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ABSTRACT

γ-BUTSON-HADAMARD MATRICES AND THEIR

CRYPTOGRAPHIC APPLICATIONS

Sibel KURT

Master of Science, Department of Mathematics

Supervisor: Assist. Prof. Dr. Oğuz YAYLA

June 2017, 37 pages

A Hadamard matrix is a square matrix with entries ±1 whose rows are orthogonal to each

other. Hadamard matrices appear in various fields including cryptography, coding theory,

combinatorics etc. This thesis takes an interest in γ-Butson-Hadamard matrix that is a gen-

eralization of Hadamard matrices for γ ∈ R ∩ Z[ζm]. These matrices are examined for

non-existence cases in this thesis. In particular, the unsolvability of certain equations is stud-

ied in the case of cyclotomic number fields whose ring of integers is not a principal ideal

domain. Winterhof et al. considered the equations for γ ∈ Z. We first extend this result

to γ ∈ R ∩ Z[ζm] by using some new methods from algebraic number theory. Secondly,

we obtain another method for checking the non-existence cases of these equations, which

uses the tool of norm from algebraic number theory. Then, the direct applications of these

results to γ-Butson-Hadamard matrices, γ-Conference matrices, nearly perfect sequences

are obtained. Finally, the connection between nonlinear Boolean cryptographic functions

and γ-Butson-Hadamard matrices having small |γ| is established. In addition, a computer

search is done for checking the cases which are excluded by our results and for obtaining

new examples of existence parameters.

Keywords: Butson-Hadamard matrices, algebraic number fields, nearly perfect sequences,

conference matrices, cryptographic functions
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ÖZET

γ-BUTSON-HADAMARD MATRİSLERİ VE ONLARIN

KRİPTOGRAFİK UYGULAMALARI

Sibel Kurt

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Oğuz Yayla

Haziran 2017, 37 sayfa

Hadamard matrisleri uygulamalı matematikte, kuantum bilgisayar bilimlerinde, telekomü-

nikasyon, uydu teknolojileri, akıllı telefonlar ve kablosuz iletişim gibi alanlarda kullanılır.

Modern KBÇE (Kod bölmeli çoklu erişim) tabanlı cep telefonları, baz istasyonlarına ulaşan

sinyallerin karışması gibi durumları minimize etmede ve sinyalleri modülüze etmek için

Hadamard matrisleri kullanılır. Kablosuz ağlarda saklanan bilgi, optik telekomünikasyon,

sinir bilimi ve örüntü tanıma, Hadamard matrislerinin kullanıldığı diğer alanlardandır. Ek

olarak, Hadamard matrisleri bilgisayar bilimlerinde örneğin, Hadamard kodlar (en iyi doğru-

lama kodu olarak bilinir.) ve Hadamard kapıları (kuantum kapılarında kullanılır.) gibi bir çok

alana doğrudan uygulanabilir (bkz. [8]).

Bu tezde, Butson-Hadamard matrislerinin bir sınıfı çalışılmış ve onların uygulamaları a-

raştırılmıştır. Yakın tarihte γ ∈ Z için m-li γ-Butson Hadamard matrisleri WYZ [16]

makalesinde çalışılmıştır. Bu tezde, m-li γ-Butson Hadamard matrisleri γ ∈ (Z[ζm] ∩

R)\Z için çalışılmış ve yeni γ-Butson Hadamard örnekleri, onların var olmasını sağlayan

gereklilikler m ∈ Z+ ve ζm birimin m-inci dereceden kökü olmak üzere araştırılmıştır.

WYZ [16] çalışmasındaki ve cebirsel sayı teorisindeki yöntemlerden ve sonuçlardan yarar-

lanılıp m-li γ-Butson-Hadamard matrisleri üzerinde yeni sonuçlar bulunmuştur. Buna ek

olarak, Hadamard matrisleri üzerindeki bu yeni sonuçlar, kodlama teorisi ve kriptografideki

yeni uygulamaların araştırılmasında kullanılmıştır.

Bu tezde γ-Butson-Hadamard matrislerini yeni metotlarla analiz edip, onları kodlama teorisi

ve kriptografiye uygulanması amaçlanmıştır. γ-Butson-Hadamard matrisleri üzerindeki yakın
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zamanlı çalışmalarda kullanılan analizlerin daha genel hali geliştirilmiş ve yeni γ-Butson-

Hadamard matrisleri keşfedilmiştir.

Girdileri±1 olan ve tüm satırları birbirine dik olan karesel matrise, Hadamard matrisi denir.

Hadamard matrislerinin ilk genelleştirilmesi, 1962 yılında Butson tarafından yapılmıştır.

Butson, Hadamard matrislerinin girdileri için birimin 2-inci dereceden kökünü almak ye-

rine, birimin m-inci dereceden karmaşık kökünü almıştır [3]. γ-Butson-Hadamard matris-

leri, bir satırın diğer satırın karmaşık eşleniğiyle iç çarpımından elde edilen γ değeri dışında,

Butson Hadamard matrislerine benzerdir. Butson-Hadamard matrisleri için en yaygın sonuç

Brock’un [2] ve Winterhof vd. [16]’nin çalışmalarıdır.

Winterhof vd. γ-Butson-Hadamard matrisinin var olabilmesi için olan koşulları siklotomik

cismin sayı halkası üzerindeki bir denkleme indirgediler. Yani, onlar aşağıda verilen denkle-

min,

αᾱ = ((γ + 1)v − γ)(v − γ)v−1, (0.1)

v ∈ Z+ boyutlu γ-Butson Hadamard matrisini γ ∈ Z olmak üzere α ∈ Z çözümlerini

düşündüler. Onlar, D = ((γ + 1)v − γ)(v − γ)v−1’nin temel ideal çarpanlarına ayrılmasını

ve (1.1) denkleminin çözümünün var olmama koşullarını ele almışlardır. Ayrıca, D’nin ideal

çarpanlarına ayrılabilmesi için yalnızca γ tamsayısını düşünmüşlerdir. Bu tezde, Bölüm 3’de

γ ∈ Z[ζm] ∩ R için olan yöntem geliştirildi. γ ∈ Z[ζm] ∩ R olmak üzere (1.1) denkleminin

çözümü olmaması için koşulları ele alındı. γ ∈ Z[ζm]∩R olduğunda (1.1)’in çözümü olama-

ması için ekstradan D’nin temel olmayan ideal çarpanının normu ile temel ideal çarpanının

normunun aralarında asal olması koşuluna ihtiyacımız vardır (bkz. Theorem 3.3).

