankel matrices. Let T be a Toeplitz matrix. Then the matrix obtained
by

M=T-J,

where J is a square matrix such that the entries outside of the skew main diagonal are
all zero otherwise 1, is a Hankel matrix. So if we have a Toeplitz matrix then we obtain

a Hankel matrix by the help of the matrix J, or vice versa (Note that J~! = .J).

Thus the matrix H «J is a Hankel matrix and by using the fact that det Jy = (—1)@)
and the results in Section 4.2.1, we may compute the determinants of a new family of
Hankel matrices and also obtain its Fibonomial analogue as well as the results including

binomial coefficients. For example, for r = 3, s = 2 and N = 8 by the results of the
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matrix G, we obtain

o 0 0 0 0 -1 5 -10
0o 0 0 0 -1 5 -10 10
o 0 0 -1 5 -10 10 -5
0 0 -1 5 =10 10 -5 1 9 102 112 12
0 1 5 —10 10 -5 1 o | 1w
1 5 —10 10 -5 1 0 0
5 -10 10 -5 1 0 0 0
10010 -5 1 0 0 0 0

4.3 A Generalization of the Super Catalan Matrix

As mentioned in Section 3.2.2, in this section we will give the generalizations with two
additional parameters of the results in [3]|. Briefly, we study the matrices M = [Mj;]
and T = [T};] defined by for nonnegative integers r and s and k, j > 0,

v (I 2k i+ s\ 7!
Mk k j
LR k4 (2 + s
kj — L L ] ;

respectively. These matrices are the reciprocals of each other. Clearly, the results in

and

[3] are the case r = s = 0.

In order to obtain more general results, we introduce the matrices M and 7 which are
the g-analogues of the matrices M and T, respectively. They are reasonably defined

by for k,j5 > 0,

k4] [2k+r]7"[25 +s] "
SO S
q q J q
and
k417" 2k +7] [2)+s
Ta= |y, k s
q q J q
respectively.

For the both matrices, we derive explicit formulae for the LU-decomposition, inverse

1

matrices L~! and U~!, determinant and Cholesky decomposition when the matrix is

symmetric, that is the case r = s. Unfortunately, the inverses do not have closed
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formulee. For this reason, we give explicit expressions for the LU-decomposition of the
inverse matrices. Afterwards, when ¢ — 1, we get the results for the matrices M and

T. The readers can also find our results in [4].

Similar to the previous section, in this section, our main approach is to guess relevant
quantities and then we will use the ¢g-Zeilberger algorithm and formula (2.9) and (2.10)
to justify relevant equalities. All identities we will obtain hold for general q. One may
also obtain Fibonomial analogues of these results by choosing ¢ = 3/« and the help of
Proposition 4.2. But we don’t prefer to present that results not only to avoid repetition

but also they are a bit cumbersome.

4.3.1 The Matrix M

For the matrix M, we have the following theorem.

Theorem 4.9. For k,7 >0,

2%k +r]"" 27+ [k
B =] i Ll
q q q

£t = (—1)ig("?) {%;: rkl Fjﬂqmq’

2 |2k + 1 _12'+s Iy
=[] 1L
q J q q
and

Ul = (_1)k+jqk(k+1)/2—j(j+1)/2_kj 2k+s| |27+ |J |
kj I q ] q . q
For0<k,j<N-—1,

Ay = (_1)k+jqk<k+3>/2j<j+3)/2N(kj)l_—‘fﬁl[]v - 1] {2"” S]
_ gk+j+1 4
1 — gkt k=7 1, k |,
y {k+j}_l{2j+31_l{j+s}
k . s 1, s ],

g [ L)
q q q

ki 4 k k—3j j s s ’

q q

o , Y Nk A
Byj = (—1)FHgutnuta/2=N (’“+J+1>+3k<k+1)/2[ o T} { ; ] H
q q q

i k+i+1] |k
{Qk—l—s} [k’%—s}_l
X
CH R R
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and

) -1 A —1F.
Bl = gU+irn-i-n1 = ¢ k4] N[
k3 1—gN=k| k k+jl, Lk,

2. —1 .
X{]-FS] {j+51.
S q s q
N-1

o 2d 4+ 717 2d 4+ 517!
s =g [ e
d=0 q

= q

q q

For N > 1,

Finally, when r = s, for k,7 >0,

202k +7] 7 Tk
ij:qﬁ/z[ } [} .
ko1, Ll

Now we shall give the proof of this theorem.

Proof. For £ and L7,

3 Lracyt =Y (~1)tig) Fk,j T] : [Qd; Tuqu

j<d<k j<d<k a

[ L

_ {2/{;2—7’] B [2j fer_] ’“i {k;jL(_qu(;)_

q J J1a =0
By Rothe’s formula (2.10) if £ > j then the last sum on the RHS of the above equation

equals (1;¢),—; = 0 and if k = j, then it equals 1. Thus we conclude

Y Lraly' =[k =],

Jj<d<k
as claimed.
For U and U7,
_ _y [ 2k 4+ 712'4—7“ ]
5wt = O] P [
k<d<j q N P A
‘ , Pk .
> qk(2]+k;+1)/2(_1)k+] Z |: ; } (_1)dq(d;1)+d(k*]).
0<d<j—k q

By the Cauchy binomial theorem (2.9), if j > k then the last sum on the RHS of the
above equation equals éj(l —q#9)%4) = 0. The case k = j can be easily computed

as 1. So we have

> Ul = [k = j],

k<d<j

o4



as desired.
For the LU-decomposition, we should show that
> Liddy = My,
0<d<min(k,j)
Firstly, we can assume that k£ < 5. Consider,

2%k +7] 1254+ 517"
Z Lialdg; = [ i } { J . ] (¢:9)k(¢;9);
q q

0<d<min(k.j) J

x > g ! ‘ . (4.4)

0<d<Kk q Dr-a(q;q)j-a

Denote the sum in (4.4) by SUM;. The Mathematica package of the g-Zeilberger algo-
rithm produces the recursion

1 — g/t
(1—¢*)?

Since SUMy = (g; )}, ' (q; q) , we obtain

SUM;, = ~SUM;,_1.

_ |kt
SUMy =:(q;q)k1(q;q)j1[ N ] :
q

Since the sum in (4.4) is symmetric with respect to k& and j, the case j < k follows

likewise. Eventually, we get that
> Lidhy = My,
0<d<min(k,j)

which completes the proof of the LU-decomposition of the matrix M.

For A and A~!, consider

5 A = s B
<Q7 q>N—k:—1

daleanil

1 —
% Z { } )dqd(d 1)/2— jd(q Q>d+J q

ot (43 @)a—j 1 — g"tett

71<d<k

2d+1

For the sum on the last line of the above equation, we get that it is equal to 0 provided
that k # j by the g-Zeilberger algorithm. If k = j, it is obvious that Ay.A;} =
Thus

Z Akdv‘gjl = [k =],

j<d<k
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as claimed. Similarly, by the ¢-Zeilberger algorithm, we compute
> BBy =k =j].
k<d<j
When r = s, then we have a symmetric matrix. Thus by Corollary 4.1, the Cholesky

decomposition can be computed as

N

ij — Z/{]kuj;

_ {zjﬂr [2/{;—1—7} - m ey {23}1 _ {2“7} - m |
7oA Lok Ul Y bl Ul

as claimed.

For the LU-decomposition of M~! we should show that M~! = A+ B which is the
same as M = B~1+« A7, So it is sufficient to show that

Z 1 4-1 _ ,
max(k,j)<d<N-1
After some arrangements, we have

2k 119, -1 ‘
Z BEdlAEjl = l ]:—T} [ J +S} Z q(]+k+1)(N—1—d)

max(k,j)<d<N—1 q 7 de jedsna

X1—q2d+1d N+dl '[d+4] [N—j—1
L—gVF k| [k+d], | d |, d=j ],

By replacing (N — 1) with N, the sum on the RHS of the above equation equals
-1 . 4
Z q(j+k+1)(N—d)1_—q2d+1 dl (IN+1+d d+ 7] [N —j |
; 1 —gN+1=k |k k+d d d—j
J<d<N q q . .

Denote this sum by SUMy. The g-Zeilberger algorithm gives the following recursion
provided that k # N and j # N

SUMy = SUMpy_1.

So SUMy =SUM; = [kzj}q, which completes the proof except the case (k,7) = (N —

1, N —1). This case could be easily checked by hand.

Thus the proof is completed. O

26



4.3.2 The Matrix T

For the matrix 7, we have the following result.

Theorem 4.10. For k,j > 0,

s LT
LR P 1 O A P S P R

Forj>1and k > 0,

qj=b4ﬁﬂ4%01—fkV+¢LFk+qu+qT%+¢]1Fjr

L—g"i k= r r r

q q

for k> 1, B
£ = (0r e ] [0

"l

and anl =1. Fork>1andj >0,

. 27+s| |2k+7r| [j—k+s
by = (g [ PR R
q q q

k+j r s
COREaN
X
L s 1q

and for 7 >0,
27+
P’

J q
For k,j5 >0,

. . _ L

U = (—1)FghED/2-5049) L—¢ [k+j] [25+7] [j+7
X ! e ,
q q q

[Qk—l—s}l [k—l—s}

>< .
s ], s ],
For0<k j<N-—-1,

Ay = (—1)F+ D 42)/2- G (+2) /2N =) m [N +21; — 1]
q q

y {]\H—j—l}l{lwrs} {%H}l{ﬁsr{zﬁj
2] q S q S q S . s q7

A—lzq(k—j><k—N+1)k N+k—1] [N+j—1]1"k+s] [2k+s
kj jq 2k q 2] q S g s

. —1 .
2
S q S q

o7

|

|

-1

q



B.. — gUHD+2)/2=N(N=1)/2—jN+k?~1 [N +7 - 1] []} [Qk’ + 3]
ki — 4
q q

2j k k
. . —1
<
r q r q

and
. —1 .
Bl — (_1)N+j+1 k—kj—j(j+1)/2+kN+N(N-1)/2 | ] N+k—-1 2j+s
kj q
J k . 2k . s 1,
Fk+1 V+w]4
X )
r q r q
For N > 1,
i 2d+s| [2d+r] [d+r] d+s]
Ty = -y T g 2] (2] ) Hfa)
d=1 q q q q

Finally, when r =s, for j > 1 and k > 0,

Ck.:ij(1+q)j/2qj(3j_1)/4 2k+r| [k+7r k—j+r
J k+j LT, r ,

and for k > 0,

Proof. By the definitions of the matrices £ and £7!, for the case j = 0, we have

Z ,de,cgol = deﬁaol + Z ﬁkdﬁgol.

0<d<k 1<d<k

If k =0, we get 1 as (0,0)th entry of the multiplication £+ L7, If k > 0, after some

rearrangements, we have

—1 —1
E Lyalyy = E Lot1,a+1L4410

1<d<k 0<d<n
n+2+r
_ Z (_1)d+1(1 + qd+1>q(d2+d)/2 {n Cdo }
0<d<n q

" n+1| |[n+14+7r -1
d+1),[ d+1 q'

The g-Zeilberger algorithm compute the sum on the RHS of the above equation as

— [Z”Jffr]q. By changing n 4+ 1 with k again, we get — [Qk,:”"}q. Finally, if & > 0,

_ 2k +r _
Z L‘k’d['dol = [ L } + Z ‘deﬁclo1
q

0<d<k 1<d<k
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2k +r 2k +r
R
q q
as desired. For the case j > 0, we have

_ Ca-n 1= 2k +1r] [k
1_ d+j (G L4
> gty = X S PR [

J<d<k J<d<k
L LR
d q d—j gL T Iy L
Again by the ¢-Zeilberger algorithm, we obtain that it is equal to 0 provided that k # j.
The case k = j could be easily computed as 1. Finally,
Y Lualy' = k=],
Jj<d<k
as claimed. Verification of the inverse of U can be similarly done by the help of the

g-Zeilberger algorithm. Inverses of the matrices A and B may be shown as in the proof

of Theorem 4.9. We would prefer to omit them due to the similarities.

For the LU-decomposition, we have to prove that

Z Lrallgy = T;.

0<d<min(k,j)

The cases k. =0, 7 > 0 and j = 0, £ > 0 could be easily seen. For the other cases,

consider
2k+1r| |27+ s
Z Lyaldgy = Lyrolhoj + Z Lraldy; = [ I ] [ & ]
0<d<min(k,j) 1<d<min(k,j) a J 1
2k +r| |k
+ Z (_1)d(1 + qd)q(Sd—l)d/2|: } |: :|
1<d<min k_] b + d k. d g

SR Ioah
F’“”LF“S} UL,
SR>
Lﬂzfd} [J + dL

Without loss of generality, we may assume that k£ < j. So consider the sum

, 2%k 27
o= S oy e 2] [ 2]
it k+dqj+dq

1) (1+q> (3d—1)d/2
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Then the ¢-Zeilberger algorithm gives the following recurrence relation for the sum
SUMg.

(1+¢")(1—¢*")
(1 —qg7*k)

SUM; = SUMy_1.

Since SUMy = Q[ij] , we obtain
q

9 9] -1
SUM,, = 2 K ] Rl
k q ]-q

Since

ol 2 71T 2
SUM, = > (=141 + g¥)gPD2 k:+d} '+d}
_k<d<-1 L gL q

ZF:L m
+ 37 (“1)H(1+ ghgBe e [;fd] [jijd]q

BB g2 )

1<d<k k+dq +dq

then we have
2k +rl| |27+ s 2k +rl| |27+ s
chdudj:[ 1 }{] }—i—{ i }{j }
0<d<k q J q q J q
2k1 12517 (1 2k 24
B Gem- [ [21)
k ¢ LIy \2 k gL 1q

2%k +r] [25+s] [k+4]"
q ‘7 q q

The proof of the LU-decomposition of the inverse matrix 7! could be similarly done

as desired.

as in the proof of Theorem 4.9. Similarly, when r = s, the Cholesky decomposition

follows by Corollary 4.1. [

4.3.3 The Matrices M and T

Obviously, we have

lim M = M and hmT T.

q—1

Thus the related results for the matrices M and T can be easily obtained by performing
the limit ¢ — 1 to the results in Sections 4.3.1 and 4.3.2, respectively. Without any
efforts, we obtain new results including binomial coefficients. This is one of the greatest

advantages of studying g-analogues.

Now we list the results for the matrices M and T', respectively.
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Theorem 4.11. For the matriz M, we have for k,j > 0,

w= (M0 ()0)
= o () () (4,
e () )6

o = e () (7))
For0<k,j<N-—-1,

Akj_(_DkH%(Nkj—l)(% s)<k+]> <2j+8) (jjs)
Ak;:(kzj)(Nkjg_l)(ﬁs) 1(% S)(Hs) 11
=0 () )G )
w0 () T )

For N > 1,
N-1 -1 -1
2k +r 2k + s
det =
oM H( K ) ( K )

k=0
and finally, when r = s, for k,7 >0,

eo= () (%)

Theorem 4.12. For the matrixz T, we have for k,7 >0,

w= (O () 00)

for 7> 1and k>0,
Lot = Ly 2k 2% (k+\[2k+r\[k+r\ (2 +r\ i+
kj k+] k—j r r r r ’
B 2k +r\ [k +r -1
(5

and Lyg = 1. For k> 1 and j >0,

() ()
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and Up; = (27+S) For k,j >0,

) [Gh OO TG B oy

For0<k,j<N-1,
Apy = (—1)k+ B\ (N+k—1\(N+j—1\"(2k+s\""[k+s
v J 2k 27 s s
o 2+ s\ [(j+s\ "
S S !

o (R (N Ak =D (N =1\ (2 48\ 7 (ks (2545 (5 +5)
R ANE 2 s s JUs )0 )
B, — N1\ [\ (2k+s\ " (i+r\[2+m\ "

kj = 2 1 I . .
Bt = (v (Y (N R\ (24 8) (2K 40 (k)T
e k 2% s . -]

det Ty = (— ]i;[ (2d+8> (Qd:-r) <djr)1(djs)l,

Finally, when r = s, for j > 1 and k
27 ok +r\ (k+r\ " (k—j+r
k47 r r
2k +r
u= (277)

We want to finish this section by giving a conclusion remark. We will show how one

and

and for k > 0,

can obtain results for the matrices M and T or similar kind of matrices without the

help of the g-analogues.

