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ABSTRACT
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2018 September, 130 Pages

In this thesis, we will study some properties of certain families of combinatorial matri-

ces. While some of the families will be examined throughout this thesis are new and

�rstly investigated, the others are the generalizations of some of the previously known

matrices. We gather our studies into six di�erent groups. They are non-symmetric band

matrices with Gaussian q-binomial entries, generalization of the super Catalan matrix,

families of Max and Min matrices, a non-symmetric variant of the Filbert matrix, a

nonlinear generalization of the Filbert matrix and some certain Hessenberg matrices.

For all matrices will be studied except the Hessenberg matrices, we present explicit

formulæ for the LU -decompositions, determinants, inverse and LU -decompositions of

the inverses of the matrices as well as the Cholesky decompositions when the matrix is

symmetric. Additionally, we evaluate some certain Hessenberg determinants via gen-

erating function method. We use some new and existing methods to prove our claims.

Particularly, we present a new method to evaluate determinants of some Hessenberg

matrices whose entries consist of terms of higher order linear recursive sequences.
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ÖZET

KOMB�NATORYAL MATR�SLER�N BAZI A�LELER�

VE ONLARIN CEB�RSEL ÖZELL�KLER�

Talha ARIKAN

Doktora, Matematik Bölümü

Tez Dan�³man�: Prof. Dr. Adnan TERCAN

�kinci Tez Dan�³man�: Prof. Dr. Emrah KILIÇ

Eylül 2018, 130 Sayfa

Bu tez çal�³mas�nda belirli kombinatoryal matris ailelerinin baz� özelliklerini çal�³a-

ca§�z. Tez boyunca incelenecek matris ailelerinin baz�lar� yeni ve ilk olarak ara³t�r�la-

cak olup di§erleri ise daha önceden bilinen baz� matrislerin genellemeleri olacakt�r.

Çal�³malar�m�z�, girdileri Gauss q-katsay�lar� olan simetrik olmayan bant matrisleri,

süper Catalan matrisinin genellemesi, Max ve Min matris aileleri, Filbert matrisinin

simetrik olmayan bir varyant�, Filbert matrisinin lineer olmayan bir genellemesi ve

baz� Hessenberg matrisleri olmak üzere alt� farkl� grupta bir araya getirdik. Hessen-

berg matrisleri d�³�ndaki çal�³aca§�m�z tüm matrislerin, LU -ayr�³�mlar�, determinant-

lar�, tersleri ve terslerinin LU -ayr�³�mlar� için net formüller verece§iz. Bunun yan�nda

matrislerin simetrik olmalar� durumunda Cholesky ayr�³�mlar� için de ilgili formül-

leri sunaca§�z. Ayr�ca baz� belirli Hessenberg determinantlar�n� üreteç fonksiyonlar�

yard�m�yla hesaplayaca§�z. Bu iddialar�m�z� ispatlamak için baz� yeni ve daha önce-

den kullan�lan metotlar� kullanaca§�z. Özel olarak, girdileri yüksek mertebeden lineer

indirgeme dizilerinin terimlerinden olu³an baz� Hessenberg matrislerinin determinant-

lar�n� hesaplamak için yeni bir yöntem verece§iz.
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1 INTRODUCTION

A matrix is a rectangular array of any algebraic objects for which addition and multi-

plication are de�ned. Matrices are the main subject of the fundamental mathematical

branch linear algebra. Historically, it was not the matrix but a certain number associ-

ated with a square array of numbers called the determinant that was �rst recognized.

The term matrix was coined by James Joseph Sylvester in 1850. Then Arthur Cayley

developed algebraic properties of matrices. He �rstly applied them to the study of

systems of linear equations. So matrices are mostly used as a way to describe systems

of linear equations as well as to represent data in a tabular view.

Matrix arises in several branches of science, as well as di�erent mathematical disci-

plines. For example, they are frequently used in physics, computer graphics, probabil-

ity theory and statistics. Moreover, in some social sciences like economics, the scientists

often use matrices. Thus, manipulating matrices has drawn interest. A major branch

of numerical analysis is devoted to the development of e�cient algorithms for the com-

putations of some properties of matrices. So certain matrices with known properties

are important to check accuracy of newly developed algorithms.

In literature, there are various special matrices. Band, Toeplitz, Pascal, Lehmer,

Hilbert, Filbert and Hessenberg matrices are some examples of these special matrices

and the main interest of this thesis. Combinatorial matrices are the matrices whose

entries consist of some combinatorial numbers. Pascal and Filbert matrices are the

common examples of the combinatorial matrices. Band, Toeplitz and Hesssenberg ma-

trices are mainly used in numerical analysis. Thus several authors have been studied

certain properties of them. Pascal, Lehmer, Hilbert and Filbert matrices have nice

algebraic properties so they are useful to test accuracy of algorithms. Some authors

studied various generalizations and variants of these kinds of matrices.

The aim of this thesis is to present some new combinatorial matrix families, which

have not been studied before, and some generalizations of already known combina-

torial matrices and their properties. We study some certain properties such as LU -

decompositions, determinants, inverses etc. of these families of combinatorial matrices.

We hope that the matrices we have studied in this thesis could be also used as test ma-

trices. We will give some new methods and use existing methods to prove our claims.
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Especially, we present a new computational method to evaluate certain Hessenberg

determinants. We derive explicit formulæ related with the properties of these matrices

and our main tool for �nding them is to guess relevant quantities. This was done by

experiments with a computer algebra system and spotting patterns. This becomes in-

creasingly complicated when more new parameters are introduced. We have frequently

used computer algebra systems Mathematica and Maple for our calculations.

In Section 2, we provide some essential information, which will be used throughout the

thesis. In Section 3.1, we present some basic notions about matrices and introduce some

special kinds of matrix families. Besides, in Section 3.2, we present previous studies

related to these kinds of matrix families. This main section is divided into parts and

each part includes a special family. Moreover, at the end of each this part, we indicate

our motivation and brief introduction to our problem related to that matrix family.

Section 4 is devoted to the results which obtained in this thesis. In Section 4.1, we

present some auxiliary results, which we use to prove some of our main results. On the

other hand, these auxiliary results could be also applied to other matrices which are

not considered in this thesis. In Sections 4.2-4.7, we provide our main results. Each

section includes the results for a special family of combinatorial matrices.

In Section 4.2, we present a class of non-symmetric Toeplitz band matrices with upper

bandwidth s and lower bandwidth r whose entries are de�ned via the Gaussian q-

binomial coe�cients. We provide explicit formulæ for the LU -decomposition, determi-

nant and LU -decomposition of the inverse matrix. The case r = s is the generalization

of the results given in [1]. Furthermore, we derive some complementary results related

to matrix which includes usual binomial coe�cients. Our results are presented in [2].

In Section 4.3, we obtain the generalizations with two additional parameters of the

results in [3]. We also present the idea how one can obtain similar generalizations by

the help of already known results. In [4], we publish our studies.

In Section 4.4, we de�ne two new families of the matrices, which are called Max and

Min matrices, whose entries run in left-reversed and up-reversed L-shaped pattern,

respectively. Our results also cover the results given in [5]. In [5] the authors used a

method based on another auxiliary matrix family. But we use elementary linear algebra

tools to derive our results which are simpler and more convenient. As an application,

2



we obtain a sequential generalization of the Lehmer matrix and its reciprocal analogue.

In Section 4.5, we de�ne a new non-symmetric matrix via q-integers. Non-symmetric

variants of the Filbert and Lilbert matrices come out as corollaries for the special

choices of the parameters. We derive explicit formulæ for the LU -decompositions,

inverse matrices L−1 and U−1 and inverses for whole matrices.

Some authors have studied many generalizations and variant of the Filbert matrix as

we do in Section 4.5. But so far no one has studied a generalization or variant where the

indexes of the recursive sequence are in nonlinear form. In Section 4.6, we introduce a

new nonlinear generalization of the Filbert matrix with indexes in geometric progression

for some parameters as well as a nonlinear generalization of the Lilbert matrix. As in

Section 4.5, we present the LU -decompositions, inverse matrices L−1 and U−1 and

inverses for the nonlinear generalizations of the Filbert and Lilbert matrices as well as

we provide the Cholesky decompositions when the matrices are symmetric. We present

our results in [6].

Finally, in Section 4.7, we present the generating function method to evaluate the de-

terminant of new three classes of the Hessenberg matrices. This method was introduced

in [7]. We extend it and obtain some further results. We also provide many special

examples to see how the method works. By the help of our results, many determinantal

formula which have been found in the previous studies, can be easily retrieved. As an

application, we give a new and an elegant method to compute the determinants of

the Hessenberg matrices whose entries consist of the terms of the higher order linear

recursive sequences, which based on to �nd an adjacency-factor matrix. Our results

are published in [8].
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2 PRELIMINARIES

In this section, we will present some fundamental notions, which will be used through-

out the thesis.

2.1 Linear Recursive Sequences

A recursive sequence is de�ned by a rule which gives the next term as a function of

the previous terms. This rule is called the recurrence relation of the corresponding

sequence. If we denote the nth term of a given sequence by un, such a recurrence

relation is of the form

un = f(un−1, un−2, . . . , un−k),

where f is a function with k inputs.

De�nition 2.1. For any reals pi such that i ∈ {1, 2, ..., k} and pk 6= 0, the kth order

linear recursive sequence {un} with constant coe�cients is de�ned by the rule for n ≥ k,

un = p1un−1 + p2un−2 + · · ·+ pkun−k (2.1)

with arbitrary initial values ut for 0 ≤ t < k and assumed that at least one of them is

di�erent from zero.

It is obviously seen that the terms of the kth order linear recursive sequence {un}

de�ned by the rule (2.1) are uniquely determined by the coe�cients pi's and its initial

values. We give the most common special cases of the sequence {un} with Table 1.

These number sequences have been studied by many authors. We refer to [9, 10, 11, 12]

for more details about them.

Now we shall give two important de�nitions about linear recursive sequences.

De�nition 2.2. The characteristic polynomial of the sequence {un} de�ned by

(2.1) is the polynomial

f(x) = xk − p1xk−1 − p2xk−2 − · · · − pk

and the equation

xk − p1xk−1 − p2xk−2 − · · · − pk = 0

is called characteristic equation of the sequence {un}.

4



Coe�cients Initials Sequence Name

p1 = p2 = 1 u0 = 0, u1 = 1 Fibonacci Seq. {Fn}

p1 = p2 = 1 u0 = 2, u1 = 1 Lucas Seq. {Ln}

p1 = 2, p2 = 1 u0 = 0, u1 = 1 Pell Seq. {Pn}

p1 = 1, p2 = 2 u0 = 0, u1 = 1 Jacobsthal Seq. {Jn}

p1 = p, p2 = q u0 = 0, u1 = 1 Gen. Fibonacci Seq. {Un(p, q)}

p1 = p, p2 = q u0 = 2, u1 = p Gen. Lucas Seq. {Vn(p, q)}

p1 = p, p2 = −q u0 = a, u1 = b Horadam Seq. {Wn}

p1 = 2, p2 = −1 u0 = 0, u1 = 1 Natural Numbers N

p1 = p2 = p3 = 1 u0 = 0, u1 = u2 = 1 Tribonacci Seq. {Tn}

p1 = 0, p2 = p3 = 1 u0 = 3, u1 = 0, u2 = 2 Perrin Seq. {Pn}

Table 1: Some particular linear recursive sequence examples

It is possible to derive any term of the sequence {un} by the help of its recurrence

relation. Nevertheless, it is not useful to compute higher terms. So one needs a closed

formula such that

un = g(n) (2.2)

to compute any desired term of the sequence {un} with less computation.

De�nition 2.3. Such an explicit formula given by (2.2) is called Binet formula of

the linear recursive sequence {un}.

The following theorem provides us how to �nd the Binet formula of the linear recursive

sequence {un}.

Theorem 2.1. Let the characteristic polynomial of the sequence {un} factor over the

complex number as

f(x) = (x− r1)m1(x− r2)m2 . . . (x− rd)md ,

where r1, r2, . . . , rd are distinct nonzero complex numbers and m1,m2, . . . ,md are pos-

itive integers such that m1 + m2 + · · · + md = k. Then there exist polynomials

g1(n), g2(n), . . . , gd(n) with deg gi ≤ mi − 1 for all i ∈ {1, 2, . . . , d} such that

un = g1(n)rn1 + g2(n)rn2 + · · ·+ gd(n)rnd ,

for n ≥ 0.

5



One can easily �nd the proof of the above theorem in any textbook about di�erence

equations. As a special case, when m1 = m2 = · · · = mk = 1, i.e. the characteristic

polynomial has no multiple root, the Binet formula of the sequence {un} takes the form

un = c1r
n
1 + c2r

n
2 + · · ·+ ckr

n
k ,

where for all i ∈ {1, 2, . . . , k}, ci's are constants determined according to the initial

values of the sequence {un}.

Now we will apply the above theorem to the generalized Fibonacci sequence {Un(p, q)},

which is de�ned by the recurrence relation for n > 2,

Un(p, q) = pUn−1(p, q) + qUn−2(p, q),

in order to �nd its Binet formula for the case p2+4q 6= 0. The characteristic polynomial

of it is

f(x) = x2 − px− q = (x− α)(x− β),

where α, β =
(
p∓

√
p2 + 4q

)
/2. So the Binet formula is of the form

Un(p, q) = c1α
n + c2β

n.

Since U0(p, q) = 0 and U1(p, q) = 1, �nally the Binet formula of the sequence {Un(p, q)}

is found as

Un(p, q) =
αn − βn

α− β
.

Similarly, the Binet formula of the generalized Lucas sequence {Vn(p, q)} is

Vn(p, q) = αn + βn.

Throughout the thesis, we will frequently study the generalized Fibonacci sequence

{Un(p, 1)} and Lucas sequence {Vn(p, 1)} and brie�y denote them by {Un} and {Vn},

respectively, unless otherwise speci�ed. They satisfy the recurrence relations for n > 2,

Un = pUn−1 + Un−2,

Vn = pVn−1 + Vn−2,

with initial values U0 = 0, U1 = 1 and V0 = 2, V1 = p, respectively. Especially, their

Binet formulæ are

Un =
αn − βn

α− β
and Vn = αn + βn, (2.3)

6



where α, β =
(
p∓
√

∆
)
/2 and ∆ = p2 + 4, respectively.

We need the following known identity including the generalized Fibonacci numbers for

later use.

Proposition 2.1. For integers n,m and k, the following equation holds.

UmUn = (−1)n+kUm−n+kUk + Um+kUn−k. (2.4)

The proof can be immediately done by the Binet formula. For the numerous identities

and properties, we refer to comprehensive books [11, 12].

2.2 Binomial Coe�cients

The binomial coe�cients occur in almost all areas of mathematics. The binomial coef-

�cients get their name from the binomial theorem, which describes the expansion of

the powers of a binomial (x+ y). Also, the binomial coe�cients have a combinatorial

interpretation, which counts the number of the ways of choosing k objects among n ob-

jects without replacement, and are denoted by the symbol
(
n
k

)
. From the combinatorial

meaning of them, it is easily seen that they are de�ned by the ratio for 0 < k ≤ n,(
n

k

)
=

n!

k!(n− k)!

with
(
n
0

)
= 1, which represents the empty choice. The integers n and k are called the

upper index and the lower index, respectively. The indexes are restricted to be non-

negative integers by the combinatorial interpretation. Since the binomial coe�cients

have many usages besides its combinatorial interpretation, it is useful to de�ne them

for any real upper index. So for any real r and integer k, they are formally de�ned by(
r

k

)
=


r(r − 1) . . . (r − k + 1)

k!
if k ≥ 0,

0 if k < 0.

The two variable sequence
{(

n
k

)}
n,k≥0 is also a recursive sequence which satis�es the

recurrence relation for 1 ≤ k ≤ n− 1,(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
with

(
n
0

)
=
(
n
n

)
= 1. This relation is easily veri�ed by the de�nition of the binomial

coe�cients. By the help of this relation, one can prove that each binomial coe�cient

7



with integer indexes is an integer. More explanation and information can be found in

the book "Concrete Mathematics" written by Graham, Knuth and Patashnik [13].

Recall the well-known Vandermonde's identity for later use.

Proposition 2.2. For nonnegative integers k,m and n,(
m+ n

k

)
=

k∑
d=0

(
m

d

)(
n

k − d

)
. (2.5)

We will recall three di�erent proofs for the Vandermonde's identity in the forthcoming

subsections. For many variants of it, we refer to [13, p. 169].

By replacing each integer appearing in the numerator and denominator of
(
n
k

)
with its

respective generalized Fibonacci number, i.e. replace i by Ui, we can de�ne a recursive

analogue of the binomial coe�cients, which is called generalized Fibonomial coe�cients

introduced by Jarden and Motzkin [14]. Formally, we have the following de�nition.

De�nition 2.4. For integers such that 0 < k < n, the generalized Fibonomial

coe�cients are de�ned by{
n

k

}
U

:=
UnUn−1 . . . U1

(U1U2 . . . Uk) (U1U2 . . . Un−k)

with
{
n
n

}
U

=
{
n
0

}
U

= 1 and 0 otherwise.

When the case p = 1, i.e. Un = Fn, the generalized Fibonomial coe�cients
{
n
k

}
U
are

reduced to the usual Fibonomial coe�cients
{
n
k

}
F
. We refer to [15, 16, 17, 18] for more

details about the generalized and usual Fibonomial coe�cients.

The generalized Fibonomial coe�cients satisfy the following recurrence relation for

1 ≤ k ≤ n− 1, {
n

k

}
U

= Uk+1

{
n− 1

k

}
U

+ Un−k−1

{
n− 1

k − 1

}
U

with
{
n
n

}
U

=
{
n
0

}
U

= 1. This relation follows by the equation Un = Uk+1Un−k +

UkUn−k−1 (This can be shown by taking m = 1 in (2.4) and using the fact that U−n =

(−1)n+1Un). Surprisingly, as in the binomial coe�cients, the generalized Fibonomial

coe�cients are always integers. From the recurrence relation, it is easy to see this fact

by induction. On the other hand, this is not always true for the generalized Fibonomial

coe�cients de�ned by the sequence {Un(p, q)}.
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2.3 q-World

In classical q-analysis, the q-analogue of a nonnegative integer, q-integer, is de�ned

by

[n]q =
1− qn

1− q
=

n−1∑
k=0

qk.

From the above de�nition, it is easily seen that

lim
q→1

[n]q = n.

For nonnegative integer n, the q-Pochhammer symbol is de�ned as

(x; q)n = (1− x)(1− xq) . . . (1− xqn−1)

with (x; q)0 = 1. So one can derive the q-analogue of n! as follows

[n]q! =
(q; q)n

(1− q)n
.

Now we can move on the q-analogue of the binomial coe�cient.

De�nition 2.5. For nonnegative integers such that n ≥ k, the Gaussian q-binomial

coe�cients are de�ned by[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

and 0 otherwise.

Obviously, we have

lim
q→1

[
n

k

]
q

=

(
n

k

)
.

The Gaussian q-binomial coe�cients satisfy the following two equivalent recurrence

relations for 1 ≤ k ≤ n, [
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

and [
n

k

]
q

=

[
n− 1

k

]
q

+ qn−k
[
n− 1

k − 1

]
q

with
[
n
0

]
q

= 1. Inductively, by the above relations, it is seen that every Gaussian

q-binomial coe�cient is a polynomial in q.
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It is possible to extend De�nition 2.5 for any real upper index by considering[
r

k

]
q

=
(q1+r−k; q)k

(q; q)k
,

where r is an arbitrary real and k ≥ 0 is an integer.

The Binet formulæ given by (2.3) can be rewritten as

Un = αn−1
1− qn

1− q
(2.6)

and

Vn = αn(1 + qn) (2.7)

with q = β/α = −α−2, so that α = iq−1/2, where i =
√
−1. The RHS of the equa-

tions (2.6) and (2.7) are the q-forms of the generalized Fibonacci and Lucas numbers,

respectively.

Thus, by the help of the q-forms, the link between the generalized Fibonomial and

Gaussian q-binomial coe�cients is found as{
n

k

}
U

= αk(n−k)
[
n

k

]
q

= ik(n−k)q
1
2
k(k−n)

[
n

k

]
q

. (2.8)

As it is seen from the above relationship, if we have an identity including generalized

Fibonacci numbers then we can convert it into the q-form or vice versa. Since there

are many useful identities and tools in q-analysis, studying the q-form of an identity

is more advantageous than studying the original form. In this thesis, we will often use

this idea. In other words, we will prove some q-identities for general parameter q then

the identities including the generalized Fibonacci numbers or Fibonomial coe�cients

would come out as corollaries for special value of q.

Now we shall give some known identities. The following theorems are the one version

of the Cauchy binomial theorem and Rothe's formula.

Theorem 2.2. For n ≥ 0,

n∑
k=0

[
n

k

]
q

q(
k+1
2 )xk = (−xq; q)n =

n∏
k=1

(1 + xqk). (2.9)

Theorem 2.3. For n ≥ 0,

n∑
k=0

[
n

k

]
q

(−1)kq(
k
2)xk = (x; q)n =

n−1∏
k=0

(1− xqk). (2.10)
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For the proofs of the above theorems and more identities, we refer to [19]. Furthermore,

one can look at [20, 21] for more information about the q-analysis.

Now we present the q-analogue of the Vandermonde's identity (2.5).

Theorem 2.4 (q-Vandermonde identity). For nonnegative integers k,m and n,[
m+ n

k

]
q

=
k∑
d=0

[
m

k − d

]
q

[
n

d

]
q

qd(m−k+d). (2.11)

A proof of this identity can be found in [22]. We will provide a computer-based proof

of it later. Now suppose that we verify this identity. Then if we let q → 1 in the

equation (2.11), we will get the Vandermonde's identity (2.5). This approach gives us

another advantage of studying q-identities. In other words, if we have a q-identity and

the limit q → 1 is applicable to it, then we achieve another useful identity, as well.

Thus studying in q-world enables us to obtain more general results.

2.4 Generating Functions

Generating functions are one of the most useful inventions in mathematics. The gen-

erating function is a way of encoding a sequence {an}n≥0 by treating them as the co-

e�cients of a power series. Brie�y, generating functions transform the problems about

the sequences into the problems about power series or functions. In this manner, ma-

nipulating in�nite sequences gets easier. Wilf's book "Generatingfunctionology" [23]

is totally devoted to the generating functions. We refer to it in order to get more

information about the generating functions.

For a given sequence {an}n≥0, the generating function of {an}n≥0 is the power series

A(x) :=
∑
n≥0

anx
n. (2.12)

It is sometimes called ordinary generating function to distinguish from other types

of generating functions (see [13, 22, 23]).

In general, the power series (2.12) is considered as a formal power series, i.e. an

algebraic object. Thus we are not worried about the convergence. The power series

(2.12) may also be considered as an analytic function on the interval of convergence of
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it. This treatment allows us to get some asymptotic information about the terms of

the sequence (see [24]).

Now, we shall compute the generating function of the Fibonacci sequence as an illus-

tration. Let F (x) =
∑

n≥0 Fnx
n. So we have

F (x) = F0 + F1x + F2x
2 + · · · + Fnx

n + · · ·

−xF (x) = − F0x − F1x
2 − · · · − Fn−1x

n − · · ·

−x2F (x) = − F0x
2 − · · · − Fn−2x

n − · · · .

After adding these three equations, we obtain

F (x)(1− x− x2) = F0 + (F1 − F0)x+ (F2 − F1 − F0)x
2 + · · ·

+ (Fn − Fn−1 − Fn−2)xn + · · · .

Since for n ≥ 2, Fn−Fn−1−Fn−2 = 0 by its recurrence relation, the generating function

of the Fibonacci numbers is

F (x) =
x

1− x− x2
.

Similarly, the generating function of the Lucas numbers is

L(x) =
2− x

1− x− x2
.

By the above approach, one can easily compute the generating function of the kth

order linear recursive sequence {un}, de�ned by (2.1), as∑
n≥0

unx
n =

p(x)

1− p1x− p2x2 − · · · − pkxk
,

where p(x) is a polynomial, which will be determined according to the initial values of

the sequence {un} such that deg p(x) < k.

Let A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n. Then for any complex constants c1

and c2, the following properties hold.

c1A(x) + c2B(x) =
∑
n≥0

(c1an + c2bn)xn,

A(x)B(x) =
∑
n≥0

(
n∑
k=0

akbn−k

)
xn. (2.13)
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The proofs are straightforward. Both of the above equations can be inductively gen-

eralized by considering arbitrary �nite number of generating functions. We can select

just even powers or odd powers out of the power series A(x) as follows∑
n≥0

a2nx
2n =

A(x) + A(−x)

2
or
∑
n≥0

a2n+1x
2n+1 =

A(x)− A(−x)

2
, (2.14)

respectively. For more properties and some special generating functions, we refer to

[23].

We would like to recall the following useful theorem.

Theorem 2.5. Let A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n be analytic complex

functions in a non-empty open neighborhood D of zero. If A(x) = B(x) for all x ∈ D,

then an = bn for all n ∈ Z.

The proof of this theorem can be found in [25]. In [23], the author gave a method

called "Snake Oil", which is based on this theorem.

Now we will present another proof of the Vandermonde's identity (2.5) by the help of

Theorem 2.5. By the binomial theorem, we know that∑
k≥0

(
m+ n

k

)
xk = (1 + x)m+n

and by the identity (2.13), we write

∑
k≥0

(
k∑
d=0

(
m

d

)(
n

k − d

))
xk = (1 + x)m(1 + x)n.

Since the both sides of (2.5) have the same generating function (1+x)m+n for all x ∈ C,

they must be equal for all nonnegative integers k,m and n by Theorem 2.5. We will

also use this argument in Section 4.7.

2.5 Hypergeometric Series

Hypergeometric series appear in many areas of mathematics such as combinatorics,

analysis, applied mathematics etc. The history of hypergeometric series was launched

many years ago by Euler, Gauss, and Riemann. Although the topic is very old, it is

still the subject of a lot of ongoing research. There are many books devoted only to
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the hypergeometric series. Since we encountered some hypergeometric sums, which

are truncated hypergeometric series, in this thesis, we would like to give very brief

introductory information about them.

De�nition 2.6. The series ∑
k≥0

tk

is called hypergeometric series if t0 = 1 and the ratio tk+1/tk is a rational function

of k, i.e.
tk+1

tk
=
p(k)

h(k)
, (2.15)

where p(k) and h(k) are polynomials of k. In this case, tk is called hypergeometric

term. The functions generated by hypergeometric terms are called hypergeometric

functions and truncated hypergeometric series are called hypergeometric sums.

For example, since (
m

d+ 1

)(
n

k − d− 1

)
(
m

d

)(
n

k − d

) =
(m− d)(k − d)

(d+ 1)(n− k + d+ 1)
,

the sum on the RHS of the Vandermonde's identity (2.5) is a hypergeometric sum.

Consider the hypergeometric function ∑
k≥0

tkz
k. (2.16)

If the polynomials in (2.15) are completely factored, then we write

tk+1

tk
=
p(k)

h(k)
=

(k + a1)(k + a2) . . . (k + an)

(k + b1)(k + b2) . . . (k + bm)(k + 1)
, (2.17)

where the factor (k + 1) in the denominator is presented for some historical reasons

of notation. If −1 is not a root of the polynomial h(k), then we can multiply both

the numerator and denominator with the factor (k + 1) for the convenience. Then the

hypergeometric function (2.16) is notationally shown as

∑
k≥0

tkz
k = nFm

 a1 a2 · · · an

b1 b2 · · · bm
; z

 =
∑
k≥0

(a1)k(a2)k . . . (an)k
(b1)k(b2)k . . . (bm)k

zk

k!
,

where (a)k is the usual Pochhammer symbol de�ned by (a)k = (a)(a + 1) . . . (a +

k − 1), also known as rising factorial.
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In general, the �rst term t0 doesn't have to be 1. If it is not equal to 1 but di�erent

from zero and tk satis�es the equation (2.17), then the hypergeometric function (2.16)

is represented as follows

∑
k≥0

tkz
k = t0 × nFm

 a1 a2 · · · an

b1 b2 · · · bm
; z

 .
For more extensive knowledge about hypergeometric series, we refer to [26, 27]. Nowa-

days, hypergeometric series are also well understood from an algorithmic point of view.

