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ABSTRACT 

 

Konar, N.M. Factors Affecting the Performance of Time-Dependent ROC 

Curves for Longitudinal Data. Hacettepe University Institute of Health 

Sciences, Combined Masters and Ph.D. Thesis in Biostatistics, Ankara, 2018. In 

medicine, ROC Curve Analysis is frequently used to determine the diagnostic 

performances of biomarkers. However, time-dependent ROC Curve is utilized in 

assessing the diagnostic accuracies of longitudinal biomarkers. One of the objectives 

of this thesis is to evaluate and to compare the diagnostic values of serial biomarker 

measurements taken from adults in predicting death in Intensive Care Units (ICU) at 

the end of follow-up period. Time-dependent Area Under Curve (AUC) values, 

which are calculated by performing joint modeling approach are used for this aim. 

The other objective is to compare the diagnostic performances of single 

measurement taken at baseline (t=0) and serial biomarker measurements taken within 

the follow-up period to determine whether a single value is sufficient to predict the 

event of interest. Furthermore, time-dependent diagnostic accuracies of these 

biomarkers are evaluated throughout the follow-up to identify which biomarker 

should be used at which time-point. Moreover, for each biomarker, cut-off values are 

determined with the help of Monte-Carlo simulation procedure. Also time-dependent 

cut-off values are obtained for discriminating subjects at risk and without risk of 

death on the first three days after the last biomarker measurement for each gender 

group. Besides, different joint model combinations are constructed for each 

biomarker to find out the best combination that provides the optimal diagnostic 

accuracy. In application part, diagnostic performances of serial C-Reactive Protein 

(CRP) and serial Procalcitonin (PCT) values in predicting death at ICU are 

investigated and determined that serial CRP values have higher diagnostic accuracy 

than serial PCT values in predicting death at the end of follow-up. Furthermore, the 

highest diagnostic accuracy is observed when single measurement of PCT is taken. 

PCT values are found to have higher diagnostic accuracy than CRP at especially later 

time-points within the follow-up period. Cut-off value of CRP is proposed to 

distinguish the groups since it has smaller Coefficient of Quartile Variation and 

smaller Robust Coefficient of Variation values compared to PCT. The first three 

days after the last biomarker measurement, cut-off values for PCT are found to be in 

decreasing trend for men and women, while constant cut-off values in the first two 

days; then decreasing trend for CRP are observed for both genders. Standard joint 

model gives the optimal diagnostic accuracy for both CRP and PCT. In conclusion, a 

comprehensive study has been carried out to assess the factors affecting the 

diagnostic performance of longitudinal biomarkers via a real-life data application. 

Coefficient of Quartile Variation measure and Robust Coefficient of Variation are 

suggested in the decision of choosing the relevant cut-off value. Taking serial 

biomarker values are suggested to better evaluate the longitudinal profiles of the 

subjects when needed. 

 

Keywords: time-dependent AUC, longitudinal data, survival data,  joint model, cut-

off. 
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ÖZET 

 

Konar, N.M. Uzunlamasına Verilerde Zamana Bağlı ROC Eğrilerinin Tanısal 

Performansını Etkileyen Faktörler, Hacettepe Üniversitesi Sağlık Bilimleri 

Enstitüsü Biyoistatistik Programı Bütünleşik Doktora Tezi, Ankara, 2018. Tıpta, 

belirteçlerin tanısal performanslarının belirlenmesinde ROC Eğrisi sıklıkla 

kullanılmaktadır. İzlem süresi içinde tekrarlı ölçümleri alınan belirteçlerin tanısal 

doğruluğunun belirlenmesinde ise zamana bağlı ROC Eğrisi’nden 

yararlanılmaktadır. Bu tez çalışmasının amaçlarından ilki, Erişkin Yoğun Bakım’da 

yatan hastalara ait tekrarlı ölçümleri alınan belirteçlerin izlem süresi sonundaki 

tanısal performansını değerlendirmektir. Bu amaç için birleşik modelleme yaklaşımı 

yardımı ile elde edilebilen Zamana Bağlı Eğri Altında Kalan Alan (EAA) 

değerlerinden yararlanılmıştır. Bir diğer amaç, izlemin başında (t=0) alınan belirteç 

değeri ile izlem süresince alınan tekrarlı belirteç ölçümlerinin tanısal doğruluklarını 

karşılaştırmaktır. Bununla birlikte, tekrarlı ölçümleri alınan belirteçlerin zamana 

bağlı tanısal performansları, izlem süresi boyunca değerlendirilmiş ve yoğun 

bakımda ölümü kestirmede hangi zaman noktalarında hangi belirtecin kullanılması 

gerektiği belirlenmiştir. Her bir belirteç için izlem sonunda yoğun bakımda ölecek ve 

sağkalacak bireyleri ayrımsamada kullanılacak kesim noktaları, Monte-Carlo 

simülasyonu ile elde edilmiştir. Farklı birleşik modeller kurularak belirteçler için en 

yüksek tanısal doğruluğu veren kombinasyon saptanmıştır. Her bir belirteç için 

alınan son ölçümden sonraki ilk üç gün boyunca cinsiyet gruplarına göre zamana-

bağlı kesim noktaları belirlenmiştir. Uygulamada, erişkin yoğun bakımda yatan 

hastalardan elde edilen C-Reaktif Protein (CRP) ve Prokalsitonin (PCT) 

belirteçlerinin yoğun bakımda ölümü kestirmedeki tanısal performansları 

değerlendirilmiş, izlem süresi sonunda ölümü kestirmede CRP’nin tanısal 

performansının, PCT’den daha yüksek olduğu belirlenmiştir. Bununla birlikte en 

yüksek tanısal doğruluğun, izlem başında alınan tek bir PCT ölçümü ile elde edildiği 

saptanmıştır. İzlem süresi içinde özellikle izlem sonuna yakın zaman noktalarında 

PCT’nin tanısal doğruluğunun, CRP’ye göre daha yüksek olduğu belirlenmiştir. 

Çeyrekler (Kartil) Değişim Katsayısı ile Dayanıklı Değişim Katsayısının daha küçük 

bulunmasından dolayı, CRP’ye ait kesim noktasının kullanılması önerilmiştir. Her 

bir belirteç için, son ölçümden sonra, hem erkek hem de kadınlarda PCT’nin kesim 

noktalarının giderek düştüğü, CRP için her iki cinsiyet grubunda da kesim 

noktalarının izlem sonundaki ilk iki gün sabit kalıp üçüncü günde düştüğü 

gözlenmiştir.  Optimum tanısal doğruluğun elde edilmesinde, her iki belirteç için de 

standart birleşik modelin kullanılması gerektiği belirlenmiştir. Sonuç olarak, tekrarlı 

belirteç ölçümlerinin tanısal performansının belirlenebilmesi amacıyla gerçek veri 

seti üzerinde kapsamlı bir çalışma gerçekleştirilmiştir. Uygun kesim noktasının 

seçiminde çeyrekler (kartil) değişim katsayısı ile dayanıklı değişim katsayısının 

kullanılması ve bireylerin uzunlamasına profillerinin daha iyi incelenebilmesi için 

gerektiğinde belirteçlerden tekrarlı ölçümler alınması önerilmiştir. 

 

Anahtar Kelimeler: zamana bağlı EAA, uzunlamasına veri, sağkalım verisi, birleşik 

model, kesim noktası. 
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1. INTRODUCTION 

 

In medicine, gold standard tests are generally expensive, risky or might be 

impossible to apply for specific diseases. In such situations, diagnostic tests, which 

are non-risky and cost-effective, are utilized. Since the results of these diagnostic 

tests are not as accurate as gold standard tests, their diagnostic performances are 

obtained by means of several measures such as sensitivity, specificity, Youden Index 

etc.  The most frequently used metric for evaluating the diagnostic accuracy of these 

tests is Area Under Curve (AUC) value obtained by Receiver Operating 

Characteristic (ROC) Curve (1). It is used for diagnostic tests and/or biomarkers 

whose results are continuous or ordinal.  With the help of the ROC Curves, 

- Evaluating the diagnostic performance of a diagnostic test, 

- Comparing diagnostic performances of several diagnostic tests, 

- Calculating cut-off values for discriminating diseased and non-diseased 

subjects could be possible. 

In classical ROC curve analysis, the status of the subject is assumed to be 

stable over time. In other words, the measurement time and the event time is the 

same. However, when the time dimension is incorporated into the study, it’s 

expected to change the status of the subject during the follow-up. In such situations, 

during the follow-up period some subjects develop disease while some of them do 

not.  The subject who does not develop disease throughout the follow-up is named as 

censored subject. When there are censored subjects in data set, time-dependent ROC 

curves are used to evaluate the diagnostic performances of the diagnostic tests and/or 

biomarkers in predicting the event of interest (2).  With the help of time-dependent 

ROC curves, given that the follow-up time is te, the diagnostic accuracy of a 

biomarker between time interval [0, te] can be established.  However, serial 

measurements of biomarkers can be taken during the follow-up period. Assessing the 

diagnostic performance of the biomarker in predicting the event of interest within the 

follow-up period by means of the repeated measurements of the biomarkers that were 



2 

 

taken during follow-up is determined by time-dependent ROC curves for 

longitudinal data (3). For that purpose, mostly time-dependent AUC value, which is 

obtained by time-dependent ROC Curves to indicate the discriminative ability of the 

biomarker, is used.  

Even though there are numerous studies about time-dependent ROC Curve 

analysis in literature, most of them had analyzed the diagnostic accuracy of single 

biomarker measurement, a few studies have focused on evaluating the diagnostic 

accuracy of serial biomarker values taken within the follow-up period. Rizopoulos 

has two R packages, JM (4) and JMBayes (5) that have functions to calculate time-

dependent diagnostic accuracy metrics, namely time-dependent AUC and Dynamic 

Discrimination Index (DDI), for serial biomarker measurements. In these packages 

diagnostic accuracy of longitudinal data has been evaluated by both Frequentist (JM 

package) and Bayesian (JMBayes package) approaches. On the other hand, Proust-

Lima has an R package called lcmm (6), which enables to assess diagnostic 

accuracies of serial biomarker values via information-theory-based EPOCE metric. 

The hypotheses of this thesis are listed below: 

- Diagnostic accuracies of serial biomarker values may change in terms of pre-

specified cut-off points within the follow-up period. 

- Rather than taking a measurement at a single time-point, with the repeated 

measurements, the predictive ability of the biomarker at the end of the 

follow-up can be increased. 

- Cut-off values that are used to distinguish subjects at risk and subjects that 

free of risk groups may change over time in terms of genders. 

- Diagnostic performance of serial biomarker values may differ in terms of 

several factors. 

For these hypotheses; 
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- Introducing time-dependent ROC Curves for repeated measurements that were 

taken during follow-up period, 

- Introducing joint modeling approach, which is frequently used to model 

longitudinal and survival parts of the data simultaneously, 

- Evaluating and comparing the diagnostic accuracies of serial biomarker values in 

predicting the event of interest at the end of follow-up period, 

- Comparing diagnostic performances of single measurement taken at baseline 

(t=0) and serial biomarker measurements taken within the follow-up period in 

predicting occurrence of event at the end of follow-up, 

- Obtaining the cut-off values for both of the biomarkers and choosing the most 

appropriate threshold value to distinguish the groups, 

- Investigating factors affecting the diagnostic performance of serial biomarker 

measurements to find the optimal model combination, 

- Assessing the time-dependent cut-off values during the period for discriminating 

subjects with and without risk of death after the last biomarker measurement are 

aimed. 
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2. GENERAL INFORMATION 

2.1. Classical ROC Curve Method 

Gold standard tests are described as the most accurate tests in diagnosing 

diseases in medicine. Even though these tests are the most accurate ones, they can be 

expensive in practice and risky for the subjects. In such situations, diagnostic tests, 

which are cost-effective and non-risky, are utilized.  Since these tests are not as 

accurate as gold standard tests, their diagnostic performances are investigated with 

the help of several metrics. Sensitivity, Specificity, Youden Index, Brier Score, Odds 

Ratio are a few examples of diagnostic performance measures for diagnostic tests 

with binary results. On the other hand, if the test has continuous result, ROC Curve 

Analysis is the most common method for evaluating its performance. ROC Curve 

Analysis was first developed in 1940s and has been used commonly in different 

areas such as medicine, psychology, sociology etc. 

ROC Curve is constructed with the help of Sensitivity and 1-Specificity 

metrics. When higher diagnostic test results indicate the disease, the probability of 

the test result of a diseased subject being higher than a pre-specified cut-off value, c,  

is defined as sensitivity. On the other hand, the probability of the test result of a non-

diseased subject being equal or smaller than a pre-specified cut-off value, c, is 

defined as specificity. 

Mathematical notations of these metrics are given below: 

                      Sensitivity( c ) =  𝑃(𝑋 > 𝑐|𝐷 = 1)                                           (2.1) 

                      Specificity( c ) = 𝑃(𝑋 ≤ 𝑐|𝐷 = 0)                                           (2.2) 

 

where D is the indicator of the disease status, 0 refers to non-diseased and 1 

refers to diseased group, while X is the result of the diagnostic test. 

ROC Curve Analysis is used in following situations: 
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- Evaluating diagnostic performance of diagnostic tests with continuous 

or ordinal result, 

- Comparing the diagnostic performances of several tests utilized for 

specific disease, 

- Calculating the cut-off value for distinguishing diseased and non-

diseased subjects. 

 

Both of the sensitivity and specificity metrics are true classification rates. 

However, a true classification rate, sensitivity, and a false classification rate, 1-

specificity, are used for constructing the ROC Curve. False Positive Rate (FPR) is 

the probability of test result of a healthy subject being higher than a prespecified cut-

off value, c.  Mathematical notation of  FPR  is given below: 

                                                       𝐹𝑃𝑅 = 𝑃(𝑋 > 𝑐|𝐷 = 0)                                             (2.3) 

In theory, Area Under Curve (AUC) Value obtained from ROC Curve takes 

values between 0 and 1. For a diagnostic test with good discriminating capability of 

diseased and non-diseased subjects, its AUC value is close to 1; while for a 

diagnostic test with a poor discriminating capability, AUC is close to 0.5. 

 

There are two main approaches to obtain AUC, namely parametric and 

nonparametric approaches. In parametric approach, AUC calculation is based on the 

assumption that biomarker values of either diseased or non-diseased groups should 

follow normal distribution. AUC can be calculated by taking the integral of ROC 

function. However as the name suggest, nonparametric approach does not require 

any distributional assumption about biomarker values. Rank-based Mann-Whitney U 

statistic or Wilcoxon statistic are used in AUC calculation (7). 

 

AUC value obtained by ROC Curve Analysis has several advantages. 

Prevalance of the disease does not affect the AUC. Moreover, it is not affected by 

transformations such as logarithmic or square root. Furthermore, ROC Curve is 

unitless metric, therefore it is used to compare several diagnostic tests which have 
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different units. All these properities make AUC statistic a commonly-used measure 

in analyzing the discriminative ability of a diagnostic test or biomarker. 

 

An example of ROC Curve for biomarkers is given below: 

 

 
 

Figure 2.1.  Different ROC Curves for 3 different biomarkers which have 

discriminative capabilities as fair, poor and excellent 

In ROC Curve Analysis, closer line to upper-left side indicates that the true 

classification rate value increases and false classification rate decreases. Therefore, a 

biomarker that has closer line to upper-left corner has higher diagnostic accuracy; 

while a biomarker that has closer line to diagonal line has poor discriminating 

capability. 

2.2. Time-Dependent ROC Curve 

 

In classical ROC curves, the status of subject is assumed to be constant over 

time. Namely, the time that measurement was taken from the biomarker and the time 

of the occurrence of the event is the same.  However, in many situations of clinical 
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studies, there has been a time interval between the measurement that was taken 

during follow-up and the event. Within the follow-up, some subjects develop disease, 

while some of them do not.  A subject who does not develop disease during the 

follow-up is named as censored subject. When there are censored subjects in data set, 

time-dependent ROC curves are used to evaluate their diagnostic performances. By 

means of these time-dependent ROC curves, the predictive performances of 

biomarkers in discriminating events and non-events within the follow-up can be 

identified. In time-dependent ROC curves, given that the follow-up time is te and t is 

any time-point within the follow-up period, it could be possible to determine the 

diagnostic accuracy of a test at the end of follow-up (te), or any time-point during the 

follow-up period (t) with the help of a single value taken at baseline (t=0). 

 

Etzioni et al. discussed incorporating the time dimension to the classical ROC 

Curve Analysis (8). Heagerty et al. published an article to explain the time-dependent 

ROC Curve in detail  (2). 

 

Since the time dimension is incorporated to classical ROC Curve, provided 

that t is any time-point within the follow-up period, AUC(t) value can be calculated 

using Sensitivity(t) and 1-Specificity(t) values calculated at time t. Mathematical 

notations of time-dependent sensitivity and time-dependent specificity are given 

below: 

         Sensitivity (c, t) = P(X > 𝑐|D(𝑡) = 1)                                     (2.4) 

1-Specificity (c, t) =  P(X > c|D(t) = 0)                                     (2.5) 

ROC Curve at time t, ROC(t), is drawn with the help of Sensitivity(t) and 1-

Specificity(t) metrics. When higher diagnostic test results indicate the disease, the 

probability of the test result of a diseased subject being higher than a pre-specified 

cut-off value(c) at time t is defined as Sensitivity(t), while the probability of the test 

result of a non-diseased subject being higher than a pre-specified cut-off value(c) at 

time t is defined as 1-Specificity(t). 
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An example of time-dependent ROC Curve is depicted in Figure 2.2. Unlike 

classical ROC curve, time dimension is in the x-axis and time-dependent AUC 

values are in y-axis in time-dependent ROC curves. Therefore it could be possible to 

assess the time-dependent accuracy values of a biomarker throughout the period. It is 

also possible to detect in which time-points the biomarkers have the highest 

discriminative ability throughout the period by these curves. Another property of the 

curves is the ability of comparison of several biomarkers for a specific disease under 

one plot. 

 

Figure 2.2. Time-dependent ROC curves to compare the diagnostic accuracies 

of Albumin and Bilirubin biomarkers (solid lines represent time-dependent 

AUC values over time and dashed lines represent their 95% confidence 

intervals) (9) 

2.3. Time-Dependent ROC Curves for Longitudinal Data 

 

Given that te is the follow-up time, it is possible with time-dependent ROC 

Curve to determine the diagnostic accuracy of a test at the end of follow-up (te) or 

any time-point during the follow-up period (t) with the help of a single value taken at 

baseline (t=0). However in many situations in clinics, a single measaurement might 

be insufficient to indicate whether the event will occur in future time points. 

Therefore taking serial biomarker measurements rather than a single biomarker value 
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to predict the event of interest is preferred. Given that the follow-up period is te, the 

diagnostic accuracy of serial biomarker values within the period, [0, te] is evaluated 

by time-dependent ROC Curves for longitudinal data. 

 

Time-dependent ROC curves are useful tools for identifying the diagnostic 

performance of serial biomarker values. Likewise time-dependent ROC Curves 

obtained from a single biomarker value, time-dependent ROC Curves for 

longitudinal data assesses predictive ability of biomarkers in predicting the risk of 

the event of interest for future time points. Therefore measures than can be obtained 

in longitudinal setting to evaluate diagnostic accuracy, such as time-dependent AUC, 

obtained from time-dependent ROC Curve, time-dependent sensitivity, time-

dependent specificity etc.  are also defined as prospective accuracy measures. To 

evaluate the diagnostic accuracy for the time point t+Δt, (Δt refers to time-interval 

for the prediction of the event of interest) serial biomarker values which were 

measured up to t are used.  Prior to obtaining AUC (t, Δt) and in constructing ROC(t, 

Δt); two basic diagnostic accuracy metrics, namely sensitivity(t, Δt) and specificity(t, 

Δt), are calculated. 

 

Instead of using raw serial biomarker measurements, survival probabilities  

are used in calculating the diagnostic accuracy metrics for repeated biomarker 

measurements. Provided that π is the survival probability of a subject who had lived 

up to time t, π ≤ c (c is a specified cut-off value in [0, 1] interval) is the probability of 

“developing the event” within the time interval t+Δt; whereas π > c is defined as 

“censored subject”. Under these information, ttime-dependent sensitivity (td-Sens(c, 

t)) and time-dependent specificity (td-Spec(c,t)) are calculated for varying c (c ∈ 

[0,1]) with the formulas given below: 

                     td-Sens(c,t) =  Pr{πj(𝑡 + ∆𝑡|𝑡) ≤ 𝑐|Tj
∗𝜖(𝑡, 𝑡 + ∆𝑡]}                          (2.6)    

                     td-Spec(c,t) =  Pr{πj(𝑡 + ∆𝑡|𝑡) > 𝑐|Tj
∗ > 𝑡 + ∆𝑡}                             (2.7)          
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By means of these values, it could be possible to obtain the time-dependent 

AUC value, which indicates the discrimination ability of the biomarker within the 

time interval t+Δt using longitudinal information which were measured until time t. 

The formula of time-dependent AUC is given below: 

𝐴𝑈𝐶(𝑡, ∆𝑡) = Pr[πi(𝑡 + ∆𝑡|𝑡) < πj(𝑡 + ∆𝑡|𝑡)|{𝑇𝑖
∗𝜖(𝑡, 𝑡 + ∆𝑡]} ∩ {𝑇𝑗

∗ > 𝑡 + ∆𝑡}]                           (2.8) 

where, i and j refer to comparable subjects, while 𝑇𝑖
∗ and  𝑇𝑗

∗ indicates the 

survival times and  πi and πj  refer to survival probabilities of i
th

 and j
th

 subjects, 

respectively. The time-dependent AUC value is calculated as in the same logic as 

classical AUC value. That is, for a specific time point t, under the assumption of 

having longitudinal information of two subjects, one of whom has the event at time 

interval t+Δt, and the other one survives, then the survival probability of a subject 

that has the event of interest should be lower. 

The visual representation of a time-dependent ROC Curve for longitudinal 

data is demonstrated in Figure 2.3. The appearance is similar to classical ROC 

Curve, that is, sensitivity and 1-specificity values are located on the y and x axes, 

respectively. Three different curves for each of the future time-point are drawn in 

one plot (Figure 2.3.) 
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Figure 2.3. Time-dependent ROC Curve for longitudinal data for 7
th 

subject of 

dataset (black, red and green lines represent prospective diagnostic accuracies 

of serial CD4 measurements after 2, 4 and 8 months after the last CD4 

measurement taken within the follow-up period, respectively.) (4) 

2.4. Literature Review for Diagnostic Performance of Longitudinal Data 

Even though there are several studies involving different predictive accuracy 

measures in literature (6, 10-12), diagnostic performance of serial biomarker values  

is observed to  be determined mostly by time-dependent ROC Curves. 

The first study about time-dependent ROC curves for a single-biomarker 

value is based on an article that was published in 2000, by Heagerty et al. (2). In this 

article, diagnostic performances of biomarkers in discriminating the events and non-

events within the period are determined by time-dependent ROC curves. Two 

different methods, namely Kaplan-Meier Estimator and Nearest Neighbor Estimator 

are proposed to estimate these time-dependent ROC Curves.  In the application part, 

ROC(t) estimations obtained by these two methods are used to determine the 

diagnostic accuracies of the standard and a modified flow cytometry measurement 

for predicting the death caused by breast cancer. At the end of the analyses, at earlier 

time-points of the follow-up, modified flow cytometry measurement is found to have 

higher diagnostic value in both estimators, while at later time-points two biomarkers 

have similar predictive accuracy.  
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Heagerty and Zheng extended the semiparametric estimation method based 

on regression quantile approach for time-dependent ROC curves for longitudinal 

data. The authors focused on asymmetric distribution theory for the estimators of 

ROC Curve. In their study, the distributional shape of the marker depends on 

covariates. In application part they have evaluated diagnostic value of serial Forced 

Expiratory Volume (FEV1) measurements in predicting the risk of death from cystic 

fibrosis in case-control setting. At the end of the analysis it is demonstrated that 

measurements which are close to death have higher diagnostic accuracy than 

measurements that are away from the event (13). 

 

Heagerty and Zheng proposed flexible semiparametric model based on partly 

conditional joint distribution of longitudinal biomarker values and event times to 

evaluate diagnostic performance of repeated measurements. In the application part, 

the AIDS data obtained from MACS (Multicenter AIDS Cohort Study) is used to 

analyze the association between longitudinal marker CD4 cell counts and status 

variable is defined as time-to-AIDS or death. Time-dependent ROC curves are 

obtained to assess the diagnostic accuracy of serial CD4 values. Also, a composite 

marker, which can be obtained by considering both CD4 and its slope at time s, is 

defined by the authors to determine whether there is an improvement in 

discriminative capacity of serial CD4 values.  Results revealed that, CD4 values, 

whose measurement time is away from the time of seroconversion are found as more 

predictive of the event of interest for both single marker and composite marker cases 

(14). 

 

Rizopoulos proposed time-dependent diagnostic accuracy metrics and 

dynamic discrimination index (DDI) to measure the predictive ability of a 

longitudinal biomarker with the help of joint modeling approach. For this objective, 

firstly serial longitudinal marker values and time-to-event data have been modeled 

with joint model, then survival probabilities of the subjects are obtained by 

performing either Bayesian Approach or Monte Carlo simulation schemes. With the 

help of these survival probabilities, diagnostic accuracy measures, namely time-

dependent sensitivity, time-dependent specificity and time-dependent AUC values 
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are calculated under the Monte Carlo Approach. Moreover, Dynamic Discrimination 

Index, which is the average of time-dependent AUC values over the follow-up 

period, is also proposed. In the application part of the study, the relationship between 

serial CD4 values and risk of death from AIDS are investigated and diagnostic 

accuracy of repeated CD4 values are determined by means of time-dependent AUC 

and Dynamic Discrimination Index (DDI) metrics for the 2, 4 and 8 months after the 

last CD4 measurements taken from the subjects. Furthermore, two different joint 

models are constructed, namely the one with focusing on  the last CD4 measurement 

and the other one that focuses on last two CD4 measurements (composite rule) to 

investigate whether  composite rule increases the predictive ability. Moreover, within 

the context of the study, joint model with current CD4 value (standard joint model 

parameterization) and joint model with current CD4 value and its slope at time t 

(joint model with slope parameterization) are compared in terms of predictive 

accuracies. At the end of the analysis, serial CD4 counts are found to have moderate 

discriminative capability for almost each comparison (3). 

 

Njagi et al. have investigated the discriminative ability of serial 

measurements of systolic, diastolic blood pressure, heart rate and weight in 

telemonitored chronic hearth failure subjects with the help of joint modeling 

approach. The event is described as rehospitalization of the subjects. Also risk 

factors such as age, sex, LVEF, NTproBNP and heart rhythm are included in the 

joint model to investigate their effects on predictive ability of each serial biomarker 

values. At the end of the analysis, serial diastolic blood pressure values are found to 

have poor diagnostic accuracy whereas repeated systolic blood pressure have 

moderate predictive ability. Diagnostic performance of serial heart rate values are 

classified as good; while weight has the lowest predictive ability over the follow-up 

period (15). 

 

Abdi et al. performed joint modeling to investigate the relationship between 

serial mycophenolic acid (MPA) values and acute rejection (AR). They have 

obtained time-dependent threshold values for serial MPA values based on fitted joint 

models. Time-dependent ROC Curves have been drawn to obtain time-dependent 
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threshold values for MPA. Moreover, 95% confidence intervals obtained by 

nonparametric bootstrap method were also given along with these time-varying cut-

off values within the context of the study (16). 

 

Blanche et al. proposed time-dependent AUC and Brier Score in dynamic 

setting for evaluating the diagnostic accuracy in competing risks data. They proposed 

nonparametric inverse probability of censoring weighting to estimate dynamic AUC 

and Brier Score metrics. They used Paquid Cohort Data as training set for 

constructing two different joint models by using serial Mini Mental Score 

Examination (MMSE) and Isaacs Set Test (IST) in predicting dementia. French 

Three-City Cohort Data is used as validation set for obtaining predictive accuracies 

of these repeated test values for the next 5 years. The time-dependent AUC values of 

both IST and MMSE are found as high, ranging from 0.79 to 0.90, suggesting good 

discrimination capability for the next 5 years. Moreover, repeated IST values are 

found to have higher predictive ability than MMSE, since serial IST either have 

higher time-dependent AUC values and lower Brier Score compared to those of 

MMSE (17). 

 

Yang et al. used joint modeling approach to model multiple longitudinal 

outcomes and a time-to-event outcome by performing Expectation-Maximization 

(EM) algorithm. They have utilized two recently proposed measures to evaluate the 

diagnostic values of the longitudinal biomarkers, namely Above Average Risk 

Difference (AARD) and Difference in Mean Risk (MRD), which are considered to 

be useful tools when comparing joint models with different predictors. Moreover, the 

authors calculated two metrics with the help of time-dependent AUC values, namely 

true percentage gain and estimated percentage gain, whose calculations are based on 

time-dependent AUC values obtained by two different joint models, which are 

constructed within the context of the study. Two different joint models are 

performed, JM1 including only serial diastolic blood pressures (DBP); and the other 

JM1 including only serial systolic blood pressure (SBP) measurements along with 

other covariates such as age, sex, race etc; on the other hand JM2 is formed as 

including both of the serial SBP and DBP values with the covariates and the survival 
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outcome is defined as time to cardiovascular disease (CVD) for all of the joint 

models. Predictive performances of these models are assessed via time-dependent 

AUC values along with AARD and MRD metrics. JM2 has been reported to have 

better predictive accuracy than both of the JM1 models in terms of all of the 

diagnostic accuracy values, namely time-dependent AUC, AARD, MRD, true 

percentage gain and estimated percentage gain. Therefore, modeling two biomarkers 

under one joint model has been mentioned to enhance the predictive performance 

(18).  

 

Li et al. investigated the relationship between 33 longitudinal biomarkers, 

including ADAS-Cog 13, ADAS-Cog 11, CDR-SB, AV45-PET… and conversion to 

Alzheimer’s Disease (AD) utilizing joint modeling approach. They also evaluated 

diagnostic performances of these biomarkers by means of time-dependent AUC 

values and Dynamic Discrimination Index (DDI). They have reported functional and 

cognitive biomarkers such as ADAS, FAQ, MMSE have higher diagnostic accuracy 

than imaging biomarkers in predicting conversion to Alzheimer’s Disease (19).  

 

Mauff et al. extended cumulative effects parameterization type of joint model 

with a weight function that gives importance to most recent measurements. They 

performed normal and skewed normal probability density functions as weight 

function and adopted this extended version to the calculation of diagnostic 

performance and proposed relative Area Under Curve (rAUC) metric using Bayesian 

approach. In application part they utilized Hoorn Diabetes Care System (DCS) 

Cohort to investigate the relationship between HbA1c and developing sight 

threatening retinopathy (STR). Diagnostic performance of serial HbA1c 

measurements in predicting the occurrence of STR is determined for different time-

intervals over the follow-up by means of rAUC values, which were calculated for 

both normal and skewed normal density weight functions. Results suggest that 

measurements which were taken at earlier time-points are found to have better 

predictive ability in skewed-normal case (20). 
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Rizopoulos et al. constructed various joint models with different 

parameterizations and compared these models in terms of  diagnostic performances, 

calibration values and survival probabilities. Time-dependent AUC values are given  

for comparison process of discrimination part of the study. They have used aortic 

valve dataset to evaluate the diagnostic accuracy of serial aortic gradient 

measurement in predicting the composite event, which was described as reoperation 

or death. At the end of the analysis, standart joint model and joint model with slope 

parameterization are found to have higher predictive ability than joint model with 

cumulative effects parameterization  (21). 