İkinci olarak, Bölüm 4’te, belirli γ ∈ Z[ζm] ∩ R için γ-Butson Hadamard matrisi var ol-

madığını kontrol etmek için bir yeni yöntem üretildi. (1.1) denklemindeki α’yı bölen asal

ideallerin normunun ᾱ’yı da böldüğü gerçeği de kullanıldı. Bu yüzden, D’yi bölen her asal

ideal p için, eğer p’nin normu tarafından bölünen D’nin normu, p’nin normuyla aralarında

asalsa, (1.1)’in çözümü yoktur (bkz. Theorem 4.1). Ayrıca, D’nin normunun çarpanlarına

ayrıldığında üsler en fazla bir ise (1.1)’nin hiç bir çözümü olmadığı açıktır (bkz Corollary

4.2). Sabit bir m ve ζm için v ∈ {2, 3, . . . , 100} üzerinde Teoremler 3.3 ve 4.1’in gücünü

görmek için (1.1) denkleminin var olmaması bilgisayar tarama programı olan MAGMA [1]

ile detaylı bir araştırma yapıldı. Teorem 3.3 ve Teorem 4.1 kullanılarak bazı değerler için

γ-Butson-Hadamard matrislerinin var olmadığı görüldü. Diğer yandan, bu iki teoremin bir-

birlerini kapsamadığı gözlendi (bkz. Remark 4.4). Uygulamamızın MAGMA kodları tezin
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ek kısmında verilmiştir.

Bölüm 5’te Teorem 3.3 ve Teorem 4.1’den çıkan iki yeni sonucu γ-Butson-Hadamard mat-

rislerine uyguladık. Yani, γ-Butson-Hadamard matrislerinin varolmama koşulları için uy-

gun v ∈ Z ve γ ∈ Z[ζm] ∩ R bulmaya çalıştık. Bu ise α ∈ Z[ζm] için αᾱ = ((γ + 1)v −

γ)(v−γ)v−1 denkleminin çözümü için gerekli koşullar bulmaya denktir. Bu yüzden, ana teo-

remlerimizi kullanarak, γ-Butson-Hadamard matrislerinin var olmadığı koşulları elde ettik

(bkz. Corollary 5.9-(i) ve Corollary 5.11-(i)). Diğer yandan, dolanır (circulant) γ-Butson-

Hadamard matrisinin ilk satırı neredeyse mükemmel diziye denktir (bkz. [5] ve Remark 5.8).

Mükemmel diziler literatürde detaylı bir şekilde çalışılmış ve onların bir çok uygulaması

üretilmiştir (bkz. [7]). Bu yüzden, bizim teoremlerimizi neredeyse mükemmel dizilere uygu-

layıp, onların var olmama durumlarında gerekli koşulları belirttik (bkz. Corollary 5.9-(ii) ve

5.11-(ii)).

Buna ek olarak, γ-Butson Hadamard matrisinin köşegeninin sıfır olma durumunda bu mat-

ris, γ-Konferans matrisi adını alır. Benzer olarak, γ-Butson Hadamard matrisinin ve m-li

neredeyse mükemmel dizilerinin birbirlerine denklikleri gibi, bir γ-Konferans matrislerinin

de neredeyse mükemmel dizilere denklikleri vardır (bkz. Remark 5.8). Bölüm 5’te, γ-

Konferans matrisleri ve m-li neredeyse mükemmel diziler için benzer varolmama sonuçları

elde ettik (bkz. Corollary 5.10 ve 5.12).

Dolanır γ-Butson-Hadamard matrislerinin ve küçük |γ| için γ tipinde neredeyse mükemmel

dizilerinin var olan durumları da tez kapsamında düşünülebilir. Çünkü, küçük |γ| değerlerine

sahip mükemmel diziler bir çok uygulamada kullanılır. Bu yüzden, v ∈ {1, 2, . . . , 11} ve

m ∈ {1, 2, . . . , 11} için MAGMA’yı kullanarak detaylı bir bilgisayar taraması yaptık ve γ

tipinde neredeyse mükemmel dizilerin varlığı (ya da dolanır γ-Butson Hadamard matrisi)

için γ aradık. γ tipinde yeni bir çok neredeyse mükemmel diziler elde ettik gerçekten de çok

küçük γ’ya sahip bazı diziler bulduk (bkz. Tablo 5.1). Uygulamamızın MAGMA kodları

tezin ekler bölümünde verilmiştir.

Sonuç olarak, tezde, bir Butson-Hadamard matrisi ile kriptografik fonksiyon arasındaki iliş-

ki araştırıldı. Kriptografide, gizlilik (ya da güvenlik) doğrusal olmayan Boolean fonksiyon-

lar aracılığıyla şifreli metnin içindeki mesajı karıştıran blok şifreleme kullanılarak sağlanır.

Lineer olmama durumu maksimum olan bir Boolean fonksiyonu, Bent fonksiyon olarak ad-

landırılır. Butson Hadamard matrisleri, kriptografik bent fonksiyonlarının bir eşiti (dengi)

olarak bilinir (bkz. [10] ya da Teorem 6.7). Bölüm 6’da bu denklik kullanarak, γ-Butson-
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Hadamard matrisini bir Boolean fonksiyonuna dönüştürüldü. Bir hayli küçük bir |γ| değeri-

ne sahip dolanır γ-Butson-Hadamard matrisleri kullanılarak elde edilen büyük bir lineer ol-

mama ölçüsüne sahip Boolean fonsiyonları bulunabileceği gözlemlenmiştir (bkz. Tablo 6.1).

Anahtar Kelimeler: Butson-Hadamard matrisleri, cebirsel sayı cisimleri, neredeyse mü-

kemmel diziler, konferans matrisleri, kriptografik fonksiyonlar

v



ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Assist. Prof. Dr. Oğuz YAYLA for super-
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1. INTRODUCTION

Hadamard matrices are used in computational mathematics and quantum computer science.