There are some algorithms [28] to deal with the hypergeometric series, sums or func-

tions and also their implementations to computer algebra systems, such as Maple and

Mathematica. The most e�cient and modern of them is celebrated Zeilberger's algo-

rithm. We will mention about it after a while.

Inherently, the most natural question is "What is the q-analogue of the hypergeometric

series?".

De�nition 2.7. The series ∑
k≥0

tk(q)

is called q-hypergeometric series if the ratio tk+1/tk is a rational function of qk, i.e.

tk+1(q)

tk(q)
=
p(x)

h(x)
,

where p(x) and h(x) are polynomials of x and x = qk. In this case, tk(q) is called

q-hypergeometric term. The functions generated by q-hypergeometric terms are

called q-hypergeometric functions and truncated q-hypergeometric series are called

q-hypergeometric sums.

As an example, since[
m

d+ 1

]
q

[
n

k − d− 1

]
q[

m

d

]
q

[
n

k − d

]
q

= qm−k+1 (qd − qk)(qd − qn)

(1− qdqm−k+1)(1− qqd)
,

the sum on the RHS of the q-Vandermonde's identity (2.11) is a q-hypergeometric sum.

In order not to get out of the subject of our thesis, we don't want to give more details.

For more details, see [19, 27, 29].

Naturally, there is q-analogue of the Zeilberger's algorithm, which deals with the q-

hypergeometric series, sums and functions.
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2.5.1 Zeilberger's Algorithm

Since the people have encountered hypergeometric sums and series in many areas of

mathematics, some mechanical methods to deal with them have been derived. The

�rst mechanical method for hypergeometric sums was discovered by Sister Mary Ce-

line Fasenmyer [30] in 1945. Such methods serve to compute them directly or prove

equalities [28].

One of the most popular mechanical methods is Gosper's algorithm [31], which com-

putes some inde�nite hypergeometric sums in terms of another hypergeometric term.

This method based on rewriting the hypergeometric term into telescoping form. Unfor-

tunately, it can �nd closed forms for only a few classes of the hypergeometric sums we

meet in practice. Namely, it is applicable to the limited numbers of the hypergeometric

sums.

In 1991, Doron Zeilberger [32, 33, 34] showed how to extend Gosper's algorithm so

that it becomes even more e�ective, making it succeed in vastly more cases. With

Zeilberger's extension, we can also handle hypergeometric series, not just sums. For

very brief and understandable introduction, we refer to [13]. In a few words, it produces

a polynomial recurrence for the hypergeometric series or sums. In the following years,

some authors also did some improvements on Zeilberger's algorithm.

Moreover, as with Gosper's original method or other algorithms, for Zeilberger's al-

gortihm, the calculations can be done by the help of computers. Maple packages of

the Zeilberger's algorithm have been written by Zeilberger [35] and Koornwinder [36].

Paule and Schorn [37] implemented Zeilberger's algorithm for the Mathematica sys-

tem. Thus one can easily manage these types of sums or series by using the computer

algebra systems without much time-consuming.

Now by using the Mathematica implementation of Zeilberger's algorithm, we will prove

the Vandermonde's identity (2.5) (We refer to [37] for the guide of Mathematica pack-

age). Let's denote the RHS of (2.5) by Sk, then the algorithm produces the following

recurrence relation

Sk+1 =
m+ n− k
k + 1

Sk.
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So after solving this relation by going backward, we obtain

Sk+1 =
(m+ n− k)(m+ n− k + 1) . . . (m+ n)

(k + 1)!
S0.

Since S0 = 1, the proof of (2.5) follows. For many other examples and the Mathematica

package, see [38].

2.5.2 q-Zeilberger Algorithm

Since the q-hypergeometric series have lots of applications on many areas of mathe-

matics, such as combinatorics, partition theory etc., people need similar mechanical

methods for the q-hypergeometric series or sums as an extension of Zeilberger's algo-

rithm.

Zeilberger also observed that his algorithm can be carried over to the q-hypergeometric

cases. He and Wilf [39, 40] extended his algorithm for the q-hypergeometric series and

sums and wrote Maple package for this algorithm. Furhermore, Koornwinder [36] wrote

another Maple package for this algorithm. Afterwards, Paule and Riese [41] developed

the Mathematica implementation of the q-Zeilberger algorithm. We refer to [41] for

the user guide of this package and some applied examples.

The q-Zeilberger algorithm is the q-analogue of Zeilberger's algorithm. In other words,

the q-Zeilberger algorithm performs some computations for q-hypergeometric series and

sums as same as Zeilberger's algorithm does for the hypergeometric series and sums.

As we seen before, the sum on the RHS of the q-Vandermonde identity (2.11) is a q-

hypergeometric sum. Now we shall apply this algorithm to this sum as an illustration

by using Mathematica implementation. Denote the RHS of (2.11) by Sk. Then q-

Zeilberger algorithm gives the recurrence relation

Sk =
1− qm+n−k+1

1− qk
Sk−1.

By solving this relation and the fact that S0 = 1, we obtain

Sk =
(qm+n−k+1; q)k

(q; q)k
=

[
m+ n

k

]
q

,

which is the LHS of (2.11). Thus we provide a computer based proof for the q-

Vandermonde identity. We will use this algorithm to prove some of our results through-

out the thesis.
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It is worthwhile to mention that we encountered some cases in which although the

summand term is q-hypergeometric, the q-Zeilberger algorithm does not work in gen-

eral. This is interesting weakness of the q-Zeilberger algorithm. For this reason, we

used di�erent approaches to prove those identities.

Lastly, for the interested readers, we refer to [38] for the Mathematica packages of

various symbolic computation methods and their user friendly guides.
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3 LITERATURE REVIEW

In this section, �rstly, we will present some basic de�nitions and notions about matrix

theory and special kinds of matrix families. Afterwards, we will provide some historical

background about these kinds of special matrix families.

3.1 About Matrices

Not only in every area of mathematics but also in fundamental sciences and engineering,

somehow matrices occur and are used. Thus they have an important duty and have

been studied for years.

As mentioned in Introduction, we will study some special combinatorial matrices in

this thesis. Before giving previous works in the literature related to our thesis, we will

recall some fundamental notions and the de�nitions of some special matrices, which we

will study.

In general, we will obtain some algebraic properties of some combinatorial matrices such

as LU -decomposition, Cholesky decomposition, inverse, determinant etc. Firstly, we

would like to mention about these basic concepts and explain why these are important.

If the entries of a matrix are some combinatorial numbers such as Fibonacci numbers,

binomial coe�cients etc., then we call combinatorial matrix. Also in the literature,

there is combinatorial matrix theory which investigates the combinatorial meanings of

the matrices [42]. So the both di�er from each other.

The inverse of a square matrix A is a matrix B if the equation

A •B = B • A = I,

holds, where I is the identity matrix, whose (i, j)th entry is [i = j]. Here [·] denotes

the Iverson notation which means:

[P ] =

 1 if P is true,

0 otherwise,

where P is a statement that can be true or false. The inverse of the matrix A is

denoted by A−1. The inverse matrices are frequently used especially in solving linear

system of equation and obtaining inverse transformations. There are some methods to
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compute the inverse of a given matrix. It is worth mentioning that it is getting harder

to identify the inverse matrix for the higher order matrix. So the matrices, whose

inverses are explicitly known, are important.

It is often useful to summarize a multivariate phenomenen with a singular number. For

the matrices, determinant is an example of this and it is denoted by detA or |A| for

a given square matrix A. Another example of this is permanent and it is denoted by

perA. For more details and explanations about determinant and permanent, we refer

to [43].

There are various di�erent methods to evaluate the determinant of a matrix. Also in

the literature, there are many determinant formulæ of some special matrices. Krat-

tenthaler's surveys [44, 45] are elegant sources to �nd some of determinant evaluation

methods and get the idea where we need determinants. Also they are comprehensive

databases for some known determinant formulæ.

For a square matrix A, LU -decomposition refers to the factorization of A into two

factors, a lower unit triangular matrix L and an upper triangular matrix U such that

A = L • U.

The LU -decomposition can be considered as the matrix form of Gaussian elimination.

Computer algebra systems usually use it to solve square systems of linear equations.

Also it helps to �nd the inverse matrix and compute the determinant of the matrix.

For example, since detL = 1 and U is a triangular matrix, we can easily compute the

determinant of A by the formula detA = detU . On the other hand, if we know the

inverse matrices L−1 and U−1, then we may �nd a formula for the inverse matrix A−1

by the fact A−1 = U−1L−1. We will also use these advantages of the LU -decomposition

to evaluate the determinant and inverse of a matrix.

There may not exist the LU -decomposition of any square matrix A. The matrix should

satisfy some conditions to have LU -decomposition. However, there is an alternative

decomposition by the help of the permutation matrix, which is a square matrix that has

exactly one entry of 1 in each row and each column and 0's elsewhere. We refer to [46]

for the necessary and su�cient conditions for the existence of the LU -decomposition

and this alternative decomposition.
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The Cholesky decomposition of a symmetric positive-de�nite matrix A, that is a

matrix such that for every non-zero column vector x, xTAx > 0, is a factorization of

the form

A = C • CT , (3.1)

where C is a lower triangular matrix and CT is the transpose of the matrix C. The

Cholesky decomposition is unique for a symmetric positive-de�nite matrix. It is pos-

sible to extend this de�nition for complex valued matrix by considering Hermitian

matrix and conjugate transpose instead of symmetric matrix and transpose, respec-

tively. In this thesis, we are always interested in real valued matrix. Note that

when the matrix is not positive-de�nite but symmetric matrix, we still use the phrase

"Cholesky decomposition" only to point out the relation (3.1). Cholesky decomposi-

tion has similar advantages with the LU -decomposition, but it is more e�cient than

the LU -decomposition. For example, the Cholesky decomposition is nearly twice as

e�cient as the LU -decomposition for solving systems of linear equations. Thus LU -

decomposition and Cholesky decomposition help to simplify computations, both theo-

retically and practically.

For more details, explanations, examples and advantages about the notions given just

above, we refer to [43, 47].

Nowadays, computer is one of the best friends of the scientists. Since the notions,

mentioned just above, are many advantages in matrix theory, one desire to compute

them easily and correctly. In the literature, there are many di�erent methods and

algorithms to evaluate them. Thus people need some special matrices, whose certain

algebraic properties are explicitly known, to apply these methods and algorithms to

see the accuracy and e�ciency. These types of matrices are known as test matrices.

Brie�y, test matrices are key to test the accuracy of an algorithm or a method. In this

thesis, we will provide many explicit formulæ for some algebraic properties of various

special combinatorial matrices. We hope that some matrices, we studied, will be used

as test matrices.

Before mentioning about some special matrix families, we would like to give some

notations and remarks, we will regularly use from now on.

Remarks:
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1) In general, the size of the matrices does not really matter, so that we may think

about an in�nite matrixM and restrict it whenever necessary to the �rst N rows,

respectively, columns and use the notation MN .

2) We denote the (k, j)th entry of a given matrixM and its inverseM−1 byMkj and

M−1
kj , respectively. If the size of the matrix M is N , then we denote its (k, j)th

entry by (MN)kj. Furthermore, [Mkj], [Mkj]0≤k,j≤N−1 and [Mkj]1≤k,j≤N mean an

in�nite matrix M , a matrix M of size N whose indexes start at 0 and a matrix

M of size N whose indexes start at 1, respectively. Unless otherwise speci�ed,

we assumed that the indexes start at 1.

3) We use the letters L,U and A,B for the LU -decompositions of a given matrix and

its inverse, respectively. Also the letter C is used for the Cholesky decomposition.

For the related matrix to given matrix M , we may frequently use calligraphic

letterM. In that cases, we apply the same representation to the factor matrices

coming from LU -decomposition and Cholesky decomposition.

4) Since we will study many matrices, distinguishing them from each other is di�-

cult. For this reason, the letter, which identi�es the matrix, is only valid in the

related subsection. In other words, we may use same letter for di�erent matrices

in di�erent subsections.

5) We denote a sequence whose �rst term starts at the index 1 by {an}. Moreover,

{an}n≥0 stands for the sequence whose �rst term is a0.

Now, we will introduce some special matrix families, which we will encounter through-

out the thesis.

3.1.1 Special Matrices

Diagonal Matrix

A diagonal matrix is a square matrix in which the entries outside of the main diagonal

are all zero. The matrix D(an) = [Dkj] stands for a diagonal matrix constructed via a

given sequence {an}, and is de�ned by

Dkj =

 ak if k = j,

0 otherwise.
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Toeplitz Matrix

A Toeplitz matrix is a square matrix in which the entries on each descending diagonal

from left to right are constant. It satis�es that Mkj = Mk+1,j+1 for all k, j ≥ 1. In

general, by considering this relation, the de�nition could be extended for the nonsquare

matrices. As an example, any square Toeplitz matrix of size N is of the form:

MN =



a0 a−1 a−2 · · · · · · a−(N−1)

a1 a0 a−1
. . .

...

a2 a1
. . . . . . . . .

...
...

. . . . . . . . . a−1 a−2
...

. . . a1 a0 a−1

aN−1 · · · · · · a2 a1 a0


.

Band Matrix

A band matrix is a matrix whose nonzero entries are con�ned between an upper and

a lower diagonal bands, comprising the main diagonal and zero outside. Formally, if

M is a band matrix than there are nonnegative integers r and s such that

Mkj = 0 if j < k − r or j > k + s.

The quantities r and s are called the lower bandwidth and upper bandwidth,

respectively. Moreover, the bandwidth of this band matrix is equal to r + s + 1. As

an example, when r = 2, s = 3 and N = 6:

a11 a12 a13 a14 0 0

a21 a22 a23 a24 a25 0

a31 a32 a33 a34 a35 a36

0 a42 a43 a44 a45 a46

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66


,

where aij's are arbitrary nonzero reals.

Diagonal matrices, upper and lower triangular matrices are most known examples of

band matrices. When r = s = 1, then the corresponding band matrices are called the

tridiagonal matrices.
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Furthermore, kth diagonal band which is above (rsp. below) the main diagonal is called

kth superdiagonal (rsp. kth subdiagonal).

Another important class of band matrices is the family of Toeplitz band matrices,

which are both Toeplitz and band matrices.

Hankel Matrix

A Hankel matrix is a square matrix in which each ascending skew-diagonal from left

to right is constant. This could be considered as an upside down Toeplitz matrix. For

a given sequence {an}n≥0, Hankel matrix is of the form
a0 a1 a2 · · ·

a1 a2 a3 · · ·

a2 a3 a4 · · ·
...

...
...

. . .

 .

Formally, any Hankel matrix M is de�ned for a given sequence {an}n≥0, as follows for

k, j ≥ 0,

Mkj = Mjk = ak+j−2.

Hankel matrices have very important applications, especially in operator theory. For

more details about them, see [48].

Considering some particular number sequences instead of {an}n≥0, there are many

special matrices with nice algebraic properties. Some authors also studied the Hankel

matrix by considering the reciprocal sequence of {an}n≥0 of the form
1
a0

1
a1

1
a2
· · ·

1
a1

1
a2

1
a3
· · ·

1
a2

1
a2

1
a4
· · ·

...
...

...
. . .

 .

Some of the known examples of the Hankel matrices are Hilbert and Filbert matrices,

which we will discuss in Section 3.2.4.

Hessenberg Matrix

An upper Hessenberg matrix has zero entries below the �rst subdiagonal, and a
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lower Hessenberg matrix has zero entries above the �rst superdiagonal. The lower

Hessenberg matrix HN is of the form

HN =



h11 h12 0

h21 h22 h23

h31 h32 h33
. . .

...
...

...
. . . . . .

hN−1,1 hN−1,2 hN−1,3 · · ·
. . . hN−1,N

hN1 hN2 hN3 · · · · · · hNN


. (3.2)

Similarly, the upper Hessenberg matrix of sizeN could be considered as transpose of the

matrix HN . In this thesis, we will study the lower Hessenberg matrices. Nevertheless,

one can easily adapt our results to the upper Hessenberg matrices, as well. A triangular

matrix is both lower and upper Hessenberg matrix. Moreover, a Hessenberg matrix is

a band matrix whose one of the upper or lower bandwidth is 1.

Lehmer Matrix

The Lehmer matrix [Mkj] (see [49]) is the symmetric matrix de�ned by

Mkj =

 k
j

if j ≥ k,

j
k

if j < k.

Equivalently, this may be written as

Mkj =
min(k, j)

max(k, j)
.

3.2 Previous Studies

In this subsection, we present some previous studies related to our results obtained in

this thesis. We divide this subsection into di�erent parts and each part includes some

previous results about di�erent matrix families. At the end of each part, we provide

our motivations and what we will do in the following Results section. In other words,

we brie�y indicate our problems.

3.2.1 Band Matrices

Band matrices and their special cases such as Toeplitz band matrices, symmetric

Toeplitz band matrices, especially tridiagonal matrices have been extensively studied
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by many authors [50, 1, 51, 52, 53, 54, 55]. These matrices arise in many areas of math-

ematics and its applications. Especially, the band matrices have many applications in

numerical analysis. The matrices from �nite element or �nite di�erence problems are

often banded. Tridiagonal matrices are used in telecommunication system analysis, for

solving linear recurrence systems with non-constant coe�cients, etc. For these reasons,

the band matrices with known algebraic properties are important.

In 1972, for r ≥ 0 and 1 ≤ k, j ≤ N , Hoskins and Ponzo [1] de�ned the N × N

symmetric Toeplitz band matrix MN = [Mkj] of bandwidth 2r + 1 via the binomial

coe�cients as

Mkj = (−1)r+k−j
(

2r

r + k − j

)
.

For example, when r = 3 and N = 7, M7 is of the form

M7 =



−20 15 −6 1 0 0 0

15 −20 15 −6 1 0 0

−6 15 −20 15 −6 1 0

1 −6 15 −20 15 −6 1

0 1 −6 15 −20 15 −6

0 0 1 −6 15 −20 15

0 0 0 1 −6 15 −20


.

The authors gave formulæ for the determinant, the inverse matrix and the LU -decomposition

of the matrix MN . For example, they gave

detMN = (−1)N+r−1
N∏
d=1

(
2r + d− 1

r

)(
d+ r − 1

r

)−1
and

(M−1
N )kj = (−1)r

(
k + r − 1

r

)(
j + r − 1

r

)
×

N∑
d=1

(
d+ r − 1− k

r − 1

)(
d+ r − 1− j

r

)(
d+ r − 1

r

)−1(
d+ 2r − 1

r

)−1
.

The authors only considered the symmetric band matrix MN with upper bandwidth r

and lower bandwidth r.

It is worthwhile to note that a non-symmetric band matrix with upper bandwidth s and

lower bandwidth r via the binomial coe�cients has not been considered and studied

26



up to now. In Section 4.2, we will consider non-symmetric Toeplitz band matrix via

the Gaussian q-binomial coe�cients de�ned by for k, j ≥ 0,

Hkj = (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)q
1
2
(k−j)(k−j−r+s)− 1

2
rs

[
r + s

r + j − k

]
q

. (3.3)

We will obtain some algebraic properties of the matrix H. Also we will provide some

further results derived from this matrix. Our results do not only generalize the results

of Hoskins and Ponzo but also include new families of the band matrices.

3.2.2 Pascal Matrices

The Pascal matrices are de�ned via the binomial coe�cients [56, 57]. They are mainly

three kinds: the �rst is the left adjusted Pascal matrix PN , the second is the right

adjusted Pascal matrix QN and the third is the symmetric Pascal matrix SN . They

are de�ned by for 0 ≤ k, j < N ,

Pkj =

(
k

j

)
, Qkj =

(
k

N − 1− j

)
and Skj =

(
k + j

k

)
,

respectively. In [58], the author studied the reciprocal of the symmetric Pascal matrix[(
k+j
k

)−1]
k,j≥0

and its some parametric generalizations.

Recently, Prodinger [3] de�ned a matrix whose entries consist of the super Catalan

numbers
{

(2i)!(2j)!

i!j!(i+ j)!

}
i,j≥0

. He also de�ned its reciprocal analogue as well as their

q-analogues whose (k, j)th entries are de�ned by(
2k

k

)(
2j

j

)(
k + j

k

)−1
and

(
2k

k

)−1(
2j

j

)−1(
k + j

k

)
,

and [
2k

k

]
q

[
2j

j

]
q

[
k + j

k

]−1
q

and
[
2k

k

]−1
q

[
2j

j

]−1
q

[
k + j

k

]
q

,

respectively. Then he gave some algebraic properties of these matrices.

In Section 4.3, we will study parametric generalizations of the just above matrices,

introducing two additional parameters. We also mention how one can obtain further

generalizations of these types of matrices.

3.2.3 Max and Min Matrices

In the literature, for some special sequences {an}, some authors studied the matrices

[max(ak, aj)]1≤k,j≤N and [min(ak, aj)]1≤k,j≤N . We listed them below:
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• The author of [59] studied the matrix

[max(N + 1− k,N + 1− j)]1≤k,j≤N ,

which is called the Franc matrix.

• The author of [60] gave the Cholesky decomposition of the matrix[
1

max(k + 1, j + 1)

]
k,j≥0

,

which is called the loyal companion of the Hilbert matrix.

• In [61], the author found eigenvalues and eigenvectors of the matrices

[min(k, j)]1≤k,j≤N and [min(2k − 1, 2j − 1)]1≤k,j≤N .

• Fonseca [62] studied the general cases of the matrices considered in [61] by de�ning

the matrix [min(ak − b, aj − b)]1≤k,j≤N for a > 0 and a 6= b. Then he computed

eigenvalues and eigenvectors of this general matrix by computing its inverse.

Recently, Mattila and Haukkanen [5] studied more general matrix families. Let T =

{a1, a2, . . . , aN} be a �nite multiset of real numbers, such that a1 ≤ a2 ≤ · · · ≤ aN .

They considered the matrices [max(ak, aj)]1≤k,j≤N and [min(ak, aj)]1≤k,j≤N de�ned on

the set T . Clearly, they may be written explicitly as

a1 a2 a3 · · · aN

a2 a2 a3 · · · aN

a3 a3 a3 · · · aN
...

...
...

. . .
...

aN aN aN · · · aN


and



a1 a1 a1 · · · a1

a1 a2 a2 · · · a2

a1 a2 a3 · · · a3
...

...
...

. . .
...

a1 a2 a3 · · · aN


,

respectively. They computed the determinants, inverses, Cholesky decompositions of

these matrices and examined the positive de�niteness of them. They used the meet

and join matrices, see [63], as a tool to obtain their results. Moreover, they indicated

that it is di�cult to verify their results by using only basic linear algebra methods.

In Section 4.4, we will introduce more general families by considering the matrices[
amax(k,j)

]
and

[
amin(k,j)

]
, whose entries run in left-reversed and up-reversed L-shaped

pattern, respectively, as well as their reciprocal analogues for an arbitrary sequence
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{an}. These matrices cover the all previous studied matrices and also generalize the

results in [5]. We use basic linear algebra methods to prove our results, which also yield

new and alternative proofs for the results in [5]. We will also present some interesting

and useful applications of our results.

3.2.4 Hilbert, Filbert Matrices and Their Variants

The Hilbert matrix H = [Hkj] is de�ned with entries

Hkj =
1

k + j − 1
.

As a recursive analogue of the Hilbert matrix, Richardson [64] de�ned and studied the

Filbert matrix R = [Rkj] with entries

Rkj =
1

Fk+j−1
,

where Fn is the nth Fibonacci number. Clearly, both the Hilbert and Filbert matrices

are the examples of the Hankel matrices.

After the Filbert matrix, several generalizations and variants of it have been investi-

gated and studied by some authors. We brie�y summarize some of these:

• In [65], K�l�ç and Prodinger studied a generalization of the Filbert matrix by

de�ning the matrix
[

1
Fk+j+r

]
, where r ≥ −1 is an arbitrary integer parameter.

• After this, Prodinger [66] de�ned a new generalization of the generalized Filbert

matrix by introducing 3 additional parameters by taking its (k, j)th entry as
xkyj

Fλ(k+j)+r
, where r ≥ −1 and λ ≥ 1 are arbitrary integers and x, y are any reals.

• In another study [67], K�l�ç and Prodinger obtained two variants of the generalized

Filbert matrix by considering the matrices
[
Fλ(k+j)+r
Fλ(k+j)+s

]
and

[
Lλ(k+j)+r
Lλ(k+j)+s

]
, where s, r

and λ are integer parameters such that s 6= r, and s ≥ −1 and λ ≥ 1. The

second matrix is the �rst instance, where the entries of the matrix include the

Lucas numbers.

• K�l�ç and Prodinger [68] gave a further generalization of the Filbert matrix by

de�ning the matrix Q with entries

Qkj =
1

Fk+j+rFk+j+r+1 . . . Fk+j+r+d−1
,
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where r ≥ −1 and d ≥ 1 are arbitrary integers. The generalized Filbert matrix

is the particular case, when d = 1, of the matrix Q.

• In another paper [69], K�l�ç and Prodinger introduced the matrix G as a para-

metric generalization of the matrix Q by

Gkj =
1

Fλ(k+j)+rFλ(k+j+1)+r . . . Fλ(k+j+d−1)+r
,

where r ≥ −1, d ≥ 1 and λ ≥ 1 are integer parameters.

• K�l�ç and Prodinger [70] gave new four variants of the Filbert matrix, by de�ning

the matrices P , T , Y and Z with entries

Pkj =
1

Fλk+µj+r
, Tkj =

Fλk+µj+r
Fλk+µj+s

, Ykj =
1

Lλk+µj+r
and Zkj =

Lλk+µj+r
Lλk+µj+s

,

respectively, where s, r, λ and µ are integer parameters such that s 6= r, r, s

≥ −1 and λ, µ ≥ 1. When λ = µ = 1, the matrix Y is also known as generalized

Lilbert matrix, which is the Lucas analogue of the generalized Filbert matrix.

• More recently, as the Lucas analogue of the matrix G, K�l�ç and Prodinger [71]

de�ned the matrix W by

Wkj =
1

Lλ(k+j)+rLλ(k+j+1)+r . . . Lλ(k+j+d−1)+r
,

where λ and r are arbitrary integers and d is a positive integer.

The authors of the all-above mentioned works have studied various properties of the

given matrices such as LU and Cholesky decompositions, determinants, inverses, etc.

All these results yield some further combinatorial identities, as well. In many of them,

�rstly the authors converted the entries of the matrices into q-forms and obtained

related results for these q-forms. Afterwards, they proved all their claims in the q-

forms by the means of the celebrated q-Zeilberger algorithm for the general parameter

q. But only in [67, 70], q-Zeilberger algorithm did not work and because of that they

used some traditional methods. We will encounter the same situation in Section 4.5.

In Section 4.5, we will introduce a new non-symmetric variant of the Filbert matrix

de�ned by the entries for k, j ≥ 0,

Uλk−µj+d
Uλk+µj+d
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with positive integers λ, µ and d, where Un stands for the nth generalized Fibonacci

number. Note that the interesting feature of this matrix is that it includes some zero

terms as entries. Specially, when λ = µ = 1, then the entries on the dth superdiagonal

are all zero. Furthermore, it would be never a symmetric matrix for any choice of

the parameters. For this reason, we will also obtain related results for the transposed

matrix.

