
1

NEURAL TEXT NORMALIZATION FOR TURKISH SOCIAL
MEDIA

TÜRKÇE SOSYAL MEDYA İÇİN NÖRAL METİN
NORMALİZASYONU

Sinan GÖKER

Asst. Prof. Dr. Burcu CAN BUĞLALILAR

Supervisor

Submitted to Graduate School of Science and Engineering of

Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

06/2018

ABSTRACT

Neural Text Normalization for Turkish Social Media Texts

Sinan GÖKER

Master of Science,Computer Engineering Department
Supervisor: Asst. Prof. Dr. Burcu CAN BUĞLALILAR

June 2018, 77 pages

Social media has become a rich data source for natural language processing tasks with its

worldwide use; however, it is hard to process social media data directly in language studies

due to its unformatted nature. Text normalization is the task of transforming the noisy text

into its canonical form. It generally serves as a preprocessing task in other NLP tasks that

are applied to noisy text and the success rate gets higher when studies are performed on

canonical text.

In this study, two neural approaches are applied for Turkish text normalization task: Con-

textual Normalization approach using distributed representations of words and Sequence-to-

Sequence Normalization approach using encoder-decoder neural networks. As the conven-

tional approaches applied to Turkish and also other languages are mostly domain specific,

rule-based or cascaded, they are already becoming less efficient and less successful due to

the change of the language use in social media. Therefore the proposed methods provide

more comprehensive solution that are not sensitive to the language change in social media.

i

Keywords: text normalization, distributed representation, word2vec, encoder, decoder, se-

mantic, unsupervised learning, long short-term memory (LSTM), deep learning

ii

ÖZET

Türkçe Sosya Medya Metinleri için Nöral Metin Normalizasyonu

Sinan GÖKER

Yüksek Lisans,Bilgisayar Mühendisliği
Danışman: Yrd. Doç. Dr. Burcu CAN BUĞLALILAR

Haziran 2018, 77 sayfa

Sosyal medya, dünya çapında yaygın kullanımı ile doğal dil işleme çalışmaları için zengin bir

veri kaynağı haline gelmiştir; Bununla birlikte, kuralsız metinlerde oluşan doğası nedeniyle

dil çalışmalarında sosyal medya verilerini doğrudan kullanabilmek oldukça zordur. Hatalı

yazılmış bir metni doğru yazılmış haline dönüştürme işlemine metin normalleştirme denir.

Metin normalleştirme çoğunlukla diğer doğal dil işleme çalışmalarında ön hazırlık işlemi

olarak görev alır ve metinlerin doğru yazılmış halleri üzerinden yapılan çalışmalarda başarı

oranı daha yüksek olur.

Bu çalışma kapsamında Türkçe metin normalleştirme görevi için iki farklı yaklaşım uygu-

lanmaktadır: Kodlayıcı-kod çözücü (encoder-decoder) yapay sinir ağları modeli kullanılarak

diziden diziye (sequence-to-sequence) normalleştirme yaklaşımını ve sözcüklerin dağıtık

temsilleri (distributed representation of words) kullanılarak bağlamsal normalleştirme yaklaşımı

ile metin normalleştirme görevi gerçekleştirilmiştir. Türkçeye ve diğer dillere uygulanan

mevcut yaklaşımlar çoğunlukla alana yönelik, kural tabanlı ya da kademeli normalleştirme

kurallarının izlendiği çalışmalar olduğundan, sosyal medyada dil kullanım alışkanlığının

değişmesi bu çalışmaların verimini ve başarı oranını düşürmektedir. Bu nedenle önerilen

iii

yöntemler sosyal medyada dil kullanımındaki değişikliklerden etkilenmeyen daha kapsamlı

bir çözüm sunmaktadır.

Anahtar Sözcükler: metin normalizasyonu, dağıtılmış gösterim, word2vec, kodlayıcı, kod

çözücü, anlamsal, gözetimsiz öğrenme, LSTM, derin öğrenme

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my master thesis supervisor Asst. Prof. Dr. Burcu

Can Buğlalılar for her precious advices, guidance and her everlasting patience. Since I started

working with her, I have learned priceless information from her.

I would also like to thank my thesis committee members for accepting to be in my thesis

committee.

In addition, I would like to thank Zeynep Aydoğu, for all her love, support and patience.

I also want to thank to my dear friends Atilla Suncak and Mehmet Özgen for providing

me with continuous encouragement throughout my years of study and through the process of

researching and writing this thesis. I would also like to thank to my all friends and colleagues

for good wishes.

I would finally like to express my appreciate to my beloved family for believing and support-

ing me for all my life.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGMENTS . v

CONTENTS . vi

FIGURES . ix

TABLES . x

1. INTRODUCTION. 1

1.1. Overview . 1

1.2. Motivation . 2

1.3. Research Questions . 4

1.4. Thesis Structure . 4

2. BACKGROUND . 5

2.1. Surface Form Normalization . 5

2.2. Semantic Form Normalization . 10

3. RELATED WORK . 13

3.1. Literature Review on Supervised Text Normalization. 13

3.2. Literature Review on Unsupervised Text Normalization. 16

3.3. Discussion . 19

4. METHODOLOGY AND IMPLEMENTATION . 21

4.1. Contextual Normalization Approach . 21

4.2. Sequence-to-Sequence Normalization Approach. 33

5. EXPERIMENTAL ANALYSIS . 43

5.1. Datasets . 43

5.2. Evaluation Metrics . 44

5.3. Experiments . 45

5.4. Error Analysis . 52

6. CONCLUSION. 53

vi

6.1. Conclusion. 53

6.2. Future Research Directions . 54

A APPENDIX NORMALIZATION OUTPUTS . 55

REFERENCES . 57

vii

FIGURES

Page

2.1. LCS example on two strings . 6

2.2. Encoder Decoder Architecture . 8

2.3. Recurrent Neural Network Architecture . 8

2.4. Long-Short Term Memory Neural Network Architecture. 10

2.5. Continuous Bag-of-Words (CBOW) Architecture . 12

3.1. Cascaded Text Normalization architecture. [1] . 14

3.2. Sequence-to-sequence machine translation architecture.. 14

3.3. The encoder-decoder architecture for Japanese text normalization. [2] 15

3.4. Most common replacement rules used for SMS Normalization [3]. 16

3.5. System architecture of Casual English Conversion System (CSCE) [4] 16

3.6. Bipartite Graph Representation, edge weight is the co-occurrence count of a

word and its context. [5] . 17

3.7. Word Association Graph for a sample sentence. [6]. 18

3.8. Distributed representation architectures for text normalization of two differ-

ent approaches. [7] . 19

4.1. Methodology of Contextual Normalization Approach. 22

4.2. Word-wide Consonant Skeleton conversion . 26

4.3. First 5 Character-based Consonant Skeleton conversion . 27

4.4. First 3 Consonants-based Skeleton conversion . 27

4.5. Extracted Candidates for an input sentence . 29

4.6. Candidate Traversal using Viterbi Path . 31

4.7. Sequence-to-sequence Normalization Architecture by using Encoder - De-

coder Model (EDM) . 34

4.8. Methodology of Sequence-to-sequence Normalization Approach. 34

4.9. Sigmoid activation function . 36

viii

4.10. Tanh activation function . 37

4.11. ReLU activation function . 38

4.12. Neural Layer Representation of Encoder Decoder Model . 40

4.13. EDM training process representation . 41

4.14. EDM Train/Validation loss function over epochs . 41

ix

TABLES

4.1. An example canonical word and its 25-nearest possible noisy words 23

4.2. Example Noisy-Canonical Word Pairs in the Normalization Lexicon. 25

4.3. Word-wide Consonant Skeleton Structure examples . 26

4.4. First 5 Character-based Consonant Skeleton Structure examples. 27

4.5. First 3 Consonants-based Skeleton Structure examples . 28

4.6. Bigram probabilities of arbitrary word pairs . 28

4.7. An example word and its candidate canonical forms . 30

5.1. The Details of the Twitter Dataset used for Training and Testing 43

5.2. Turkish Newspaper Corpus Details . 43

5.3. Normalization Results . 46

5.4. Contextual Normalization Results with Parameters . 46

5.5. Sequence-to-Sequence Normalization Accuracies of Tanh Activation Func-

tion Configuration . 48

5.6. Sequence-to-Sequence Normalization Accuracies of Sigmoid Activation Func-

tion Configuration . 48

5.7. Sequence-to-Sequence Normalization Accuracies of Softmax Activation Func-

tion Configuration . 49

5.8. Sequence-to-Sequence Normalization Accuracies of ReLU Activation Func-

tion Configuration . 49

5.9. Sequence-to-Sequence Normalization Accuracies of Units and Batch Size 50

5.10. Sequence-to-Sequence Normalization Accuracies over Epochs 50

5.11. Example Normalization Outputs of The Contextual Normalization 51

5.12. Example Normalization Outputs of The Sequence-to-Sequence Normalization 51

1.1. Contextual Normalization Outputs . 55

1.2. Sequence-to-Sequence Normalization Outputs . 56

x

1. INTRODUCTION

1.1. Overview

Social media occupies an important place in our lives. People share almost every idea,
thought and dream of their own through it and thus the amount of produced content on those
platforms is still on the increase. From this aspect, social media has become a rich and highly
valuable resource for natural language processing (NLP) and machine learning researchers.

Although the amount of social media content increases, the amount of clean data is limited
due to spelling mistakes, misuses, typo errors, common current abbreviations, and structural
disorders, which have a negative effect on NLP studies for social media content. Moreover,
every age creates its own usage of natural language on social media. Therefore, the common
errors in writing also changes from one generation to another. In order to increase the success
rate of converting the data into correct form, the noisy texts are required to be corrected. The
task of transforming noisy1 text into its canonical2 form is called text normalization. Some
text normalization examples are given below.

Example: The noisy text

Günlerden bir gün yinee bu bnkta oturuyodum.

is normalized as :

Günlerden bir gün yine bu bankta oturuyordum.(One day, I was sitting on this bench again.)

Example: The noisy text

Karincalar yagmurda telas icinde kosusturuyorlardi.

is normalized as :

Karıncalar yağmurda telaş içinde koşuşturuyorlardı. (Ants were running around in a hurry

in the rain.)