 

Musoro et al. evaluated diagnostic performances of serial Sepsis-related 

Organ Failure Assessment (SOFA) scores throughout the follow-up period in 

competing risk-setting by using joint modeling. They have obtained time-dependent 

AUC values and Brier Score as diagnostic performance metrics with the help of joint 

modeling. The authors have investigated the behaviours of time-dependent AUC 

values and Brier Score over the follow-up period to predict the risk of death in 

hospital. Results revelaed that either time-dependent AUC or Brier Score metrics 

gave similar results (22). 

2.5. Model Types 

 

In health studies, usually serial biomarker measurements are taken from 

subjects and with the help of these measures, whether a subject will develop a 

disease or condition could be determined. Serial CD4 values in HIV studies, serial 

PSA measurements in prostate cancer studies, cardiac panel measurements for 

cardiovascular diseases are a few examples in areas where the serial measurements 

are taken. If the data has two different data structures, including serial biomarker 

values and survival times, there are several modeling options in literature. The most 

commonly used methods are listed below: 

 

- Two-stage modeling approach 

- Time-dependent Cox regression analysis 

- Joint modeling approach 
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In this thesis, because of several advantages, joint modeling approach will be 

used for modeling longitudinal and survival data simultaneously. Also this approach 

will be utilized in obtaining the diagnostic performance metrics of serial biomarker 

measurements. Therefore the alternatives of Joint Modeling Approach will be 

explained in brief: 

2.5.1. Two-Stage Modeling 

 

In this approach serial biomarker values are modeled with linear mixed 

effects model (LME) in the first stage and they enter as a time-dependent covariate 

into the Cox Model in the second stage. The most important disadvantage of this 

modeling type is that the parameter estimates are underestimated, also the association 

between repeated measurements and survival times is not taken into account when 

two stage modeling approach is performed (23). 

2.5.2. Time-Dependent Cox Regression Analysis 

 

Raw biomarker values are taken directly into Time-Dependent Cox 

Regression Analysis as a time-dependent covariate in this approach. Likewise two-

stage modeling, this approach also underestimates the model parameters (24). 

However, there are other disadvantages for using time-dependent Cox model. They 

are listed below: 

  

 Serial biomarker measurements are endogenous type, which are considered to 

come from the subjects of the study and have effects on the event of interest. 

For example, when a study includes the event as risk of death from 

cardiovascular diseases (CVD), serial cardiac panel biomarkers could be 

considered as endogenous (internal) biomarkers since either they are 

measured from the subjects or they affect the risk of death. However, time-

dependent Cox Regression can only model exogenous (external) type of 

measurements, which do not have effect on the event of the study. In other 

words exogeneous type can be defined as variables which endure independent 

of the event of interest. For example, levels of humidity in the air and also the 
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air temperature values can be considered as the external risk factors in a study 

whose event of interest is defined as “having flu”. Moreover, the time 

variable itself or seasons of the year (winter, summer etc.) can also be listed 

as another examples of exogeneous (external) variable type. 

 

 Time-dependent Cox Model assumes that the measurements are obtained 

without error, however in clinics, biomarker values are measured with 

biological error of subjects (25). 

2.5.3. Joint Modeling Approach 

 

In this approach serial biomarker values are modeled with LME Model and 

Cox regression model is used to model survival times. The relationship between 

these two different data structures can be explained by random effects (25). 

 

Joint modeling approach is used to model serial biomarker values 

(longitudinal data) and survival data in this study. Model parameters are estimated by 

Maximum Likelihood Estimation Method (MLE). In following parts, LME model for 

longitudinal data and Cox Regression for survival times are introduced briefly. 

2.6. Linear Mixed Effects Model 

 

As mentioned before, serial biomarker values are often taken within the 

follow-up period in clinics. Positive correlation structure between these serial 

measurements in clinics is assumed between these repeated measurements. This 

situation makes it impossible to analyze the data at hand with classical modeling 

options such as t-test, linear regression etc (25). In such situations, different 

modeling strategies are used to model correlated data structures. LME model is used 

for modeling serial biomarker values taken within the follow-up period. This 

modeling option assumes that each subject has his or her own longitudinal trajectory. 

This approach does not only allows investigating the longitudinal profile of each 

subject, but also makes it possible to evaluate the changes of the subjects in the 

whole sample (25). 



19 

 

 

In follow-up studies it is very usual to have drop-outs or withdrawals caused 

by the long follow-up periods. The most important property of LME models is that 

this approach takes these missing data structures into account while modeling 

repeated biomarker values. Also this approach takes into account the correlation 

structure between repeated biomarker measurements and random visit times. These 

are also important properities for performing LME models for longitudinal data. 

2.6.1. Parameter Estimation in Linear Mixed Effects Model 

 

Parameter estimates of the model are obtained by Maximum Likelihood 

Estimation (MLE) Method. It’s assumed that the random effects are normally 

distributed with 0 mean and variance covariance matrix, D.  Error terms of the model 

are also assumed to follow normal distribution with 0 mean and 
2
 variance. It is also 

assumed that variance-covariance matrix of random effects are independent of the 

error terms (25). 

The formula for LME model is given below: 

 

                                                             𝑌𝑖   = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖                                            (2.9) 

                                                                 𝑏𝑖 ~ 𝑁(0, 𝐷)                                                       (2.10) 

                                                                 𝜀𝑖 ~ 𝑁(0, 𝜎
2)                                                     (2.11) 

                                                                𝑌𝑖~𝑁(𝑋𝑖𝛽, 𝑉𝑖)                                                     (2.12) 

where, 

𝑌𝑖 : repeated biomarker measurements taken at time t from i
th

 subject 

𝑋𝑖 : fixed-effects matrix 

𝑍𝑖 : random-effects matrix 

𝛽 : fixed-effects regression coefficients 

𝑏𝑖  : random-effects regression coefficients 

𝜀𝑖 : error term for i
th

 subject 

D : variance-covariance matrix for random-effects 
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
2
: variance of error terms 

𝑉𝑖: variance-covariance matrix for 𝑌𝑖, with 𝑉𝑖=𝑍𝑖𝐷𝑍𝑖
𝑇 + Ω𝑖 

 

The formula given above can be reformulated by omitting index i. 

Reformulated equation is given below: 

                                                         𝑌 = 𝑋𝛽 + 𝑍𝑏 + 𝜀                                                    (2.13) 

where X and Z are block diagonal matrices with blocks 𝑋𝑖  and 𝑍𝑖 , 

respectively. 𝑌, 𝑏 and 𝜀  are the vectors which include information from all the 

subjects in the study. On the other hand, the variance-covariance matrix of  𝑌 can be 

reformulated as 𝑉 = 𝑍𝐷𝑍𝑇 + Ω , with 𝐷  and Ω  representing the block diagonal 

matrices with blocks 𝐷 and Ω𝑖, respectively (26). 

 

Under the information of  is a vector of unknown parameters 𝐷 and Ω𝑖, with 

the notation of 𝜃 = (𝐷,Ω𝑖), parameter estimates of LME model are obtained by 

maximizing the estimation of 𝜃, namely 𝜃𝑀 (26). 

 

                                   𝑙(𝜃) = −
1

2
𝑙𝑜𝑔|𝑉| −

1

2
𝑟𝑇𝑉−1𝑟 −

𝑁

2
log(2𝜋)                          (2.14) 

where, 

                                                            𝑟 = 𝑌 − 𝑋(𝑋𝑇𝑉−1𝑋)𝑋
𝑇𝑉−1𝑌                                  

 

Maximizing the above log-likelihood equation provides the estimates of , 𝐷 

and . Then fixed-effects and random-effects coefficients are calculated by solving 

the below linear equations (26). 

 

                      [𝑋
𝑇Ω̂−1𝑋 𝑋𝑇Ω̂−1𝑍
𝑍𝑇Ω̂−1𝑋 𝐷̂−1 + 𝑍𝑇Ω̂−1𝑍

] [
𝛽
𝑏
] = [𝑋

𝑇Ω̂−1𝑌
𝑍𝑇Ω̂−1𝑌

]                                   (2.15) 
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The formulas for the fixed-effects and random-effects coefficients are as 

follows (26): 

                                                   𝛽̂ = (𝑋𝑇𝑉̂−1𝑋)𝑋
𝑇𝑉̂−1𝑌                                                  (2.16) 

                                                   𝑏̂ = 𝐷̂𝑍𝑇𝑉̂−1(𝑌 − 𝑋𝛽̂)                                                 (2.17) 

 

Fixed-effects and random effects describe the population-average and 

subject-specific effects, respectively. An example figure showing these effects are 

given below (Figure 2.4.). 

 

 

Figure 2.4.  Illustiration of average and subjects-specific trajectories in LME 

model. Points demonstrate  hypothetical longitudinal responses of two subjects. 

(25) 

2.7. Cox Proportional  Hazard Regression Model 

 

Cox Proportional Hazard Regression Model is used to analyze the time until 

an event occurs (27). This event could be death, remission, relapse or the diagnosis 

of any disease. The most important property of Cox Proportional Hazard Regression 

Model is the presence of censored subjects. The exact survival times are unknown 

for these subjects. Therefore statistical analyses such as t-test, linear regression 

analysis can not be used to analyze survival times and simple descriptive statistics 
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such as aritmetic mean, standard deviation can not be utilized to describe survival 

times. The reason for that is for such statistical analyses and such descriptive 

statistics, all subjects in the dataset are needed (25). 

 

𝑇𝑖
∗ is assumed to denote the true event time and  𝐶𝑖  represent the censoring 

time for subject i in the sample. The observed event time for the i
th

 subject is 

described as   𝑇𝑖 , which is equivalent to minimum of the true event time and 

censoring time. It is notated as  𝛿𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖) . It should also be noted that   𝛿𝑖  is 

event indicator which takes values 0 or 1. 

 

Under these information, censoring mechanism could be defined as follows: 

 𝛿𝑖  = 1   if     𝑇𝑖
∗ ≤ 𝐶𝑖   and in this case i

th
 subject has the event,  

𝛿𝑖 = 0   if     𝑇𝑖
∗ > 𝐶𝑖    in that case i

th
 subject is censored 

2.7.1. Parameter Estimation in Cox Proportional Hazard Regression 

Model 

 

Cox proportional regression analysis, which was proposed by Cox in 1972, is 

frequently used to determine the factors affecting survival times (27). Parameters of 

this model is estimated by maximum likelihood estimation (MLE) method. Survival 

times of the subjects are modeled via baseline hazard function. However, the 

distribution of survival times are unknown. Therefore Cox proportional regression 

model is a semi-parametric modeling approach. The most important assumption of 

the model is proportional hazard assumption, which assumes that changes in 

covariates in the model are constant over time.  Hazard ratio is calculated as a risk 

measure in this model. Given survival up to time point t, it describes the 

instantaneous risk of the event in the time interval [t, t+t) . Formula for hazard ratio 

is given below (25). 

 

ℎ𝑖(𝑡) = lim
𝑑𝑡→0

Pr (𝑡 ≤ 𝑇∗ < 𝑡 + 𝑑𝑡|𝑇∗ ≥ 𝑡)

𝑑𝑡
= ℎ0(𝑡)𝑒𝑥𝑝(𝛾

𝑇𝑤𝑖),    𝑡 > 0             (2.18) 
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where, 

ℎ𝑖(𝑡) ∶ hazard risk for subject i at time t 

ℎ0(𝑡) ∶ baseline hazard function 

𝛾 :     Cox regression coefficients vector 

𝑤𝑖 ∶   covariate vector for subject i 

 

To obtain the parameters of interest, Cox (1972) proposed partial log-

likelihood function (27). 

 

                 𝑝ℓ(𝛾) =∑𝛿𝑖 [𝛾
𝑇𝑤𝑖 − 𝑙𝑜𝑔 {∑ 𝑒𝑥𝑝(𝛾𝑇𝑤𝑗)

𝑇𝑗≥𝑇𝑖

}]

𝑛

𝑖=1

                                   (2.19) 

 

Maximum Partial Likelihood estimators of parameters are found below (27). 

 

                         
𝜕𝑝𝑙(𝛾)

𝜕𝛾𝑇
=∑𝛿𝑖 {𝑤𝑖 −

∑ 𝑤𝑗𝑒𝑥𝑝(𝛾
𝑇𝑤𝑗)𝑇𝑗≥𝑇𝑖

∑ 𝑒𝑥𝑝(𝛾𝑇𝑤𝑗)𝑇𝑗≥𝑇𝑖

} = 0                           (2.20)

𝑛

𝑖=1

 

 

2.8. Joint Modeling Approach 

 

This approach was first proposed by Schluchter in 1992 to model longitudinal 

and survival data simultaneously (28). Starting from 2000s, it has become more 

popular in different areas of health studies ranging from CVD research to cancer 

studies (29-34). The most important advantage in utilizing this approach is that it 

allows to model the two different data structures simultaneously while taking the 

association between them into account. MLE method is used to obtain the parameter 

estimates in this approach. 

 

Serial biomarker measurements are modeled via LME model, while survival 

times are modeled with Cox proportional hazard regression model. The relationship 
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between the longitudinal and survival data is explained by random effects. The effect 

of serial biomarker measurements taken within the follow-up period on the event of 

interest is described by α parameter. Under the assumption of modeling serial 

measurements with LME Model and Cox Regression Model for survival times, 

standard joint model can be formulated as follows (25). 

 

                      ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝 [𝛾
𝑇𝑤𝑖 + 𝛼 {𝑥𝑖

𝑇(𝑡)𝛽 + 𝑧𝑖
𝑇(𝑡)𝑏𝑖⏟          }]                           (2.21) 

                                                                                  𝑚𝑖(𝑡) 

𝑚𝑖(𝑡): repeated biomarker measurements taken at time t from i
th

 subject without 

measurement error 

𝑥𝑖(𝑡): fixed-effects matrix 

𝑧𝑖(𝑡): random-effects matrix 

𝛽: fixed-effects regression coefficients 

𝑏𝑖: random-effects regression coefficients 

α: association structure indicating the effect of repeated biomarker measurement 

taken at time t 

ℎ𝑖(𝑡): hazard risk at time t for i
th

 subject 

ℎ0(𝑡): baseline hazard function 

  : Cox regression coefficients 

𝑤𝑖  : covariate vector for i
th

 subject 

       2.8.1. Assumptions of Joint Modelling Approach 

1. The underlying structure is random effects. Random effects explain both 

the relationship between survival and longitudinal data and the correlation 

structure between the measurements taken from the same subject. 

2. Given random effects, the two different data structures are independent. 

3. Random effects explain  all dependence structures in the model. 

4. The association structure can be explained by alpha () parameter. This 

parameter is considered as coefficient of joint model that depicts the effect of 

serial biomarker value on risk at time t. 
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Other than these assumptions, joint models have assumptions of LME  

Models, namely normality of response variable, normality of errors, independence of 

residuals, independence of random effects and errors, and also assuptions of Cox 

Regression Model, Proportional Hazards Assumption for time-dependent variables, 

non-informative censoring etc. 

2.8.2. Estimation Methods in Joint Modeling Approach 

 

There are two main methods for parameter estimation, namely two-stage 

method and MLE method. In this thesis, parameter estimates are obtained by MLE 

method. Therefore this estimation method is explained in brief. 

2.8.2.1. Maximum Likelihood Estimation Method 

 

This is the main estimation method to obtain parameters of joint models. This 

estimation method is based on joint distribution of event time (𝑇𝑖 ), longitudinal 

marker values (𝑦𝑖) and censoring mechanism (𝛿𝑖).  To define this joint distribution it 

is assumed that the vector of random effects underlie both the longitudinal and 

survival processes. This means that given random effects, survival longitudinal data 

structures are independent (conditional independence). 

This conditional independence of these two data structues is formulated as 

follows: 

           𝑝(𝑇𝑖, 𝛿𝑖 , 𝑦𝑖|𝑏𝑖 ; 𝜃) = 𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑖; 𝜃)𝑝(𝑦𝑖|𝑏𝑖; 𝜃)                                     (2.22) 

 

                                  𝑝(𝑦𝑖|𝑏𝑖; 𝜃) =∏𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑖; 𝜃}                                               (2.23)
𝑗

 

 

Under these assumptions, likelihood function for the i
th

 subject can be written 

below: 
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   log 𝑝(𝑇𝑖, 𝛿𝑖 , 𝑦𝑖; 𝜃) = 𝑙𝑜𝑔∫𝑝 (𝑇𝑖, 𝛿𝑖 , 𝑦𝑖, 𝑏𝑖; 𝜃)𝑑𝑏𝑖                                                   (2.24) 

                                  = 𝑙𝑜𝑔∫𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑖; 𝜃𝑡, 𝛽) [∏𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑖; 𝜃𝑦}

𝑗

] 𝑝(𝑏𝑖; 𝜃𝑏)𝑑𝑏𝑖 

where,  

𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑖 ; 𝜃𝑡, 𝛽) = [ℎ0(𝑇𝑖)𝑒𝑥𝑝{𝛾
𝑇𝑤𝑖 + 𝛼𝑚𝑖(𝑇𝑖)}]

𝛿𝑖 ∗ 

𝑒𝑥𝑝 (−∫ ℎ0(𝑠)𝑒𝑥𝑝{𝛾
𝑇𝑤𝑖 + 𝛼𝑚𝑖(𝑠)}𝑑𝑠

𝑇𝑖
0

)  

 

and 

𝑝(𝑦𝑖|𝑏𝑖 ; 𝜃)𝑝(𝑏𝑖; 𝜃) =  ∏𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑖; 𝜃𝑦}𝑝(𝑏𝑖; 𝜃𝑏)

𝑗

 

                                             = (2𝜋𝜎2)−𝑛𝑖/2𝑒𝑥𝑝{−‖𝑦𝑖 − 𝑋𝑖𝛽 − 𝑍𝑖𝑏𝑖‖
2/2𝜎2} ∗

(2𝜋)−𝑞𝑖/2𝑑𝑒𝑡(𝐷)−1/2𝑒𝑥𝑝(−𝑏𝑖
𝑇𝐷−1𝑏𝑖/2) 

 

𝑞𝑏  is the dimensionality of random-effects vector, ‖𝑥‖ = {∑ 𝑥𝑖
2

𝑖 }1/2  is the 

Euclidean vector form (25). 

 

Calculation of the random-effects of the joint model requires to perform the 

Gauss-Hermite integration rule since they don’t have closed-form solution (35). On 

the other hand, Gauss-Kronrod Method is utilized for the solution of the integral part 

of the survival function (4). 

 

In order to calculate the parameter estimates, log-likelihood function, 

𝑙(𝜃) = ∑ 𝑙𝑜𝑔𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑖; 𝜃)𝑖 , is needed to be maximized. 

 

To maximize the likelihood-function given in the above, there are several 

maximization algorithms (25). 

- Expectation-Maximization (EM) 

- Newton-Raphson 

- Hybrids 
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Among these options, EM Algorithm is frequently used compared to its 

alternatives since model parameters have closed-form in maximization part (25). 

2.9. Missing Data Structures in Longitudinal Data 

 

One of the most important property of longitudinal data is missing data, 

which occurs when some subjects miss their planned visits within the follow- up 

period. Linear Mixed Effects Models can be described as a useful modeling option 

since these models can handle this type of data. 

 

Missing data structure can be defined as the probability model describing the 

relation between the missing and response data (25). There are three main missing 

data structures in literature, namely Missing At Random (MAR), Missing 

Completely in Random (MCAR) and Missing Not at Random (MNAR). 

 

MAR structure occurs when missing data related to observed responses but 

unrelated to the values which should have been obtained (25). Example for this type 

of structure can be given as study plan which indicating patients with a high 

biomarker values are needed to be excluded from the study. Not all statistical 

modeling processes give valid inferences with this mechanism. 

 

MCAR is the case when missingness is unrelated to both observed and 

uınobserved response values. Quitting the study after planned number of 

measurements can be given as an example of MCAR. Any statistical modeling 

approach that requires complete data can be performed on datasets with MCAR  

mechanism. 

 

MNAR occurs when missingness dependes on a part of responses that would 

have been observed (25). Quality-of-life (QOL) studies can be given as an example 

for this type of missing data mechanism, since in QOL studies subjects may leave the 

study at some situations where their QOL come to an agreement.  
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When missing data mechanism is MAR or MCAR, statistical inferences can 

be made by ignoring the missing data in the dataset. In such situations, likelihood-

based inferences can be performed even after ignoring the missing data. Therefore 

MAR and MCAR are in the class of ignorable missing data. However, when missing 

data is decribed as MNAR, then missing values of the data are considered as 

informative and nonignorable. When missing data structure is MNAR, valid 

infererences can be obtained based on the joint distribution of measurement and 

missing processes (25), thus MNAR is considered to be the most appropriate missing 

data mechanism under joint modeling approach. 

2.9.1. Modeling the Missing Data 

In the literature, there are three main options to model missing data 

mechanism along with longitudinal measurements. 

These options are listed below: 

 Selection Models 

 Pattern Mixture Models 

 Shared Parameter Models 

Selection Models and Pattern Mixture Models are used to model discrete 

missing data, while Shared Parameter Models are utilized to model continuous 

missing data structure. Within the context of this thesis, Shared Parameter Models 

are used to link two data structures and also to handle the missing data structure in 

longitudinal data analysis: 

2.9.1.1. Shared Parameter Models 

 

Shared Parameter Models allow missing data structure and longitudinal data 

to be modeled simultaneously based on their joint distributions (25). Random effects 

underlie both the longitudinal and survival processes. Dependence structure between 

these structures is explained by random effects.  
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2.9.1.1.1. Conditional Independence Assumption 

 

       P(𝑇𝑖|𝑦𝑖
0, 𝑦𝑖

𝑚) =  ∫𝑝(𝑇𝑖, 𝑏𝑖|𝑦𝑖
0, 𝑦𝑖

𝑚) 𝑑𝑏𝑖                                                    (2.25) 

 = ∫𝑝(𝑇𝑖|𝑏𝑖 , 𝑦𝑖
0, 𝑦𝑖

𝑚 )𝑝(𝑏𝑖|𝑦𝑖
0, 𝑦𝑖

𝑚)𝑑𝑏𝑖 

= ∫𝑝(𝑇𝑖|𝑏𝑖)𝑝(𝑏𝑖|𝑦𝑖
𝑜, 𝑦𝑖

𝑚)𝑑𝑏𝑖 

 

where 𝑦𝑖
𝑜  indicates the observed-data vector, whereas 𝑦𝑖

𝑚refers to missing-

data vector. 𝑏𝑖 indicates random-effects and 𝑇𝑖 is event time. 

 

According to the conditional independence assumption of joint models, it has 

been shown that the longitudinal and survival processes share the same random 

effects; therefore joint models are considered to belong to shared parameter models. 

2.10. Parameterization Types in Joint Modeling Approach 

 

Standard joint model assumes that the power of the relationship between 

biomarker measurement taken at time t and hazard at time t is explained by α 

parameter. In other words, the risk at time t is depend on the biomarker value 

measured at time t (current value parameterization). But over the years several 

authors indicated that this could be misleading and may cause information loss (36 - 

38).  Therefore, parameterization types that indicates the strength of the relationship  

in more detailed functional forms were developed. 

            These parameterization types can be listed below: 

 Time-dependent slopes parameterization 

 Current value and  time-dependent slope parameterization 

 Cumulative effects parameterization 
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2.10.1. Time-Dependent Slopes Parameterization 

 

In this parameterization type, the risk at time t depends on the slope of the 

biomarker value measured at time t (4). The formula for this parameterization type is 

given below: 

 

                                         ℎ𝑖(𝑡) = ℎ0(𝑡) exp[𝛾
𝑇𝑤𝑖 + 𝛼1𝑚𝑖

′(𝑡)]                                  (2.26) 

where  

                                 𝑚𝑖
′(𝑡) =

𝑑

𝑑𝑡
{𝑥𝑖
𝑇(𝑡)𝛽 + 𝑧𝑖

𝑇(𝑡)𝑏𝑖}                                    

𝑚𝑖
′(𝑡)  value indicates the slope of value taken at time t. 

 

2.10.2. Current Value and  Time-Dependent Slope Parameterization 

 

In this parameterization type, the risk at time t depends on biomarker value 

measured at time t and its slope at that time (4). The adopted formula for this type is 

given below: 

                    ℎ𝑖(𝑡) = ℎ0(𝑡) exp[𝛾
𝑇𝑤𝑖 + 𝛼1𝑚𝑖(𝑡) + 𝛼2𝑚𝑖

′(𝑡)]                                (2.27) 

where  

𝑚𝑖
′(𝑡) =

𝑑

𝑑𝑡
{𝑥𝑖
𝑇(𝑡)𝛽 + 𝑧𝑖

𝑇(𝑡)𝑏𝑖} 

 

𝑚𝑖
′(𝑡) value demonstrates the slope of value taken at time t, and α2 indicates 

the association between the slope value and the event of interest. 
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2.10.3. Cumulative Effects Parameterization 

 

In this parameterization type the risk at time t depends on the serial biomarker 

measurements taken up to time t (25). Considerations of focusing only on the 

measurement taken at time t and ignoring the longitudinal information throughout 

the follow-up period led the development of this parameterization type (25, 37, 39, 

40). 

Formulation of joint model for this parameterization is as follows: 

                           ℎ𝑖(𝑡) = ℎ0(𝑡) exp [𝛾
𝑇𝑤𝑖 + 𝛼∫ 𝑚𝑖

𝑡

0

(𝑠)𝑑𝑠]                                     (2.28) 

where the integral ∫ 𝑚𝑖
𝑡

0
(𝑠)𝑑𝑠  in the formula represents the longitudinal 

information taken up to time s (25). 

2.11. Survival Distribution Types 

In many studies, survival times are modeled without specifying the 

distribution. However, there are several studies in literature that utilize survival 

distributions such as Weibull, Gamma, Log-Normal, Gompertz, Piecewise-Constant 

(15, 41, 42). Within the context of this thesis, Piecewise-Constant Distribution is 

used in the survival part of the joint model in all analyzes. Hence, this distribution is 

explained briefly. 

2.11.1. Piecewise Constant Distribution 

 

In this study, Piecewise Constant Distribution is utilized in survival part 

because of its ease in practice and allowance to flexibility while modeling. In this 

distribution, survival times are separated into pieces. The basic assumption of this 

distribution is that the hazard ratio in each piece is constant but hazard ratios of inter-

pieces are different. Quartiles of survival times are used in constructing the pieces. 

The baseline hazard function is formulated as follows when piecewise constant 

function is used for modeling survival times: 
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                                                  ℎ0(𝑡) = ∑ξ𝑞𝐼(𝑣𝑞−1 < 𝑡 ≤ 𝑣𝑞)

𝑄

𝑞=1

                               (2.29) 

In the formula, 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑄 indicates the order of survival times of 

subjects from minimum to maximum; and  
Qv , is the time period which is greater 

than the longest survival time. On the other hand,  ξ𝑞  indicates hazard in the interval 

of  (𝑣𝑞−1,𝑣𝑞] . q refers to number of pieces (4). 

 

In this thesis Piecewise-Constant Distribution is used as a survival 

distribution option for modeling process of both of the biomarkers. 

2.12. Diagnostic Performance in Joint Modeling Approach 

 

In longitudinal studies, the diagnostic performances of biomarkers are mostly 

determined by means of time-dependent AUC values. Moreover, time-dependent 

sensitivity and time-dependent specificity values are obtained as diagnostic accuracy 

measures in order to determine the specificities and sensitivities of the serial 

biomarker values over the follow-up period. 

 

Rather than using raw serial biomarker measurements, survival probabilities 

are used in determining the diagnostic accuracy of repeated biomarker 

measurements. Provided that π is the survival probability of an subject who had 

longitudinal biomarker information until time t,  π≤c (c is a specified cut-off value in 

[0,1] interval) is the probability of “developing the event” within the time interval 

t+Δt; and π>c is described as “censored subject”. Under these information, time-

dependent specificity and time-dependent sensitivity for varying values of c are 

formulated as follows: 

 

                      td-Sens =  Pr{πj(𝑡 + ∆𝑡|𝑡) ≤ 𝑐|Tj
∗𝜖(𝑡, 𝑡 + ∆𝑡]}                               (2.30)  

                      td-Spec =   Pr{πj(𝑡 + ∆𝑡|𝑡) > 𝑐|Tj
∗ > 𝑡 + ∆𝑡}                                 (2.31) 
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By means of these values, it could be possible to determine the time-

dependent AUC value, which indicates the discrimination ability of the biomarker of 

the subjects at risk and subjects without the risk of the event within the time interval 

t+Δt using longitudinal information which were taken up to time t. The formula of 

time-dependent AUC is given below: 

     𝐴𝑈𝐶(𝑡, ∆𝑡) = Pr[πi(𝑡 + ∆𝑡|𝑡) < πj(𝑡 + ∆𝑡|𝑡)|{𝑇𝑖
∗𝜖(𝑡, 𝑡 + ∆𝑡]} ∩ {𝑇𝑗

∗ > 𝑡 + ∆𝑡}]                   (2.32) 

where, i and j refer to comparable subjects, while 𝑇𝑖
∗ and 𝑇𝑗

∗ indicates the true 

event times for i
th

 and j
th

 subject, respectively. The time-dependent AUC value is 

calculated as in the same logic as classical AUC value. That is, for a specific time 

point t in the follow-up period, under the information of having two subjects, one of 

whom has the event at time interval t+Δt, and the other one survives during this 

interval, then the survival probability of a subject that has the event should be lower 

(25). 

The logic behind the calculation of time-dependent AUC values for 

longitudinal data is the same as the calculation of Harrell’s C index for survival data 

(43). Given that π1, π2,…,πn are the survival probabilities of the subjects and T1, T2, 

…,Tn are the survival times of these subjects, for a random pair, if the cases of πi < πj 

and Ti < Tj or πi > πj and Ti > Tj are met, then the the pair is named as concordant. 