If we look closely, the indexes of the Fibonacci or Lucas numbers in the Filbert or

Lilbert matrix and all its generalizations or variants, studied before, are in the linear

forms. Any nonlinear forms of the indexes have not been studied anywhere, yet. In

Section 4.6, we will present a new generalization of the Filbert matrix whose indexes

will be in the nonlinear form. This will be the �rst example in the literature. In brief,

we will study the matrix as a nonlinear generalization of the Filbert matrix de�ned

with the entries
1

Uλ(k+r)n+µ(j+s)m+c

,

where λ, µ, n and m are positive integers, r, s and c are any integers such that

λ(k+r)n+µ(j+s)m+c > 0 for all positive integers k and j. Moreover, we will present

its Lucas analogue.

3.2.5 Hessenberg Matrices

Hessenberg matrices were �rstly investigated by Karl Hessenberg (1904-1959), a Ger-

man engineer.

They are one of the most important matrices in numerical analysis [47, 72]. For ex-

ample, the Hessenberg decomposition played an important role in computation of the

matrix eigenvalues [47]. So in applied mathematics, they have important role.

In [73, 74], authors introduced a constructive way to compute the inverse of the �nite

and in�nite Hessenberg matrices, respectively.

Note that we indicated that we would use N for the order of the matrices. However,

in the sections about Hessenberg, matrices we prefer to use n rather than N . Because

we will consider the value of the determinant of the matrices as the sequences indexed

with their order.
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Cahill et al. [75] gave a recurrence relation for the determinant of the matrix de�ned

by (3.2) as follows for n > 0,

detHn = hnn detHn−1 +
n−1∑
r=1

(
(−1)n−r hnr

n−1∏
j=r

hj,j+1 detHr−1

)
,

where H0 = 1. Unfortunately, this result is not useful for the higher order Hessenberg

matrices.

In [76, 77, 78, 79, 80], the authors gave the relationships between some certain recursive

sequences and the determinants or permanents of some certain Hessenberg matrices.

Meanwhile, some authors computed the determinants and permanents of various type

of tridiagonal matrices which are indeed Hessenberg matrices [81, 82, 83, 84]. For

example, in [83], K�l�ç provided the formula∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0

−1 2 1

−1 2
. . .

. . . . . . 1

0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Pn+1,

where Pn is the nth Pell number given in Table 1. The authors of the all works

mentioned above used the cofactor expansion of the determinant as their main tool

and then evaluated the determinants recursively.

The authors of [85] gave an algorithm to compute determinant of the Hessenberg

matrices.

Moreover, the authors of [86, 87] evaluated the determinants of some special families

of the Hessenberg matrices by using the combinatorial approaches.

Recently, Macfarlane [88] considered the Hessenberg matrix whose entries consist of
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the terms of the sequence {Wn}:

Mn =



W1 W2 W3 · · · Wn−2 Wn−1 Wn

−x W1 W2 · · · Wn−3 Wn−2 Wn−1

−x W1 · · · Wn−4 Wn−3 Wn−2
. . . . . .

...
...

...
. . . W1 W2 W3

−x W1 W2

0 −x W1


,

where {Wn} is the Horadam sequence given in Table 1. Again by using the cofactor

expansion of the determinant, he showed that the sequence {detMn} satis�es the

recurrence relation for n > 2,

detMn = (b+ px) detMn−1 − qx (a+ x) detMn−2.

More recently, by using generating functions, Merca [89] showed that the determinant

of an n×n Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions

of n.

In the literature, Getu [7] �rstly computed the determinants of a class of the Hessenberg

matrices by using the generating functions. He considered the in�nite matrix

R =



b0 1 0 0 . . .

b1 c1 1 0 . . .

b2 c2 c1 1 . . .

b3 c3 c2 c1 . . .

b4 c4 c3 c2 . . .
...

...
...

...
. . .


.

Then he showed that if the equation

A (x) =
B (x)

C (x) + 1

holds then

an = (−1)n detRn,

where A (x) , B (x) and C (x) are the generating functions of the sequences {an+1}n≥0,

{bn}n≥0 and {cn+1}n≥0, respectively.
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As it is seen, the determinants of the Hessenberg matrices have drawn attentions of

many researchers. In Section 4.7, we will use the generating functions to determine

the relationships between the determinants of the new three classes of the Hessenberg

matrices whose entries are terms of the certain number sequences and the generating

functions of these sequences. This method is more e�cient and applicable than cofactor

expansion and the determinants of many previously studied Hessenberg matrices are

easily computed by this method. Furthermore, we will give an elegant method to

evaluate the determinants of the Hessenberg matrices whose entries consist of the

terms of the higher order linear recursive sequences.

34



4 RESULTS

In this section, we present the results which are obtained in our thesis. Firstly, in the

following subsection we give some auxiliary results for further use. The next subsections

are devoted to our main results. In each these subsections, we present some results for

the di�erent combinatorial matrix families.

4.1 Auxiliary Results

The following propositions are the general results about some matrix families. We use

them as tools to prove some of our results. They may apply to other matrices which are

not considered throughout the thesis, as well. All of them are new and useful results

about some special matrix families.

Firstly, we shall start with a proposition about Toeplitz matrices.

Proposition 4.1. If M is a Toeplitz matrix of order N , then there exist the following

relationships between the factor matrices coming from the LU-decompositions of the

matrices M and M−1, for 0 ≤ k, j ≤ N − 1,

(i) Akj = L−1N−1−j,N−1−k,

(ii) A−1kj = LN−1−j,N−1−k,

(iii) Bkj = U−1N−1−j,N−1−k,

(iv) B−1kj = UN−1−j,N−1−k,

(v) M−1
kj = M−1

N−1−j,N−1−k.

Proof. For the claims (i) and (ii), consider

k∑
d=j

AkdA
−1
dj =

k∑
d=j

L−1N−1−d,N−1−kLN−1−j,N−1−d

=

N−1−j∑
d=N−1−k

L−1d,N−1−kLN−1−j,d = [N − 1− j,N − 1− k] = [k = j],

which gives us AA−1 = I, as claimed. For the claims (iii) and (iv), we have

j∑
d=k

BkdB
−1
dj =

j∑
d=k

U−1N−1−d,N−1−kUN−1−j,N−1−d
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=
N−1−k∑
d=N−1−j

U−1d,N−1−kUN−1−j,d = [N − 1− j,N − 1− k] = [k = j],

as desired.

For the LU -decomposition of M−1, we should show that M−1 = A • B or equivalently

M = B−1 • A−1. So it is su�cient to show that∑
max(k,j)≤d≤N−1

B−1kd A
−1
dj = Mkj.

Thus consider ∑
max(k,j)≤d≤N−1

B−1kd A
−1
dj =

∑
max(k,j)≤d≤N−1

UN−1−d,N−1−kLN−1−j,N−1−d

=
∑

0≤d≤N−1−max(k,j)

LN−1−j,dUd,N−1−k

=
∑

0≤d≤min(N−1−j,N−1−k)

LN−1−j,dUd,N−1−k.

Since M = L • U and M is a Toeplitz matrix, we have
∑

0≤d≤min(k,j) LkdUdj = Mkj and

Mkj = MN−1−j,N−1−k. Finally, we obtain∑
max(k,j)≤d≤N−1

B−1kd A
−1
dj = MN−1−j,N−1−k = Mkj,

which completes the proof. By the fact M−1 = A •B = U−1 •L−1 and the relationships

(i) and (iii), we have

M−1
kj =

∑
0≤d≤min(k,j)

L−1N−1−d,N−1−kU
−1
N−1−j,N−1−d

=
∑

N−1−min(k,j)≤d≤N−1

L−1d,N−1−kU
−1
N−1−j,d

=
∑

max(N−1−j,N−1−k)≤d≤N−1

L−1d,N−1−kU
−1
N−1−j,d = M−1

N−1−j,N−1−k.

So the claim (v) follows.

By the above proposition, one can easily derive the LU -decomposition of the inverse

of a Toeplitz matrix from its LU -decomposition.

The next proposition is about the matrices whose entries include separable factors with

respect to the indexes k and j.
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LetH = [Hkj] be a square matrix, whose LU -decomposition, inverse, LU -decomposition

of its inverse and Cholesky decomposition are known with the matrices L = [Lkj],

U = [Ukj], H−1 = [H−1kj ], A = [Akj], B = [Bkj] and C = [Ckj], respectively.

Proposition 4.2. Assume that H = [Hkj] is a square matrix and there exist the

sequences {sn} and {mn} with nonzero terms such that Hkj = Hkjskmj. Then for the

matrix H, one can determine the LU-decomposition, inverse, LU-decomposition of its

inverse and Cholesky decomposition as shown

Lkj = Lkj
sk
sj

and Ukj = Ukjskmj,

L−1kj = L−1kj
sk
sj

and U−1kj = U−1kj
1

sj

1

mk

,

H−1kj = H−1kj
1

sj

1

mk

,

Akj = Akj
mj

mk

and Bkj = Bkj
1

sj

1

mk

,

A−1kj = A−1kj
mj

mk

and B−1kj = B−1kj skmj

and when for all k ≥ 1, sk = mk,

Ckj = Ckjsk.

Proof. By the assumption for the matrix H, �rstly we can write

H = D(sn) •H •D(mn),

where D(an) is the diagonal matrix de�ned as before. Since the LU -decomposition of

the matrix H is known, namely H = L • U , we can write

H = D(sn) • L · U •D(mn) = D(sn) • L •D

(
1

sn

)
•D(sn) • U •D(mn).

Here we see thatD(sn)•L•D
(

1
sn

)
is a unite lower triangular matrix andD(sn)•U •D(mn)

is an upper triangular matrix. So we have

L = D(sn) • L •D

(
1

sn

)
and U = D(sn) • U •D(mn),

which gives the LU -decomposition of the matrixH. Moreover, by the rule of the inverse

of the multiplication of the matrices, we may immediately derive

H−1 = D

(
1

mn

)
•H−1 •D

(
1

sn

)
. (4.1)
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The matrices A and B follow after applying the LU -decomposition to the matrix H−1.

The relations of the inverse matrices L−1,U−1,A−1 and B−1 can be easily derived as

in (4.1). For the Cholesky decomposition of H, consider

H = D(sn) •H •D(sn) = D(sn) • C • CT •D(sn)T = (D(sn) • C) (D(sn) • C)T ,

then the claim follows.

This proposition is very useful to obtain new matrix identities. We will frequently use

it in the forthcoming subsections.

Finally, we have the following proposition to derive the LU -decomposition of the trans-

posed matrix.

Proposition 4.3. Let K be a nonsingular square matrix whose LU-decomposition

is known with the matrices L = [Lkj], U = [Ukj], respectively. Then for the LU-

decomposition of the transposed matrix KT , we have

KT = L′ • U ′,

where

L′kj =
Ujk
Ujj

and U ′kj = LjkUkk.

Proof. Since K is nonsingular, for all k ≥ 1, we have Ukk 6= 0. Then consider

KT = UT • LT = UT •D
( 1

Unn

)
•D(Unn) • LT .

Then L′ = UT •D( 1
Unn

) and U ′ = D(Unn) • LT , which completes the proof.

We have the following useful corollary.

Corollary 4.1. Let S be a nonsingular symmetric matrix. Then S can be written as

S = UT •D

(
1

Unn

)
• U,

where U is the factor matrix coming from the LU-decomposition of the matrix S. Fur-

thermore, the Cholesky decomposition of S is derived as

Ckj = Ujk
1√
Ujj

.
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Proof. Since S is a nonsingular symmetric matrix, by Proposition 4.3, the factor matrix

L of S is equal to UT •D
(

1
Unn

)
. So the �rst claim follows. Consider

S = UT •D

(
1

Unn

)
• U = UT •D

(
1√
Unn

)
•D

(
1√
Unn

)
• U

= UT •D

(
1√
Unn

)
•

(
UT •D

(
1√
Unn

))T
.

Thus C = UT •D
(

1√
Unn

)
, which completes the proof.

The above corollary allows us to derive the Cholesky decomposition of a matrix from

its LU -decomposition if it is symmetric. Remind that the Cholesky decomposition

means that the matrix satis�es the relation (3.1). If the matrix S is a positive de�nite,

i.e. for all n > 0, Unn > 0, then our result is valid for the general theory and also

provides an alternative proof for the fact that the matrices comes from the Cholesky

decomposition of a positive de�nite matrix consist of real entries.

Now we are ready to move to our main results.

4.2 A Family of the Non-Symmetric Band Matrices

As mentioned in Section 3.2.1, in this section we introduce a class of non-symmetric

Toeplitz band matrices with upper bandwidth s and lower bandwidth r whose entries

are de�ned via the Gaussian q-binomial coe�cients to obtain the generalizations of

the results of [1]. The case s = r gives us the q-analogue of the result of [1]. When

s = r + 1, we have a Toeplitz band matrix with even number of bands, which has not

been studied before.

Brie�y, we de�ne a matrix H with bandwidth r + s + 1 via the Gaussian q-binomial

coe�cients. We provide explicit formulæ for the LU -decomposition, determinant and

LU -decomposition of the inverse matrix H−1. Furthermore, we derive some comple-

mentary results for the work [1] related to the case of bandwidth r+s+1. We presented

obtained results in [2].

Our main tool is usually to guess relevant quantities. Then we use the q-Zeilberger

algorithm to prove our claims. All identities we obtain hold for the general quantity q,

so that results about the Fibonomial coe�cients come out as corollaries for the special

39



choice of q. Finally, by the help of the limit q → 1, we derive further results including

the usual binomial coe�cients.

For nonnegative arbitrary integers r and s, we de�ne the matrix H = [Hkj]k,j≥0 with

upper bandwidth s and lower bandwidth r by

Hkj = (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)q
1
2
(k−j)(k−j−r+s)− 1

2
rs

[
r + s

r + j − k

]
q

. (4.2)

For example, when r = 2 and s = 4, the matrix H is of the form

−q−4
[
6
2

]
q
−iq− 9

2

[
6
3

]
q

q−4
[
6
4

]
q

iq−
5
2

[
6
5

]
q

−1 0

iq−
5
2

[
6
1

]
q
−q−4

[
6
2

]
q
−iq− 9

2

[
6
3

]
q

q−4
[
6
4

]
q

iq−
5
2

[
6
5

]
q

. . .

1 iq−
5
2

[
6
1

]
q
−q−4

[
6
2

]
q

. . . . . . . . . −1
. . . . . . . . . . . . . . . iq−

5
2

[
6
5

]
q

. . . . . . . . . . . . q−4
[
6
4

]
q

. . . . . . . . . −iq− 9
2

[
6
3

]
q

0 1 iq−
5
2

[
6
1

]
q
−q−4

[
6
2

]
q


.

When q = β/α, where α, β = (p∓
√
p2 + 4)/2, we get the Fibonomial analogue of the

matrix H and denote it by H = [Hkj]k,j≥0, where

Hkj = (−1)r(k+j)+j(k+1)ij(j+1)+k(k+1)+r(r−1)
{

r + s

r + j − k

}
U

.

For r = 2 and s = 4, we have

H =



−
{
6
2

}
U
−
{
6
3

}
U

{
6
4

}
U

{
6
5

}
U

−1 0{
6
1

}
U
−
{
6
2

}
U
−
{
6
3

}
U

{
6
4

}
U

{
6
5

}
U

. . .

1
{
6
1

}
U
−
{
6
2

}
U

. . . . . . . . . −1
. . . . . . . . . . . . . . .

{
6
5

}
U

. . . . . . . . . . . .
{
6
4

}
U

. . . . . . . . . −
{
6
3

}
U

0 1
{
6
1

}
U
−
{
6
2

}
U


. (4.3)

Before giving main results, it is worthwhile to note that one may ignore some power

terms which are separable with respect to the indexes by the help of Proposition 4.2.

We prefer this way because as it is seen in (4.3), the sign pattern from the lowest

subdiagonal "+ +−−+ +−− · · · " looks nicer.
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4.2.1 Main Results

Now we shall start with the matrices L and U as well as their inverses.

Theorem 4.1. For k, j ≥ 0,

Lkj = (−1)r(k+j)+jik+j+(r−s)(k−j)q
1
2
(k−j)(k−j+s−r)

[
r

k − j

]
q

[
k

k − j

]
q

[
s+ k

k − j

]−1
q

,

L−1kj = (−1)r(k+j)i(k−j)(r−1−s)q
1
2
(k−j)(s−r+1)

[
k − j + r − 1

r − 1

]
q

[
s+ j

j

]
q

[
s+ k

k

]−1
q

,

Ukj = (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)q
1
2
(k−j)(k−j−r+s)− 1

2
rs

×
[

s

j − k

]
q

[
r + s+ k

r + j

]
q

[
s+ k

j

]−1
q

and

U−1kj = (−1)(k+j)(r+1)ik−j−r+(k+r−j)(r−s)q
1
2
(k−j)(s−r−1)+ 1

2
rs

×
[
j − k + s− 1

s− 1

]
q

[
r + k

k

]
q

[
r + s+ j

r

]−1
q

.

As their Fibonomial analogues, for the matrix H, we have the following corollary.

Corollary 4.2. For k, j ≥ 0,

Lkj = (−1)r(k+j)+j(k+1)ik(k+1)+j(j+1)

{
r

k − j

}
U

{
k

k − j

}
U

{
s+ k

k − j

}−1
U

,

L−1kj = (−1)r(k+j)
{
k − j + r − 1

r − 1

}
U

{
s+ j

j

}
U

{
s+ k

k

}−1
U

,

Ukj = (−1)r(k+j)+j(k+1)ij(j+1)+k(k+1)+r(r−1)
{

s

j − k

}
U

{
r + s+ k

r + j

}
U

{
s+ k

j

}−1
U

and

U−1kj = (−1)(j+k)(r+1)ir(r−1)
{
j − k + s− 1

s− 1

}
U

{
r + k

k

}
U

{
r + s+ j

r

}−1
U

.

Consequently, we could give the values of the determinants of the matrices HN and

HN . They are simply evaluated as the products of the main diagonal entries of the

upper triangular matrices U and U , respectively.

Theorem 4.2. For N ≥ 1, we have

detHN = ir(r+s−1)Nq−
1
2
Nrs

N−1∏
d=0

[
r + s+ d

d

]
q

[
s+ d

d

]−1
q

.
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As the Fibonomial analogue, we have

Corollary 4.3. For N ≥ 1,

detHN = ir(r−1)N
N−1∏
d=0

{
r + s+ d

r + d

}
U

{
s+ d

d

}−1
U

.

Specially, when r = s = 3, we have the following nice formula

detHN = (−1)N
UN+1

U1

U2
N+2

U2
2

U3
N+3

U3
3

U2
N+4

U2
4

UN+5

U5

.

Now recall a result from [1]. For r = 3, the determinant of the matrix they studied is

equal to
N + 1

1

(N + 2)2

22

(N + 3)3

33

(N + 4)2

42

N + 5

5
.

As it is seen, there is a remarkable similarity.

Moreover, when r = 5 and s = 4, we have

detHN =
UN+1

U1

U2
N+2

U2
2

U3
N+3

U3
3

U4
N+4

U4
4

U4
N+5

U4
5

U3
N+6

U3
6

U2
N+7

U2
7

UN+8

U8

.

For the inverse matrixH−1, unfortunately there isn't any explicit formula. Nevertheless

by the LU -decomposition, we get the following theorem.

Theorem 4.3. For 0 ≤ k, j ≤ N − 1,

(H−1N )kj = (−1)r(j+k)+kik(1+r−s)+j(1−r+s)+r(r−s−1)q
1
2
((k−j)(s−r)+rs−j−k)

[
r + k

k

]
q

[
s+ j

j

]
q

×
N−1∑
d=0

qd
[
d− k + s− 1

s− 1

]
q

[
d− j + r − 1

r − 1

]
q

[
r + s+ d

r

]−1
q

[
s+ d

d

]−1
q

.

Although there is no closed formula for the inverse matrix, we may express it in an-

other way. The following theorem helps us to express the matrix H−1N by its LU -

decomposition and moreover we can explicitly �nd the inverses of these factor matrices.

Theorem 4.4. For 0 ≤ k, j ≤ N − 1,

Akj = (−1)r(k+j)i(k−j)(r−1−s)q
1
2
(k−j)(s−r+1)

×
[
k − j + r − 1

r − 1

]
q

[
s+N − 1− k

s

]
q

[
s+N − 1− j

s

]−1
q

,

A−1kj = (−1)r(k+j)+jik+j+(r−s)(k−j)q
1
2
(k−j)(k−j+s−r)
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×
[

r

k − j

]
q

[
N − 1− j
k − j

]
q

[
s+N − 1− j

k − j

]−1
q

,

Bkj = (−1)(k+j)(r+1)ik−j−r+(k+r−j)(r−s)q
1
2
(k−j)(s−r−1)+ 1

2
rs

×
[
j − k + s− 1

s− 1

]
q

[
r +N − 1− j

r

]
q

[
r + s+N − 1− k

r

]−1
q

and

B−1kj = (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)q
1
2
(k−j)(k−j−r+s)− 1

2
rs

×
[

s

j − k

]
q

[
r + s+N − 1− j

s+ k − j

]
q

[
s+N − 1− j
s+ k − j

]−1
q

.

As the Fibonomial analogue, we have

Corollary 4.4. For 0 ≤ k, j ≤ N − 1,

Akj = (−1)(k+j)r
{
k − j + r − 1

r − 1

}
U

{
s+N − 1− k

s

}
U

{
s+N − 1− j

s

}−1
U

,

A−1kj = (−1)r(k+j)+j(k+1)ik(k+1)+j(j+1)

×
{

r

k − j

}
U

{
N − 1− j
k − j

}
U

{
s+N − 1− j

k − j

}−1
U

,

Bkj = (−1)(j+k)(r+1)ir(r−1)
{
j − k + s− 1

s− 1

}
U

×
{
r +N − 1− j

r

}
U

{
r + s+N − 1− k

r

}−1
U

and

B−1kj = (−1)r(k+j)+j(k+1)ij(j+1)+k(k+1)+r(r−1)

×
{

s

j − k

}
U

{
r + s+N − 1− j

s+ k − j

}
U

{
s+N − 1− j
s+ k − j

}−1
U

.

Specially, when the case p = 1, i.e. Un = Fn, our results become valid for the usual

Fibonomial coe�cients.
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4.2.2 Proofs

Now we will give the proofs of our main results.

To show H = L • U , it is su�cient to prove that the following equation holds.∑
0≤d≤min(k,j)

LkdUdj = Hkj.

Thus we need to show∑
0≤d≤min(k,j)

(−1)r(k+d)+di(d+k)+(r−s)(k−d)q
1
2
(k−d)(k−d+s−r)

[
r

k − d

]
q

[
k

k − d

]
q

×
[
s+ k

k − d

]−1
q

(−1)r(d+j)+jid(1+r−s)+j(1−r+s)−r(1−s−r)

× q
1
2
(d−j)(d−j−r+s)− 1

2
rs

[
s

j − d

]
q

[
r + s+ d

r + j

]
q

[
s+ d

j

]−1
q

= (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)q
1
2
(k−j)(k−j−r+s)− 1

2
rs

[
r + s

r + j − k

]
q

.

After some simpli�cations, we have the following equation to prove∑
j−s≤d≤k

q−d(k+j)+d
2

[
r

k − d

]
q

[
k

k − d

]
q

[
s+ k

k − d

]−1
q

[
s

j − d

]
q

[
r + s+ d

r + j

]
q

[
s+ d

j

]−1
q

= q−jk
[

r + s

r + j − k

]
q

.

Let's denote the LHS of the above equation by SUMk. Then the Mathematica package

of the q-Zeilberger algorithm produces the recursion

SUMk =
q−j(1− q1+j−k+r)

(1− q−j+k+s)
SUMk−1.

By going backward, we obtain

SUMk =
q−jk(1− q1+j−k+r) · · · (1− qr+j)

(1− qs−j+k) · · · (1− qs−j+1)
SUM0,

where SUM0 =
[
r+s
r+j

]
q
. After multiplying both the denominator and numerator of the

above equation with (q; q)j−k+r, we get

SUMk = q−jk
[

r + s

r + j − k

]
q

,

as claimed. So the proof of the LU -decomposition of the matrix H is completed.
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Now we turn the inverse matrix L−1. Since L and L−1 are lower triangular matrices,

we only need to look at the entries indexed by (k, j) with k ≥ j. So we should show

that ∑
j≤d≤k

LkdL
−1
dj = [k = j].

Then we have∑
j≤d≤k

LkdL
−1
dj = (−1)r(k+j)ik+j+(k−j)(r−s)q

1
2(k2−j+(r−s)(j−k))

[
s+ j

j

]
q

×
∑
j≤d≤k

(−1)dq
1
2
(d2+d)−kd

[
r

k − d

]
q

[
k

d

]
q

[
s+ k

k − d

]−1
q

[
d− j + r − 1

r − 1

]
q

[
s+ d

d

]−1
q

.

The q-Zeilberger algorithm computes the sum on the RHS of the above equation as 0

when k 6= j and r 6= 0. For the case r = 0, H is an upper triangular matrix so that

the claim is clear. For the case k = j, it is easy to see that LkkL−1kk = 1. So the proof

is completed.

Since U and U−1 are upper triangular matrices, we just need to look at the entries

indexed by (k, j) with j ≥ k. Thus we have

∑
k≤d≤j

UkdU
−1
dj = (−1)r(j+k+r−1)+ji(k−j)(r−s+1)q

1
2((r−s)(j−k)+k2+j)

[
r + s+ j

r

]−1
q

×
∑
k≤d≤j

(−1)dq
1
2
(d2−d)−kd

[
s

d− k

]
q

[
r + s+ k

s− d+ k

]
q

×
[
s+ k

d

]−1
q

[
j − d+ r − 1

r − 1

]
q

[
r + d

r

]
q

.

Similarly, the q-Zeilberger algorithm computes the sum on the RHS of the above equa-

tion as 0 when k 6= j and s 6= 0. When we choose the number of superdiagonals of the

matrix H as zero, that is the case s = 0, it is easy to check because the matrix H is a

lower triangular matrix. If k = j, it is obvious that UkkU−1kk = 1. Finally∑
k≤d≤j

UkdU
−1
dj = [k = j],

so the proof of Theorem 4.1 is completed.

For the inverse matrix H−1N , by using the fact that H−1N = U−1N • L−1N , we can write

(H−1N )kj =
N−1∑
d=0

U−1kd L
−1
dj
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=
N−1∑
d=0

(−1)(k+d)(r+1)i(k−d−r)+(k+r−d)(r−s)q
1
2
((k−d)(s−r−1)+rs)

×
[
d− k + s− 1

s− 1

]
q

[
r + k

k

]
q

[
r + s+ d

r

]−1
q

(−1)r(d+j)i(d−j)(r−1−s)

× q
1
2
(d−j)(s−r+1)

[
d− j + r − 1

r − 1

]
q

[
s+ j

j

]
q

[
s+ d

d

]−1
q

.

After some straightforward simpli�cations, we obtain Theorem 4.3.

Since the matrix H is a Toeplitz matrix, Theorem 4.4 arises as a consequence of Propo-

sition 4.1.

Thus the proofs of all theorems are completed for the general real parameter q. The

proofs of all corollaries follow by choosing q = β/α.

4.2.3 The Case Bandwidth r + s+ 1 with the Binomial Coe�cients

The results will be presented in this subsection are direct generalizations of the results

of [1] with upper bandwidth s and lower bandwidth r. The results for the case r = s

cover the results in [1].

For r, s ≥ 0, we de�ne non-symmetric Toeplitz band matrix G = [Gkj]k,j≥0 via the

binomial coe�cients as

Gkj = (−1)k+j+r
(

r + s

r + j − k

)
.