For example, we shall take the matrix M. We can consider the entries of it as

k+j
Mkj:< kj)skmj,

Qj{rs)—l

2’“”)_1 and m; = ( ;

. . Thus the entries of the matrix M is separable

where s, = (
with respect to indexes. So we can apply Proposition 4.2 if we know the properties of

the matrix [(k;”)] k30" Fortunately, the algebraic properties of this symmetric Pascal
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matrix (also its reciprocal analogue) are studied in [58]. For example, the (k, j)th entry
of the L matrix coming from the LU-decomposition of this symmetric Pascal matrix

is (I;) So if we apply Proposition 4.2 for the matrix M, we obtain its L matrix as

- (Y )

which is the exactly same with the quantity given in Theorem 4.11. Likewise, all

algebraic properties can be obtained in this way. Furthermore, since (k:j) = (i’;ﬁ)!, by
choosing s, = k! and m; = j! in Proposition 4.2, we get new results for the matrix
[(k 4+ j)!]k j>0, which is a Hankel matrix, as well. More generally, by Proposition 4.2,
one can easily extend our results by considering the matrix with entries for k, 7 > 0,
k+j ﬁ atk +pi ﬁ bik + 1 _lﬁ aj + si ﬁ dj +t\ "
k k k j J ’
=1 =1 =1 1=1
as well as its reciprocal analogue, where the parameters my, mq, ms, mg, p;’s, 1’s, s;’s

and t;’s are nonnegative integers and a;’s, b;’s, ¢;’s and d;’s are positive integers.

Thus we see that Proposition 4.2 is very useful to derive new results as well as to prove

existing identities.

4.4 General Family of the Max and Min Matrices

As mentioned in Section 3.2.3, recently the authors [5] studied the matrices of order N
defined by [max(ag,a;)]1<kj<n and [min(ag,a;)]i<kj<n over the set {ai,as,...,an},
such that a1 < ay < -+ < ay. They obtained some algebraic properties of these
matrices. Note that their approach only works for the increasing sequence. Their
method based on another auxiliary family of the matrices which called "meet and join
matrices". They also indicated that the elementary tools are difficult to derive such

results.

In this section, we generalize their results for an arbitrary sequence {a,} by defining
the matrices conveniently. In other words, we define two new families of the matrices,
which called Max and Min matrices, whose entries run in left-reversed and up-reversed
L-shaped pattern, respectively. By any given sequence {a,}, we define the matrices
My, M, as

(Ml)kj = Qmax(k,j)> (M2)kj = Qmin(k,j)
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and their reciprocal analogues M; and Mj as

(My),; = #, (MZ)kj - #

J Amax(k,5) Amin(k,7)
Here note that the size of the matrices does not matter, as well. That means we can

consider them as infinite matrices. Clearly, the matrices M; and M, are of the forms

al a2 a3 DY an .. a/l a’l a/l DY al
a2 a2 a3 DY an DR al a2 a2 PR a2
a3 CLS a3 DY a/n .« .. a’]_ a2 a3 DY a/3
M1 = and M2 = s
Qp  Qp  An G, a; Gz asg Qp,
respectively.

It is worthwhile to note that if the sequence {a,} is increasing, then Amax(k,j) =
max(ax, ;) and amins;) = min(ag,a;). Conversely, if the sequence {a,} is decreas-
ing, then amaxk,j) = min(ag, a;) and amin(k,;) = max(ax, a;). Thus the results of [5] will

be the special cases of our results.

We will study various properties of the matrices My, M,, M; and Ms, such as LU-
decomposition, inverse, Cholesky decomposition, etc. by using elementary tools which
are simpler and more convenient way than the method used in [5]. In Section 4.4.1,
we go around the matrices M; and M. Afterwards, in Section 4.4.2, we examine the
matrices My and M. Finally, we give some further applications of our main results.
For example, as a consequence of our results, we will give an idea how we can obtain

a generalization of the Lehmer matrix and its reciprocal analogue.

We have the following lemma for later use.

Lemma 4.3. Let {a,} be any real sequence. Then for all k,j > 0, we have
Omax(k,7) Amin(k,j) = AQkQj.
Proof. For all cases k = j, k> j and j > k, it is obviously seen. [

Throughout this section, we assume that {a,} is any sequence such that a, # 0 and

ay # anoq1 for all n > 1, otherwise the matrices M; and M, become singular.
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4.4.1 Max Matrices and Their Reciprocal Analogues

We derive the LU-decompositions, inverses, Cholesky decompositions and LU-decompositions

of the inverses of the matrices M; and M, respectively.
For the matrix M, we have the following results.

We start with the LU-decomposition:

Theorem 4.13. For k,j > 1,
% itk > g,
ij - aj
0 otherwise

and )
aj Zf kﬁ = 1,
aj (ap—1 —ag) ., .
Ukj = JT—l) ifj >k >1,
0 otherwise.

Now we shall give the inverse matrices L' and U~! by the following theorem.
Theorem 4.14. For k,j > 1,

()M fo<k—j<1,

Ly = a;
0 otherwise
and )
- a;i_
()" L f0<j-k<landj#1,
ag (aj-1 — a;)
_ 1
Uy, = — ifk=3j=1,
a1
\ 0 otherwise.

Now we compute the inverse matrix (M;)y' as follows.

Theorem 4.15. For 1 < k,j < N, (M) is the symmetric tridiagonal matriz defined
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( 1
ifk=j5=1,
ap — as
L i1 k= £ N,
(M_l) (ak+1 - ak) (Gk - akq)
A an—1 . .
ifk=j=N,
an (CLN—l - CLN)
1 ) .
- ifk=7j+1.
\ Qp — Qg—1

For the Cholesky decomposition, we have the following result.
Theorem 4.16. For k,j > 1, C is the lower triangular matriz defined by

ifj =1,

E\w@
—

Cys =

Qg

i = . ; >1
;0,1 \/aja] 1(aj-1 —aj) if j

We will give the LU-decomposition of (M;)y' and the inverses of these factor matrices

by the following theorems.

Theorem 4.17. For 1 <k,7 <N,

(1) fo<k—j<1,

Ay =
0 otherwise
and ) .
— ifk=75=N,
an
L — k+j 1 . .
Brj=¢ (-1)""7 —— f0<j—k<1landk#N,
A — Q41
0 otherwise.
Theorem 4.18. For 1 <k,7 <N,
1 if k>,
A7 = f k>
0 otherwise
and
an ’Z,f] = N,
B =1 aj—ajy ifk<j<N,

0 otherwise.
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Proof. In order to prove My = L+ U, it is sufficient to show that

min(k,5)
Z LiqUgj = Qmax(k,j)-
d=1
Consider
min( min(k,7) an a; (ad - ad)
L U, = _FyAems T4

mln(k,j
ara;
o [ (2 )] - e
Qg—1 Amin(k,5)

which, by Lemma 4.3, equals amax(x,j), as expected.

Define the matrix 7' = [T};] with

1 if k>,
Tk’j -
0 otherwise.

It is easy to see that

k, > . .
— (=) if0<k—j<I,
kj .
0 otherwise.

Thus the proofs related to inverse matrices L=, U~!, Ay! and By' follow from Propo-

sition 4.2.

In order to prove the LU-decomposition of (M), it is sufficient to show that (M;)y =
By Ay'. Consider

N N—-1
-1 4—1
g B,, Adj = E (@q — @gt1) + AN = Amax(kj)
d=max(k,j) d=max(k,j)

as desired.

For the Cholesky decomposition, consider

min(k,j) min(k,j)
ara; ara;
E dede = — + E (afd—l - ad) = Omax(k,j)>
1 ai 1—y @d%d-1

which completes the proof (Note that it can be also derived by the help of Corollary
4.1).
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Finally, in order to prove the inverse matrix, we have three cases: j =1, 1 < j < N
and j = N. For these cases, consider the following equalities, respectively.
N

(max(k, Gmax(k,
> (M) ga(Mar = () Coexlhd) [ = 1],

a; — Qg a2 — aq

d=1
al a a (a ay1) a
_ max(k,j—1 max(k,j j—1 — W41 max(k,j+1 .
Z(Ml)kd(Ml 1)dj _ (k,j—1) + (k,g)\%j J+ (kj+1) _ [k 29]7
= aj—aj1 (a1 —aj)(a; —aj-1) a1 —ay
N
_ Qmax(k,N— aN—10max(k,N
S (Mg (M )y = bl SR e
d—1 ay —an-1  an(any—1 —an)
By all of them, the proof is complete. O
Corollary 4.5. For N > 2,
N—
det(M;) N H aqg — Qdq1)
and det(M1)1 = Q.
Proof. Since det(M;)y = Hévzl Uga, it is immediately seen. O

For example, let Ty be the matrix defined by [max(k, j)],<; ;<n- Then
det T1 = (—1)N71N.

One can easily obtain many special and nice examples. The evaluation of the determi-

nants of these kinds of matrices by using other methods needs more effort.

Remark 4.1. If the sequence {a,} is positive and decreasing, then the matriz M, is a
positive definite matriz, which can be easily seen by Corollary 4.5. On the other hand,
the sequence {a,} is negative and increasing, then the matriz My is a negative definite

matrix.

Now we shall give the results for the reciprocal Max matrix M, without proof because
all of them could be seen by choosing reciprocal term in the results for the matrix
M. Studying with reciprocals could sometimes be more challenging. For this reason,
we list the results for the quick access. We have the following results for the LU-
decomposition, inverse matrix , Cholesky decomposition and LU-decomposition of the

inverse matrix M, respectively.
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Corollary 4.6. For k,j > 1,
= if k>,

0 otherwise

and
( 1
— if k=1,
a;
U= "Bl s s,
a;Qp
0 otherwise.

\
For 1 <k,j <N, (M) is the symmetric tridiagonal matriz defined by

( ara . .

%121 ifk=j=1,
2
aj (app1 — ag—1) . .
f1#k=j#N,
1 (ar1 — ax) (ax — ap-—1)
(M7 )k = 2
v TESI=N

apQ; . .

\ ag f—]ak ka:]+1

For k,7 > 1, C is the lower triangular matriz defined by

Jai

a
Crj = §
a; — i
VITIEL i1
Qg
For1 <k j<N,
(=D if0<k—j<1,
A =
0 otherwise
and
(—1)FH BTy < k<1,
Ap+1 — G
By = ay ifk=7j=N,
0 otherwise.

4.4.2 Min Matrices and Their Reciprocal Analogues

Firstly, we list the LU-decomposition, inverse matrix, Cholesky decomposition of the
matrix M, and LU-decomposition of the inverse matrix M, ', respectively. We omit
the results related to L=, U~', A=! and B~! here. They could be easily obtained as

in the proof of the matrix M; by the help of Proposition 4.2.
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Theorem 4.19. Tuke the matrix M, for k,j > 1,

L if k>3,
Ly =
0 otherwise,

aq ’[,f k= 1,
U =9 ag—apy ifj=>k>1,
0 otherwise,
(= fk=j=1,
%] (CZQ - Gl)

(ars1 — ap-1)
(ak41 — ag) (ax — ap—1)
1
aN — aN-1
1
\ Qp—1 — Qg

Vau if j =1,

ij = a; — aj—1 if g > 1,

f1#k=j#N,
(M )i =
ifk=j=N,

ifk =741,

otherwise,

{ kﬂ fo0<k-—j<1,
—1)

otherwise,
L0 <ok <,
(Gk+4 —-ak)
1

an

ifk=37=N,

0 otherwise.

\

Note that the inverse matrix M, ' is a symmetric tridiagonal matrix of order N.

Corollary 4.7. Take the matriz Mo, for k,j > 1, we have

1 if k>3,
Ly =
0 otherwise,
( 1
— if k=1,
a1
Uy; = | k=1 ~ Ok ifi>k>1,
apar—1
0 otherwise,
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2
% ifk=j=1,
a; — as
ag (ap—1 — api . :
(ak f( ax) (ax +a>k 1) LEk=i7 N,
+ - - —
(Mgl)kj =
ey ey
aN-1 — anN
. ifk=j+1,
. A — Q-1
( 1
N
Co: = 1 o
kj \/CLj(lj_l (CLj_l — Clj) ij > 1,
Qi1
\ 0 otherwise,
(1) o<k —j<1,
Aij = a;
0 otherwise,
(—1)fH k% fo0<j—k<l,
a; (ax — agy1)
B = ay ifk=j=N,
0 otherwise.

Similarly, note that the inverse matrix M, ' is a symmetric tridiagonal matrix of order

N.

Proof. By Lemma 4.3, we can write

ara,; 1 Amax(k,j
Amin(k,j) = ] and = ( J)'
amax(k,j) amin(k,j) Qra;

So all claimed results follow by Proposition 4.2 and the results for the matrices M; and

M;. [l

By the LU-decomposition of the matrix M,, we have the following corollary.

Corollary 4.8. For N > 1,
N-1

det(My)y = a1 [ [ (au1 — aa).
d=1

Remark 4.2. By the above corollary, it is seen that if a; is a positive real number
and the sequence {a,} is increasing, then the matriz My is a positive definite matriz.
Conversely, if a; is a negative real number and the sequence {a,} is decreasing, then

the matriz My 1s a negative definite matrix.
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4.4.3 Further Applications

Recall the Lehmer matrix M defined by

min(k, j)
My, = ——22
7 max(k, j)

By Lemma 4.3, one can write the (k, j)th entry of it as:

min(k,j) = kXxj kxj

max(k,j)  (max(k,7))?2  max(k2, j2)

By using Proposition 4.2 and the results for the matrix M, for a,, = n?, i.e. max(k?, ;%) =
Amax(k,j)» it 1s easily rediscovered the LU-decomposition, inverse matrix and Cholesky
decomposition of the Lehmer matrix. Also the results of [91, 92| for some recursive

analogues of the Lehmer matrix can be retrieved by using similar approach.

Moreover, our results give us an idea to find a sequential generalization of the Lehmer
matrix. For example, we define the matrix H = [Hy;] for any positive and strictly

increasing sequence {a,} by

min(ay, a;) apa;
max(ay, a;)  max(a?,a?)’

Hyj =

Thus by our results for the matrix M; with the sequence {a?} and Proposition 4.2,
the LU-decomposition, inverse and Cholesky decomposition of the matrix H could be
derived but we omit the details here due to the similarities with the following corol-
lary. Note that if the sequence {a,} is decreasing than we may also obtain sequential

generalization of the Lehmer matrix by using the results for the matrix M.

Up to now, any reciprocal analogue of the Lehmer matrix has not been studied yet. The
following corollary will be the first reciprocal-sequential generalization of the Lehmer

matrix.

Corollary 4.9. Let {a,} be a positive and strictly increasing sequence and H = [Hy;]

be the matriz defined by
max(ag, a;)

Hyy = o i/

min(ay, a;)
Then
% itk >,
Ekj = aj

0 otherwise,
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( .
<l ifk =1,
a1
Uy = DAL Z 00 <sz _1 b ik,
\ 0 otherwise,
( a o
\/_Z— ij = 17
1
Cr: = a o
& #\/by’by’fl (bj—1 —bj) if j>1,
A
0 otherwise,
b
( b1_1b2 ifh=i—1,
b (br—1 — bi11) . .
1#k= N
Hy,) = (Ok4+1 — br) (br, — bg—1) Flzk=iz
ey k=i
aka] . —
\ —bkz_bk—l ifk=754+1,

where H™' is a symmelric tridiagonal matriz of order N and b, = a?.