On the other hand, if πi < πj and Ti > Tj or πi > πj and Ti < Tj ; then the pair is named 

as discordant. Under these information, discriminative accuracy of a biomarker at 

time t+Δt is obtained by using longitudinal information obtained up to time t, AUC 

(t, Δt), is the proportion of concordant pairs over all-possible pairs (concordant and 

discordant) at time t, in other words this measure can be described as sum of 

concordant subjects in both comparable and non-comparable subjects at time t : 

                                  𝐴𝑈𝐶̂(𝑡, ∆𝑡) = 𝐴𝑈𝐶̂1(𝑡, ∆𝑡) + 𝐴𝑈𝐶2̂(𝑡, ∆𝑡)                                (2.33) 

Formula for concordant pairs in comparable subjects at time t : 

𝐴𝑈𝐶̂1(𝑡, ∆𝑡) =
∑ ∑ 𝐼{𝜋̂𝑖(𝑡 + ∆𝑡|𝑡) < 𝜋̂𝑗(𝑡 + ∆𝑡|𝑡)} ∗ 𝐼 {Ω𝑖𝑗

(1)
(𝑡)}𝑛

𝑗=1;𝑗≠𝑖
𝑛
𝑖=1

∑ ∑ 𝐼 {Ω𝑖𝑗
(1)
(𝑡)}𝑛

𝑗=1;𝑗≠𝑖
𝑛
𝑖=1

                   (2.34) 
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where, 

Ω𝑖𝑗
(1)(𝑡) = [{𝑇𝑖 ∈ (𝑡, 𝑡 + ∆𝑡]} ∩ {𝛿𝑖 = 1}] ∩ {𝑇𝑗 > 𝑡 + ∆𝑡} 

Formula for concordant pairs in non-comparable subjects at time t due to 

censoring is given below: 

                   𝐴𝑈𝐶̂2(𝑡, ∆𝑡) =
∑ ∑ 𝐼{𝜋̂𝑖(𝑡 + ∆𝑡|𝑡) < 𝜋̂𝑗(𝑡 + ∆𝑡|𝑡)} ∗ 𝐼{Ω𝑖𝑗

(2)(𝑡)} ∗ 𝐾̂𝑛
𝑗=1;𝑗≠𝑖

𝑛
𝑖=1

∑ ∑ 𝐼 {Ω𝑖𝑗
(2)(𝑡)}𝑛

𝑗=1;𝑗≠𝑖
𝑛
𝑖=1 ∗ 𝐾̂

          (2.35) 

where, 

Ω𝑖𝑗
(2)(𝑡) = [{𝑇𝑖 ∈ (𝑡, 𝑡 + ∆𝑡]} ∩ {𝛿𝑖 = 0}] ∩ {𝑇𝑗 > 𝑡 + ∆𝑡} 

𝐾 = 1 − 𝜋̂𝑖(𝑡 + ∆𝑡|𝑇𝑖) 

In the above formulas, Ω𝑖𝑗
(1)(𝑡) and  Ω𝑖𝑗

(2)(𝑡) denote all the comparable and 

non-comparable subjects at time t, respectively, while 𝐾 represents the probability of 

the pairs which can not be used in calculation of  𝐴𝑈𝐶̂(𝑡, ∆𝑡) due to lack of event in 

the pair (43). 

As mentioned before, time-dependent sensitivity and time-dependent 

specificity for longitudinal data are calculated with the help of survival probabilities 

rather than raw biomarker values. However, these time-dependent diagnostic 

accuracy metrics can also be notated as a function of longitudinal information. These 

formulas are given below: 

“Success” or “Event” can be defined as: 

                                         𝑆𝑖(𝑡, 𝑘, 𝑐) = {𝑦𝑖(𝑠) ≥ 𝑐𝑠; 𝑘 ≤ 𝑠 ≤ 𝑡}                                  (2.36) 

“Censored subject” can be specified as: 

                                              𝐹𝑖(𝑡, 𝑘, 𝑐) = {𝑦𝑖(𝑠) < 𝑐𝑠; 𝑘 ≤ 𝑠 ≤ 𝑡}                             (2.37) 

𝑦𝑖(𝑠): the value of the biomarker taken at time s for subject i 
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cs : vector of threshold values 

k : past biomarker values 

Under these information, time-dependent sensitivity and time-dependent 

specificity can be defined as follows: 

Time – Dependent Sensitivity : 

𝑇𝑃𝑡
∆𝑡 = 𝑃𝑟{𝑆𝑖(𝑡, 𝑘, 𝑐)|𝑇𝑖

∗ > 𝑡, 𝑇𝑖
∗ ∈ (𝑡, 𝑡 + ∆𝑡]}                              

=
𝑃𝑟{𝑆𝑖(𝑡, 𝑘, 𝑐), 𝑇𝑖

∗ ∈ (𝑡, 𝑡 + ∆𝑡]|𝑇𝑖
∗ > 𝑡}

1 − 𝑃𝑟(𝑇𝑖
∗ > 𝑡 + ∆𝑡|𝑇𝑖

∗ > 𝑡)
                                                                   (2.38)  

Time – Dependent Specificity : 

 1 − 𝐹𝑃𝑡
∆𝑡 = 𝑃𝑟{𝐹𝑖(𝑡, 𝑘, 𝑐)|𝑇𝑖

∗ > 𝑡, 𝑇𝑖
∗ > 𝑡 + ∆𝑡}             

=
𝑃𝑟{𝐹𝑖(𝑡, 𝑘, 𝑐), 𝑇𝑖

∗ > 𝑡 + ∆𝑡|𝑇𝑖
∗ > 𝑡}

𝑃𝑟(𝑇𝑖
∗ > 𝑡 + ∆𝑡|𝑇𝑖

∗ > 𝑡)
                                                                        (2.39) 

Under the assumption of joint models, which states random effects bi underlie 

both the longitudinal and survival processes, numerators and denominators of these 

time-dependent diagnostic accuracy metrics are reformulated and they can be 

estimated with the help of Monte-Carlo simulation schemes. 

After the estimation of time-dependent sensitivity and time-dependent 

specificity, and under the information that c is the vector of as all possible thresholds 

in the study, time-dependent ROC Curve for longitudinal data can be formulated as 

follows: 

                                         𝑅𝑂𝐶𝑡
∆𝑡(𝑝) = 𝑇𝑃𝑡

∆𝑡 {[𝐹𝑃𝑡
∆𝑡]

−1
(𝑝)}                                     (2.40) 

In this formula p takes values between 0 and 1 and [𝐹𝑃𝑡
∆𝑡]

−1
(𝑝)  can be 

defined as the infimum value which mets the [𝐹𝑃𝑡
∆𝑡]

−1
(𝑝) =𝑖𝑛𝑓𝑐{𝑐: 𝐹𝑃𝑡

∆𝑡(𝑐) ≤ 𝑝} 

criteria (25). 
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3. MATERIAL AND METHOD 

 

Patients who were admitted to Hacettepe University Adult Intensive Care 

Units between January 2015 to March 2017 were included in the study. Data set was 

obtained by files of the subjects by using the database of Hacettepe University 

Hospital Informatıon System. (NUCLEUS). 

 

Patients’ age, gender and intensive care unit where they stay (emergency 

ICU, brain surgery ICU, general surgery ICU, internal diseases ICU, cardiology ICU, 

neurology ICU) along with C-reactive Protein (CRP) and Procalcitonin (PCT) 

biomarkers are recorded. Inclusion criteria are defined as age 18 or older, length of 

stay in any intensive care unit is at least 24 hours or longer; exclusion criteria is 

defined as having any additional disease (orthopedics, oncology, psychiatry etc.) 

 

One of the recorded biomarkers, CRP, is a protein, produced by liver and 

lipid cells. When there is an inflammation in the body, CRP value increases. Also 

this biomarker takes higher values in case of stress, trauma and infection (44-46). On 

the other hand, there are studies in literature indicating that this biomarker is a risk 

factor for cardiovascular diseases (47-48), while some studies describe CRP as an 

important marker for sepsis (49-50). 

 

The other biomarker Procalcitonin is synthezied in tiroid and known as pro-

hormone of calcitonin. It is un-measurable in healthy subjects, its values increase in 

case of infection in the body (51-52). Likewise CRP, this biomarker is also defined 

as the most promising marker for sepsis (53-54). This biomarker also has been 

reported to be mostly used to demonstrate the difference between viral and bacterial 

infections (55). 

 

To evaluate acute inflammatory response clinically, follow-up period is 

determined as 30 days in this thesis. 

 

The event of interest is determined as death in intensive care units, in other 

words the event is defined as ICU mortality. No specific cause of death was 
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determined for the event. That is, the death could be from CVD or infectional 

diseases could cause the death. Therefore, the event is defined as death from any 

cause in Adult Intensive Care Units (in hospital). 

 

This study was approved by the Hacettepe University non-interventional 

Clinical Studies Ethical Committee (Approval date: 14.03.2017, Number: 

GO:17/233) 

 

The descriptive statistics, univariate analysis and graphics were obtained 

using IBM SPSS Statistics version 22.0 from Hacettepe University and R Statistical 

Programming Language 3.4.3. Chi-Square Test is used for categorical variables, 

while Mann-Whitney U Test is used to compare the numerical and non-normal 

distributed variables between two groups. Kolmogorov-Smirnov Normality Test is 

used to determine whether the CRP and PCT measurements are normally distributed. 

Median values and minimum-maximum values along with mean and standard 

deviations for biomarkers are given as basic descriptive statistics. Since both of these 

biomarkers do not follow normal distribution (p<0.05), logarithmic transformation 

was applied. Kolmogorov-Smirnov normality test results revealed that even log-

transformed CRP and PCT values are not normally distributed (p<0.05). Therefore 

nonparametric hypothesis test is performed for the comparison of log-transformed 

CRP and PCT values in the analyses.   

 

CRP and PCT biomarkers are used in this thesis and their diagnostic values 

are evaluated throughout the follow-up period by means of Time-Dependent AUC 

(td-AUC) values obtained by joint models. Time-dependent ROC Curves are 

constructed for each biomarker to visualize the results. The dataset is formed by  

using Hacettepe University Hospital Information System (NUCLEUS), 

retrospectively. Age and gender information are recorded as basic demographic 

characteristics with serial CRP and PCT values. Two different datasets for each 

biomarker are created and two different joint models are used to obtain diagnostic 

accuracies. Each dataset has one longitudinal biomarker (CRP or PCT) and a 

survival outcome, which is ICU mortality. Part of these datasets are given for each 
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biomarker in Appendix-II and Appendix-III. Shared parameter models are utilized to 

link the two different data structures. Parameter estimates are obtained by MLE 

method. JM R package is used for constructing joint models, obtaining td-AUC 

values, td-Cut-Off values and drawing td-ROC curves (4). SurvivalROC R package 

is utilized for calculating td-AUC value for a single biomarker value taken at 

baseline (t=0) (56). Boot R package is used in obtaining confidence intervals of td-

AUC values by performing nonparametric percentile bootstrap method (57, 58). Boot 

package is also used to obtain standard errors for td-AUC values, Coefficient of 

Quartile Variation (CQV) (59) and Robust Coefficient of Variation (RCV) statistics 

are proposed for deciding the relevant cut-off value to discriminate subjects at risk 

and without risk of event of interest. Both of the CQV and RCV statistics are used to 

compare the variability of non-normal distributed samples.  

 

The formula of Coefficient of Quartile Variation is given below: 

                                                      𝐶𝑄𝑉 =
𝑄3 − 𝑄1
𝑄3 + 𝑄1

                                                           (3.1) 

where 𝑄3   and 𝑄1 refers to the third and first quartiles in the population, 

respectively. 

 

 When 𝑄1  and 𝑄3 are not known, their estimates are used in calculation of 

Coefficient of Quartile Variation. Given that 𝑞1 and 𝑞3 are estimates of 𝑄1 and 𝑄3, 

respectively, estimation of Coefficient of Quartile Variation is formulated below: 

                                                          𝑐𝑞𝑣 =
𝑞3 − 𝑞1
𝑞3 + 𝑞1 

                                                          (3.2) 

Moreover, semi-interquartile range to median ratio statistic, which can be 

considered as the robust alternative of Coefficient of Variation is also calculated 

along with CQV value in order to determine the most relevant cut-off point. 

 

Formula for semi- interquartile range to median ratio (Robust Coefficient of 

Variation (RCV)) is as follows: 
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                                                             𝑅𝐶𝑉 =

𝑄3 − 𝑄1
2
𝑀

                                                    (3.3) 

 

where  
(𝑄3 − 𝑄1)

2⁄   refers to semi-interquartile range and 𝑀 is median of the 

sample. 

rcv can be describes as estimator of RCV, and used when 𝑄1, 𝑄3and 𝑀 are 

unknown. Its formula is given below: 

 

                                                               𝑟𝑐𝑣 =

𝑞3 − 𝑞1
2
𝑚

                                                      (3.4) 

 

where  𝑞1 ,  𝑞3 and  𝑚 are estimators of  𝑄1, 𝑄3and 𝑀, respectively. 
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4. RESULTS 

Serial measurements of CRP of 457 subjects and serial values of PCT of 534 

subjects are analyzed. Basic descriptive statistics for recorded variables are given in 

Table 4.1a and Table 4.1b: 

Table 4.1a. Descriptive Statistics for C-reactive Protein (CRP) and 

Procalcitonin (PCT) Datasets in terms of status and gender 

Variable CRP n (%) Variable PCT n (%) 

Status 
Censored 322 (70.5) Status Censored 384 (71.9) 

Event 135 (29.5)  Event 150 (28.1) 

Gender 
Female 223 (48.8) Gender Female 251 (47) 

Male 234 (51.2)  Male 283 (53) 

 

Table 4.1b. Descriptive Statistics for baseline measurements of C-reactive 

Protein (CRP) and Procalcitonin (PCT) measurements, age and survival times 

in both datasets 

Biomarker Variable Median [Min, Max] Mean ± SD 

      CRP 

CRP (Untransformed) 8.850 [0.138, 57.500] 11.059 ± 9.759 

CRP (Transformed) 0.947 [-0.860, 1.760] 0.838 ± 0.487 

Age 69 [18, 96] 65.94  ± 17.524   

Survival Time 18 [2, 30] 21.42  ±  8.854 

     PCT 

PCT (Untransformed) 0.318 [0.001, 289.7]  5.168  ±  26.234 

PCT (Transformed) -0.498 [-3, 2.462] -0.305  ± 0.821 

Age 68 [18, 95] 65.34  ±17.812    

Survival Time 17 [1, 30] 20.88  ± 8.98 

 

Descriptive statistics for dead and censored subjects for each biomarker are 

given in Table 4.2a and Table 4.2b: 

Table 4.2a. Results of univariate analysis of categorical variables for CRP and 

PCT datasets 

   CRP 

 

Gender 

Status 
p -value 

Censored Dead 

Female 154 (47.8) 69 (51.1)  

0.547 Male 168 (52.2) 66 (48.9) 

   PCT 

 

Gender 

Status 
p -value 

Censored Dead 

Female 179 (46.6) 73 (48.7)  

0.700 Male 205 (53.4) 77 (51.3) 
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Table 4.2b. Results of univariate analysis of numerical variables for CRP and 

PCT datasets 

Biomarker Variable 
Median [Min, Max] 

p-value 
Censored  Dead 

 

CRP 

Age 68.5 [18, 95] 69 [18, 96] 0.180 

CRP 

(Untransformed) 
7.985 [0.148, 57.500] 11 [0.138,  47.700] 0.001 

CRP 

(Transformed) 
0.902 [-0.830, 1.760] 1.041 [-0.860, 1.679] 0.001 

Survival Time 18 [2, 30] 18 [2, 30] 0.436 

 

 

PCT 

Age 67 [18, 95] 71 [18, 95] 0.008 

PCT 

(Untransformed) 
0.230 [0.001, 289.7] 0.676 [0.055, 253.9] <0.001 

PCT 

(Transformed) 
-0.638 [-3, 2.462] -0.170 [-1.260, 2.405] <0.001 

Survival Time 18 [1, 30] 15 [2, 30] 0.038 

 

 

In the survival part, univariate Cox regression analysis is applied for each 

biomarker and variables with p<0.20 are aimed to include in the final Cox Model as 

potential factors. The univariate analysis results are given in the following table 

(Table 4.3.). 

Table 4.3. Results for univariate Cox Regression Analysis  

Biomarker Variable β SE (β) 
Hazard Ratio 

(Exp(β)) 
95% CI of Exp(β) p-value 

CRP 
Age 0.001 0.005 1.001 0.992 - 1.010 0.854 

Gender -0.051 0.172 0.951 0.678 - 1.332 0.768 

PCT 
Age 0.005 0.005 1.005 0.995 - 1.014 0.346 

Gender -0.024 0.163 0.976 0.709 - 1.344 0.882 

 

 

Results of the univariate Cox Regression suggest that there is not any factor 

that could affect the survival times of CRP and PCT biomarkers(p>0.05). Therefore, 

survival part is modeled without any factor, only using baseline hazards for both 

CRP and PCT. 
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Subject-specific longitudinal profiles for randomly selected 16 subjects for 

both of the samples of CRP and PCT PCT to help modeling the random effects of 

linear mixed-effects model for serial biomarker values. 

Figure 4.1a. Subject-specific longitudinal profiles of serial log-transformed CRP 

measurements for randomly selected 16 patients.  
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Figure 4.1b. Subject-specific longitudinal profiles of serial log-transformed PCT 

measurements for randomly selected 16 patients.  

 

In both of the figures, numbers on the top of each figure depict ID numbers 

for each subject.Figure 4.1a and Figure 4.1b. show that subjects-specfic profiles of 

either CRP or PCT have almost nonlinear trajectory over the follow-up period. 

Visually, quadratic function of time in random-effects part of the linear mixed effects 

model for both of the biomarkers is considered to be a plausible option. Moreover, 

random intercept+random slope models are also constructed for each biomarker to 

take the change in each subject within the period into account. Random 

intercept+random slope models are also considered as an alternative option for the 

comparison of  these models. 
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In the modeling of longitudinal CRP and PCT biomarkers, several modeling 

options are applied to data at hand for both fixed and random effects to find out the 

optimum model for both biomarkers. Akaike Information Criteria (AIC) and 

Bayesian Information Criteria (BIC) metrics and p-values are utilized for this 

purpose. 

 

For the random-effects part, two different modeling options, namely Random 

Intercept-Random Slope and Quadratic Random Effects, are applied. The random 

intercept-Random Slope model was constructed with the main effect of time both in 

fixed and random-effects part of the linear mixed-effects model. On the other hand 

quadratic random effects model was constructed bu using qjuadratic form as a 

function of time-points in random-effects part. Results are given below (Table 4.4.) 

Table 4.4. Results of Comparison of Two Different Models Applied to Random-

Effects Part of Longitudinal Sub-Model 

Biomarker Model AIC BIC LR Comparison of  LR p-value 

CRP 

Random 

Intercept+Random Slope 
2125.921 2160.690 -1056.960   

Quadratic Random Effects 2021.285 2073.439 -1001.643 110.6355 <0.0001 

PCT 

Random 

Intercept+Random Slope 
5349.765 5385.508 -2668.882   

Quadratic Random Effects 5177.135 5230.75 -2579.567 178.6299 <0.0001 

 

Quadratic random effects models are chosen for both CRP and PCT 

biomarkers since these models have smaller AIC and BIC values, which means 

quadratic random effects model option fits both of the CRP and PCT datasets better 

than the random intercept-random slope model alternatives. 

 

AIC, BIC and Likelihood Ratio (LR) values are given for both fixed and 

random effects of the longitudinal model in the following table (Table 4.5): 
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Table 4.5.  Model Selection Measures for Each Model Applied to Fixed-Effects 

Part of Longitudinal Sub-Model 

Biomarker Model 

Model Selection Measures 

AIC BIC LR 

CRP 

time 2021.285 2073.439 -1001.643 

time+age 2032.347 2090.291 -1006.174 

time+gender 2026.823 2084.767 -1003.412 

time*age 2045.454 2109.188 -1011.727 

time*gender 2037.419 2101.153 -1007.709 

time*(age+gender) 2061.668 2136.979 -1017.834 

PCT 

time 5177.135 5230.75 -2579.567 

time+age 5189.647 5249.215 -2584.823 

time+gender 5182.364 5241.932 -2581.182 

time*age 5199.653 5265.175 -2588.827 

time*gender 5190.543 5256.065 -2584.272 

time*(age+gender) 5213.405 5290.830 -2593.703 

 

Other than model selection criteria, p-values are also utilized to help select 

the best model that fits the data most in the fixed-effects part. Following table 

indicates all the models applied for fixed-effects part and p-values of the variables in 

these models. 
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Table 4.6. Coefficients and p-values for each model applied to Fixed-Effects 

Part of Longitudinal Sub-Model 

Biomarker Model Variables β SE(β) p-value 

CRP 

time time -0.0030 0.0016 0.0374 

time+age time -0.003 0.0016 0.0342 

 
age 0.002 0.001 0.093 

time+gender time -0.003 0.0016 0.0371 

 
gender 0.041 0.039 0.2923 

time*age time -0.0180 0.0064 0.0042 

 
age 0.0003 0.0012 0.7887 

 
time:age 0.0002 0.00009 0.0163 

time*gender time -0.002 0.002 0.4525 

 
gender 0.0642 0.045 0.1559 

 
time:gender -0.003 0.003 0.3068 

time* time -0.017 0.0067 0.0133 

(age+gender) age 0.0004 0.00125 0.7236 

 
gender 0.0650 0.045 0.1503 

 
time:age 0.0002 0.00009 0.0194 

 
time:gender -0.003 0.0032 0.4147 

PCT 

time time -0.0078 0.0366 0.003 

time+age time -0.0078 0.00262 0.0027 

 
age 0.0011 0.0016 0.4653 

time+gender time -0.0077 0.0026 0.0031 

 
gender 0.0463 0.0579 0.4233 

time*age time -0.0352 0.01 0.0005 

 
age -0.0022 0.002 0.2639 

 
time:age 0.0004 0.0001 0.0048 

time*gender time -0.0035 0.003 0.3522 

 
gender 0.1168 0.0733 0.1114 

 
time:gender -0.0083 0.0052 0.1133 

time* time -0.0310 0.143 0.1504 

(age+gender) age -0.0020 0.002 0.2964 

 
gender 0.1140 0.073 0.1204 

 
time:age 0.0004 0.0001 0.006 

 
time:gender -0.0075 0.0051 0.145 

 

 

Results revealed that, both of the biomarkers should be modeled with the 

main-effects of time and age and their interaction term time*age since main effecs of 

time and time*age interaction term are statistically significant in both CRP and PCT 

samples (p<0.05).  Variance-covariance matrix of random-effects and standard error 
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of the linear mixed-effects models are also given for linear mixed-effects models for 

both CRP and PCT samples (Table 4.7). 

Table 4.7. Variance-covariance matrix of random-effects in linear mixed-effects 

models for CRP and PCT 

 

CRP 

 
Intercept time time

2
 

Intercept 0.241 -0.017 0.000434 

time -0.017 0.0036 -0.0001 

time
2
 0.000434 -0.0001 0.00000343 

σ = 0.2520431 

   PCT 

 Intercept time time
2
 

Intercept 0.681 -0.0442 0.000859 

time -0.0442 0.00977 -0.0003 

time
2
 0.000859 -0.0003 0.0000124 

σ = 0.4096713 

 

 

After the modeling processes of survival and longitudinal data final  joint  

models are formulated as follows for both of the biomarkers: 

 

   ℎ𝑖(𝑡) = ℎ0(𝑡)[α{𝛽0 + 𝛽1 ∗ time + 𝛽2 ∗ age + 𝛽3time ∗ age + 𝑏0 + 𝑏1 ∗ time

+ 𝑏2 ∗ (𝑡𝑖𝑚𝑒)
2}]                                                                                                 (4.1)  

 

Results of joint models are given in following table for both of the 

biomarkers (Table 4.8a and Table 4.8b). 
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Table 4.8a. Coefficients, standard errors, p-values and goodness of fit statistics 

of  joint models for both CRP and PCT  

Biomarker Process Variable β SE (β) p-value 

CRP 

 

Longitudinal 

  

Intercept 0.8082 0,0845 <0.0001 

time -0.0181 0.0065 0.0049 

age 0.0003 0.0012 0.8025 

time*age 0.0002 0.0001 0.0171 

Survival 

 0.0338 0.0156 0.0296 

log (xi.1) -5.0018 0.2186  

log (xi.2) -4.1232 0.236  

log (xi.3) -4.3704 0.2298  

log (xi.4) -3.9563 0.1937  

log (xi.5) -3.772 0.2113  

log (xi.6) -3.7413 0.3365  

log (xi.7) 11.9553 0.2401  

σ = 0.2521199 

AIC = 2822.321,  BIC = 2900.69 

PCT 

 

Longitudinal 

  

Intercept -0.1301 0.1353 0.3363 

time -0.0358 0.0100 0.0003 

age -0.0024 0.0020 0.2394 

time*age 0.0004 0.0001 0.0034 

Survival 

 0.0247 0.0109 0.0235 

log (xi.1) -5.0257 0.2236  

log (xi.2) -4.0087 0.1826  

log (xi.3) -4.1978 0.2238  

log (xi.4) -3.8772 0.1927  

log (xi.5) -3.9117 0.1895  

log (xi.6) -3.4461 0.2782  

log (xi.7) 11.5741 0.2899  

σ = 0.4094836 

AIC = 6327.039,  BIC = 26408.367 
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Table 4.8b. Variance-covariance matrix of random-effects in joint models for 

CRP and PCT 

CRP 

 
Intercept time time

2
 

Intercept 0.238 -0.0168 0.000423 

time -0.0168 0.0036 -0.0001 

time
2
 0.00042 -0.0001 0.0000034 

    PCT 

 Intercept time time
2
 

Intercept 0.669 -0.043 0.000833 

time -0.043 0.0098 -0.0003 

time
2
 0.000833 -0.0003 0.0000125 

 

Both of the models have statistically significant time main-effect and 

time*age interaction terms in fixed-effects models. Moreover, either serial CRP 

values or repeated PCT measurements are shown to have an effect on ICU mortality. 

Their effects are found as statistically significant (p<0.05). 

4.1.Evaluating Diagnostic Performances of Serial CRP and PCT Values 

Time-dependent AUC values are used as diagnostic performance measures of 

CRP and PCT biomarkers to be able to distinguish subjects with and without risk of 

death at Intensive Care Units at the end of the follow-up period, 30 days. 

 

To assess the diagnostic values of repeated measurements of these 

biomarkers, several cut-off points are defined. The objective is to be able to evaluate 

the change in time-dependent diagnostic accuracy values under these different cut-

off points. Utilizing serial biomarker values taken up to these cut-off points, 

determining the discriminative ability of the  CRP and PCT biomarkers at the end of 

follow-up period is aimed. The first cut-off point option is considering the median of 

time points that the serial biomarker values are taken within the period. It’s observed 

that about half of the measurements are taken at around 7
th

 and 6
th

 day for CRP and 

PCT biomarkers, respectively. Until 7
th

 day, mean of 2.932 and median of 3 CRP 

measurements per subject are taken, while until 6
th

 day, mean of 2.702 and median of 

3 measurements of PCT are taken from per subject. Time-dependent diagnostic 

accuracy metrics are calculated using measurements up to 7
th

 day for CRP, and while 

measurements taken up to 6
th

 day for PCT are used to predict ICU mortality at 30
th
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day. Another cut-off point consideration would be taking into median of survival 

times of the subjects into account. For CRP, approximately half of the subjects are 

observed to survive 18 days and for PCT, about half of the subjects are observed to 

survive 17 days. Until 18
th

 day, median of 3 and mean of 3.735 CRP measurements 

are taken from per subject. On the other hand for PCT, median of 3 and mean of 

3.808 measurements are taken per subject until 17
th

 day. Utilizing measurements 

taken until 18
th

 day and 17
th

 day for CRP and PCT biomarkers, their predictive 

abilities at the end of follow-up period are also determined. Moreover, 95% 

confidence intervals, which are obtained by performing nonparametric percentile 

bootstrap approach along with time-dependent AUC values are given to indicate 

whether observed accuracies are statistically significant. 

 

In this part, only two cut-off options are specified and their results are 

interpreted. However, taking more threshold alternatives into account and comparing 

the variation of these points would also be possible. 

 

All these descriptive statistics of the measurements and time-dependent AUC 

values with corresponding  95% confidence intervals are summarized in Table 4.9. 

           4.2. Comparison of Single vs. Serial Biomarker Measurements in 

Predicting Time-to-Event Outcome 

In health studies, usually a single biomarker measurement is taken from 

subjects and this single value is used in making diagnosis. However, in many 

situations in clinics, the single measurement may not be sufficient to diagnose. 

Having longitudinal biomarker information of the subjects and being able to screen 

the variability of these values over the follow-up period are considered to be more 

effective way for making more reliable diagnoses.  In such situations, rather than 

taking a single measurement, taking serial measurements of the biomarkers to 

determine the optimum treatment for subjects or to make a diagnosis are much more 

preferred due to these aforementioned advantages. 

 

Within the context of the study, comparing the diagnostic values of the single 

measurement taken at the baseline (t=0) and serial biomarker measurements taken 
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within the follow-up period are intended to determine the efficiacy of a single 

biomarker value in diagnosis process. Joint Modeling Approach with cumulative 

effects parameterization is used for modeling serial biomarker values, while Cox 

Regression Model is performed for modeling single biomarker values taken at 

baseline (t=0). Single and serial biomarker values are compared by means of time-

dependent AUC values. p-values are calculated as a comparison criteria for these 

AUC values in this study, results obtained from 1000 bootstrap samples are given. 

Confidence intervals are also constructed in order to indicate whether the time-

dependent AUC values are statistically significant. To calculate the p-values, firstly 

z-statistic is calculated. Then p-value is obtained with the help of z-statistic.  The 

formula for calculation of z-statistic is given below: 

                                    𝑧 =
𝜃1 − 𝜃2

√𝑣𝑎𝑟(𝜃1
∗) + 𝑣𝑎𝑟(𝜃2

∗) − 2 ∗ 𝑐𝑜𝑣(𝜃1
∗, 𝜃2

∗)
                           (4.2) 

where 𝜃1 is the point-estimate of td-AUC value for CRP, and 𝜃2 is the point-estimate 

for PCT. 𝑣𝑎𝑟(𝜃1
∗) and 𝑣𝑎𝑟(𝜃2

∗) values are variances of td-AUC values obtained from 

1000 bootstrap sample for CRP and PCT, respectively. Formula (4.2) is also used in 

comparison of single and serial biomarkers values. In that case 𝜃1   is the point-

estimate of td-AUC obtained from single biomarker value, and 𝜃2  is the point-

estimate for td-AUC of the serial biomarker measurements.  𝑐𝑜𝑣(𝜃1
∗, 𝜃2

∗)  term 

indicates the covariance between these td-AUC values. Even though there are serial 

CRP values of 457 subjects and serial PCT measurements of 534 subjects in the 

study, there are 264 subjects that have serial CRP and PCT measurements taken at 

the same time-points. For the CRP-PCT biomarker comparison, measurements of 

these 264 subjects are considered to create the dependency. Even in the comparison 

of td-AUC values obtained from the same biomarker, dependence structure is 

considered to be observable since same measurements will be used in the calculation 

of td-AUC statistic. For example, for the CRP biomarker, obtaining of td-AUC value 

using measurements up to 18
th

 day (cut-off point is median of survival times) will 

include all the time points up to day 18. For instance measurements up to 7
th

 day will 

be included in that calculation, therefore, td-AUC values obtained from 



52 

 

measurements up to 7
th 

days and up to 18
th

 day are expected to have dependencies 

since same measurements will be using in calculation. 

 

However,  𝑐𝑜𝑣(𝜃1
∗, 𝜃2

∗)  value is assumed to be 0  and all comparisons in this 

thesis are made by ignoring the covariance term in formula  (4.2). 