They have also used in many practical areas e.g. telecommunication of satellites, modern cell

phones and wireless networks. Modern CDMA based cell phones use Hadamard matrices to

modulate the signals and to minimize the interference between signals arriving the base sta-

tion. Information hiding in wireless networks, optical telecommunication, neuroscience and

pattern recognition are other practical areas where Hadamard matrices are used. In addition,

Hadamard matrices are directly applied in computer science, for example, Hadamard codes

(known as best error correcting codes) and Hadamard gates (used in quantum gates), see [8]

for details and other applications.

In this thesis, a class of Butson-Hadamard matrices is studied and their applications are in-

vestigated. Very recently, new properties of m-ary γ-Butson-Hadamard matrices for γ ∈ Z

are studied in [16]. In this thesis, we study m-ary γ-Butson-Hadamard matrices for γ ∈

(Z[ζm]∩R)\Z, and look for new γ-Butson-Hadamard examples and their existence require-

ments, where m ∈ Z+ and ζm is a primitive m-th root of unity. We use the methods in al-

gebraic number theory and results in [16] to find new results on m-ary γ-Butson-Hadamard

matrices. Moreover, these new results on Hadamard matrices are used in the investigation of

new applications in cryptography and coding theory.

The aim of this study is to analyze the γ-Butson-Hadamard matrices with new methods and

then apply them to the cryptography and coding theory. An extension of analysis in recent

work [16] on Butson-Hadamard matrices is developed and then new γ-Butson Hadamard

matrices are explored.

A Hadamard matrix is a square matrix with entries ±1 whose rows are orthogonal to each

other. First generalization of Hadamard matrices was made by Butson in 1962. Butson [3]

handled complex m-th root of unity for entries of Hadamard matrices, instead of 2-th root of

unity. γ-Butson-Hadamard matrices are similar to Butson-Hadamard matrices, except inner

product of a row with a complex conjugate of another row is γ. The most common result for

Butson-Hadamard matrices is presented by [2] and [16].

Winterhof et al. [16] reduces the existence condition of a γ-Butson Hadamard matrix to an

equation over ring of integers of a cyclotomic field. Namely, they consider the solutions

α ∈ Z[ζm] of the following equation

αᾱ = ((γ + 1)v − γ)(v − γ)v−1, (1.1)
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where v ∈ Z+ is the dimension of the γ-Butson Hadamard matrix and γ ∈ Z. Then they

consider the principal ideal factorization of D = ((γ+ 1)v− γ)(v− γ)v−1 and deal with the

unsolvability conditions of (1.1). They only consider integer γ for ideal factorization of D.

In this thesis, we extend this method to γ ∈ Z[ζm]∩R in Chapter 3. For the unsolvability of

(1.1) in case γ ∈ Z[ζm]∩R, we require an extra condition that the norm of nonprincipal part

of D is relatively prime to the norm of principal part of D (see Theorem 3.3).

Secondly, in Chapter 4, another novel method is built up for checking the cases in which a

γ-Butson Hadamard matrix does not exist for certain γ ∈ Z[ζm] ∩ R. We use the fact that

the norm of a prime ideal dividing α in (1.1), also divides ᾱ. Therefore, for any prime ideal

p dividing D, if the norm of D divided by the norm of p is relatively prime to the norm of p,

then (1.1) has no solution (see Theorem 4.1). In particular, if the norm of D is square-free

then it is clear that (1.1) has no solution (see Corollary 4.2). In addition, we perform an

exhaustive computer search by using MAGMA [1] on the set v ∈ {2, 3, . . . , 100} for fixed

m and ζ and for the non-existence of the equation (1.1) to see the strength of Theorems 3.3

and 4.1. It is seen that Theorems 3.3 and 4.1 exclude the existence of many values, on the

other hand, we see that they do not cover each other (see Remark 4.4). MAGMA codes of

our implementation are given in Appendix of this thesis.

We applied our two novel results (Theorem 3.3 and Theorem 4.1) to γ-Butson-Hadamard

matrices in Chapter 5. Namely, we look for dimension v ∈ Z and γ ∈ Z[ζm] ∩ R for

which a γ-Butson-Hadamard matrix does not exist. This is equivalent to finding necessary

conditions for solvability of αᾱ = ((γ+ 1)v− γ)(v− γ)v−1 for some α ∈ Z[ζm]. Hence, by

using our main theorems we obtain non-existence results for γ-Butson-Hadamard matrices

(see Corollaries 5.9-(i) and 5.11-(i)). On the other hand, the first row of a circulant1 γ-

Butson-Hadamard matrix is equivalent to a nearly perfect sequence (see [5] and Remark 5.8

in this thesis). Perfect sequences are extensively studied in literature and they have many

applications (see [7]). Therefore, we apply our main theorems to nearly perfect sequences

and state the necessary conditions for their non-existence (see Corollaries 5.9-(ii) and 5.11-

(ii)).

Furthermore, if the diagonal of a γ-Butson-Hadamard matrix is allowed to be 0 then such a

matrix is called a γ-Conference matrix. Similar to the equivalence of a γ-Butson-Hadamard

matrix and an m-ary nearly perfect sequence, a γ-Conference matrix is equivalent to an

1the other rows are cyclic shift of the first row
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almost m-ary nearly perfect sequence (see Remark 5.8). In Chapter 5, we obtain analogous

non-existence results for γ-Conference matrices and almost m-ary nearly perfect sequences

(see Corollaries 5.10 and 5.12).

The existence cases of circulant γ-Butson-Hadamard matrices and nearly perfect sequence

of type γ for small |γ| is also considered in this thesis. Because, perfect sequences with

small integer γ values are used in many applications. Hence, we perform an exhaustive

computer search by using MAGMA [1] on period v ∈ {1, 2, . . . , 11} and alphabet m ∈

{1, 2, . . . , 11}, and look for γ, for which a nearly perfect sequence of type γ (or a circulant

γ-Butson-Hadamard matrix) exists. We obtain many new nearly perfect sequences of type

γ, in deed we have some sequences with very small |γ| (see Table 5.1). MAGMA codes of

our implementation are given in Appendix of this thesis.