For example, when r = 2, s = 4 and N = 7, we have:

G7 =



15 −20 15 −6 1 0 0

−6 15 −20 15 −6 1 0

1 −6 15 −20 15 −6 1

0 1 −6 15 −20 15 −6

0 0 1 −6 15 −20 15

0 0 0 1 −6 15 −20

0 0 0 0 1 −6 15


.

We list the results related to the LU -decomposition, inverse matrices L−1 and U−1 and

determinant of the matrix G, respectively.

Theorem 4.5. For k, j ≥ 0,

Lkj = (−1)k+j
(

r

k − j

)(
k

j

)(
s+ k

k − j

)−1
,
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Ukj = (−1)k+j+r
(

s

j − k

)(
r + s+ k

r + j

)(
s+ k

j

)−1
,

L−1kj =

(
k − j + r − 1

r − 1

)(
s+ j

j

)(
s+ k

k

)−1
and

U−1kj = (−1)r
(
j − k + s− 1

s− 1

)(
r + k

k

)(
r + s+ j

r

)−1
.

Theorem 4.6. For N ≥ 1,

detGN = (−1)rn
N−1∏
d=0

(
r + s+ d

r + d

)(
s+ d

d

)−1
.

Similarly, we have the following result for the LU -decomposition of the inverse matrix

G−1N .

Theorem 4.7. For 0 ≤ k, j ≤ N − 1,

Akj =

(
k − j + r − 1

r − 1

)(
s+N − 1− k

s

)(
s+N − 1− j

s

)−1
,

A−1kj = (−1)k+j
(

r

k − j

)(
N − 1− j
k − j

)(
s+N − 1− j

k − j

)−1
,

Bkj = (−1)r
(
j − k + s− 1

s− 1

)(
r +N − 1− j

r

)(
r + s+N − 1− k

r

)−1
and

B−1kj = (−1)k+j+r
(

s

j − k

)(
r + s+N − 1− j

s+ k − j

)(
s+N − 1− j
s+ k − j

)−1
.

The proofs of the all above theorems can be done by using Zeilberger's algorithm similar

to the previous section. For example, for the LU -decomposition, we have

min(k,j)∑
d=0

LkdUdj = (−1)k+j+r
min(k,j)∑
d=0

(
r

k − d

)(
k

d

)(
s+ k

k − d

)−1
×
(

s

j − d

)(
r + s+ d

r + j

)(
s+ d

j

)−1
.

Denote the sum on the RHS by SUMk. Then Zeilberger's algorithm produces

SUMk+1 =
j − k + r

j − k − s− 1
SUMk.

After solving this recursion, we obtain the SUMk =
(
r+s

r+j−k

)
, as claimed. Other proofs

can be done similarly.
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On the other hand, here we would like to present a di�erent approach to prove them.

If we perform the limit q → 1 for the results in Section 4.2.1, then we get the results

for the matrices including the usual binomial coe�cients. When q → 1, the matrix H

takes the form

Ĥkj = (−1)r(k+j)+jik(1+r−s)+j(1−r+s)−r(1−s−r)
(

r + s

r + j − k

)
.

So it is seen that

Gkj = (−1)r(k+j)+k+rik(s−r−1)+j(r−s−1)+r(1−s−r)Ĥkj.

By performing the limit q → 1 to the results in Section 4.2.1, we obtain the al-

gebraic properties of the matrix Ĥ. If we chose the sequences {sn} and {mn} as

{(−1)n(r+1)in(s−r−1)+r(1−s−r)} and {(−1)r(n+1)in(r−s−1)}, respectively and then apply

Proposition 4.2 to the results for the matrix Ĥ, then we obtain the results for the

matrix G, as desired. This is a useful prototype to show the e�ciency of Proposition

4.2.

Now we present some results about the in�nity-norm of the matrix G−1N , which is the

maximum value of the absolute row sum, that is,

∥∥G−1N ∥∥∞ = max
k

(
N−1∑
j=0

∣∣G−1kj ∣∣ , 0 ≤ k ≤ N − 1

)
.

Firstly, we have the following lemma:

Lemma 4.1. For 0 ≤ k ≤ N − 1, the kth row sum, denoted by Sk, of the matrix G−1N

is

Sk = (−1)r
(
k + r

r

)(
N − k − 1 + s

s

)(
r + s

r

)−1
.

Proof. Let ek be the unit vector of order N , where 1 is in the kth position and e be

the vector of order N , where all entries consist of 1's. Then we may write

Sk = eTkG
−1
N e.

Since there is no closed formula for G−1N , we will use the the fact G−1 = U−1L−1, where

the matrices L−1 and U−1 were given in Theorem 4.5. Thus we should compute

Sk = (eTkU
−1
N )(L−1N e).
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Here the �rst parenthesis gives the kth row of the matrix of U−1N and the second

parenthesis gives the row sum of the matrix L−1N . So the sum of kth row of the matrix

L−1N , denoted by sk, is

sk =

(
s+ k

k

)−1 k∑
j=0

(
k − j + r − 1

r − 1

)(
s+ j

j

)
,

which, by a variant of the Vandermonde identity (for more details see the Eq. (5.26)

in [13]), equals (
s+ k

k

)−1(
k + r + s

r + s

)
=

(
k + r + s

r

)(
r + s

r

)−1
.

Consequently, we have that

(L−1N e) = [s0, s1, . . . , sN−1]
T

and

(eTkU
−1
N ) = [0, 0, . . . , U−1kk , U

−1
k,k+1, . . . , U

−1
k,N−1].

Finally, we obtain

Sk =
N−1∑
j=k

U−1kj sj = (−1)r
(
r + s

s

)−1(
r + k

r

)N−1∑
j=k

(
j − k + s− 1

s− 1

)

= (−1)r
(
r + s

s

)−1(
r + k

r

)N−k−1∑
j=0

(
j + s− 1

j

)
,

which by the formula
∑

k≤n
(
r+k
k

)
=
(
r+n+1
n

)
, equals

= (−1)r
(
r + s

s

)−1(
r + k

r

)(
s+N − k − 1

s

)
,

as claimed.

Before going further, we would like to recall the de�nition of the unimodal sequence.

De�nition 4.1. A unimodal sequence is a �nite sequence which �rst increases and

then decreases. That is, a sequence {a1, a2, . . . , an} is unimodal if there exists an integer

t ∈ {2, 3, . . . , n− 1} such that

a1 ≤ a2 ≤ · · · ≤ at and at ≥ at+1 ≥ · · · ≥ an.

In order to �nd the in�nity-norm of the matrix G−1N , we need the maximum value of

|Sk|. For this, we investigate the unimodality of {|Sk|}n≥0.
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Lemma 4.2. The sequence {|Sk|}n≥0 is unimodal.

Proof. Since the factor
(
r+s
s

)−1
is independent from the index k, we may show that

{ak}n≥0 =

{(
r + k

r

)(
s+N − k − 1

s

)}
is unimodal instead of showing the unimodality of the sequence {|Sk|}n≥0. Consider

a2k =

(
r + k

r

)2(
s+N − k − 1

s

)2

=
(k + r)(k + 1)(N − k − 1 + s)(N − k)

(k + r + 1)k(N − k + s)(N − k − 1)
ak−1ak+1

=

(
1− 1

k + r + 1

)(
1 +

1

k

)(
1− 1

N − k + s

)(
1 +

1

N − k − 1

)
ak−1ak+1

=

(
1 +

r

k2 + kr + k

)(
1 +

s

(k −N + 1) (k −N − s)

)
ak−1ak+1

> ak−1ak+1,

which gives that the sequence {ak}n≥0 is strictly log-concave that means {ak}n≥0 is

unimodal (For more detail see [90]). Finally, the sequence {|Sk|}n≥0 is unimodal, as

well.

Since the sequence {|Sk|}n≥0 is unimodal, it has a maximum value for some k, where

k ∈ {1, 2, . . . , N − 2}. Thus we can compute the
∥∥G−1N ∥∥∞:

Theorem 4.8. For N ≥ 1,

∥∥G−1N ∥∥∞ =
(r + t+ 1)r(s+N − t)s

(r + s)!
,

where t =

⌊
Nr

r + s

⌋
and the falling factorial is de�ned as xn = x(x− 1) · · · (x− n+ 1).

Proof. We know that there exist an integer k ∈ {1, 2, . . . , N − 2} so that |Sk| is

maximum. We shall �nd this value of k. Similarly, we only consider the sequence

{ak}n≥0 =
{(

r+k
r

)(
s+N−k−1

s

)}
instead of the sequence {Sk}n≥0 because it is enough to

consider the factors only depend on k. Consider

ak+1

ak
=

(
k + 1 + r

r

)(
N − k − 2 + s

s

)
(
k + r

r

)(
N − k − 1 + s

s

)
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=
(k + 1 + r)(N − k − 1)

(k + 1)(N − k − 1 + s)

=

(
1 +

r

k + 1

)(
1− s

N − k − 1 + s

)
= 1 +

Nr − (k + 1)(s+ r)

(k + 1)(N − k − 1 + s)
.

If Nr − (k + 1)(s + r) > 0, then k < Nr
r+s
− 1 and so {ak}n≥0 is increasing for such

k's. When k > Nr
r+s
− 1, the sequence {ak}n≥0 is decreasing. Since k is an integer,

the sequence {ak}n≥0 takes the maximum value at k =
⌊
Nr
r+s

⌋
, which completes the

proof.

Denote the sum of the jth column entries of the matrix G−1N by Sj. By Proposition

4.1(v), we can see that Sk = SN−1−k. So we derive the result

∥∥G−1N ∥∥1 = SN−1−t = St,

where t =

⌊
Nr

r + s

⌋
and ‖·‖1 is the maximum absolute column sum norm.

At the end of this subsection, we would like to mention the relationship between

Toeplitz and Hankel matrices. Let T be a Toeplitz matrix. Then the matrix obtained

by

M = T • J,

where J is a square matrix such that the entries outside of the skew main diagonal are

all zero otherwise 1, is a Hankel matrix. So if we have a Toeplitz matrix then we obtain

a Hankel matrix by the help of the matrix J , or vice versa (Note that J−1 = J).

Thus the matrix H • J is a Hankel matrix and by using the fact that det JN = (−1)(
N
2 )

and the results in Section 4.2.1, we may compute the determinants of a new family of

Hankel matrices and also obtain its Fibonomial analogue as well as the results including

binomial coe�cients. For example, for r = 3, s = 2 and N = 8 by the results of the
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matrix G, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 −1 5 −10

0 0 0 0 −1 5 −10 10

0 0 0 −1 5 −10 10 −5

0 0 −1 5 −10 10 −5 1

0 −1 5 −10 10 −5 1 0

−1 5 −10 10 −5 1 0 0

5 −10 10 −5 1 0 0 0

−10 10 −5 1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
9

1
× 102

22
× 112

32
× 12

4
.

4.3 A Generalization of the Super Catalan Matrix

As mentioned in Section 3.2.2, in this section we will give the generalizations with two

additional parameters of the results in [3]. Brie�y, we study the matrices M = [Mkj]

and T = [Tkj] de�ned by for nonnegative integers r and s and k, j ≥ 0,

Mkj =

(
k + j

k

)(
2k + r

k

)−1(
2j + s

j

)−1
and

Tkj =

(
k + j

k

)−1(
2k + r

k

)(
2j + s

j

)
,

respectively. These matrices are the reciprocals of each other. Clearly, the results in

[3] are the case r = s = 0.

In order to obtain more general results, we introduce the matricesM and T which are

the q-analogues of the matrices M and T , respectively. They are reasonably de�ned

by for k, j ≥ 0,

Mkj =

[
k + j

k

]
q

[
2k + r

k

]−1
q

[
2j + s

j

]−1
q

and

Tkj =

[
k + j

k

]−1
q

[
2k + r

k

]
q

[
2j + s

j

]
q

,

respectively.

For the both matrices, we derive explicit formulæ for the LU -decomposition, inverse

matrices L−1 and U−1, determinant and Cholesky decomposition when the matrix is

symmetric, that is the case r = s. Unfortunately, the inverses do not have closed
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formulæ. For this reason, we give explicit expressions for the LU -decomposition of the

inverse matrices. Afterwards, when q → 1, we get the results for the matrices M and

T . The readers can also �nd our results in [4].

Similar to the previous section, in this section, our main approach is to guess relevant

quantities and then we will use the q-Zeilberger algorithm and formulæ (2.9) and (2.10)

to justify relevant equalities. All identities we will obtain hold for general q. One may

also obtain Fibonomial analogues of these results by choosing q = β/α and the help of

Proposition 4.2. But we don't prefer to present that results not only to avoid repetition

but also they are a bit cumbersome.

4.3.1 The Matrix M

For the matrixM, we have the following theorem.

Theorem 4.9. For k, j ≥ 0,

Lkj =

[
2k + r

k

]−1
q

[
2j + r

j

]
q

[
k

j

]
q

,

L−1kj = (−1)k+jq(
k−j
2 )
[
2k + r

k

]−1
q

[
2j + r

j

]
q

[
k

j

]
q

,

Ukj = qk
2

[
2k + r

k

]−1
q

[
2j + s

j

]−1
q

[
j

k

]
q

and

U−1kj = (−1)k+jqk(k+1)/2−j(j+1)/2−kj
[
2k + s

k

]
q

[
2j + r

j

]
q

[
j

k

]
q

.

For 0 ≤ k, j ≤ N − 1,

Akj = (−1)k+jqk(k+3)/2−j(j+3)/2−N(k−j) 1− q2j+1

1− qk+j+1

[
N − j − 1

k − j

]
q

[
2k + s

k

]
q

×
[
k + j

k

]−1
q

[
2j + s

s

]−1
q

[
j + s

s

]
q

,

A−1kj = q(k−j)(k−N+1)

[
k + j

k

]
q

[
N − j − 1

k − j

]
q

[
2j + s

j

]−1
q

[
2k + s

s

]
q

[
k + s

s

]−1
q

,

Bkj = (−1)k+jq(j+1)(j+2)/2−N(k+j+1)+3k(k+1)/2

[
2j + r

j

]
q

[
N + k

k + j + 1

]
q

[
j

k

]
q

×
[
2k + s

s

]
q

[
k + s

s

]−1
q
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and

B−1kj = q(k+j+1)(N−j−1)1− q2j+1

1− qN−k

[
2k + r

k

]−1
q

[
N + j

k + j

]−1
q

[
j

k

]
q

×
[
2j + s

s

]−1
q

[
j + s

s

]
q

.

For N ≥ 1,

detMN = qN(N−1)(2N−1)/6
N−1∏
d=0

[
2d+ r

d

]−1
q

[
2d+ s

d

]−1
q

.

Finally, when r = s, for k, j ≥ 0,

Ckj = qj
2/2

[
2k + r

k

]−1
q

[
k

j

]
q

.

Now we shall give the proof of this theorem.

Proof. For L and L−1,∑
j≤d≤k

LkdL−1dj =
∑
j≤d≤k

(−1)d+jq(
d−j
2 )
[
2k + r

k

]−1
q

[
2d+ r

d

]
q

[
k

d

]
q

×
[
2d+ r

d

]−1
q

[
d

j

]
q

[
2j + r

j

]
q

=

[
2k + r

k

]−1
q

[
2j + r

j

]
q

[
k

j

]
q

k−j∑
d=0

[
k − j
d

]
q

(−1)dq(
d
2).

By Rothe's formula (2.10) if k > j then the last sum on the RHS of the above equation

equals (1; q)k−j = 0 and if k = j, then it equals 1. Thus we conclude∑
j≤d≤k

LkdL−1dj = [k = j],

as claimed.

For U and U−1,∑
k≤d≤j

UkdU−1dj = qk
2−(j+1

2 )
[
2k + r

k

]−1
q

[
2j + r

j

]
q

[
j

k

]
q

× qk(2j+k+1)/2(−1)k+j
∑

0≤d≤j−k

[
j − k
d

]
q

(−1)dq(
d+1
2 )+d(k−j).

By the Cauchy binomial theorem (2.9), if j > k then the last sum on the RHS of the

above equation equals
∏j−k

d=1(1− q(k−j)+d) = 0. The case k = j can be easily computed

as 1. So we have ∑
k≤d≤j

UkdU−1dj = [k = j],
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as desired.

For the LU -decomposition, we should show that∑
0≤d≤min(k,j)

LkdUdj =Mkj.

Firstly, we can assume that k ≤ j. Consider,∑
0≤d≤min(k,j)

LkdUdj =

[
2k + r

k

]−1
q

[
2j + s

j

]−1
q

(q; q)k(q; q)j

×
∑

0≤d≤k

qd
2 1

(q; q)2d(q; q)k−d(q; q)j−d
. (4.4)

Denote the sum in (4.4) by SUMk. The Mathematica package of the q-Zeilberger algo-

rithm produces the recursion

SUMk =
1− qj+k

(1− qk)2
SUMk−1.

Since SUM0 = (q; q)−1k (q; q)−1j , we obtain

SUMk = (q; q)−1k (q; q)−1j

[
k + j

k

]
q

.

Since the sum in (4.4) is symmetric with respect to k and j, the case j < k follows

likewise. Eventually, we get that ∑
0≤d≤min(k,j)

LkdUdj =Mkj,

which completes the proof of the LU -decomposition of the matrixM.

For A and A−1, consider∑
j≤d≤k

AkdA−1dj = (−1)kqk(k+3)/2−j+N(j−k) (q; q)N−j−1
(q; q)N−k−1

×
[
2k + s

k

]
q

[
2j + s

j

]−1
q

[
k

j

]
q

×
∑
j≤d≤k

[
k − j
d− j

]
q

(−1)dqd(d−1)/2−jd
(q; q)d+j
(q; q)d−j

1− q2d+1

1− qk+d+1
.

For the sum on the last line of the above equation, we get that it is equal to 0 provided

that k 6= j by the q-Zeilberger algorithm. If k = j, it is obvious that AkkA−1kk = 1.

Thus ∑
j≤d≤k

AkdA−1dj = [k = j],
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as claimed. Similarly, by the q-Zeilberger algorithm, we compute∑
k≤d≤j

BkdB−1dj = [k = j].

When r = s, then we have a symmetric matrix. Thus by Corollary 4.1, the Cholesky

decomposition can be computed as

Ckj = UjkU
− 1

2
jj

= qj
2

[
2j + r

j

]−1
q

[
2k + r

k

]−1
q

[
k

j

]
q

q−
1
2
j2
[
2j + r

j

]
q

= qj
2/2

[
2k + r

k

]−1
q

[
k

j

]
q

,

as claimed.

For the LU -decomposition of M−1, we should show that M−1 = A • B which is the

same asM = B−1 • A−1. So it is su�cient to show that∑
max(k,j)≤d≤N−1

B−1kdA
−1
dj =Mkj.

After some arrangements, we have∑
max(k,j)≤d≤N−1

B−1kdA
−1
dj =

[
2k + r

k

]−1
q

[
2j + s

j

]−1
q

∑
j≤d≤N−1

q(j+k+1)(N−1−d)

× 1− q2d+1

1− qN−k

[
d

k

]
q

[
N + d

k + d

]−1
q

[
d+ j

d

]
q

[
N − j − 1

d− j

]
q

.

By replacing (N − 1) with N , the sum on the RHS of the above equation equals

∑
j≤d≤N

q(j+k+1)(N−d) 1− q2d+1

1− qN+1−k

[
d

k

]
q

[
N + 1 + d

k + d

]−1
q

[
d+ j

d

]
q

[
N − j
d− j

]
q

.

Denote this sum by SUMN . The q-Zeilberger algorithm gives the following recursion

provided that k 6= N and j 6= N

SUMN = SUMN−1.

So SUMN =SUMj =
[
k+j
k

]
q
, which completes the proof except the case (k, j) = (N −

1, N − 1). This case could be easily checked by hand.

Thus the proof is completed.
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4.3.2 The Matrix T

For the matrix T , we have the following result.

Theorem 4.10. For k, j ≥ 0,

Lkj =

[
2k + r

k + j

]
q

[
k

j

]
q

[
k + r

j

]−1
q

[
2j + r

r

]−1
q

[
j + r

r

]
q

.

For j ≥ 1 and k ≥ 0,

L−1kj = (−1)k+jq(
k−j
2 ) 1− q2k

1− qk+j

[
k + j

k − j

]
q

[
2k + r

r

]
q

[
k + r

r

]−1
q

[
2j + r

r

]−1
q

[
j + r

r

]
q

,

for k ≥ 1,

L−1k0 = (−1)k(1 + qk)q(
k
2)
[
2k + r

r

]
q

[
k + r

r

]−1
q

and L−100 = 1. For k ≥ 1 and j ≥ 0,

Ukj = (−1)kqk(3k−1)/2(1 + qk)

[
2j + s

k + j

]
q

[
2k + r

r

]
q

[
j − k + s

s

]
q

×
[
k + r

r

]−1
q

[
j + s

s

]−1
q

and for j ≥ 0,

U0j =

[
2j + s

j

]
q

.

For k, j ≥ 0,

U−1kj = (−1)kqk(k+1)/2−j(k+j) 1− qj

1− qk+j

[
k + j

j − k

]
q

[
2j + r

r

]−1
q

[
j + r

r

]
q

×
[
2k + s

s

]−1
q

[
k + s

s

]
q

.

For 0 ≤ k, j ≤ N − 1,

Akj = (−1)k+jq(k+1)(k+2)/2−(j+1)(j+2)/2+N(j−k)
[
k

j

]
q

[
N + k − 1

2k

]
q

×
[
N + j − 1

2j

]−1
q

[
k + s

s

]
q

[
2k + s

s

]−1
q

[
j + s

s

]−1
q

[
2j + s

s

]
q

,

A−1kj = q(k−j)(k−N+1)

[
k

j

]
q

[
N + k − 1

2k

]
q

[
N + j − 1

2j

]−1
q

[
k + s

s

]
q

[
2k + s

s

]−1
q

×
[
j + s

s

]−1
q

[
2j + s

s

]
q

,
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Bkj = q(j+1)(j+2)/2−N(N−1)/2−jN+k2−1
[
N + j − 1

2j

]
q

[
j

k

]
q

[
2k + s

k

]−1
q

×
[
j + r

r

]
q

[
2j + r

r

]−1
q

and

B−1kj = (−1)N+j+1qk−kj−j(j+1)/2+kN+N(N−1)/2
[
j

k

]
q

[
N + k − 1

2k

]−1
q

[
2j + s

s

]
q

×
[
2k + r

r

]
q

[
k + r

r

]−1
q

.

For N ≥ 1,

det TN = (−1)N(N−1)/2
N−1∏
d=1

qd(3d−1)/2
[
2d+ s

s

]
q

[
2d+ r

r

]
q

[
d+ r

r

]−1
q

[
d+ s

s

]−1
q

.

Finally, when r = s, for j ≥ 1 and k ≥ 0,

Ckj = ij(1 + q)j/2qj(3j−1)/4
[
2k + r

k + j

]
q

[
k + r

r

]−1
q

[
k − j + r

r

]
q

and for k ≥ 0,

Ck0 =

[
2k + r

k

]
q

.

Proof. By the de�nitions of the matrices L and L−1, for the case j = 0, we have∑
0≤d≤k

LkdL−1d0 = LkdL−100 +
∑

1≤d≤k

LkdL−1d0 .

If k = 0, we get 1 as (0, 0)th entry of the multiplication L • L−1. If k > 0, after some

rearrangements, we have∑
1≤d≤k

LkdL−1d0 =
∑

0≤d≤n

Ln+1,d+1L−1d+1,0

=
∑

0≤d≤n

(−1)d+1(1 + qd+1)q(d
2+d)/2

[
2n+ 2 + r

n+ d+ 2

]
q

×
[
n+ 1

d+ 1

]
q

[
n+ 1 + r

d+ 1

]−1
q

.

The q-Zeilberger algorithm compute the sum on the RHS of the above equation as

−
[
2n+2+r
n+1

]
q
. By changing n+ 1 with k again, we get −

[
2k+r
k

]
q
. Finally, if k > 0,

∑
0≤d≤k

LkdL−1d0 =

[
2k + r

k

]
q

+
∑

1≤d≤k

LkdL−1d0
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=

[
2k + r

k

]
q

−
[
2k + r

k

]
q

= 0,

as desired. For the case j > 0, we have∑
j≤d≤k

LkdL−1dj =
∑
j≤d≤k

(−1)d+jq(
d−j
2 ) 1− q2d

1− qd+j

[
2k + r

k + d

]
q

[
k

d

]
q

×
[
k + r

d

]−1
q

[
d+ j

d− j

]
q

[
2j + r

r

]−1
q

[
j + r

r

]
q

.

Again by the q-Zeilberger algorithm, we obtain that it is equal to 0 provided that k 6= j.

The case k = j could be easily computed as 1. Finally,∑
j≤d≤k

LkdL−1dj = [k = j],

as claimed. Veri�cation of the inverse of U can be similarly done by the help of the

q-Zeilberger algorithm. Inverses of the matrices A and B may be shown as in the proof

of Theorem 4.9. We would prefer to omit them due to the similarities.

For the LU -decomposition, we have to prove that∑
0≤d≤min(k,j)

LkdUdj = Tkj.

The cases k = 0, j ≥ 0 and j = 0, k ≥ 0 could be easily seen. For the other cases,

consider ∑
0≤d≤min(k,j)

LkdUdj = Lk0U0j +
∑

1≤d≤min(k,j)

LkdUdj =

[
2k + r

k

]
q

[
2j + s

j

]
q

+
∑

1≤d≤min(k,j)

(−1)d(1 + qd)q(3d−1)d/2
[
2k + r

k + d

]
q

[
k

d

]
q

×
[
k + r

d

]−1
q

[
2j + s

j + d

]
q

[
j − d+ s

s

]
q

[
j + s

s

]−1
q

=

[
2k + r

k

]
q

[
2j + s

j

]
q

+

[
2k + r

k

]
q

[
2j + s

j

]
q

×
[
2k

k

]−1
q

[
2j

j

]−1
q

∑
1≤d≤min(k,j)

(−1)d(1 + qd)q(3d−1)d/2

×
[

2k

k + d

]
q

[
2j

j + d

]
q

.

Without loss of generality, we may assume that k ≤ j. So consider the sum

SUMk =
∑
−k≤d≤k

(−1)d(1 + qd)q(3d−1)d/2
[

2k

k + d

]
q

[
2j

j + d

]
q

.
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Then the q-Zeilberger algorithm gives the following recurrence relation for the sum

SUMk.

SUMk =
(1 + qk)(1− q2k−1)

(1− qj+k)
SUMk−1.

Since SUM0 = 2
[
2j
j

]
q
, we obtain

SUMk = 2

[
2k

k

]
q

[
2j

j

]
q

[
k + j

k

]−1
q

.

Since

SUMk =
∑

−k≤d≤−1

(−1)d(1 + qd)q(3d−1)d/2
[

2k

k + d

]
q

[
2j

j + d

]
q

+ 2

[
2k

k

]
q

[
2j

j

]
q

+
∑

1≤d≤k

(−1)d(1 + qd)q(3d−1)d/2
[

2k

k + d

]
q

[
2j

j + d

]
q

= 2

[
2k

k

]
q

[
2j

j

]
q

+ 2
∑

1≤d≤k

(−1)d(1 + qd)q(3d−1)d/2
[

2k

k + d

]
q

[
2j

j + d

]
q

,

then we have ∑
0≤d≤k

LkdUdj =

[
2k + r

k

]
q

[
2j + s

j

]
q

+

[
2k + r

k

]
q

[
2j + s

j

]
q

×
[
2k

k

]−1
q

[
2j

j

]−1
q

(
1

2
SUMk −

[
2k

k

]
q

[
2j

j

]
q

)

=

[
2k + r

k

]
q

[
2j + s

j

]
q

[
k + j

k

]−1
q

= Tkj,

as desired.

The proof of the LU -decomposition of the inverse matrix T −1 could be similarly done

as in the proof of Theorem 4.9. Similarly, when r = s, the Cholesky decomposition

follows by Corollary 4.1.