 

The results are given below: 

Table 4.9. Cut-Off Points, basic descriptive statistics for number of 

measurements, diagnostic performances of serial CRP and PCT values, their 

standard errors  and 95% confidence intervals  

Biomarker Cut-off point(t) Mean Median td-AUC ± SE 95% CI of td-AUC 

CRP 7 2.702 3 0.489 ± 0.026 0.427 - 0.531 

CRP 18 3.735 3 0.570 ± 0.034 0.476 - 0.615 

PCT 6 2.932 3 0.456 ± 0.022 0.422 - 0.512 

PCT 17 3.808 3 0.547 ±0.032 0.509 - 0.632 

 

Table 4.10. Basic descriptive statistics for number of measurements and 

diagnostic performances of single CRP and PCT values taken at baseline(t=0), 

their standard errors  and 95% confidence intervals  

 

Table 4.9 is created as minimum to maximum value of cut-off points to be 

able to interprete the results more readily. Statistically significant time-dependent 

diagnostic accuracy values are also highlighted to indicate their significance. 

It is observed that for both cut-off points options, both of diagnostic 

performances of serial CRP and PCT values are found as moderate for ICU patients 

in predicting death at the end of follow-up period. Even though there are diagnostic 

performance values below 0.5 for both biomarkers, they are obtained in earlier time-

points of the follow-up period, therefore these low diagnostic values can be 

attributed to lack of longitudinal information of either CRP or PCT (Table 4.9.). On 

the other hand, diagnostic accuracies are found to be higher in case of taking 

Biomarker 
Baseline 

Measurement (t=0) 
Mean Median td-AUC ± SE 95% CI of td-AUC 

CRP 0 1 1 0.547 ± 0.034 0.478 - 0.618 

PCT 0 1 1 0.645 ± 0.027 0.589 - 0.695 
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medians of survival times of the biomarkers as cut-off point for both CRP and PCT 

compared to consideration of taking the medians of the time-points as the cut-off 

option.  At the end of day 30, diagnostic accuracies are found to be 0.547 and 0.570 

for PCT and CRP, respectively for survival-time cut-off, whereas they are 0.489 and 

0.456 for CRP and PCT, respectively for time-points cut-off. For biomarker 

comparison, serial CRP values are observed to have slightly higher diagnostic 

performance than those of PCT in both of the cut-off options. Confidence intervals 

for survival-time cut-off shows that time-dependent AUC of CRP is not statistically 

significant since its confidence interval includes 0.5, while discriminative ability of 

PCT is statistically significant since its confidence interval does not include 0.5.  On 

the other hand in case of using time-points as cut-off option, diagnostic accuracies of 

serial CRP and serial PCT values are not statistically significant since their intervals 

include 0.5. 

 

Diagnostic performances of single biomarker value taken at baseline (t=0) 

indicates that PCT has better discrimination ability compared to CRP (td-

AUCbaseline=0.645 for PCT and td-AUCbaseline=0.547 for CRP). Baseline 

measurements of PCT values can be considered as measurements taken before 

anthibiotic or drug treatment. Hence, the reason for this relatively higher diagnostic 

performance of PCT can be consequence of this situation. For the confidence interval 

perspective, it’s observed that confidence interval of CRP includes 0.5,  meaning that 

this value is not statistically significant, while time-dependent diagnostic accuracy 

for PCT is statistically significant since its confidence interval does not include 0.5 

(Table 4.10.). 

 

For the interval width comparison, CRP has the tighter confidence interval 

than PCT in single and serial measurements case and for both survival time cut-off 

and time-points cut-off options (Table 4.9. and Table 4.10.). 

 

Furthermore, within the context of the study, diagnostic values of serial and 

baseline biomarker values are compared to determine whether a single biomarker 

value is effective in predicting the event of interest at the end of follow-up period. 
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For this purpose, p-values are given as a comparison criteria. Results are shown in 

the following tables: 

Table 4.11a. Comparison of time-dependent AUC of single and serial values of 

CRP and PCT Biomarkers 

 Biomarker 

Time-Dependent  AUC 
 

p-value Baseline 
Serial 

 (cut-off is survival time) 

CRP 0.547 0.570 0.628 

PCT 0.645 0.547 0.018 

 

Biomarker 

Time-Dependent  AUC 
 

p-value Baseline 
Serial  

(cut-off is time-points) 

CRP 0.547 0.489 0.180 

PCT 0.645 0.456 <0.001 

 

Biomarker 

Time-Dependent  AUC 
 

p-value Serial 

 (cut-off is survival time) 

Serial 

 (cut-off is time-points) 

CRP 0.570 0.489 0.064 

PCT 0.547 0.456 0.020 

 

Table 4.11b. Comparison of time-dependent AUC values of CRP and PCT 

Biomarkers 

Measurement 
Time-Dependent  AUC 

p-value 
CRP PCT 

Baseline 0.547 0.645  0.022 

Serial (cut-off is survival time) 0.570 0.547  0.619 

Serial (cut-off is time-points) 0.489 0.456 0.352 

 

 

In case of median of survival time of the biomarkers is utilized as cut-off 

point, there is not a statistically significant difference between single and serial 

measurements for CRP (p=0.628); whereas there found to be a statistically 

significant difference between single and serial measurements for PCT (p<0.05). In 

case of median of time-points of the biomarkers is used as cut-off point, no 

statistically significant difference between single and serial CRP values is observed 

(p=0.180), while there found to be a statistically significant difference between 

single and serial values of PCT (p<0.05). For the comparison of repeated biomarker 

values, there is no statistically significant difference between serial values of CRP 
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(p=0.064), however for PCT biomarker, statistically significance was found between 

serial values (p<0.05) (Table 4.11a) 

 

Moreover, there exist a statistically significant difference between time-

dependent AUC values obtained from the single measurement of CRP and 

PCT(p<0.05). For serial measurements, even though it seems that diagnostic 

accuracy of serial CRP measurements slightly higher than PCT, no statistically 

significant difference is found between these values (p=0.619) when median of 

survival times is taken as cut-off point. In case of median of time-points is taken as 

cut-off, also no statistically significant difference between time-dependent AUC of 

serial CRP and PCT values is found (p=0.352) (Table 4.11b).   

 

Numerical results are visualized to make easier to interpret. The following 

two figures also suggest that there is no difference in diagnosing between taking a 

single biomarker value or utilizing serial values for CRP biomarker. On the other 

hand, a single PCT value seems sufficient to predict the death at ICU at the end of 

follow-up. However, biomarker-based figure indicates that PCT is a better biomarker 

in terms of diagnostic accuracy at the end of follow-up period than CRP in cases of 

using single measurement, while serial CRP values have better diagnostic accuracy 

comparing to serial PCT values in predicting the event of interest in case of median 

of survival times is used as cut-off point.  Moreover, the lowest diagnostic accuracies 

are observed when cut-off point is taken as median of time-points for both 

biomarkers in both single and serial measurement cases. (Figure 4.1.) 
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Figure 4.2. Diagnostic Performances of Baseline and Serial Measurements of 

CRP and PCT 

4.3. Assessing the Diagnostic Performance Throughout the Follow-up 

Period 

 

Another objective in this study is to evaluate the diagnostic performances of 

serial biomarker values taken throughout the follow-up period. By this way assessing 

the change of the diagnostic accuracies for both of the biomarkers along the period is 

aimed. For this reason the basic descriptive statistics (first quantile-Q1, second 

quantile (median)-Q2, mean and third quantile-Q3) for the time points that the 

repeated measurements were taken are obtained.  Since these descriptive statistics of 

the time-points can be interpreted as cut-off point on which to base td-AUC 
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calculations, this section can be thought of the extension of Section 4.1, which has 

the results of time-dependent diagnostic accuracies of  two cut-off points within the 

period. However, unlike the section 4.1, this section focus mostly on the change in 

time-dependent diagnostic accuracies of each biomarker within the period. Therefore 

no attempt was made to focus on to statistically compare these values between 

biomarkers. In taking these descriptive statistics, baseline measurements that were 

taken at time t=0 are excluded for both of the biomarkers and these basic descriptives 

are calculated with the remaining time-points. The reason for excluding the baseline 

measurements is to better analyze the densely-measured time-points within the 

follow-up period. In other words, it would be possible to determine the time-points 

where the most of the measurements are collected more clearly with the exclusion of 

baseline measurements. For example, if baseline CRP measurements of 457 subjects, 

in other words each t=0 of 457 subjects included into the calculation, it will enlarge 

the total number of measurements, then the mean of time-points that the 

measurements are taken will be calculated smaller than which was supposed to be. 

As for the PCT biomarker, including the baseline measurements of each 534 subjects 

into the calculation will reduce the mean of the time-points. In other words, since the 

arithmetic mean is affected by the outliers in the dataset, including the baseline 

measurements, namely 0 of 457 subjects from CRP sample and 0 of 534 subjects 

from PCT sample is considered to affect the results of descriptive statistics of the 

time-points. Besides, other than the arithmetic mean, inclusion of these baseline 

measurements would also be considered to have an effect on calculation of especially 

earlier time-points, for example, the first quantile of the time-points will be 

calculated smaller than which was supposed to be for both CRP and PCT, since too 

many 0’s will be included into the calculation of this statistic. 

 

Basic descriptive statistics of the time-points that repeated measurements are 

taken are calculated in an attempt to better evaluate the time-dependent diagnostic 

accuracies of CRP and PCT biomarkers at these aforementioned time-points. 

Following table (Table 4.12.) includes mean and median values of repeated 

biomarker measurements and discrimination abilities of CRP and PCT on the 30
th

 

day by using measurements up to  time t. t refers to quartiles and mean values of 
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time-points which repeated measurements are taken, after excluding baseline 

measurements of both of the biomarkers. As mentioned before, these descriptive 

statistics for time-points are calculated solely to better evaluate densely-measured 

time-points. However, joint models are constructed using all time-points -including 

baseline measurements- for assessing the diagnostic values at these aforementioned 

time points.  

Table 4.12. Basic Descriptive Statistics for Number of Repeated Measurements 

of CRP and PCT Biomarkers and Corresponding Time-Dependent Diagnostic 

Accuracies along with standard errors 95% Confidence Intervals 

Biomarker Statistics time (t) Mean Median td-AUC  SE %95 CI of td-AUC 

    CRP 

Q1 4 1.424 1 0.455  0.024 0.396 - 0.497 

Q2 9 2.389 2 0.504  0.027 0.451 - 0.554 

Mean 11 2.733 3 0.524 ± 0.029 0.472 - 0.590 

Q3 16 3.299 3 0.530  0.032 0.474 - 0.603 

       PCT 

Q1 4 1.460 1 0.412  0.020 0.380 - 0.464 

Q2 8 2.293 2 0.509  0.022 0.458 - 0.545 

Mean 10 2.623 2 0.502  0.024 0.460 - 0.559 

Q3 15 3.307 3 0.553  0.029 0.505 - 0.622 

 

It’s observed that 25% of the CRP measurements are taken within the 4 days 

of the follow-up. Until the first 4 days, mean of 1.424 and median of 1 CRP 

measurements are taken from per subject. On the other hand half of the 

measurements of CRP are taken within the 9 days with mean of 2.389 and median of 

2 per subject. Mean of time-points for CRP is found as 11 days. and until 11
th

 day. 

mean of 2.733 and median of 3 CRP measurements are taken from per subject. 75% 

of the CRP measurements are taken within the 16 days with mean of 3.299 and 

median of 3 per subject. 

The same-increasing-pattern are observed also for the PCT biomarker. That 

is, 25% of the measurements are taken within the 4 days of the follow-up. Until the 4 

days,  mean of 1.46 and median of 1 PCT measurements are taken from per subject.  

Moreover, half of the measurements are taken within the 8 days, with mean of 2.293 

and median of 2 from per subject . Mean of time-points for PCT is found as 10 days. 

and until 10
th

 day, mean of 2.623 and median of 2 PCT measurements are taken from 
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subjects. Within the 15 days, 75% of the PCT measurements are taken with mean of 

3.307 and median of 3 per subject. 

 

After analysing the mean and median values for both of the biomarkers, it is 

observed that longitudinal information is in increasing-trend throughout the period. 

With the help of the basic descriptives for the time-point of CRP and PCT, it could 

be possible to determine the diagnostic performances of serial biomarker values in 

predicting death in ICU throughout the follow-up period, in this manner it could be 

also possible to indicate which biomarker is better in predicting ICU mortality at pre-

specified time-points. As seen in previous parts, predictive abilities of the biomarkers 

are determined by means of time-dependent AUC values. Moreover, corresponding  

95% confidence intervals along with standard errors are given for these time-

dependent diagnostic accuracies to indicate their statistical significances. 
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Figure 4.3. Time-Dependent Diagnostic Accuracies of CRP and PCT 

Biomarkers throughout the Follow-up Period 

Table 4.12 and Figure 4.3. suggest that diagnostic accuracies for both 

biomarkers within the follow-up period are in moderate level they are in increasing 

trend as longitudinal information increases. However, the increase in time-dependent 

AUC value of PCT is clearer compared to CRP. Earlier time-points and central time-

points of the period, time-dependent diagnostic accuracies are found almost the same 

for both of the biomarkers, however at later time-points serial PCT values are 

observed to have better diagnostic performance compared to CRP. Moreover, the 

increase in diagnostic values of PCT biomarker within the follow-up period are 

higher than that of CRP,  which indicates more stable profile for CRP than PCT in 
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terms of diagnostic accuracies over the period. Even though serial PCT values give 

higher diagnostic values at later time-points, by combining the results of the Section 

4.1, we reach the conclusion that the highest diagnostic performance is observed in 

case of using serial CRP measurements when cut-off point is taken as median of 

survival times. Therefore, we limit taking serial measurements of PCT biomarker to 

later time-points, while no restriction can be defined for repeated measurements of 

CRP since they are observed to perform better compared to serial measurements of 

PCT in overall. Moreover, confidence intervals reveal that none of the diagnostic 

performances of CRP throughout the follow-up period are statistically significant (all 

of them include 0.5); on the other hand confidence intervals of PCT suggest that 

earlier time-dependent diagnostic accuracies are not statistically significant 

(confidence intervals include 0.5), on the other hand last time-dependent AUC which 

is the closest one to the end of follow-up period is statistically significant, since its 

interval does not include 0.5. Results suggest that as the longitudinal information 

increases, the confidence intervals become wider for CRP; however widths of 

intervals are almost the same throughout the period for PCT. (Table 4.12 and  Figure 

4.3.). 

 

These results suggest that as the longitudinal information increases, 

diagnostic accuracy in predicting the risk of death at the end of follow-up period is 

observed to increase for both CRP and PCT. However, these results also suggest that 

diagnostic perfomances are increasing throughout the follow-up period, which means 

that time-points closer to end of the follow-up period have higher diagnostic 

performance compared to earlier time-points. Therefore, there is no clear explanation 

about whether increasing-trend in longitudinal information or closer time-points to 

the end-of follow-up period increases the diagnostic accuracy. Hence, this topic is 

considered to  need further study. 

 

As mentioned at the beginning of this section, the increase of both of the 

biomarkers within the period are not statistically tested on the grounds that the focus 

is mostly on the evaluation of accuracies over the period rather than comparison. 
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Therefore, results for this section can be thought of intuitive and open-to-

interpretation.  

4.4. Obtaining the Optimum Cut-Off Value  

 

One of the objectives in using ROC Curves is to obtain cut-off values to 

distinguish event and event-free subjects. When time dimension is incorporated into 

classical ROC Curve, it could be possible to obtain time-dependent cut-off values. In 

this section time-dependent cut-off values for discriminating subjects at risk and 

without the risk of death at the end of follow-up period are determined for both 

biomarkers.. Given the previously fitted joint model (4.1) and covariate information 

𝑥𝑖 for i
th

 subject in the sample, Monte Carlo Simulation Scheme is performed in the 

calculation of the cut-off value. The Monte Carlo simulation steps are explained 

below: 

 

1. Simulating new parameter values, 𝜃∗, from N(𝜃,̂  𝐶(𝜃)).  𝜃s are Maximum 

Likelihood Estimates and C( 𝜃 ) is the covariance matrix, and both 

parameter estimates and covariance matrix are taken from previously 

fitted  joint model given in (4.1). 

2. Simulating possible longitudinal history,  𝑦̃𝑖(𝑡), based on the previous 

fitted joint model given in (4.1) 

3. Simulating random effects, 𝑏𝑖
∗  , using longitudinal information and 

parameter estimates which were calculated in the previous steps and 

conditioning on 𝑇𝑖
∗ > 𝑡. Estimation of these random-effects are based on 

Metropolis-Hastings algorithm (25). 

4. Based on 𝜃∗ ,  𝑦̃𝑖(𝑡) , 𝑏𝑖
∗ and 𝑥𝑖 , survival probabilities 

Pr(𝑇𝑖 > 𝑢|𝑇𝑖 > 𝑡, 𝑏𝑖
∗, 𝑥𝑖; 𝜃

∗) are calculated for each subject in the sample. 

5. With the help of survival probabilities, time-dependent sensitivity, time-

dependent specificity and corresponding cut-off values are calculated for 

each subject. 

 

This scheme is repeated 1000 times. Means of time-dependent sensitivity, 

time-dependent specificity metrics and cut-off values that were obtained by 
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maximizing the product of those mean-of- time-dependent sensitivity and mean-of- 

time-dependent specificity are also given for either CRP or PCT biomarker (4, 25).  

 

rocJM function  in JM package (4) is used to calculate the cut-off values 

and corresponding time-depending sensitivity and time-dependent specificity values 

with the help of Monte Carlo simulation process. Even though the simulation 

procedure needs only the covariate information of the subjects, following figures and 

tables are given in order to either explain the longitudinal information and 

longitudinal profile of each biomarker in detail or to help select the most appropriate 

subject with the covariate information for which prediction of cut-off values and 

time-dependent diagnostic accuracy metrics are required. 

 

Following tables (Table 4.13. and Table 4.14.) includes descriptive statistics 

for number of repeated biomarkers along with basic descriptive statistics for these 

repeated biomarker measurements Table 12 revealed that minimum 2, maximum 18 

CRP measurements are taken within 30 days, while for PCT biomarker they are 2 

and 19, respectively.  Means of approximately 5 measurements are taken from both 

of the biomarkers, whereas medians of the measurements taken within the follow-up 

period are found as 4 for either CRP or PCT. 25% of the both CRP and PCT 

measurements are equal or less than 3, while 75% of the measurements are equal or 

less than 7 for both of the biomarkers (Table 4.13.). 

 

On the other hand, 2430 CRP and 2858 PCT measurements are taken within 

the follow-up period (indicated as k in Table 4.14.) with mean of 11.059 and 5.168 

for CRP and PCT, respectively. The medians of these all - measurements are found 

as 8.725 for CRP and 0.314 for PCT. The standard deviations of these measurements 

are calculated as 9.759 for CRP and it’s 26.234 for PCT. Within the follow-up 

period, minimum and maximum value of CRP measurements are found as 0.138 and 

57.500 respectively. For PCT, they are 0.001 and 568.9, respectively (Table 4.14.). 
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Table 4.13. Basic descriptive statistics for number of repeated measurements of 

CRP and PCT 

Biomarker Min Q1 Mean Median Q3 Max 

CRP 2 3 5.319 4 7 18 

PCT 2 3 5.352 4 7 19 

 

Table 4.14. Basic descriptive statistics for serial measurements of CRP and PCT 

 

Biomarker k Mean SD Median Min Max 

CRP 2430 11.059 9.759 8.725 0.138 57.500 

PCT 2858 5.168 26.234 0.314 0.001 568.9 

 

 

Results revealed that mean of 5 and median of 4 measurements are taken 

from both of the biomarkers throughout the follow-up period. Previous tables suggest 

that representative subject must have 5 serial CRP measurements taken within the 

follow up period, while for the PCT biomarker, representative subject must also have 

5 serial PCT measurements taken within the follow up period (Table 4.13) . 

 

Under these longitudinal information of CRP and PCT samples, 389
th 

subject 

from CRP sample and 4
th

 subject from PCT sample are chosen as the most 

appropriate subjects on which to base the calculations. 389
th
 subject has 5 repeated 

measurements, with mean of 9.008 and median of 8.820 for CRP biomarker. Last 

time point that the measurement was taken is at time t=15, therefore the interest is in 

determining the time-dependent cut-off value and corresponding time-dependent 

sensitivity and time-dependent specificity values at the end of follow-up period, at 

time t=30, using the longitudinal values measured up to time t=15.On the other hand, 

4
th

 subject from PCT sample has also 5 measurements with mean of 1.372 and 

median of 0.318. The last time point that PCT measurement was taken is at time 

t=26, therefore it’s of interest to determine the time-dependent cut-off value and 

corresponding time-dependent sensitivity and time-dependent specificity values at 

the end of follow-up period, at time t=30, using the longitudinal values measured up 

to time t=26. 

 



65 

 

Figures, which demonstrate the mean and median values of each time-point 

for the whole sample over the period for CRP and PCT, and longitudinal trajectories 

of representative subjects of CRP and PCT are given in an attempt to help better 

understand the representative-subject selection process prior to calculation of the cut-

off values for both biomarker samples (Figure 4.4., Figure 4.5., Table 4.12. and 

Table 4.13.) 

Figure 4.4. Mean Values of CRP and PCT Biomarkers throughout the Follow-

up Period 

 

Figures indicate that the serial CRP values are slightly decreasing through the 

12
th

 day, then the values show fluctuations through the end of the follow-up period.  

For PCT, it can also be said that its profile shows more stability between 3
rd

 and 28
th

 

days, however its values reach the maximum level on 29
th

 day. To obtain the cut-off 

values for both of the biomarkers, 389
th

 subject in the CRP sample and 4
th

 subject in 

the PCT sample are chosen since their longitudinal profiles are considered as the 

most suitable ones to represent their own samples. Furthermore, dataset which 

includes the longitudinal biomarker values for 389
th

 subject in the CRP sample and 

4
th

 subject in the PCT sample is given below as an example (Table 4.15.). 
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Table 4.15. Longitudinal biomarker values and covariate information for the 

representative subjects of CRP and PCT samples 

 

id pct log.pct survtime time status age gender 

4 0.122 -0.914 30 0 0 84 0 

4 5.310 0.725 30 5 0 84 0 

4 1.020 0.009 30 9 0 84 0 

4 0.089 -1.051 30 19 0 84 0 

4 0.318 -0.498 30 26 0 84 0 

id crp log.crp survtime time status age gender 

389 8.820 0.945 16 0 0 86 0 

389 15.300 1.185 16 4 0 86 0 

389 15.100 1.179 16 4 0 86 0 

389 2.800 0.447 16 11 0 86 0 

389 3.020 0.480 16 15 0 86 0 

 

Table 4.15 reveals that representative subject of PCT sample is female (gender 

variable coded as 0), age of 84 and she is a censored observation. The last time PCT 

value was taken at day 26 and despite the fact that her exact survival time is 

unknown, it’s assumed to be 30 days. On the other hand, representative subject of 

CRP sample is also female (gender variable coded as 0), age of 86 and she is also a 

censored observation. The last time CRP value was taken from her on day 15 and she 

is known to dropout from the follow-up at the same day. 
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Figure 4.5. Longitudinal Profiles of representative subjects of CRP and PCT 

samples 

Figure 4.5. is given in order to show the longitudinal profiles of the 

representative subject for both of the biomarkers. It suggests that representative 

subject of CRP has increasing biomarker values while representative subject of PCT 

has decreasing profile.  

 

Following table includes time-dependent cut-off values and corresponding 

95% confidence intervals along with time-dependent diagnostic accuracy values 

(Table 4.16). Antilog transformation is applied to these cut-off values to ease the 

interpretation. Maximum of the product of sensitivity and specificity rule is applied 

to determine the corresponding cut-off values (60).  Confidence intervals for the cut-

off values are calculated based on nonparametric percentile bootstrap approach. 1000 

bootstrap samples are used in the calculation process.  

Table 4.16. Time-Dependent Cut-Off Values and Time-Dependent Diagnostic 

Performance Values along with 95% Confidence Intervals 

Biomarker 
 Statistics 

td-Cut-Off ± SE 95% CI of  td-Cut-Off  td-Sens ± SE td-Spec ± SE 

CRP 7.129 ± 1.130 5.929 - 9.247 0.513 ± 0.001 0.507 ± 0.001 

PCT 0.411 ± 1.289 0.269 - 0.700 0.537 ± 0.001 0.563 ± 0.001 

 

 

To propose a cut-off value for distinguishing subjects at risk and without risk 

of death in ICU-setting, Coefficient of Quartile Variation CQV measure, which is 
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considered as an alternative of Coefficient of Variation (CV) measure to compare the 

variations in different samples when their distributions are non-normal, is calculated 

for both biomarkers. As for the Coefficient of Variation measure, smaller CQValso 

implies more stable distribution, whereas larger coefficient is considered as there are 

more dispersed values in the sample. The reason in preferring to calculate this 

measure is that the distributions of CRP and PCT samples are skewed and even 

heavy-tailed, which makes CQV measure the most preferable statistic to compare 

and to standardize these different dispersions with a single-metric. 

 

Since the distributions of serial CRP and PCT values are skewed, semi-

interquartile range to median ratio statistic, which can be considered as the robust 

alternative of Coefficient of Variation is also calculated along with CQV value in 

order to determine the most relevant cut-off point. 

 

The first and third quartiles and medians of CRP and PCT samples, their 

CQV metrics along with Robust Coefficient of Variation (RCV) values and 

histograms of serial CRP and PCT measurements are summarized in the following 

table and figure (Table 4.17., Figure 4.6. and Figure 4.7.) 

Table 4.17. First and Third Quartiles, Robust Coefficients of Variations and 

Coefficients of Quartile Variations of CRP and PCT samples 

Biomarker Q1 Q3 Median 

Robust  

Coefficient of 

Variation (RCV)  

Coefficient of 

Quartile 

 Variation (CQV) 

CRP 3.475 15.2 8.725 0.672 0.628 

PCT 0.127 1.531 0.314 2.236 0.847 
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Figure 4.6.  Histogram of repeated CRP values 

 

Figure 4.7.  Histogram of repeated PCT values 
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CQV is known to indicate the dispersions in the samples. As observed from 

the previous table and figures, PCT sample is quite overdispersed than CRP sample, 

approximately 85% of spread can be observed in this sample. Also, its values are 

approximately 1.3 times larger than values of CRP. Positively-skewed PCT values 

are consistent with the CQV statistic, that is, its measurements dispersed in a wide 

range, the variability of the values are observable throughout the follow-up period. 

 

On the other hand,  the CQV of CRP is found as quite reasonable compared 

to PCT, with approximately 63% of spread is observed in this sample. Although this 

value is fairly big on its own, when compared to PCT sample, values of CRP show 

much more stable profile throughout the follow-up period (Figure 4.6 and Figure 

4.7). 

 

As for CV, similar interpretations can be made for RCV. That is, subjects in 

CRP sample show approximately 67% percentage of dispersion around the median, 

while subjects in PCT sample seems to be approximately 2-times larger from the 

median. For the comparison of the RCV metrics, subjects in PCT sample are 

approximately 3 times larger than subjects in CRP sample. This result is consistent 

with the results of CQV comparison, which depicts PCT values are much more 

dispersed compared to those of CRP values. 

 

At the end of the analysis, cut-off value of CRP sample is recommended to 

differentiate the subjects since both its CQV and RCV values are smaller than those 

of PCT, indicating its values exhibit more consistent distribution during the follow-

up period unlike PCT, whose CQV and RCV values demonstrate more variability, 

indicating inconsistency of the PCT vlaues over the period. Therefore stability of 

serial CRP values throughout the period are considered to be more reliable than 

serial PCT measurements in the decision of choosing the appropriate cut-off value. 

 

In this part of the application section, we evaluate diagnostic performances of 

serial CRP and PCT biomarkers and compare the diagnostic accuracies of single and 

serial CRP and PCT measurements. A single PCT value is concluded to be more 
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reliable in discriminating risky and non-risky subjects at the end of follow-up period. 

Therefore it is suggested to utilize a single PCT value taken at baseline in predicting 

the risk of death at the end of follow-up for ICU subjects. It is also found that serial 

CRP measurements have slightly higher diagnostic accuracy when compared to only 

a single value of this biomarker. Although there is statistically no difference between 

single and serial measurements of CRP, taking serial CRP values in predicting the 

risk of death at ICU is recommended, to be able to assess the longitudinal profiles of 

subjects throughout the follow-up period. Moreover, as more measurements are 

taken, diagnostic performance of PCT increases more especially at later time-points, 

which are close to the end of foloow-up period, compared to CRP throughout the 

period and it makes this biomarker more reliable especially at later time-points of the 

follow-up in discriminating event and event-free subjects staying in Intensive Care 

Units. However, serial CRP values are suggested to be taken since they are observed 

to have the highest diagnostic performance in overall. Besides, cut-off values and 

corresponding 95% confidence intervals of CRP and PCT are given to distinguish 

event and event-free subjects in ICU-setting. CQV and RCV statistics are calculated 

for both of the CRP and PCT samples to propose the cut-off value for utilizing in 

clinic, and cut-off value of CRP is chosen since measurements of this biomarker 

taken within the period are observed to have stable longitudinal trajectory, which 

leads to smaller CQV and RCV values. Furthermore, from time-dependent diagnostic 

accuracy metrics-perspective, even though both of the biomarkers have the-

moderate-level time-dependent sensitivity and time-dependent specificity, results 

suggest that PCT is more sensitive and specific biomarker compared to CRP. 

 

In this study, finding the most representative subject of the CRP and PCT 

samples and therefore determining cut-off value is based on mean of CRP and PCT 

measurements taken within the follow-up period. Other options, such as focusing on 

the median of the biomarker measurements which were taken within the follow-up 

period for finding the most representative subject would be considered an alternative 

when determining the appropriate subject for calculating cut-off values. 
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4.5. Investigating Factors Affecting the Diagnostic Performance of Serial 

CRP and PCT Measurements 

 

In this thesis, joint modeling approach is utilized to assess the diagnostic 

performances of CRP and PCT biomarkers. Within the context of this part, two 

different random effects structure in longitudinal sub-model; two different 

distribution options for survival times and four different parameterization types 

indicating the association between longitudinal and survival data structures are 

compared in terms of time-dependent AUC values to determine the best joint model 

combination that gives the maximum-discriminative ability at the end of follow-up-

period. 

 

For both CRP and PCT, fixed-effects part of the longitudinal sub-model is 

modeled with main effects of age and time variables and their interaction term. 

However for the random-effects part, two different random-effects structure, namely 

random intercept and random slope (Model-I) and Quadratic Random Effects 

(Model-II) are compared. The formulas for the two different joint models are given 

below: 

Model-I:   ℎ𝑖(𝑡) = ℎ0(𝑡)[α{𝛽0 + 𝛽1 ∗ time + 𝛽2 ∗ age + 𝛽3 ∗ time ∗ age + 𝑏0 + 𝑏1 ∗

time}]                                                                                                                                                   (4.6) 

Model-II:    ℎ𝑖(𝑡) = ℎ0(𝑡)[α{𝛽0 + 𝛽1 ∗ time + 𝛽2 ∗ age + 𝛽3 ∗ time ∗ age + 𝑏0 + 𝑏1 ∗

time + 𝑏2 ∗ (𝑡𝑖𝑚𝑒)
2}]                                                                                                                      (4.7) 

 

Parameter estimates, standard errors and p-values for the coefficients of the 

joint models are given in Appendix-IV. 

 

Two different distribution options in survival sub-model are utilized. One of 

them is baseline hazard unspecified option, for the alternative, a parametric survival 

model is used and survival times are assumed to follow Piecewise-Constant 

Distribution. 
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Other than standard joint model, three more parameterization options, namely 

slope, current value and slope and cumulative effects are included in the analysis. 