Finally, in this thesis, the relationship between a Butson-Hadamard matrix and a crypto-

graphic function is investigated. In cryptography, secrecy (or confidentiality) is satisfied by

using block ciphers which confuses a message into a ciphertext via a nonlinear Boolean

function. A nonlinear Boolean function attaining the maximum nonlinearity is called a bent

function. It is known that a Butson-Hadamard matrix is equivalent to cryptographic bent

function (see [10] or Theorem 6.7 in this thesis). By using this equivalence, we convert a

γ-Butson-Hadamard matrix into a Boolean function in Chapter 6. It is seen that one can find

a highly nonlinear Boolean function via circulant γ-Butson-Hadamard matrices having very

small |γ| values (see Table 6.1).

The outline of this thesis is as follows. In Chapter 2, the definitions and the theorems from

algebraic number theory are presented without proofs. In Chapter 3, a novel method based

on principal ideal factorization is presented. In Chapter 4, a new result for deciding the

non-existence of a solution to (1.1) is given. Then, in Chapter 5, the consequences of the

results given in Chapters 3 and 4 are applied to Hadamard matrices, Conference matrices and

sequences. Next, the a cryptographic application of the results given Chapter 5 is presented

in Chapter 6. Finally, the conclusion of this thesis is given in Chapter 7.
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2. Algebraic Number Theory

In this chapter, primary concepts in algebraic number theory are studied since the factor-

ization of ideals over a ring of integers of a number field is used as a tool in the preceding

chapters. A ring of integers of a number field may not possess a unique factorization of

elements. If a ring of integers is not a principal ideal domain, then unique factorization of

elements into irreducibles fails. However, they do still retain many important algebraic prop-

erties of Z. In particular, they possess unique factorization of non-zero ideals. Hence, we

should consider ideals, rather than elements when we consider a factorization. It is known

that factorization of an ideal into prime ideals is unique over a Dedekind domain, and a ring

of integers is a particular example of Dedekind domains [9, p.175]. This is an outline of this

chapter, and the details are below. For proofs of theorems and other details please see [14]

and [9].

Definition 2.1. [4, p.106] A number field is a commutative field of characteristic 0 which is

a finite extension of the field Q of rational numbers.

Definition 2.2. [9, p.66] Let be a0, a1, a2, . . . , an ∈ Q and a0 6= 0. A complex number α

satisfying a0xn + a1x
n−1 + a2x

n−2 + . . . + an = 0 is called an algebraic number. Let be

b1, b2, . . . , bn ∈ Z. A complex number α satisfying xn + b1x
n−1 + . . . + bn = 0 is called an

algebraic integer.

Proposition 2.3. [4, p.126] Let α and β be algebraic integers. Then αβ and α + β are

algebraic integers.

Proposition 2.4. [4, p.126] Let be α ∈ C and P (X) be a monic polynomial with algebraic

integer coefficients. Then α is an algebraic integer if P (α) = 0.

A unit is called non-zero algebraic integer whose inverse is also an algebraic integer. The

algebraic integers form a subring of the field of algebraic numbers. For any number field

K and the set of algebraic integers B, O = B ∩ K is called the ring of integers of K. We

will use term OK to grasp which field has the ring of integers. The OK is the subring of C,

on account of the fact that both K and B are subrings of C. Moreover, Z ⊆ Q ⊆ K and

Z ⊆ B namely, Z ⊆ O. Let α ∈ K, then cα ∈ O for some non-zero Z. We note that for an

algebraic number θ ∈ B; a number field has the form Q(θ)[14, Theorem 2.2].
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2.1. Factorization of an element

In this section, factorization of an element is studied in the ring of integers of an algebraic

number field. The existence and uniqueness of factorizations are dealt with in this section.

A non-unit element p is called irreducible if p = mn then one of m or n must be a unit. A

non-unit element p is called prime if p|mn then p|m or p|n. If factorization into primes is

possible, then it is unique. In contrast, factorization into irreducibles may not be unique even

when it is possible. For instance, if we work in Z[
√
−10], then there are two factorizations

10 = 2.5 and 10 =
√
−10
√
−10. Here the elements 2, 5,

√
−10 are all irreducible, however,

they are not prime. We will see in a moment that even though factorization into irreducibles

is always possible inOK , there is an extensive list ofOK examples where such a factorization

is not unique.

Any element x ∈ R may be trivially factorized as x = uy where y = u−1x, if u is a unit in a

ring R. For a unit u if x = uy, then the element y is called an associate of x. Factorization

of x ∈ R, x = yz is said to be proper if y or z are not units. If not a factorization is proper,

then one of the factors is a unit and the other is an associate of x. If a non-unit is reducible

in a domain D, then x = mn. If either of m or n is reducible, we can express it as a product

of proper factors; then carry on this process, seeking to write

x = p1p2 . . . pm

where each pi is irreducible. If every x ∈ D, neither a unit nor zero, is a product of a finite

number of irreducibles, then factorization into irreducibles is possible in D.

Let α be a non-zero nonunit algebraic integer. Since α =
√
α
√
α and α is an algebraic

integer, then α is not irreducible. Hence, any element in the ring B of all algebraic integers

are reducible, so factorization into irreducibles is not possible in B. Thus, it is significant to

study domains in which factorization of an element into irreducibles is possible.

Definition 2.5. [14, p.80] If there exists some M for which Im = IM for all m ≥ M for a

given ascending chain of ideals of D

I0 ⊆ I1 ⊆ . . . ⊆ Im ⊆ . . .

then an integral domainD is called Noetherian. This condition is called the ascending chain

condition of ideals.
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Let an integral domain D be Noetherian, then every non-empty set of ideals of D is of a

maximal element and vice versa.

We note that an integral domain D is Noetherian if and only if every non-empty set of ideals

of D has a maximal element. This means that an element is not properly contained in every

other element. This condition is called the maximal condition. Now, we state the importance

of a Noetherian domain in factorization of elements.

Theorem 2.6. [14, p.81] A factorization into irreducibles is possible in D, if a domain D is

Noetherian.

Theorem 2.7. [14, p.81] In a number field K, the ring of integers OK is Noetherian.

Therefore, it is now clear that factorization into irreducibles is possible in OK . Now the

criteria for being a unique factorization domain is discussed. We have already noted that a

prime p in Z satisfies the property that p|mn implies p|m or p|n. Similarly, in a domain D,

an element x is called to be prime if it is not zero or a unit and x|ab implies x|a or x|b. So, a

prime in a domain D is always irreducible clearly. Then the main theorem follows.