Text Normalization is the preliminary stage for the NLP application on social media, because
applying it as a preprocessing in the tasks such as Sentiment Analysis [8], Automatic Speech

1In text normalization task, the word ’noisy’ stands for a wrongly written word.
2In text normalization task, the word ’canonical’ stands for the correct form of a word.

1

Recognition (ASR) [9], Speech Processing [10], Morphological Disambiguation [11] pro-
vides a high success ratio. However, in absence of text normalization, the success ratio is
relatively lower such as Morphological Disambiguation [12], Sentiment Analysis [13] stud-
ies. Consequently, increasing success rate of normalization task provides more successful
results in other NLP tasks and machine learning fields.

1.2. Motivation

Text normalization provides successful solutions to correct noisy text, make the abbreviations
understandable, and normalize specific uses (hashtag, mention, link, etc.) for social media.
The output data from this process provides a more meaningful format, which makes the text
normalization task an important process for other NLP applications.

Many text normalization techniques applied to social media data are insufficient and inef-
ficient because those are mostly rule-based techniques that are generally manually defined.
This is because of the change of language use in time in social media, which brings together
new error patterns. New writing styles are introduced in different human generations that
need to be handled differently. Such rule-based methods require too much labor for updating
the rules in time. As conventional techniques cannot follow those patterns, the success rate
of the techniques declines in time.

In this thesis, we introduce methods that are different from the other conventional methods so
that no static rules are defined. Since there is no rule dependency, the methods support nor-
malization of different error types due to normalizing over both distributed representations
of words and orthographic patterns that are captured automatically by an encoder-decoder
neural network architecture. The only thing that is expected for the system to diagnose the
different error patterns is to train the system with the data set containing the new errors.

Word representations are learned through the contextual similarities between words, as Firth
suggests3. Each word is represented by a feature vector that bears any lexical, semantic, or
syntactic feature of the word in vector space. Therefore similar words tend to have similar
word representations and they will be closer to each other in the vector space.

3”You shall know a word by the company it keeps”[14]

2

Word2vec [15] is used to learn the neural word representations that is a prediction-based
model that learns the word representations using the contextual information of each word
without counting the co-occurrences in this study. Therefore, words in similar contexts have
similar word representations. Noisy social media data in Turkish language is used as in-
put and each noisy word is matched with its canonical candidate words by using its word
representation. Here we assume that noisy forms of a word will also have similar word rep-
resentations. For example, yapıcam, yapacam, and yapcam (meaning I will do) will be all in
similar contexts and therefore all will be having similar word representations. Once having
the word representation of one of those incorrect forms, it will lead to the canonical form
yapacağım that has a similar representation to the noisy forms because they all mean the
same.

As a second normalization approach, we present an encoder-decoder model to learn the error
rules automatically. Encoder-decoder architecture for recurrent neural networks [16] is a
model mainly used for sequence-to-sequence learning tasks, such as machine translation,
text summarization, etc. The encoder network takes a sequence input (i.e. a text in source
language in machine translation task) and outputs the encoded input which is represented by
a feature vector. Once the input is encoded, it is given as input to the decoder network that
transforms/decodes the encoded input into the actual input or the intended input (i.e. the text
in target language in machine translation task). Here, a fixed-length internal feature vector
is learned, which represents the structural relation between the input and output. Therefore,
the transformation from source to target is performed in a rule independent way for further
predictions with the new input data. In this study, as for the text normalization, the source is
the noisy text and the target is the canonical form of the noisy text.

This study is the first application of proposed text normalization approaches to Turkish social
media, although both of methods are applied to other languages. Both approaches are newly
applied methods for Turkish text normalization studies due to the fact that they are made
up of rule-independent methods, and both of them achieves significant normalization results
for text normalization of Turkish social media. The first application of neural methods for
Turkish text normalization has been done in this study to the best of our knowledge.

3

1.3. Research Questions

• Can a rule-independent text normalization method be applied to social media data in
Turkish?

• Can a rule independent method have as high accuracy as a conventional rule-based
method in text normalization?

• How successful are neural normalization methods in agglutinative languages such as
Turkish?

1.4. Thesis Structure

The structure of the thesis is given as follows:

Chapter 2 describes background information of the proposed approaches from two different
aspects of normalization: Surface form normalization and semantic form normalization.

Chapter 3 reviews the methodology used in text normalization. This chapter also argues the
strong and weak sides of those studies.

Chapter 4 explains the algorithms, methodology steps and structures of the proposed ap-
proaches in detail by giving examples.

Chapter 5 represents the evaluations, statistical results of the approaches in detail. This
chapter also contains comparisons of proposed approaches with other baseline studies. We
end this chapter with an error analysis.

Finally, Chapter 6 concludes the thesis with a brief summary and discussion on the proposed
approaches, contributions to literature and gives potential future work.

4

2. BACKGROUND

In this section, we give background information to prepare the reader for the rest of the the-
sis. The study has been performed by using two different approaches which are related to
two methods: Surface Form Normalization deals with normalizing the text value by using
its orthographic features while Semantic Normalization utilizes the contextual features. This
chapter provides brief information on Surface Form Normalization and Semantic Normal-
ization. Methods used for Surface Form normalization are explained in Section 2.1. and
Semantic Normalization is described in Sections 2.2.

2.1. Surface Form Normalization

Surface Form Normalization is a normalization method that uses morphological and ortho-
graphic features of the given text. The main goal is to analyze noisy text orthographically
and then to predict the canonical form as a result of several calculations. The methods in
this category either use some distance metrics between noisy and canonical forms or directly
learn the rules applied when creating noisy form of a given text.

2.1.1. Edit Distance (ED)

This metric is used for quantifying how dissimilar two texts are. Total number of deletion,
insertion and substitution edit operations between those two texts are computed to measure
the distance between them.

The edit distance between a = a1 . . . an and b = b1 . . . bm where a and b are two strings and
a1 . . . an and b1 . . . bm are their letters is given as dmn as follows:

5

ED(a,b) =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

di0 =
iP

k=1
wdel(bk), for 1 i m

d0j =
jP

k=1
wins(ak), for 1 j n

dij =

8
>>>>>><

>>>>>>:

di�1,j�1 for aj = bi

min

8
>>><

>>>:

di�1,j + wdel(bi)

di,j�1 + wins(aj)

di�1,j�1 + wsub(aj, bi)

for aj 6= bi

, for 1 i m, 1 j n

(1)

Here, i and j are the indexes of the edit distance matrix which is created by applying the
above rules. di0 denotes the first column, d0j denotes the first row and dij denotes rest of the
matrix. At the end of process, the value of dmn is the edit distance between the two strings.

2.1.2. Longest Common Subsequence (LCS)

Longest common subsequence is the longest common substring of the given strings.

An example longest common subsequence between two Turkish words is given in Figure 2.1.

w1 : buzdolabı w2 : tuzluk

LCS : uz

Figure 2.1. LCS example on two strings

The LCS between a = a1 . . . an and b = b1 . . . bn where a and b are two strings and a =

a1 . . . an and b = b1 . . . bn are their letters is given as LCS(ai, bj) as follows:

LCS(ai, bj) =

8
>>><

>>>:

;, if i = 0 or j = 0

LCS(ai�1,bj�1) _ ai, if ai = bj

longest(LCS(ai, bj�1), LCS(ai�1, bj)), if ai 6= bj

(2)

6

2.1.3. Longest Common Subsequence Ratio (LCSR)

LCSR denotes the longest common subsequence ratio [17] between two words. This ratio is
calculated by dividing the LCS by the maximum length of the given sequences.

The LCSR between two words w1 and w2 is calculated as follows:

LCSR(w1, w2) =
LCS(w1, w2)

MaxLength(w1, w2)
(3)

2.1.4. Lexical Similarity Cost (SimCost)

Lexical similarity cost (SimCost) is the orthographic similarity metric between two words
and is calculated by dividing the LCSR by the ED (see Section 2.1.1.) similar to the study of
Hassan and Menezes [5].

The SimCost between two words w1 and w2 is defined as follows.

SimCost(w1, w2) =
LCSR(w1, w2)

ED(w1, w2)
(4)

2.1.5. Encoder – Decoder

In addition to the distance metrics used for finding the canonical form of a noisy string,
encoder-decoder models are also applied for learning the conversion rules between noisy
and canonical forms. The neural encoder-decoder architecture is basically a sequence-to-
sequence model. It represents the relation between source and target sequences as a state
vector by matching the features of the sequences.

In deep learning, encoder-decoder model is performed by two neural networks: encoder
neural network and decoder neural network. Encoder network maps the features of the source
sequence to a fixed-length state vector that contains the weights of the relations between the
source and the target, and decoder network generates the target sequence from the weight
vector.

The architecture of the Encoder-Decoder model is given in Figure 2.2.

7

Encoder Decoder
State
Vector

Input

Sequence

Target

Sequence

Figure 2.2. Encoder Decoder Architecture

2.1.6. Recurrent Neural Network

Recurrent neural networks (RNN) are used for processing sequential information differently
from the conventional artificial neural networks (ANN). RNNs are recurrent neural networks
as they perform a task by processing each element of the sequence consecutively. All inputs
(and also outputs) are processed independently in conventional ANNs. RNNs, on the other
hand, perform the task on a word in a sentence by considering the previous words. Therefore,
RNNs gain the ability of memorizing information from the previous steps. This gives RNNs
the ability of learning the transformations within the context.

The basic architecture of a Recurrent Neural Network is given in Figure 2.3.

Xt

Ot

U

V
W

tanh

Figure 2.3. Recurrent Neural Network Architecture

8

An RNN takes a sequence of inputs X1, X2, X3, . . . , Xn where Xt is the input in time step t.
ht is the hidden state in time step t and it acts as the memory in the neural network. Hidden
state carries previous information and is calculated by the previous hidden state with the
input in time step t. The calculation of a hidden state is given as follows:

ht = f(UXt +Wht�1) (5)

The non-linear function f is used for calculating hidden state in time step t which is called
activation function. tanh, sigmoid and ReLu are commonly used activation functions to
provide non-linearity in RNNs [18]. Ot is the output in time step t. U, V,W are the pa-
rameters that are used by RNN for all time steps. The calculation to predict a word with its
previous states is given as follows:

Ot = softmax(V ht) (6)

2.1.7. Long-Short Term Memory (LSTM)

Long-Short Term Memory (LSTM) network is a kind of specialized RNN. Theoretically,
RNN networks are capable of handling long-term dependencies, however in practice, sev-
eral studies (e.g. Hochreiter[19] and Bengio, et al. [20]) show that they are inadequate for
calculating more than a few states by considering the previous term dependencies.