Proof. Since {a,} is a positive and strictly increasing, by Lemma 4.3, we have

Hy — max(ag, a;) kg

min(ak, Clj) bmin(k,j).

So the proof follows by the results given for the matrix My with the sequence {b,} =
{a?} and Proposition 4.2. O

Note that when a,, = n, we get the reciprocal analogue of the usual Lehmer matrix.
Besides, one can also obtain related results when the sequence {a,} is decreasing by

the help of the results for the matrix M.

Now we give an interesting and useful idea. Although, one can’t directly use our main
results to derive some results related to some certain kind of matrices, our results allow

us to guess these results with less effort. We shall give an example to show this idea.
Corollary 4.10. For a positive integer v, define the matric F = [Fy;| by

Qmax(k,j kaZj_Ta
Fj = (k.5) 7

0 otherwise.
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for a given sequence {a,}. Then for k,j > 1, the LU-decomposition of the matriz F is

% ik > g,
,ij: aj
0 otherwise
and
a; ifk=1andj <r+1,
a; ifg>r+1landk=j—r,

ifk+r—1>353>k>1,

0 otherwise.

Clearly, for N = 8 and r = 3, the matrix F takes the form
a; a9 Az Qg 0 0
0

Gz az az G4 as

o O O

a3 a3 az a4 das Qe

o o o o

ay a4 a4 a4 G5 Qg Ay
Fs =

as as as a5 as Aag a7 ag
g Qg A G Qg Ag Q7 ag

ar a7 ay ar ary ay ay as

ag ag ag ag ag dag ag as

As seen, the matrix F is obtained from the matrix M; by deleting the entries after
rth superdiagonal. (Note that similar example can be obtained for the matrix which

is obtained by applying the same process to the matrix Ms).

Proof. We should show that

min(k,7)

]1&3: jz: Aﬁkﬂ%@.

d=1
The proof for the case j < r+ 1 can be similarly done as in the proof of the results for

the matrix M;. Now consider for j >r+1and k > j —r,

min(k,j) ara min(k,j) ana min(k,j5) 1 1
k% } : k% 2 :
Ekdl/{dj = 0 + Lde/{dj = 0 + akaj (a— — a )
d=1 I g1 i-r d=j—r4+1 N d-1
ara;
= = Omax(k,y)-
Gmin(k,j)

And the final case j > r+1 and k < j—r can be easily computed as 0, which completes

the proof. O
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It is possible to obtain similar results for the matrix which is derived by deleting
the entries of Max matrix (or Min matrix) after rth subdiagonal by the help of our
results. In the light of all these, our results are very useful to define new families of

combinatorial matrices.

As a conclusion remark, our results cover the results which will be valid for the ma-
trices [max(ag, a;)|x,;>1 and [min(ay, a;)]x j>1 when the sequence {a,} is increasing or
decreasing. Note that the increasing case is given in [5] for only finite order matrices
with a different approach. Unfortunately, if a sequence {¢,} is neither increasing nor
decreasing, such as unimodal sequences, then our results don’t work for the matrices
[max(c, ¢;)]kj>1 and [min(cg, ¢j)]xj>1 and we could not find explicit results for such

matrices.

4.5 A Non-symmetric Variant of the Filbert Matrix

As mentioned in Section 3.2.4, in this section we will study a new non-symmetric
variant of Filbert matrix. We define our main matrix M = [My;]x ;>0 by
1 — xgtt—H

Mis = 7= e

where \ and p are positive integers and z is a real number such that x # ¢=**~# for all
k,7 > 0. Here we would like to point out indexes of the entries of the matrix M start

from 0. Otherwise related matrix would be singular that makes no sense to study.

We will derive explicit formulae for the LU-decomposition, inverse matrices L~ and
U~!, and inverse of the matrix M. Our approach is mainly to guess the relevant
quantities. Afterwards, we will provide proofs of these formulae. It is worthwhile to note
that, although all the sum identities we need to prove seem to be Gosper-summable,
the g-Zeilberger algorithm does not work for the general parameters A and u. The
algorithm can only compute the specialized sums for some fixed special numerical
values of A and p. But it is not enough to prove general results. For this reason,
we will use some traditional ways which cause to guess some new sum identities with
one additional parameter. Finally, as applications, we will give some particular results
related to the generalized Fibonacci and Lucas numbers as non-symmetric variants of

Filbert and Lilbert matrices for the special choices of ¢ and x.
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4.5.1 Main Results

Here, we will list the LU-decomposition of the matrix M, inverse matrices L=, U™},
determinant and inverse matrix M~!. In Section 4.5.2, we will provide the proofs
of these results. Recall that the matrix M would be never a symmetric matrix for
any choice of the parameters. For this reason, we can not talk about the Cholesky

decomposition.

Theorem 4.20. For k,j > 0,

(zgtH; g) (@ F s )

Ly =
& (2 qn); (¢ ¢);

and

1 — —pJ

1ore if k=0,

Upy = L@ (—k+1) A A
j p(i—k+1). -
q—uj+()\+u)(§)xk(1 + g") (4 1 4")k(a% 4 if k> 0.

(2q"7; g ) kg1 (BgAFTH; g1 )

Theorem 4.21. For N > 1,

N—-1
det My = (3 gn(3) (525N (24 ¢))n—1 I ) (91 ¢")a(a*; ™)
(zgMtes A )y e (zgr; ) a(xg ;g )g

and det M; = 1.

Theorem 4.22. For k,j > 0,

Nj+p. qu>k 1<qA(k—j+1);qA)j

(g g)r1(q; ¢*);

Ll;jl _ (_1)k+jq>\(k;j)( q

and
1 ifk=j=0,
¢ B (1) (gt gy,
g
I (50 +=t) (1)t (1 —ut bt g
— (1 —zg")(1— ¢ )(CJ“ qr);- t(CI“,q )
k+1
L B S T ) iU VRS SO
2I(1—q%) (¢ q");(a% ¢")i—x(q"; @)k -

0 otherwise.

\

For the inverse matrix My', we have the following result.
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Theorem 4.23. For 1 < k< N and0<j <N,

(—1)*+i g AD)+u(FE) —(N=2)(\j+uk)
eN=T (1 — zgrktNi)(1 — g20)
y (2™ ¢ o1 (2™ ) v
("5 ¢*)n—r—1(a"; ) n—j—1(a*; ¢*);(¢"; 4" )1

—1 o
M =

and for 0 < j < N,
e O AR P
(@ ¢ n—j—1(ah a*);
NZ 1 — ag (=1)tg(5) -2 (2¢"; ¢")n
—~ 1—ag 1 — g%t (1 — 2gr29)(g"; ") N—t-1(q"; ¢* )i

My =[j=0]+ (_1)j+1qA(g)—A(N_z)j

Here note that the entries except the first row of the matrices U~! and M~! can be
nicely factorized but the first row of these matrices can’t be factorized. The guessing

procedure of these entries is extremely time consuming.

Since our matrix is not symmetric, the results related to its transposed matrix M7 =
1 — xgh—rk

[1 — xq’\jﬂ”ﬂ} E,j>0

and 4.3 and the fact (M7T)™! = (M~1)T, we have the following theorem for the matrix

MT.

may yield new results for a new matrix family. By Propositions 4.2

Theorem 4.24. For k,j > 0,

1 —aqg L
1-— xq#k ij - O’
Ly, = » A
w w(i—k) (1+ qﬂk) (qu(k JH); qﬂ)j@qi‘]? q/\)jﬂ ifi>0
(T+qm)  (2¢";q*)1(a"; q*);
and |
Uys = g O () gk (1 4 gy (@5 ")u(@9 75 M)y
’ (2N ) (xgh*; )i
Fork,53 >0,
(
1 ifk=75=0,
k
q_ﬂk"rﬂ(z)(_l)k-‘rl(l 4 quk)(qu’ q,u)k
) gg_clq“’ﬂq )k
L_l B u(( )+t tk)( 1)t(1 _ :Uq_’“)(xq’“; q/\)k . Ll
kj XZ 1 _ ,ut 2ut e ylb e ot Zf - ana j _Oa
— rq — ) (g5 ¢ )k—e (g5 4*)—1

(=D +q“’“) (" g); (e g
OO ) (1 _ o) (@5 @)1 (@0

ifk=j2=1,

\ 0 otherwise
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and for j >k,

— (—1)k+ighi= w(3) (T = Akj (2g"; ) ( P gy
& 2i(1+ g) (05 0");(0 )1 (@ i

and 0 otherwise. Finally, for 1 <j < N and 0 <k < N,

(—1)k+i B +a(73) -V =2)(ketid)
eVt (1 — zgri ) (1 — g2)
(2 ") v (2q" )

(0 ¢*)N—j-1(@*; @) N—r-1(a"; )i (a"; ¢") 1

(MT) =

and for 0 < k < N,

Ak+p.

N1 _ [ kL A(’;)—A(N—Q)k N ¢ )N
(M >k0 [k 0]+( 1> ! (q q )N—k—l(q 4 )k

(5 Lo (LU (rg": )
= - 1 =g (1 — zgn %) (g g#) v -1 (g% ¢

Now we can proceed with the proofs of the above theorems.

4.5.2 Proofs

Define the following four sums:

min(k,7) B .
S (K) = g+ () 24(1 — ggdOa) (@* M) a(@"9 =D ¢*) g
Nt g N
ik (g q*) a2 ) a
K , N+ Ak—d)+X. A
a7i (xqV ;5 ¢ )a-1(q 10 )a
Sa(K) = Z(_l)dq/\( : )(1 — zq"O) (2 ¢ a0 )
d=j ’ ’ —J
K i
Z )-whd (1 _ qu(Aw))(fﬂqP"“;qA)d(q““ Dri g g
— (275 q)as1(q"; ") a—k

and

K .
Su(K) = Z —kd=—Xjd (] _ d(A+u))(fECI”k; )a(zg¥ ¢ )a
T ! ! (g5 4")a—k(a*; 4*)d—;

d=max(k,j)
We provide the following lemmas for later use.

Lemma 4.4.

S (K = (/\+M)( ) (qA(k—K+1); qA)K(q w(g K+1)’ q“)
1(K) = a"q PV 147 - Nktpe g
(1 — 2g?thd) (wqhi; ) i (wgMHi; g )Kfl
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Proof. We will use the backward induction method. Let us denote the summand term

by sg4 for brevity.

Firstly, assume that £ > j so when K = j the claim is obvious. Similarly for the case

J > k, the initial claim is clear.

The backward induction step amounts to show that

Si(K —1)
= S1(K) + sg_1
o () (@ N e (@D ) e
(1 — 2 *+rd) (xg; @) k (Tg M HH; gH) ka
n q(A+u)(K;1)$K71<1 gD (P2 M e 1 (@5 M) ks
(xg e gh) 1 (g M) K
o (557) (@2 g e (¢ M) e
(1 — zg™ 1) (xghd; ¢) g (2N HH; g*) g

% (Iq(/\ﬂt)(K—l)(l _ qu—A(K—1)>(1 _ quj—uk+u) +(1— xq/\kﬂﬂ')(l _ xq(K—l)(Hu))).

::CK

q

.’L'K_l

q

After some simplifications, the expression in the last line can be rewritten as
(1 . quk+u(K—1))(1 . xquj—i-)\(K—l))‘

Finally,

SI(K —1) = IK—1q(,\+H)(K;1) (Q’\(k_K+2);qA)Kfl(q”(j_KH);q“)K,g
(1 — 203 (g ; ) g1 (2R ) oo

which completes the proof. ]

Lemma 4.5. For k > j,

() — ()P e
(1 — @F=D) (wgtes g#) e (0% ¢ k-5
Proof. This time we will use the usual induction method. Similarly, we denote the
summand term by s;. The initial case K = j is easily verified. So, the induction step

amounts to show that

SQ(K + 1) = SQ(K) + SK+1-
Consider

<y @ )@ N ke

o K A
S2(B) + sre1 = (=174 (1 — PE=D) (g g#) i (¢ ) -y
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+ (_1)K+1q/\(K+§’j)(1 — g EFDOF) (¥ ")k () Nk
(@ g 1 (@5 @) K14
 (C1)RR A (2¢¥ " ¢") (@5 ¢ ke
(1 = A=) (2g M4 ¢) k11 (¢ ) K+1—;

X ((1 — g BV (1 = AMEZDY (] — g MhtrEHD Y qA(KHfj)))

_ (_1)K+1q>\(’<*2j+1 (2 ¢ ke () M
(1 — A*=D) (g 4 g) g1 (05 @) K415

5 qA(KfjJrl)(l _ J:q/\j+,u(K+1)>(1 o )\(ka)f/\)

q

which is equal to Sa(K + 1), as desired. O

Lemma 4.6. For j > k,

k. A k1), i—K).
Sy(K) = (_1)Kq,u(12()+u(K(l—k)—k) (zq""; q )K+1(qu(]/\ ;") (g )7(1")ka.
(2q"7; ¢ k+1(0"; ") k-

The proof of Lemma 4.6 can be similarly done as in the proof of Lemma 4.5. We do
not give it to avoid repetition.
Lemma 4.7.

Sy(K) = q Mk Rig =K (2™ ¢") e (2q"™; ) e .
(1 — 2q" ) (g ") k-1 (0 ) k-

Proof. Consider the case k > j,

k ) pk. oA AJHiLe b
Sy(k) = Zq—qu—)\jkx—k(l . mqk(M-u)) (2q""; ¢ )r(2q $ Q" k-1

N k (q)\a q)\)k—j
—pk? =g ok (qujJr“; qu>k($quk§ q/\)kﬂ
(1 — 2gm*H29) (g% M )i—j

as claimed. Similarly, the case k < j is obvious. Thus the initial claim is completed.

=4q

Let’s denote the summand by s4. Then Sy(K) + sx41 equals
g IR NI 5K (2™ ") g (26" ) k1
(1 — zg+2) (q#; ¢*) k(@ @) k—;

(+1)(+) (g™ ¢*) k(20" ) k4

(0" ¢") k+1-1(0 @) K415
(K1)~ Nj(K41) K -1 (V™ ")k (2¢"; ) ka1

(1 — 2gre+29) (g#; ¢*) ke —r (0 ) k-

+($q“k+>\j(1 . qu(K+1—k))<1 . qA(K—H—j)) + (1 . $q“k+>\j)(1 . mq(K—f—l)(A—ku)))'

_i_qf,uk(KJrl)f)\j(KJrl)fofl (1

=q

After simplifications, the last line of the above equation is
(1 o qujJru(KJrl))(l o xqukJr)\(KJrl)).
Finally, S4(K) + sx+1 = Sa(K + 1), which completes the proof. O
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Now we can give the proofs of our main results.
For the LU-decomposition of the matrix M, we have to prove that
> LaUy = My,
0<d<min(k,j)
By Lemma 4.4, we obtain

R el g 205
Z LUy = T a0 T4 (1 —¢™)5:(1)
0<d<min(k,j) ?

l—mg - (1—¢*)(1=¢™)

1 —xqti (1 = zgM ) (1 — wqh7)
1-— xq/\k_“j
T 1= gk

which completes the proof. As mentioned before, the ¢-Zeilberger algorithm can only
compute the related sum for the special numerical values of A\ and u. For example,
when A\ = p = 1, the algorithm computes the sum S;(1) as

z(1 —q")
(1 —2¢)(1 —2q"+)

Then the claim is done for the case A = p© = 1. But in general we can not use this

algorithm to prove the claim. That is why we need the previous lemmas.

For L and L™!, it is obvious that Ly Ly, = 1. For k > j,

> bty = ()

o (@ q%);

which equals 0 by Lemma 4.5. So we conclude

Z LygLy' = [k = jl,

j<d<k

as desired.

Before moving on, notice that the matrices U~! and M~ can be also written as follows:
U™'= PR and My' = PyEy,
where the matrix P is defined by
Py =1 and Py; = —
Pyj=1k=j] for j>0and k > 1,
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and

Ry =1 and Ry; =0 forj>0andRkj:U,;jlforjzk‘zl,

FEopo=1and Ey; =0 for 0 < j < N, and, Ej; = Mk_j1 otherwise.