Theorem 2.8. [14, p.87] Suppose that factorization into irreducibles in a domain D is pos-

sible. Then factorization in D is unique if and only if every irreducible is prime in D.

A domain D is called a unique factorization domain, if factorization into irreducibles is

possible and unique. In a unique factorization domain all irreducibles are primes, so we may

speak of a factorization into irreducibles as a prime factorization. A prime factorization is

unique in the usual sense.

2.2. Factorization of an ideal

Unique factorization of irreducible elements on the ring of integers OK of some number

fields K does not hold. Therefore, ideal factorization is used for solving this issue. If d is

a proper ideal of OK and there are no ideals of OK certainly between d and OK , then d is

called a maximal ideal of OK . The ideal d 6= OK of OK is prime if, whenever b and c are

ideals of OK with bc ⊆ d, then either b ⊆ d or c ⊆ d. And, it is denoted that d|b or d|c. It is

clear that every maximal ideal is prime.

First, some properties of a ring of integers of a number field are presented below, which play

important role in classification of domains having unique factorization.
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Proposition 2.9. [14, p.106] The ring of integers OK of a number field K has the following

properties.

(i) It is a domain, with field of fractions K,

(ii) it is Noetherian.

(iii) If α ∈ K satisfies a monic polynomial equation with coefficients in OK then α ∈ OK ,

(iv) Every non-zero prime ideal of OK is maximal.

In general, we will call a domain Dedekind if it satisfies the properties (i)-(iv) above.

Theorem 2.10. [6, p.40] Let D be a Dedekind domain. Any non-zero integral ideal d in D

may be written as a product

d = p1 . . . pn

where the pi are prime ideals (not necessarily distinct), and this expression is unique up to

the order of the factors.

Therefore, in Dedekind domains, every non-zero ideal can be factored uniquely as a product

of prime ideals. We know that the ring OK of integers of an algebraic number field K

is Dedekind, hence unique factorization of ideals holds in OK . Moreover, it is noted that

factorization of elements into irreducibles is unique in a ring of integers if and only if every

ideal is principal [14, Theorem 5.21]. Generally, a ring R is a principal ideal domain, if it is

a Dedekind domain and a unique factorization domain.

For a principal ideal d in a ring of integers OK we have a unique factorization into ideals,

〈d〉 = I1I2 . . . In,

but the ideals I1, I2, . . . , In may not be principal. However, the ideals inOK are not far from

being principal, having at most two generators.

We would like to know how far is any ideal in a domain from unique factorization. We

should give a definition first.

Definition 2.11. [12, p.11] Two ideals E,M in a domain D are said to be equivalent if

there exist non-zero ε, µ ∈ D such that (ε)E = (µ)M . This is an equivalence relation. The

equivalence classes are called ideal classes. The number of ideal classes, hK , is called the

class number of K.
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We note that hK = 1 if and only if OK is a unique factorization domain (UFD) and if

and only if OK is a principal ideal domain (PID) [9, p.178]. Therefore, the class number

measures how farOK is from being a UFD and PID. We finalize this section with two results

on the class number of a number field.

Theorem 2.12. [9, p.178] The class number of K is finite.

Proposition 2.13. [9, p.179] For any ideal A ⊂ O, there is an integer k, 1 ≤ k ≤ hF , such

that Ak is principal.

2.3. Cyclotomic Fields

In this section, a special kind of number fields is investigated. The cyclotomic field is one of

the form Q(ζm) where ζm = e2πi/m is a primitive complex m-th roots of unity.

The minimum polynomial of ζm = e2πi/m over Q is

f(t) =
∏

i,(i,m)=1

t− ζ im

Thus, the extension degree of Q(ζm) is φ(m), where φ is the Euler Phi function. The conju-

gates of ζm are ζ im for 1 ≤ i ≤ m − 1 and gcd(i,m) = 1. Namely, the monomorphisms of

cyclotomic fields are given as σi : Q(ζm)→ C for 1 ≤ i ≤ m− 1 and gcd(i,m) = 1:

σi(ζm) = ζ im

Theorem 2.14. [15, p.11] Z[ζm] is the ring O of integers of Q(ζm).

Proof. Assume that β = β0 + β1ζm + . . . + βp−2ζ
p−2
m is an integer in Q(ζm). It should be

shown that the coefficients βi are integers. For 0 ≤ k ≤ p− 2, the element

βζ−km − βζm

is an integer.
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3. Ideal Factorization Method

In this chapter, we study the equationD = αᾱ over Z[ζm] for somem ∈ Z+ andD ∈ Z[ζm]∩

R. We present a condition for the non-existence of a solution α ∈ Z[ζm] to this equation. Our

method extends the method in [16]. The authors in [16] consider the case D ∈ Z, whereas

we study D ∈ Z[ζm] ∩ R. In particular, we consider D = ((γ + 1)v − γ)(v − γ)v−1 for

some m, v ∈ Z+ and γ ∈ Z[ζm]∩R, which we get in case of proving non-existence of some

Butson-Hadamard matrices in Chapter 5.

We first give definitions of the norm of an element in a number field and norm of an ideal of

the ring of integers of a number field.

Definition 3.1. [14, p.49] Let σ1, . . . , σm be monomorphisms K → C and let K = Q(θ) be

a number field of degree m. α ∈ K is an algebraic integer. For any α ∈ K, we define the

norm.

NK(α) =
m∏
i=1

σi(α)

Definition 3.2. [14, p.115] LetOK be the ring of unit of a number field K and I be non-zero

ideal of OK , the norm of I is defined by

N(I) = |OK|.

We note that if a = 〈a〉 is a principal ideal then N(a) = 〈N(a)〉 [14, Corollary 5.10]. If a|b

then N(a)|N(b) [14, Theorem 5.12]. For an ideal a, its conjugate ideal is ā := {ᾱ : α ∈ a}.

It can be seen that N(a) = N(ā) and if a is a prime ideal, then ā is also prime ideal.

The main theorem that there is no solution on D = αᾱ ∈ Z[ζm] for some γ ∈ Z[ζm] is given

below. hm denotes class numbers of cyclotomic number field Q(ζm). The class numbers

Table 3.1 is listed for m ≤ 70.