LSTMs, introduced by Hochreiter and Schmidhuber [21], have been developed for handling
this problem and become a frequently used networks in many studies. They are formed as
chain sequences to be used recurrently like RNNs. Therefore, they can take a sequence as
input and process it by considering the previous ones. There are memory cells in LSTMs as
a solution for the long-term dependency problem. Those cells are used in all previous states
through the sequence.

LSTMs have four different specialized neural network layers (input gate, forget gate, update
gate, output gate) while RNNs have only one simple activation layer such as tanh.

• Input gate (gi) is the neural network layer with a non-linear function that determines
stochastically which value to be updated at that time step.

9

• Forget gate (gf) determines which value to be transfered to the next state.

• Update gate (gu) updates the cell state by considering the information in input and
forget gates.

• Output gate (go) determines the output which is a hidden state for the next step.

The basic architecture of an LSTM and gates are given in Figure 2.4.

Xt

Ot

tanh σ σ σ

h
t-1

C
t-1

h
t

C
t

tanh

pointwise multiplication

pointwise addition

neural network layer

gf gi gu go

Figure 2.4. Long-Short Term Memory Neural Network Architecture

2.2. Semantic Form Normalization

Semantic Form Normalization is a normalization method that considers the semantic features
of a given noisy text. The main goal is to analyze the noisy text and by determining the
semantic similarities to extract the canonical candidates.

2.2.1. Distributed Representation of Words

The distributional hypothesis in linguistics is that words that occur in similar contexts tend
to have similar meanings (Harris, 1954) [22]. In NLP field, distributed models are used

10

to represent semantic similarities in vector space. Therefore, Vector Space Model (VSM)
is one of the most important methods for this aspect. In deep learning studies, distributed
neural network based representation of words are generated by training the networks with
the co-occurrence probabilities of the words with their contextually similar ones.

VSM was developed for the SMART information retrieval system Salton [23]. It is the
vectorial representation of texts that is generally used in NLP tasks that require semantic
information. Each dimension of the vector represents a term that can be a letter, a word or
any subsequence of the input text. The value of a dimension is non-zero if a term occurs in
the input text. Representing a text in vectorial form enables to apply algebraic calculations.

There are some kinds of VSM such as Latent Semantic Analysis (LSA) and Singular Value
Decomposition (SVD). LSA is an indexing technique between documents and the terms that
they contain. SVD is a matrix factorization method that represents a matrix as a product of
matrices.

Distributed representation of the input text dj is defined such as:

dj = (w1,j, w2,j, . . . , wt,j) (7)

2.2.2. CBOW (Continuous Bag-of-Words)

CBOW (Continuous Bag-of-Words) is a distributed representation architecture which is one
of the approaches of word2Vec introduced by Mikolov [15]. In CBOW architecture, the bag
of surrounding words are used to predict the center word where the distributed representa-
tions of words occurring in similar contexts tend to be also similar at the end of the training.
As a result, a vector space is created where each word is represented by a word embedding.

CBOW architecture is given in Figure 2.5. for w(t) which denotes the center word to be
guessed through the contextual words: w(t � 2), w(t � 1), w(t + 1), and w(t + 2) for a
window size of 2.

11

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT PROJECTION

SUM

w(t)

OUTPUT

Figure 2.5. Continuous Bag-of-Words (CBOW) Architecture

2.2.3. Cosine Similarity

Cosine Similarity is a metric that is often used to compute the relational similarity of two
vectors (i.e. distributed representations), u and v, by cosines of the angle between them.
The similarity or comparison between two texts is formulated by cosine function. If the two
vectors are same, then the value of cosine similarity equals to 1. However, the cosine value is
0 when the vectors are completely unrelated. The cosine similarity is computed as follows:

cos(u, v) =

DP
i=1

ui ⇥ vi

s
DP
i=1

ui
2 +

DP
i=1

vi
2

(8)

12

3. RELATED WORK

In this chapter, several NLP studies related to Text Normalization task are reviewed. Within
this scope, different features have been utilized in text normalization by using different meth-
ods. It has been found out that many methods have used the similarity between orthographic
features of words in order to capture their canonical forms. For this purpose, several dis-
tance metrics have been used such as longest common subsequence and edit distance. Ad-
ditionally, contextual features have also been utilized in order to capture semantic relations
between noisy and canonical forms of words. The literature that contains some important
studies related to Text Normalization is briefly explained in two sub-sections as supervised
and unsupervised models below.

3.1. Literature Review on Supervised Text Normalization

In supervised approaches, the model is being trained with a labeled dataset that contains
inputs with their corresponding targets. Thus, the model learns how to relate an input and
its target after sufficient training. In text normalization task, supervised models are trained
to learn the way of transforming noisy text into canonical forms over annotated datasets. We
review supervised text normalization studies in this section.

Torunoğlu and Eryiğit [1] propose a cascaded text normalization approach for social media
text in Turkish. The proposed method is supervised and language-dependent. The main idea
is to normalize the given text by applying manually defined rules as a pipeline process until
obtaining the canonical form. On the other hand, as the change of language use in time in
social media, manually defined rules will be incapable of normalizing. Because conventional
techniques cannot follow the further new error patterns, therefore the success rate declines
eventually. The system architecture is shown in Figure 3.1.

13

Figure 3.1. Cascaded Text Normalization architecture. [1]

Sutskever et al. [16] propose a sequence-to-sequence learning method by using deep recur-
rent neural networks for machine translation problem (see in Figure 3.2.). They use long
short-term memory neural networks (LSTMs) in order to map each source sentence to its
target sentence in another language. They achieve successful results especially on long sen-
tences.

Figure 3.2. Sequence-to-sequence machine translation architecture.

Ikeda, et al. [2] introduce a character-based neural encoder-decoder model for Japanese
text normalization. Recurrent Neural Network (RNN) based Gated Recurrent Unit (GRU)
neural networks are used for the encoder-decoder architecture (see in Figure 3.3.). In order
to overcome the need of a large corpus required by neural encoder-decoder model, they
artificially create a large scale data by augmenting their dataset by applying various edit

14

operations on the canonical forms to obtain their noisy forms. Therefore, a large amount of
dataset that involves noisy and canonical word pairs is built for training purposes.

Figure 3.3. The encoder-decoder architecture for Japanese text normalization. [2]

Li and Liu [24] proposed a non-standard word (NSW) detection method. This method has
two approaches using NSW detection results for named entity recognition in social media
texts. One of the approaches embraces a pipeline strategy while the other one deals with a
joint decoding.

Aw et al. [3] proposed a phrase-based statistical normalization approach on Short Message
Service (SMS) normalization for English texts. They assumed SMS as a language variation
of English and defined the SMS normalization as machine translation task of SMS language
to the English language. The approach offers a solution for both words and phrases. They
focus on three major cases while defining rules: replacement of noisy words, removal of
slang words and insertion of auxiliary verb and subject pronoun. The rules based on grammar
and orthographic variations are manually defined and used in the study. An example of
replacement rules in SMS normalization is shown in Figure 3.4..

15

Figure 3.4. Most common replacement rules used for SMS Normalization [3]

Clark and Araki [4] proposed a supervised rule-based approach that contains a manually
compiled and verified dictionary that can store phrases for normalizing social media texts
in English. They named the system as Casual English Conversion System (CSCE). The
dictionary contains casual English phrases, their normalized forms and replacement types
such as abbreviation, misspelling, punctuation etc. They defined phrase matching rules over
the dictionary and used the rules automatically in normalization. The system architecture of
proposed method is shown in Figure 3.5.

Figure 3.5. System architecture of Casual English Conversion System (CSCE) [4]

3.2. Literature Review on Unsupervised Text Normalization

In unsupervised approaches, the model is being trained with a unlabeled dataset. An unla-
beled dataset does not contain any association or explanation of source and target texts, it

16

only contains raw data. Thus, different methods are used to learn the association between
input and its target such as clustering, rule definitions, etc. In text normalization task, unsu-
pervised models are trained to learn the way of transforming noisy text into canonical forms
on an unannotated dataset by itself. We review unsupervised text normalization studies in
this section.

Hasan and Menezes [5] utilize both contextual and lexical features of the text. They use
Random Walks on a bipartite graph that is built based on the contextual similarity where
a set of nodes represents the contexts and another set corresponds to noisy and canonical
words (see in Figure 3.6.). A normalization lexicon is generated through random walks on
the bipartite graph. The most suitable candidate words are chosen according to the longest
common subsequence and edit distance.

makin
3

2

C3

2

1

4

1

C2

1

5

4
C4

1

2

1
C1

mking

making

tkin

takin

taking

Figure 3.6. Bipartite Graph Representation, edge weight is the co-occurrence count of a
word and its context. [5]

Sönmez and Özgür [6] introduce another graph-based method for the normalization of the
social media text. The proposed approach uses grammatical features in addition to contextual
and lexical features. The contextual and grammatical features are encoded in a graph (see
Figure 3.7.), where the relative positions of words and their part-of-speech (PoS) tags are
encoded.

17

Figure 3.7. Word Association Graph for a sample sentence. [6]

Sridhar [7] introduces an unsupervised text normalization algorithm that makes use of distri-
butional features of words and phrases. Differently from the other related studies, contextual
features are learned via neural word embeddings by using continuous bag-of-words model
of word2Vec [15] and the neural network architecture by Collobert et al. [25] (see in Fig-
ure 3.8.). A lexicon that consists of noisy and canonical word pairs is constructed by using
of the distance between neural word embeddings and by filtering out some of the candidates
to find the best canonical candidate for each word. One of the methods that we apply for
Turkish is based on this study and more details about this method is given in Chapter 4.

18

Figure 3.8. Distributed representation architectures for text normalization of two different
approaches. [7]

Yang and Eisenstein [26] propose a log-linear model that scores source and target strings
in an unsupervised framework. A language model is combined with the log-linear model
to compute the weight gradients only for the observed n-grams while doing gradient-based
updates.

3.3. Discussion

In this chapter, we reviewed the previous work on text normalization in two sub-sections
as supervised and unsupervised approaches. Supervised models deal with text normalization
task by using labeled data, while unsupervised models perform normalization with unlabeled
data.