 

The cut-off point to evaluate the diagnostic performances is chosen as the 

median of survival times, which are 18
 
and 17 for CRP and PCT, respectively. Mean 

of 3.735 and median of 3 measurements are taken until the 18
th

 day for CRP 

biomarker. For PCT, mean of 3.808 and median of 3 measurements are taken until 

the 17
th

 day. Therefore, by utilizing these measurements, diagnostic performances of 

CRP and PCT biomarkers in predicting ICU mortality at the end of follow-up period 

(30
th

 day) are investigated. 

 

Results are given with table and graphic (Table 4.18., Table 4.19., Figure 

4.8., Figure 4.9a., Figure 4.9b., Figure 4.10.). 
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Table 4.18. Time-Dependent AUC values, their standard errors and 95% 

confidence intervals for CRP under different joint modeling combinations 

Random 

Effects 

Structure 

Parameterization Baseline Hazard td-AUC ± SE 
95% CI for 

 td-AUC 

Model-I 

Current Value Unspecified 0.635 ± 0.027 0.533 - 0.660 

Slope 
 

0.549 ± 0.047 0.403 - 0.591 

Both 
 

0.634 ± 0.027 0.549 - 0.659 

Cumulative Effects 
 

0.571 ± 0.031 0.487 - 0.610 

Current Value Piecewise-Constant 0.686 ± 0.027 0.617 - 0.723 

Slope 
 

0.553 ± 0.047 0.403 - 0.587 

Both 
 

0.639 ± 0.027 0.554 - 0.659 

Cumulative Effects 
 

0.566 ± 0.031 0.479 - 0.606 

Model-II 

Current Value Unspecified 0.615 ± 0.024 0.540 - 0.638 

Slope 
 

0.522 ± 0.046 0.467 - 0.648 

Both 
 

0.614 ± 0.026 0.539 - 0.639 

Cumulative Effects 
 

0.573 ± 0.036 0.475 - 0.619 

Current Value Piecewise-Constant 0.610 ± 0.026 0.530 - 0.636 

Slope 
 

0.524 ± 0.047 0.394 - 0.579 

Both 
 

0.610 ± 0.026 0.538 - 0.635 

Cumulative Effects 
 

0.570 ± 0.034 0.476 - 0.615 
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Table 4.19. Time-Dependent AUC values, their standard errors and 95% 

confidence intervals for PCT under different joint modeling combinations 

Random 

Effects 

Structure 

Parameterization Baseline Hazard td-AUC ± SE 
95% CI for 

 td-AUC 

Model-I 

Current Value Unspecified 0.680  ± 0.022 0.643 - 0.729 

Slope 
 

0.492 ± 0.042 0.428 - 0.596 

Both 
 

0.677 ± 0.022 0.637 - 0.725 

Cumulative Effects 
 

0.517 ± 0.035 0.490 - 0.630 

Current Value Piecewise Constant 0.674 ± 0.022 0.641 - 0.722 

Slope 
 

0.494 ± 0.045 0.431 - 0.604 

Both 
 

0.666 ± 0.023 0.631 - 0.722 

Cumulative Effects 
 

0.525 ± 0.033 0.494 - 0.630 

Model-II 

Current Value Unspecified 0.703 ± 0.021 0.655 - 0.738 

Slope 
 

0.562 ± 0.042 0.489 - 0.648 

Both 
 

0.703 ± 0.030 0.653 - 0.738 

Cumulative Effects 
 

0.551 ± 0.032 0.509 – 0.638 

Current Value Piecewise Constant 0.696 ± 0.022 0.652 - 0.735 

Slope 
 

0.567 ± 0.026 0.477 - 0.644 

Both 
 

0.694 ± 0.023 0.649 - 0.739 

Cumulative Effects 
 

0.547 ± 0.032 0.509 - 0.632 
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Figure 4.8. Time-Dependent AUC Values in terms of random-effects model 

structure 

 

 

 

 

Figure 4.9a.Time-Dependent AUC Values for CRP in terms of different 

parameterization structures 
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Figure 4.9b. Time-Dependent AUC Values for PCT in terms of different 

parameterization structures 

 
Figure 4.10. Time-Dependent AUC Values in terms of different survival 

distribution options  
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In Figure 4.10, joint models are shown as coded 1 to 8. 1 refers to standard joint 

model-Model-I combination, 2 is joint model with slope parameterization-Model-I,  

3 stands for joint model with current value and slope parameterization-Model-I,,  4 

refers to  joint model with cumulative-effects parameterization-Model-I combination, 

5 is  standard joint model-Model-II, 6 is  joint model with slope parameterization- 

Model-II, 7 refers to joint model with current value and slope parameterization 

parameterization-Model-II abd 8 is joint model with cumulative-effects 

parameterization-Model-II combination. 

Analysis results revealed that time-dependent diagnostic accuracies are found 

as moderate and almost similar for both biomarkers. Maximum diagnostic 

performance for CRP is observed with standard joint model (current value 

parameterization)-random intercept and random slope structure-Piecewise Constant 

distribution combination (Table 4.18). On the other hand for PCT, standard joint 

model-quadratic random effects structure and baseline hazard unspecified 

combination has the highest diagnostic performance. (Table 4.19.) 

For random-effects structure model comparison, CRP seems to perform better 

in Model-I, whereas PCT has higher diagnostic performance in Model-II. Therefore 

constructing the joint model with more detailed functional form of random-effects 

part increases time-dependent AUC values for PCT in this study. However in general 

there is no exact answer about which model structure should be used in random 

effects part of LME model. It is changeable in accordance with the purpose of the 

research. (Figure 4.8) 

 

In parameterization perspective, the highest diagnostic performance is 

reached when standard joint model is used for both CRP and PCT. On the other hand 

slope parameterization type has the minimum time-dependent AUC values for both 

biomarkers. In general standard joint model (current value parameterization) and 

both parameterization types have higher performance than cumulative effects and 

slope parameterization types for either CRP or PCT. (Figure 4.9a and 4.9b) 
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For survival distribution comparison, it seems there is no noteworthy 

difference between these two options for neither CRP nor PCT. The most remarkable 

difference is observed for CRP biomarker with standard joint model. In that case 

Piecewise-Constant Distribution gives higher diagnostic accuracy than its alternative. 

Even though these diagnostic accuracies are similar, Piecewise-Constant Distribution 

is recommended to use since it’s a parametric survival distribution and allows 

flexibility while modeling survival times. (Figure 4.10.) 

 

In this part, determination of predictive abilities of the biomarkers are based 

on the cut-off point which uses median of the survival times. Other cut-off 

alternatives can also be considered in order to make a comparison of their diagnostic 

performances in predicting the risk of death at the end of the period. 

4.6. Evaluating Cut-Off Values for Longitudinal Data 

 

Other than assessing the diagnostic performance of biomarkers and 

comparing these performances, one of the objectives in using classical ROC Analysis 

is obtaining cut-off values to discriminate subjects who are at risk and who are not. 

However when time dimension is incorporated this ROC curve analysis, a single cut-

off value becomes insufficient to distinguish the two groups. In longitudinal studies, 

as long as new measurements are taken from the subjects within the follow-up 

period, cut-off values can be updated and this property gives cut-off values dynamic 

characteristics. Therefore in these studies, rather than utilizing a single cut-off value, 

time-dependent cut-off values are obtained to discriminate event and event-free 

subjects within the time interval t+Δt, using measurements up to time t. 

 

In this part of the application, diagnostic accuracies of CRP and PCT 

biomarkers are evaluated and their performances in distinguishing the subjects on the 

1
st
, 2

nd
 and 3

rd
 day after the last measurement was taken are demonstrated by time- 

dependent ROC curves and time-dependent cut-off values. 

 

To obtain the cut-off values, first of all sub-groups are created for both gender 

and for each biomarker. Joint models with current value parameterization (standard 
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joint models) are constructed based on the same formula (4.1) in order to evaluate 

the contribution of each biomarker value taken at time t for both women and men 

datasets of CRP and PCT biomarkers. Coefficients, standard errors, p-values and 

goodness of fit statistics of these models are given below (Table 4.20a., Table 4.20b., 

Table 4.21a. and Table 4.21b.). 

Table 4.20a.  Coefficients, standard errors, p-values, standard deviation of 

linear mixed-effects model and goodness of fit statistics of joint models for each 

gender for CRP  

Gender Process Variable β SE (β) p-value 

    Female 

Longitudinal 

Intercept 0.7449 0.115 <0.0001 

time -0.0177 0.0087 0.0426 

age 0.0007 0.0017 0.6737 

time*age 0.0002 0.0001 0.0459 

Survival 

 1.1209 0.3802 0.0032 

log(xi.1) -5.8971 0.4771  

log(xi.2) -6.1428 0.6170  

log(xi.3) -5.0438 0.4873  

log(xi.4) -4.7400 0.4477  

log(xi.5) -4.6323 0.4581  

log(xi.6) -4.4053 0.6326  

log(xi.7) 10.9631 0.5173  

   σ = 0.264 

 AIC = 1467.087,  BIC = 1531.823 

      Male 

Longitudinal 

Intercept 0.8544 0.1239 <0.0001 

time -0.018 0.0094 0.0564 

age 0.0001 0.0019 0.9817 

time*age 0.0002 0.0001 0.1258 

Survival 

 1.7195 0.4741 0.0003 

log(xi.1) -7.1443 0.6571  

log(xi.2) -5.2196 0.5456  

log(xi.3) -6.1239 0.6025  

log(xi.4) -5.9011 0.6012  

log(xi.5) -5.3772 0.5660  

log(xi.6) -5.6883 0.7289  

log(xi.7) 10.1973 0.6663  

   σ = 0.241 

 AIC = 1339.39, BIC = 1405.045 
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Table 4.20b.  Variance-covariance matrix of random-effects in joint models for 

each gender for CRP 

Female 

 
Intercept time time

2
 

Intercept 0.252 -0.019 0.000502 

time -0.019 0.0037 -0.000104 

time
2
 0.000502 -0.0001 0.00000319 

    Male 

 Intercept time time
2
 

Intercept 0.225 -0.016 0.0004 

time -0.016 0.0037 -0.000104 

time
2
 0.0004 -0.0001 0.00000386 

Table 4.21a. Coefficients, standard errors, p-values, standard deviation of linear 

mixed-effects model and goodness of fit statistics of joint models for each gender 

for PCT 

Gender Process Variable β SE (β) p-value 

    Female 

Longitudinal 

Intercept -0.1277 0.1786 0.4746 

time -0.0376 0.0112 0.0008 

age -0.0034 0.0026 0.1876 

time*age 0.0006 0.0002 0.0005 

Survival 

 1.1659 0.1923 <0.0001 

log(xi.1) -4.6695 0.2862  

log(xi.2) -4.1848 0.3181  

log(xi.3) -3.8624 0.3039  

log(xi.4) -3.8624 0.2908  

log(xi.5) -3.3635 0.2403  

log(xi.6) -3.9859 0.5845  

log(xi.7) 11.6124 0.4272  

 σ = 0.408 

AIC = 2939.857,  BIC = 3006.840 

     Male 

Longitudinal 

Intercept -0.1745 0.2052 0.3949 

time -0.0261 0.0166 0.1166 

age -0.0011 0.0031 0.7333 

time*age 0.0003 0.0002 0.2915 

Survival 

 1.2621 0.1813 <0.0001 

log(xi.1) -5.6228 0.3948  

log(xi.2) -3.6995 0.2301  

log(xi.3) -4.3462 0.3362  

log(xi.4) -3.4009 0.2647  

log(xi.5) -3.5690 0.2635  

log(xi.6) -4.3608 0.5310  

log(xi.7) 11.1473 0.4896  

 σ = 0.409 

AIC = 3304.563,  BIC = 3373.826 
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Table 4.21b.  Variance-covariance matrix of random-effects in joint models for 

each gender for PCT 

Female 

 
Intercept time time

2
 

Intercept 0.628 -0.037 0.000702 

time -0.037 0.0087 -0.0003 

time
2
 0.000702 -0.0003 0.00000938 

    Male 

 Intercept time time
2
 

Intercept 0.720 -0.053 0.00124 

time -0.053 0.0111 -0.0004 

time
2
 0.00124 -0.0004 0.0000152 

 

For each sub-group, median of age and number of repeated biomarker 

measurements are given as basic descriptive statistics. For a new-coming subject 

who admitted to the any intensive care unit, these values are considered to represent 

that subject. And with the help of these values, time-dependent ROC curves are 

drawn and time-dependent cut-off values for 1
st
, 2

nd
 and 3

rd
 day after the last 

measurement was taken are calculated. For example, for CRP biomarker, median age 

of men is 67 and on average, 4 measurements are taken from per-subject in this 

group within the follow-up period. Therefore, for a new-coming subject to this sub-

group, it’s assumed that his age is 67 and total of 4 measurements from this subject 

will be taken. Also, fixed-visit times are considered for all cases, for example, the 

time-points for these measurements are considered to be taken as t=0, 1, 2 and 3. For 

each sub-group, this procedure is considered and representative descriptive statistics 

are given in the following table (Table 4.22.). 

Table 4.22. Characteristics of representative subjects for each sub-groups of 

CRP and PCT 

 

Biomarker Gender Age Number of Measurements 

CRP 
Female 73 4 

Male 67 5 

PCT 
Female 72 4 

Male 67 4 

 

Based on the Monte-Carlo simulation scheme described in Section 4.4, time-

dependent cut-off values are determined as the values which has the maximum value 
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of product of time-dependent specificity and time – dependent specificity at Δt = 1, 

2, 3 (60). 

 

All the results are given with time-dependent ROC Curves, time-dependent 

AUC and time-dependent cut-off values for CRP and PCT biomarkers, separately. 

Results are demonstrated below: 

    4.6.1. Diagnostic Accuracy of CRP Biomarker 

 

 

Figure 4.11. Time-Dependent ROC Curves and Time-Dependent Cut-Off values 

of CRP for Δt=1, 2 and 3 after the last measurement 

Table 4.23. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of CRP for Δt=1, 2 and 3 after the last measurement 

 

 

Gender 

 

Time - Dependent AUC 

 

Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

Female 0.624 0.621 0.618 0.989 0.989 0.974 

Male 0.640 0.640 0.639 0.816 0.816 0.799 
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The left side of the table indicates the time-dependent AUC values for the 

first 3 days after the last measurement was taken from the representative subject. In 

other words they can be defined as the indicator of the discriminative ability of the 

biomarker in Intensive Care Units on the 1
st
, 2

nd
 and 3

rd
 day after the last 

measurement was taken. The right hand side demonstrates the time – dependent cut – 

off values that are utilized for discriminating the subjects who will be at risk and who 

will be risk-free on the 1
st
, 2

nd
 and 3

rd
 day after the last measurement. 

 

Results revealed that discriminative ability of CRP biomarker is in moderate 

level on the 1
st
, 2

nd
 and 3

rd
 day after the last measurement. Also it is observed that the 

time-dependent cut-off values remain the same on the first 2 days after the last 

measurement for both women and men, while on the 3
rd

 day they decrease. CRP 

biomarker has almost the same diagnostic performances on these first 3 days in both 

gender groups, however this performance is better in men than women. On the other 

hand, contrary to time-dependent diagnostic accuracy values, cut-off values obtained 

for women are higher than cut-off values obtained for men on the first 3 days after 

the last measurement. (Figure 4.11.  and Table 4.23.) 
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   4.6.2. Diagnostic Accuracy of PCT Biomarker 

 

 

Figure 4.12. Time-Dependent ROC Curves and Time-Dependent Cut-Off values 

of PCT for Δt=1, 2 and 3 after the last measurement 

Table 4.24. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of PCT for Δt=1, 2 and 3 after the last measurement 

 

For PCT biomarker, it’s revealed that diagnostic accuracy of PCT in men is 

better than the diagnostic accuracy of PCT in women on the 1
st
, 2

nd
 and 3

rd
 day after 

the last measurement. However for both gender groups, this diagnostic performances 

are prone to decrease through the 3
rd

 day. For the time - dependent cut-off values, for 

both genders they are in decreasing trend through the 3
rd

 day after the last 

measurement was taken. 

 

 

Gender 

Time - Dependent AUC Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

Female 0.697 0.694 0.691 0.180 0.159 0.137 

Male 0.718 0.712 0.707 0.320 0.297 0.274 
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Likewise CRP, it can be said that the discriminative ability and time-

dependent cut-off values of PCT biomarker decreases through the 3
rd

 day, that is, 

they reach the minimum values on this day (Figure 4.12. and Table 4.24.).  Contrary 

to CRP, cut-off values for men are found to be higher than those of women on the 

first 3 days after the last measurement. 

 

In summary, it’s observed that PCT biomarker has better discriminative 

ability compared to CRP on the first 3 days after the last measurement, both in men 

and women.  For gender comparison, it should be noted that both biomarkers have 

slightly higher predictive ability in men than in women. The trajectory of these time-

dependent AUC values is the same in all cases. That is, they reach the highest value 

on the first day after the last measurement and decreases slightly on the 2
nd

 and 3
rd

 

days for both biomarkers and in both genders. For the time-dependent cut-off values, 

they are in decreasing trend in women and men for PCT, however for CRP, they 

remain constant on the first two days and then decrease on the 3
rd

 day after the last 

measurement. 

 

These time-dependent ROC curves and time-dependent cut-off values suggest 

that the risk of death in Intensive Care Units on the first 3 days after the last 

measurement is prone decrease for all cases-for both biomarkers and for both 

genders-in this study. 

4.7. Time-Dependent Diagnostic Accuracy Metrics 

 

In this section, corresponding time-dependent diagnostics accuracy values, 

time-dependent sensitivity and time-dependent specificity, are given for each cut-off 

value to determine more specific and more sensitive markers (Table 4.25.). 
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Table 4.25. Time-Dependent Sensitivity and Time-Dependent Specificity 

Measures 

Gender Biomarker 
Td-Cut-

Off 

Td-Sens-

Δ1 

Td-Sens-

Δ2 

Td-Sens-

Δ3 

Td-Spec-

Δ1 

Td-Spec-

Δ2 

Td-Spec-

Δ3  

Female 

CRP 

0.989 0.562 0.556 0.551 0.612 0.614 0.615 

0.989 0.562 0.556 0.551 0.612 0.614 0.615 

0.974 0.575 0.569 0.564 0.598 0.600 0.601 

PCT 

0.180 0.609 0.601 0.593 0.713 0.716 0.720 

0.159 0.618 0.609 0.602 0.703 0.706 0.710 

0.137 0.626 0.618 0.610 0.693 0.696 0.699 

   Male 

CRP 

0.816 0.585 0.585 0.582 0.622 0.623 0.626 

0.816 0.585 0.585 0.582 0.622 0.623 0.626 

0.799 0.599 0.598 0.596 0.608 0.608 0.612 

PCT 

0.320 0.651 0.639 0.63 0.718 0.719 0.721 

0.297 0.659 0.648 0.639 0.709 0.710 0.712 

0.274 0.667 0.656 0.647 0.700 0.701 0.703 

 

 

Table 4.25 indicates that time-dependent diagnostic accuracy metrics are very 

close to each other as corresponding time-dependent AUC values. Almost all time-

dependent diagnostic accuracy measures are found in moderate level. On the other 

hand for biomarker comparison, PCT is found to be more sensitive and specific 

biomarker compared to CRP during the first 3 days after the last measurement was 

taken. 

4.8.  Evaluating the Diagnostic Performance throughout the Follow-up 

Period 

In both classical ROC Curves and time-dependent ROC Curves obtained by 

the baseline measurement taken at t=0, a single ROC Curve, a single AUC value and 

a single cut-off value to distinguish subjects who are at risk and who are risk-free, is 

sufficient to assess the diagnostic accuracy. However a single AUC value or a single 

cut - off value is not sufficient when serial biomarker measurements are taken within 

the follow-up period. In such cases, it could be possible to update the diagnostic 

accuracy after each serial biomarker value taken within this period. Also in this way 

the contribution to diagnostic performance of each serial measurement could be 

determined. 

 

In this part, the diagnostic performances throughout the follow-up period for 

CRP and PCT biomarkers are investigated and updated time-dependent AUC values 

along with updated time-dependent cut-off values are given. Time-dependent cut-off 
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values are calculated based on  fitted joint models with log-transformed biomarker 

values. Therefore figuresare drawn with log-transformed CRP and log-transformed 

PCT values.  

 

4.8.1. Diagnostic Accuracy of CRP Biomarker in terms of Genders 

   4.8.1.1. Diagnostic Accuracy of CRP in Women 

 

Figure 4.13. Time-Dependent ROC Curves and Time-Dependent Cut-Off values 

of CRP for Women for Δt=1, 2 and 3 after the last measurement 
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Table 4.26. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of CRP for Women for Δt=1, 2 and 3 after the last measurement 

Time of 

Measurements 
Time-Dependent AUC Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

t=0 0.617 0.615 0.612 0.926 0.926 0.911 

t=1 0.616 0.612 0.609 1.037 1.037 1.037 

t=2 0.609 0.606 0.603 0.832 0.832 0.816 

t=3 0.624 0.621 0.618 0.989 0.989 0.974 

 

 

It is revealed that in general the diagnostic performance of CRP is fairly 

moderate in women, the contributions of time points t=1 and t=2 to the 

discriminative ability are almost the same. The contribution of the baseline 

measurement (t=0) is higher compared to these aforementioned time points, t=1 and 

t=2; however the biggest contribution comes out of the last time point, namely 

time=3, so that with the help of this measurement, discriminative power of the 

biomarker increases about 3%, compared to previous time point, namely t=2. In 

overall, for the time-dependent AUC values, it should be noted that they are quite 

similar for the first 3 days after the last measurement and they are slightly decreasing 

through the 3
rd

 day. 

 

For the time-dependent cut-off values, these values either remain constant or 

decrease through the 3
rd

 day after the last measurement. In detail, after the first 

measurement (taken at t=0), these cut-off values remain constant on the first two 

days and decrease on the third day. After the second measurement, which is taken at 

t=1, time-dependent cut-off values are observed to increase compared to cut-off 

values after the baseline measurement, and these cut-off values remain the same all 

the first three days. After the third measurement, time-dependent cut-off values 

decrease considerably compared to previous time-dependent cut-off values, which 

means the risk of death decrease after the third measurement taken at t=2, and they 

remain constant after the two days, and then decrease on the 3
rd

 day after the last 

measurement. On the other hand, last measurement taken at t=3 seems to increase the 

cut-off values compared to t=2. However they are the same on the first two days, but 

decrease on the 3
rd

 day. (Figure 4.13.  and Table 4.26.). 
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   4.8.1.2. Diagnostic Accuracy of CRP in Men 

 
 

Figure 4.14. Time-Dependent ROC Curves and Time-Dependent Cut-Off 

values of CRP for Men  for Δt=1, 2 and 3 after the last measurement 
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Table 4.27. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of CRP for Men  for Δt=1, 2 and 3 after the last measurement 

Time of 

Measurements 
Time-Dependent AUC Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

t=0 0.690 0.687 0.683 1.0435 1.0435 1.0435 

t=1 0.678 0.674 0.670 1.125 1.125 1.109 

t=2 0.662 0.659 0.656 0.930 0.930 0.930 

t=3 0.677 0.677 0.676 1.0598 1.0598 1.0598 

t=4 0.640 0.640 0.639 0.816 0.816 0.799 

 

Results for men of CRP suggest that  the diagnostic accuracy is prone to 

decrease through the 3
rd

 day for all time points, namely t=0, 1, 2, 3 and 4. The 

maximum contribution to the diagnostic performance comes from the baseline 

measurement, taken at t=3, while the minimum contribution belongs to the last time 

point, taken at t=4. Contribution of the 4
th

 measurement that was taken at t=3 is 

second biggest, comes after the baseline measurement, on the other hand the lowest 

contribution to the predictive ability comes out of the measurement taken at t=4. In 

overall, for the time-dependent AUC values, they are almost in decreasing trend  

through the 3
rd

 day, also it seems as long as new measurements are taken, they are 

prone to decrease on Δt =1, 2 and 3. 

 

For the time-dependent cut-off values of CRP in men, these values either 

remain constant or decrease through the 3
rd

 day after the last measurement. In detail, 

after the first measurement (taken at t=0), these cut-off values remain constant on the 

first three days. After the second measurement, which is taken at t=1, time-dependent 

cut-off values are observed to be increase compared to previous measurement time 

and they are found as the same for the first two days and then decrease on the 3
rd

.  

For the next time-point, t=2, they are observed to be decrease compared to previous 

time-point, t=1, and also remain constant on the 1
st
, 2

nd
 and 3

rd
 days. However time-

dependent cut-off values from the following measurement, namely from t=3, 

increases considerably compared to t=2 and as for the time-point t=2, they remain 

constant on the first three days.  Cut-off values obtained from the last measurement, 

taken at t=4, are however decreases compared to previous time point considerably. 

Therefore it must be mentioned that time-dependent cut-off values in men seem to 
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have fluctuations for the 1
st
, 2

nd
 and 3

rd
 days, so that the minimum cut-off values are 

obtained from the last measurement taken at t=4, while the maximum ones are 

obtained from the previous time point, taken at t=3. (Figure 4.14.. and Table 4.27.) 

 

In overall, CRP biomarker has higher diagnostic performance in men than 

women, in all time points (t) and in all future time points (Δt), in terms of time-

dependent AUC values. On the other hand the contribution of time points to the 

diagnostic accuracy changes, that is, the maximum contribution comes from the last 

time point taken at t=3 and minimum contribution belongs to time point t=2, which is 

last but one measurement for women, while for men the maximum contribution 

belong to the baseline measurement taken at t=0, and the minimum contribution 

comes out of the last measurement taken at time-point t=4. For the time-dependent 

cut-off values however, minimum cut-off value comes after the third measurement 

taken at t=2 and maximum one from the previous measurement, taken at t=1, in 

women, while for men, minimum and maximum threshold values come after the 

measurements taken at t=4 and t=3, respectively. 
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4.8.2.  Diagnostic Accuracy of PCT Biomarker in terms of Genders 

   4.8.2.1. Diagnostic Accuracy of PCT in Women 

 

Figure 4.15. Time-Dependent ROC Curves and Time-Dependent Cut-Off values 

of PCT for Women for Δt=1, 2 and 3 after the last measurement 
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Table 4.28. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of PCT for Women for Δt=1, 2 and 3 after the last measurement 

Time of 

Measurements 
Time-Dependent AUC Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

t=0 0.648 0.645 0.640 -0.037 -0.037 -0.059 
t=1 0.629 0.628 0.627 0.006 0.006 0.006 
t=2 0.606 0.603 0.600 -0.255 -0.255 -0.255 
t=3 0.697 0.694 0.691 0.180 0.159 0.137 

 

Results of women revealed that time-dependent accuracies of PCT are almost 

similar through the 3
rd

 day after the last measurement. Maximum contribution come 

from the last measurement, which is taken at t=3. On the other hand relatively 

minimum contribution belongs to measurement taken at t=2. It can be observed that 

as longitudinal information increase, in other words as new measurements are taken 

from the subjects, the discriminative power is prone to increase. However it should 

be noted that this discriminative power are in decreasing trend throughout the 3
rd

 day 

for all time-points. 

 

For the time-dependent cut-off values of PCT biomarker in women, these 

values either remain constant or decrease through the 3
rd

 day after the last 

measurement. After the baseline measurement, which is taken at t=0, cut-off values 

are prone to decrease through the 3
rd

 day. However they increase after the second 

measurement and remain constant. Following longitudinal measurement, which is 

taken at t=2, decrease these time-dependent cut-off values considerably on the 1
st
, 2

nd
 

and 3
rd

 days compared to measurement time t=1.  On the other hand the last 

measurement seems to increase these time-dependent cut-off values so that they 

reach the maximum levels compared to other cut-off values. (Figure 4.15.. and Table 

4.28.) 
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   4.8.2.2. Diagnostic Accuracy of PCT in Men 

 

 

Figure 4.16. Time-Dependent ROC Curves and Time-Dependent Cut-Off values 

of PCT for Men for Δt=1, 2 and 3 after the last measurement 
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Table 4.29. Time-Dependent AUC Values and Time-Dependent Cut-Off values 

of PCT for Men for Δt=1, 2 and 3 after the last measurement 

Time of 

Measurements 

Time-Dependent AUC Time-Dependent Cut-Off Values 

Δt = 1 Δt = 2 Δt = 3 Δt = 1 Δt = 2 Δt = 3 

t=0 0.675 0.672 0.667 0.088 0.088 0.065 

t=1 0.674 0.669 0.663 0.250 0.250 0.227 
t=2 0.650 0.647 0.643 -0.097 -0.097 -0.097 
t=3 0.718 0.712 0.707 0.320 0.297 0.274 

 

 

Results for men revealed that time-dependent accuracies of PCT biomarker 

are similar through the 3
rd

 day after the last measurement, like other cases.  

Maximum contribution comes from the last measurement, which is taken at t=3.On 

the other hand it’s observed that third measurement decreases this diagnostic 

performance so that time-dependent AUC value reaches its minimum value after t=2. 

It can be observed that as longitudinal information increases, generally the 

discriminative accuracies are prone to increase. Also it should be noted that this 

discriminative power is in decreasing trend throughout the 3
rd

 day. 

 

For the time-dependent cut-off values, the trajectory for men is similar for all 

time points, t=0, 1, 2 and 3. That is, these values either remain constant or decrease 

throughout 3
rd

 day after the last measurement. After the baseline measurement, time-

dependent cut-off values remain the same the first two days but on the 3
rd

 day it 

decreases. Following measurement taken at t=1 increases the cut-off values 

compared to baseline measurement, t=0, however it decreases on the 2
nd

 day and 

remain constant on the first three days after the last measurement. Contrary to 

previous cut-off profiles, the trajectory of the last measurement taken at t=3 is neither 

remain constant on the first three days nor remain constant on the first two days and 

then decrease on the 3
rd

 day after the last measurement. The thresholds are 

decreasing gradually throughout the 3
rd

 day after the measurement taken at t=3. 

(Figure 4.16. and Table 4.29.) 

 

In overall, PCT has higher diagnostic performance in men than women, in all 

time points (t) and in all future time points (Δt), in terms of time-dependent AUC 
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values, like CRP. On the other hand the contributions of time points to the diagnostic 

accuracy are the same, that is, maximum contributions come from the last time point 

taken at t=3 and minimum contributions are observed after the second measurement 

taken at t=2 in both men and women. As for the time-dependent cut-off values, they 

depict fluctuations for both groups, that is, they decrease after relatively big cut-off 

values and increase after relatively small cut-off values in both men and women. 

Maximum time-dependent cut-off values are obtained after the last measurement 

which is taken at t=3, in both women and men. However minimum cut-off values are 

observed on t=2, which is last but one measurement for both of the groups. 

 

To sum up, time-dependent AUC values are observed to decrease through the 

3
rd

 day after each biomarker value in both gender groups and in both of the 

biomarkers. Moreover, in general as long as new measurements are taken from 

subjects within the follow-up period, time-dependent diagnostic accuracies are prone 

to increase. On the other hand in both gender groups and in both biomarkers, it’s 

found that time-dependent cut-off values either remain constant or decrease through 

the 3
rd

 day, but these values never increase through the 3
rd

 day. This result also 

proves that the risk of death in ICU-setting is decreasing over the further time-points 

after the last measurement was taken. 
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5. DISCUSSION 

 

Area Under Curve (AUC) obtained from the classical ROC Curve is the most 

common measure to determine the diagnostic accuracy of a biomarker. There is no 

time interval between the measurement and the diagnosis in classical ROC Curve. 