Theorem 3.3. Let D ∈ Z[ζm] ∩ R such that D = tq2e+1 where q, t ∈ Z[ζm] and q is

squarefree, provided that every prime ideal t C Z[ζm] with t|(t) is principal, (q) = q1q2

where q1 and q2 are non-principal prime ideals of Z[ζm], e > 0 be rational integer, gcd(2e+

1 − 2k, hm) = 1 for 0 ≤ k ≤ e − 1 and gcd(N(q), N(t)) = 1. Then, there exists no

α ∈ Z[ζm] satisfying D = αᾱ.

Proof. We first suppose that there exists α ∈ Z[ζm] for αᾱ = tq2e+1 such that
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Table 3.1: The class number hm of Q(ζm) for m ≤ 70 [15].

m hm m hm m hm m hm m hm m hm m hm

1 1 11 1 21 1 31 9 41 121 51 5 61 76301

2 1 12 1 22 1 32 1 42 1 52 3 62 9

3 1 13 1 23 3 33 1 43 211 53 48891 63 7

4 1 14 1 24 1 34 1 44 1 54 1 64 17

5 1 15 1 25 1 35 1 45 1 55 10 65 64

6 1 16 1 26 1 36 1 46 3 56 2 66 1

7 1 17 1 27 1 37 37 47 695 57 9 67 853513

8 1 18 1 28 1 38 1 48 1 58 8 68 8

9 1 19 1 29 8 39 2 49 43 59 41421 69 69

10 1 20 1 30 1 40 1 50 1 60 1 70 1

(α) = t1q
2e+1−k
1 qk2

(ᾱ) = t2q
k
1q

2e+1−k
2

for some t C Z[ζm]. We have

(α) = t1q
2e+1−k
1 qk2 = t1q

2e+1−2k
1 qk

We know that t1 and q are principal ideals of Z[ζm] but q2e+1−2k
1 is nonprincipal since

gcd(2e+ 1− 2k, hm) = 1. Hence we get a contradiction.

Next, we assume that α = t1q
s, ᾱ = t2q

2e+1−s for some principal ideals t1, t2 C Z[ζm] and

s ∈ Z+ ∪ {0}, s ≤ e. Then, q2e+1−2s|t1. However, this contradicts to gcd(N(q), N(t)) = 1.

We now give an example of Theorem 3.3.

Example 3.4. Let D = ((−ζ23− ζ2223 )5 + 1 + ζ23 + ζ2223 )(6 + ζ23 + ζ2223 )4 ∈ Z[ζ23] be obtained

by setting v = 5, m = 23, γ = −1− ζ23 − ζ2223 . D has two non-principal prime ideals such

thatD = p41p2p
4
3q4q5 where p1, p2, p3 C Z[ζ23] are principal prime ideals and q4, q5 ∈ Z[ζ23]

are the non-principal prime ideals, see Figure 3.1. By Theorem 3.3 we say that there is no

α ∈ Z[ζm] satisfying D = αᾱ.
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D = ((−ζ23 − ζ2223 )5 + 1 + ζ23 + ζ2223 )(6 + ζ23 + ζ2223 )4

p41 p2 p43 q4 q5

Figure 3.1: Ideal Decomposition of D for value v = 5, γ = 1− ζ23 − ζ2223

We note that the method given in Theorem 3.3 to the case that q has more than two non-

principal ideals factors does not work. We give two examples below. In the first one, powers

of the non-principal ideals are 1, but in the later, some of the non-principal ideals have power

more than 1.

Example 3.5. LetD = ((−ζ23−ζ2223 )46+1+ζ23+ζ2223 )(47+ζ23+ζ2223 )45 ∈ Z[ζ23] be obtained

by setting v = 46, m = 23, γ = −1 − ζ23 − ζ2223 . D has four non-principal prime ideals

such that D = p1p
45
2 p453 q4q5q6q7 where p1, p2, p3 C Z[ζ23] are principal prime ideals and

q4, q5, q6, q7 C Z[ζ23] are the non-principal ideals. The methodology in Example 3.4 does

not work for this example. Note that (α) = t1q5q7 is a principal ideal and satisfies D = αᾱ

for a convenient principal ideal t1 C Z[ζ23] such that t1 | D. The ideal factorization of this

example is shown in Figure 3.2.

D = ((−ζ23 − ζ2223 )46 + 1 + ζ23 + ζ2223 )(47 + ζ23 + ζ2223 )45

p1 p452 p453 q4 q5 q6 q7

Figure 3.2: Ideal Decomposition of D for value v = 46, γ = 1− ζ23 − ζ2223

Example 3.6. Let D = ((−ζ23 − ζ2223 )39 + 1 + ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38 ∈ Z[ζ23] be

obtained by setting v = 39, m = 23, γ = −1 − ζ23 − ζ2223 . D has four prime non-principal

ideals such that D = p1p2p3p4p
2
5p

38
6 p387 p388 q9q10q

38
11q

38
12 where p1, p2, p3, p4, p5, p6, p7, p8 C

Z[ζ23] are principal ideals and q9, q10, q11, q12 C Z[ζ23] are non-principal ideals. Note that

(α) = t1q10q
38
12 is a principal ideal and satisfies D = αᾱ for a convenient principal ideal

t1 C Z[ζ23] such that t1 | D. The ideal factorization of this example is shown in Figure 3.3.
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((−ζ23 − ζ2223 )39 + 1 + ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38

p1 p2 p3 p4 p25 p386 p387 p388 q9 q10 q3811 q3812

Figure 3.3: Ideal Decomposition of D for value v = 39, γ = 1− ζ23 − ζ2223

In order to speak of the non-existence of a solution to the equation D = αᾱ for α ∈ Z[ζm]

with D is divisible by more than two non-principal ideals, one can consider principal parts

produced by the non-principal ones. We remark this method below.

Remark 3.7. If D is divisible by four non-principal prime ideals which are distinct and rel-

atively prime to each other, then there exists no solution α ∈ Z[ζm] satisfying D = αᾱ. In

other words, let q1, q2, q3, q4 C Z[ζm] be non-principal prime ideals of Z[ζm] dividing D.

Assume that q1q2, q3q4, q1q3, q2q4 are all principal in Z[ζm]. If gcd(N(q1q2), N(q3q4)) = 1,

gcd(N(q1q3), N(q2q4)) = 1, then we can conclude that there exists no solution.
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4. Norm Method

In this section, we present another method for deciding an existence of a solution α ∈ Z[ζm]

to the equation D = αᾱ where m ∈ Z+ and D ∈ Z[ζm] ∩ R.