There are numerous text normalization studies on English in the literature. Most of the work
done on social media data is also in English whereas there is not much work on English
social media normalization. There are numerous text normalization studies on English in the
literature. Most of the studies that are performed on social media data are also in English.
Even there is small amount of text normalization studies are performed on agglutinative
languages such as Turkish, however they are mostly rule-based.

As the widespread use of neural approaches, text normalization studies, like many studies
in the NLP field, also use the advantages of Artificial Neural Networks (ANN) to learn and

19

model non-linear and complex relationships. By considering the text normalization studies
in the literature, neural approaches become as common as rule-based approaches and offer
solutions to with different advantages, such that the enable normalization without requiring
any manually defined rules.

In supervised normalization approaches, a great amount of labeled data is required for a suc-
cessful learning process. Finding labeled data for text normalization over social media data
require too much labor. For languages other than English, this process becomes even more
difficult. Since the error patterns in the social media language change over time, the labeled
data must also be updated so that the system can maintain the same success. Unsupervised
normalization approaches do not encounter such problems in these studies because they work
with unlabeled data.

Conventional social media normalization approaches are insufficient because they use mostly
rule-based techniques that are generally manually defined. The change of language use over
time in social media results new error patterns. Such rule-based methods require too much
labor for updating the rules in time. As conventional techniques cannot follow those patterns,
the success rate of the techniques declines in time.

The review of these studies will constitute a reference point for performing a neural text
normalization method presented in the following chapter.

20

4. METHODOLOGY AND IMPLEMENTATION

In this chapter, the two approaches that are proposed in this thesis for social media text
normalization are explained in detail. One of the approaches is Contextual Normalization
which uses distributed representations of words and the other one is Sequence-to-Sequence
Normalization which uses encoder-decoder neural networks. Noisy social media texts (i.e.
Twitter tweets) are used as input and normalized forms of the noisy texts are generated as
output for each normalization method. First method uses the pre-trained neural word em-
beddings to make use of distributional features of noisy words to learn their canonical forms
through context by including semantic features. The latter is based on an encoder-decoder
model that uses bidirectional LSTM (bi-LSTM) architecture [21] that learns normalization
rules from a large set of noisy and canonical word pairs.

In order to perform text normalization operations, training is performed in both approaches.
For contextual normalization, word2vec [15] model is trained on Twitter dataset in order
to learn word embeddings. For sequence-to-sequence normalization, encoder and decoder
neural networks are trained to learn how to normalize error patterns of noisy words. Once
both models are trained, each system can perform normalization process as they have the
information to generate or extract canonical forms for further noisy texts.

4.1. Contextual Normalization Approach

Contextual normalization approach is a method which considers semantic relations of texts.
As being trained by unannotated dataset, it is an unsupervised method. The training oper-
ation is required for creating a lexicon to extract candidate canonical words for each word
in the noisy text. By using a dynamic programming algorithm, the most likely sequence of
candidates are selected as the normalized output text. The main steps of this approach are
shown in Figure 4.1.

4.1.1. Distributed Representation of Noisy Text

Learning distributed representation of social media text is the first step of this approach.
The main idea is to represent the words as a feature vector that bears lexical, semantic and

21

Normalization Lexicon Creation

Building Language Model

Candidate Generation

Candidate Traversal

Distributed Representation of Noist Texts

Figure 4.1. Methodology of Contextual Normalization Approach.

syntactic features in the same representation (i.e. word embedding). Word2vec [15] is the
model that is used to represent texts and their semantic relations.

CBOW (Continuous Bag-of-Words) architecture of word2vec is used to learn the word rep-
resentations (see Section 2.2.2.). In CBOW architecture, the bag of surrounding words are
used to predict the center word where the word representations of words occurring in similar
contexts tend to be also similar at the end of training. As a result, a vector space is created
for the social media text where each word is represented by a word embedding.

A word embedding model has been created to retrieve the nearest noisy words for any word.
When querying this model with a canonical word, a list of noisy words having the highest
semantic similarity scores (Cosine similarity) is retrieved. An example of k-nearest possible
noisy words for a canonical Turkish word is given in Table 4.1.

4.1.2. Normalization Lexicon Creation

Normalization Lexicon is a map that contains canonical-noisy word pairs with their lexical
similarities (SimCost). For this aspect, we use a corpus of news archive [27] (NewsCor) that
consists of manually collected 184 million words to generate the lexicon. Once we select 2
million unique canonical words by performing several calculations on NewsCor, we retrieve

22

Table 4.1. An example canonical word and its 25-nearest possible noisy words

Canonical Word (c) Noisy Word(n) CosineSimilarity(c,n)
şarkıyı 0.814
şarkılar 0.743
şarkıları 0.703

sarkı 0.689
şarkılarını 0.664
şarkıymış 0.650
şarkıdır 0.647

şarkıı 0.642
şarkının 0.636
parçayı 0.631
şarkıda 0.629

şarkı (song) sarki 0.621
sarkılar 0.615

yazganın 0.606
şarkımı 0.603

müziklerin 0.589
türküyü 0.588
şarkısı 0.585

şarkıdan 0.582
şarkılardan 0.580

şarkısını 0.580
müzikler 0.570

şarkyı 0.575
şarkıya 0.572

karaokede 0.572

the nearest n1 neighbours of each canonical word by using the pre-trained word embeddings.
To this end, we use cosine similarity (see Equation 8) between two word embeddings u and v

in order to find the contextual similarity between the canonical and every noisy word vector
in the vector space.

Eventually, 43 million unique canonical-noisy word pairs are gathered that will be used as
the lexicon. Those pairs are swapped as noisy-canonical pairs. Finally, SimCost(w1, w2)
(see Eqaution 4) between two words w1 and w2 is calculated, the cost value is stored in

1We use two different threshold values (n=25, n=100) in order to choose the nearest neighbours. The results
for different values of n are reviewed in Chapter 5..

23

the normalization lexicon with its correspondent pair. Algorithm 1 describes the process of
generating the normalization lexicon.

Algorithm 1: The Algorithm for Generating the Normalization Lexicon
Input: Unique canonical word list W
Input: Word embeddings of noisy word vocabulary V
Input: Number of nearest neighbours K
Output: Normalization lexicon L

1: for w 2W do
2: for v 2 V do
3: if (v 62W) then
4: compute Cosine Similarity(w,v)
5: store top K neighbours in map M(w, v)

6: end if
7: end for
8: end for
9: for w 2W do

10: for m 2 M do
11: compute SimCost(w,m)
12: push m! (w, SimCost(w,m)) into lexicon L
13: end for
14: end for

Some example noisy and canonical word pairs with their similarity costs are given in Ta-
ble 4.2.

24

Table 4.2. Example Noisy-Canonical Word Pairs in the Normalization Lexicon

Noisy Form (n) Canonical Form (c) SimCost(n,c)2

batil batıl undefined

kaciramaz kaçıramaz 0.34

ogret öğret 0.41

patlıycam patlıyorum 1.69

çıkarıl çıkarıldığı 1.97

sevinmicem sevinemedim 2.48

kutliyim kutlayayım 2.48

sevinmicem sevinemedim 2.48

ölmedği ağlamadığı 2.48

sevinmicem sevinemedim 2.77

karsilikli karşılıklı 2.89

oturmayi çöpü 0

Because of the nature of agglutinative languages, two words can have a larger edit distance
even though they share the same stem. To this end, elimination of the vowels in words is
performed in order to create consonant skeletons of those two words to compute the edit
distance between them. The consonant skeleton model was used for detecting and normal-
ization of SMS shortcuts, abbreviations or erroneous texts in different studies such as Sridhar
[7] and Cuevas [28].

In this study, consonant skeleton structure is used to select a more significant letter sequence
that express noisy words. Differently from Sridhar [7]; as Turkish is agglutinative, two
additional consonant skeleton structures representing the relation between the stems of the
words are used in this thesis in order to calculate the edit distance for lexical similarity
cost. Since stem is located in the beginning of a word in agglutinative languages, the ad-
ditional consonant skeleton structures are developed with the goal of focusing the stem of

2In SimCost calculation, the lowest similarity value of 13.8 and the highest similarity value is -13.8 are set if
the word skeletons are completely different(SimCost(n, c) = 0) or identical(SimCost(n, c) = undefined).
When consonant skeletons of two words are identical ED(n, c) is calculated as 0 and SimCost(n, c) is calcu-
lated as undefined

25

the words considering the structure of agglutinative languages. Three different consonant
skeleton structures that are proposed for this study are described in following section.

4.1.2.1. Word-wide Consonant Skeleton

In the first consonant skeleton structure used in this study, we eliminate all the vowels of two
words to find the edit distance for lexical similarity calculation (see Figure 4.2.).

Okulundan

Get all
characters

Okulundan
emit vowel
characters

klndn

Figure 4.2. Word-wide Consonant Skeleton conversion

Word-wide Consonant Skeleton conversion examples are given in Table 4.3.

Table 4.3. Word-wide Consonant Skeleton Structure examples

Word Word-wide
yurt (country) yrt

dışında (out of) dşnd
yaşayan (the one who lives) yşyn

Türk (Turkish) Trk
vatandaşları (citizens) vtndşlr

4.1.2.2. First 5 Character-based Consonant Skeleton

For the second consonant skeleton method of this study, we eliminate only vowels in first five
letters of two words to find edit distance for lexical similarity calculation (see Figure 4.3.).

26

Okulundan

Get first
5 characters

Okulu emit vowel
characters

kl

Figure 4.3. First 5 Character-based Consonant Skeleton conversion

First 5 Character-based Consonant Skeleton conversion examples are given in Table 4.4.

Table 4.4. First 5 Character-based Consonant Skeleton Structure examples

Word First 5 Character
gastronomi (gastronomy) gstr

yemek (food) ymk
kültürü (culture of) klt

hakkındaki (the thing about) hkk
kitaplar (books) ktp

4.1.2.3. First 3 Consonants-based Skeleton

For the last consonant skeleton structure, we eliminate only vowels in first three consonant
letters of two words to find the edit distance for lexical similarity calculation (see Figure 4.4.).

Okulundan

Get first 3
consonant
characters

Okulun emit vowel
characters

kln

Figure 4.4. First 3 Consonants-based Skeleton conversion

First 3 Consonants-based Skeleton conversion examples are given in Table 4.5.