However in many situations in clinics a single biomarker measurement taken within 

the follow-up is utilized to make diagnosis of the event at the end of follow-up 

period. When the time dimension is incorporated to the classical ROC Curve, 

diagnostic accuracy is determined by time-dependent AUC values obtained from 

time-dependent ROC Curves. But in many situations in clinics, a single value is 

insufficient to make a diagnosis. Therefore, evaluating longitudinal profile of a 

biomarker is considered as a more effective way for diagnosing. As in the single 

measurement-case, diagnostic accuracy of serial biomarker measurements taken 

within the follow-up period is determined by time-dependent AUC values. In 

literature, the first study evaluating the diagnostic performance of longitudinal data 

was published in 2004 (13); however studies including the diagnostic performance of 

serial biomarkers have gained much attention starting 2010s. (3, 6, 10-12, 15-22) 

 

Studies investigating the diagnostic accuracy of serial biomarker values have 

focused mostly on HIV studies (3, 14), dementia researches (17, 19), cancer research 

(10, 11) and cardiovascular diseases (15, 18, 21). Therefore longer follow-up periods 

are taken such as months and years. Since the event is defined as ICU mortality in 

this thesis, the survival time is taken as 30 days. There are several studies modeling 

ICU biomarkers with joint modeling approach, Deslandes and Chevret analyzed the 

relationship between serial SOFA scores and ICU mortality in competing-risk-setting 

(61). Khoundabi et al.  investigated repeated Urine Output measurements along with 

other risk factors  on the occurrence of Acute Kidney Injure (AKI) in ICU patients 

(62). In these studies, only the relationship between serial biomarker values and the 

event of interest is analyzed, however the diagnostic values of these biomarkers are 

not investigated. To the best of our knowledge, there is no other study in literature to 

analyze the diagnostic performances of serial CRP and PCT biomarkers using joint 

models. In this thesis, short follow-up period is taken – 30 days – and two different 
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joint models are constructed for CRP and PCT biomarkers and their discriminative 

abilities in predicting ICU mortality at the end of follow-up period are evaluated and 

compared. Moreover, diagnostic accuracies of these serial biomarker measurements 

are assessed throughout the follow-up period, hence it would be possible to 

determine in which time points which biomarker should be preferred to predict the 

event of interest. 95% confidence intervals are given along with these time-

dependent AUC values to determine whether these diagnostic accuracies are 

statistically significant. Karaismailoglu et.al  assessed the diagnostic performances of 

cardiac panel biomarkers over the follow-up period but they have utilized single 

biomarker values in the analysis (63). Fournier et al. proposed R
2
 curve to assess the 

predictive accuracy of longitudinal data (12). They compared this proposed metric 

and Brier Score in predicting the event of interest throughout the follow-up period 

using serial Serum Creatinine measurements cumulatively from DIVAT data. They 

also presented 95% confidence intervals for these metrics throughout the follow-up 

period. Musoro et.al evaluated diagnostic performances of serial SOFA scores along 

the follow-up period in competing risk setting by using joint modeling approach. 

Standard joint modeling has been performed to obtain time-dependent diagnostic 

accuracy values. Time-dependent AUC values and Brier Score as diagnostic 

performance measures for predicting the risk of death in hospital has been reported 

(21). 

 

In this thesis cut-off values for both biomarkers are determined over a 

representative subject of the each sample of CRP and PCT. Time-dependent 

sensitivity and time-dependent specificity values are given for these cut-off values. 

CQV and RCV statistics are calculated for both of the biomarkers to determine which 

biomarker should be preferred to discriminate subjects at risk and subjects without at 

risk of death at the end of follow- up period in ICU setting. Smaller CQV and RCV 

are proposed to determine the relevant cut-off value for discrimination. To the best of 

our knowledge, this thesis is the first in proposing the CQV and RCV statistics 

together in the decision of the most appropriate cut-off point when there are several 

threshold alternatives for the pre-specified event of interest in the study. Moreover, 
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calculating the cut-off values over representative subjects of the sample of the 

biomarkers is considered to be firstly applied in this thesis. 

 

Rather than taking a single biomarker value to make a diagnosis, clinicians 

mostly prefer taking serial biomarker measurements to investigate the longitudinal 

trajectory of the subjects in detail on either the most appropriate treatment decision 

or the diagnosis.  Kurz et al. compared single and serial Troponin-T values in 

patients with acute STEMI to predict major adverse cardiac event (MACE). They 

have found that single Troponin-T value is as effective as serial Troponin-T values 

and may be useful in predicting future events (64). Wolff and Bouadma (65) and 

Samsudin and Vasikaran (66) reported that utilizing serial PCT values over single 

PCT value is recommended in most situations in clinic. On the other hand, several 

studies have stated that serial CRP values are valuable compared to single CRP taken 

at the time of admission to diagnose sepsis (49), while other studies have defined 

using serial CRP values over single value as helpful for diagnosis (67). In this thesis, 

diagnostic accuracies of the biomarker values taken at baseline (t=0) and repeated 

measurements of CRP and PCT biomarkers taken within the follow-up period are 

evaluated and compared in terms of time-dependent AUC values. Also 95% 

confidence intervals obtained from nonparametric percentile bootstrap method are 

given in this study. Moreover, to the first, this study is considered to be unique in 

comparing diagnostic accuracies of single and serial biomarker values performing 

joint modeling, giving p-values as a comparison criteria. There are several other 

studies in literature which give 95% confidence intervals by using nonparametric 

bootstrap approach for time-dependent AUC, time-dependent sensitivity and time-

dependent specificity values. In this study percentile method is applied for 95% 

confidence intervals for both time-dependent AUC values and time-dependent cut-

off values. 

 

For each biomarker, different combinations of joint models are compared and 

interpreted in terms of their diagnostic performances in predicting ICU mortality at 

the end of the period. The aim is to find out the best joint model combination for 

obtaining the optimal diagnostic accuracy for both CRP and PCT. Within the context 
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of this analysis, two different random-effects model structure in longitudinal sub-

model, two different survival distribution in survival sub-model and four different 

parameterization options to link between longitudinal and survival sub-models are 

included and compared. To the best of our knowledge, it’s the most comprehensive 

study that analyses different combinations such in detail, compares the diagnostic 

accuracies of these ICU biomarkers under these combinations, gives the best-

combination for both of the biomarkers that has the maximum-diagnostic-accuracy. 

Several other studies in literature have also investigated different joint model 

combinations. But in these studies different joint models are either compared in 

terms of dynamic survival probabilities or in terms of diagnostic accuracies of the 

models (21) or some studies have used goodness-of-fit measures to compare 

different combinations of joint models (15). 

 

In classical ROC Curve Analysis, a single cut-off value is sufficient to 

differentiate diseased and non-diseased subjects. When time dimension is 

incorporated into the ROC Curve, a single cut-off value becomes inadequate to 

distinguish the two groups since new measurements of biomarkers are taken 

throughout the follow-up period. As long as new measurements are taken from the 

subjects, cut-off values for distinguishing risky and non-risky groups are updated in 

follow-up studies. This property gives cut-off values dynamic characteristics. In 

literature, there are several studies including cut-off values obtaining from a single 

biomarker value taken within the follow-up period (63, 68). However, a few studies 

have investigated the cut-off values in time-dependent setting. Abdi et al. used joint 

modeling approach to investigate the relationship between serial mycophenolic acid 

(MPA) and acute rejection (AR). They have obtained time-dependent threshold 

values for serial MPA values based on fitted joint models along with 95% confidence 

intervals obtained by nonparametric bootstrap method (16).  In this thesis, time- 

dependent cut-off values for discriminating the subjects for the first three days after 

the last measurement was taken are calculated and interpreted for each gender group 

for both CRP and PCT biomarkers. Also diagnostic accuracies are updated after each 

serial biomarker value taken within this period. By this way it’s intended to evaluate 

the contribution of each biomarker value in the discrimination of subjects at risk and 



102 

 

subjects without risk of death for the 1
st
, 2

nd
 and 3

rd
 days after the last measurement. 

To the best of our knowledge there is no study in literature to investigate the time-

dependent cut-off values for longitudinal data such in detailed way. 
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6. CONCLUSION 

 

Time-dependent AUC value evaluates the diagnostic performance of 

longitudinal biomarker at the end of follow-up period. This measure should be 

utilized in assessing the diagnostic performance of serial biomarker measurements 

rather than determining the diagnostic accuracy of each time-point by classical ROC 

Curve. 

 

In application part of the thesis, C-reactive Protein and Procalcitonin 

measurements taken from Adult Intensive Care Units(ICU)’ (Emergency, Brain 

Surgery, General Surgery, Intensive Care Units, Cardiology, Neurology Units) 

diagnostic performances in predicting death in ICU at the end of follow-up were 

assessed by time-dependent AUC values. 

 

Within the context of this thesis; 

 

1. Joint Modeling Approach, which enables to model longitudinal and survival 

data simultaneously and time-dependent diagnostic accuracy metrics, namely 

time-dependent AUC, time-dependent ROC Curves, time-dependent 

sensitivity and time-dependent specificity metrics, which are obtained by 

performing joint modeling approach are introduced. 

 

2. Survival time is taken as 30 days and diagnostic performances of serial CRP 

and PCT biomarkers in predicting the risk of death at the end of follow-up 

period are investigated by time-dependent AUC values. At the end of the 

analysis, which biomarker is better in predicting the event of interest is 

determined. 

 

3. Diagnostic performances of single and serial CRP and PCT values in 

predicting death at the end of follow-up period were assessed using time-

dependent AUC values. At the end of the analysis, more efficient marker in 

predicting the event of interest is determined and suggested to use this 
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biomarker in practice. Furthermore, diagnostic accuracies of these 

biomarkers are evaluated throughout the follow-up period to determine 

which biomarker should be opted to predict the event of interest at pre-

specified time-points by means of their diagnostic performances. Also cut-

off values for discriminating subjects with and without risk of death are 

determined for both CRP and PCT, by using the longitudinal information of 

the most appropriate subjects to represent the sample of the biomarker. 

Coefficient of Quartile Variation and Robust Coefficient of Variation 

statistics are proposed for choosing the most appropriate cut-off value to 

discriminate the groups when there are several threshold alternatives for the 

event. 

 

4. Time-dependent cut-off values utilized for distinguishing subjects at risk and 

subjects without risk of death for ICU mortality after the last measurement 

was taken are identified. For both biomarkers, these cut-off values are 

calculated for both women and men. These cut-off values and time-

dependent ROC curves are presented with relevant graphics to visualize the 

results. Also updated time-dependent cut-off values are determined to 

investigate the contribution of each biomarker value taken during the follow-

up period.  At the end of this analysis, all the time-dependent accuracy 

measures, including time-dependent sensitivity and time-dependent 

specificity metrics are determined for the first, second and third day after the 

last measurement was taken. 

 

5. Diagnostic performances of serial CRP and PCT measurements are assessed 

and compared in detail. For the comparison, two different random-effects 

model options in longitudinal model, two different survival distribution 

options in survival model and four different parameterization options to link 

longitudinal and survival data are utilized. Time-dependent AUC values are 

used as comparison criteria. At the end of the analysis, the best combination, 

which gives the optimum diagnostic accuracy is determined for each 
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biomarker and these combinations are suggested to utilize to obtain better 

predictive accuracy at the end of follow-up period. 

 

6. 95% confidence intervals of time-dependent AUC values are given by 

performing nonparametric percentile bootstrap method in order to determine 

whether the observed time-dependent diagnostic accuracy is statistically 

significant. 1000 bootstrapped samples are used in the analysis. p-values are 

also given as comparison criteria to compare the time-dependent AUC 

values obtained by either single and serial biomarker measurements or serial 

biomarker values with different cut-off options. 

Data were collected retrospectively from Hacettepe University Hospital 

database. Risk factors other than age, gender and ICU where patients stay were not 

recorded in the database, therefore could not be included in the study.  A prospective 

study which enables to include other risk factors such as smoking status, family 

history, race and so on would be more informative since it would lead to study the 

effects of all the risk factors under a comprehensive research. 

Diagnostic accuracy could be increased by combining biomarkers with 

relevant statistical methods.  In this study, two different models are constructed for 

either CRP or PCT to obtain their diagnostic accuracies. Consideration of combining 

of the serial measurements of the biomarkers by proper statistical methods could be 

future-work alternative. 
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APPENDICES 

 

I - ETHICAL APPROVAL FORM OF HACETTEPE UNIVERSITY 
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II -PART  OF CRP DATASET 

 
id crp lcrp survtime time status age unit gender 

1 20.1 1.303 4 0 0 24 3 0 

1 1.33 0.124 4 4 0 24 3 0 

2 12.4 1.093 6 0 1 61 3 1 

2 11.4 1.057 6 1 1 61 3 1 

2 11.2 1.049 6 2 1 61 3 1 

2 10.3 1.013 6 2 1 61 3 1 

2 9.82 0.992 6 5 1 61 3 1 

2 9 0.954 6 5 1 61 3 1 

3 14.6 1.164 12 0 1 60 4 1 

3 7.56 0.879 12 2 1 60 4 1 

3 10.3 1.013 12 3 1 60 4 1 

3 15.8 1.199 12 4 1 60 4 1 

3 17.7 1.248 12 6 1 60 4 1 

3 23.3 1.367 12 6 1 60 4 1 

3 46.6 1.668 12 8 1 60 4 1 

3 44.9 1.652 12 12 1 60 4 1 

4 8.29 0.919 13 0 0 61 4 0 

4 8.2 0.914 13 2 0 61 4 0 

4 6.05 0.782 13 3 0 61 4 0 

5 0.913 -0.040 30 0 0 60 4 1 

5 0.666 -0.177 30 2 0 60 4 1 

5 5.4 0.732 30 8 0 60 4 1 

5 6.72 0.827 30 10 0 60 4 1 

5 7.66 0.884 30 13 0 60 4 1 

5 5.78 0.762 30 14 0 60 4 1 

5 11.2 1.049 30 16 0 60 4 1 

5 14.4 1.158 30 20 0 60 4 1 

5 13.4 1.127 30 23 0 60 4 1 

5 13.1 1.117 30 27 0 60 4 1 

5 11.4 1.057 30 30 0 60 4 1 

 
Data for the first 5 subjects were shown for CRP biomarker. 

Variables: 

crp: Repeated C-Reactive Proitein Measurements (untransformedvalues) 

lcrp: Repeated C-Reactive Proitein Measurements (after logarithmic 

transformation) 

gender :  0:Female, 1:Male 
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age : age of the subjects (Years) 

survtime : survival time of each subject (Days) 

time : time-points at which the repeated measurements are taken 

status : 0: Censored,  1: Event  

unit :  1:Emergency ICU, 2:General Surgery ICU, 3:Brain Surgery ICU, 

4:Internal Diseases ICU, 5:Cardiology ICU, 6:Neurology ICU  
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III - PART OF PCT DATASET 

 

id pct lpct survtime time status age unit gender 

1 54.57 1.737 11 0 1 60 4 1 

1 6.19 0.792 11 3 1 60 4 1 

1 2.32 0.365 11 4 1 60 4 1 

1 6.26 0.797 11 5 1 60 4 1 

1 19.48 1.29 11 5 1 60 4 1 

2 0.141 -0.851 12 0 0 61 4 0 

2 0.189 -0.724 12 3 0 61 4 0 

2 0.213 -0.672 12 5 0 61 4 0 

3 7.71 0.887 5 0 1 61 3 1 

3 8.44 0.926 5 1 1 61 3 1 

3 7.73 0.888 5 2 1 61 3 1 

3 8.38 0.923 5 2 1 61 3 1 

3 10.78 1.033 5 5 1 61 3 1 

3 11.92 1.076 5 5 1 61 3 1 

4 0.122 -0.914 30 0 0 84 6 0 

4 5.31 0.725 30 5 0 84 6 0 

4 1.02 0.009 30 9 0 84 6 0 

4 0.089 -1.051 30 19 0 84 6 0 

4 0.318 -0.498 30 26 0 84 6 0 

5 0.127 -0.896 30 0 0 60 6 1 

5 56.94 1.755 30 9 0 60 6 1 

5 0.343 -0.465 30 19 0 60 6 1 

5 5.89 0.77 30 26 0 60 6 1 

5 1.76 0.246 30 29 0 60 6 1 

 
Data for the first 5 subjects were shown for PCT biomarker. 

Variables: 

pct: repeated Procalcitonin Measurements (untransformed values) 

lpct: repeated Procalcitonin Measurements (after logarithmic 

transformation) 

gender :  0:Female, 1:Male 

age: age of the subjects (Years) 

survtime : survival time of each subject (Days) 

time : time-points at which the repeated measurements are taken 

status : 0: Censored,  1: Event  

unit :  1:Emergency ICU, 2:General Surgery ICU, 3:Brain Surgery ICU, 

4:Internal Diseases ICU, 5:Cardiology ICU, 6:Neurology ICU. 
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IV – PARAMETER ESTIMATES OF JOINT MODEL COMBINATIONS 

 

Total of 16 different joint models  (8 of them are for Model-I and  the other 8 models 

for Model-II) are constructed for each biomarker. These combinations are named as 

JM1, JM2,…JM8 and listed below: 

 

JM 
 

Joint Model Combination 

JM1  
Standard Joint Model with Unspecified Baseline Hazard Function 

JM2  
Standard Joint Model with Piecewise-Constant Function 

JM3  
Joint Model with Slope Parameterization with Unspecified Baseline Hazard Function 

JM4  
Joint Model with Slope Parameterization with Piecewise Constant Function 

JM5  
Joint Model with Both Parameterization with Unspecified Baseline Hazard Function 

JM6  
Joint Model with Both Parameterization with Piecewise-Constant Function 

JM7  

Joint Model with Cumulative-Effects Parameterization with Unspecified Baseline 

Hazard Function 

JM8  

Joint Model with Cumulative-Effects Parameterization with Piecewise-Constant 

Function 
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Table 1: Parameter estimates,  standard errors and p-values of joint models and 

measurement error for linear mixed effects model of joint models for Model-I 

for CRP biomarker  

 

Joint Model Process Variable β SE (β) p-value 

JM1  

Longitudinal 

Intercept 0.8341 0.0851 <0.0001 

time -0.0207 0.0068 0.0025 

age 0.0001 0.0013 0.9736 

time*age 0.0003 0.0001 0.0088 

Survival 
α 1.436 0.2961 <0.0001 

σ = 0.2746608 

JM2  

Longitudinal 

Intercept 0.8337 0.0851 <0.0001 

time -0.0207 0.0067 0.0024 

age 0.0001 0.0013 0.9731 

time*age 0.0003 0.0001 0.0084 

Survival 

α 1.3789 0.2916 <0.0001 

log (xi.1) -6.2542 0.3691  

log (xi.2) -5.3515 0.3728  

log (xi.3) -5.5957 0.3689  

log (xi.4) -5.1809 0.3503  

log (xi.5) -5.0042 0.3646  

log (xi.6) -4.9809 0.4516  

log (xi.7) 10.7068 0.3871  

σ = 0.2746560 

JM3  

Longitudinal 

Intercept 0.8351 0.0854 <0.0001 

time -0.0219 0.007 0.0016 

age 0.0001 0.0013 0.9984 

time*age 0.0003 0.0001 0.0086 

Survival 
α 2.4533 5.2215 0.6385 

σ = 0.2745663 

JM4  

Longitudinal 

Intercept 0.8351 0.0854 <0.0001 

time -0.0219 0.0069 0.0016 

age 0.0001 0.0013 0.9989 

time*age 0.0003 0.0001 0.0085 

Survival 

α 2.5866 5.1918 0.6183 

log (xi.1) -4.9655 0.2186  

log (xi.2) -4.0895 0.2361  

log (xi.3) -4.3391 0.2299  

log (xi.4) -3.9229 0.1929  

log (xi.5) -3.7354 0.2090  

log (xi.6) -3.6916 0.3329  

log (xi.7) 11.9954 0.2360  

σ = 0.2745624 
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JM5  

Longitudinal 

Intercept 0.8346 0.0852 <0.0001 

time -0.0208 0.0069 0.0025 

age 0.0001 0.0013 0.9713 

time*age 0.0003 0.0001 0.0088 

Survival 

α1 1.442 0.3008 <0.0001 

α2 -0.9508 6.1022 0.8762 

σ = 0.2746283 

JM6  

Longitudinal 

Intercept 0.834 0.0851 <0.0001 

time -0.0208 0.0069 0.0025 

age 0.0001 0.0013 0.9731 

time*age 0.0003 0.0001 0.0085 

Survival 

α1 1.3823 0.2923 <0.0001 

α2 -0.4423 5.8745 0.940 

log (xi.1) -6.1286 0.3644  

log (xi.2) -5.2282 0.3644  

log (xi.3) -5.4735 0.3585  

log (xi.4) -5.0562 0.3375  

log (xi.5) -4.8785 0.3520  

log (xi.6) -4.8484 0.4400  

log (xi.7) 10.8441 0.3719  

σ = 0.2746482 

JM7  
Longitudinal 

Intercept 0.8351 0.0848 <0.0001 

time -0.0216 0.0069 0.002 

age 0.0001 0.0013 0.981 

time*age 0.0003 0.001 0.009 

Survival 
α 0.0718 0.0247 0.004 

 σ = 0.2745185 

JM8  

Longitudinal 

Intercept 0.8363 0.0849 <0.0001 

time -0,0219 0,0069 0.0014 

age 0,0001 0,0013 0.976 

time*age 0,0003 0,0001 0.008 

Survival 

α 0.0601 0.0233 0.010 

log (xi.1) -5.0242 0.2191  

log (xi.2) -4.1431 0.2364  

log (xi.3) -4.3872 0.2302  

log (xi.4) -3.9727 0.1946  

log (xi.5) -3.8005 0.2148  

log (xi.6) -3.7870 0.3422  

log (xi.7) 11.8933 0.2522  

σ = 0.2744885 
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Table 2. Variance-covariance matrix of random-effects for joint model  

combinations for Model-I for CRP biomarker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 JM1 
 Intercept time 

Intercept 0.202 -0.006 

time -0.006 0.001 

 

JM2 
 Intercept time 

Intercept 0.201 -0.006 

time -0.006 0.001 

 

JM3 
 Intercept time 

Intercept 0.203 -0.006 

time -0.006 0.001 

 

JM4 
 Intercept time 

Intercept 0.203 -0.006 

time -0.006 0.001 

 

JM5 
 Intercept time 

Intercept 0.202 -0.006 

time -0.006 0.001 

 

JM6 
 Intercept time 

Intercept 0.207 -0.006 

time -0.006 0.001 

 

JM7 
 Intercept time 

Intercept 0.201 -0.006 

time -0.006 0.001 

 

JM8 
 Intercept time 

Intercept 0.201 -0.006 

time -0.006 0.001 
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Table 3. Parameter estimates,  standard errors and p-values of joint models and 

measurement error for linear mixed effects model of joint models for Model-II 

for CRP biomarker 

 

Joint Model Process Variable β SE (β) p-value 

JM1 

 

 

Longitudinal 

Intercept 0.8044 0.0842 <0.0001 

time -0.017 0.0064 0.0074 

age 0.0003 0.0012 0.8167 

time*age 0.0002 0.0001 0.0153 

Survival 
α 1.612 0.3215 <0.0001 

σ = 0.2517925 

JM2 

 

 

Longitudinal 

Intercept 0.8046 0.0841 <0.0001 

time -0.0171 0.0064 0.0072 

age 0.0003 0.0012 0.8085 

time*age 0.0002 0.0001 0.0162 

Survival 

α 1.4134 0.2975 <0.0001 

log (xi.1) -6.2941 0.3766  

log (xi.2) -5.3879 0.3794  

log (xi.3) -5.6383 0.3769  

log (xi.4) -5.2145 0.3556  

log (xi.5) -5.0310 0.3673  

log (xi.6) -5.0284 0.4608  

log (xi.7) 10.6257 0.4076  

σ = 0.2520769 

JM3  

 

 

 

Longitudinal 

Intercept 0.8069 0.0847 <0.0001 

time -0.0182 0.0065 0.0047 

age 0.0003 0.0012 0.7845 

time*age 0.0002 0.0001 0.0181 

Survival 
α -1.4106 5.6165 0.8017 

σ = 0.2521585 

JM4 

 

 

 

Longitudinal 

Intercept 0.807 0.0847 <0.0001 

time -0.0183 0.0065 0.0047 

age 0.0003 0.0012 0.7848 

time*age 0.0002 0.0001 0.0176 

Survival 

α -1.0769 3.7142 0.7719 

log (xi.1) -4.9828 0.2203  

log (xi.2) -4.1056 0.2367  

log (xi.3) -4.3533 0.2301  

log (xi.4) -3.9342 0.1930  

log (xi.5) -3.7463 0.2088  

log (xi.6) -3.7066 0.3338  

log (xi.7) 11.9846 0.2362  

σ = 0.2521291 
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JM5  

 

 

Longitudinal 

Intercept 0.8042 0.0842 <0.0001 

time -0.017 0.0064 0.0081 

age 0.0003 0.0012 0.8116 

time*age 0.0002 0.0001 0.0156 

Survival 

α1 1.6255 0.3267 <0.0001 

α2 0.2596 5.1612 0.9599 

σ = 0.2518011 

JM6 

 

 

 

Longitudinal 

Intercept 0.8046 0.0841 <0.0001 

time -0.0171 0.0064 0.0075 

age 0.0003 0.0012 0.808 

time*age 0.0002 0.0001 0.0161 

Survival 

α1 1.4149 0.3005 <0.0001 

α2 -0.1562 4.1159 0.9697 

log (xi.1) -6.0974 0.3592  

log (xi.2) -5.1807 0.3593  

log (xi.3) -5.4274 0.3565  

log (xi.4) -5.0013 0.3344  

log (xi.5) -4.8108 0.3483  

log (xi.6) -4.7900 0.4461  

log (xi.7) 10.8839 0.3909  

σ = 0.252076 

JM7  

 

 

Longitudinal 

Intercept 0.8075 0.0845 <0.0001 

time -0.018 0.0065 0.0054 

age 0.0003 0.0012 0.7989 

time*age 0.0002 0.0001 0.0179 

Survival 
α 0.0348 0.0274 0.0274 

 σ = 0.2521361 

JM8  

 

 

Longitudinal 

Intercept 0.8082 0.0845 <0.0001 

time -0.0181 0.0065 0.0049 

age 0.0003 0.0012 0.8025 

time*age 0.0002 0.0001 0.0171 

Survival 

α 0.0338 0.0156 0.0296 

log (xi.1) -5.0018 0.2186  

log (xi.2) -4.1232 0.236  

log (xi.3) -4.3704 0.2298  

log (xi.4) -3.9563 0.1937  

log (xi.5) -3.7720 0.2113  

log (xi.6) -3.7413 0.3365  

log (xi.7) 11.9553 0.2401  

σ = 0.2521199 
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Table 4.  Variance-covariance matrix of random-effects for joint model 

combinations for Model-II for CRP biomarker 

 

JM1 

 Intercept time time
2
 

Intercept 0.240 -0.017 0.000449 

time -0.017 0.0036 -0.00011 

time
2
 0.0004 -0.0001 0.00000356 

JM2 

 Intercept time time
2
 

Intercept 0.239 -0.017 0.00044 

time -0.017 0.004 -0.0001 

time
2
 0.00044 -0.0001 0.0000034 

JM3 

 Intercept time time
2
 

Intercept 0.240 -0.017 0.00043 

time -0.017 0.004 -0.000106 

time
2
 0.00043 -0.0001 0.0000034 

JM4 

 Intercept time time
2
 

Intercept 0.240 -0.017 0.00043 

time -0.017 0.0036 -0.0001 

time
2
 0.00043 -0.0001 0.0000034 

JM5 

 Intercept time time
2
 

Intercept 0.240 -0.017 0.00045 

time -0.017 0.0036 -0.0001 

time
2
 0.00045 -0.0001 0.0000036 

JM6 

 Intercept time time
2
 

Intercept 0.244 -0.017 0.00045 

time -0.017 0.0035 -0.0001 

time
2
 0.00045  -0.0001 0.0000034 

JM7 

 Intercept time time
2
 

Intercept 0.238 -0.0168 0.00042 

time -0.0168 0.00359 -0.000104 

time
2
 0.00042 -0.0001 0.0000034 

JM8 

 Intercept time time
2
 

Intercept 0.238 -0.0168 0.000423 

time -0.0168 0.0036 -0.000105 

time
2
 0.00042 -0.00011 0.0000034 

 

 

 

 

 

 

 

 



122 

 

 

Table 5. Parameter estimates,  standard errors and p-values of joint models and 

measurement error for linear mixed effects model of joint models for Model-I 

for PCT biomarker 

 
Joint 

Model 
Process Variable β SE (β) p-value 

JM1 

 

Longitudinal 

Intercept -0.1509 0.1345 0.2619 

time -0.0314 0.0102 0.0022 

age -0.0021 0.002 0.2882 

time*age 0.0004 0.0001 0.010 

Survival 
α 1.1988 0.1331 <0.0001 

σ = 0.4568325 

JM2  

Longitudinal 

Intercept -0.15196 0.1343 0.2579 

time -0.0314 0.0103 0.0022 

age -0.0021 0.002 0.2871 

time*age 0.0004 0.0002 0.0098 

Survival 

α 1.1724 0.1294 <0.0001 

log (xi.1) -5.0573 0.2305  

log (xi.2) -3.8740 0.1842  

log (xi.3) -4.0180 0.2249  

log (xi.4) -3.6768 0.1947  

log (xi.5) -3.7373 0.1937  

log (xi.6) -3.1986 0.2821  

log (xi.7) 11.8429 0.2948  

σ = 0.4566912 

JM3  

Longitudinal 

Intercept -0.4358 3.2696 0.263 

time -0.152 0.1358 0.0014 

age -0.0328 0.0103 0.3333 

time*age -0.002 0.002 0.0154 

Survival 
α -0.9199 3.2525 0.894 

σ = 0.4586285 

JM4  

Longitudinal 

Intercept -0.1527 0.1358 0.263 

time -0.0328 0.0103 0.0014 

age -0.002 0.002 0.3333 

time*age 0.0004 0.0002 0.0154 

Survival 

α -0.1527 0.1358 0.7773 

log (xi.1) -5.0344 0.2257  

log (xi.2) -4.0254 0.1848  

log (xi.3) -4.2240 0.2255  

log (xi.4) -3.9112 0.1944  

log (xi.5) -3.9545 0.1911  

log (xi.6) -3.5150 0.2793  

log (xi.7) 11.4887 0.2915  
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σ = 0.4584787 