4.3.3 The Matrices M and T

Obviously, we have

lim
q→1
M = M and lim

q→1
T = T.

Thus the related results for the matricesM and T can be easily obtained by performing

the limit q → 1 to the results in Sections 4.3.1 and 4.3.2, respectively. Without any

e�orts, we obtain new results including binomial coe�cients. This is one of the greatest

advantages of studying q-analogues.

Now we list the results for the matrices M and T , respectively.
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Theorem 4.11. For the matrix M , we have for k, j ≥ 0,

Lkj =

(
2k + r

k

)−1(
2j + r

j

)(
k

j

)
,

L−1kj = (−1)k+j
(

2k + r

k

)−1(
2j + r

j

)(
k

j

)
,

Ukj =

(
2k + r

k

)−1(
2j + s

j

)−1(
j

k

)
and

U−1kj = (−1(k+j
(

2k + s

k

)(
2j + r

j

)(
j

k

)
.

For 0 ≤ k, j ≤ N − 1,

Akj = (−1)k+j
1 + 2j

k + j + 1

(
N − j − 1

k − j

)(
2k + s

k

)(
k + j

k

)−1(
2j + s

s

)−1(
j + s

s

)
,

A−1kj =

(
k + j

k

)(
N − j − 1

k − j

)(
2j + s

j

)−1(
2k + s

s

)(
k + s

s

)−1
,

Bkj = (−1)k+j
(

2j + r

j

)(
N + k

k + j + 1

)(
j

k

)(
2k + s

s

)(
k + s

s

)−1
and

B−1kj =
2j + 1

N − k

(
2k + r

k

)−1(
N + j

k + j

)−1(
j

k

)(
2j + s

s

)−1(
j + s

s

)
.

For N ≥ 1,

detMN =
N−1∏
k=0

(
2k + r

k

)−1(
2k + s

k

)−1
and �nally, when r = s, for k, j ≥ 0,

Ckj =

(
2k + r

k

)−1(
k

j

)
.

Theorem 4.12. For the matrix T , we have for k, j ≥ 0,

Lkj =

(
2k + r

k + j

)(
k

j

)(
k + r

j

)−1(
2j + r

r

)−1(
j + r

r

)
,

for j ≥ 1 and k ≥ 0,

L−1kj = (−1)k+j
2k

k + j

(
k + j

k − j

)(
2k + r

r

)(
k + r

r

)−1(
2j + r

r

)−1(
j + r

r

)
,

L−1k0 = 2(−1)k
(

2k + r

r

)(
k + r

r

)−1
and L−100 = 1. For k ≥ 1 and j ≥ 0,

Ukj = (−1)k2

(
2j + s

k + j

)(
2k + r

r

)(
j − k + s

s

)(
k + r

r

)−1(
j + s

s

)−1
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and U0j =
(
2j+s
j

)
. For k, j ≥ 0,

U−1kj = (−1)k
j

k + j

(
k + j

j − k

)(
2j + r

r

)−1(
j + r

r

)(
2k + s

s

)−1(
k + s

s

)
.

For 0 ≤ k, j ≤ N − 1,

Akj = (−1)k+j
(
k

j

)(
N + k − 1

2k

)(
N + j − 1

2j

)−1(
2k + s

s

)−1(
k + s

s

)
×
(

2j + s

s

)(
j + s

s

)−1
,

A−1kj =

(
k

j

)(
N + k − 1

2k

)(
N + j − 1

2j

)−1(
2k + s

s

)−1(
k + s

s

)(
2j + s

s

)(
j + s

s

)−1
,

Bkj =

(
N + j − 1

2j

)(
j

k

)(
2k + s

k

)−1(
j + r

r

)(
2j + r

r

)−1
and

B−1kj = (−1)N+j+1

(
j

k

)(
N + k − 1

2k

)−1(
2j + s

s

)(
2k + r

r

)(
k + r

r

)−1
.

For N ≥ 1,

detTN = (−1)N(N−1)/2
N−1∏
d=1

(
2d+ s

s

)(
2d+ r

r

)(
d+ r

r

)−1(
d+ s

s

)−1
.

Finally, when r = s, for j ≥ 1 and k ≥ 0,

Ckj = (−2)j/2
(

2k + r

k + j

)(
k + r

r

)−1(
k − j + r

r

)
and for k ≥ 0,

Ck0 =

(
2k + r

k

)
.

We want to �nish this section by giving a conclusion remark. We will show how one

can obtain results for the matrices M and T or similar kind of matrices without the

help of the q-analogues.

For example, we shall take the matrix M . We can consider the entries of it as

Mkj =

(
k + j

k

)
skmj,

where sk =
(
2k+r
k

)−1
and mj =

(
2j+s
j

)−1
. Thus the entries of the matrix M is separable

with respect to indexes. So we can apply Proposition 4.2 if we know the properties of

the matrix
[(
k+j
k

)]
k,j≥0. Fortunately, the algebraic properties of this symmetric Pascal
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matrix (also its reciprocal analogue) are studied in [58]. For example, the (k, j)th entry

of the L matrix coming from the LU -decomposition of this symmetric Pascal matrix

is
(
k
j

)
. So if we apply Proposition 4.2 for the matrix M , we obtain its L matrix as

Lkj =

(
k

j

)(
2k + r

k

)−1(
2j + r

j

)
,

which is the exactly same with the quantity given in Theorem 4.11. Likewise, all

algebraic properties can be obtained in this way. Furthermore, since
(
k+j
k

)
= (k+j)!

k!j!
, by

choosing sk = k! and mj = j! in Proposition 4.2, we get new results for the matrix

[(k + j)!]k,j≥0, which is a Hankel matrix, as well. More generally, by Proposition 4.2,

one can easily extend our results by considering the matrix with entries for k, j ≥ 0,(
k + j

k

) m1∏
l=1

(
alk + pl

k

) m2∏
l=1

(
blk + rl

k

)−1 m3∏
l=1

(
clj + sl

j

) m4∏
l=1

(
dlj + tl

j

)−1
,

as well as its reciprocal analogue, where the parameters m1, m2, m3, m4, pl's, rl's, sl's

and tl's are nonnegative integers and al's, bl's, cl's and dl's are positive integers.

Thus we see that Proposition 4.2 is very useful to derive new results as well as to prove

existing identities.

4.4 General Family of the Max and Min Matrices

As mentioned in Section 3.2.3, recently the authors [5] studied the matrices of order N

de�ned by [max(ak, aj)]1≤k,j≤N and [min(ak, aj)]1≤k,j≤N over the set {a1, a2, . . . , aN},

such that a1 ≤ a2 ≤ · · · ≤ aN . They obtained some algebraic properties of these

matrices. Note that their approach only works for the increasing sequence. Their

method based on another auxiliary family of the matrices which called "meet and join

matrices". They also indicated that the elementary tools are di�cult to derive such

results.

In this section, we generalize their results for an arbitrary sequence {an} by de�ning

the matrices conveniently. In other words, we de�ne two new families of the matrices,

which called Max and Min matrices, whose entries run in left-reversed and up-reversed

L-shaped pattern, respectively. By any given sequence {an}, we de�ne the matrices

M1, M2 as

(M1)kj = amax(k,j), (M2)kj = amin(k,j)
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and their reciprocal analoguesM1 andM2 as

(M1)kj =
1

amax(k,j)

, (M2)kj =
1

amin(k,j)

.

Here note that the size of the matrices does not matter, as well. That means we can

consider them as in�nite matrices. Clearly, the matrices M1 and M2 are of the forms

M1 =



a1 a2 a3 · · · an · · ·

a2 a2 a3 · · · an · · ·

a3 a3 a3 · · · an · · ·
...

...
...

. . .
...

. . .

an an an · · · an
. . .

...
...

...
. . . . . . . . .


and M2 =



a1 a1 a1 · · · a1 · · ·

a1 a2 a2 · · · a2 · · ·

a1 a2 a3 · · · a3 · · ·
...

...
...

. . .
...

. . .

a1 a2 a3 · · · an
. . .

...
...

...
. . . . . . . . .


,

respectively.

It is worthwhile to note that if the sequence {an} is increasing, then amax(k,j) =

max(ak, aj) and amin(k,j) = min(ak, aj). Conversely, if the sequence {an} is decreas-

ing, then amax(k,j) = min(ak, aj) and amin(k,j) = max(ak, aj). Thus the results of [5] will

be the special cases of our results.

We will study various properties of the matrices M1, M2, M1 and M2, such as LU -

decomposition, inverse, Cholesky decomposition, etc. by using elementary tools which

are simpler and more convenient way than the method used in [5]. In Section 4.4.1,

we go around the matrices M1 andM1. Afterwards, in Section 4.4.2, we examine the

matrices M2 andM2. Finally, we give some further applications of our main results.

For example, as a consequence of our results, we will give an idea how we can obtain

a generalization of the Lehmer matrix and its reciprocal analogue.

We have the following lemma for later use.

Lemma 4.3. Let {an} be any real sequence. Then for all k, j > 0, we have

amax(k,j)amin(k,j) = akaj.

Proof. For all cases k = j, k > j and j > k, it is obviously seen.

Throughout this section, we assume that {an} is any sequence such that an 6= 0 and

an 6= an+1 for all n ≥ 1, otherwise the matrices M1 and M2 become singular.
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4.4.1 Max Matrices and Their Reciprocal Analogues

We derive the LU -decompositions, inverses, Cholesky decompositions and LU -decompositions

of the inverses of the matrices M1 andM1, respectively.

For the matrix M1, we have the following results.

We start with the LU -decomposition:

Theorem 4.13. For k, j ≥ 1,

Lkj =


ak
aj

if k ≥ j,

0 otherwise

and

Ukj =



aj if k = 1,

aj (ak−1 − ak)
ak−1

if j ≥ k > 1,

0 otherwise.

Now we shall give the inverse matrices L−1 and U−1 by the following theorem.

Theorem 4.14. For k, j ≥ 1,

L−1kj =


(−1)k+j

ak
aj

if 0 ≤ k − j ≤ 1,

0 otherwise

and

U−1kj =



(−1)k+j
aj−1

ak (aj−1 − aj)
if 0 ≤ j − k ≤ 1 and j 6= 1,

1

a1
if k = j = 1,

0 otherwise.

Now we compute the inverse matrix (M1)
−1
N as follows.

Theorem 4.15. For 1 ≤ k, j ≤ N , (M1)
−1
N is the symmetric tridiagonal matrix de�ned
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by

(M−1
1 )kj =



1

a1 − a2
if k = j = 1,

ak−1 − ak+1

(ak+1 − ak) (ak − ak−1)
if 1 6= k = j 6= N,

aN−1
aN (aN−1 − aN)

if k = j = N,

1

ak − ak−1
if k = j + 1.

For the Cholesky decomposition, we have the following result.

Theorem 4.16. For k, j ≥ 1, C is the lower triangular matrix de�ned by

Ckj =


ak√
a1

if j = 1,

ak
ajaj−1

√
ajaj−1 (aj−1 − aj) if j > 1.

We will give the LU -decomposition of (M1)
−1
N and the inverses of these factor matrices

by the following theorems.

Theorem 4.17. For 1 ≤ k, j ≤ N ,

Akj =

 (−1)k+j if 0 ≤ k − j ≤ 1,

0 otherwise

and

Bkj =



1

aN
if k = j = N,

(−1)k+j
1

ak − ak+1

if 0 ≤ j − k ≤ 1 and k 6= N,

0 otherwise.

Theorem 4.18. For 1 ≤ k, j ≤ N ,

A−1kj =

 1 if k ≥ j,

0 otherwise

and

B−1kj =


aN if j = N,

aj − aj+1 if k ≤ j < N,

0 otherwise.
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Proof. In order to prove M1 = L • U , it is su�cient to show that

min(k,j)∑
d=1

LkdUdj = amax(k,j).

Consider

min(k,j)∑
d=1

LkdUdj =
ak
a1
aj +

min(k,j)∑
d=2

ak
ad

aj(ad−1 − ad)
ad−1

= akaj

 1

a1
+

min(k,j)∑
d=2

(
1

ad
− 1

ad−1

) =
akaj

amin(k,j)

,

which, by Lemma 4.3, equals amax(k,j), as expected.

De�ne the matrix T = [Tkj] with

Tkj =

 1 if k ≥ j,

0 otherwise.

It is easy to see that

T−1kj =

 (−1)k+j if 0 ≤ k − j ≤ 1,

0 otherwise.

Thus the proofs related to inverse matrices L−1, U−1, A−1N and B−1N follow from Propo-

sition 4.2.

In order to prove the LU -decomposition of (M1)
−1
N , it is su�cient to show that (M1)N =

B−1N • A−1N . Consider

N∑
d=max(k,j)

B−1kd A
−1
dj =

N−1∑
d=max(k,j)

(ad − ad+1) + aN = amax(k,j),

as desired.

For the Cholesky decomposition, consider

min(k,j)∑
d=1

CkdCjd =
akaj
a1

+

min(k,j)∑
d=2

akaj
adad−1

(ad−1 − ad) = amax(k,j),

which completes the proof (Note that it can be also derived by the help of Corollary

4.1).
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Finally, in order to prove the inverse matrix, we have three cases: j = 1, 1 < j < N

and j = N . For these cases, consider the following equalities, respectively.

N∑
d=1

(M1)kd(M
−1
1 )d1 =

amax(k,1)

a1 − a2
+
amax(k,2)

a2 − a1
= [k = 1],

N∑
d=1

(M1)kd(M
−1
1 )dj =

amax(k,j−1)

aj − aj−1
+

amax(k,j)(aj−1 − aj+1)

(aj+1 − aj)(aj − aj−1)
+
amax(k,j+1)

aj+1 − aj
= [k = j],

N∑
d=1

(M1)kd(M
−1
1 )dN =

amax(k,N−1)

aN − aN−1
+

aN−1amax(k,N)

aN(aN−1 − aN)
= [k = N ].

By all of them, the proof is complete.

Corollary 4.5. For N ≥ 2,

det(M1)N = aN

N−1∏
d=1

(ad − ad+1)

and det(M1)1 = a1.

Proof. Since det(M1)N =
∏N

d=1 Udd, it is immediately seen.

For example, let T1 be the matrix de�ned by [max(k, j)]1≤k,j≤N . Then

detT1 = (−1)N−1N.

One can easily obtain many special and nice examples. The evaluation of the determi-

nants of these kinds of matrices by using other methods needs more e�ort.

Remark 4.1. If the sequence {an} is positive and decreasing, then the matrix M1 is a

positive de�nite matrix, which can be easily seen by Corollary 4.5. On the other hand,

the sequence {an} is negative and increasing, then the matrix M1 is a negative de�nite

matrix.

Now we shall give the results for the reciprocal Max matrixM1 without proof because

all of them could be seen by choosing reciprocal term in the results for the matrix

M1. Studying with reciprocals could sometimes be more challenging. For this reason,

we list the results for the quick access. We have the following results for the LU -

decomposition, inverse matrix , Cholesky decomposition and LU -decomposition of the

inverse matrixM−1
1 , respectively.
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Corollary 4.6. For k, j ≥ 1,

Lkj =


aj
ak

if k ≥ j,

0 otherwise

and

Ukj =



1

aj
if k = 1,

ak − ak−1
ajak

if j ≥ k > 1,

0 otherwise.

For 1 ≤ k, j ≤ N , (M−1
1 )N is the symmetric tridiagonal matrix de�ned by

(M−1
1 )kj =



a1a2
a2 − a1

if k = j = 1,

a2k (ak+1 − ak−1)
(ak+1 − ak) (ak − ak−1)

if 1 6= k = j 6= N,

a2N
aN − aN−1

if k = j = N,

akaj
ak−1 − ak

if k = j + 1.

For k, j ≥ 1, C is the lower triangular matrix de�ned by

Ckj =


√
a1
ak

if j = 1,

√
aj − aj−1
ak

if j > 1.

For 1 ≤ k, j ≤ N ,

Akj =

 (−1)k+j if 0 ≤ k − j ≤ 1,

0 otherwise

and

Bkj =


(−1)k+j

ak+1ak
ak+1 − ak

if 0 ≤ j − k ≤ 1,

aN if k = j = N,

0 otherwise.

4.4.2 Min Matrices and Their Reciprocal Analogues

Firstly, we list the LU -decomposition, inverse matrix, Cholesky decomposition of the

matrix M2 and LU -decomposition of the inverse matrix M−1
2 , respectively. We omit

the results related to L−1, U−1, A−1 and B−1 here. They could be easily obtained as

in the proof of the matrix M1 by the help of Proposition 4.2.
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Theorem 4.19. Take the matrix M2, for k, j ≥ 1,

Lkj =

 1 if k ≥ j,

0 otherwise,

Ukj =


a1 if k = 1,

ak − ak−1 if j ≥ k > 1,

0 otherwise,

(M−1
2 )kj =



a2
a1 (a2 − a1)

if k = j = 1,

(ak+1 − ak−1)
(ak+1 − ak) (ak − ak−1)

if 1 6= k = j 6= N,

1

aN − aN−1
if k = j = N,

1

ak−1 − ak
if k = j + 1,

Ckj =


√
a1 if j = 1,

√
aj − aj−1 if j > 1,

0 otherwise,

Akj =

 (−1)k+j
aj
ak

if 0 ≤ k − j ≤ 1,

0 otherwise,

Bkj =



(−1)k+j
ak+1

aj (ak+1 − ak)
if 0 ≤ j − k ≤ 1,

1

aN
if k = j = N,

0 otherwise.

Note that the inverse matrix M−1
2 is a symmetric tridiagonal matrix of order N .

Corollary 4.7. Take the matrixM2, for k, j ≥ 1, we have

Lkj =

 1 if k ≥ j,

0 otherwise,

Ukj =



1

a1
if k = 1,

ak−1 − ak
akak−1

if j ≥ k > 1,

0 otherwise,
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(M−1
2 )kj =



a21
a1 − a2

if k = j = 1,

a2k (ak−1 − ak+1)

(ak+1 − ak) (ak − ak−1)
if 1 6= k = j 6= N,

aNaN−1
aN−1 − aN

if k = j = N,

akaj
ak − ak−1

if k = j + 1,

Ckj =



1
√
a1

if j = 1,

1

ajaj−1

√
ajaj−1 (aj−1 − aj) if j > 1,

0 otherwise,

Akj =


(−1)k+j

ak
aj

if 0 ≤ k − j ≤ 1,

0 otherwise,

Bkj =


(−1)k+j

akaj
aj (ak − ak+1)

if 0 ≤ j − k ≤ 1,

aN if k = j = N,

0 otherwise.

Similarly, note that the inverse matrixM−1
2 is a symmetric tridiagonal matrix of order

N .

Proof. By Lemma 4.3, we can write

amin(k,j) =
akaj

amax(k,j)

and
1

amin(k,j)

=
amax(k,j)

akaj
.

So all claimed results follow by Proposition 4.2 and the results for the matricesM1 and

M1.

By the LU -decomposition of the matrix M2, we have the following corollary.

Corollary 4.8. For N ≥ 1,

det(M2)N = a1

N−1∏
d=1

(ad+1 − ad).

Remark 4.2. By the above corollary, it is seen that if a1 is a positive real number

and the sequence {an} is increasing, then the matrix M2 is a positive de�nite matrix.

Conversely, if a1 is a negative real number and the sequence {an} is decreasing, then

the matrix M2 is a negative de�nite matrix.
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4.4.3 Further Applications

Recall the Lehmer matrix M de�ned by

Mkj =
min(k, j)

max(k, j)
.

By Lemma 4.3, one can write the (k, j)th entry of it as:

min(k, j)

max(k, j)
=

k × j
(max(k, j))2

=
k × j

max(k2, j2)
.

By using Proposition 4.2 and the results for the matrixM1 for an = n2, i.e. max(k2, j2) =

amax(k,j), it is easily rediscovered the LU -decomposition, inverse matrix and Cholesky

decomposition of the Lehmer matrix. Also the results of [91, 92] for some recursive

analogues of the Lehmer matrix can be retrieved by using similar approach.

Moreover, our results give us an idea to �nd a sequential generalization of the Lehmer

matrix. For example, we de�ne the matrix H = [Hkj] for any positive and strictly

increasing sequence {an} by

Hkj =
min(ak, aj)

max(ak, aj)
=

akaj
max(a2k, a

2
j)
.

Thus by our results for the matrix M1 with the sequence {a2n} and Proposition 4.2,

the LU -decomposition, inverse and Cholesky decomposition of the matrix H could be

derived but we omit the details here due to the similarities with the following corol-

lary. Note that if the sequence {an} is decreasing than we may also obtain sequential

generalization of the Lehmer matrix by using the results for the matrixM2.

Up to now, any reciprocal analogue of the Lehmer matrix has not been studied yet. The

following corollary will be the �rst reciprocal-sequential generalization of the Lehmer

matrix.

Corollary 4.9. Let {an} be a positive and strictly increasing sequence and H = [Hkj]

be the matrix de�ned by

Hkj =
max(ak, aj)

min(ak, aj)
.

Then

Lkj =


ak
aj

if k ≥ j,

0 otherwise,
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Ukj =



aj
a1

if k = 1,

aj (bk−1 − bk)
akbk−1

if j ≥ k > 1,

0 otherwise,

Ckj =



ak√
b1

if j = 1,

ak
bjbj−1

√
bjbj−1 (bj−1 − bj) if j > 1,

0 otherwise,

H−1kj =



b1
b1 − b2

if k = j = 1,

bk (bk−1 − bk+1)

(bk+1 − bk) (bk − bk−1)
if 1 6= k = j 6= N,

bN−1
bN−1 − bN

if k = j = N,

akaj
bk − bk−1

if k = j + 1,

where H−1 is a symmetric tridiagonal matrix of order N and bn = a2n.

Proof. Since {an} is a positive and strictly increasing, by Lemma 4.3, we have

Hkj =
max(ak, aj)

min(ak, aj)
=

akaj
bmin(k,j)

.

So the proof follows by the results given for the matrixM2 with the sequence {bn} =

{a2n} and Proposition 4.2.

Note that when an = n, we get the reciprocal analogue of the usual Lehmer matrix.

Besides, one can also obtain related results when the sequence {an} is decreasing by

the help of the results for the matrixM1.

Now we give an interesting and useful idea. Although, one can't directly use our main

results to derive some results related to some certain kind of matrices, our results allow

us to guess these results with less e�ort. We shall give an example to show this idea.

Corollary 4.10. For a positive integer r, de�ne the matrix F = [Fkj] by

Fkj =

 amax(k,j) if k ≥ j − r,

0 otherwise.
,
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for a given sequence {an}. Then for k, j ≥ 1, the LU-decomposition of the matrix F is

Lkj =


ak
aj

if k ≥ j,

0 otherwise

and

Ukj =



aj if k = 1 and j ≤ r + 1,

aj if j > r + 1 and k = j − r,

aj (ak−1 − ak)
ak−1

if k + r − 1 > j ≥ k > 1,

0 otherwise.

Clearly, for N = 8 and r = 3, the matrix F takes the form

F8 =



a1 a2 a3 a4 0 0 0 0

a2 a2 a3 a4 a5 0 0 0

a3 a3 a3 a4 a5 a6 0 0

a4 a4 a4 a4 a5 a6 a7 0

a5 a5 a5 a5 a5 a6 a7 a8

a6 a6 a6 a6 a6 a6 a7 a8

a7 a7 a7 a7 a7 a7 a7 a8

a8 a8 a8 a8 a8 a8 a8 a8



.

As seen, the matrix F is obtained from the matrix M1 by deleting the entries after

rth superdiagonal. (Note that similar example can be obtained for the matrix which

is obtained by applying the same process to the matrix M2).

Proof. We should show that

Fkj =

min(k,j)∑
d=1

LkdUdj.

The proof for the case j ≤ r+ 1 can be similarly done as in the proof of the results for

the matrix M1. Now consider for j > r + 1 and k > j − r,
min(k,j)∑
d=1

LkdUdj =
akaj
aj−r

+

min(k,j)∑
d=j−r+1

LkdUdj =
akaj
aj−r

+ akaj

min(k,j)∑
d=j−r+1

(
1

ad
− 1

ad−1

)
=

akaj
amin(k,j)

= amax(k,j).

And the �nal case j > r+1 and k ≤ j−r can be easily computed as 0, which completes

the proof.
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It is possible to obtain similar results for the matrix which is derived by deleting

the entries of Max matrix (or Min matrix) after rth subdiagonal by the help of our

results. In the light of all these, our results are very useful to de�ne new families of

combinatorial matrices.

As a conclusion remark, our results cover the results which will be valid for the ma-

trices [max(ak, aj)]k,j≥1 and [min(ak, aj)]k,j≥1 when the sequence {an} is increasing or

decreasing. Note that the increasing case is given in [5] for only �nite order matrices

with a di�erent approach. Unfortunately, if a sequence {cn} is neither increasing nor

decreasing, such as unimodal sequences, then our results don't work for the matrices

[max(ck, cj)]k,j≥1 and [min(ck, cj)]k,j≥1 and we could not �nd explicit results for such

matrices.

4.5 A Non-symmetric Variant of the Filbert Matrix

As mentioned in Section 3.2.4, in this section we will study a new non-symmetric

variant of Filbert matrix. We de�ne our main matrix M = [Mkj]k,j≥0 by

Mkj =
1− xqλk−µj

1− xqλk+µj
,

where λ and µ are positive integers and x is a real number such that x 6= q−λk−µj for all

k, j ≥ 0. Here we would like to point out indexes of the entries of the matrix M start

from 0. Otherwise related matrix would be singular that makes no sense to study.

We will derive explicit formulæ for the LU -decomposition, inverse matrices L−1 and

U−1, and inverse of the matrix M . Our approach is mainly to guess the relevant

quantities. Afterwards, we will provide proofs of these formulæ. It is worthwhile to note

that, although all the sum identities we need to prove seem to be Gosper-summable,

the q-Zeilberger algorithm does not work for the general parameters λ and µ. The

algorithm can only compute the specialized sums for some �xed special numerical

values of λ and µ. But it is not enough to prove general results. For this reason,

we will use some traditional ways which cause to guess some new sum identities with

one additional parameter. Finally, as applications, we will give some particular results

related to the generalized Fibonacci and Lucas numbers as non-symmetric variants of

Filbert and Lilbert matrices for the special choices of q and x.
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4.5.1 Main Results

Here, we will list the LU -decomposition of the matrix M , inverse matrices L−1, U−1,

determinant and inverse matrix M−1. In Section 4.5.2, we will provide the proofs

of these results. Recall that the matrix M would be never a symmetric matrix for

any choice of the parameters. For this reason, we can not talk about the Cholesky

decomposition.

Theorem 4.20. For k, j ≥ 0,

Lkj =
(xqλj+µ; qµ)j(q

λ(k−j+1); qλ)j
(xqλk+µ; qµ)j(qλ; qλ)j

and

Ukj =


1− xq−µj

1− xqµj
if k = 0,

q−µj+(λ+µ)(k2)xk(1 + qµj)
(qµ(j−k+1); qµ)k(q

λ; qλ)k
(xqµj; qλ)k+1(xqλk+µ; qµ)k−1

if k > 0.

Theorem 4.21. For N > 1,

detMN = x(N2 )q−µ(
N
2 ) (−qµ; qµ)N−1(xq

λ; qλ)N−1
(xqλ+µ; qλ+µ)N−1

N−1∏
d=1

q(λ+µ)(
d
2) (qµ; qµ)d(q

λ; qλ)d
(xqµd; qλ)d(xqλd; qµ)d

and detM1 = 1.