27

Table 4.5. First 3 Consonants-based Skeleton Structure examples

Word First 3 Consonants
sınavın (of exam) snv

akabinde (immediately after) kbn
öğrenciler (students) ğrn
tartışma (arguement) trt

başlattılar (they started) bşl

4.1.3. Building the Language Model

Language model is a probability distribution representation of words.This model is used to
determine arbitrary occurrences of words in a sequence.

In this study, we used a bigram language model for the transition probabilities between con-
secutive words in a sentence in order to perform a sentence level text normalization. We train
the bigram language model on the same news corpus dataset [27] and the resulting bigram
probability values are stored in the transition lexicon to be used in the last step of the Viterbi
algorithm (see Section 4.1.4.). The bigram language model over a sequence P (wi, . . . , wn)

is calculated as follows:

P (wi, . . . , wn) =
nY

k=1

P (wk|wk�1) (9)

Bigram probabilities of a sample word pair list are given in Table 4.6.

Table 4.6. Bigram probabilities of arbitrary word pairs

wi�1 wi P (wi|wi�1)
rapor (report) hazırlandığını prepare) 0.15126
serbest (free) piyasada market) 0.10302

peşinde (behind) koşup run) 0.07521
çalıştığı (work) kurumları institution) 0.00391

yeni (new) cihazın device) 0.01009
gerçekçi (realist) yeni new) 0.00543

28

4.1.4. Candidate Extraction

Sentence level text normalization is performed word by word by using Viterbi algorithm in
order to choose the normalization having the minimum cost. As the first step, we extract
canonical candidates for each word in the input sentence (see Figure 4.5.) by using the
normalization lexicon created before (see Section 4.1.2.). The candidate canonical forms for
the noisy word düşüncm (My opinion) are also given in Table 4.7. according to their lexical
similarity costs.

W1 W2 W3 W4 W5

C11 C21

C22

C23

C24

C31

C32

C33

C34

C35

C41

C42

C43

C51

C52

C53

C54

Wi : Noisy word in input sentence

Cij : Canonical candidate of Wi

Figure 4.5. Extracted Candidates for an input sentence

Each canonical candidate word and its SimCost value (which will be used for the emission
cost) is retrieved from the normalization lexicon for each noisy word.

29

Table 4.7. An example word and its candidate canonical forms

Word (n) Candidates (c) SimCost(n,c)
düşüncem (my opinion) -13.8
düşüncen (your opinion) 0.18

düşüncemiz (our opinion) 0.98
düşüncm düşünceniz (your opinion) 1.57

şansım (my chance) 2.19
düşüncelerimi (my opinions) 2.39

dışımda (except me) 2.49

Algorithm 2 describes the process of candidate extraction and initialization for an input sen-
tence.

Algorithm 2: The Algorithm for Candidate Initialization of a Sentence
Input: Sentence S (w1...wn)
Input: Normalization lexicon L

1: for wi 2 S do
2: Candidate List C L(wi)

3: for c 2 C do
4: set text candidate.text c.text

5: set emission probability candidate.pe c.SimCost)

6: add candidate! w.candidateList

7: end for
8: end for

Finally, all candidate canonical words for each word of the noisy input sentence has been
extracted for the last step; Candidate traversal by Viterbi Algorithm.

4.1.5. Candidate Traversal

Candidate traversal is the process of choosing the most likely candidates of each noisy word
in order to create the normalized output text. For this aspect, Viterbi algorithm, dynamic
programming algorithm, has been applied in order to normalize a given input sentence by

30

performing the calculations of emission and transition probabilities of input words with their
related candidates.

Transition probability between the candidate canonical forms of two consecutive noisy words
are retrieved from the bigram language model (see Section 4.1.3.). Negative logarithm of the
bigram probabilities are calculated for obtaining transition probabilities in order to find the
normalization path with the minimum cost.

Emission probability is the lexical similarity value of the candidate with its correspondent
noisy word. All emission probabilities of each pair have been calculated during lexicon
creation (see Section 4.1.2.). Negative logarithm of the lexical similarity costs are calculated
for obtaining emission probabilities.

Viterbi cost is the summation that is calculated cumulatively for each word in a sentence with
the candidates of the previous word. The minimum cost is stored on that candidate in each
iteration. The final Viterbi cost is the cost of the candidate canonical sentence. A backtrace
process is performed to obtain the Viterbi path with the minimum cost. The candidate path is
accepted as the most likely normalized sentence for the noisy input sentence(see Figure 4.6.).

W1 W2 W3 W4 W5

C11 C21

C22

C23

C24

C31

C32

C33

C34

C35

C41

C42

C43

C51

C52

C53

C54

Wi : Noisy word in input sentence

Cij : Canonical candidate of Wi

Figure 4.6. Candidate Traversal using Viterbi Path

31

Algorithm 3 describes the candidate traversal process by using the Viterbi algorithm.

Algorithm 3: The Algorithm for Candidate Traversal by the Viterbi Algorithm
Input: Sentence S (w1...wn)
Input: Normalization lexicon L
Input: Transition lexicon T
Output: Normalized Sentence N # Candidate Traversal

1: for wi 2 S do
2: if (i == 1) then
3: for ci 2 wi.candidates do
4: ci.viterbiCost 1

5: end for
6: end if
7: for ccur 2 wi.candidates do
8: for cprev 2 wi�1.candidates do
9: ptrans T (ccur, cprev)

10: ptrans �1 ⇤ log(ptrans)
11: tmp ptrans + cprev.viterbi

12: if tmp < ccurviterbi then
13: ccur.viterbi tmp

14: ccur.backPointer cprev

15: end if
16: end for
17: pemmit L(ccur, wi).SimCost

18: ccur.viterbi ccur.viterbi + pemmit

19: end for
20: end for
21: minV iterbi 999, cmin nil

22: for cj 2 wn.candidates do
23: if cj.viterbi < minV iterbi then
24: minV iterbi cj.viterbi

25: cmin cj

26: end if
27: end for
28: viterbiBacktrace(cmin)

32

Algorithm 4 describes the Viterbi backtrace.

Algorithm 4: The Algorithm of Viterbi Backtrace
Output: Normalized Sentence N
Output: Minimum Viterbi Candidate cmin

1: Function viterbiBacktrace

2: t n # Unpack Viterbi
3: N newarray[n+ 1]
4: while t > 0 do
5: N[t] cmin

6: cmin cmin.backPointer
7: t t� 1
8: end while

4.1.6. Limitations

Contextual normalization approach has a procedure of normalizing a sentence word by word
considering semantic and lexical similarities. In the normalization lexicon creation phase,
each noisy word token is matched with a single canonical word token. Therefore phrases
cannot be considered a single token in this approach. Phrases and phrase abbreviations are
often normalized as counting in a single word such as iyi akşamlar, kib, aeo. This is the main
limitation of this approach and it slightly decreases the success rate of the approach.

4.2. Sequence-to-Sequence Normalization Approach

Sequence-to-Sequence normalization approach is a method that is able to consider morpho-
logical and orthographic relations between the texts. Encoder-decoder model is used in this
approach by using LSTM neural networks. In this approach, neural encoder-decoder archi-
tecture is trained on an annotated dataset, which makes this approach a supervised learning,
in order to learn how to normalize the noisy words into canonical forms (see in Figure 4.7.).

33

dunyayi verelm çocuklaraaa !! #nazım

Dünyayı verelim çocuklara ! @hashtag{#nazım}

DECODER

ENCODER

Noisy sequence

Normalized sequence

Figure 4.7. Sequence-to-sequence Normalization Architecture by using Encoder - Decoder
Model (EDM)

The main steps of this approach are shown in Figure 4.8.

Determining the Specifications of the Model

Components

Training the Model

Normalization Predictions

Figure 4.8. Methodology of Sequence-to-sequence Normalization Approach

4.2.1. Determining the Specifications of the Model Components

According to the recent studies, using encoder-decoder model has been shown effective es-
pecially in the field of machine translation [16], [29], [30], [31]. We adopt long-short term

34

memory (LSTM) networks for the encoder-decoder model in order to use deep learning tech-
niques for a higher accuracy in the normalization with sequence-to-sequence normalization
approach.

The configuration that produces the most accurate results for the model parameters epoch,
batch size, unit, activation function, optimizer function and loss function parameters is ob-
tained by performing different experiments. Different parameter values used in the experi-
ments are shown below.

4.2.1.1. Epoch

Epoch is the parameter that represents number of iterations performed on training data. The
experiments are repeated for the values of 10, 15, 20, 25 and 30 in training and evaluation of
the model. The parameter that achieves the most accurate result is selected as epoch value of
encoder-decoder model.

4.2.1.2. Batch Size

Batch size is the parameter that represents number of samples per gradient update. The
experiments are repeated for the values of 20, 30, and 40 in training and evaluation of the
model. The parameter that achieves the most accurate result is selected as batch size value
of encoder-decoder model.

4.2.1.3. Unit

Unit represents dimension of the memory cells in encoder and decoder LSTMs. The ex-
periments are repeated for the values of 64, 128 and 256 in training and evaluation of the
model. The parameter that achieves the most accurate result is selected as unit value of
encoder-decoder model.

35

4.2.1.4. Activation Function

Activation function is used for calculating the output of hidden state. The experiments are
repeated for the activation functions of Sigmoid, Tanh, Softmax, ReLU in training and evalu-
ation of the model.

The Sigmoid is basically a logistic (S-shaped) function. The range of function outputs exist
in 0 to 1 for all input values. General formula of sigmoid function is given as follows:

�(x) =
1

1 + ex
(10)

Sigmoid activation function curve is given in Figure 4.9.

Figure 4.9. Sigmoid activation function

The Tanh function is mainly used for classification tasks betweet two classes. The negative
inputs will be mapped to negative and the zero inputs will be mapped near zero in tanh

function. General formula of tanh activation function is defined as follows:

tanh(x) =
sinh(x)

cosh(x)
(11)

Tanh activation function curve is given in Figure 4.10.

36

Figure 4.10. Tanh activation function

Softmax activation function is a generalized logistic activation function. It is used in the
output layer of a neural network for the purpose of multi-class classification. The function
normalizes a K-dimensional vector x into a K-dimensional vector Softmax(x). General
formula of Softmax activation function for j = 1 · · ·K is given below:

Softmax(x)j =
e
zj

KP
k=1

ezk

(12)

ReLU(Rectified Linear Unit) activation function is a half rectified function. The function
gives zero when x is less than zero and the function gives x when x equals or greater than
zero. Negative inputs given to the ReLU activation function turns the value into zero and
positive part of function is a linear function. General formula of ReLU function is given as
follows:

ReLU(x) = max(0, x) (13)

ReLU activation function curve is given in Figure 4.11.