Theorem 4.1. Let p C Z[ζm] be a prime ideal with p|D and gcd(N(D)/N(p), N(p)) = 1.

Then there is no solution α ∈ Z[ζm] satisfying D = αᾱ.

Proof. Assume α ∈ Z[ζm] is a solution of D = αᾱ and p C Z[ζm] is a prime ideal

factor of α. We know that if p | D, then N(p) | N(D). We have N(p) - N(D)
N(p)

since

gcd(N(D)/N(p), N(p)) = 1. By N(p) = N(p̄), we have N(p̄) - N(D)
N(p)

. Hence, N(p)N(p̄) -

N(D). This is a contradiction to D = αᾱ.

There is an immediate consequence of Theorem 4.1.

Corollary 4.2. If the norm of non-principal part of D is square-free, then there exists no

α ∈ Z[ζm] satisfying D = αᾱ.

Next, we give an example of Theorem 4.1. Below, we considerD = ((γ+1)v−γ)(v−γ)v−1

for some m, v ∈ Z+ and γ ∈ Z[ζm] ∩ R.

Example 4.3. Let be v = 30, m = 23, γ = −1−ζ23−ζ2223 . Then D = ((−ζ23−ζ2223 )39+1+

ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38 ∈ Z[ζ23] has four non-principal prime ideal factors, such that

D = p1p
29
2 q3q4q

29
5 q296 where p1, p2 C Z[ζ23] are principal prime ideals and q3, q4, q5, q6 C

Z[ζ23] are non-principal prime ideals. Then,

N(D) = 4758.2292.632763048368812.5177253710910232, N(p1) = 2292

and

gcd(
4758.2292.632763048368812.5177253710910232

2292
, 2292) = 1.
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Hence, we say that there is no α ∈ Z[ζ23] satisfying D = αᾱ by Theorem 4.1. The ideal

factorization of this example is shown in Figure 4.1.

((−ζ23 − ζ2223 )30 + 1 + ζ23 + ζ2223 )(31 + ζ23 + ζ2223 )29

p1 p292 q3 q4 q295 q296

Figure 4.1: Ideal Decomposition of D for value v = 30, γ = 1− ζ23 − ζ2223

Remark 4.4. We performed an exhaustive computer search by using MAGMA [1] to check

the cases for which Theorem 4.1 excludes the existence of a solution to D = αᾱ. We fixed

m = 23, γ = −1 − ζ23 − ζ2223 and searched on the set v ∈ {2, 3, . . . , 100}. We obtained

that Theorem 4.1 excludes the existence of a solution for all v = {2, 3, . . . , 100} except

{6, 8, 15, 16, 26, 44, 49, 62, 67, 75, 84, 85, 88, 94}.

We note that Theorem 4.1 does not completely cover Theorem 3.3 and vice versa. For

γ = −1 − ζ23 − ζ2223 and m = 23, the existence of a solution to the equation D = αᾱ over

Z[ζ23] for v ∈ {8, 26} can be excluded by Theorem 3.3, but Theorem 4.1. On the other hand,

the existence of a solution to the equation D = αᾱ over Z[ζ23] for v ∈ {9, 10, 11, 12, 13, 14}

can be excluded by Theorem 4.1, but Theorem 3.3. Therefore, the two theorems do not cover

each other, but they intersect.
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5. Application to Butson-Hadamard Matrix, Conference Matrix,

Sequences

In this section, we define Butson-Hadamard matrix, conference matrix, perfect and nearly

perfect sequences and apply the results of the previous sections.

A Hadamard matrix is an (v × v) square matrix with entries 1 or −1 satisfying HHT = vI .

Two examples of Hadamard matrices are given below.

A =

1 1

1 −

 , B =


1 1 1 1

1 1 − −

1 − 1 −

1 − − 1


A square matrix H = (hij) of order v is called circulant if hi+1 mod v,j+1 mod v = hi,j for all

0 ≤ i, j < v. An example of a circulant matrix H is given below.

H =



1 1 − − −

− 1 1 − −

− − 1 1 −

− − − 1 1

1 − − − 1


For an integer m ≥ 2, let ζm denote a primitive complex m-th root of unity and let Em =

{1, ζm, ζ2m, . . . , ζm−1m }. The identity matrix is denoted by I and all one matrix is denoted by

J .

Definition 5.1. A Butson-Hadamard matrix is a square matrix H of order v with entries in

Em such thatHH
T

= vI . It is denoted by BH(v,m). BH(v, 2) is so called Hadamard matrix

of order v. In general, a γ-Butson-Hadamard matrix is a square matrix H of order v with

entries in Em such that HH
T

= (v − γ)I + γJ for a γ ∈ R ∩ Z[ζm]. Similarly, it is denoted

by BHγ(v,m).

We demonstrate the equation HH
T

= (v − γ)I + γJ below.
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HH
T

= (v − γ)I + γJ

HH
T

=



v − γ 0 0 0 0

0 v − γ 0 0 0

0 0 v − γ 0 0

0 0 0 v − γ 0

0 0 0 0 v − γ


+



γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ



=



v γ γ γ γ

γ v γ γ γ

γ γ v γ γ

γ γ γ v γ

γ γ γ γ v



Two examples on the existence of γ-Butson-Hadamard matrices are presented below.

Example 5.2. BHγ(5,5) exists for γ ∈ {−ξ35 − ξ25 + 2, 0, 5, ξ35 + ξ25 + 3} with |γ| ∈

{1.38, 0, 5, 3.61}, respectively. For instance, the matrix H has γ = −ξ35 − ξ25 + 2 with

|γ| = 1.38

H =



1 1 −ξ25 1 1

1 1 1 −ξ25 1

1 1 1 1 −ξ25
−ξ25 1 1 1 1

1 −ξ25 1 1 1


.