Theorem 4.22. For k, j ≥ 0,

L−1kj = (−1)k+jqλ(
k−j
2 ) (xqλj+µ; qµ)k−1(q

λ(k−j+1); qλ)j
(xqλk+µ; qµ)k−1(qλ; qλ)j

and

U−1kj =



1 if k = j = 0,

q−λ(
j
2)(−1)j+1(xqλj+µ; qµ)j

xj(qλ; qλ)j

×
j∑
t=1

qµ((
t+1
2 )+t−tj)(−1)t(1− xq−µt)(xqµt; qλ)j

(1− xqµt)(1− q2µt)(qµ; qµ)j−t(qµ; qµ)t−1
if j ≥ 1 and k = 0,

(−1)k+j
q−λ(

j
2)+µ((

k+1
2 )+k−kj)

xj(1− q2µk)
(xqµk; qλ)j(xq

λj+µ; qµ)j
(qλ; qλ)j(qµ; qµ)j−k(qµ; qµ)k−1

if j ≥ k ≥ 1,

0 otherwise.

For the inverse matrix M−1
N , we have the following result.
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Theorem 4.23. For 1 ≤ k < N and 0 ≤ j < N ,

M−1
kj =

(−1)k+j

xN−1
qλ(

j
2)+µ(

k+1
2 )−(N−2)(λj+µk)

(1− xqµk+λj)(1− q2µk)

× (xqλj+µ; qµ)N−1(xq
µk; qλ)N

(qµ; qµ)N−k−1(qλ; qλ)N−j−1(qλ; qλ)j(qµ; qµ)k−1

and for 0 ≤ j < N ,

M−1
0j = [j = 0] + (−1)j+1qλ(

j
2)−λ(N−2)j x

N−1(xqλj+µ; qµ)N−1
(qλ; qλ)N−j−1(qλ; qλ)j

×
N−1∑
t=1

1− xq−µt

1− xqµt
(−1)tqµ(

t+1
2 )−µ(N−2)t

1− q2µt
(xqµt; qλ)N

(1− xqµt+λj)(qµ; qµ)N−t−1(qµ; qµ)t−1
.

Here note that the entries except the �rst row of the matrices U−1 and M−1 can be

nicely factorized but the �rst row of these matrices can't be factorized. The guessing

procedure of these entries is extremely time consuming.

Since our matrix is not symmetric, the results related to its transposed matrix MT =[1− xqλj−µk

1− xqλj+µk
]
k,j≥0

may yield new results for a new matrix family. By Propositions 4.2

and 4.3 and the fact (MT )−1 = (M−1)T , we have the following theorem for the matrix

MT .

Theorem 4.24. For k, j ≥ 0,

Lkj =


1− xq−µk

1− xqµk
if j = 0,

qµ(j−k)
(1 + qµk)

(1 + qµj)

(qµ(k−j+1); qµ)j(xq
µj; qλ)j+1

(xqµk; qλ)j+1(qµ; qµ)j
if j > 0

and

Ukj = q−µk+(λ+µ)(k2))xk(1 + qµk)
(qµ; qµ)k(q

λ(j−k+1); qλ)k
(xqλj+µ; qµ)k(xqµk; qλ)k

.

For k, j ≥ 0,

L−1kj =



1 if k = j = 0,

q−µk+µ(
k
2)(−1)k+1(1 + qµk)(qµ; qµ)k

(xqµk; qλ)k

×
k∑
t=1

qµ((
t+1
2 )+t−tk)(−1)t(1− xq−µt)(xqµt; qλ)k

(1− xqµt)(1− q2µt)(qµ; qµ)k−t(qµ; qµ)t−1
if k ≥ 1 and j = 0,

(−1)k+j(1 + qµk)

q−µ(
k
2)−µ((

j+1
2 )+j−k−kj)(1− q2µj)

(qµ(k−j+1); qµ)j(xq
λk+µ; qµ)k

(qµ; qµ)j−1(xqλj+µ; qµ)k−1
if k ≥ j ≥ 1,

0 otherwise
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and for j ≥ k,

U−1kj =
(−1)k+jqµj−µ(

j
2)+λ(

k+1
2 )−λkj

xj(1 + qµj)

(xqµj; qλ)j+1(xq
λk+µ; qµ)j−1

(qµ; qµ)j(qλ; qλ)j−k(qλ; qλ)k

and 0 otherwise. Finally, for 1 ≤ j < N and 0 ≤ k < N ,

(MT )−1kj =
(−1)k+j

xN−1
qλ(

k
2)+µ(

j+1
2 )−(N−2)(λk+µj)

(1− xqµj+λk)(1− q2µj)

× (xqλk+µ; qµ)N−1(xq
µj; qλ)N

(qµ; qµ)N−j−1(qλ; qλ)N−k−1(qλ; qλ)k(qµ; qµ)j−1

and for 0 ≤ k < N ,

(MT )−1k0 = [k = 0] + (−1)k+1qλ(
k
2)−λ(N−2)k x

N−1(xqλk+µ; qµ)N−1
(qλ; qλ)N−k−1(qλ; qλ)k

×
N−1∑
t=1

1− xq−µt

1− xqµt
(−1)tqµ(

t+1
2 )−µ(N−2)t

1− q2µt
(xqµt; qλ)N

(1− xqµt+λk)(qµ; qµ)N−t−1(qµ; qµ)t−1
.

Now we can proceed with the proofs of the above theorems.

4.5.2 Proofs

De�ne the following four sums:

S1(K) =

min(k,j)∑
d=K

q(λ+µ)(
d
2)xd(1− xqd(λ+µ))(qλ(k−d+1); qλ)d(q

µ(j−d+1); qµ)d−1
(xqλk+µ; qµ)d(xqµj; qλ)d+1

,

S2(K) =
K∑
d=j

(−1)dqλ(
d−j
2 )(1− xqd(λ+µ))(xqλj+µ; qµ)d−1(q

λ(k−d)+λ; qλ)d
(xqλk+µ; qµ)d(qλ; qλ)d−j

,

S3(K) =
K∑
d=k

(−1)dqµ(
d
2)−µkd(1− xqd(λ+µ))(xqµk; qλ)d(q

µ(j−d)+µ; qµ)d
(xqµj; qλ)d+1(qµ; qµ)d−k

and

S4(K) =
K∑

d=max(k,j)

q−µkd−λjdx−d(1− xqd(λ+µ))(xqµk; qλ)d(xq
λj+µ; qµ)d−1

(qµ; qµ)d−k(qλ; qλ)d−j
.

We provide the following lemmas for later use.

Lemma 4.4.

S1(K) = xKq(λ+µ)(
K
2 ) (qλ(k−K+1); qλ)K(qµ(j−K+1); qµ)K−1

(1− xqλk+µj)(xqµj; qλ)K(xqλk+µ; qµ)K−1
.
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Proof. We will use the backward induction method. Let us denote the summand term

by sd for brevity.

Firstly, assume that k ≥ j so when K = j the claim is obvious. Similarly for the case

j > k, the initial claim is clear.

The backward induction step amounts to show that

S1(K − 1)

= S1(K) + sK−1

= xKq(λ+µ)(
K
2 ) (qλ(k−K+1); qλ)K(qµ(j−K+1); qµ)K−1

(1− xqλk+µj)(xqµj; qλ)K(xqλk+µ; qµ)K−1

+ q(λ+µ)(
K−1

2 )xK−1(1− xq(K−1)(λ+µ))(qλ(k−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(xqλk+µ; qµ)K−1(xqµj; qλ)K

= xK−1q(λ+µ)(
K−1

2 ) (qλ(k−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(1− xqλk+µj)(xqµj; qλ)K(xqλk+µ; qµ)K−1

×
(
xq(λ+µ)(K−1)(1− qλj−λ(K−1))(1− qµj−µk+µ) + (1− xqλk+µj)(1− xq(K−1)(λ+µ))

)
.

After some simpli�cations, the expression in the last line can be rewritten as

(1− xqλk+µ(K−1))(1− xqµj+λ(K−1)).

Finally,

S1(K − 1) = xK−1q(λ+µ)(
K−1

2 ) (qλ(k−K+2); qλ)K−1(q
µ(j−K+2); qµ)K−2

(1− xqλk+µj)(xqµj; qλ)K−1(xqλk+µ; qµ)K−2
,

which completes the proof.

Lemma 4.5. For k > j,

S2(K) = (−1)Kqλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(k−K); qλ)K+1

(1− qλ(k−j))(xqλk+µ; qµ)K(qλ; qλ)K−j
.

Proof. This time we will use the usual induction method. Similarly, we denote the

summand term by sd. The initial case K = j is easily veri�ed. So, the induction step

amounts to show that

S2(K + 1) = S2(K) + sK+1.

Consider

S2(K) + sK+1 = (−1)Kqλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(k−K); qλ)K+1

(1− qλ(k−j))(xqλk+µ; qµ)K(qλ; qλ)K−j
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+ (−1)K+1qλ(
K+1−j

2 )(1− xq(K+1)(λ+µ))
(xqλj+µ; qµ)K(qλ(k−K); qλ)K+1

(xqλk+µ; qµ)K+1(qλ; qλ)K+1−j

= (−1)K+1qλ(
K−j+1

2 ) (xqλj+µ; qµ)K(qλ(k−K); qλ)K+1

(1− qλ(k−j))(xqλk+µ; qµ)K+1(qλ; qλ)K+1−j

×
(
(1− xq(K+1)(λ+µ))(1− qλ(k−j))− (1− xqλk+µ(K+1))(1− qλ(K+1−j))

)
= (−1)K+1qλ(

K−j+1
2 ) (xqλj+µ; qµ)K(qλ(k−K); qλ)K+1

(1− qλ(k−j))(xqλk+µ; qµ)K+1(qλ; qλ)K+1−j

× qλ(K−j+1)(1− xqλj+µ(K+1))(1− qλ(k−K)−λ),

which is equal to S2(K + 1), as desired.

Lemma 4.6. For j > k,

S3(K) = (−1)Kqµ(
K
2 )+µ(K(1−k)−k) (xq

µk; qλ)K+1(q
µ(j−k+1); qµ)k(q

µ(j−K); qµ)K−k
(xqµj; qλ)K+1(qµ; qµ)K−k

.

The proof of Lemma 4.6 can be similarly done as in the proof of Lemma 4.5. We do

not give it to avoid repetition.

Lemma 4.7.

S4(K) = q−µKk−λKjx−K
(xqλj+µ; qµ)K(xqµk; qλ)K+1

(1− xqµk+λj)(qµ; qµ)K−k(qλ; qλ)K−j
.

Proof. Consider the case k ≥ j,

S4(k) =
k∑
k

q−µk
2−λjkx−k(1− xqk(λ+µ))(xqµk; qλ)k(xq

λj+µ; qµ)k−1
(qλ; qλ)k−j

= q−µk
2−λkjx−k

(xqλj+µ; qµ)k(xq
µk; qλ)k+1

(1− xqµk+λj)(qλ; qλ)k−j
,

as claimed. Similarly, the case k < j is obvious. Thus the initial claim is completed.

Let's denote the summand by sd. Then S4(K) + sK+1 equals

q−µkK−λjKx−K
(xqλj+µ; qµ)K(xqµk; qλ)K+1

(1− xqµk+λj)(qµ; qµ)K−k(qλ; qλ)K−j

+q−µk(K+1)−λj(K+1)x−K−1(1− xq(K+1)(λ+µ))
(xqλj+µ; qµ)K(xqµk; qλ)K+1

(qµ; qµ)K+1−k(qλ; qλ)K+1−j

=q−µk(K+1)−λj(K+1)x−K−1
(xqλj+µ; qµ)K(xqµk; qλ)K+1

(1− xqµk+λj)(qµ; qµ)K−k(qλ; qλ)K−j

+
(
xqµk+λj(1− qµ(K+1−k))(1− qλ(K+1−j)) + (1− xqµk+λj)(1− xq(K+1)(λ+µ))

)
.

After simpli�cations, the last line of the above equation is

(1− xqλj+µ(K+1))(1− xqµk+λ(K+1)).

Finally, S4(K) + sK+1 = S4(K + 1), which completes the proof.
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Now we can give the proofs of our main results.

For the LU -decomposition of the matrix M , we have to prove that∑
0≤d≤min(k,j)

LkdUdj = Mkj.

By Lemma 4.4, we obtain∑
0≤d≤min(k,j)

LkdUdj =
1− xq−µj

1− xqµj
+ q−µj(1− q2µj)S1(1)

=
1− xq−µj

1− xqµj
+ xq−µj

(1− q2µj)(1− qλk)
(1− xqλk+µj)(1− xqµj)

=
1− xqλk−µj

1− xqλk+µj
,

which completes the proof. As mentioned before, the q-Zeilberger algorithm can only

compute the related sum for the special numerical values of λ and µ. For example,

when λ = µ = 1, the algorithm computes the sum S1(1) as

x(1− qk)
(1− xqj)(1− xqk+j)

.

Then the claim is done for the case λ = µ = 1. But in general we can not use this

algorithm to prove the claim. That is why we need the previous lemmas.

For L and L−1, it is obvious that LkkL−1kk = 1. For k > j,∑
j≤d≤k

LkdL
−1
dj =

(−1)j

(qλ; qλ)j
S2(k),

which equals 0 by Lemma 4.5. So we conclude∑
j≤d≤k

LkdL
−1
dj = [k = j],

as desired.

Before moving on, notice that the matrices U−1 andM−1 can be also written as follows:

U−1 = PR and M−1
N = PNEN ,

where the matrix P is de�ned by

P00 = 1 and P0j = −1− xq−µj

1− xqµj
for j > 0,

Pkj = [k = j] for j ≥ 0 and k ≥ 1,
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and

R00 = 1 and R0j = 0 for j > 0 and Rkj = U−1kj for j ≥ k ≥ 1,

E00 = 1 and E0j = 0 for 0 < j < N, and, Ekj = M−1
kj otherwise.

It is easily seen that the inverse matrix P−1 is computed as

P−100 = 1 and P−10j =
1− xq−µj

1− xqµj
for j > 0,

P−1kj = [k = j] for j ≥ 0 and k ≥ 1.

In order to show that U−1U = I, we will show that PRU = I. Consider the product

matrix RU . The �rst row of this matrix is the same as the �rst row of the matrix U .

Then for k ≥ 1, obviously RkkUkk = 1, so when k 6= j we have∑
k≤d≤j

RkdUdj = (−1)kq−µj+
1
2
µk(k+3) 1 + qµj

(1− q2µk)(qµ; qµ)k−1
S3(j) = 0,

which gives RU = P−1, so the claim follows.

Finally, for the inverse matrix M−1
N , we use the fact M−1

N = U−1N L−1N = PNRNL
−1
N . The

�rst row of the multiplication RNL
−1
N is [j = 0] for 0 ≤ j ≤ N − 1. For k ≥ 1, by

Lemma 4.7, we obtain

∑
max(k,j)≤d≤N−1

RkdL
−1
dj =

(−1)k+jqµ(
k+1
2 )+λ(j2)

(1− q2µj)(qλ; qλ)j(qµ; qµ)k−1
S4(N − 1) = M−1

kj .

So RNL
−1
N = EN , which completes the proof.

As a consequence of the LU -decomposition, the determinant of MN is easily evaluated

as the product of the diagonal entries of the matrix U . So the claim follows after

some simpli�cations. The results for the matrix MT follow by Proposition 4.3 after

performing some simpli�cations.

4.5.3 Applications

In this subsection, we will give some applications of our main results. For example,

consider the matrix F , de�ned by

Fkj =
Uλk−µj+r
Uλk+µj+r
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for positive integers λ, µ and r, where {Un} is the generalized Fibonacci sequence. By

(2.6), the entries of the matrix F can be rewritten as

Fkj = qµj(−1)µj
1− qλk−µj+r

1− qλk+µj+r
,

where q = β/α. As seen, it is not directly obtained from the matrix M . However for

x = qr and q = β/α, we can write

F = M •D(qµn(−1)µn),

where D(an) is the diagonal matrix de�ned as before. So by Proposition 4.2, we can

easily derive all related results for the matrix F from the results of the matrix M .

Note that an interesting feature of the matrix F is that it includes some zero terms as

entries. Especially, when λ = µ = 1, then the entries on the rth superdiagonal are all

zero. Similarly, we can �nd the results for the transposed matrix FT . This transposed

matrix have zeros on the rth subdiagonal when λ = µ = 1.

We �nd the LU -decomposition of the matrix F and inverse matrices L−1, U−1 and F−1

as follows:

Corollary 4.11. For k, j ≥ 0,

Lkj =

(
j∏

d=1

Uλj+µd+r

)(
j∏

d=1

Uλ(k+1)−λd

)
(

j∏
d=1

Uλk+µd+r

)(
j∏

d=1

Uλd

) , (4.5)

Ukj =



U−µj+r
Uµj+r

if k = 0,

(−1)µj+(λ+µ)(k2)+rkU2µj

(
k−1∏
d=1

Uµj−µd

)(
k∏
d=1

Uλd

)
(
k+1∏
d=1

Uµj+λ(d−1)+r

)(
k−1∏
d=1

Uλk+µd+r

) if k > 0,
(4.6)

L−1kj = (−1)k+j+λ(
k−j
2 )

(
k−1∏
d=1

Uλj+µd+r

)(
j∏

d=1

Uλ(k+1)−λd

)
(
k−1∏
d=1

Uλk+µd+r

)(
j∏

d=1

Uλd

) ,
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and U−1kj =

1 if k = j = 0,

(−1)k+j+λ(
j
2)+rj+µkj+µ(

k
2) 1

U2µk

(
j∏

d=1

Uµk+λ(d−1)+r

)(
j∏

d=1

Uλj+µd+r

)
(

j∏
d=1

Uλd

)(
j−k∏
d=1

Uµd

)(
k−1∏
d=1

Uµd

) if j ≥ k ≥ 1,

and for j ≥ 1,

U−10j = (−1)j+1+rj+λ(j2)

(
j∏

d=1

Uλj+µd+r

)
(

j∏
d=1

Uλd

)

×
j∑
t=1

(−1)t+µtj+µ(
t
2) U−µt+r
U2µtUµt+r

(
j∏

d=1

Uµt+λ(d−1)+r

)
(
j−t∏
d=1

Uµd

)(
t−1∏
d=1

Uµd

)

and 0 otherwise.

For the inverse matrix of order N , we have for 1 ≤ k < N and 0 ≤ j < N ,

F−1kj =
(−1)k+j+λ(

j
2)+µ(

k+1
2 )+N(λj+µk)+r(N−1)

U2µkUµk+λj+r

×

(
N∏
d=1

Uµk+λ(d−1)+r

)(
N−1∏
d=1

Uλj+µd+r

)
(
N−k−1∏
d=1

Uµd

)(
N−j−1∏
d=1

Uλd

)(
j∏

d=1

Uλd

)(
k−1∏
d=1

Uµd

)

and for 0 ≤ j < N ,

F−10j = [j = 0]−
N−1∑
t=1

U−µt+r
Uµt+r

F−1tj .

Proof. We only give the proof of the LU -decomposition. The others are very similar

and the application of Proposition 4.2.

Since when q = β/α and x = qr,

Fkj = (−1)µjqµjMkj,
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by Proposition 4.2 when sk = 1 and mj = (−1)µjqµj and Theorem 4.20, we obtain the

LU -decomposition of the matrix F as follows

Lkj =
(qλj+µ+r; qµ)j(q

λ(k−j+1); qλ)j
(qλk+µ+r; qµ)j(qλ; qλ)j

and

Ukj =


1− q−µj+r

1− qµj+r
if k = 0,

(−1)µjq(λ+µ)(
k
2)+rk(1 + qµj)

(qµ(j−k+1); qµ)k(q
λ; qλ)k

(qµj+r; qλ)k+1(qλk+µ+r; qµ)k−1
if k > 0,

where q = β/α. These are the q-forms of the results given by (4.5) and (4.6). Thus

the proof of the LU -decomposition is completed.

The matrix F is a new non-symmetric variant of the Filbert matrix.

Similarly, we can obtain a non-symmetric variant of the Lilbert matrix. So we de�ne

the matrix T with

Tkj =
Vλk−µj+r
Vλk+µj+r

= qµj(−1)µj
1 + qλk−µj+r

1 + qλk+µj+r

for positive integers λ, µ and integer r and q = β/α, as the Lucas analogue of the

matrix M , where {Vn} is generalized Lucas sequence.

If we choose x = −qr in our main results and apply Proposition 4.2 to our main results,

after converting the results to the generalized Fibonacci or Lucas numbers, we have

the following corollary for the matrix T .

Corollary 4.12. For k, j ≥ 0,

Lkj =

(
j∏

d=1

Vλj+µd+r

)(
j∏

d=1

Uλ(k+1)−λd

)
(

j∏
d=1

Vλk+µd+r

)(
j∏

d=1

Uλd

) ,

Ukj =



V−µj+r
Vµj+r

if k = 0,

∆k(−1)µj+(λ+µ)(k2)+r(k+1)U2µj

(
k−1∏
d=1

Uµj−µd

)(
k∏
d=1

Uλd

)
(
k+1∏
d=1

Vµj+λ(d−1)+r

)(
k−1∏
d=1

Vλk+µd+r

) if k > 0,
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where ∆ de�ned as in equation (2.3).

L−1kj = (−1)k+j+λ(
k−j
2 )

(
k−1∏
d=1

Vλj+µd+r

)(
j∏

d=1

Uλ(k+1)−λd

)
(
k−1∏
d=1

Vλk+µd+r

)(
j∏

d=1

Uλd

) ,

and U−1kj =

1 if k = j = 0,

(−1)k+λ(
j
2)+rj+µkj+µ(

k
2)

∆jU2µk

(
j∏

d=1

Vµk+λ(d−1)+r

)(
j∏

d=1

Vλj+µd+r

)
(

j∏
d=1

Uλd

)(
j−k∏
d=1

Uµd

)(
k−1∏
d=1

Uµd

) if j ≥ k ≥ 1,

and for j ≥ 1

U−10j =
(−1)rj+λ(

j
2)+1

∆j

(
j∏

d=1

Vλj+µd+r

)
(

j∏
d=1

Uλd

)

×
j∑
t=1

(−1)t+µtj+µ(
t
2) V−µt+r
U2µtVµt+r

(
j∏

d=1

Vµt+λ(d−1)+r

)
(
j−t∏
d=1

Uµd

)(
t−1∏
d=1

Uµd

)

and 0 otherwise.

For the inverse matrix, we have for 1 ≤ k < N and 0 ≤ j < N ,

T −1kj =
(−1)k+j+λ(

j
2)+µ(

k+1
2 )−N(µk+λj)+(r+1)(N−1)

∆N−1U2µkVµk+λj+r

×

(
N∏
d=1

Vµk+λ(d−1)+r

)(
N∏
d=1

Vλj+µd+r

)
(
N−k−1∏
d=1

Uµd

)(
N−j−1∏
d=1

Uλd

)(
j∏

d=1

Uλd

)(
k−1∏
d=1

Uµd

)

and for 0 ≤ j < N ,

T −10j = [j = 0]−
N−1∑
t=1

V−µt+r
Vµt+r

T −1tj .
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More specially, by choosing x = qr such that r is a positive integer and performing

the limit q → 1 in our main results, we obtain the related results for the matrix

H = [Hkj]k,j≥0 as a non-symmetric variant of the Hilbert matrix with entries

Hkj =
λk − µj + r

λk + µj + r
.

So we list the results for the matrix H below.

Corollary 4.13. For k, j ≥ 0,

Lkj =

(
j∏

d=1

[λj + µd+ r]

)(
j∏

d=1

λ[k − d+ 1]

)
(

j∏
d=1

[λk + µd+ r]

)(
j∏

d=1

λd

) ,

Ukj =



r − µj
r + µj

if k = 0,

2×

(
k∏
d=1

µ[j − d+ 1]

)(
k∏
d=1

λd

)
(
k+1∏
d=1

[µj + λ(d− 1) + r]

)(
k−1∏
d=1

[λk + µd+ r]

) if k > 0,

L−1kj = (−1)k+j

(
k−1∏
d=1

[λj + µd+ r]

)(
j∏

d=1

λ[k − d+ 1]

)
(
k−1∏
d=1

[λk + µd+ r]

)(
j∏

d=1

λd

)
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and

U−1kj =



1 if k = j = 0,

(−1)j+1

(
j∏

d=1

[λj + µd+ r]

)
(

j∏
d=1

λd

)

×
j∑
t=1

(−1)t(r − µt)
(r + µt)(2µt)

(
j∏

d=1

[µt+ λ(d− 1) + r]

)
(
j−t∏
d=1

µd

)(
t−1∏
d=1

µd

) if j ≥ 1 and k = 0,

(−1)k+j

(2µk)

(
j∏

d=1

[µk + λ(d− 1) + r]

)(
j∏

d=1

[λj + µd+ r]

)
(

j∏
d=1

λd

)(
j−k∏
d=1

µd

)(
k−1∏
d=1

µd

) if j ≥ k ≥ 1,

0 otherwise.

Finally, for 1 ≤ k < N and 0 ≤ j < N ,

H−1kj =
(−1)k+j

(µk + λj + r)(2µk)

(
N−1∏
d=1

[λj + µd+ r]

)(
N∏
d=1

[µk + λ(d− 1) + r]

)
(
N−k−1∏
d=1

µd

)(
N−j−1∏
d=1

λd

)(
j∏

d=1

λd

)(
k−1∏
d=1

µd

)
and for 0 ≤ j < N ,

H−10j = [j = 0]−
N−1∑
t=1

r − µt
r + µt

H−1tj .

4.6 A Nonlinear Generalization of the Filbert Matrix

As mentioned in Section 3.2.4, so far authors studied many generalizations and variants

of the Filbert matrix. In previous section, we have also obtained a new non-symmetric

variant of it. But no one has considered a generalization where the indexes of the

recursive sequence is in nonlinear form yet. In this section, we will introduce a new

nonlinear generalization of the Filbert matrix. We de�ne the matrix M as a nonlinear

generalization of the Filbert matrix with indexes in geometric progression for some

parameters by

Mkj =
1

Uλ(k+r)n+µ(j+s)m+c

,
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where Un is nth generalized Fibonacci number. Moreover, as Lilbert analogue, for some

parameters, we de�ne the matrix T with entries

Tkj =
1

Vλ(k+r)n+µ(j+s)m+c

,

where Vn is the nth generalized Lucas number. Our study [6] is accepted for publication.

Note that when n = m = 1, our results will cover all Filbert-like matrices except

the matrices whose entries include the products of the generalized Fibonacci or Lucas

numbers.

For the matrices M and T , we derive explicit formulæ for the inverse matrix, LU -

decomposition and inverse matrices L−1, U−1 as well as we present the Cholesky de-

composition when the matrices are symmetric. Later, we will give the q-forms of these

results. Actually, although the results related to the q-forms are more general, i.e.

when q = β/α gives the matrices M and T , we prefer to give Fibonacci and Lucas

forms �rst. Because they seem nicer and manipulating them is easier.

Note that any mechanic summation methods or q-Zeilberger algorithm will not work

here due to the non-hypergeometric terms. This is another reason of presenting Fi-

bonacci and Lucas form �rst. In order to prove our results we will use some traditional

methods as in previous section.

Throughout this section, we assume that λ, µ, n and m are positive integers, r, s and c

are any integers such that λ(k + r)n + µ(j + s)m + c > 0 for all positive integers k and

j.

4.6.1 A Nonlinear Filbert Matrix

For the matrix M , we will give explicit formulæ for its inverse, LU -decomposition, the

inverse matrices L−1 and U−1 as well as we present its Cholesky decomposition when

the matrix is symmetric, that is, the case r = s, n = m and λ = µ.

We obtain the LU -decomposition:

Theorem 4.25. For k, j ≥ 1,

Lkj =

(
j∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)
(

j∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)
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and

Ukj = (−1)(λ+µ)(
k
2)+(λr+µs+c)(k+1)

(
k−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
k−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
k−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
k∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) .