37

Figure 4.11. ReLU activation function

The activation function to calculate output of a hidden state in decoder LSTM that achieves
the most accurate result is selected as activation function of encoder-decoder model.

4.2.1.5. Loss Function

Loss function is used for representing the error of the model. In optimization problems the
main goal is minimizing the loss function. Loss function is also used to optimize the model
in neural networks. Some of widely used loss functions Mean Squared Error, Categorical
Cross Entropy and Cosine Proximity are tested in the experiment for training and evaluation
of the model.

4.2.1.6. Optimizer Function

Optimizer function is used for minimizing error of the model. It performs a parameter up-
date for each input and target pairs in training phase [32]. The optimizer functions SGD
(Stochastic Gradient Descent), RMSProp (Root Mean Square Propagation) [33], Adadelta
[34] and Adam (Adaptive Moment Estimation) [35] are tested in the experiments for training
and evaluation of the model.

38

4.2.1.7. Model Configuration

The LSTM’s are configured as follows:

• Unit represents the dimension of the memory cells in an LSTM. It specifies the dimen-
sions of long-term dependencies. In this study, the unit is 256.

• Activation function is used for calculating the output of a hidden state. In this study,
we used Softmax.

• Loss function is used for calculating the error of the model. In this study, we used
Categorical Cross Entropy.

• Optimizer function is used for minimizing the loss function. In this study, we used
RMSProp.

There has been some configurations on the specifications of the encoder-decoder model as
follows:

• Epoch is the number of iteration performed with the same data during the training
phase. In this study, the epoch is 25.

• Batch size is number of samples per gradient update. In this study, the batch size is
20.

Keras is a deep learning framework in Python programming language. It is widely used
by researchers to develop applications for neural network based studies. In this study, the
encoder-decoder model is implemented by using Keras. The neural layer representation of
the model is given in Figure 4.12.

39

encoder_lstm(LSTM)

encoder_output \

decoder_input

(InputLayer)

decoder_lstm (LSTM)

main_output (Dense)

main_input (InputLayer)

Figure 4.12. Neural Layer Representation of Encoder Decoder Model

4.2.2. Training the Model

In this approach, we train the encoder-decoder model on a Twitter dataset that includes noisy
texts with their correspondent canonical forms. Encoder LSTM takes the noisy text as input
and creates a fixed-length state vector to be used as input for the Decoder LSTM which is
supposed to output the exact canonical form of the input noisy text. Therefore, any type of
lexical changes attempted in the canonical forms is learned in the training phase by inducing
the error types automatically, differently from the rule-based approaches that use manually
constructed normalization rules.

Since each sentence in training set is processed word by word, the approach provides a word
level normalization. An input character array is created by collecting all unique characters
present in noisy sentences of the training set and used as the dimension of encoder input data
that is used in training phase. Similarly a decoder input data and a decoder target data arrays
are created by using canonical sentences of the training set target. The schema of EDM is
given in Figure 4.13.

40

Encoder

LSTM

Decoder

LSTM

Hidden
Layer

dunyayi

verelm

çocuklaraaa

dünyayı

verelim

çocuklara

Noisy Canonical

Figure 4.13. EDM training process representation

The encoder-decoder model is trained with following parameters:

• Character embedding dimension is 256

• Batch size is 20

• Number of epochs is 25

The change of loss for both training and validation is given in Figure. 4.14. according to the
training epochs.

Figure 4.14. EDM Train/Validation loss function over epochs

41

The graph shows that there is no overfitting and the validation loss also continues to drop in
time.

4.2.3. Normalization Predictions

Prediction phase is the main goal of this approach. After training is completed, this neural
system is ready for further normalization operations. A noisy text is given to Encoder LSTM
as input. Following to this, Encoder outputs a fixed-length state vector which is then used
as input vector for Decoder LSTM. Finally, Decoder predicts an output as canonical text by
using the parameters learned in training.

4.2.4. Limitations

Sequence-to-sequence normalization approach has a procedure of word level normalization
that utilizes morphological and orthographic relations. Therefore a sentence is normalized
without considering relations between words in sentence. Even the approach is trained and
evaluated with the same dataset for sentence level normalization, the success rate of sentence
level normalization was quite low because of the requirement of training the encoder decoder
model with a large scale sentence base annotated data set. This is the main limitation of this
approach and it slightly decreases the success rate of the approach.

42

5. EXPERIMENTAL ANALYSIS

5.1. Datasets

We use a set of 1200 tweets [1] that are manually collected and normalized for evaluation
purposes. For sequence-to sequence normalization approach, we need to train EDM. There-
fore, half of the dataset is used for training. Since the contextualized normalization approach
is fully unsupervised, we learned distributed representation of the tokens in the collected
tweets. For evaluation purposes for both approaches, the other half of the dataset is used for
obtaining the accuracy of the models (see details in Table 5.1.)

Table 5.1. The Details of the Twitter Dataset used for Training and Testing

Data Sets Tweets Tokens OOV1 Words
Training Set 600 6,322 2,708

Test Set 600 7,061 2,192

NewsCor [27] that comprises of manually collected news archives from three major news-
papers in Turkish is used for learning the word embeddings. Since the corpus is composed
of news content, it is expected that most of the words in it are written in canonical form.
The canonical words that are required to create the normalization lexicon are obtained by
processing the Newscor corpus(see Section 4.1.2.).

The corpus consists of 184 million words, 212 million tokens and 2.2 million types (unique
tokens). Assuming that the corpus contains mostly formally written text, we created a list of
unique words and used the it for generating the normalization lexicon. Table 5.2. shows the
details of the NewsCor.

Table 5.2. Turkish Newspaper Corpus Details

Words Tokens Types
NewsCor Corpus 184M 212M 2.2M

1OOV stand for Out of Vocabulary

43

5.2. Evaluation Metrics

In this section, we briefly explain the used evaluation metrics for the proposed approaches.
The metrics we used are accuracy, precision, recall and F1 score. Those metrics are defined
as follows:

• True positives (TP): These are the cases in which we predicted right, and it is actually
right.

• True negatives (TN): These are the cases in which we predicted wrong, and it is
actually wrong.

• False positives (FP): These are cases in which we predicted right, but it is actually
wrong (Also known as a ”Type I error.”)

• False negatives (FN): These are the cases in which we predicted wrong, but it is
actually right (Also known as a ”Type II error.”)

Here are the details of evaluation metrics that we used in the study:

• Accuracy is the ratio of all correct predictions to input samples.

Accuracy =
TP + TN

Total
(14)

• Precision is the ratio of correct positive predictions to all positive predictions. For text
normalization task, the precision can be calculated as the ratio of number of correctly

normalized words to number of normalized words.

Precision =
TP

TP + FP
(15)

• Recall is the ratio of correct positive predictions to all samples that should have been
identified as positive. For text normalization task, the recall value can be calculated as
the ratio of number of correctly normalized words to number of words require normal-

ization.

Recall =
TP

TP + FN
(16)

44

• F1 score is the harmonic mean of precision and recall. It tries to find the balance
between precision and recall.

F1 = 2 ⇤ 1
1

Precision + 1
Recall

(17)

5.3. Experiments

We compare the proposed neural approaches with MS Word spell checker, Zemberek [36]
Normalizer, a lookup table method [1] and the rule-based cascaded approach [1].

MsWord is the model that Microsoft Word’s Turkish spell checker is used to obtain the
suggestions of spelling. However the intended purpose of MS Word is spell checking for the
Microsoft Word application, it is used as a baseline model to compare success rates. The
best suggestions gathered from Microsoft Word’s spell checker are counted as normalization
output for given inputs. Microsoft Word’s spell checker is also used in many studies in NLP
field as a standart spell checker such as Bernstein et. al. [37], Torunoğlu and Eryiğit [1],
Demir [38], Doush et. al. [39].

Zemberek [36] is an open source framework that contains NLP tools for Turkish such as
morphologic analyzer, tokenizer, stemmer, lemmatizer, normalizer, etc. In this study the
normalizer tool of Zemberek that provides basic spell checking and normalization suggestion
is used for Zemberek Normalizer Model. Zemberek is also used in many studies in Turkish
such as Çöltekin [40], Boynukalin [41], Torunoğlu and Eryiğit [1], Demir [38],

Lookup table and Rule-base cascaded models are developed by Torunoğlu and Eryiğit [1]
for purpose of text normalization on Turkish social media. Since the proposed normalization
methods are evaluated by using the test dataset, the results of MsWord, Zemberek, Lookup
table and Rule-based cascaded models are obtain from the study [1] and compared with
ours.

The experimental results are evaluated by the accuracy evaluation metric and given in Ta-
ble 5.3. The accuracy metric is defined as the ratio of correctly normalized words to the total
number of words to be normalized in the test set. Within our knowledge, the study [1] is
the only publicly available text normalization study on Turkish social media and it achieves

45

significant text normalization results on Turkish social media. Consequently we selected the
study and compared our approaches with it.

Table 5.3. Normalization Results

Model Accuracy (%)

Ms Word 25

Zemberek Normalizer [36] 21

Lookup Table[1] 34

Rule-based Cascaded Approach [1] 71

Contextual Normalization Approach 72.18
Sequence-to-sequence Normalization Approach 74.80

As the results show, the two proposed approaches in this paper outperform all other mod-
els. The sequence-to-sequence approach gives the highest accuracy for Turkish social media
normalization.

The fidelity of contextual normalization approach is measured by using precision, recall, F1
score and accuracy metrics (see Section 5.2.). Consonant skeleton and the value of n to select
the nearest neighbours (n = 25 and n = 100) are evaluated and given in Table 5.4.

Table 5.4. Contextual Normalization Results with Parameters

KNN Consonant Skeleton Precision (%) Recall (%) F1 (%) Accuracy(%)

word-wide 55.22 70.41 61.92 39.22
n=25 first 5 characters 54.37 73.11 62.36 39.21

first 3 consonants 54.35 73.29 62.42 49.48

word-wide 52.81 79.79 63.55 72.13
n=100 first 5 characters 52.81 79.81 63.56 72.15

first 3 consonants 52.83 79.84 63.58 72.18

The results show that larger values of n give a higher normalization accuracy since it in-
creases the probability of finding the correct canonical candidate among all candidates.