JM5  

Longitudinal 

Intercept -0.1524 0.1344 0.2569 

time -0.0308 0.0103 0.0027 

age -0.0021 0.002 0.2892 

time*age 0.0004 0.0001 0.0105 

Survival 

α1 1.205 0.1353 <0.0001 

α 2 1.5581 2.6488 0.5564 

σ = 0.4567036 

JM6  

Longitudinal 

Intercept -0.2819 0.1096 0.0101 

time -0.0199 0.0072 0.0057 

age -0.0007 0.0016 0.6624 

time*age 0.0002 0.0001 0.0183 

Survival 

α1 1.2072 0.13 <0.0001 

α2 3.4182 2.5326 0.1771 

log (xi.1) -4.9941 0.2330  

log (xi.2) -3.8636 0.1849  

log (xi.3) -4.0270 0.2258  

log (xi.4) -3.7199 0.1990  

log (xi.5) -3.7816 0.1999  

log (xi.6) -3.2182 0.2846  

log (xi.7) 11.8442 0.2966  

σ = 0.4642654 

JM7 
Longitudinal 

Intercept -0.1492 0.1348 0.2686 

time -0.0327 0.0103 0.0014 

age -0.002 0.002 0.309 

time*age 0.0004 0.0002 0.0133 

Survival 
α 0.0243 0.0158 0.1231 

 σ = 0.457796 

JM8 

Longitudinal 

Intercept -0.1481 0.1348 0.2179 

time -0.0328 0.0103 0.0014 

age -0.0021 0.002 0.3043 

time*age 0.0004 0.0002 0.0128 

Survival 

α 0.0259 0.0152 0.0886 

log (xi.1) -5.0253 0.2237  

log (xi.2) -4.0112 0.1827  

log (xi.3) -4.2039 0.2238  

log (xi.4) -3.8862 0.1927  

log (xi.5) -3.9253 0.1894  

log (xi.6) -3.4634 0.2780  

log (xi.7) 11.5629 0.2896  

σ = 0.457751 
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Table 6. Variance-covariance matrix of random-effects for joint model 

combinations for Model-I for PCT biomarker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      JM1 
 Intercept time 

Intercept 0.599 -0.021 

time -0.021 0.002 

 

JM2 
 Intercept time 

Intercept 0.597 -0.021 

time -0.021 0.002 

 

JM3 
 Intercept time 

Intercept 0.611 -0.02 

time -0.02 0.002 

 

JM4 
 Intercept time 

Intercept 0.609 -0.022 

time -0.022 0.002 

 

JM5 
 Intercept time 

Intercept 0.598 -0.02 

time -0.02 0.002 

 

JM6 
 Intercept time 

Intercept 0.594 -0.02 

time -0.02 0.002 

 

JM7 
 Intercept time 

Intercept 0.601 -0.02 

time -0.02 0.002 

 

JM8 
 Intercept time 

Intercept 0.600 -0.020 

time -0.020 0.002 
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Table 7. Parameter estimates,  standard errors and p-values of joint models and 

measurement error for linear mixed effects model of joint models for Model-II 

for PCT biomarker 

 

Joint Model Process Variable β SE (β) p-value 

JM1  

Longitudinal 

Intercept -0.1357 0.1338 0.3106 

time -0.0346 0.0098 0.0004 

age -0.0025 0.002 0.2057 

time*age 0.0005 0.0001 0.0013 

Survival 
α 1.3145 0.1349 <0.0001 

σ = 0.4097275 

JM2  

Longitudinal 

Intercept -0.1368 0.1337 0.3062 

time -0.0346 0.0098 0.0004 

age -0.0025 0.002 0.2082 

time*age 0.0005 0.0001 0.0013 

Survival 

α 1.2191 0.131 <0.0001 

log (xi.1) -5.1025 0.2332  

log (xi.2) -3.8835 0.1852  

log (xi.3) -4.0179 0.2255  

log (xi.4) -3.6582 0.1949  

log (xi.5) -3.7370 0.1939  

log (xi.6) -3.4396 0.2936  

log (xi.7) 11.4648 0.3193  

σ = 0.4103118 

JM3  

Longitudinal 

Intercept -0.1341 0.1363 0.3252 

time -0.0358 0.01 0.0004 

age -0.0023 0.002 0.2647 

time*age 0.0004 0.0001 0.0046 

Survival 
α -1.8244 2.1468 0.3954 

σ = 0.4101474 

JM4  

Longitudinal 

Intercept -0.1347 0.1362 0.3227 

time -0.0356 0.01 0.0004 

age -0.0023 0.002 0.2644 

time*age 0.0004 0.0001 0.0047 

Survival 

α -1.3106 1.9257 0.4961 

log (xi.1) -5.0535 0.2276  

log (xi.2) -4.0369 0.1845  

log (xi.3) -4.2321 0.2245  

log (xi.4) -3.9139 0.1929  

log (xi.5) -3.9495 0.1892  

log (xi.6) -3.5016 0.2775  

log (xi.7) 11.5031 0.2888  

σ = 0.4100207 
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 JM5  

Longitudinal 

Intercept -0.136 0.1338 0.3091 

time -0.0344 0.0098 0.0004 

age -0.0025 0.002 0.2053 

time*age 0.0005 0.0001 0.0013 

Survival 

α1 1.3194 0.1366 <0.0001 

α2 0.2648 1.6099 <0.0001 

σ = 0.4098769 

JM6  

Longitudinal 

Intercept -0.2385 0.1027 0.0202 

time -0.0215 0.0075 0.0045 

age -0.0009 0.0015 0.5579 

time*age 0.0003 0.0001 0.0038 

Survival 

α1 1.2795 0.1396 <0.0001 

α2 1.8523 1.8558 0.3182 

log (xi.1) -5.0623 0.2366  

log (xi.2) -3.9031 0.1874  

log (xi.3) -4.0357 0.2266  

log (xi.4) -3.6976 0.1978  

log (xi.5) -3.8202 0.2081  

log (xi.6) -3.6054 0.3306  

log (xi.7) 11.3088 0.3429  

σ = 0.4159172 

JM7  

Longitudinal 

Intercept -0.131 0.1353 0.331 

time -0.0358 0.01 0.0004 

age -0.0024 0.002 0.242 

time*age 0.0004 0.0001 0.0035 

Survival 
α 0.0237 0.0107 0.0265 

 σ = 0.4094571 

JM8  

Longitudinal 

Intercept -0.1301 0.1353 0.3363 

time -0.0358 0.010 0.0003 

age -0.0024 0.002 0.2394 

time*age 0.0004 0.0001 0.0034 

Survival 

α 0.0247 0.0109 0.0235 

log (xi.1) -5.0257 0.2236  

log (xi.2) -4.0087 0.1826  

log (xi.3) -4.1978 0.2238  

log (xi.4) -3.8772 0.1927  

log (xi.5) -3.9117 0.1895  

log (xi.6) -3.4461 0.2782  

log (xi.7) 11.5741 0.2899  

σ = 0.4094836 
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Table 8. Variance-covariance matrix of random-effects for joint model 

combinations for Model-II for PCT biomarker 

 

JM1 

 Intercept time time
2
 

Intercept 0.684 -0.047 0.00106 

time -0.047 0.0103 -0.00033 

time
2
 0.00106 -0.0003 0.000012 

JM2 

 Intercept time time
2
 

Intercept 0.679 -0.046 0.001 

time -0.0457 0.0099 -0.0003 

time
2
 0.001 -0.0003 0.000011 

JM3 

 Intercept time time
2
 

Intercept 0.678 -0.043 0.00081 

time -0.043 0.0097 -0.0003 

time
2
 0.00081 -0.0003 0.0000125 

JM4 

 Intercept time time
2
 

Intercept 0.678 -0.044 0.000821 

time -0.044 0.0097 -0.0003 

time
2
 0.0008 -0.0003 0.0000125 

JM5 

 Intercept time time
2
 

Intercept 0.684 -0.0471 0.0011 

time -0.0471 0.0103 -0.0003 

time
2
 0.0011 -0.0003 0.0000122 

JM6 

 Intercept time time
2
 

Intercept 0.685 -0.0464 0.00106 

time -0.046 0.0099 -0.0003 

time
2
 0.001 -0.0003 0.000011 

JM7 
 Intercept time time

2
 

Intercept 0.67 -0.043 0.000833 

 
time -0.043 0.0098 -0.0003 

time
2
 0.000833 -0.0003 0.0000125 

JM8 

 Intercept time time
2
 

Intercept 0.669 -0.043 0.000833 

time -0.043 0.0098 -0.0003 

time
2
 0.000833 -0.0003 0.0000125 
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V - R CODES 

 

# R Code to obtain subject-specific longitudinal profiles of randomly selected 16 

patients from  CRP sample # 

 

######################################### 

### DOWNLOADING THE CRP DATASET ### 

######################################### 

library(foreign) 

crp=read.csv2("C:/Users/Meriç/Desktop/crp457.csv", header=TRUE) 

head(crp,10) 

 

####################### 

### Preparing the Data ### 

####################### 

#data=data[,-4] 

#we include an indicator for the baseline measurement# 

#crp$t0 <- as.numeric(crp$time == 0) 

library(JM) 

crp$id=as.numeric(crp$id) 

crp$trsf=as.numeric(crp$trsf) 

crp$time=as.integer(crp$time) 

crp$gender=as.factor(crp$gender) 

crp$gender <- factor(crp$gender, 

levels = c(1,2), 

labels = c("female", "male")) 

crp$survtime=as.numeric(crp$survtime) 

crp$status=as.integer(crp$status) 

crp$status <- factor(crp$status, 

levels = c(0,1), 

labels = c("censored", "dead")) 

crp$stime=as.numeric(crp$stime) 

crp$stime1=as.numeric(crp$stime1) 

nrow(crp) 

head(crp) 

 

class(crp$id) 

class(crp$trsf) 

class(crp$time) 

class(crp$gender) 

class(crp$survtime) 

class(crp$stime) 

class(crp$stime1) 

class(crp$status) 

 

 

####################################################################

####################################################################
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# R Code to obtain subject-specific longitudinal profiles of randomly selected 16 

patients from  CRP sample # 

 

set.seed(123) 

## we take a sample of patients with more than six measurements 

library(lattice) 

crp$id=as.factor(crp$id) 

long_ids <- names(which(table(crp$id) > 6)) 

length(long_ids) 

ids <- sample(long_ids, 16) 

crp.random=xyplot(lcrp ~ time | id, data = crp, col="blue", 

       subset = id %in% ids, type = c("b"),  

       lwd = 2, xlab="Days",ylab="Log-Transformed CRP" ,layout = c(4,4))  

crp.random 

 

# R Code to obtain subject-specific longitudinal profiles of randomly selected 16 

patients from  PCT sample # 

 

######################################### 

### DOWNLOADING THE CRP DATASET ### 

######################################### 

library(foreign) 

pct=read.csv2("C:/Users/Meriç/Desktop/pct534.csv", header=TRUE) 

head(pct,10) 

 

########################## 

### Preparing the Data ### 

########################## 

pct$id=as.numeric(pct$id) 

pct$trsf=as.numeric(pct$trsf) 

pct$time=as.integer(pct$time) 

pct$gender=as.factor(pct$gender) 

pct$gender <- factor(pct$gender, 

levels = c(1,2), 

labels = c("female", "male")) 

pct$survtime=as.numeric(pct$survtime) 

pct$status=as.integer(pct$status) 

pct$status <- factor(pct$status, 

levels = c(0,1), 

labels = c("censored", "dead")) 

pct$stime=as.numeric(pct$stime) 

pct$stime1=as.numeric(pct$stime1) 

pct$yas=as.numeric(pct$yas) 

nrow(pct) 

head(pct) 

 

class(pct$id) 

class(pct$trsf) 
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class(pct$time) 

class(pct$gender) 

class(pct$survtime) 

class(pct$stime) 

class(pct$stime1) 

class(pct$status) 

class(pct$yas) 

 

 

####################################################################

####################################################################

###### 

set.seed(123) 

## we take a sample of patients with more than six measurements 

library(lattice) 

pct$id=as.factor(pct$id) 

long_ids <- names(which(table(pct$id) > 6)) 

length(long_ids) 

ids <- sample(long_ids, 16) 

pct.random=xyplot(lpct ~ time | id, data = pct, col="red", 

       subset = id %in% ids, type = c("b"),  

       lwd = 2, xlab="Days",ylab="Log-Transformed PCT" ,layout = c(4,4))  

pct.random 

 

***  R codes for Figure 4.1 and Figure 4.2 are taken from web page of JM package 

(4). 

 

############################### 

# R Codes for Section s 4.1 and 4.2 # 

############################### 

 

########################### 

### R Codes for Section 4.1 ### 

########################### 

 

library(JM) 

library(survivalROC) 

 

################################# 

 DOWNLOADING THE CRP DATASET  

################################# 

crp=read.csv2("C:/Users/Meric/Desktop/crp457.csv", header=TRUE) 

head(crp,10) 
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###################### 

### Preparing the Data ### 

###################### 

 

crp$id=as.factor(crp$id) 

crp$crp=as.numeric(crp$crp) 

crp$trsf=as.numeric(crp$trsf) 

crp$score=as.numeric(crp$score) 

crp$time=as.integer(crp$time) 

crp$gender=as.factor(crp$gender) 

crp$unit=as.factor(crp$unit) 

crp$gender=factor(crp$gender, levels=c(0,1), labels=c("female", "male")) 

crp$survtime=as.numeric(crp$survtime) 

crp$status=as.numeric(crp$status) 

#crp$status=factor(crp$status, levels=c(0,1), labels=c("censored", "dead")) 

#crp$stime=as.numeric(crp$stime) 

#crp$stime1=as.numeric(crp$stime1) 

crp$age=as.numeric(crp$age) 

 

lcrp=log(crp$crp) 

lcrp=as.numeric(lcrp) 

crp=cbind(crp,lcrp) 

 

nrow(crp) 

 

### SURVIVAL PART ### 

surv.data=crp[crp$time==0,] 

surv <-coxph(Surv(survtime, status)~1, data=surv.data, x=TRUE)                

summary(surv) 

 

summary(surv.data$survtime) 

 

 

#LINEAR MIXED EFFECTS MODELLING# 

 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

lme.model2=lme(lcrp~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = crp) 

summary(lme.model2) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION #####    

### COMPUTING SLOPE ### 

dform.cum <- list(fixed= ~I(time^2/2)+~I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2)+I(time^3/3), indRandom = 1:3) 
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ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

jm.model2.cum.piece<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

############################################### 

#### TIME - DEPENDENT AUC CALCULATION ### 

############################################### 

### td-AUC for survival time cut-off point ### 

set.seed(123) 

auc.crp.1=aucJM(jm.model2.cum.piece, crp,  18, 30) 

 

### td-AUC for time-points cut-off point ### 

set.seed(123) 

auc.crp.2=aucJM(jm.model2.cum.piece, crp,  6, 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.crp.1=boot.ci(bt, type="perc") 

sd.crp.1=sd(bt$t) 

 

all.crp.18=bt$t 

 

####################################################### 

### Calculating Confidence Interval and p-value for td-AUC ### 

####################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=7, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.crp.2=boot.ci(bt, type="perc") 

sd.crp.2=sd(bt$t) 

 

all.crp.7=bt$t 
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######################################## 

### DOWNLOADING THE PCT DATASET ### 

######################################## 

pct=read.csv2("C:/Users/Meric/Desktop/pct534.csv", header=TRUE) 

head(pct,10) 

 

########################## 

### Preparing the Data ### 

########################## 

library(JM) 

pct$id=as.factor(pct$id) 

pct$pct=as.numeric(pct$pct) 

pct$time=as.integer(pct$time) 

pct$gender=as.factor(pct$gender) 

pct$unit=as.factor(pct$unit) 

pct$gender=factor(pct$gender, levels=c(0,1), labels=c("female", "male")) 

pct$survtime=as.numeric(pct$survtime) 

pct$status=as.numeric(pct$status) 

pct$status=factor(pct$status, levels=c(0,1), labels=c("censored", "dead")) 

pct$age=as.numeric(pct$age) 

nrow(pct) 

 

nrow(crp) 

 

### SURVIVAL PART ### 

surv.data=pct[pct$time==0,] 

surv <-coxph(Surv(survtime, status)~1, data=surv.data, x=TRUE)                

summary(surv) 

summary(surv.data$survtime) 

 

 

#LINEAR MIXED EFFECTS MODELLING# 

 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

lme.model2=lme(lpct~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = pct) 

summary(lme.model2) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION #####    

### COMPUTING SLOPE ### 

dform.cum <- list(fixed= ~I(time^2/2)+~I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 
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jm.model2.cum.piece<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

############################################### 

#### TIME - DEPENDENT AUC CALCULATION #### 

############################################### 

### td-AUC for survival time cut-off point ### 

set.seed(123) 

auc.pct.1=aucJM(jm.model2.cum.piece, crp,  17, 30) 

 

### td-AUC for time-points cut-off point ### 

set.seed(123) 

auc.pct.2=aucJM(jm.model2.cum.piece, crp,  7, 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=17,  Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.pct.1=boot.ci(bt, type="perc") 

sd.pct.1=sd(bt$t) 

all.pct.17=bt$t 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=7, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.pct.2=boot.ci(bt, type="perc") 

sd.pct.2=sd(bt$t) 

 

all.pct.7=bt$t 
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####################### 

# R Codes for Section 4.2 # 

####################### 

 

################################################################## 

######  Diagnostic Performance of a Single Measurement of CRP  ########### 

################################################################# 

 

cutoff <- 30 

crp.auc= survivalROC(Stime=surv.data$survtime, 

status=surv.data$status, 

marker=surv.data$lcrp, 

predict.time=cutoff, method="KM") 

crp.auc$AUC 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return( survivalROC(Stime=d$survtime, 

status=d$status, 

marker=d$lcrp, 

predict.time=cutoff, method="KM")$AUC) 

} 

bt<- boot(surv.data, f, R=1000) 

bt 

mean=mean(bt$t, na.rm=T) 

mean 

ci.uns=boot.ci(bt, type="perc") 

sd.crp=sd(bt$t) 

 

all.crp.0.30 = bt$t 

 

################################################################# 

######  Diagnostic Performance of a Single Measurement of PCT  ########### 

################################################################# 

 

 

### SURVIVAL PART ### 

surv.data=pct[pct$time==0,] 

#surv.data 

surv <-coxph(Surv(survtime, status)~1, data=surv.data, x=TRUE)                

summary(surv) 
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summary(surv.data$survtime) 

 

#################################### 

#######  Diagnostic Performance ####### 

#################################### 

 

#attach(surv.data) 

cutoff <- 30 

pct.auc= survivalROC(Stime=surv.data$survtime, 

status=surv.data$status, 

marker=surv.data$lpct, 

predict.time=cutoff, method="KM") 

pct.auc$AUC 

 

all.pct.0.30 = bt$t 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######## 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return( survivalROC(Stime=d$survtime, 

status=d$status, 

marker=d$lcrp, 

predict.time=cutoff, method="KM")$AUC) 

} 

bt<- boot(surv.data, f, R=1000) 

bt 

mean=mean(bt$t, na.rm=T) 

mean 

plot(bt) 

ci.uns=boot.ci(bt, type="perc") 

sd.pct=sd(bt$t) 

 

##################################### 

 

#### Comparison of Time  - Dependent AUC Values of Baseline  CRP and PCT 

Measurements ### 

 

var.crp.single =(sd.crp)^2 

var.pct.single =(sd.pct)^2 

 

z=(crp.auc – pct.auc)/sqrt(var.pct.single+var.crp.single) 

z 

p=2*pnorm(-abs(z)) 
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p 

 

 

#### Comparison of Time  - Dependent AUC Values of Serial  CRP and PCT 

Measurements ### 

 

var.crp.serial.1=(sd.crp.1)^2 

var.pct.serial.1=(sd.pct.1)^2 

 

z1=(auc.crp.1-auc.pct.1)/sqrt(var.crp.serial.1+var.pct.serial.1) 

z1 

p1=2*pnorm(-abs(z1)) 

p1 

 

 

################################################################### 

 

var.crp.serial.2=(sd.crp.2)^2 

var.pct.serial.2=(sd.pct.2)^2 

 

z2=(auc.crp.2-auc.pct.2)/sqrt(var.crp.serial.2+var.pct.serial.2) 

z2 

p2=2*pnorm(-abs(z2)) 

p2 

 

################################################################### 

 

z3=(auc.crp.2-auc.pct.1)/sqrt(var.crp.serial.2+var.pct.serial.1) 

z3 

p3=2*pnorm(-abs(z3)) 

p3 

 

################################################################### 

 

z4=(auc.crp.1-auc.pct.2)/sqrt(var.crp.serial.1+var.pct.serial.2) 

z4 

p4=2*pnorm(-abs(z4)) 

p4 

 

################################################################### 

 

 

#### Comparison of Time  - Dependent AUC Values of Single and Serial  CRP 

Measurements ### 

 

Z5 =(crp.auc-auc.crp.1)/ sqrt(var.crp.single+var.crp.serial.1) 

Z5 

p5=2*pnorm(-abs(z5)) 
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p5 

 

 

Z6 =(crp.auc-auc.crp.2)/ sqrt(var.crp.single+var.crp.serial.2) 

Z6 

P6=2*pnorm(-abs(z6)) 

p6 

 

#### Comparison of Time  - Dependent AUC Values of Single and Serial PCT 

Measurements ### 

 

Z7 =(pct.auc-auc.pct.1)/ sqrt(var.pct.single+var.pct.serial.1) 

Z7 

P7=2*pnorm(-abs(z7)) 

P7 

 

 

Z8=(pct.auc-auc.pct.2)/ sqrt(var.pct.single+var.pct.serial.2) 

Z8 

P8=2*pnorm(-abs(z8)) 

P8 

 

###################### 

#R Codes for Section 4.3 # 

###################### 

 

###################################### 

### DOWNLOADING THE DATASET ##### 

###################################### 

crp1=read.csv2("C:/Users/Meriç/Desktop/crp1.csv", header=TRUE) 

head(crp1,10) 

quantile(crp1$time) 

 

crp1 is the dataset that were created after excluding baseline CRP measurements. 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.crp.1=aucJM(jm.model2.cum.piece, crp, 4,30) 

 

### AUC ### 

set.seed(123) 

auc.crp.2=aucJM(jm.model2.cum.piece, crp, 9,30) 
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### AUC ### 

set.seed(123) 

auc.crp.3=aucJM(jm.model2.cum.piece, crp, 11,30) 

 

### AUC ### 

set.seed(123) 

auc.crp.4=aucJM(jm.model2.cum.piece, crp, 16,30) 

 

auc.crp=rbind(auc.crp.1$auc,auc.crp.2$auc,auc.crp.3$auc,auc.crp.4$auc) 

auc.crp 

 

 

#### CALCULATING THE CONFIDENCE INTERVALS FOR TD-AUC 

VALUES ### 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=4, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.Q1=boot.ci(bt, type="perc") 

ci.Q1 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=9, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.Q2=boot.ci(bt, type="perc") 

ci.Q2 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=11, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.mean=boot.ci(bt, type="perc") 

ci.mean 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=16,  Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.Q3=boot.ci(bt, type="perc") 

ci.Q3 

 

 

###################################### 

### DOWNLOADING THE PCT DATASET # 

###################################### 

pct1=read.csv2("C:/Users/Meriç/Desktop/pct1.csv", header=TRUE) 

head(pct1,10) 

quantile(pct1$time) 

 

pct1 is the dataset that were created after excluding baseline CRP measurements. 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc. pct.1=aucJM(jm.model2.cum.piece, pct, 4,30) 

 

### AUC ### 

set.seed(123) 

auc. pct.2=aucJM(jm.model2.cum.piece, pct, 8,30) 
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### AUC ### 

set.seed(123) 

auc. pct.3=aucJM(jm.model2.cum.piece, pct, 10,30) 

 

### AUC ### 

set.seed(123) 

auc. pct.4=aucJM(jm.model2.cum.piece, pct, 15,30) 

 

auc. pct =rbind(auc. pct.1$auc, auc. pct.2$auc, auc. pct.3$auc, auc. pct.4$auc) 

auc. pct 

 

 

#### CALCULATING THE CONFIDENCE INTERVALS FOR TD-AUC 

VALUES ### 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=4, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.Q1=boot.ci(bt, type="perc") 

ci.Q1 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=8, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.Q2=boot.ci(bt, type="perc") 

ci.Q2 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 
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##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=10, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.mean=boot.ci(bt, type="perc") 

ci.mean 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(jm.model2.cum.piece, d, Tstart=15,  Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.Q3=boot.ci(bt, type="perc") 

ci.Q3 

 

########################## 

### R Codes for Section 4.4 ### 

########################## 

 

Based on the same formula  (4.1) of the fitted joint models in Section 4 under the 

name of jm.model2.cum.piece, time-dependent diagnostic accuracy values and 

corresponding cut-off values are calculated as explained  in  using 1000 Monte Carlo 

samples for CRP  biomarker for both genders. 

 

# for the longitudinal process 

 

# number of measurements per patient 

ni <- with(crp, tapply(lcrp, id, length)) 

summary(ni) 

 

lcrp=describe(crp$lcrp) 

 

summary.crp=as.data.frame(tapply(crp$lcrp, crp$id,summary)) 

colnames(summary.crp)<-c("Min","1st Q", "Median", "Mean", "3rd Q", "Max") 

summarycrp=as.matrix(summary.crp,ncol=6, nrow=457) 

write.table(summary.crp, "C:/Users/Meriç/Desktop/summarycrp.txt", sep="") 
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###Time - Dependent Sensitivity and Specificity and Cut- Off Values #### 

crp.389=crp[crp$id==389,] 

set.seed(123) 

roc.crp.389 <- rocJM(jm.model2.cum.piece, dt=c(13,14,15), crp.389, idVar = "id", 

directionSmaller=FALSE) 

roc.crp.389$optThr[[1]][3] 

 

auc=roc.crp.389$AUCs 

cutoff=roc.crp.389$optThr 

 

tdsens=t(roc.crp.389$MCresults[[1]]) 

tdspec=t(roc.crp.389$MCresults[[2]]) 

 

se_tdsens=t(roc.crp.389$MCresults[[3]]) 

se_tdspec=t(roc.crp.389$MCresults[[4]]) 

cc=roc.crp.389$cc 

 

daccuracy=cbind(cc,tdsens, tdspec, se_tdsens, se_tdspec) 

dim(daccuracy) 

 

write.table(daccuracy, "C:/Users/Meriç/Desktop/dac.txt", quote=F, sep=" ") 

 

######### BOOTSTRAP PROCEDURE ########## 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return( rocJM(jm.model2.cum.piece, dt=c(13,14,15), d, idVar = "id", 

directionSmaller=FALSE)$optThr[[1]][3]) 

} 

bt<- boot(crp.389, f, R=1000) 

bt  

ci.uns=boot.ci(bt, type="perc") 

ci.uns 

 

Based on the same formula  (4.1) of the fitted joint models in Section 4 under the 

name of jm.model2.cum.piece, time-dependent diagnostic accuracy values and 

corresponding cut-off values are calculated as explained  in  using 1000 Monte Carlo 

samples for PCT biomarker for both genders. 