Similar to the previous sections, the determinant of the matrix M can be derived, as

well. We also determine the inverse matrices L−1 and U−1:

Theorem 4.26. For k, j ≥ 1,

L−1kj = (−1)(λ+1)(k+j)+λ(k−j+1
2 )

(
k−j−1∏
t=1

Uλ(k+r)n−λ(t+j+r)n

)
(
k−j−1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)

×

(
k−1∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)
(
k−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)
and

U−1kj = (−1)λ(
j+1
2 )+µ(k+1

2 )+k(µj+1)+j(λ+1)+(λr+µs+c)(j+1)

×

(
j−1∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
j∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)(
j−k∏
t=1

Uµ(j+s+1−t)m−µ(k+s)m

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

) .

Now we give the explicit expression for the inverse matrix M−1
N .

Theorem 4.27. For 1 ≤ k, j ≤ N ,

M−1
kj = (−1)k+j+λ(

j+1
2 )+µ(k+1

2 )+N(λj+µk+c+λr+µs)+c+λr+µs

× 1

Uλ(j+r)n+µ(k+s)m+c

(
k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)

×

(
N∏
t=1

Uλ(t+r)n+µ(k+s)m+c

)(
N∏
t=1

Uµ(t+s)m+λ(j+r)n+c

)
(
N−k∏
t=1

Uµ(N+s+1−t)m−µ(k+s)m

)(
N−j∏
t=1

Uλ(N+r+1−t)n−λ(j+r)n

) .
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Finally, we provide the Cholesky decomposition of the matrixM when it is symmetric,

that is r = s, n = m and λ = µ.

Theorem 4.28. For k, j ≥ 1,

Ckj =

j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

j∏
t=1

Uλ(k+r)n+λ(t+r)n+c

√
(−1)c(j+1)U2λ(j+r)n+c.

Note that when n = m = 1, λ = µ = 1, r = s = 0 and c = −1 with p = 1, the matrix

M is reduced to Filbert matrix and so we obtain the results of [64]. Similarly, when

n = m = 1 and r = s = 0 our results cover the results of [70]. For the cases n > 1 or

m > 1, our results are all new.

Proofs

De�ne the following four sums:

S5(K) =

min(k,j)∑
d=K

(−1)(λ+µ)(
d
2)+(λr+µs+c)(d+1)Uλ(d+r)n+µ(d+s)m+c

×

(
d−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
d−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(

d∏
t=1

Uλ(k+r)n+µ(t+s)m+c)

)(
d∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) ,

S6(K) =
K∑
d=j

(−1)(λ+1)(d+j)+λ(d−j+1
2 )Uλ(d+r)n+µ(d+s)m+c

(
d−j−1∏
t=1

Uλ(d+r)n−λ(t+j+r)n

)
(
d−j−1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)

×

(
d−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
d−1∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(d+r)n−λ(t+r)n

)
(
d−1∏
t=1

Uλ(d+r)n−λ(t+r)n

)(
d∏
t=1

Uλ(k+r)n+µ(t+s)m+c

) ,

S7(K) =
K∑

d=max(k,j)

(−1)kµd+λdj+(λr+µs+c)dUλ(d+r)n+µ(d+s)m+c

(
d−j−1∏
t=1

Uλ(d+r)n−λ(t+j+r)n

)
(
d−j−1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)
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×

(
d−1∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
d−1∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(d+r)n−λ(t+r)n

)
(
d−k∏
t=1

Uµ(d+s+1−t)m−µ(k+s)m

)(
d−1∏
t=1

Uλ(d+r)n−λ(t+r)n

)
and

S8(K) =
K∑
d=k

(−1)kµd+µ(
d
2)+dUλ(d+r)n+µ(d+s)m+c

×

(
d−1∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
d−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
d−k∏
t=1

Uµ(d+s+1−t)m−µ(k+s)m

)(
d∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) .

We need the following lemmas for later use.

Lemma 4.8.

S5(K) =

(−1)(λ+µ)(
K
2 )+(λr+µs+c)(K+1)

(
K−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)

Uλ(k+r)n+µ(j+s)m+c

(
K−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−1∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) .

Proof. We will use the backward induction method. For brevity, denote the summand

term by sd. First, assume that k ≥ j so when K = j the claim is obvious. Similarly

for the case j > k, the claim is clear. The backward induction step amounts to show

that

S5(K − 1) = S5(K) + sK−1.

By the de�nition of S5(K) and sK−1, consider the RHS of the above equality

(−1)(λ+µ)(
K
2 )+(λr+µs+c)(K+1)

Uλ(k+r)n+µ(j+s)m+c

(
K−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
K−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−1∏
t=1

Uµ(j+s)m+λ(t+r)n+c

)
+ (−1)(λ+µ)(

K−1
2 )+(λr+µs+c)KUλ(K−1+r)n+µ(K−1+s)m+c

×

(
K−2∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K−2∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
K−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−1∏
t=1

Uµ(j+s)m+λ(t+r)n+c

)
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=
(−1)(λ+µ)(

K−1
2 )+(λr+µs+c)K

Uλ(k+r)n+µ(j+s)m+c

(
K−2∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K−2∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
K−1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−1∏
t=1

Uµ(j+s)m+λ(t+r)n+c

)
×
[
(−1)(λ+ µ)(K − 1) + (λr + µs+ c)Uλ(k+r)n−λ(K−1+r)nUµ(j+s)m−µ(K−1+s)m

+Uλ(K−1+r)n+µ(K−1+s)m+cUλ(k+r)n+µ(j+s)m+c

]
.

By using the fact Un = (−1)n−1U−n, the last expression in the bracket is rewritten as

(−1)λ(k+r)+µ(j+s)+cUλ(K−1+r)n−λ(k+r)nUµ(K−1+s)m−µ(j+s)m

+ Uλ(K−1+r)n+µ(K−1+s)m+cUλ(k+r)n+µ(j+s)m+c (4.7)

and then by using the identity (2.4) for m → µ(j + s)m + λ(K − 1 + r)n + c, n →

λ(k + r)n + µ(K − 1 + s)m + c and k → µ(K − 1 + s)m − µ(j + s)m, the expression in

(4.7) equals

Uλ(k+r)n+µ(K−1+s)m+cUµ(j+s)m+λ(K−1+r)n+c.

Finally, we write

S5(K) + sK−1 =
(−1)(λ+µ)(

K−1
2 )+(λr+µs+c)K

Uλ(k+r)n+µ(j+s)m+c

×

(
K−2∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K−2∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
K−2∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−2∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) ,

which completes the proof.

Lemma 4.9. For k > j,

S6(K) =
(−1)λ(

K−j
2 )+(λ+1)(K+j)

Uλ(k+r)n−λ(j+r)n

(
K∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(

K∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

) .

Proof. Denote the summand term by sd. By using induction, the caseK = j is obvious.

So the induction step amounts to show that

S6(K + 1) = S6(K) + sK+1.
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So after some simpli�cations, S6(K) + sK+1 equals

(−1)λ(
K+1−j

2 )+(K+1+j)

Uλ(k+r)n−λ(j+r)n

(
K∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
K+1∏
t=1

Uλ(k+r)n+µ(t+s)m+c

)(
K−j+1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)
×
[
Uλ(k+r)n−λ(j+r)nUλ(K+1+r)n+µ(K+1+s)m+c

−Uλ(k+r)n+µ(K+1+s)m+cUλ(K+1+r)n−λ(j+r)n
]
.

Since again by (2.4), the last expression in the bracket equals

Uλ(k+r)n−λ(K+1+r)nUλ(j+r)n+µ(K+1+s)m+c,

the claim follows.

Lemma 4.10.

S7(K) =
(−1)K(λj+µk+c+λr+µs)

Uλ(j+r)n+µ(k+s)m+c

(
K∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
K−k∏
t=1

Uµ(t+k+s)m−µ(k+s)m

)(
K−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

) .

Proof. If j ≥ k, the case K = j easily follows. If k > j, then

S7(k) =
(−1)k(µk+λj+λr+µs+c)

Uλ(k+r)n−λ(j+r)n

(
k∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
k−1∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
k−j−1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)

=
(−1)k(µk+λj+λr+µs+c)

Uλ(j+r)n+µ(k+s)m+c

(
k∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
k∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
k−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

) .

So the �rst step of induction is complete. For the next step, we have

S7(K + 1) =
(−1)K(λj+µk+c+λr+µs)

Uλ(j+r)n+µ(k+s)m+c

(
K∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
K−k∏
t=1

Uµ(t+k+s)m−µ(k+s)m

)(
K−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)
+ (−1)(µk+λj+λr+µs+c)(K+1)Uλ(K+1+r)n+µ(K+1+s)m+c
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×

(
K∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
K+1−k∏
t=1

Uµ(t+k+s)m−µ(k+s)m

)(
K+1−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

) ,

which, after some simpli�cations, equals

(−1)(µk+λj+λr+µs+c)(K+1)

Uλ(j+r)n+µ(k+s)m+c

(
K∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
K∏
t=1

Uλ(j+r)n+µ(t+s)m+c

)
(
K+1−k∏
t=1

Uµ(t+k+s)m−µ(k+s)m

)(
K+1−j∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)
×
[
(−1)λ(j+r)+µ(k+s)+cUµ(K+1+s)m−µ(k+s)mUλ(K+1+r)n−λ(j+r)n

+Uλ(K+1+r)n+µ(K+1+s)m+cUλ(j+r)n+µ(k+s)m+c

]
.

By the identity (2.4) with appropriate parameters, the last expression in the bracket

equals

Uµ(k+s)m+λ(K+1+r)n+cUλ(j+r)n+µ(K+1+s)m+c,

so the proof follows by induction.

Lemma 4.11. For j > k,

S8(K) =
(−1)Kµk+µ(

K
2 )+K

Uλ(k+r)n+µ(j+s)m+c

(
K∏
t=1

Uµ(k+s)m+λ(t+r)n+c

)(
K∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
K−k∏
t=1

Uµ(K+s+1−t)m−µ(k+s)m

)(
K∏
t=1

Uµ(j+s)m+λ(t+r)n+c

) .

Proof of Lemma 4.11 can be done by induction similar to the previous two lemmas.

Now we shall give the proofs of the main results for the matrix M .

For the matrices L and L−1, it is obviously seen that LkkL−1kk = 1. For k > j, by

Lemma 4.9 ∑
j≤d≤k

LkdL
−1
dj = S6(k) = 0,

so we conclude ∑
j≤d≤k

LkdL
−1
dj = [k = j],

as desired.
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For the matrices U and U−1, U−1kk Ukk = 1 is clear. In order to show the case j > k, by

Lemma 4.11, we have∑
k≤d≤j

U−1kd Udj =
(−1)µ(

k+1
2 )+k(

k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)S8(j) = 0.

Thus U−1 • U = I, as claimed.

For the LU -decomposition, we have to prove that∑
1≤d≤min(k,j)

LkdUdj = Mkj.

By Lemma 4.8, we obtain∑
1≤d≤min(k,j)

LkdUdj = S5(1) =
1

Uλ(k+r)n+µ(j+s)m+c

,

which completes the proof.

For the inverse matrix M−1
N , we use the fact M−1

N = U−1N • L−1N . Consider

∑
max(k,j)≤d≤N

U−1kd L
−1
dj =

(−1)µ(
k+1
2 )+k+λr+µs+c+j+λ(j+1

2 )(
k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)S7(N)

= (M−1
N )kj.

The Cholesky decomposition follows by Corollary 4.1. Thus all proofs are complete.

4.6.2 A Nonlinear Lilbert Matrix

Now we give the LU -decomposition of the matrix T , inverse matrices L−1 and U−1,

inverse matrix T−1 and its Cholesky decomposition when r = s, n = m and λ = µ,

respectively. We don't give the proofs of these results because they may be done very

similar to the proofs of the previous subsection. One needs only very small and proper

changes in lemmas given above.

Theorem 4.29. For k, j ≥ 1,

Lkj =

(
j∏
t=1

Vλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)
(

j∏
t=1

Vλ(k+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)
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and

Ukj = (−1)(λ+µ)(
k
2)+(λr+µs+c+1)(k+1)∆k−1

×

(
k−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)(
k−1∏
t=1

Uµ(j+s)m−µ(t+s)m

)
(
k−1∏
t=1

Vλ(k+r)n+µ(t+s)m+c

)(
k∏
t=1

Vµ(j+s)m+λ(t+r)n+c

) ,

where ∆ is de�ned as before.

Theorem 4.30. For k, j ≥ 1,

L−1kj = (−1)(λ+1)(k+j)+λ(k−j+1
2 )

(
k−j−1∏
t=1

Uλ(k+r)n−λ(t+j+r)n

)
(
k−j−1∏
t=1

Uλ(t+j+r)n−λ(j+r)n

)

×

(
k−1∏
t=1

Vλ(j+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

)
(
k−1∏
t=1

Vλ(k+r)n+µ(t+s)m+c

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)

and

U−1kj = (−1)λ(
j+1
2 )+µ(k+1

2 )+k(µj+1)+j(λ+1)+(λr+µs+c+1)(j+1)∆1−j

×

(
j−1∏
t=1

Vµ(k+s)m+λ(t+r)n+c

)(
j∏
t=1

Vλ(j+r)n+µ(t+s)m+c

)
(
k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)(
j−k∏
t=1

Uµ(j+s+1−t)m−µ(k+s)m

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

) .

Theorem 4.31. For 1 ≤ k, j ≤ N ,

M−1
kj =

1

∆N−1Vλ(j+r)n+µ(k+s)m+c

(−1)k+j+λ(
j+1
2 )+µ(k+1

2 )+N(λj+µk)+(N+1)(c+λr+µs+1)(
k−1∏
t=1

Uµ(k+s)m−µ(t+s)m

)(
j−1∏
t=1

Uλ(j+r)n−λ(t+r)n

)

×

(
N∏
t=1

Vλ(t+r)n+µ(k+s)m+c

)(
N∏
t=1

Vµ(t+s)m+λ(j+r)n+c

)
(
N−k∏
t=1

Uµ(N+s+1−t)m−µ(k+s)m

)(
N−j∏
t=1

Uλ(N+r+1−t)n−λ(j+r)n

) .
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Theorem 4.32. For k, j ≥ 1,

Ckj =

j−1∏
t=1

Uλ(k+r)n−λ(t+r)n

j∏
t=1

Vλ(k+r)n+λ(t+r)n+c

√
(−1)(c+1)(j+1)∆j−1V2λ(j+r)n+c.

Here note that when n = m = 1 and r = s = 0 the above results are reduced to the

results of [70]. Similarly, when n = m = 1, λ = µ = 1, r = s = 0 and c = −1 with

p = 1 the matrix M is reduced to the usual Lilbert matrix. For the cases n > 1 or

m > 1, our results are all new.

4.6.3 q-Analogues

We present the q-analogues of the results of Sections 4.6.1 and 4.6.2. The results for the

matrices M and T given previously come out as corollaries of the below results for the

special choice of q = β/α, so that the results, will be provided after a while, are more

general. Nevertheless, we prefer to give �rst the results related to the matrices M and

T because they look nicer. We don't provide the proofs of the results of this section.

They could be similarly done by �nding the q-forms of the lemmas given before.

We denote the q-analogues of the matrices M and T byM and T :

Mkj = i−[λ(k+r)
n+µ(j+s)m+c−1]q

1
2
[λ(k+r)n+µ(j+s)m+c−1] 1− q

1− qλ(k+r)n+µ(j+s)m+c

and

Tkj = i−[λ(k+r)
n+µ(j+s)m+c]q

1
2
[λ(k+r)n+µ(j+s)m+c] 1

1 + qλ(k+r)n+µ(j+s)m+c
,

respectively.

For the convenience, we will de�ne a generalization of the q-Pochhammer symbol with

two additional parameters in which one of them is in geometric progression as follows

(a; q)(r,m)
n :=

(
1− aq(1+r)m

) (
1− aq(2+r)m

)
. . .
(
1− aq(n+r)m

)
=

n∏
t=1

(
1− aq(t+r)m

)
with

(
a; q(r,m)

)
0

= 1, where a is a real number, r is an integer and n,m are positive

integers. As examples, we note that

(1; q)(0,2)n = (1− q)(1− q4) . . . (1− qn2

),
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(a; q2)(1,2)n = (1− aq8)(1− aq18) . . . (1− aq2(n+1)2),

(−q; q)(−1,3)n = (1 + q)(1 + q2)(1 + q9) · · · (1 + q(n−1)
3+1),

(a; qλ)(0,1)n = (1− aqλ)(1− aq2λ) . . . (1− aqnλ) = (aqλ; qλ)n.

So the relationship between the usual and general q-Pochhammer symbol is

(x; q)n = (x; q)(−1,1)n .

As the q-analogues of the results related to the matrix M , we present the following

theorem for the matrixM.

Theorem 4.33. For the matrixM and k, j ≥ 1,

Lkj = q
1
2
λ[(k+r)n−(j+r)n]iλ[(j+r)

n−(k+r)n]

(
qλ(j+r)

n+c; qµ
)(s,m)

j

(
qλ(k+r)

n
; q−λ

)(r,n)
j−1

(qλ(k+r)n+c; qµ)
(s,m)
j (qλ(j+r)n ; q−λ)

(r,n)
j−1

,

Ukj = q−
1
2
[λ(k+r)n+µ(j+s)m+c+1]+k[λ(k+r)n+µ(j+s)m+c]i[−λ(k+r)

n−µ(j+s)m−c+1]

×
(1− q)

(
q−λ(k+r)

n
; qλ
)(r,n)
k−1

(
q−µ(j+s)

m
; qµ
)(s,m)

k−1

(qλ(k+r)n+c; qµ)
(s,m)
k−1 (qµ(j+s)m+c; qλ)

(r,n)
k

,

L−1kj = (−1)λ(k+j)+1iλ[(k+r)
n−(j+r)n]qλ(j−k)[(j+r)

n−(k+r)n]+ 1
2
λ[(j+r)n−(k+r)n]

×

(
q−λ(k+r)

n
; qλ
)(j+r,n)
k−j−1

(
qλ(j+r)

n+c; qµ
)(s,m)

k−1

(
qλ(k+r)

n
; q−λ

)(r,n)
j−1

(q−λ(j+r)n ; qλ)
(j+r,n)
k−j−1 (qλ(k+r)n+c; qµ)

(s,m)
k−1 (qλ(j+r)n ; q−λ)

(r,n)
j−1

,

U−1kj = (−1)µ(k+s)+λ(j+r)+ci[−µ(k+s)
m−λ(j+r)n−c−1]q(

1
2
−j)[µ(k+s)m+λ(j+r)n+c]+ 1

2

×

(
qµ(k+s)

m+c; qλ
)(r,n)
j−1

(
qλ(j+r)

n+c; qµ
)(s,m)

j

(1− q) (q−µ(k+s)m ; qµ)
(s,m)
k−1 (q−λ(j+r)n ; qλ)

(r,n)
j−1 (q−µ(k+s)m ; qµ)

(k+s,m)
j−k

,

(M−1
N )kj = (−1)µk+λj+λr+µs+ci[−µ(k+s)

m−λ(j+r)n−c−1]q(
1
2
−N)[µ(k+s)m+λ(j+r)n+c+1]+ 1

2

×
(
qµ(k+s)

m+c; qλ
)(r,n)
N

(
qλ(j+r)

n+c; qµ
)(s,m)

N

(1− q)(1− qλ(j+r)n+µ(k+s)m+c) (q−µ(k+s)m ; qµ)
(s,m)
k−1 (q−λ(j+r)n ; qλ)

(r,n)
j−1

× 1

(q−µ(k+s)m ; qµ)
(k+s,m)
N−k (q−λ(j+r)n ; qλ)

(j+r,n)
N−j

and when r = s, n = m and λ = µ,

Ckj = (−1)λ[jr+k+(j2)]+j+1i[λ(k+r)
n−λ(j+r)n+1−cj]
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× q
1
2
[λ(j+r)n−λ(k+r)n+cj−1]+λ(k+r)nj

(
q−λ(k+r)

n
; qλ
)(r,n)
j−1

(qλ(k+r)n+c; qλ)
(r,n)
j

×
√

(1− q)q−λ(j+r)n+ 1−c
2 (−1)λ(j+r)

n+c(j+1)+ c−1
2 (1− q2λ(j+r)n+c).

Similarly, as the q-analogue of the matrix T , we present the following theorem.

Theorem 4.34. For the matrix T and k, j ≥ 1,

Lkj = q
1
2
λ[(k+r)n−(j+r)n]iλ[(j+r)

n−(k+r)n]

×

(
−qλ(j+r)n+c; qµ

)(s,m)

j

(
qλ(k+r)

n
; q−λ

)(r,n)
j−1

(−qλ(k+r)n+c; qµ)
(s,m)
j (qλ(j+r)n ; q−λ)

(r,n)
j−1

,

Ukj = q(k−1)[λ(k+r)
n+µ(j+s)m+c]+ 1

2
[λ(k+r)n+µ(j+s)m+c](−1)k−1i[−λ(k+r)

n−µ(j+s)m−c]

×
(
q−λ(k+r)

n
; qλ
)(r,n)
k−1

(
q−µ(j+s)

m
; qµ
)(s,m)

k−1

(−qλ(k+r)n+c; qµ)
(s,m)
k−1 (−qµ(j+s)m+c; qλ)

(r,n)
k

,

L−1kj = (−1)λ(k−j)+1iλ[(k+r)
n−(j+r)n]qλ(j−k)[(j+r)

n−(k+r)n]+ 1
2
λ[(j+r)n−(k+r)n]

×

(
q−λ(k+r)

n
; qλ
)(j+r,n)
k−j−1

(
−qλ(j+r)n+c; qµ

)(s,m)

k−1

(
qλ(k+r)

n
; q−λ

)(r,n)
j−1

(q−λ(j+r)n ; qλ)
(j+r,n)
k−j−1 (−qλ(k+r)n+c; qµ)

(s,m)
k−1 (qλ(j+r)n ; q−λ)

(r,n)
j−1

,

U−1kj = q(
1
2
−j)[µ(k+s)m+λ(j+r)n+c](−1)j−1i[−µ(k+s)

m−λ(j+r)n−c]

×

(
−qµ(k+s)m+c; qλ

)(r,n)
j−1

(
−qλ(j+r)n+c; qµ

)(s,m)

j

(q−µ(k+s)m ; qµ)
(s,m)
k−1 (q−λ(j+r)n ; qλ)

(r,n)
j−1 (q−µ(k+s)m ; qµ)

(k+s,m)
j−k

,

(T −1N )kj = q(
1
2
−N)[λ(j+r)n+µ(k+s)m+c](−1)λj+µk+c+λr+µs+N+1i[−λ(j+r)

n−µ(k+s)m−c]

×
(
−qµ(k+s)m+c; qλ

)(r,n)
N

(
−qλ(j+r)n+c; qµ

)(s,m)

N

(1 + qλ(j+r)n+µ(k+s)m+c) (q−µ(k+s)m ; qµ)
(k+s,m)
N−k (q−λ(j+r)n ; qλ)

(j+r,n)
N−j

× 1

(q−µ(k+s)m ; qµ)
(s,m)
k−1 (q−λ(j+r)n ; qλ)

(r,n)
j−1

and when r = s, n = m and λ = µ,

Ckj =(−1)j+1+λ(j2)+λr(j−1)i[−λ(k+r)
n−λ(j+r)n−cj]q

1
2
[λ(k+r)n+λ(j+r)n+cj]+λ(j−1)(k+r)n

×

(
q−λ(k+r)

n
; qλ
)(r,n)
j−1

(−qλ(k+r)n+c; qλ)(r,n)j

√
q−λ(j+r)

n− c
2 (−1)λ(j+r)+(c+1)(j+1)+ c

2 (1 + q2λ(j+r)n+c).
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Note that the determinants of each matrices studied in this section can be evaluated

by the multiplication of the diagonal elements of the related matrix U . We don't state

them because they are overlong.

If you look at the q-forms of the matricesM and T , you may realize that there is some

separable parts. So one may give some simple formulæ for these matrices by using

Proposition 4.2. However we would prefer to present our results in this form because

nonlinear generalizations of the Filbert and Lilbert matrices can directly obtain by

choosing q = β/α.

At the end of this section, we will give a nonlinear generalization of the Hilbert matrix

as a corollary of Theorem 4.33 and Proposition 4.2. Namely, when q → 1 the entries

of the matrixM takes the form

lim
q→1
Mkj = i[−λ(k+r)

n−µ(j+s)m−c+1] 1

λ(k + r)n + µ(j + s)m + c
.

Since the factor in front of the ratio is separable with regards to the variables k and j,

by Proposition 4.2 and Theorem 4.33, one could derive the results for the matrix M̂

with entries for k, j ≥ 1,

M̂kj =
1

λ(k + r)n + µ(j + s)m + c
,

which is a nonlinear generalization of the Hilbert matrix.

We only state the LU -decomposition of the matrix M̂ by the following corollary. The

others can be similarly derived.

Corollary 4.14. For k, j ≥ 1,

L̂kj =

(
j∏
t=1

[λ(j + r)n + µ(t+ s)m + c]

)(
j−1∏
t=1

[λ(k + r)n − λ(t+ r)n]

)
(

j∏
t=1

[λ(k + r)n + µ(t+ s)m + c]

)(
j−1∏
t=1

[λ(j + r)n − λ(t+ r)n]

)

and

Ûkj =

(
k−1∏
t=1

[λ(t+ r)n − λ(k + r)n]

)(
k−1∏
t=1

[µ(t+ s)m − µ(j + s)m]

)
(
k−1∏
t=1

[λ(k + r)n + µ(t+ s)m + c]

)(
k∏
t=1

[µ(j + s)m + λ(t+ r)n + c]

) .
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4.7 Hessenberg Determinants via Generating Functions

As mentioned in Section 3.2.5, the determinants of the Hessenberg matrices are inves-

tigated by several authors. In [7], author introduced a new method to compute the

determinant of a special class of the Hessenberg matrices via generating functions. In

this section, we extend his method to new three classes of the Hessenberg matrices.

Another extension of it to the convolution-like matrices could be found in [93]. This

method is based on to determine the relationships between determinants of the Hessen-

berg matrices whose entries are terms of some certain number sequences and generating

functions of these sequences. As an application of our main results, we give an elegant

method to compute the determinants of the Hessenberg matrices whose entries consist

of the terms of the higher order linear recursive sequences, which based on to �nd an

adjacency-factor matrix. Our results cover many previous results about determinants

of the Hessenberg matrices. The obtained results are presented in [8].

In Section 4.7.1, we introduce these three classes of the Hessenberg matrices and show

how to compute determinants of these matrices. Also we provide many useful examples

to understand the method well.

We would like to remind that we use n instead of N for the order of the matrix

throughout this section.

4.7.1 Main Results

Let {bn}n≥0 and {cn}n≥1 be any sequences. Denote their generating functions as B(x) =∑
k≥0 bkx

k and C(x) =
∑

k≥1 ckx
k, respectively. The capital calligraphic letter denotes

the generating function of the determinant of the related matrix.

To generalize the result of [7], we de�ne the Hessenberg matrix Hn(r, s) of order n+ 1:
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For arbitrary nonzero real numbers r and s,

Hn (r, s) :=



b0 r 0

b1 c1 s

b2 c2 c1 r

b3 c3 c2 c1 s
...

...
... · · · . . . . . .

bn−1 cn−1 cn−2 · · · · · · c1 dn (r, s)

bn cn cn−1 · · · · · · c2 c1


, (4.8)

where

dn(r, s) =

 r if n is even,

s if n is odd.

Brie�y, we use Hn instead of Hn(r, s) if there is no restrictions on r and s. The case

r = s = 1 is reduced to matrix considered in [7].