46

We also perform different experiments by changing the length of the consonant skeleton for
extracting the candidates among the nearest neighbours while using the edit distance to gen-
erate the lexicon. The results show that for the 25 nearest neighbours, the consonant skeleton
length has a high impact on the accuracy while there is no significant change in precision, re-
call and F1 values. When we extract the candidates by computing the lexical similarity cost
on only the first 3 consonants, the accuracy improves by around 10% with an accuracy of
49.48% and recall increases by around 3%. However, the consonant skeleton length does not
have much effect on the accuracy when we use the first 100 nearest neighbours. The highest
accuracy is obtained for n = 100 and when the first 3 consonants are used for the lexical sim-
ilarity cost. Changing the consonant skeleton for n = 100 and 25 neareast neighbours causes
a slight change on precision and recall values except for recall value of word-wide skeleton
for n = 25 neareast neighbours. This can be a sign that rather than syntactic, mostly seman-
tically related neighbours are captured in the top neighbours of a word and it makes it hard to
find the candidate canonical form in 25 words compared to 100 words. Therefore, the length
of the consonant skeleton has a higher impact for a less number of neighbours.

In sequence-to-sequence normalization approach, the most accurate result are obtained by
performing different experiments. The configuration of encoder-decoder model is tested
with different values of unit, activation function, optimizer function and loss function pa-
rameters and fixed values of epoch and batch size parameters. The effects of changing the
configuration values are compared and the most accurate parameter configuration is selected
as model configuration (see Section 4.2.1.7.)

SGD, RMSProp, Adadelta and Adam are used as optimizer function options. Mean Squared
Error, Categorical Cross Entropy and Cosine Proximity are used as loss function options.
Tanh, Sigmoid, Softmax and ReLU are used as activation function options. The parameter
configurations of optimizer functions and loss functions corresponding to each activation
function are given below. The values batch size = 20, unit = 128 and epoch = 15 are constant
for these experiments.

The experiments of Tanh activation function configuration are given in Table 5.5.

47

Loss Function
Tanh Mean Categorical Cosine

Squared Error Cross Entropy Proximity

SGD 0 0 0
Optimizer RMSProp 19.28 0 27.93
Function Adadelta 0 0 4.5

Adam 26.42 0 32.05

Table 5.5. Sequence-to-Sequence Normalization Accuracies of Tanh Activation Function
Configuration

The experiments of Sigmoid activation function configuration are shown in Table 5.6.

Loss Function
Sigmoid Mean Categorical Cosine

Squared Error Cross Entropy Proximity

SGD 0 0 0
Optimizer RMSProp 18.25 36.43 31.72
Function Adadelta 0 0.07 0

Adam 0.03 3.85 17.55

Table 5.6. Sequence-to-Sequence Normalization Accuracies of Sigmoid Activation Func-
tion Configuration

The experiments of Softmax activation function configuration are given in Table 5.7.

48

Loss Function
Softmax Mean Categorical Cosine

Squared Error Cross Entropy Proximity

SGD 0 0 0
Optimizer RMSProp 23.88 43.33 34.25
Function Adadelta 0 2.33 0

Adam 1.57 31.2 39.45

Table 5.7. Sequence-to-Sequence Normalization Accuracies of Softmax Activation Func-
tion Configuration

The experiments of ReLU activation function configuration are shown in Table 5.7.

Loss Function
ReLU Mean Categorical Cosine

Squared Error Cross Entropy Proximity

SGD 0.07 0 0
Optimizer RMSProp 25.7 0 9.45
Function Adadelta 0 0 3.08

Adam 20.38 0.35 2.53

Table 5.8. Sequence-to-Sequence Normalization Accuracies of ReLU Activation Function
Configuration

The results show that Softmax activation function, RMSProp optimizer function and Cate-
gorical Cross Entropy loss function parameter configuration achieves the most accurate result
for Sequence-to-sequence Normalization. After the activation function, optimizer function
and loss function experiments main configuration of the model is determined by testing dif-
ferent batch size and unit values for the selected configuration. The experiments of batch size
and unit configurations for Softmax activation function, RMSProp optimizer and Categorical
Cross Entropy loss function for 15 epochs are given in Table 5.9.

49

Units
64 128 256 512

10 41.1 60.68 63.82 59.4
Batch 20 25.5 43.33 64.8 57.97
Size 30 20.05 37.43 49.18 50.3

40 15.88 29.58 31.8 33.23

Table 5.9. Sequence-to-Sequence Normalization Accuracies of Units and Batch Size

The results show that batch size value of 20 and unit value of 256 parameter configuration
achieves the most accurate result for Sequence-to-sequence Normalization. As a result of
selected configurations tested with different epoch values are shown in Table 5.10.

Epoch
10 15 20 25 30

Model Accuracy (%) 34.92 64.8 66.35 74.8 71.58

Table 5.10. Sequence-to-Sequence Normalization Accuracies over Epochs

Experiments show that the most accurate model configurations parameters for sequence-to-
sequence normalization approach are Softmax activation function, Categorical Cross Entropy
loss function, RMSProp optimizer function, 265 character embedding dimension, batch size
value of 20 and epoch value of 25.

Some normalization output examples of the two approaches are given in Table 5.11. and
Table 5.12.. The results show that the contextualized normalization approach is better at
finding the repetitive letters such as dersleriii-dersleri, whereas the sequence-to-sequence
model is better at correcting the abbreviations such gsye-Galatasaray’a with more drastic
lexical changes.

50

Table 5.11. Example Normalization Outputs of The Contextual Normalization

Input (noisy) word Output (normalized) word
asagdaydı aşağıdaydı

adanayı Adana’yı

derssleriii dersleri

yalniz yalnız

iliski ilişki

Table 5.12. Example Normalization Outputs of The Sequence-to-Sequence Normalization

Input (noisy) word Output (normalized) word
candir candır

saol sağol

gsye Galatasaray’a

tanisiyim tanışayım

foto fotoğraf

Unified Normalization method is the third normalization method which is used to combine
the two normalization approach we proposed in this study. In this method, the normalization
lexicon created in the contextual normalization approach is used to train encoder-decoder
model in the sequence-to-sequence normalization by using canonical and noisy word pairs
(see Section 4.1.2.).

However sequence-to-sequence normalization method is a supervised method itself, it is per-
formed as an unsupervised method in unified normalization method. In this case, the large-
sized data set required to train the encoder-decoder model was automatically obtained from
normalization lexicon and annotated data is not required for method. However experiments
of unified normalization method are repeated with different dataset combinations by using
lexical similarity threshold values and percentages of correct and misspelled word pairs in the
dataset, a significant result is not achieved. As more extensive studies are required to ensure

51

that the method can achieve successful results, the results of this method are not included in
the normalization results.

5.4. Error Analysis

In the study, it is observed that for some cases, the normalization process produces some
similar errors. In the Contextual Normalization approach, abbreviation normalization is one
of the frequent error type. Since the relationship between the abbreviations and their ex-
pansions can not be adequately represented by lexical similarity or cosine similarity metric,
normalized words contain incorrect results for the abbreviation.

Since the lexical similarities between stems with different inflections can be quite close,
suffix parts could be malformed even if the correct words are proposed. Although inflectional
form normalization is also encountered in the Contextual Normalization approach, it is the
most common error type in Sequence-to-Sequence Normalization approach.

52

6. CONCLUSION

6.1. Conclusion

In this thesis, two neural-based text normalization approaches are proposed for the normal-
ization task on Turkish social media data. One method makes use of pre-trained neural word
embeddings in order to include the contextual information to capture the canonical form of a
given word. The results show that the proposed approach outperforms other models although
the proposed model in this study is fully unsupervised. The latter method adopts an encoder-
decoder model with a bi-LSTM architecture in a supervised framework. This model does
not make use of any contextual information, but instead it learns the error patterns through a
large number of noisy-canonical word pairs. Therefore, the lexical features play an important
role in this model.

The two proposed approaches in this study outperforms all other models When we compare
the results of our approaches with the other text normalization studies on Turkish social
media. The results show that sequence-to-sequence normalization approach gives 74.8%
accuracy which is the highest score of the text normalization studies that we compared. while
contextual normalization approach achieves over 72% accuracy as the second highest score.

This study shows that using contextual and orthographic features of text and neural nor-
malization approaches may provide similar or higher success rates than traditional rule-
dependent studies. Higher accuracies for agglutinative languages such as Turkish can be
obtained by extending the context of used data sets, context vectors, and artificial neural net-
works. By using rule-independent techniques, the dependency of the methodology on error
pattern changes is eliminated.

From the point of answering research questions, the study shows that a rule-independent text
normalization method can be applied to social media data in Turkish. It is also clearly per-
formed that a rule independent method have as high accuracy as a conventional rule-based
method in text normalization. However the success ratio of neural normalization methods
are significant for Turkish, it is necessary to repeat the process for other agglutinative lan-
guages in order to more strongly answer the research question ’How successful are neural
normalization methods in agglutinative languages such as Turkish’.

53

6.2. Future Research Directions

We aim to experiment on other languages in the future since both models are language inde-
pendent. This study shows that using neural normalization approaches

Including more contextual information by performing sentence-level normalization in the
encoder-decoder model is also left as a future goal.

A morphological analyzer is planned to included in the contextual normalization approach
in the future to ensure that the similarities between noisy and canonical words are detected
with greater success.

A noisy word detection system is planned to add as the preliminary stage of text normaliza-
tion as a future work. In this way, by providing the initial determination of noisy words made
will increase the success ratio.

54

A APPENDIX NORMALIZATION OUTPUTS

Table 1.1. Contextual Normalization Outputs

Noisy Tweet Normalized Tweet

Doktor 90 dakikanın kaç saat yaptığını
bilmiyor , bu adam doktor olduysa benim
meslek sahibi olmucam diye bir korkum
yok

Doktor 90 dakikanın kaç saat yaptığını
bilmiyor , bu adam doktor olduysa benim
meslek sahibi olmayacağım diye bir ko-
rkum yok

Spiker Gs savunmasındaki boşluklar diyor
=)) stattaki boşlukları söyle .

Spiker gsnin savunmasındaki boşluklar
diyor =)) stattaki boşlukları söyle .