It is easily seen that the inverse matrix P~! is computed as

Py =1 and Py;' = for j > 0,

1—xqw
Pl =[k=j] forj>0and k> 1.

In order to show that U~'U = I, we will show that PRU = I. Consider the product
matrix RU. The first row of this matrix is the same as the first row of the matrix U.
Then for &k > 1, obviously RprUgr = 1, so when k # j we have

1+ ¢

D — (_1\k i+ S uk(k+3)
2 Fually = (=1 " (1 = ¢**)(g"; ¢")r—1

k<d<j

which gives RU = P~ !, so the claim follows.

Finally, for the inverse matrix My', we use the fact My' = Uy'Ly' = PyRyLy'. The
first row of the multiplication RyLy" is [j = 0] for 0 < j < N — 1. For k > 1, by
Lemma 4.7, we obtain
. Ruly' (—1)krign(3)G)
kdlig = »
V(1= ) (g aM);(e" ¢k

max(k,j)<d<N-1

So RyLy' = Ex, which completes the proof.

As a consequence of the LU-decomposition, the determinant of My is easily evaluated
as the product of the diagonal entries of the matrix U. So the claim follows after
some simplifications. The results for the matrix M7 follow by Proposition 4.3 after

performing some simplifications.

4.5.3 Applications

In this subsection, we will give some applications of our main results. For example,

consider the matrix F, defined by

U)\k:—p,j—&-r
Fiy = kot
U)Jc—i—uj—&-r
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for positive integers A, p and r, where {U,} is the generalized Fibonacci sequence. By
(2.6), the entries of the matrix F can be rewritten as
1 — q)\kf/,bj+7‘

o HI (1M _
Fij = ¢ (=1) 1 — htnitr

where ¢ = /a. As seen, it is not directly obtained from the matrix M. However for

r = ¢q" and g = §/a, we can write
F = M-D(g"(~1)™),

where D(a,) is the diagonal matrix defined as before. So by Proposition 4.2, we can

easily derive all related results for the matrix F from the results of the matrix M.

Note that an interesting feature of the matrix F is that it includes some zero terms as
entries. Especially, when A = p = 1, then the entries on the rth superdiagonal are all
zero. Similarly, we can find the results for the transposed matrix 7. This transposed

matrix have zeros on the rth subdiagonal when A\ = = 1.
We find the LU-decomposition of the matrix F and inverse matrices L=, U~! and F !

as follows:

Corollary 4.11. For k,j5 > 0,

J J
(HU/\j+ud+r> (HU/\(k—f—l)—)\d)
d=1

d=1

() (11

Lij =

, (4.5)

)
Yopir if k=0,
qu+7"

k-1 k
Uyj = 4 , (HUM_M> (HUM> (4.6)
(_1)M+(A+u)(2)+rkU2uj - d=1 — k>0,
<Hqu+/\(d—1)+r> (HUAk+ud+r>

d=1 d=1

k-1 j
HUAj—i-ud—I—r) (HU)\(k-i-l)—)\d)
d—1

L} = (—1ye () ( = =

k—1 7 ’
<HU>\k+ud+r> ( U,\d>
d=1 d—1
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and Uk_jl =

(

1 ifk=7=0,
(HUuk+)\ d—1)+ ) (HUA]+ud+r>
ket +A(3)+ritukiu(h ) 1 d=1 ifj>k>1,

B © (fhe) (1t (1t

and for j > 1,

j
[Iv /\j+ud+r>

Z/{O_jl _ (_1)j+1+rj+/\(g) (d:l

g

J
j ( Upt—l-)\(d—l)—i-r)
> Z(_l)t-i-utj—f—u(;) U—,ut-i-?” d=1

— U2ut UHt—H‘ —t -1
t=1 H Uy H U

d=1 d=1

and 0 otherwise.

For the inverse matrix of order N, we have for 1 <k < N and 0 < j < N,

(- 1)k+3+)\( V(K5 N (k) +r(N—1)
Fl=
kj

Uk Upiter nj+r

(HUMM N ) (HUWMT)

(1) (1) (11) (1)

and for 0 < j < N,

Proof. We only give the proof of the LU-decomposition. The others are very similar

and the application of Proposition 4.2.

Since when ¢ = /o and z = ¢",

Fiy = (=1)"¢" My;,
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by Proposition 4.2 when s, = 1 and m; = (—1)"/¢*/ and Theorem 4.20, we obtain the
LU-decomposition of the matrix F as follows
(@ g Y ),

Ly =
! (gt gm) (s )5

and

1 — g H+r
Uy; = 4

j—k+1). A A
(1§ g guiy LRy
(@75 @) g (@ g )

where ¢ = /. These are the g-forms of the results given by (4.5) and (4.6). Thus
the proof of the LU-decomposition is completed. n

The matrix F is a new non-symmetric variant of the Filbert matrix.
Similarly, we can obtain a non-symmetric variant of the Lilbert matrix. So we define
the matrix 7 with

Ak—pj+
i el

. V)\k—,uj—i-r Y
Tj = 77— — = ¢ (=1) T huier

- V)\k—i-,uj—l—r
for positive integers A, u and integer r and ¢ = (/«, as the Lucas analogue of the

matrix M, where {V},} is generalized Lucas sequence.

If we choose x = —¢" in our main results and apply Proposition 4.2 to our main results,
after converting the results to the generalized Fibonacci or Lucas numbers, we have

the following corollary for the matrix 7.

Corollary 4.12. For k,j5 > 0,

J J
(HV)\j—i-/Ld—i-r) (HUA(k+1)—>\d>
d=1 d=1
J J
(HV/\k+ud+r> (HUAd>
d=1 d=1

(
Vorgr if k=0,

Li;=

I

VM‘ +r

k—1 k
Ak(_1)uj+(>\+u)(§)+r(k+1)U2 A d=1 d=1 if k>0,

KT /k+1 k—1
(Hvuj+/\(d—1)+r> (HV/\k-i-ud-i-r)
d=1

d=1
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where A defined as in equation (2.3).

k—1 j
| <HV>\j+ud+r> (H A(k+1)— >
L) = (—1)rra() 2d=L d=1

k—1 ’
(HVAkwdw) (HU )\d)
d—1 d—1

and Z/{k’j1 —
(
1 ifk=7=0,
1 kAA(3)+ri+uki+u(h) (Hvuk—i-)\ d— 1)+r) (HVAHMH)
= = ifi>k>1
A]U2#k k—1 J = = 5
(HU)\d) (HUM) (HUud>
) d=1 d=1 d=1
and for j > 1

x Z(_l)t+utj+p( ) V—}Lt-‘r?" il

_ UZut Vut-‘rr It =1
t=1 U‘ud HUud
d=1 d=1

For the inverse matriz, we have for 1 <k < N and 0 < j < N,

and 0 otherwise.

(- 1)k+g+x( V+u(*31) =N (puk425)+(r+1) (N —1)

77;1 —

J AN-L UQukVuk-i-)\j-i-r

(HVMHW o ) (HVm#dM)

(1) (1) (11) (1)

and for 0 < j < N,
N-1

v
—pt+r 4——1
V. i

_1 —0
=[j=0]— Vies

t=1
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More specially, by choosing © = ¢" such that r is a positive integer and performing
the limit ¢ — 1 in our main results, we obtain the related results for the matrix

H = [Hijlk j>0 as a non-symmetric variant of the Hilbert matrix with entries

C MNe—pji+r

= N

So we list the results for the matrix H below.

Corollary 4.13. For k,j7 >0,

<ﬁ[)\j + pd + r]) (ﬁ)\[k —d+ 1])

Ekj d=1 ' d=1 '
(H[Ak + pud + r]) (HAd)
d=1 d=1

(7= n ifk=0,

T+ . .

Uy, — (Hp[j —d+ 1]) (H)\d)
2X < d=1 P if k>0,
(H[Mj +Ad—1)+ r}) (H[Ak + pd + r])

L d=1 d=1

(ﬁw + pd + r]) (ﬁA[k —d+ 1])
L) = (—1)F = P = ;
<H[>\k + pd + r]) (HAd)

d=1
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and

/

1 ifk=7=0,

(H[Aj + pud + r])
(—1)it ==

(ﬁm)
ﬁ[ut +Ad—-1)+ T])

J
— ut) \ g
U = XZ (r = ut) N ifj>1and k=0,

— 7’+ t)(2ut) gt (-1
() (1)
(—1)F+ <ﬁ[#k‘+)\(d—1)+7‘> (ﬁ)\]+ﬂd+r>

T () (1) (1)

0 otherwise.

ifj=k=1,

\

Finally, for 1 <k <N and 0 < j <N,

1y (1:[[)\]'+ud+r]> (H[/dwr)\(d— 1)+r])

-1 _ d=1 d=1

M = Gk 3 + 1) k) (le[lud) (Nﬁl d) (de> <§Hd)

d=1 d=1

and for 0 < j < N,

_ . — 7 —ut,_
Ho;‘l =[j=0]- Z mf}{w’l'

t=1
4.6 A Nonlinear Generalization of the Filbert Matrix

As mentioned in Section 3.2.4, so far authors studied many generalizations and variants
of the Filbert matrix. In previous section, we have also obtained a new non-symmetric
variant of it. But no one has considered a generalization where the indexes of the
recursive sequence is in nonlinear form yet. In this section, we will introduce a new
nonlinear generalization of the Filbert matrix. We define the matrix M as a nonlinear
generalization of the Filbert matrix with indexes in geometric progression for some

parameters by
1

Mk' = )
D Un(errymtulj+s)m+e
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where U, is nth generalized Fibonacci number. Moreover, as Lilbert analogue, for some

parameters, we define the matrix 7" with entries
1

VAGktr)m 4 p(i+symre

Tkj -
where V, is the nth generalized Lucas number. Our study |6] is accepted for publication.

Note that when n = m = 1, our results will cover all Filbert-like matrices except
the matrices whose entries include the products of the generalized Fibonacci or Lucas
numbers.

For the matrices M and T, we derive explicit formulae for the inverse matrix, LU-

decomposition and inverse matrices L=, U~!

as well as we present the Cholesky de-
composition when the matrices are symmetric. Later, we will give the ¢g-forms of these
results. Actually, although the results related to the ¢-forms are more general, i.e
when ¢ = [/« gives the matrices M and T, we prefer to give Fibonacci and Lucas

forms first. Because they seem nicer and manipulating them is easier.

Note that any mechanic summation methods or g-Zeilberger algorithm will not work
here due to the non-hypergeometric terms. This is another reason of presenting Fi-
bonacci and Lucas form first. In order to prove our results we will use some traditional

methods as in previous section.

Throughout this section, we assume that A\, u,n and m are positive integers, r, s and ¢

are any integers such that A(k + )" 4+ u(j + s)™ + ¢ > 0 for all positive integers k and

j.
4.6.1 A Nonlinear Filbert Matrix

For the matrix M, we will give explicit formulz for its inverse, LU-decomposition, the
inverse matrices L' and U~! as well as we present its Cholesky decomposition when

the matrix is symmetric, that is, the case r = s, n =m and A = pu.
We obtain the LU-decomposition:

Theorem 4.25. For k,j > 1,

j j-1
(HU)\(j-‘rr)”-i-u(t-i-s)m-i-c) <HUA(k+r)n_)\(t+r)”>

t=1 t=1
ij -
(HU)\ k+r)n4p(t+s) "L—I—c) <HU)\ (G4+r)=A(t+r)" >
t=1 t=1
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and

k—1 k-1
(HUA(k—i-r)n A(t+r)n ) (HUN(J+S ™l (t+s)m >

Uyj = (_1)()‘+M)<§)+()\T+us+c)(l€+l) k_t1 1 .
(HU/\(k+T)"+M(t+S)m+C> (HUu(j+S)m+/\(t+r)n+c>
t=1 t=1

Similar to the previous sections, the determinant of the matrix M can be derived, as

well. We also determine the inverse matrices L' and U~ !:

Theorem 4.26. For k,j > 1,
k—j—1

U/\ k+r)n—A(t+j+r)"
1

.
)

ngjl = (- 1)(/\+1) k)X (3T s

k)

U(t+j41)m = A(G+r)n

1
ME+r)"—A(t+r)" >

HU/\ (+r)—A(t+r)" >

t

k
U)\(J—I—T)"—I—u(t—i-s)m—i-c

m
Qi

U)\(k:Jrr )4 p(t+s)™m+c

1 t=1

i
T
i
I

/‘\(‘\
Il
/_\

t

and
Uk—l — (- 1)A(jgl)+u(’“§1)+k(uj+1)+j(>\+1)+(>\r+us+c)(J’+1)
j

Jj—1 J
(H Uu(k-‘rs)m-i-)\(t-‘rr)"—i-c) (HUA(j-i-r)"-&-u(t-&-s)m-&-c)

t=1 t=1

% j—k i1 )
<HUu(k+s ) > (HU (s+1-t)m u(kJrS)’”) (HUA(j+r>nA(t+r>n>

t=1

Now we give the explicit expression for the inverse matrix M 151.

Theorem 4.27. For 1 <k,7 <N,
Mk_'l _ (_1)k+j+>\(jgl)+,u<k;1)+N()\j+uk+c+)\r+ys)+c+)\r+us
J
1

k—1 7—1
U A(G+r)r+u(k+s)m+c (HU k+s)™—pu(t+s)™ ) (HU)\(j+T)” A(t+r)™ )

t=1 t=1

N N
(HUA<t+r>"+u<k+s>m+c> (HU#(t+S)m+/\(j+r)"+c>

t=1

N—j :
(HUH Nets+1—t)m—pu(kt-s)m ) <HUA(N+r+1 —tyn— A(Hr)n)
t=1

t=1

X
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Finally, we provide the Cholesky decomposition of the matrix M when it is symmetric,

thatisr =s, n=m and A = pu.

Theorem 4.28. For k,j > 1,
j—1
HU/\(kJrr)n,/\(tJrr)”
Crj = \/(—1)0”“)U2A(j+r)"+c-
HU)\(k+T)”+/\(t+T)"+c

t=1

Note that when n=m =1, A=pu=1,r=s =0 and ¢ = —1 with p = 1, the matrix
M is reduced to Filbert matrix and so we obtain the results of [64]. Similarly, when
n=m =1and r = s = 0 our results cover the results of [70]. For the cases n > 1 or

m > 1, our results are all new.

Proofs

Define the following four sums:

min(k,j)
Z )\Jru ()\T+NS+C)(d+1)U)\(d—‘r?")n—f—u(d-i-s)m-i-c
d=K
d—1 d—1
(HU/\ k) A(t+r)n > (HU;L j+s)m—,u(t+s)m>
t=1 t=1

d d !
(HUA kE4r)n+p(t+s)m+c ) <HUu (J+s)m™+A(t+r)" +c>
t=1 t=1

U)\(d+r)”)\(t+j+r)">
; d—j+1 =1
Se(K) = Z(_l)(/\Jrl)(dJrj)Jr)\( 2 )UA(d+T)n+M(d+s)m+c (dt —

i
’ U/\(t+j+r)”—>\(j+r)”>
t=1
d—1 d—1 j—1
(HU)\ Fb ) A () ) (HU)\(j+T)"+/L(t+S)m+C> ( U)\(d-i-r)n_/\(t-i-r)”)
> t=1 t=1 t=1
d—1 ’
(HU)\(d+r)n A(t+r)m ) <HU)\ k+r "+u(t+s)m+c>
t=1 t=1

d—j—1

<.