To compute the determinant of Hn via generating function method, we have the fol-

lowing result:

Theorem 4.35. If

H(x) =
B(x)

(
C(−x) + r+s

2

)
−B(−x)

(
r−s
2

)
C(x)C(−x) +

(
r+s
2

)
(C(x) + C(−x)) + rs

,

then

(i) for even n such that n = 2t,

detHn = rt+1sthn,

(ii) for odd n such that n = 2t+ 1,

detHn = −rt+1st+1hn,

where H(x) is the generating function of {hn}n≥0.

Proof. We consider the in�nite linear system of equations

r 0

c1x sx

c2x
2 c1x

2 rx2

c3x
3 c2x

3 c1x
3 sx3

c4x
4 c3x

4 c2x
4 c1x

4 rx4

...
...

...
...

...
. . .





h0

h1

h2

h3

h4
...


=



b0

b1x

b2x
2

b3x
3

b4x
4

...


. (4.9)
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Here we write

rh0 = b0

c1h0x+ sh1x = b1x

c2h0x
2 + c1h1x

2 + rh2x
2 = b2x

2

c3h0x
3 + c2h1x

3 + c1h2x
3 + sh3x

3 = b3x
3

... =
....

By summing both side of the above equalities and (2.13), we obtain

H(x)C(x) + r
∑
k≥0

h2kx
2k + s

∑
k≥0

h2k+1x
2k+1 = B(x). (4.10)

By the relations (2.14), the above equation could be rewritten as

H(x)

[
C(x) +

r + s

2

]
+H(−x)

[
r − s

2

]
= B(x).

Taking (−x) instead of x, we get

H(−x)

[
C(−x) +

r + s

2

]
+H(x)

[
r − s

2

]
= B(−x).

Solving these two equations in terms of H(x), we get

H(x) =
B(x)

(
C(−x) + r+s

2

)
−B(−x)

(
r−s
2

)
C(x)C(−x) +

(
r+s
2

)
(C(x) + C(−x)) + rs

,

as desired.

Now we examine the relationship between the sequences {hn}n≥0 and {detHn}n≥0. If

we consider the system (4.9) for the only �rst n + 1 equations and take x = 1, the

system (4.9) turns to

r 0

c1 s

c2 c1 r

c3 c2 c1 s
...

...
...

...
. . .

cn cn−1 cn−2 · · ·
... dn+1 (r, s)





h0

h1

h2

h3
...

hn


=



b0

b1

b2

b3
...

bn


,

where dn(r, s) is de�ned as before.

By Cramer's rule (see page 24 in [43]), we obtain hn =
detHn

rt+1st
for even n such that

n = 2t and hn = − detHn

rt+1st+1
for odd n such that n = 2t + 1, which completes the

proof.
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We want to note some important and useful special cases of Theorem 4.35 with the

following corollaries:

Corollary 4.15. For the matrix H(1, 1), we have that hn = (−1)n detHn and the

generating function of the sequence {detHn(1, 1)}n≥0 is

H(x) =
B(−x)

1 + C(−x)
.

This result was �rstly given in [7]. We refer to it for some examples.

Corollary 4.16. For the matrix H(−1,−1), we have that hn = − detHn and the

generating function of the sequence {detHn(−1,−1)}n≥0 is

H(x) =
B(x)

1− C(x)
. (4.11)

Let's give some examples.

Example 4.1. For n ≥ 0, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1 −1 0

F2 1 −1

F3 1 1 −1

F4 0 1 1 −1
...

...
... · · · . . . . . .

Fn 0 0 · · · · · · 1 −1

Fn+1 0 0 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑
k=0

Fk+1Fn+1−k.

Proof. If bn = Fn+1 and {cn}n≥1 = {1, 1, 0, . . .}, then B(x) = 1
1−x−x2 and C(x) = x+x2.

So the generating function of {detHn(−1,−1)}n≥0 by Corollary 4.16, is 1
(1−x−x2)2 , which

is the generating function of {
∑n

k=0 Fk+1Fn+1−k}n≥0, as well. Thus the proof is complete

by Theorem 2.5.

Example 4.2. For n ≥ 0, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L0 −1 0

L1 −F1 −1

L2 −F2 −F1 −1

L3 −F3 −F2 −F1 −1
...

...
... · · · . . . . . .

Ln−1 −Fn−1 −Fn−2 · · · · · · −F1 −1

Ln −Fn −Fn−1 · · · · · · −F2 −F1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

 2 if n is even,

−1 if n is odd.
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Proof. Since bn = Ln and {cn}n≥1 = {−Fn}n≥1, B(x) = 2−x
1−x−x2 and C(x) = −x

1−x−x2 .

By Corollary 4.16, the generating function of {detHn(−1,−1)}n≥0 is

H(x) =
B(x)

1− C(x)
=

2− x
1− x2

,

which gives the periodic sequence {2,−1, 2,−1, . . .}n≥0.

Let {bn} be any sequence and {cn}n≥1 = {1, 0, 0, . . .}. Since 1
1−xB(x) is the generating

function of the sum of the �rst nth term of the sequence {bn}, by Corollary 4.16 and

Theorem 2.5, we have

detHn(−1,−1) =
n∑
k=0

bk.

For example, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0

1
2

1 −1

1
3

0 1 −1

1
4

0 0 1 −1
...

...
... · · · . . . . . .

1
n

0 0 · · · · · · 1 −1

1
n+1

0 0 · · · · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Hn+1,

where Hn stands for nth harmonic number, which is
∑n

k=1
1
k
.

Since the permanental and determinantal relationships between the matrices Hn(1, 1)

and Hn(−1,−1) are

detHn(1, 1) = perHn(−1,−1) and perHn(1, 1) = detHn(−1,−1),

one can easily derive some permanental relations for the Hessenberg matrices by the

help of the above corollaries.

Corollary 4.17. If

H(x) =
C(−x)B(x)−B(−x)

C(x)C(−x)− 1
,

then we have

detHn(1,−1) = (−1)(
n
2)hn.

We shall give an example:
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Example 4.3. If we take {cn} = {(−1)nFn−1} and de�ne the sequence {bn}n≥0 as

b2n = −b2n+1 = F2n+2, then for even n such that n = 2k, the matrix Hn(1,−1) takes

the form

H2k (1,−1) =



F2 1 0

−F2 0 −1

F4 F1 0 1

−F4 −F2 F1 0 −1
...

...
... · · · . . . . . .

−F2k −F2k−2 F2k−3 · · · · · · 0 −1

F2k+2 F2k−1 −F2k−2 · · · · · · F1 0


and for odd n such that n = 2k − 1, the matrix Hn(1,−1) takes the form

H2k−1 (1,−1) =



F2 1 0

−F2 0 −1

F4 F1 0 1

−F4 −F2 F1 0 −1
...

...
... · · · . . . . . .

F2k F2k−2 −F2k−3 · · · · · · 0 −1

−F2k −F2k−2 F2k−2 · · · · · · F1 0


.

So that

detH2k(1,−1) = (−1)kF2k+1 and detH2k−1(1,−1) = (−1)kF2k.

Proof. The generating functions of {bn}n≥0 and {cn} are B(x) = 1−x
(1+x−x2)(1−x−x2) and

C(x) = x2

1+x−x2 , respectively. So we get H(x) = 1
1−x−x2 . By Corollary 4.17, the claim

follows.

Corollary 4.18. For d 6= 0, if

H(x) =
B(x)

C(x) + d
,

then

detHn(d, d) = (−1)ndn+1hn

and the generating function of {detHn(d, d)}n≥0 is

H(x) = d ·H(−dx).
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Example 4.4. If bn = −(Hn + 1) with b0 = −1 and cn = 2
n
, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 2 0

− (H1 + 1) 2 2

− (H2 + 1) 1 2 2

− (H3 + 1) 2
3

1 2 2
...

...
... · · · . . . . . .

− (Hn−1 + 1) 2
n−1

2
n−2 · · · · · · 2 2

− (Hn + 1) 2
n

2
n−1 · · · · · · 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n−12n.

Proof. If we take d = 2, bn = −(Hn + 1) with b0 = −1 and cn = 2
n
in Corollary 4.18,

then we get

B(x) =
ln(1− x)− 1

1− x
and C(x) = ln(1− x)−2.

Thus H(x) = 1
2x−2 and detHn = 2(−2)nhn, which give us detHn = (−1)n−12n, as

claimed.

When c0 = d, by Corollary 4.18, we obtain H(x) = B(x)
C(x)

, where C(x) =
∑

k≥0 ckx
k.

For example, if we choose B(x) = x+ 4x2 + x3 and C(x) = (1− x)4, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0

1 −4 1

4 6 −4 1

1 −4 6 −4 1

0 1 −4 6
. . . . . .

0 0 1 −4
. . . −4 1

...
...

...
... · · · 6 −4 1

0 0 0 0 · · · −4 6 −4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

= (−1)nn3.

Now we recall an already known result given in [89]. But we will give an alternative

and simpler proof for it.
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Corollary 4.19. If {cn}n≥0 is any sequence such that c0 6= 0, then we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c0 0 · · · 0

c2 c1 c0 · · · 0

c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= [xn]
c0

C (−c0x)
,

where C (x) =
∑

k≥0 ckx
k and [◦] is the coe�cient extraction operator, i.e. [xn]

∑
k≥0 akx

k =

an.

Proof. First we consider an equal determinant to the claimed determinant by the fol-

lowing equality

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c0 0 · · · 0

c2 c1 c0 · · · 0

c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c0 0 0 · · · 0

0 c1 c0 0 · · · 0

0 c2 c1 c0 · · · 0

0 c3 c2 c1 · · · 0
...

...
...

...
. . .

...

0 cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

The value of the determinant on the RHS of the above equation could be easily found

by Corollary 4.18. So that the claimed result directly follows.

Let's give an example related to Theorem 4.35.

Example 4.5. Let {bn}n≥0 be the alternating of the sequence A135491 in [94]. Then

for n = 2k, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 1 0

b1 1 −3

b2 1 1 1

b3 1 1 1 −3
...

...
... · · · . . . . . .

b2k−1 0 0 · · · · · · 1 −3

b2k 0 0 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−3)k T2k+2.

Similarly, for n = 2k+ 1, determinant of the corresponding Hessenberg matrix is equal

to −T2k+3(−3)k+1, where Tn stands for the nth Tribonacci number de�ned in Table 1.
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Proof. The generating functions of {bn}n≥0 and {cn} are B(x) = 1−x+x2−x3
1+x−x2+x3 and C (x) =

x + x2 + x3, respectively. By Theorem 4.35, when r = 1 and s = −3, we obtain

detHn = Tn+2(−3)k for n = 2k and detHn = −Tn+2(−3)k+1 for n = 2k + 1, as

desired.

Up to now, we consider certain Hessenberg matrices whose superdiagonal are constant

or two periodic. Now we give a general idea for Hessenberg matrices with arbitrary

superdiagonal entries. To show how this idea will be applied, we present two Hessenberg

matrices whose superdiagonals will consist of the terms of two special sequences, {n}

and {2n−1}, respectively.

Let {bn}n≥0, {cn} and {dn}n≥0 such that dn 6= 0 for all n ≥ 0 be any sequences. First

de�ne the Hessenberg matrix Hn of order n+ 1 as

Hn :=



b0 d0 0

b1 c1 d1

b2 c2 c1 d2

b3 c3 c2 c1 d3
...

...
... · · · . . . . . .

bn−1 cn−1 cn−2 · · · · · · c1 dn−1

bn cn cn−1 · · · · · · c2 c1


.

Now consider the following in�nite linear system of equations

d0 0

c1x d1x

c2x
2 c1x

2 d2x
2

c3x
3 c2x

3 c1x
3 d3x

3

c4x
4 c3x

4 c2x
4 c1x

4 d4x
4

...
...

...
...

...
. . .





h0

h1

h2

h3

h4
...


=



b0

b1x

b2x
2

b3x
3

b4x
4

...


,

which gives us the relation

H(x)C(x) +
∞∑
k=0

hkdkx
k = B(x), (4.12)

where C(x) =
∑

k≥1 ckx
k. If we restricted this in�nite system to the �rst n+1 equations

with x = 1, then by Cramer's rule we have

hn =
(−1)n detHn∏n

k=0 dk
.
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Unfortunately, the series
∑∞

k=0 hkdkx
k in (4.12), which is the generating function of the

Hadamard product of the sequences {hn}n≥0 and {dn}n≥0, can not be always computed

explicitly in terms of the generating functions H(x) and D(x). Nevertheless, it is

possible to compute it for some special cases. So that one can compute the determinant

of these type of matrices via generating function method. Now we present two special

example to show how we can use the idea mentioned above.

Theorem 4.36. If {dn}n≥0 = {n+ 1}, then

xH(x)
(
e
∫ C(x)

x
dx
)

=

∫
e
∫ C(x)

x
dxB(x)dx+ C,

with

detHn = (−1)n(n+ 1)!hn,

where C is a constant.

Proof. By (4.12), we have

H(x)C(x) +
∞∑
k=0

hk(k + 1)xk = B(x),

which, equivalently, gives us

H(x)C(x) + (xH(x))′ = B(x).

By taking y = x ·H(x), we get the �rst order linear di�erential equation

y
C(x)

x
+ y′ = B(x).

The solution of this di�erential equation is

y =
(
e
∫ C(x)

x
dx
)−1(∫

e
∫ C(x)

x
dxB(x)dx+ C

)
,

which completes the proof. Note that the constant C will be determined according to

the initial value y(0) = 0.

Example 4.6. For n ≥ 0, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0

3 1 2

5 1 1 3

7 1 1 1 4
...

...
... · · · . . . . . .

2n− 1 1 1 · · · · · · 1 n

2n+ 1 1 1 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n(n+ 1)!.
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Proof. Since bn = 2n+ 1 and cn = 1, we obtain B(x) = x+1
(x−1)2 and C(x) = x

1−x . So we

get ∫
1

1− x
dx = − ln(x− 1) and e

∫ C(x)
x

dx =
1

x− 1
.

By Theorem 4.36, we have that

xH(x)
1

x− 1
=

∫
x+ 1

(x− 1)3
dx+ C

xH(x)
1

x− 1
=− x

(x− 1)2
+ C.

For x = 0, we �nd that C = 0 and so

H(x) =
1

1− x
,

which gives detHn = (−1)n(n+ 1)!.

For the case bn = cn+1, i.e. B(x) = C(x)
x
, the relation given in Theorem 4.36 turns

xH(x) = 1 + C
(
e
∫ C(x)

x
dx
)−1

.

Now we present the other interesting special case with an example which could be

produced by the help of relation (4.12).

Example 4.7. For n ≥ 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0

3 1 2

4 1 1 4

10
3

1
2

1 1 8
...

...
... · · · . . . . . .

2n−2(n+1)
(n−1)!

1
(n−2)!

1
(n−3)! · · · · · · 1 2n−1

2n−1(n+2)
n!

1
(n−1)!

1
(n−2)! · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)n2(n+1

2 )

n!
.

Proof. Since bn = 2n−1(n+2)
n!

and cn = 1
(n−1)! , their generating functions are B(x) =

e2x(x+ 1) and C(x) = xex, respectively. By (4.12), we have

xexH(x) +H(2x) = e2x(x+ 1).

Hence we �nd that H(x) = ex, which gives hn = 1
n!
. Finally, from the relation hn =

(−1)n detHn

2(
n+1
2 )

, we obtain claimed result.
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Now we consider di�erent two classes of Hessenberg determinants, which have not

been studied before. We start with the �rst one: For any nonzero real d, we de�ne a

Hessenberg matrix of order n+ 1 as follows:

Hn :=



b0 d 0

b1 c1 d

b2 c2 d1 d

b3 c3 d2 d1 d
...

...
... · · · . . . . . .

bn−1 cn−1 dn−2 · · · · · · d1 d

bn cn dn−1 · · · · · · d2 d1


.

Theorem 4.37. If

H(x) =
B(x) + h0D(x)− h0C(x)

D(x) + d
with h0 = b0/d, (4.13)

where B(x) and C(x) de�ned as before and D(x) =
∑

k≥1 dkx
k, then

detHn = (−1)ndn+1hn

and the generating function of {detHn}n≥0 is

H(x) = d ·H(−dx).

Proof. Similar to the proof of Theorem 4.35, we have the following in�nite linear system

of equations 

d 0

c1x dx

c2x
2 d1x

2 dx2

c3x
3 d2x

3 d1x
3 dx3

c4x
4 d3x

4 d2x
4 d1x

4 dx4

...
...

...
...

...
. . .





h0

h1

h2

h3

h4
...


=



b0

b1x

b2x
2

b3x
3

b4x
4

...


.

By summing the equations come from this in�nite linear system of equations and adding

h0D(x) to the both sides of it, we obtain

h0C(x) +H(x)D(x) + h0H(x) = B(x) + h0D(x),
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which gives

H(x) =
B(x) + h0D(x)− h0C(x)

D(x) + d
,

as desired. Finally, if we restrict this linear system of equations to the �rst (n +

1) equations and take x = 1, then by Cramer's rule, we get hn = (−1)n detHn
dn+1 , as

claimed.

As an example,

Example 4.8. For n > 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P1 1 0

P2 F2 1

P3 F3 P2 1

P4 F4 P3 P2 1
...

...
... · · · . . . . . .

Pn Fn Pn−1 · · · · · · P2 1

Pn+1 Fn+1 Pn · · · · · · P3 P2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n Fn−1,

where Fn and Pn are the nth Fibonacci and Pell numbers, given in Table 1.

Proof. It is a consequence of Theorem 4.37. When d = 1, B(x) =
∑

k≥0 Pk+1x
k =

1
1−2x−x2 , C(x) =

∑
k≥1 Fk+1x

k = x+x2

1−x−x2 and D(x) =
∑

k≥1 Pk+1x
k = 2x+x2

1−2x−x2 , then

H(x) =
1− 2x− x2

1− x− x2
,

which completes the proof.

Now we de�ne the second class of Hessenberg matrices of order n+ 1, whose columns

are periodic after �rst column, as follows:

Hn =



b0 d 0

b1 c1 d

b2 c2 d1 d

b3 c3 d2 c1 d

b4 c4 d3 c2 d1
. . .

...
...

...
... · · · . . . d

bn−1 cn−1 dn−2 cn−3 dn−4 · · · s (n, 1) d

bn cn dn−1 cn−2 dn−3 · · · s (n, 2) s (n+ 1, 1)



,
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where

s(n, k) =

 ck if n is even,

dk if n is odd.

We have the following theorem for the generating function of the determinant of the

just above matrix.

Theorem 4.38. If

H(x) =
B(x)(C(−x) +D(−x) + 2)−B(−x)(C(x)−D(x))

C(x)(1 +D(−x)) +D(x)(1 + C(−x)) + (C(−x) +D(−x)) + 2d
,

then

detHn = (−1)ndn+1hn

and the generating function of {detHn}n≥0 is

H(x) = d ·H(−dx).

Proof. Similar to the previous theorems, if we consider the in�nite linear system of

equations, then we obtain

C(x)
∑
k≥0

h2kx
2k +D(x)

∑
k≥0

h2k+1x
2k+1 + dH(x) = B(x). (4.14)

By the formulæ (2.14), the equation (4.14) is written as

H(x)

(
C(x) +D(x)

2
+ 1

)
+H(−x)

(
C(x)−D(x)

2

)
= B(x),

which, by solving in terms of H(x), gives us

H(x) =
B(x)(C(−x) +D(−x) + 2)−B(−x)(C(x)−D(x))

C(x)(1 +D(−x)) +D(x)(1 + C(−x)) + (C(−x) +D(−x)) + 2d
,

as desired. When we restricted the in�nite system of equations to the �rst n + 1

equations with x = 1, we complete the proof by Cramer's rule.

Example 4.9. For even n, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L0 1 0

L1 F1 1

L2 F2 L0 1

L3 F3 L1 F1 1

L4 F4 L2 F2 L0
. . .

...
...

...
... · · · . . . 1

Ln−1 Fn−1 Ln−3 Fn−3 Ln−5 · · · F1 1

Ln Fn Ln−2 Fn−2 Ln−4 · · · F2 L0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2
n
2 + 1.
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If n = 2k + 1, the determinant of the corresponding matrix is equal to 2k.

Proof. Since bn = Ln, cn = Fn and dn = Ln−1, we have B(x) = 2−x
1−x−x2 , C(x) = x

1−x−x2

and D(x) = 2x−x2
1−x−x2 . Hence, for d = 1 by Theorem 4.38, we obtain

A(x) =
−x− 3x2 + x3 + 2

(x− 1)(x+ 1)(2x2 − 1)
=

1

1− x2
+

1 + x

1− 2x2

=
∞∑
k=0

x2k +
∞∑
k=0

2kx2k +
∞∑
k=0

2kx2k+1

=
∞∑
k=0

(2k + 1)x2k +
∞∑
k=0

2kx2k+1,

as claimed.

Remark 4.3. This generating function method works for only Hessenberg matrices. If

a matrix has nonzero two superdiagonal bands, then the corresponding in�nite linear

system of equations is inconsistent. So we can't apply the same steps for this matrix.

In that case, we may reduce this matrix to a Hessenberg matrix by applying some row

or column operations. Then we may use Theorems 4.37 or 4.35. If the number of

nonzero superdiagonals is increased, then computing their determinants via generating

functions would become harder and more complicated.

4.7.2 A Matrix Method to Compute a Class of Hessenberg Determinants

Now we give a new and simple method to compute a class of Hessenberg determinants

whose entries consist of the terms of the higher order linear recursive sequence with

constant coe�cients.

Consider the following lower Hessenberg matrix of order n for nonzero real r:

En(r) =



u1 r 0

u2 u1 r

u3 u2 u1 r

u4 u3 u2 u1
. . .

...
...

...
...

. . . . . .

un−1 un−2 un−3 un−4 · · · u1 r

un un−1 un−2 u−3 · · · u2 u1


,

where the terms un's are de�ned as in (2.1). Brie�y, we use En instead of En(r).
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Indeed one can compute the determinant of the matrix En by using the results of

Section 4.7.1. Here we would like to present a new and simple method to compute

detEn. For this, we de�ne an adjacency-factor matrix related to the matrix En: De�ne

a lower triangular adjacency-factor matrix M of order n as

Mij =


1 if i = j,

−pi−j if 1 ≤ i− j ≤ k,

0 otherwise.

Clearly the matrix M is of the form

M =



1 0

−p1 1

−p2 −p1 1
... −p2

. . . . . .

−pk
. . .

. . . . . . . . . . . .

0 −pk · · · −p2 −p1 1


.

Then we obtain that

MEn = Ên,

where

(
Ên

)
ij

=



r if j = i+ 1,

bi if j = 1 and i ≤ k,

di−j+1 if i ≥ j > 1 and i− j ≤ k − 1,

0 otherwise,

with

bm = um −
m−1∑
l=1

um−lpl and dm = um −
m−1∑
l=1

um−lpl − rpm,

for 1 ≤ m ≤ k.

Here since detM = 1, we have detEn = det Ên. Afterwards, we prefer to compute the

value of the determinant of the matrix Ên instead of the matrix En because the matrix

Ên is a banded matrix with bandwidth (k+ 1) and includes many zeros and so it gives

us advantage to choose the matrix Ên rather than En regard to use of the results of

Section 4.7.1. That means one can easily apply the results given in Section 4.7.1 to

the matrix Ên with less computation.
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For example, when r = −1, by Corollary 4.16, we have that∑
i≥0

detEi+1(−1)xi =
∑
i≥0

det Êi+1(−1)xi =

∑k
i=1 bix

i−1

1−
∑k

i=1 dix
i
. (4.15)

In [88], author computed the determinant of the matrix En(−1) when k = 2 by using

the cofactor expansion and he only gave complicated formula for the case k = 3 without

proof. Our method is simpler to determine those formulæ and also one can �nd related

formula for larger k with less e�ort.

As a special case, if we consider the recurrence relation of the sequence {un} de�ned in

(2.1) with the initials u−k+2 = u−k+3 = · · · = u−1 = u0 = 0 and u1 = 1, then we have

b1 = 1 and bi = 0 for 1 < i ≤ k,

d1 = 1 + p1 and di = pi for 1 < i ≤ k.

Hence the generating function of the determinant of the matrix En+1(−1) is written

as
1

1− (1 + p1)x− p2x2 − · · · − pkxk
. (4.16)

Now we give an example to show how to use the method described above.

Example 4.10. For positive integer m, de�ne the sequence {un} with un =
(
m+n−1

m

)
and construct the following matrix Gn(m) of order n

Gn(m) :=



(
m
m

)
−1 0(

m+1
m

) (
m
m

)
−1(

m+2
m

) (
m+1
m

) (
m
m

) . . .(
m+3
m

) (
m+2
m

) (
m+1
m

)
· · · −1

· · · · · · · · · · · ·
(
m
m

)
−1(

m+n−2
m

) (
m+n−3

m

) (
m+n−4

m

) ...
(
m+1
m

) (
m
m

)
−1(

m+n−1
m

) (
m+n−2

m

) (
m+n−3

m

) ...
(
m+2
m

) (
m+1
m

) (
m
m

)


.

Then

detGn+1(m) =
n∑
k=0

(
(m+ 1)n+m(1− k)

k

)
.

Proof. We should �nd the recurrence relation for the sequence {un}. From [13], we

recall the Equation 5.24: For l ≥ 0 and integers m, n,∑
k

(
l

m+ k

)(
s+ k

n

)
(−1)k = (−1)l+m

(
s−m
n− l

)
,
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which is a variant of the Vandermonde's identity. If we choose l → m + 1, m → 1,

s→ m− n and n→ m in the equation above, then we obtain

m∑
k=−1

(−1)k
(
m+ 1

k + 1

)(
n− k − 1

m

)
=

m∑
k=−1

(−1)k+m
(
m+ 1

k + 1

)(
m− n+ k

m

)
=

(
n−m− 1

−1

)
= 0.

So, we can deduce that

m∑
k=0

(−1)k
(
m+ 1

k + 1

)(
n− k − 1

m

)
=

(
n

m

)
.

If we take n = n + m − 1, then we get the recurrence relation of order m + 1 for the

sequence {un}:

un =
m∑
k=0

(−1)k
(
m+ 1

k + 1

)
un−k−1,

with u−m+1 = u−m+2 = · · · = u−1 = u0 = 0 and u1 = 1. By our method, we see that

the adjacency-factor matrix for the matrix Gn(m) is

Mij = (−1)i−j
(
m+ 1

i− j

)
.

Thus by (4.16), we �nd the generating function of the sequence {detGn+1(m)}n≥0 as

follows

1

1−
(
1 +

(
m+1
1

))
x+

(
m+1
2

)
x2 − · · · − (−1)m

(
m+1
m+1

)
xm+1

=
1

(1− x)m+1 − x
.

In other words, we have that

[xn]
1

(1− x)m+1 − x
= detGn+1(m). (4.17)

To prove this claim, by Theorem 2.5 it is su�cient to show that

∑
n≥0

n∑
k=0

(
(m+ 1)n+m(1− k)

k

)
xn =

1

(1− x)m+1 − x
.

Consider,

∑
n≥0

n∑
k=0

(
(m+ 1)n+m(1− k)

k

)
xn =

∑
k≥0

∑
n≥k

(
(m+ 1)n+m(1− k)

k

)
xn

=
∑
n≥0

xn
∑
k≥0

(
m+ n+mn+ k

k

)
xk
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=
1

(1− x)m+1

∑
n≥0

(
x

(1− x)m+1

)n
=

1

(1− x)m+1 − x
,

which completes the proof.

As a special case for m = 1, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0

2 1 −1

3 2
. . . . . .

· · · · · · · · · 1 −1 0

n− 1 n− 2
... 2 1 −1

n n− 1
... 3 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−1∑
k=0

(
2n− k − 1

k

)
= F2n,

which could be also found in [88].
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