@pirdika foto da hoş olmuş hani ;)) @pirdika fotoğraf da hoş olmuş hani ;))

adamın dibi nası oluoo biri anlatabilir miii
bana lütfennnn ama lütfnnnn

Adamın dibi nasıl oluyor biri anlatabilir mi
bana lütfen ama lütfen

emre aydın aşk acısı temalı şarkılarının
yerine kenan doğulunun şans meleğimi
gibi bi şarkı yapsın bi kere de

Emre Aydın aşk acısı temalı şarkılarının
yerine Kenan doğulunun şans meleğimi
gibi bir şarkı yapsın bir kere de

ilk aşkıma söylediğim şarkıı ahaahahhhhh Ilk aşkıma söylediğim şarkımızın ahaahah-
hhhh

sen fotoğrafnı beğenirsin o seninkini
beğenmez ahaha çok büyük eziklik ahahah
zaten hiç yakışıklı değildi dimi bende öyle
düşünmüştüm ahahah

Sen fotoğrafı beğenirsin o seninkini
beğenmez ahaha çok büyük eziklik hahaha
zaten hiç yakışıklı değildi dimi bende öyle
düşünmüştüm hahaha

#FenerbahceliOlmak İÇİN ÖNCE ADAM
OLMAK GEREKİR ...

#FenerbahceliOlmak için önce adam ol-
mak gerekir ...

@dionysosx çok ihmal ediyosun beni ,
usb’yide salı günü giyeceğin pantolanun
cebine sok , bu haftada unutursan bilmiy-
orum artık , hadi kib

@dionysosx çok ihmal ediyosun beni ,
usb’yide salı günü giyeceğin pantolanun
cebine sok , olabilir haftada unutursan
bilmiyorum artık , hadi kib

hani bazı anlar vardır insanın nefesi kesilir
soluksuz kalır , kalbi hızlı hızlı atar ... işte
biz buna aşk dedik yardım etmedik , adam
öldü .

Hani bazı anlar vardır insanın nefesi kesilir
soluksuz kalır , kalbi hızlı hızlı atar ... işte
biz buna aşk dedik yardım etmedik , adam
öldü .

Kuzey Güneyin senaristide amma gelgit
akıl ha Adam gibiler bi bakmşn cibilliyet-
szn teki olmuş Kafasına düzenli aralklrla
saksı mı düşüyo ne ?

Kuzey güneyin senaristi de amma gelgit
akıl ha adam gibiler bir bakmışın cibiliyet-
sizin teki olmuş kafasına düzenli aralıklarla
saksı mı düşüyor zaman ?

55

Table 1.2. Sequence-to-Sequence Normalization Outputs

Noisy Word Normalized Word

canim canım

candir candır

saol sağol

foto fotoğraf

yea ya

anlatılcak anlatılacak

bi bir

nerden nereden

cüneyit cüneyt

oglum oğlum

teomanın Teoman’ın

bjk Beşiktaş

gs Galatasaray

yerrr yer

diyo diyor

sanıyodu sanıyordu

etmicem etmeyeceğim

tanisiyim tanışayım

saygidan saygıdan

tanisalim tanışalım

slm selam

istiyosan istiyorsan

izmirde İzmir’de

alacğım alacağım

eglenceli eğlenceli

msj mesaj

deiştiriyo deiğştiriyor

56

REFERENCES

[1] Dilara Torunoğlu and Gülsen Eryiğit. A cascaded approach for social media
text normalization of turkish. In Proceedings of the 5th Workshop on Language

Analysis for Social Media (LASM), pages 62–70. 2014.

[2] Taishi Ikeda, Hiroyuki Shindo, and Yuji Matsumoto. Japanese text normalization
with encoder-decoder model. In Proceedings of the 2nd Workshop on Noisy User-

generated Text (WNUT), pages 129–137. 2016.

[3] AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. A phrase-based statistical model for
sms text normalization. In Proceedings of the COLING/ACL on Main conference

poster sessions, pages 33–40. Association for Computational Linguistics, 2006.

[4] Eleanor Clark and Kenji Araki. Text normalization in social media: progress,
problems and applications for a pre-processing system of casual english.
Procedia-Social and Behavioral Sciences, 27:2–11, 2011.

[5] Hany Hassan and Arul Menezes. Social text normalization using contextual graph
random walks. In Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1577–
1586. 2013.

[6] Cagil Sonmez and Arzucan Ozgur. A graph-based approach for contextual text
normalization. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 313–324. 2014.

[7] Vivek Kumar Rangarajan Sridhar. Unsupervised text normalization using dis-
tributed representations of words and phrases. In Proceedings of the 1st Work-

shop on Vector Space Modeling for Natural Language Processing, pages 8–16.
2015.

[8] Helena Gomez, Darnes Vilarino, Grigori Sidorov, and David Pinto Avendano. Ci-
cbuapnlp at semeval-2016 task 4-a: Discovering twitter polarity using enhanced
embeddings. In Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016), pages 145–148. 2016.

57

[9] Ahmed Ali, Preslav Nakov, Peter Bell, and Steve Renals. Werd: Using social
text spelling variants for evaluating dialectal speech recognition. arXiv preprint

arXiv:1709.07484, 2017.

[10] Jerome R Bellegarda and Christof Monz. State of the art in statistical methods
for language and speech processing. Computer Speech & Language, 35:163–184,
2016.

[11] Nasser Zalmout, Alexander Erdmann, and Nizar Habash. Noise-robust morpho-
logical disambiguation for dialectal arabic. In Proceedings of the 2018 Confer-

ence of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long Papers), volume 1,
pages 953–964. 2018.

[12] Carlos Amaral, Dominique Laurent, André FT Martins, Afonso Mendes, Cláudia
Pinto, et al. Design and implementation of a semantic search engine for por-
tuguese. In LREC. 2004.

[13] Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment analysis
and opinion mining. In LREc, volume 10. 2010.

[14] John R. Firth. A synopsis of linguistic theory 1930-1955. Oxford: Blackwell,
1957.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. In Proceedings of ICLR

Workshop. 2013.

[16] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112. 2014.

[17] I Dan Melamed. Automatic evaluation and uniform filter cascades for inducing
n-best translation lexicons. arXiv preprint cmp-lg/9505044, 1995.

[18] Trideep Rath. Word and Relation Embedding for Sentence Representation. Ph.D.
thesis, Arizona State University, 2017.

58

[19] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, 91:1, 1991.

[20] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

[22] Zellig Harris. Distributional Structure. Word, 1954.

[23] Gerard Salton. The smart retrieval system—experiments in automatic document
processing. 1971.

[24] Chen Li and Yang Liu. Improving named entity recognition in tweets via de-
tecting non-standard words. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 1: Long Papers), volume 1,
pages 929–938. 2015.

[25] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493–2537, 2011. ISSN
1532-4435.

[26] Yi Yang and Jacob Eisenstein. A log-linear model for unsupervised text normal-
ization. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 61–72. 2013.

[27] Haşim Sak, Tunga Güngör, and Murat Saraçlar. Turkish language resources:
Morphological parser, morphological disambiguator and web corpus. In Ad-

vances in natural language processing, pages 417–427. Springer, 2008.

[28] Gems Cuevas, Jedd Gopez, Nicco Nocon, and Peter Suministrado. Norm: A text
normalization system for filipino shortcut texts using the dictionary substitution
approach, 2014.

59

[29] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[30] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[31] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[33] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

[34] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[36] Ahmet Afsin Akın and Mehmet Dündar Akın. Zemberek, an open source nlp
framework for turkic languages. Structure, 10:1–5, 2007.

[37] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann, Mark S Ack-
erman, David R Karger, David Crowell, and Katrina Panovich. Soylent: a word
processor with a crowd inside. In Proceedings of the 23nd annual ACM sympo-

sium on User interface software and technology, pages 313–322. ACM, 2010.

[38] Seniz Demir. Context tailoring for text normalization. In Proceedings of

TextGraphs-10: the Workshop on Graph-based Methods for Natural Language

Processing, pages 6–14. 2016.

60

http://www.deeplearningbook.org

[39] Iyad Abu Doush and Ahmed M Al-Trad. Improving post-processing optical char-
acter recognition documents with arabic language using spelling error detection
and correction. International Journal of Reasoning-based Intelligent Systems,
8(3-4):91–103, 2016.

[40] Cagri Cöltekin. A freely available morphological analyzer for turkish. In LREC,
volume 2, pages 19–28. 2010.

[41] Zeynep Boynukalin. Emotion analysis of turkish texts by using machine learning
methods. Middle East Technical University, 2012.

61

CURRICULUM VITAE

Credentials

Name,Surname: Sinan GÖKER
Place of Birth: Gölbaşı, Turkey
Marital Status: Single
E-mail: sinangoker12@gmail.com
Address: Computer Engineering Dept., Hacettepe University

Beytepe-ANKARA

Education
BSc. : Computer Engineering Dept., Dokuz Eylul University, Turkey
MSc. : Computer Engineering Dept., Hacettepe University, Turkey

Foreign Languages
English

Work Experience
Software Engineer at Etiya Bilgi Teknolojileri (2012-2017)
Software Engineer at Havelsan (2017-Present)

Areas of Experiences
NLP, Machine Learning, Text Normalization,
Unsupervised Learning

Project and Budgets
-

Oral and Poster Presentations
-

PUBLICATIONS

Göker,�S.,�Can,�B.�”Neural�Text�Normalization�for�Turkish�Social�Media”�Computer�Science�
and�Engineering�(UBMK),�2018�International�Conference�on.�IEEE,�2018.

6�

	ABSTRACT
	ÖZET
	ACKNOWLEDGMENTS
	CONTENTS
	FIGURES
	TABLES
	1. INTRODUCTION
	1.1. Overview
	1.2. Motivation
	1.3. Research Questions
	1.4. Thesis Structure

	2. BACKGROUND
	2.1. Surface Form Normalization
	2.2. Semantic Form Normalization

	3. RELATED WORK
	3.1. Literature Review on Supervised Text Normalization
	3.2. Literature Review on Unsupervised Text Normalization
	3.3. Discussion

	4. METHODOLOGY AND IMPLEMENTATION
	4.1. Contextual Normalization Approach
	4.2. Sequence-to-Sequence Normalization Approach

	5. EXPERIMENTAL ANALYSIS
	5.1. Datasets
	5.2. Evaluation Metrics
	5.3. Experiments
	5.4. Error Analysis

	6. CONCLUSION
	6.1. Conclusion
	6.2. Future Research Directions

	A APPENDIX NORMALIZATION OUTPUTS
	REFERENCES