VY
o

UA(d+r)n_>\(t+j+r)”>

K
S7<K) _ Z (_ 1)k,ud+)\dj+(>\r+,us+c)dU)\(CH_T -

<.
I

yrta(d )
( Ux(t+j+r>"—x<j+r>">

t=1
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d—1 d—1 j—1
(HUN(k-&-s)m-i-)\(t—l—r)”—i-c) (HUA(]-H’ Yot u(tts) m+c> (HU)\ (dbr)mA(tbr)n )

t=1 t=1 t=1

— d—1
<HU d+s+1—t)m—u(k+s)™ ) <HU)\ dtr)n—A(t+r)n )

X

and
K
Z deﬂt +dU,\ dr)nd-p(d-s)m4-c
=k
d—1 d—1
(HUM (k4-8)m+A( t+7“)”+c> <HUu(j+s)M—u(t+s)M>
t=1 t=1

d—k d ’
H (d+s+1—-t)m—p(k+s)™ HU/J, (G+s)m+A(t+r)"+e
t=1 t=1

We need the following lemmas for later use.

Lemma 4.8.

K-1 K-1
K
(_1)()\+#)( 2)+()\ +N5+C)(K+1) (H U)\(k+r)")\(t+7‘)n> (H U”(j+s)m“(t+s)m)

t=1 t=1

K-1
U)\(k—i-'r)"—l—,u(y—i-s)m—s—c (H U)\ (k4r)n+u(t+s) m—l—c) (H w(g+s)m™+A t+'r)"+c>

t=1

55(K) =

Proof. We will use the backward induction method. For brevity, denote the summand
term by s4. First, assume that £ > j so when K = j the claim is obvious. Similarly
for the case j > k, the claim is clear. The backward induction step amounts to show
that

S5(K —1) = S5(K) + sk—1.

By the definition of S5(K) and sx_1, consider the RHS of the above equality

K-1 K-1

t=1

UN(ktryr+u(i+s)m+c "
H U/\ k+r)"+p(t+s)m™4c H w(G+s)m+A(t+r)"+c

t=1

K—1
+ (_1)(>\+u)< 2 )+(/\T+MS+C)KUA(K—1+r)"+p(K—1+s)m+c

K-2 K-2
<H U)\ k+r)v—X t+r)") (H Uu(j+s)mu(t+s)m>
t=1 t=1
K-1 1
(H UA (k4r)r+pu(t+s 7”+c> (H U,u (j+s) 7’L+)\(t+r)"+c>
t=1 t=1
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t=1 t

Un(hr)+u(j+s)m -+ ‘ K
Unbryrtutirsymte | | [T Uutesymerisrynse
t

=1 t=1

| =

K—2 K—2
(_1)(A+u)(K;1)+(/\r+us+c)K <H U/\(kJrr)"/\(tJrT)") (U Uu(j+8)mu(t+s)m>
- K 1

X [(=1)A+ ) (K = 1) + (A + 8 + ) Un(erry-a(re—100)n Un(es)m— (- 145y

+U)\(K71+r)”+,u(K71+s)7”+CU)\(k+r)"+y(j+s)""+c] .

By using the fact U,, = (—1)""'U_,,, the last expression in the bracket is rewritten as

(_1)>\(k+7’)+u(j+s)+cU>\(K_l+r)n_)\(k+r)n Uu(K—l—i—s)m—u(j-i-s)m

+ UA(K—H—T)"—HL(K—1+s)m+cU)\(k+r)"+u(j+s)m+c (47)
and then by using the identity (2.4) for m — u(j +s)" + MK —1+7r)"+¢, n —

AME4+r)"+u(K—1+s)"+cand k — pu(K —1+5)™ — p(j + s)™, the expression in
(4.7) equals

U)\(k+r)"+u(K—1+s)m+cU/L(j+s)m+>\(K—1+7’)"+c'
Finally, we write

(_1) ()\Jru)(K;l)Jr()\rJruerc)K

S5(K) + SK—1 = U
A(k+r)m+u(j+5)m+c
K-2 K—2
( 11 UA<k+r>w<t+r>"> ( 11 Uu(j+s>mu<t+s>m>
v t=1 t=1
K—2 K—2 ’
( H U A(k+r)"+u(t+s)m+c> ( H U#(j+s)"b+k(t+r)"+c>
t=1 t=1
which completes the proof. O

Lemma 4.9. For k > j,

K K
A7) 4O 1)K 4) (HUA(k+r)n)\(t+r)"> <HU/\(j+r)"+u(t+s)m+c)
(=17 2 t=1 t=1
U(k+r)m—AG+r)n K K
HU)\(k—‘rr)”—Fu(t—i—s)m—i—c H U)\(t—i-j-‘rr)”—)\(j-‘rr)"

t=1 t=1

Se(K) =

Proof. Denote the summand term by s;. By using induction, the case K = j is obvious.

So the induction step amounts to show that
Sﬁ(K + 1) = SG(K) + SK4+1-
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So after some simplifications, Sg(K) + sk equals

K K

t=1 t=1
U (k) — Ay K+1 K—j+1
H U)\(k+r)”+u(t+s)m+c H U)\(t—i-j-‘rr)”—)\(j—i-r)"
t=1 t=1

X [Un(etryn—2G+r)m Un(E+14r)n 4 u( K+ 148)m 4

—UA(k+r)"+p(K+1+s)m+cU>\(K+1+r)"—A(j+r)n} .

Since again by (2.4), the last expression in the bracket equals

Un(k1r)n—A(F 4+ 140 UG 4r)n 1 (K4 148)m +e5
the claim follows. O

Lemma 4.10.

K
U s)m r)n+e U i Lp)n R
(—1) KA tuhtetdrtus) (t ulkte) A+ T) +> (H AGH+r)™+pu(t+s) +>

t=1

UG +ulk+s)m+e = .
H Up(t+k+s)m—p(k+s)m H Ux(tti+rn-AG+r)m
t=1

S7(K) =

Proof. 1If j > k, the case K = j easily follows. If £ > j, then

k—1
(_1)k(uk+)\j+>\r+us+c (HU k+s)m+A(t+r) "+C> (HU)\ (j+r) "+u(t+s)m+c>

S:(k) = t=1
(k) Ur(k4r)yn—A(+r)n k—j—1
| RO
t=1
U Sm r” c U r)n s)M e
(_1)k(uk+)\j+)\r+us+c (H (k+s)m+A(t+r) +> (H AG+r)"+p(t+s) +>
 Dagenmsutk sy e '
| J LG,
t=1

So the first step of induction is complete. For the next step, we have

K K
(_1>K(/\j+#k+c+/v+us (HU” (k+5)m+A( t+r)"+c> <HUA(j+T)"+p(t+s)m+c>
SH(K +1) = t =1

U)\(]+r)”+u k+s)m+-c K—j
H Uu t+k+s)™—pu(k+s)™ H U)\ (t+j+r)n=A(G+r)™
t=1

t=1

+ (= 1) WA st KR s (s e
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(HUu(kJrs YmA(t+r) "Jrc) (HU)\(3+T "+u(t+s)m+c>

% t=1 t=1
K+1—-k K+1—j )
H U,u,(t—l—k—l—s m—p(k+s)™ H U)\ (tE+g4+r)r=A(G+r)™
t=1 t=1

which, after some simplifications, equals

(_1)(uk+>\j+)\r+us+c)(K+1) <HU (k+s)m+X(t+7) "—l—c) (HUA ]+r)"+u(t+s)m+c)

t=1 t=1
Ungrymsptersyme  (KIH Kl
H U (t+k+s)m—pu(k+s)™ H U)\ (t+j+r)m=A(G+r)™
t=1 t=1

X [(=D)MIFDFHEFITETT ey persym Un(E 140G

+UA(K—}—1+7”)"+;L(K+l+s)m+cU>\(j+r)"+u(k+s)m+c:| .

By the identity (2.4) with appropriate parameters, the last expression in the bracket

equals
Uy(k+s)m+/\(K+1+r)7l+c U)\(j+r)"+,u(K+1+s)m+ca

so the proof follows by induction. m

Lemma 4.11. For j > k,

K
( 1)Kuk+,u( )+K (HUN(k+S m-‘r/\(t-H” C) (HU ]+5)m_u(t+s) )

t=1

Un(ktryntu(itsymre (K '
H U,u K+s+1-t)m—pu(k+s)™ H w(G+s)m+A(t+r)"+c

t=1

SS(K) =

Proof of Lemma 4.11 can be done by induction similar to the previous two lemmas.
Now we shall give the proofs of the main results for the matrix M.

For the matrices L and L™!, it is obviously seen that kaL,;kl = 1. For k& > j, by

Lemma 4.9
Z Lde;jl - Sﬁ(k?) -
j<d<k
so we conclude
> Laly' = [k =],
j<d<k

as desired.
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For the matrices U and U1, U,;jUkk =1 is clear. In order to show the case 5 > k, by

Lemma 4.11, we have

Y UdUy= (kl — ) Ss(j) = 0.

k<d<j
- [[Uuwsom-sierom
t=1

Thus U=+ U = I, as claimed.

For the LU-decomposition, we have to prove that

> LyaUy = My,

1<d<min(k.j)

By Lemma 4.8, we obtain

1
Z LiqUgj = S5(1) = ;

1<d<min(k,j) Un(ketr)n+(ts)m-te
which completes the proof.

For the inverse matrix My', we use the fact My' = Uy'+ Ly'. Consider

(- 1)u(k;1)+k+xr+us+c+j+A(f;1)

—17—-1 _
Z de Ldj T k-1 j—1
max(k,j)<d<N
) (HUu(k+8)m—u(t+8)m> (HUA<j+r>n—A<t+r)n>
t=1

t=1

S57(N)

= (My")kj-

The Cholesky decomposition follows by Corollary 4.1. Thus all proofs are complete.

4.6.2 A Nonlinear Lilbert Matrix

Now we give the LU-decomposition of the matrix T, inverse matrices L=! and U™},
inverse matrix 7! and its Cholesky decomposition when 7 = s, n = m and \ = p,
respectively. We don’t give the proofs of these results because they may be done very
similar to the proofs of the previous subsection. One needs only very small and proper

changes in lemmas given above.

Theorem 4.29. For k,j > 1,

7j—1
<HV)\ (G+r)+p(t+s) m+c> (HU/\ kA7) —A(t+r)" )

t=1 t=1
ij ==
<HV)\ k+r)r4u(t+s 7”+c> (HU/\ (G+r)n=A(t+r)" )
t=1
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and

= (- 1)(A+u (5 )+(/\T+us+c+1)(k+1)Ak—1
k—

U)\ k+r)n—A(t+r)n ) (HUu (J+s)m—p(t+s)” )
t=1
k-1 k )
(HV)\(k+T)”+u(t+s)m+c> <Hvﬂ(j+s)m+)\(t+r)"+c>

1

X

t=1 t=1

where A is defined as before.

Theorem 4.30. For k,j > 1,

k—j—1

—Jj=
. H U)\ k+r)n—A(t+j+r)"
lejl _ (_1)(>\+1)(k+j)+>\(’“’;“) t=1

ML)
([ )

H U(t+j4r)m—A(G+r)n

t=1

7j—1
H AEk+r)"=A(t+r)"

k—1
(HVA<j+r>n+u(t+s>m+c

/\
||

> t=1 )
k—1 —
(HV/\(k+r)”+u(t+s)m+c (HUA(J”)" A(t4r)r )
t=1 t=1

and

Uk_jl _ (_1)/\(j;rl)+u(’“;rl)+k(uj+1)+j(A+1)+(Ar+us+c+1)(j+1)A1—j

j-1 j
<Hvu(k+s)m+/\(t+r)”+c> <HV)\(j+7’)”+u(t+s)m+c>

t=1 t=1

k—1 i—k 7j—1 )
<HUu(k+s " pu(t+s)™ > (HU (1) —#(k+s>m> (HUA@M"—A(WW)
t=1

t=1 t=1

Theorem 4.31. For 1 <k,j <N,

)k+1+>\ (3 (M5 N k) +(N+1) (c+Ar+ps+1)

k—1 7j—1
HU/L k+s)™—u(t+s)™ ) <HUA ()P —A(t+r)" >
t=1

1
M, =

t=1

N
HV)\ t+r)+p(k+s)m+c V,u t+8)m+A(j+r)"+c
t=1

t=1

N—k N—j :
(H U,u, N+s+1—t)m—p( k+s)m) (H UA N+r+1-t)n=A(j+r)" >
t=1

t=1

AN V)\ (J+r)m+pu(k+s)m+c (

X




Theorem 4.32. For k,j > 1,

j—1

| | L

Chj = — \/(_1)(C+1)(j+1)Aj71V2/\(J'+T)”+C'

HVA(k+r)n+A(t+r)n+c

t=1

Here note that when n = m = 1 and » = s = 0 the above results are reduced to the
results of [70]. Similarly, whenn =m =1, A=pu=1,r =s =0 and ¢ = —1 with
p = 1 the matrix M is reduced to the usual Lilbert matrix. For the cases n > 1 or

m > 1, our results are all new.

4.6.3 ¢-Analogues

We present the g-analogues of the results of Sections 4.6.1 and 4.6.2. The results for the
matrices M and T given previously come out as corollaries of the below results for the
special choice of ¢ = 3/, so that the results, will be provided after a while, are more
general. Nevertheless, we prefer to give first the results related to the matrices M and
T because they look nicer. We don’t provide the proofs of the results of this section.

They could be similarly done by finding the g-forms of the lemmas given before.

We denote the g-analogues of the matrices M and T" by M and T :

. ‘ 1—
DB )™ e 1] g ) () e 1] q
Mkj =1 q2 1 . q)\(k+’l”)"+ll(]+s)m+c
and
I b SN ()™ 1
77<I] =1 q2 1 + q)\(k?+7‘)77+,u(]+5)m+c7
respectively.

For the convenience, we will define a generalization of the g-Pochhammer symbol with

two additional parameters in which one of them is in geometric progression as follows
(a q)(rm) _ (1 _ aq(l-l—r)m) (1 . aq(2+r)m) o (1 _ Clq (n+r)™ H 1 _ aq t+7‘)m
t=1

with (a;q(“m))o = 1, where a is a real number, r is an integer and n, m are positive

integers. As examples, we note that

L) =(1—q)(1—qg"...(1—q"),
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(a:¢%) 1 = (1 - ag®)(1 — ag™®) ... (1 — ag*™"),
(—; )5 = 1+ )1+ )1 +¢°) - (1 + ¢V,

(a; )P = (1= agM)(1 = ag™)... (1 - ag™) = (ag*; ¢*)n.
So the relationship between the usual and general g-Pochhammer symbol is

(7;0)n = (7;9)5 Y.

As the g-analogues of the results related to the matrix M, we present the following

theorem for the matrix M.