 

# for the longitudinal process 
 

# number of measurements per patient 

ni <- with(pct, tapply(lpct, id, length)) 

summary(ni) 
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lpct=describe(pct$lpct) 

 

summary.pct=as.data.frame(tapply(pct$lpct, pct$id,summary)) 

colnames(summary.pct)<-c("Min","1st Q", "Median", "Mean", "3rd Q", "Max") 

summarypct=as.matrix(summary.pct,ncol=6, nrow=457) 

write.table(summary.pct, "C:/Users/Meriç/Desktop/summarypct.txt", sep="") 

 

####### Time - Dependent Sensitivity and Specificity and Cut- Off Values ####### 

pct.4=pct[pct$id==4,] 

set.seed(123) 

roc.pct.4 <- rocJM(jm.model2.cum.piece, dt=c(2,3,4), pct.4, idVar = "id", 

directionSmaller=FALSE) 

roc.pct.4 

 

auc=roc.pct.4$AUCs 

cutoff=roc.pct.4$optThr 

 

tdsens=t(roc.pct.4$MCresults[[1]]) 

tdspec=t(roc.pct.4$MCresults[[2]]) 

 

se_tdsens=t(roc.pct.4$MCresults[[3]]) 

se_tdspec=t(roc.pct.4$MCresults[[4]]) 

cc=roc.pct.4$cc 

 

daccuracy=cbind(cc,tdsens, tdspec, se_tdsens, se_tdspec) 

 

 

######### BOOTSTRAP PROCEDURE ########## 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return( rocJM(jm.model2.cum.piece, dt=c(2,3,4), d, idVar = "id", 

directionSmaller=FALSE)$optThr[[1]][3]) 

} 

bt<- boot(pct.4, f, R=1000) 

bt 

ci.uns=boot.ci(bt, type="perc") 

ci.uns 
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############################ 

#### R Codes for Section 4.5#### 

############################ 

 

# Joint Models for CRP for Model – I  Using previously loaded crp dataset # 

 

### SURVIVAL PART ### 

surv.data=crp[crp$time==0,] 

 

# SURVIVAL PART # 

# survival regression fit # 

library(survival) 

surv <-coxph(Surv(survtime, status)~ 1, data=surv.data, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=200,msMaxIter=200,niterEM=200,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model1=lme(lcrp~time*age, random = ~time|id , control='ctrl',na.action = 

na.omit,data = crp) 

summary(lme.model1) 

lme.model1 

 

### JOINT MODEL FORMULATION ### 

ctrl <- list(iter.EM=300,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM1<- jointModel(lme.model1,surv, timeVar = "time",control='ctrl') 

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM2<- jointModel(lme.model1,surv, timeVar = "time",control='ctrl', 

method="piecewise-PH-aGH") 

 

################################################################ 

############   TIME - DEPENDENT AUC CALCULATION ############ 

################################################################ 

 

### AUC ### 

set.seed(123) 

auc.model1.uns=aucJM(JM1, crp, 18,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM1, d, Tstart=18, Thoriz=30)$auc) 
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} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################################ 

############   TIME - DEPENDENT AUC CALCULATION ############ 

################################################################ 

set.seed(123) 

auc.model1.piece=aucJM(JM2, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM2, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

### JM WITH SLOPE PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~1, indRandom = 2) 

dform  

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM3<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform) 

 

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM4<- jointModel(lme.model1, surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform,  

method="piecewise-PH-aGH") 
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################################################### 

####### TIME - DEPENDENT AUC CALCULATION ##### 

################################################### 

### AUC ### 

set.seed(123) 

auc.model1.slope.uns=aucJM(JM3, crp, 18,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM3, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.slope.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

################################################### 

####### TIME - DEPENDENT AUC CALCULATION ##### 

################################################### 

 

set.seed(123) 

auc.model1.slope.piece=aucJM(JM4, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM4, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.slope.piece=boot.ci(bt, type="perc") 

ci.slope.piece 

se=sd(bt$t) 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 
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JM5<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',derivForm=dform,parameterization="both") 

 

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM6<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',derivForm=dform, parameterization="both", 

method="piecewise-PH-aGH") 

 

################################################### 

####### TIME - DEPENDENT AUC CALCULATION ##### 

################################################### 

### AUC ### 

set.seed(123) 

auc.model1.both.uns=aucJM(JM5, crp, 18,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM5,  d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.both.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

################################################### 

####### TIME - DEPENDENT AUC CALCULATION ##### 

################################################### 

set.seed(123) 

auc.model1.both.piece=aucJM(JM6, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM6, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.both.piece=boot.ci(bt, type="perc") 
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se=sd(bt$t) 

 

 ### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION   ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2)+I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2), indRandom = 1:2) 

 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM7<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM8<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model1.cum.uns=aucJM(JM7, crp, 18,30) 

 

 

##################################################### 

### Calculating Confidence Interval and p-value for td-AUC ### 

#################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM7, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.cum.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 
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################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model1.cum.piece=aucJM(JM8, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM8 d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.cum.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

# Joint Models for CRP for Model – II  Using previously loaded crp dataset # 

 

#LINEAR MIXED EFFECTS MODELLING# 

 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model2=lme(lcrp~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = crp) 

summary(lme.model2) 

lme.model2 

 

 

### JOINT MODEL FORMULATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM1<- jointModel(lme.model2,surv, timeVar = "time",control='ctrl') 

 

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM2<- jointModel(lme.model2,surv, timeVar = "time",control='ctrl', 

method="piecewise-PH-aGH") 
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################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

 

### AUC ### 

set.seed(123) 

auc.model2.uns=aucJM(JM1, crp, 18,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM1, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model2.piece=aucJM(JM2, crp, Tstart = 18, Thoriz = 30) 

 

############################################################## 

### Calculating Confidence Interval and p-value for td-AUC ### 

############################################################## 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM2, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1) 

bt 

mean=mean(bt$t, na.rm=T) 

mean 

plot(bt) 

 

ci.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 
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### JM WITH SLOPE PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~I(2*time), indRandom = 

2:3) 

dform  

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM3<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform) 

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM4<- jointModel(lme.model2, surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform,  

method="piecewise-PH-aGH") 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model2.slope.uns=aucJM(JM3, crp, 18,30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM3, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.slope.uns=boot.ci(bt, type="perc ") 

se=sd(bt$t) 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

 

set.seed(123) 

auc.model2.slope.piece=aucJM(JM4, crp, Tstart = 18, Thoriz = 30) 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM4, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.slope.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

### JM WITH BOTH PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~I(2*time), indRandom = 

2:3) 

dform  

 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM5<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',derivForm=dform,parameterization="both") 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM6<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',derivForm=dform, parameterization="both", 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model2.both.uns=aucJM(JM5 crp, 18,30) 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM5,  d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.both.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model2.both.piece=aucJM(JM6, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM6, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

 

ci.both.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION   ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2)+~I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

 

 

 

 

 



155 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM7<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum) 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM8<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model2.cum.uns=aucJM(JM7uns, crp, 18,30) 

 

########################################## 

### Calculating Confidence Interval for td-AUC ### 

########################################## 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM7, d, Tstart=18, Thoriz=30)$auc) 

} 

bt<- boot(crp, f, R=1000) 

bt 

ci.cum.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model2.cum.piece=aucJM(JM8, crp, Tstart = 18, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM8, d, Tstart=18, Thoriz=30)$auc) 

} 
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bt<- boot(crp, f, R=1000) 

bt 

ci.cum.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

# Joint Models for PCT for Model – I  Using previously loaded pct dataset # 

 

 

### SURVIVAL PART ### 

surv.data=pct[pct$time==0,] 

 

# SURVIVAL PART # 

# survival regression fit # 

library(survival) 

surv <-coxph(Surv(survtime, status)~ 1, data=surv.data, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=200,msMaxIter=200,niterEM=200,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model1=lme(lpct~time*age, random = ~time|id , control='ctrl',na.action = 

na.omit,data = pct) 

summary(lme.model1) 

lme.model1 

 

### JOINT MODEL FORMULATION ### 

ctrl <- list(iter.EM=300,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM1<- jointModel(lme.model1,surv, timeVar = "time",control='ctrl') 

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM2<- jointModel(lme.model1,surv, timeVar = "time",control='ctrl', 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

 

### AUC ### 

set.seed(123) 

auc.model1.uns=aucJM(JM1, pct, 17,30) 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM1, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################################ 

############   TIME - DEPENDENT AUC CALCULATION ############ 

################################################################ 

set.seed(123) 

auc.model1.piece=aucJM(JM2, pct, Tstart = 17, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM2, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

### JM WITH SLOPE PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~1, indRandom = 2) 

dform  

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM3<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform) 
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### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM4<- jointModel(lme.model1, surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform,  

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model1.slope.uns=aucJM(JM3, pct, 17,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM3, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.slope.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

 

set.seed(123) 

auc.model1.slope.piece=aucJM(JM4, pct, Tstart = 17, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM4, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 
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ci.slope.piece=boot.ci(bt, type="perc") 

ci.slope.piece 

se=sd(bt$t) 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM5<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',derivForm=dform,parameterization="both") 

 

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM6<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',derivForm=dform, parameterization="both", 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model1.both.uns=aucJM(JM5, pct, 17, 30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM5,  d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.both.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model1.both.piece=aucJM(JM6, pct, Tstart = 17, Thoriz = 30) 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM6, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.both.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 ### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION   ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2)+I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2), indRandom = 1:2) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM7<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM8<- jointModel(lme.model1,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model1.cum.uns=aucJM(JM7, pct, 17,30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 
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 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM7, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.cum.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model1.cum.piece=aucJM(JM8, pct, Tstart = 17, Thoriz = 30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM8 d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.cum.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

# Joint Models for PCT for Model – II  Using previously loaded pct dataset # 

 

 

 

#LINEAR MIXED EFFECTS MODELLING# 

 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model2=lme(lpct~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = pct) 

summary(lme.model2) 

lme.model2 

 

### JOINT MODEL FORMULATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM1<- jointModel(lme.model2,surv, timeVar = "time",control='ctrl') 
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### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM2<- jointModel(lme.model2,surv, timeVar = "time",control='ctrl', 

method="piecewise-PH-aGH") 

 

################################################################ 

############   TIME - DEPENDENT AUC CALCULATION ############ 

################################################################ 

 

### AUC ### 

set.seed(123) 

auc.model2.uns=aucJM(JM1, pct, 17,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM1, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

################################################################ 

############   TIME - DEPENDENT AUC CALCULATION ############ 

################################################################ 

set.seed(123) 

auc.model2.piece=aucJM(JM2, pct, Tstart = 17, Thoriz = 30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM2, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 
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### JM WITH SLOPE PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~I(2*time), indRandom = 

2:3) 

dform  

 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM3<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform) 

 

### JOINT MODEL WITH SLOPE PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM4<- jointModel(lme.model2, surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform,  

method="piecewise-PH-aGH") 

 

########################################################## 

############   TIME - DEPENDENT AUC CALCULATION ###### 

########################################################## 

### AUC ### 

set.seed(123) 

auc.model2.slope.uns=aucJM(JM3, pct, 17,30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM3, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.slope.uns=boot.ci(bt, type="perc ") 

se=sd(bt$t) 

 

########################################################## 

############   TIME - DEPENDENT AUC CALCULATION ###### 

########################################################## 

 

set.seed(123) 

auc.model2.slope.piece=aucJM(JM4, pct, Tstart = 17, Thoriz = 30) 
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##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM4, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.slope.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

### JM WITH BOTH PARAMETERIZATION ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-

04) 

dform <- list(fixed= ~1+age, indFixed=c(2,4), random = ~I(2*time), indRandom = 

2:3) 

dform  

 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM5<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',derivForm=dform,parameterization="both") 

 

### JM WITH BOTH PARAMETERIZATION ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM6<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',derivForm=dform, parameterization="both", 

method="piecewise-PH-aGH") 

 

########################################################## 

############   TIME - DEPENDENT AUC CALCULATION ###### 

########################################################## 

set.seed(123) 

auc.model2.both.uns=aucJM(JM5 pct, 17,30) 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 
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      set.seed(123) 

 return(aucJM(JM5,  d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.both.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

########################################################## 

############   TIME - DEPENDENT AUC CALCULATION ###### 

########################################################## 

set.seed(123) 

auc.model2.both.piece=aucJM(JM6, pct, Tstart = 17, Thoriz = 30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM6, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

 

ci.both.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION   ### 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2)+~I((time^2/2)*age), indFixed=c(1:2,4), 

random = ~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

JM7<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum) 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 
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JM8<- jointModel(lme.model2,surv, timeVar = 

"time",control='ctrl',parameterization="slope",derivForm=dform.cum, 

method="piecewise-PH-aGH") 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

### AUC ### 

set.seed(123) 

auc.model2.cum.uns=aucJM(JM7, pct, 17,30) 

 

########################################## 

### Calculating Confidence Interval for td-AUC ### 

########################################## 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM7, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.cum.uns=boot.ci(bt, type="perc") 

se=sd(bt$t) 

 

 

################################################## 

####### TIME - DEPENDENT AUC CALCULATION #### 

################################################## 

set.seed(123) 

auc.model2.cum.piece=aucJM(JM8, pct, Tstart = 17, Thoriz = 30) 

 

 

##################################################### 

######## Calculating Confidence Interval for td-AUC ######### 

##################################################### 

library(boot) 

f <- function(data, i){ 

 d <- data[i,] 

      set.seed(123) 

 return(aucJM(JM8, d, Tstart=17, Thoriz=30)$auc) 

} 

bt<- boot(pct, f, R=1000) 

bt 

ci.cum.piece=boot.ci(bt, type="perc") 

se=sd(bt$t) 
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###################### 

# R Codes for Section 4.6 # 

###################### 

 

# Time- Dependent ROC Curves and Time-dependent cut-off values for CRP # 

 

library(JM) 

library(joineR) 

library(psych) 

 

############################### 

  DOWNLOADING THE DATASET  

############################### 

crp=read.csv2("C:/Users/Meriç/Desktop/crp457.csv", header=TRUE) 

head(crp,10) 

 

 

####### Selecting Female Group ####### 

crp.female=crp[crp$gender=="female",] 

head(crp.female) 

nrow(crp.female) 

 

########## Survival Part ############# 

crp.female.t0=crp.female[crp.female$time==0,] 

head(crp.female.t0) 

nrow(crp.female.t0) 

 

 

# SURVIVAL PART # 

library(survival) 

crp.female.t0$status=as.numeric(crp.female.t0$status) 

surv<-coxph(Surv(survtime, status)~ 1, data=crp.female.t0, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model1=lme(lcrp~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = crp.female) 

summary(lme.model1) 

lme.model1 

 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2), indFixed=1:2, random = 

~I(time^2/2)+I(time^3/3), indRandom = 1:3) 
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### STANDARD JM ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

jm.model2.piece<- jointModel(lme.model1,surv, 

timeVar="time",control='ctrl',method="piecewise-PH-aGH") 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=67, 

    time = c(0, 1, 2, 3) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

# ROC estimation for Dt = (1, 2, 3)  

set.seed(123)  

ROC.1 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data =data, 

directionSmaller=FALSE, M = 1000,  burn.in = 500) 

 

## Time-dependent Cut-off Values ## 

Cutoff.1=ROC.1$cc 

 

## Time - dependent sensitivity ## 

sens=t(ROC.1$MCresults[[1]]) 

 

#### Time - dependent specificity ## 

spec=t(ROC.1$MCresults[[2]]) 

 

#### Standard error of td-sensitivity ### 

sesens=t(ROC.1$MCresults[[3]]) 

 

#### Standard error of td-specificity ### 

sespec=t(ROC.1$MCresults[[4]]) 

 

tdaccuracy=cbind(cutoff.1, sens, spec, sesens, sespec) 

 

write.table(tdaccuracy, "C:/Users/Meriç/Desktop/tdaccuracy.txt", sep=" ", 

quote=FALSE) 

 

 

# ROC curves 

P1=plot(ROC.1, legend = TRUE, main=”Time-Dependent ROC Curves for 

Women”) 

 

 

#Cut-Off Values 

C1=plot(Cutoff.1, col=”red”, main=”Cut-Off Values”) 
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AUCS.1=ROC.1$AUCs 

AUCS.1=as.data.frame(AUCS.1) 

 

Cutoff.1=ROC.1$optThr 

Cutoff.1=as.data.frame(Cutoff.1) 

 

R1=cbind(AUCS.1, Cutoff.1) 

R1=as.matrix(R1, nrow=3, ncol=2) 

colnames(R1)<-c("AUCS.1","Cut-Offs.1") 

 

 

####### Selecting Male Group ####### 

crp.male=crp[crp$gender=="male",] 

head(crp.male) 

nrow(crp.male) 

 

########## Survival Part ############# 

crp.male.t0=crp.male[crp.male$time==0,] 

head(crp.male.t0) 

nrow(crp.male.t0) 

 

 

# SURVIVAL PART # 

library(survival) 

crp.female.t0$status=as.numeric(crp.female.t0$status) 

surv<-coxph(Surv(survtime, status)~ 1, data=crp.male.t0, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model1=lme(lcrp~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = crp.male) 

summary(lme.model1) 

lme.model1 

 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2), indFixed=1:2, random = 

~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

### STANDARD JM ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 
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jm.model2.piece<- jointModel(lme.model1,surv, 

timeVar="time",control='ctrl',method="piecewise-PH-aGH") 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=72, 

    time = c(0, 1, 2, 3, 4) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

# ROC estimation for Dt = (1, 2, 3)  

set.seed(123)  

ROC.2 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data =data, 

directionSmaller=FALSE, M = 1000,  burn.in = 500) 

 

#################################################################### 

 

####################### 

# R Codes for Section 4.7 # 

###################### 

 

## Time-dependent Cut-off Values ## 

Cutoff.2=ROC.2$cc 

 

## Time - dependent sensitivity ## 

sens=t(ROC.2$MCresults[[1]]) 

 

#### Time - dependent specificity ## 

spec=t(ROC.2$MCresults[[2]]) 

 

#### Standard error of td-sensitivity ### 

sesens=t(ROC.2$MCresults[[3]]) 

 

#### Standard error of td-specificity ### 

sespec=t(ROC.2$MCresults[[4]]) 

 

tdaccuracy=cbind(cutoff, sens, spec, sesens, sespec) 

 

#################################################################### 

 

# ROC curves 

P2=plot(ROC.2, legend = TRUE, main=”Time-Dependent ROC Curves for Men”) 

 

Cutoff.2=ROC.2$optThr 

Cutoff.2=as.data.frame(Cutoff.2) 
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#Cut-Off Values 

C2=plot(Cutoff.2, col=”blue”, main=”Cut-Off Values”) 

 

AUCS.2=ROC.2$AUCs 

AUCS.2=as.data.frame(AUCS.1) 

 

R2=cbind(AUCS.2, Cutoff.2) 

R2=as.matrix(R12,  nrow=3, ncol=2) 

colnames(R2)<-c("AUCS.2","Cut-Offs.2") 

 

par(mfrow=c(2,2)) 

plot(ROC.1, legend = TRUE, main=” Time-Dependent ROC Curves for Women”) 

plot(ROC.2, legend = TRUE, main=” Time-Dependent ROC Curves for Men”) 

plot(Cutoff.1, col=”red”, main=”Cut-Off Values for Women”) 

plot(Cutoff.1, col=”red”, main=”Cut-Off Values for  Men”) 

 

 

# Time- Dependent ROC Curves and Time-dependent cut-off values for PCT # 

 

############################### 

### DOWNLOADING THE DATASET ### 

############################### 

pct=read.csv2("C:/Users/Meriç/Desktop/pct534.csv", header=TRUE) 

head(pct,10) 

 

 

####### Selecting Female Group ####### 

pct.female=pct[pct$gender=="female",] 

head(pct.female) 

nrow(pct.female) 

 

########## Survival Part ############# 

pct.female.t0=pct.female[pct.female$time==0,] 

head(pct.female.t0) 

nrow(pct.female.t0) 

 

 

# SURVIVAL PART # 

library(survival) 

pct.female.t0$status=as.numeric(pct.female.t0$status) 

surv<-coxph(Surv(survtime, status)~ 1, data=pct.female.t0, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 
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lme.model1=lme(lpct~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = pct.female) 

summary(lme.model1) 

lme.model1 

 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2), indFixed=1:2, random = 

~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

### JM WITH CUMULATIVE EFFECTS PARAMETERIZATION  ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

jm.model2.piece<- jointModel(lme.model1,surv, 

timeVar="time",control='ctrl',method="piecewise-PH-aGH") 

 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=67, 

    time = c(0, 1, 2, 3) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

# ROC estimation for Dt = (1, 2, 3)  

set.seed(123)  

ROC.1 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data =data, 

directionSmaller=FALSE, M = 1000,  burn.in = 500) 

 

 

## Time-dependent Cut-off Values ## 

Cutoff.1=ROC.1$cc 

 

## Time - dependent sensitivity ## 

sens=t(ROC.1$MCresults[[1]]) 

 

#### Time - dependent specificity ## 

spec=t(ROC.1$MCresults[[2]]) 

 

#### Standard error of td-sensitivity ### 

sesens=t(ROC.1$MCresults[[3]]) 

 

#### Standard error of td-specificity ### 

sespec=t(ROC.1$MCresults[[4]]) 

 

tdaccuracy=cbind(cutoff.1, sens, spec, sesens, sespec) 
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write.table(tdaccuracy, "C:/Users/Meriç/Desktop/tdaccuracy.txt", sep=" ", 

quote=FALSE) 

 

 

# ROC curves 

P1=plot(ROC.1, legend = TRUE, main=”Time-Dependent ROC Curves for 

Women”) 

 

 

#Cut-Off Values 

C1=plot(Cutoff.1, col=”red”, main=”Cut-Off Values”) 

 

 

AUCS.1=ROC.1$AUCs 

AUCS.1=as.data.frame(AUCS.1) 

 

Cutoff.1=ROC.1$optThr 

Cutoff.1=as.data.frame(Cutoff.1) 

 

R1=cbind(AUCS.1, Cutoff.1) 

R1=as.matrix(R1, nrow=3, ncol=2) 

colnames(R1)<-c("AUCS.1","Cut-Offs.1") 

 

 

####### Selecting Male Group ####### 

pct.male=pct[pct$gender=="male",] 

head(pct.male) 

nrow(pct.male) 

 

########## Survival Part ############# 

pct.male.t0=pct.male[pct.male$time==0,] 

head(pct.male.t0) 

nrow(pct.male.t0) 

 

 

# SURVIVAL PART # 

library(survival) 

pct.female.t0$status=as.numeric(pct.female.t0$status) 

surv<-coxph(Surv(survtime, status)~ 1, data=pct.male.t0, x=TRUE) 

summary(surv) 

 

#LINEAR MIXED EFFECTS MODELLING# 

ctrl <- lmeControl(maxIter=100,msMaxIter=100,niterEM=100,tolerance=1e-

7,msTol=1e-3, opt='optim') 

#ctrl <- lmeControl(opt='optim') 

lme.model1=lme(lpct~time*age, random = ~time+I(time^2)|id , 

control='ctrl',na.action = na.omit,data = pct.male) 
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summary(lme.model1) 

lme.model1 

 

### COMPUTING SLOPE ### 

ctrl <- list(only.EM=TRUE,iter.EM=200,tol3=1e-08,numeriDeriv="cd",eps.Hes=1e-

04) 

dform.cum <- list(fixed= ~I(time^2/2), indFixed=1:2, random = 

~I(time^2/2)+I(time^3/3), indRandom = 1:3) 

 

### STANDARD JM ### 

ctrl <- list(iter.EM=200,tol3=1e-09,numeriDeriv="cd",eps.Hes=1e-04) 

jm.model2.piece<- jointModel(lme.model1,surv, 

timeVar="time",control='ctrl',method="piecewise-PH-aGH") 

 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=73, 

    time = c(0, 1, 2, 3) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

# ROC estimation for Dt = (1, 2, 3 )  

set.seed(123)  

ROC.2 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data =data, 

directionSmaller=FALSE, M = 1000,  burn.in = 500) 

 

#################################################################### 

 

####################### 

# R Codes for Section 4.7 # 

###################### # 

 

 

## Time-dependent Cut-off Values ## 

Cutoff.2=ROC.2$cc 

 

## Time - dependent sensitivity ## 

sens=t(ROC.2$MCresults[[1]]) 

 

#### Time - dependent specificity ## 

spec=t(ROC.2$MCresults[[2]]) 

 

#### Standard error of td-sensitivity ### 

sesens=t(ROC.2$MCresults[[3]]) 
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#### Standard error of td-specificity ### 

sespec=t(ROC.2$MCresults[[4]]) 

 

tdaccuracy=cbind(cutoff, sens, spec, sesens, sespec) 

 

#################################################################### 

 

 

# ROC curves 

P2=plot(ROC.2, legend = TRUE, main=”Time-Dependent ROC Curves for Men”) 

 

Cutoff.2=ROC.2$optThr 

Cutoff.2=as.data.frame(Cutoff.2) 

 

#Cut-Off Values 

C2=plot(Cutoff.2, col=”blue”, main=”Cut-Off Values”) 

 

AUCS.2=ROC.2$AUCs 

AUCS.2=as.data.frame(AUCS.1) 

 

R2=cbind(AUCS.2, Cutoff.2) 

R2=as.matrix(R12,  nrow=3, ncol=2) 

colnames(R2)<-c("AUCS.2","Cut-Offs.2") 

 

par(mfrow=c(2,2)) 

plot(ROC.1, legend = TRUE, main=” Time-Dependent ROC Curves for Women”) 

plot(ROC.2, legend = TRUE, main=” Time-Dependent ROC Curves for Men”) 

plot(Cutoff.1, col=”red”, main=”Cut-Off Values for Women”) 

plot(Cutoff.1, col=”red”, main=”Cut-Off Values for  Men”) 

 

####################### 

# R Codes for Section 4.8  # 

####################### 

 

 

Based on previously fitted jm.model2.piece model, time-dependent ROC curves are 

constructed  for both genders and both biomarkers with the help of the code given 

below: 

 

# Time-Dependent ROC Curves and Cut-Off Values for CRP in Women # 

 

# data on which to base the ROC calculations 
data <- data.frame( 

    id = 1, 

    age=67, 

    time = c(0, 1, 2, 3, 4) 

) 
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data$t0 <- as.numeric(data$time == 0) 

data 

 

set.seed(123)  

ROCs.1 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data = data, 

    M = 1000, burn.in = 500) 

 

ROCs.1 

 

# ROC curves 

plot(ROCs.1, legend = TRUE, main=”Time –dependent ROC Curves for Women”) 

 

 

Cutoff.Crp.Women=ROCs.1$optThr 

Cutoff.Crp.Women =as.data.frame(Cutoff.Crp.Women) 

plot(Cutoff.Crp.Women, col=”red”, main=”Cut-off Values” ) 

 

 

# Time-Dependent ROC Curves and Cut-Off Values for CRP in Men # 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=72, 

    time = c(0, 1, 2, 3) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

set.seed(123)  

ROCs.2 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data = data, 

    M = 1000, burn.in = 500) 

 

ROCs.2 

 

# ROC curves 

plot(ROCs.2, legend = TRUE, main=”Time –dependent ROC Curves for Women”) 

 

 

Cutoff.Crp.Men=ROCs.2$optThr 

Cutoff.Crp.Men =as.data.frame(Cutoff.Crp.Men) 

plot(Cutoff.Crp.Men, col=”blue”, main=”Cut-off Values” ) 

 

 

# Time-Dependent ROC Curves and Cut-Off Values for PCT in Women # 

 

# data on which to base the ROC calculations 

data <- data.frame( 
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    id = 1, 

    age=67, 

    time = c(0, 1, 2, 3) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

set.seed(123)  

ROCs.1 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data = data, 

    M = 1000, burn.in = 500) 

 

ROCs.1 

 

# ROC curves 

plot(ROCs.1, legend = TRUE, main=”Time –dependent ROC Curves for Women”) 

 

 

Cutoff.Crp.Women=ROCs.1$optThr 

Cutoff.Crp.Women =as.data.frame(Cutoff.Crp.Women) 

plot(Cutoff.Crp.Women, col=”red”, main=”Cut-off Values” ) 

 

 

# Time-Dependent ROC Curves and Cut-Off Values for PCT in Men # 

 

# data on which to base the ROC calculations 

data <- data.frame( 

    id = 1, 

    age=67, 

    time = c(0, 1, 2, 3, 4) 

) 

data$t0 <- as.numeric(data$time == 0) 

data 

 

set.seed(123)  

ROCs.2 <- rocJM(jm.model2.piece, dt = c(1, 2, 3), data = data, 

    M = 1000, burn.in = 500) 

 

ROCs.2 

 

# ROC curves 

plot(ROCs.2, legend = TRUE, main=”Time –dependent ROC Curves for Women”) 

 

 

Cutoff.Crp.Men=ROCs.2$optThr 

Cutoff.Crp.Men =as.data.frame(Cutoff.Crp.Men) 

plot(Cutoff.Crp.Men, col=”blue”, main=”Cut-off Values” ) 
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All other analyses are performed via IBM SPSS Statistics Version 22.0 from 

Hacettepe University. Some of the figures in the thesis are drawn in Microsoft Excel 

Program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 

 

9. CURRICULUM VITAE 

 

1. Personal Information 

Name Surname : Naime Meric Konar 

Date of Birth: 01/01/1990 

Place of Birth: Adana, Turkey 

Nationality: Turkish 

Address: Kirsehir Ahi Evran University , Faculty of Medicine, Department of 

Biostatistics and Medical Informatics, Bagbasi , Kirsehir 

Phone: +90554 518 03 03 

2. Education 

2013 – 2018 : Hacettepe University, Department of Biostatistics, Combined 

Master and PhD 

2008 - 2012 : Dokuz Eylül University, Department of Statistics, BSc 

2004 – 2008 :  Konak Anatolian High School 

3. Work Experience 

2013 – 2017 : Research Assistant,  Hacettepe University,  Institue of Health 

Sciences, Department of Biostatistics 

2018 - …  : Research Assistant,  Kirsehir Ahi Evran University, Department 

of Biostatistics and Medical Informatics 

4. Research Experience 

1. June - September 2014             Research Fellow 

                                                                German Cancer Research Center (DKFZ) 

                                                          Department of Cancer Epidemiology   

                                                          Heidelberg, Germany 

 

Project :   Developing a comprehensive statistical model for the prediction of 

endometrial cancer risk integrating questionnaire and interview derived data 

on lifestyle and reproductive factors as well as data on pre-diagnostic 

biomarkers from the European Prospective Investigation into Cancer and 

Nutrition (EPIC study). 

 

 

2. November – December 2017           Visiting PhD Student 

                                                           Katholieke Universiteit Leuven  



180 

 

               I-Biostat      

                             Leuven, Belgium   

          

        Project Title : Developing a risk prediction model using joint modleing  

approach  for Intensive Care Unit (ICU) patients. 

5. Scientific Activities 

5.1. Articles in International Journals 

1. Dag, O., Dolgun, A., Konar, N.M. (2018). onewaytests: An R Package for 

One-Way Tests in Independent Groups Designs. The R Journal. Accepted 

2. Karaismailoglu, E., Konar, N. M., Goksuluk, D., & Karaagaoglu, A. E. 

(2018). Factors effecting the model performance measures area under the 

ROC curve, net reclassification improvement and integrated discrimination 

improvement. Communications in Statistics-Simulation and Computation, 1-

13. 
 

3. Baysal, S. S., Koc, S., Kaya, B. C., Gunes, A., Konar, N. M., & 

Altiparmak, I. H. (2018). Relationship between the endothelium biomarkers 

endocan and thrombomodulin and slow coronary flow. Biomedical Research, 

29(7). 

 

            4. Fortner, R. T., Hüsing, A., Kühn, T., Konar, M., Overvad, K., Tjønneland, 

A., ... & Boeing, H. (2017). Endometrial cancer risk prediction including 

serum‐based biomarkers: results from the EPIC cohort. International journal 

of cancer, 140(6), 1317-1323. 

 

 

5.2. Oral Presentations in International Conferences 

 

1.  Konar, N.M., Karaismailoğlu, E., Karaağaoğlu, E. (2018).  Determination 

of Risk Factors for ICU Mortality with Single and Serial Biomarker Values. 

4th International Researchers, Statisticians and Young Statisticians Congrss, 

28-30 April, Izmir, Turkey.  

 

2. Konar, N.M., Karaismailoğlu, E., Karaağaoğlu, E. (2017).  Evakuating 

Time  Dependent Cut-Offs for Longitudinal Data. 19th National 2nd 

International Biostatistics Congress, 25 – 28 October , Antalya, Turkey. 

 

3. Konar, N.M., Karaismailoğlu, E., Karaağaoğlu, E. (2017).  The Use of 

Joint Modeling Approach in Personalized Medicine. IBS-EMR, 8-12 May 

2017, Thessaloniki, Greece.  

 

4. Konar, N.M., Karaismailoğlu, E., Karaağaoğlu, E. (2016).  Sensitivity 

Analysis Under Different Parameterizations. 18th National 1st International 

Biostatistics Congress, 26 – 29 October 2016, Antalya, Turkey. 

 



181 

 

5. Konar, N.M., Dag, O., Dolgun, A. (2015). Effects of Non-normality 

and Heterogeneity on Tests for One-Way Independent Groups Design: 

Type I Error and Power Comparisons. XVth Spanish Biometric 

Conference, 22-25 September, Bilbao, Spain. 

 

6. Konar, N.M., Dag, O. (2015). Determining the Number of Clusters 

with an Application in R. European Meeting of Statisticians, 6-10 July, 

Amsterdam, the Netherlands. 

 

7. Konar, N.M., Karaismailoğlu E., Göksülük, D., Karaağaoğlu, E. 

(2015). The effect of Correlation Structure Between Diagnostic Tests on 

Net Reclassification Improvement (NRI) and Integrated Discrimination 

Improvement (IDI). IBS-EMR, 11-15 May, Cappadocia, Turkey. 

 
5.3. Poster Presentations in International Conferences 

 

1. Konar, N.M., Karaismailoğlu, E., Karaağaoğlu, E. (2017).  Factors 

Affecting the Diagnostic Performance of Longitudinal Biomarkers: A 

Simulation Study. CEN -ISBS, 28 August – 1 September, Vienna, 

Austria.  

 
2. Konar, N.M., Karaismailoğlu E., Karaağaoğlu E. (2016). Comparison 

of Diagnostic Performance of Repeated Measurements and Baseline 

Measurement of Troponin-i in Predicting Death in an Emergency Setting. 

International Society of Clinical Biostatistics, 21-25 August, 

Birmingham, Uited Kingdom.  

 

3. Konar, N.M., Dag, O., Basol, M. (2015). Comparison of Multiple 

Linear Regression and Ridge Regression on a Real Life Data Application. 

9th International Statistics Congress, 28 October - 01 November, Antalya, 

Turkey. 

 

4. Basol, M., Dag, O., Konar, N.M. (2015). Estimation of Ridge Constant 

in Ridge Regression via K-Fold Cross Validation. 9th International 

Statistics Congress,  28 October - 01 November, Antalya, Turkey. 

 

 

5.4. Oral Presentations in National Conferences 

 

1. Konar, N.M., Dag, O., Dolgun, A. (2015). onewaytests: Tek Yonlu 

Bagimsiz Grup Tasarimi icin Bir R Paketi. 17
th
 National Biostatistics 

Congress, 5-9 Congress, Girne, Turkish Republic of Northern Cyprus. 

 
 

 

 

 

 



182 

 

6. Grants 

 

TUBITAK –BIDEB  - Support for Attending International Conference, for 

XVth Spanish Biometric Conference, 22-25 September 2015, Bilbao/Spain 