Theorem 4.33. For the matric M and k,7 > 1,

(qA(j-i-r)"-‘rc; qu)ésvm) (q)\(k-‘rr)"; q—A)(Tvn)

Ly = g2 n)m=Gn A" = (k)] 7
(gAEFr)" e qu)gs,m) (rG+)" ‘J*A)YL?
Uyj = g 2P FuG4) ™ et AR b)) ™ el =M b)) —e 1]
(1= q) (q A" ) ") (gruata; gyt
(AR e qu) o) (qui+syre; gy

E,;jl — (_1)/\(k‘+j)+1i/\[(k+7")”—(j+?")"]q/\(j—k’)[(j+T)"—(k+?“)"]+%)\[(HT)"—(k’+r)"]
AEr)m. A\ O AGar) e, (8m) ¢ A(ktr)™. —A) (™)
(@5 0) T (@0 e ) T (e

—A(G4r)n. j+7,n r)+4c. $,m ). =2\ (n)
(0 QI (e (T (PO ) )

X

(3=9) k)™ +AG+r)"+l+3

Uk_jl _ (_1)u(k+s)+)\(j+7")+ci[—u(k+s)m—)\(j-i-r)"—c—l}q
kts)m+e. X)) A(G+r)n+e. (sym)
. (qu( +s)" e )j—l (q (+r)"+ 7qu)j
m s,m _(idr)n. N _ s)m. k+s,m)’
(1 — q) (qrtkto); g (g2 g0) 1) (gnhrarm; gy o)

(M]—Vl)kj _ (_1)uk+/\j+)\r+us+ci[—u(l€+s)m—)\(j—i-r)"—c—l}q(%—N)[M(k—&-s)m—&-)\(j-&-r)"—i-c—&—l]-i—%

(qu(k-i-s)m—‘rc. q)\)(rv") (q,\(j+r)n+c; qu)(s,m)

Y N N
X
(L= g)(1 — g omlbrsy™se) (quliers)™, gu) 2710 (g=2040"; )7
1
m k+s,m (i) itrn
(g rtets)m: gy EFsm) (g=aG+n) 7QA)S{/J_FJ- )

and when r = s, n=m and A\ = y,

Croj = (_1)A[jr+k+(§)]+j+1i[)\(k+r)"f>\(j+r)”+1—cj}
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A(k+7‘) (T,?‘L)
w AP+ A e 1A ) (& ),

1
(At e ¢ )gm)

y \/(1 g)q MRS (LA G (] oA ey,

Similarly, as the g-analogue of the matrix 7', we present the following theorem.
Theorem 4.34. For the matriz T and k,j > 1,
Ly q% [(ktr)™ = (G+r) A G+r)" = (k+7)"]

j—1

M@0

( A(G+r)"+c. g )( m) (q)\(k+r)”; q—)\>(7’7”)
J
( (s,

)\(kJrr ) +-c- q,u)

Uy; = g DG a4 kel + S ARAT pa(i+5) 4] (1 )h=14{=MEr)" —pu(+3)" ~d
A+, NN Gs)™. (s,m)
(q ( + ) ’q )k_l (q /’L(]“l‘ ) 7qu)k_1

x (sm) : )
(=gt gu) 2T (—grlate)mEe; ),

L:l;jl = (- 1)A(k—j)+1i>\[(’f+7“)"—(j+7“)”]qA(j—k)[(j+7")"—(k+7“)”]+%A[(J’+T)”—(k+7")"}

(q*A(kJrT)”. q,\)(j+m) (_q/\(j+r)"+c; qu)](i’;‘) (q/\(kw)”; q—,\)(m)

) k—j—1 Jj—1
X ‘ ,
(g 20 PO (=g e g (A0 )
L= q(%—j)[u<k+s>m+x<j+r>n+c}(_1)j—1i[—u<k+s>m—A(j+r>“—c}
(—grkram e, ) W? (=g e i) (s,m)
X ) J_ ) ]
_ s)ym. s,m (i) rn _ s)m k+s,m)’
gtk gy ) (A5 ) ) (qratra; guyErsm)

(7-]\71)kj _ q(%—N)[/\(j-i-r)"-i-u(k-i-s)m-i-c](_1))\j+uk+c+>\r+us+N+1i[fA(jJrr)"f,u(kJrs)mfc]

(—grhromre; A )0’”)( P+ qu>(5m)

X
j )™ s)M4-c s (k—i—s m) . _ ryn. (j+rn)
(1+ g+ Fplkts)m+ ) (g * p(k+s)m q#) (q A(G+r) ’qu_j
y 1
(qrlts)™: qu) ™) (g=AGH+" ) gf_v?

and when r =s, n=m and \ = p,

Coj =(— 1)]+1+>\( )N G=1)[=A(k+r)"=AG+r)" fcﬂqg[k(lwrr) FAGHT) ] HAG—1) (k7)™

(q—)\(k—i-r)". q)\)(’"v”)
) jzl )\/ 7)\(j+r)n7%(_1)/\(j+r)+(c+1)(j+1) %(1_‘_q2)\(]+r)n+c)‘
(_q)\(k+r)"+c; q)\>jr’n
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Note that the determinants of each matrices studied in this section can be evaluated
by the multiplication of the diagonal elements of the related matrix U. We don’t state

them because they are overlong.

If you look at the g-forms of the matrices M and 7T, you may realize that there is some
separable parts. So one may give some simple formulae for these matrices by using
Proposition 4.2. However we would prefer to present our results in this form because
nonlinear generalizations of the Filbert and Lilbert matrices can directly obtain by

choosing ¢ = §/a.

At the end of this section, we will give a nonlinear generalization of the Hilbert matrix
as a corollary of Theorem 4.33 and Proposition 4.2. Namely, when ¢ — 1 the entries
of the matrix M takes the form

1

k= ME+r)n+pu(j+s)m™+c

Since the factor in front of the ratio is separable with regards to the variables k and j,
by Proposition 4.2 and Theorem 4.33, one could derive the results for the matrix M
with entries for k,7 > 1,

R 1
My, = ,
MR+ p( s+ e

which is a nonlinear generalization of the Hilbert matrix.

We only state the LU-decomposition of the matrix M by the following corollary. The

others can be similarly derived.

Corollary 4.14. For k,j > 1,

(H[A(jJrr) + u(t + s)™ >(H (k+r)" )\(t—H")”])
=
(H[A(k+r) + u(t + s)m >(H (j 4 r)n )\(t+r)”]>
and
k—1 k-1
(H At +7r)" — Xk +r)" ) < —u(j+s)m]>

Ukj _ t=1 t:kl

(H (k—i—?"”—l—u(t—i-sm—i-c]) [TikG+s)m +A(t+r)n+c]>
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4.7 Hessenberg Determinants via Generating Functions

As mentioned in Section 3.2.5, the determinants of the Hessenberg matrices are inves-
tigated by several authors. In [7], author introduced a new method to compute the
determinant of a special class of the Hessenberg matrices via generating functions. In
this section, we extend his method to new three classes of the Hessenberg matrices.
Another extension of it to the convolution-like matrices could be found in [93]. This
method is based on to determine the relationships between determinants of the Hessen-
berg matrices whose entries are terms of some certain number sequences and generating
functions of these sequences. As an application of our main results, we give an elegant
method to compute the determinants of the Hessenberg matrices whose entries consist
of the terms of the higher order linear recursive sequences, which based on to find an
adjacency-factor matrix. Our results cover many previous results about determinants

of the Hessenberg matrices. The obtained results are presented in [8].

In Section 4.7.1, we introduce these three classes of the Hessenberg matrices and show
how to compute determinants of these matrices. Also we provide many useful examples

to understand the method well.

We would like to remind that we use n instead of N for the order of the matrix

throughout this section.

4.7.1 Main Results

Let {b, }n>0 and {c,, }n>1 be any sequences. Denote their generating functions as B(x) =
> k>0 bpa® and C(z) = D k1 cpx”, respectively. The capital calligraphic letter denotes

the generating function of the determinant of the related matrix.

To generalize the result of |7], we define the Hessenberg matrix H,(r, s) of order n + 1:
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For arbitrary nonzero real numbers r and s,

[ bo r 0 |
by 1 s
b Co 1 r
Hy (r,s) == bs 3 C2 €1 S g (4.8)
bn1 Cno1 Cpg -+ oo 1 dy(r,s)
b,  C, Cpi Oy c1

where
r if n is even,

dn(r,s) =
s if n is odd.

Briefly, we use H, instead of H,(r,s) if there is no restrictions on r and s. The case

r = s =1is reduced to matrix considered in [7].

To compute the determinant of H, via generating function method, we have the fol-

lowing result:

Theorem 4.35. If

B(z) (C(=2) + ) = B(==) (3*)
5°) (Cla) + C(=2)) + 75’

2

Q
2
3
é
+

then
(i) for even n such that n = 2t,
det H,, = r'sth,,
(i1) for odd n such that n =2t + 1,
det H, = —r'"s'*1h,,

where H(x) is the generating function of {hy,}n>o.

Proof. We consider the infinite linear system of equations

r 0 ho b()
axr ST hq bix
cor? cx? ora ho byz?
= (4.9)
e cor® i sad hs byz3
car? 3zt coxt it rat hy byt

103



Here we write

rho = by
crhox + shiz = bix
cohor? 4+ crhi2? 4 rhox? = byx?
csho® + cohi 2 4 crhoa® + shyx® = bya®

By summing both side of the above equalities and (2.13), we obtain

H(z)C(z) + 7 Z hopa®® + s Z hop12°* ! = B(x). (4.10)
k>0 k>0

By the relations (2.14), the above equation could be rewritten as

-7'—3-

Hx) o) + T;S} +H(-2) |2 | = Ba).
Taking (—z) instead of z, we get
H(—z) |C(~2) + = ; S} +H(x) | 5 °| = B(—a).

Solving these two equations in terms of H(x), we get
B(z) (C(=2) + ) = B(==) (3*)

H(z) = C()C(—2) + () (C(z) + C(~x)

~— N
+
3
Va)

as desired.

Now we examine the relationship between the sequences {h,},>o and {det H, },>o. If
we consider the system (4.9) for the only first n + 1 equations and take z = 1, the

system (4.9) turns to

r 0 ho b(]
C1 S hl bl
Co C1 r h2 b2
c3 ¢ ¢ S hs b3 ’
Cn Cp—1 Cp—2 - dn+1 (7", S) hn bn

where d,(r, s) is defined as before.

det H,
By Cramer’s rule (see page 24 in [43]), we obtain h, = (;1 — for even n such that
ritls
det Hn .
n = 2t and h, = _te— for odd n such that n = 2t + 1, which completes the
P+ gt
proof. O
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We want to note some important and useful special cases of Theorem 4.35 with the

following corollaries:

Corollary 4.15. For the matriz H(1,1), we have that h, = (—1)"det H,, and the

generating function of the sequence {det H,(1,1)},>0 is
B(—x)
) = 1+ C(—x)

This result was firstly given in [7]. We refer to it for some examples.

Corollary 4.16. For the matrizc H(—1,—1), we have that h, = —det H, and the

generating function of the sequence {det H,(—1, —1)},>0 is
B(x)

H(zx) = 1_—0@) (4.11)

Let’s give some examples.
Example 4.1. For n > 0, we have that

P -1 0

EFE 1 -1

FF 1 1 -1 .

FF 0 1 1 -1 = Frp1Frgi—k

k=0
E, 0 0 - - 1 -1
Fpor 0 0 oo oo 1 1

Proof. b, = F, 41 and {¢,}n>1 = {1,1,0,...}, then B(z) = ——; and C’(sc) = z+a2

So the generating function of {det H, (—1, —1)},> by Corollary 4.16, is xg 5, which

1—z—
is the generating function of {7 _, Fk+1Fn+1_k}n20, as well. Thus the proof is complete

by Theorem 2.5. O

Example 4.2. For n > 0, we have that

2 if n is even,

—1 if n is odd.

Ln—l “4n-1 T4Ln-2 _Fl —1
Ln _Fn —4Ln-1 " _F2 _Fl
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Proof. Since b, = L, and {c,}p>1 = {—Fu}us1, B(z) = —22%; and C(z) = —2

1—x—22 1—z—x2"

By Corollary 4.16, the generating function of {det H,,(—1,—1)},>¢ is

_ Bx)  2-x
S 1-C(x)  1—2%

H(z)
which gives the periodic sequence {2, 1,2, —1,...},>0. ]

Let {b,} be any sequence and {c,},>1 = {1,0,0,...}. Since -~ B(x) is the generating
function of the sum of the first nth term of the sequence {b,}, by Corollary 4.16 and

Theorem 2.5, we have
det H,(—1,-1) = Y by
k=0

For example,

1 -1 0

1 -1

;0 1 -1

0 0 1 -1 = i1,
L0 0 1 -1

HLH o 0 --- -+ 0 1

where .77, stands for nth harmonic number, which is ), _, %

Since the permanental and determinantal relationships between the matrices H,(1,1)

and H,(—1,—1) are
det H,(1,1) = perH,(—1,—1) and perH,(1,1) = det H,(—1, —1),

one can easily derive some permanental relations for the Hessenberg matrices by the

help of the above corollaries.

Corollary 4.17. If

then we have

We shall give an example:
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Example 4.3. If we take {c,} = {(—=1)"F,_1} and define the sequence {b,}n>o as

bon = —bony1 = Fonyo, then for even n such that n = 2k, the matriz H,(1,—1) takes

the form
F 1 0
—F 0 -1
Fy F 0 1
HQk (17_1> = —F4 —F2 Fl 0 —1
—Fy, —Fopo Fopz - oo 0 —1
I Forvo  Fopy  —Fopg -+ -+ Fy 0 |

Fy 1 0
—F, 0 —1
Fy F 0 1
Hypr (L,-1)=| —-Fy —F Fo 0 -1
Fo,  Fopo —Fop3 -+ -+ 0 -1
| P —Fopo Fopp - - F1 0]
So that
det Hop(1,—1) = (—1)*Fypyy and det Hy,_1(1,—1) = (=1)"Fy.
Proof. The generating functions of {b,},>0 and {¢,} are B(z) = (1%%%)_(‘1”%%2) and

C(z) = Hgg—iﬁ, respectively. So we get H(z) = ;——. By Corollary 4.17, the claim
follows. 0

Corollary 4.18. For d # 0, if

then
det H,(d,d) = (—1)”d”+1hn

and the generating function of {det H,(d,d)},>0 is
H(x) =d- H(—dzx).
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Example 4.4. If b, = —(J, + 1) with by = —1 and ¢, = 2, then

—1 2 0
—(H[+1) 2 2
—(AHG+1) 1 2 2
21 2 2 = (—1)" 2"

- (WB+1)

=
\}
N}

— (-1 +1) % =
— (S, +1) % 2 ... ... 1 92

n—1

~
)

Proof. 1f we take d = 2, b, = —(, + 1) with by = —1 and ¢, = 2 in Corollary 4.18,

then we get

In(l—2)—1
11—z

Thus H(z) = 5 and det H,, = 2(—2)"h,,, which give us det H, = (—1)""12", as

2x—2

B(z) = and C(z) =In(1—z)2

claimed. O

When ¢y = d, by Corollary 4.18, we obtain H(x) = ggi;, where C(z) = 3, cra®.

For example, if we choose B(x) = z +42% + 2® and C(z) = (1 — 2)*, then

0 1 0
1 -4 1
4 6 —4 1
1 -4 6 -4 1
= (1)

0 1 -4 6
0O 0 1 -4 —4 1

6 —4 1
0O 0 0 O -4 6 -4

(n+1)x(n+1)

Now we recall an already known result given in [89]. But we will give an alternative

and simpler proof for it.
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Corollary 4.19. If {cn}n20 is any sequence such that co # 0, then we have

C1 Co 0 s 0
Co C1 Co tee 0
Co
_[.n
C3 C2 1 Tt 0 - ['T’. ] C (—CO:E)7
Chp Cp—1 Cp—2 -+ C
nxn

where C (x) = 7,50 cxa™ and [0] is the coefficient extraction operator, i.e. [x"] 3,5 apz® =

(.

Proof. First we consider an equal determinant to the claimed determinant by the fol-

lowing equality

1 ¢ O 0 0
C1 Co 0 s 0
0 g ¢ 0 0
Co C1 Co s 0
0 Cy C1 Co 0
C3 Co c1 e 0 =
0 C3 Co C1 0
Ch Cn—1 Cp—2 -+ C y 0
nxn
C Cp— Cp— e C
n n—1 n—2 1 (1) % (n+1)

The value of the determinant on the RHS of the above equation could be easily found
by Corollary 4.18. So that the claimed result directly follows. n

Let’s give an example related to Theorem 4.35.

Example 4.5. Let {b,}n>0 be the alternating of the sequence A135491 in [94]. Then
forn =2k,

by 1 0
by 1 -3
b 1 1 1
by 1 1 1 -3 = (=3)" Thpps.
by 0 O - oo 1 =3
by 0 0O oo v 1 1

Similarly, for n = 2k + 1, determinant of the corresponding Hessenberg matrix is equal

to —Tory3(—3)*, where T, stands for the nth Tribonacci number defined in Table 1.
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Proof. The generating functions of {by, }n=0 and {¢, } are B(z) = =282—22 and C (z) =

1+z—22+x
x + 22 + 23, respectively. By Theorem 4.35, when r = 1 and s = —3, we obtain
det H, = Tpi2(=3)* for n = 2k and det H, = —T, o(=3)"" for n = 2k + 1, as
desired. O

Up to now, we consider certain Hessenberg matrices whose superdiagonal are constant
or two periodic. Now we give a general idea for Hessenberg matrices with arbitrary
superdiagonal entries. To show how this idea will be applied, we present two Hessenberg
matrices whose superdiagonals will consist of the terms of two special sequences, {n}

and {2"7'}, respectively.

Let {b,}n>0, {¢n} and {d,},>0 such that d,, # 0 for all n > 0 be any sequences. First

define the Hessenberg matrix H,, of order n + 1 as

bo dy 0
bl C1 d1
b2 Co C1 dg
Hn = b3 C3 Co Cq d3
bn—l Cph—1 Cp—2 ' e C1 dn—l
bn Cr, Cp1 '+ v Co c1

Now consider the following infinite linear system of equations

do 0 hO bO

c1xr d1 T hl b1 T
cor? c1? dox? ho byz?
3z cord r® dsad hs B byz3 ’
cazt csxt et ot dyzt hy byt

which gives us the relation
H(z)C(z) + i hidpx® = B(x), (4.12)
k=0
where C(z) = }~,-, cxa®. If we restricted this infinite system to the first n+1 equations
with x = 1, then by Cramer’s rule we have
(—1)"det H,
HZ:O d
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Unfortunately, the series Y~ hrdpx® in (4.12), which is the generating function of the
Hadamard product of the sequences {h,, },>0 and {d, },>0, can not be always computed
explicitly in terms of the generating functions H(x) and D(x). Nevertheless, it is
possible to compute it for some special cases. So that one can compute the determinant
of these type of matrices via generating function method. Now we present two special

example to show how we can use the idea mentioned above.
Theorem 4.36. If {d,},>0 = {n+ 1}, then

zH (z) <€f ﬁdm) = /ef Cix)d‘”B(x)dx +C,

with
det H, = (—=1)"(n+ 1)!h,,

where C' is a constant.
Proof. By (4.12), we have
H@xm@+§§m@wﬁmk:3@%
which, equivalently, gives us o
H(2)C(z) + (zH(z)) = B(z).

By taking y = x - H(z), we get the first order linear differential equation
C(x)
x

y +y' = B(x).

The solution of this differential equation is

Yy = (ef C;)d”C) </ el Ci>dIB(m)dm+C) ,

which completes the proof. Note that the constant C' will be determined according to

the initial value y(0) = 0. O
Example 4.6. For n > 0, we have
1 1 0
3 1 2
5 11 3
7 11 1 4 =(—=1)"(n+ 1)
2n—1 1 1 1 n
2n+1 1 1 Ce 1 1




Proof. Since b, = 2n + 1 and ¢,, = 1, we obtain B(x) = ”11)2 and C(z) = t%. So we

(z—

get
1 x 1
/ dr = —In(z — 1) and i
11—z r—1
By Theorem 4.36, we have that
1 z+1
H = d
T (I)x_l /(x—1)3 z+C
1 x
H =—
x (x)x_l (x—1)2+c
For x = 0, we find that C' = 0 and so
1
H =
which gives det H,, = (—1)"(n + 1)L O
C(x)

For the case b, = ¢, 41, i.e. B(x) = , the relation given in Theorem 4.36 turns

. -1
zH(z)=14C (ef%dm) :
Now we present the other interesting special case with an example which could be
produced by the help of relation (4.12).

Example 4.7. Forn >0,

1 1 0
3 1 2
1 1 4

10 1 (_1),12("‘2“)
10 1 11 8 =
3 2 n!

2" 2(n+1) 1 1 n—1

(n—1)! m=2) (=3 L2

27~ 1 (n+42) 1 1

n! - (m=2) 77 1 1
Proof. Since b, = w and ¢, = ﬁ, their generating functions are B(x) =

e**(z + 1) and C(z) = ze”, respectively. By (4.12), we have
ve"H(z) + H(2z) = **(z + 1).

Hence we find that H(z) = €”, which gives h, = +. Finally, from the relation h,, =

(—1)" det H,

GRRE we obtain claimed result. ]
2 2
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Now we consider different two classes of Hessenberg determinants, which have not
been studied before. We start with the first one: For any nonzero real d, we define a

Hessenberg matrix of order n + 1 as follows:

bo d 0
by cy d
b C dy d
H,, = bs ¢ dy dy d
byt Cpny dpyo o+ - dy d
b e ey e e dy dy

Theorem 4.37. If

B(z) + hoD(z) — hoC(x)
D(xz)+d

H(zx)= with hy = by/d, (4.13)
where B(z) and C(x) defined as before and D(x) = 37, -, dpa®, then

det H, = (=1)"d""h,,
and the generating function of {det Hy, },>0 is

H(x) =d- H(—dx).

Proof. Similar to the proof of Theorem 4.35, we have the following infinite linear system

of equations

d 0 ho bo
ar dx hy bz
cox? dix?  dx? ho B by
csx® dyx® dixd da? hs a byz?
caxt dsxt doxt dyxt dxt hy by

By summing the equations come from this infinite linear system of equations and adding

hoD(x) to the both sides of it, we obtain

hoC(x) + H(z)D(x) + hoH (x) = B(w) + hoD(x),
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which gives
B(z) 4+ hoD(x) — hoC(x)

H(x)=
(z) D(x)+d ’
as desired. Finally, if we restrict this linear system of equations to the first (n +
1) equations and take z = 1, then by Cramer’s rule, we get h, = %, as
claimed. O]

As an example,

Example 4.8. Forn > 0,

Py 1 0
Py Fy 1
Ps F; Py 1
Py By B B = (=1)" Fo,
P, FE, P, - - P 1
Py Fooiv P, -+ -« Py P

where F,, and P, are the nth Fibonacci and Pell numbers, given in Table 1.

Proof. Tt is a consequence of Theorem 4.37. When d = 1, B(z) = Y. Pepra” =

1 _ E_ _zt+a? _ k _  2xta?
—5r— O(7) = Zk21 Frp2® = %% and D(z) = Zk21 Pr2® = 752 then

2

1—2x —
H(z) = r—x

R —

which completes the proof. O

Now we define the second class of Hessenberg matrices of order n + 1, whose columns

are periodic after first column, as follows:

bo d 0
by 1 d

by Co dy d

b3 C3 do cy d

H, = 7
by Cy ds Co d;
d
b1 Cno1 dpo Cu3 dpy -+ s(n,1) d
by, ¢n dp1 Cpog dpgz - s(n,2) s(n+1,1)
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where

¢, if n is even,
di 1f n is odd.

We have the following theorem for the generating function of the determinant of the

s(n, k) =

just above matrix.

Theorem 4.38. If
B(z)(C(—z) 4+ D(—z) + 2) — B(—x
C(z)(1+ D(—x)) + D(x)(1+ C(—x)) + (

p
=
|
S
=

H(x) =

2
s
+
S
U
_l_
DO
=

then
det H,, = (—1)”d”+1hn

and the generating function of {det H,},>o is

H(z) =d- H(—dzx).

Proof. Similar to the previous theorems, if we consider the infinite linear system of

equations, then we obtain

C(x) Y haa™ + D(2) Y~ hopsr2™ ! + dH (z) = B(x). (4.14)

By the formulae (2.14)_, the equation (4.1_4) is written as
H(x) (M + 1) + H(-2) (w) ~ B(a),
which, by solving in terms of H(z), gives us
B(z)(C(—x) + D(—x) + 2) — B(—x)(C(z) — D(z))
C(z)(1+ D(—x)) + D(x)(1+ C(—x)) + (C(—x) + D(—x)) + 2d’

as desired. When we restricted the infinite system of equations to the first n + 1

H(x) =

equations with = = 1, we complete the proof by Cramer’s rule. O

Example 4.9. For even n, we have

—2% 1 1.
L, Fy Lo Fy Lo
: 1
L, F, L,3 F,3 L, 5 --- F; 1
L, F, L,o F,o L,4 -+ Fy, L
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If n = 2k + 1, the determinant of the corresponding matriz is equal to 2F.

Proof. Since b, = L,,, ¢, = F, and d,, = L,,_1, we have B(z) = —22,, C(x) =

1—x—1227 T—z—22
and D(x) = 12_:’“";_“’;2. Hence, for d = 1 by Theorem 4.38, we obtain
—z — 322 + 2%+ 2 1 1+
Ax) = = +
(=D (z+1)(222—-1) 1—22 1—22?
2%k k, 2k k, 2k+1
= Z "+ Z 25 + Z 2"x
k=0 k=0 k=0
— (2k + 1)x2k + Z 2/(:1,2/6-"-17
k=0 k=0
as claimed. O

Remark 4.3. This generating function method works for only Hessenberg matrices. If
a matrix has nonzero two superdiagonal bands, then the corresponding infinite linear
system of equations is inconsistent. So we can’t apply the same steps for this matriz.
In that case, we may reduce this matriz to a Hessenberg matriz by applying some row
or column operations. Then we may use Theorems 4.37 or 4.835. If the number of
nonzero superdiagonals is increased, then computing their determinants via generating

functions would become harder and more complicated.

4.7.2 A Matrix Method to Compute a Class of Hessenberg Determinants

Now we give a new and simple method to compute a class of Hessenberg determinants
whose entries consist of the terms of the higher order linear recursive sequence with

constant coefficients.

Consider the following lower Hessenberg matrix of order n for nonzero real r:

[ Uy T 0 ]
(%) U1 r
Uus U2 U1 r
E,(r) = Uy U3 Ug up . )
Up—1 Up—2 Up-3 Up—yg -+ U T
L Un, Up—1 Up—2 U3 -+ U U ]

where the terms u,’s are defined as in (2.1). Briefly, we use E,, instead of E,(r).
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Indeed one can compute the determinant of the matrix FE, by using the results of
Section 4.7.1. Here we would like to present a new and simple method to compute
det F,,. For this, we define an adjacency-factor matrix related to the matrix E,: Define
a lower triangular adjacency-factor matrix M of order n as
1 if i = 4,
Mij =< —piy if1<i—j<k,
0 otherwise.

Clearly the matrix M is of the form

_ 1 . -
-1
—p2 —p1 1
M = —P2
Pk
| 0 —Pk —p2 —p1 1]
Then we obtain that
ME, = E,,
where )
r if =141,
(E\n> _ b; if j=1and i <k,
K dijy1 fi>j>1landi—j<k—1,
\ 0 otherwise,
with

m—1

m—1
bm = Um — E Um—1P1 and dm = Um — E Um—1Pl — TPm,
=1 =1

for 1 <m<k.

Here since det M = 1, we have det E,, = det E’n. Afterwards, we prefer to compute the
value of the determinant of the matrix En instead of the matrix F,, because the matrix
E, is a banded matrix with bandwidth (k+1) and includes many zeros and so it gives
us advantage to choose the matrix En rather than FE,, regard to use of the results of
Section 4.7.1. That means one can easily apply the results given in Section 4.7.1 to

the matrix En with less computation.
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For example, when r = —1, by Corollary 4.16, we have that

k i—
. ~ . " b1t 1
5" det B 1)a* = 3 dot By~ 1) = itV

— . 4-15)
120 >0 1 § :2;1 i

In [88], author computed the determinant of the matrix E,(—1) when k& = 2 by using
the cofactor expansion and he only gave complicated formula for the case k£ = 3 without
proof. Our method is simpler to determine those formule and also one can find related

formula for larger k with less effort.

As a special case, if we consider the recurrence relation of the sequence {u,} defined in

(2.1) with the initials u_g19 = u_gi3 =+ =u_3 = uy = 0 and u; = 1, then we have

blzlandbi:0f0r1<i§k,

di=14+pand d; =p; for 1 <i<k.

Hence the generating function of the determinant of the matrix E,;,(—1) is written

as
1
: 4.16
L= (1+p1)z —pax? — -+ — pyat (4.16)
Now we give an example to show how to use the method described above.
Example 4.10. For positive integer m, define the sequence {u,} with u, = (m+£—1)

and construct the following matriz G,(m) of order n

Gum) =1 (") () (W) -1
() 1
(") () (M) (") ) -1
L) () () (") () G
Then .
det Gpy1(m) = ((m +1)n —]L_ m(l = k))

Proof. We should find the recurrence relation for the sequence {u,}. From [13], we

recall the Equation 5.24: For [ > 0 and integers m, n,

3 () ()= (20
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which is a variant of the Vandermonde’s identity. If we choose | - m + 1, m — 1,

s —m —n and n — m in the equation above, then we obtain

S S ()

k=-1

n—m-—1
= = 0.
So, we can deduce that

S ()

If we take n = n + m — 1, then we get the recurrence relation of order m + 1 for the
sequence {uy,}:

- m—+1

k=0
with u_,,0 1 = U_ o = =u_1 = ug = 0 and u; = 1. By our method, we see that

the adjacency-factor matrix for the matrix G, (m) is

Thus by (4.16), we find the generating function of the sequence {det G,,11(m)},>0 as

follows
1 - 1
L= (14 (")) o+ ("2 = = () (i hemt (1= =2
In other words, we have that
2] ! — det G (m). (4.17)

(1 —xz)mtl — g

To prove this claim, by Theorem 2.5 it is sufficient to show that

Zz": <(m—|—1)n;:m(1 —k:))xn -4 _x)}nﬂ —

n>0 k=0
Consider,
m+1n+m1— m+1n—|—m(1—kz) N
>3 (! B )e
n>0 k=0 k>0 n>k
k
n>0 k>0
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S - 1>m 2 ((1 —fsw)n

n>0

(1 —z)mtt — g’

which completes the proof.

As a special case for m = 1, we get

1 —1 0
2 1 -1
5 9 .. :n—l (2”_]‘7_1):%7“
1 -1 0| = k
n—1n-2 : 2 1 -1
n n-—1 1 3 2 1

which could be also found in [88].

120



[1]

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

REFERENCES

Hoskins, W.D., Ponzo, P.J., Some properties of a class of band matrices,

Mathematics of Computation, 26, 393—-400, 1972.

Arikan, T., Kilic, E., A class of non-symmetric band determinants with the
Gaussian g-binomial coefficients, Quaestiones Mathematicae, 40(5), 645660,

2017.

Prodinger, H., The reciprocal super Catalan matrix, Special Matrices, 3,

111-117, 2015.

Kilig, E., Arikan, T., The generalized reciprocal super Catalan matrix, Turk-

wsh Journal of Mathematics, 40, 960-972, 2016.

Mattila, M., Haukkanen, P., Studying the various properties of MIN and
MAX matrices - elementary vs. more advanced methods, Special Matrices,

4(1), 101-109, 2016.

Kilic, E., Arkan, T., A nonlinear generalizations of the Filbert matrix
and its Lucas analogue, accepted in Linear and Multilinear Algebra, DOI:

10.1080/03081087.2017.1412393.

Getu, S., Evaluating determinants via generating functions, Mathematics

Magazine, 64(1), 45-53, 1991.

Kilig, E., Arikan, T., Evaluation of Hessenberg determinants via generating

function approach, Filomat, 31(15), 4945-4962, 2017.

Carlitz, L., A note on Fibonacci numbers, The Fibonacci Quarterly, 2, 15-28,
1964.

Horadam, A.F., Basic properties of a certain generalized sequence of num-

bers, The Fibonacci Quarterly, 3, 161-176, 1965.

121



[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21

22|

23]

Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and
Sons, New York, 2001.

Vajda, S., Fibonacci and Lucas Numbers and the Golden Section, Dover

Publication Inc., New York, 1989.

Graham, R.L., Knuth, D.E., Patashnik, P., Concrete Mathematics, Addison-
Wesley, 1994.

Jarden, D., Motzkin, T., The product of sequences with a common linear

recursion formula of order 2, Riveon Lematematika, 3, 25-27, 1949.

Gould, H.W., The bracket function and Fountené-Ward generalized bino-
mial coefficients with application to fibonomial coefficients, The Fibonacci

Quarterly, 7, 23-40, 1969.

Hoggatt Jr., V.E., Fibonacci numbers and generalized binomial coefficients,

The Fibonacci Quarterly, 5, 383—400, 1967.

Kilic, E., The generalized Fibonomial matrix, Furopean Journal of Combi-

natorics, 31, 193-209, 2010.

Torretto, R., Fuchs, A., Generalized binomial coefficients, The Fibonacci

Quarterly, 2, 296-302, 1964.

Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge University
Press, 1999.

Ernst, T., A method for g¢-calculus, Journal of Nonlinear Mathematical

Physics, 10(4), 487-525, 2003.
Kac, V., Cheung, P., Quantum Calculus, Springer, 2002.

Stanley, R.P., Enumerative Combinatorics, Volume 1, Cambridge University

Press, 2nd edition, 2011.

Wilf, H.S., Generatingfunctionology, Academic Press, San Diego, 2nd edi-
tion, 1994.

122



[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

135]

36]

Flajolet, P., Sedgewic, R., Analytic Combinatorics, Cambridge University
Press, Cambridge, 2009.

Kauers, M., Paule, P., The Concrete Tetrahedron, Springer, Wien, 2011.

Bailey, W.N., Generalized Hypergeometric Series, Cambridge University
Press, Cambridge, 1935.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge Univer-
sity Press, 1990.

Petkovsek, M., Wilf, H.S., Zeilberger, D., A = B, A. K. Peters Ltd., Welles-
ley, MA, 1996.

Exton, H., g-Hypergeometric Functions and Applications, Halsted/Wiley,
New York, 1983.

Fasenmyer, S.M.C., Some generalized hypergeometric Polynomials, Technical

report, Ph.D. Dissertation, University of Michigan, USA, 1945.

Gosper, R.W., Decision procedures for indefinite hypergeometric summation,
Proceedings of the National Academy of Sciences of the United States of
America, 75, 40-42, 1978.

Zeilberger, D., A holonomic systems approach to special function identities,

Journal of Computational and Applied Mathematics, 32, 321-368, 1990.

Zeilberger, D., A fast algorithm for proving terminating hypergeometric

identities, Discrete Mathematics, 80, 207-211, 1990.

Zeilberger, D., The method of creative telescoping, Journal of Symbolic Com-
putation, 11, 195-204, 1991.

Zeilberger, D., Maple program for proving hypergeometric identities,

SIGSAM Bulletin, 25, 4-13, 1991.

Koornwinder, T.H., On Zeilberger’s algorithm and its g-analogue, Journal

of Computational and Applied Mathematics, 48, 91-111, 1993.

123



137]

38

[39]

[40]

[41]

[42]

43

|44]

[45]

[46]

[47]

Paule, P., Shorn, M., A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities, Journal of Symbolic Computation, 20,

673-698, 1995.

Research Institute for Symbolic Computation, R.I.S.C.,
http://www.risc.jku.at/, (2018, August).

Wilf, H.S., Zeilberger, D., Rational function certification of multi-
sum /integral/ ‘¢’identities, Bulletin of the American Mathematical Society,
27, 148-153, 1992.

Wilf, H.S., Zeilberger, D., An algorithmic proof theory for hypergeometric
(ordinary and “¢”) multisum/integral identities, Inventiones Mathematicae,

108, 575-633, 1992.

Paule, P., Riese, A., A Mathematica g-analogue of Zeilberger’s algorithm
based on an algebraically motivated approach to ¢g-hypergeometric telescop-
ing, in special functions, ¢-series and related topics, Fields Institute Com-

munications, 14, 179-210, 1997.

Brualdi, R.A., Cvetkovic, D., A Combinatorial Approach to Matriz Theory
and Its Applications, Chapman and Hall/CRC, 2008.

Horn, R.A., Johnson, C.R., Matriz Analysis, Cambridge University Press,
1985.

Krattenthaler, C., Advanced determinant calculus, Séminaire Lotharingien

de Combinatoire, 42, 349-426, 1999.

Krattenthaler, C., Advanced determinant calculus: A complement, Linear

Algebra and its Applications, 411(1), 68-166, 2005.

Okunev, P., Johnson, C.R., Necessary and sufficient conditions for existence
of the LU factorization of an arbitrary matrix, eprint arXiv:math/0506382,
1-21, 2005.

Golub, G.H., Van Loan, C.F., Matriz Computations, Baltimore: Johns Hop-
kins, 3rd edition, 1996.

124



48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Pan, V.Y., Structured Matrices and Polynomials, Springer-Verlag, New York
- USA, 2001.

Newman, M., Todd, J., The evaluation of matrix inversion programs, Journal

of the Society for Industrial and Applied Mathematics, 6, 466-476, 158.

Bini, D., Capovani, M., Spectral and computational properties of band sym-
metric toeplitz matrices, Linear Algebra and its Applications, 52/53, 99-126,
1983.

Kilig, E., Explicit formula for the inverse of a tridiagonal matrix by backward
continued fractions, Applied Mathematics and Computation, 197, 345-357,
2008.

Kilig, E., Stanica, P., The inverse of banded matrices, Journal of Computa-

tional and Applied Mathematics, 237(1), 126-135, 2013.

Li, H.B., Huang, T.Z., Liu, X.P., Li, H., On the inverses of general tridiagonal
matrices, Linear Algebra and its Applications, 433(5), 965-983, 2010.

Papatheodorou, T.S., Inverses for a class of banded matrices and applications
to piecewise cubic approximation, Journal of Computational and Applied

Mathematics, 8(4), 285-288, 1982.

Trench, W.F., On the eigenvalue problem for toeplitz band matrices, Linear

Algebra and its Applications, 64, 199-214, 1985.

Carlitz, L., The characteristic polynomial of a certain matrix of binomial

coefficients, The Fibonacci Quarterly, 3, 81-89, 1965.

Edelman, A., Strang, G., Pascal matrices, The American Mathematical

Monthly, 111, 189-197, 2004.

Prodinger, H., Factorizations related to the reciprocal Pascal matrix, Turkish

Journal of Mathematics, 40, 986-994, 2016.

Franc, W.L., Computing eigenvalues of complex matrices by determinant
evaluation and by methods of Danilewski and Wielandt, Journal of the So-
ciety for Industrial and Applied Mathematics, 6, 378-392, 1958.

125



[60]

[61]

[62]

[63]

[64]

[65]

|66]

[67]

168

[69]

[70]

71

72]

Choi, M., Tricks or treats with the hilbert matrix, The American Mathemat-
ical Monthly, 90(5), 301-312, 1983.

Trench, W.F.| Eigenvalues and eigenvectors of two symmetric matrices, The

Bulletin of the International Linear Algebra Society, 22, 28—29, 1999.

da Fonseca, C.M., On the eigenvalues of some tridiagonal matrices, Journal

of Computational and Applied Mathematics, 200, 283286, 2007.

Haukkanen, P., On meet matrices on posets, Linear Algebra and its Appli-

cations, 249, 111-123, 1996.

Richardson, T., The Filbert matrix, The Fibonacci Quarterly, 39(3), 268
975, 2001.

Kilig, E., Prodinger, H., A generalized Filbert matrix, The Fibonacci Quar-
terly, 48(1), 29-33, 2010.

Prodinger, H., A generalization of a Filbert matrix with 3 additional pa-
rameters, Transactions of the Royal Society of South Africa, 65, 169-172,
2010.

Kilic, E., Prodinger, H., Variants of the Filbert matrix, The Fibonacci Quar-
terly, 51(2), 153-162, 2013.

Kilig, E., Prodinger, H., The g-Pilbert matrix, International Journal of Com-
puter Mathematics, 89, 1370-1377, 2012.

Kilig, E., Prodinger, H., The generalized ¢-Pilbert matrix, Mathematica Slo-
vaca, 64(5), 1083-1092, 2014.

Kilig, E., Prodinger, H., Asymmetric generalizations of the Filbert matrix

and variants, Publications de l'Institut Mathématique, 95, 267-280, 2014.

Kilig, E., Prodinger, H., The generalized lilbert matrix, Periodica Mathe-
matica Hungarica, 73(1), 62-72, 2016.

Elouafi, M., Aiat Hadj, A.D., A new recursive algorithm for inverting Hessen-

berg matrices, Applied Mathematics and Computation, 214, 497-499, 2009.

126



73]

[74]

[75]

[76]

[77]

|78

[79]

[80]

[81]

[82]

[83]

[84]

Ikebe, Y., On inverses of Hessenberg matrices, Linear Algebra and its Appli-

cations, 24, 93-97, 1979.

Abderraman Marrero, J., Tomeo, V., Torrano, E.; On inverses of infinite
Hessenberg matrices, Journal of Computational and Applied Mathematics,

275, 356-365, 2014.

Cahill, N.D., D’Errico, J.R., Narayan, D.A., Narayan, J.Y., Fibonacci de-
terminants, The College Mathematics Journal, 33, 221-225, 2002.

Cereceda, J.L., Determinantal representations for generalized Fibonacci and
Tribonacci numbers, International Journal of Contemporary Mathematical

Sciences, 9(6), 269-285, 2014.

Kilig, E., Tagec1, D., On sums of second order linear recurrences by Hessenberg

matrices, Rocky Mountain Journal of Mathematics, 38(2), 531-544, 2008.

Kilig, E., Tagci, D., On the generalized Fibonacci and Pell sequences by
Hessenberg matrices, Ars Combinatoria, 94, 161-174, 2010.

Ramirez, J.L., On convolved generalized Fibonacci and Lucas polynomials,

Applied Mathematics and Computation, 229, 208-213, 2014.

Ramirez, J.L., Hessenberg matrices and the generalized Fibonacci-Narayana

sequence, Filomat, 29(7), 15571563, 2015.

Cahill, N.D., Narayan, D.A., Narayan, Fibonacci and Lucas numbers as tridi-

agonal matrix determinants, The Fibonacci Quarterly, 42, 216-221, 2004.

Kilig, E., Tagci, D., On the permanents of some tridiagonal matrices with
applications to the Fibonacci and Lucas numbers, Rocky Mountain Journal

of Mathematics, 37(6), 203-219, 2007.

Kilig, E., On the second order linear recurrences by tridiagonal matrices, Ars

Combinatoria, 91, 11-18, 2009.

Li, H.C., On Fibonacci-Hessenberg matrices and the Pell and Perrin num-

bers, Applied Mathematics and Computation, 218(17), 8353-8358, 2012.

127



85]

[86]

87]

83

[89]

[90]

191

92]

193]

[94]

Chen, Y.H., Yu, C.Y., A new algorithm for computing the inverse and the
determinant of a Hessenberg matrix, Applied Mathematics and Computation,

218, 4433-4436, 2011.

Benjamin, A.T., Shattuck, M.A., Recounting determinants for a class of

Hessenberg matrices, Integers, 7, A55, 1-7, 2007.

M. Janjic”, M., Hessenberg matrices and integer sequencess, Journal of In-

teger Sequences, 13, Article ID 10.7.8, 1-10, 2010.

Macfarlane, A.J., Use of determinants to present identities involving Fi-

bonacci and related numbers, The Fibonacci Quarterly, 48(1), 68-76, 2010.

Merca, M., A note on the determinant of a Toeplitz-Hessenberg matrix,

Special Matrices, 1, 10-16, 2013.

Belbachir, H., Bencherif, H., Szalay, L., Unimodality of certain sequences
connected to binomial coefficients, Journal of Integer Sequences, 10, Article

07.2.3, 2007.

Akkus, 1., The Lehmer matrix with recursive factorial entries, Kuwait Jour-

nal of Science, 42(2), 37-41, 2015.

Kilig, E., Stanica, P., The Lehmer matrix and its recursive analogue, The

Journal of Combinatorial Mathematics and Combinatorial Computing, 74,

193-207, 2010.

Yang, Y., Leonard, M., Evaluating determinants of convolution-like matrices
via generating functions, International Journal of Information and Systems

Sciences, 3(4), 569-580, 2007.

The On-Line Encyclopedia of Integer Sequences, O.E.LS., https://oeis.orq,
(2018, August).

128



Credentials

Name, Surname
Place of Birth
Marital Status
E-mail

Address

Education

High School

BSc.

MSec.

PhD.

CURRICULUM VITAE

Talha Arikan

Cankaya, Ankara

Married

tarikan@hacettepe.edu.tr, talhapasa@gmail.com

Hacettepe University Department of Mathematics

06800 Beytepe Cankaya Ankara TURKEY

2001 - 2005, Ankara Anatolian High School

2005 - 2011, TOBB University of Economics and Technology,
Department of Mathematics

2011 - 2013, TOBB University of Economics and Technology,
Department of Mathematics

2013 - 2018, Hacettepe University,

Department of Mathematics

Foreign Languages

English (Advanced), German (Beginner)

Work Experience

2011-2013, TOBB University of Economy and Technology, Department of Mathematics,

Teaching Assistant

2013 - ..., Hacettepe University, Department of Mathematics, Research Assistant

Areas of Experiences

Linear Algebra, Combinatorics, Recursive Sequences, Special Matrices

129



Projects and Budgets

Publications

1. Kilic E., Arkan T., The generalized reciprocal super Catalan matrix, Turkish
Journal of Mathematics, 40, 960-972, 2016.

2. Arikan T., Kilic E., A class of non-symmetric band determinants with the Gaus-

sian q-binomial coefficients, Quaestiones Mathematicae, 40(5), 645-660, 2017.

3. Kilig E., Arikan T., Evaluation of Hessenberg determinants via generating func-

tion approach, Filomat, 31(15), 4945-4962, 2017.

4. Kilig E.; Arikan T., A nonlinear generalizations of the Filbert matrix and its
Lucas analogue, accepted in Linear and Multilinear Algebra,

DOI: 10.1080/03081087.2017.1412393.

Oral and Poster Presentations

1. “Some Classes of Band Determinants of g-binomial Coefficients”, LICMA’15 Lebanese
International Conference on Mathematics and Applications, Beirut, Lebanon,

2015 May.

2. “Evaluating Some Hessenberg Determinants via Generating Functions”, Interna-
tional Conference on Approximation Theory and its Applications, Sibiu/Romania,

2016 May.

3. “Hessenberg Determinants via Generating Function Method”, International Con-
ference on Mathematics and Mathematics Education, Sanhurfa/Turkey, 2017
May.

130



HACETTEPE UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
THESIS/DISSERTATION ORIGINALITY REPORT

HACETTEPE UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
TO THE DEPARTMENT OF MATHEMATICS

Date: 25/09/2018

Thesis Title / Topic: Some families of combinatorial matrices and their algebraic properties

According to the originality report obtained by my thesis advisor by using the Turnitin plagiarism detection software
and by applying the filtering options stated below on 24/09/2018 for the total of 129 pages including the a) Title
Page, b) Introduction, ¢) Main Chapters, d) Conclusion sections of my thesis entitled as above, the similarity index of
my thesis is 9 %.

Filtering options applied:
1. Bibliography/Works Cited excluded
2. Quotes excluded
3. Match size up to 5 words excluded

I declare that [ have carefully read Hacettepe University Graduate School of Sciene and Engineering Guidelines for
Obtaining and Using Thesis Originality Reports; that according to the maximum similarity index values specified in
the Guidelines, my thesis does not include any form of plagiarism; that in any future detection of possible
infringement of the regulations I accept all legal responsibility; and that all the information I have provided is correct
to the best of my knowledge.

I respectfully submit this for approval.

Date and Signature

Name Surname: Talha Arikan 05,09 061 &

Student No: N13142394 LS

Department: Mathematics

Program:
Status: [_| Masters Ph.D. [] Integrated Ph.D.
ADVISOR APPROVAL

APPROVED.

Prof. Dr. Adnan Tercan

B