Example 5.3. Similarly, we obtained by an exhaustive search that BHγ(8,5) exists for γ ∈

{−ξ35 − ξ25 + 5,−ξ35 − ξ25 , 8, ξ35 + ξ25 + 1, ξ35 + ξ25 + 6} with |γ| ∈ {6.61, 1.61, 8, 0.61, 4.38},

respectively. In particular, the matrix H has γ = −ξ35 − ξ25 + 2 with |γ| = 0.61
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H =



1 1 ζ25 ζ35 1 ζ35 ζ5 1

1 1 1 ζ25 ζ35 1 ζ35 ζ5

ζ5 1 1 1 ζ25 ζ35 1 ζ35

ζ35 ζ5 1 1 1 ζ25 ζ35 1

1 ζ35 ζ5 1 1 1 ζ25 ζ35

ζ35 1 ζ35 ζ5 1 1 1 ζ25

ζ25 ζ35 1 ζ35 ζ5 1 1 1

1 ζ25 ζ35 1 ζ35 ζ5 1 1



.

We now investigate a property that a γ-Butson-Hadamard matrix H satisfy. It is clear that

det(H) ∈ Z[ζm] and we have the following equalities:

HH
T

= (v − γ)I + γJ,

det(HH
T

) = det((v − γ)I + γJ)

det(H) det(H) = ((γ + 1)v − γ)(v − γ)v−1.

Therefore, a BHγ(v,m) exists then the following equation has a solution α ∈ Z[ζm]

αα = ((γ + 1)v − γ)(v − γ)v−1. (5.1)

Example 5.4. Let v = 4. Then the determinant of a Hadamard matrix is obtained as follows.

We first reduce rows and columns of (4 − γ)I + γJ , then obtain its determinant from the

reduced matrix on the far-right easily.
4 γ γ γ

γ 4 γ γ

γ γ 4 γ

γ γ γ 4

→


4 γ − 4 γ − 4 γ − 4

γ 4− γ 0 0

γ 0 4− γ 0

γ 0 0 4− γ

→


4− 3γ 0 0 0

γ 4− γ 0 0

γ 0 4− γ 0

γ 0 0 4− γ



H4H
T

4 = (4− γ)I + γJ,

det(H4H
T

4 ) = det((4− γ)I + γJ)

det(H4) det(H4) = ((γ + 1)4− γ)(4− γ)4−1.

det(H4) det(H4) = ((γ + 1)4− γ)(4− γ)3.

Next, the concept of a conference matrix is introduced.
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Definition 5.5. A square matrix C of order v with 0 on the diagonal and all off-diagonal

entries in Em is called a γ-conference matrix Cγ(v,m) if CC
T

= (v − 1 − γ)I + γJ for a

γ ∈ R ∩ Z[ζm].

A matrixC with entries in E3 and having the first row (0, ζ23 , ζ
2
3 , ζ

2
3 , 1, ζ

2
3 , ζ3, ζ3, ζ

2
3 , 1, ζ

2
3 , ζ

2
3 , ζ

2
3 )

is an example of a circulant conference matrix. Note that CC
T

= 10I + 2J .

Similar to the case γ-Butson-Hadamard matrices, we obtain that a γ-conference matrix C =

Cγ(v,m) satisfies

det(C)det(C) = (γ + 1)(v − 1)(v − 1− γ)v−1

and hence we have an other main equation

αα = (γ + 1)(v − 1)(v − 1− γ)v−1. (5.2)

Therefore, a Cγ(v,m) exists then equation (5.2) has a solution α ∈ Z[ζm].

We continue with the concept of sequences. A v-periodic sequence a = (a0, a1, . . . , av−1, . . .)

an m-ary sequence if a0, a1, . . . , av−1 ∈ Em = {1, ζm, ζ2m, . . . , ζm−1m } and an almost m-ary

sequence if a0 = 0 and a1, . . . , av−1 ∈ Em.

For 0 ≤ t ≤ v − 1, the autocorrelation function Ca(t) is defined by

Ca(t) =
v−1∑
i=0

aiai+t,

where a is the complex conjugate of a ∈ C.

Definition 5.6. Anm-ary or almostm-ary sequence a of period v is called a perfect sequence

(PS) if Ca(t) = 0 for all 1 ≤ t ≤ v − 1. Similarly, an almost m-ary sequence a of period v

is called a nearly perfect sequence (NPS) of type γ if Ca(t) = γ for all 1 ≤ t ≤ v − 1.

Proposition 5.7. If a NPS of type γ exists, then γ is a real number.

Proof. Let a be a NPS of type γ with period v. We know that autocorrelation value of a is γ

and Ca(t) = Ca(v − t) = γ. So,
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γ = Ca(t),

=
v−1∑
i=0

aiai+t,

=
v−1∑
i=0

aiai+t,

=
v−1∑
i=0

ai+tai,

=
v−1+t∑
j=t

ajaj−t (i+ t = j),

= Ca(−t).

and so

γ = Ca(t) = Ca(−t) = γ

This means that γ ∈ R.

For instance, (0, ζ23 , ζ
2
3 , ζ

2
3 , 1, ζ

2
3 , ζ3, ζ3, ζ

2
3 , 1, ζ

2
3 , ζ

2
3 , ζ

2
3 ) is a 3-ary NPS of period 13 and type

γ = 2.

Remark 5.8. NPSs are equivalent to circulant γ-Butson-Hadamard matrices and conference

matrices. Let a = (a0, a1, . . . , av−1, . . .) be an m-ary NPS of period v. Let H = (hi,j) be a

circulant matrix defined by h0,j = aj for j = 0, 1, . . . , v − 1 then H is a circulant γ-Butson-

Hadamard matrix of order v. Similarly, an almost m-ary NPS is equivalent to a circulant

conference matrix.

In this thesis, we consider the case γ ∈ (Z[ζm] ∩ R)\Z. Such sequences indeed exists and

have a counter part in cryptographic and coding theoretic applications (see Chapter 6). For

instance, the sequence a = (1, 1,−ξ25 , 1, 1) has γ = −ξ35 − ξ25 + 2 with |γ| = 1.38. The

sequence a = (1, 1, ξ25 , ξ
3
5 , 1, ξ

3
5 , ξ5, 1) has γ = −ξ35 − ξ25 + 2 with |γ| = 0.61.

Now, we give three direct consequences of Theorem 3.3. Namely, applying Theorem 3.3 to

(5.1), we get a criterion for the non-existence of BHγ(v,m) and m-ary NPS:

Corollary 5.9. Let v,m ∈ Z+ and γ ∈ Z[ζm] ∩ R such that D = ((γ + 1)v − γ)(v − γ)v−1

and D = tq2e+1 where e > 0 be rational integer, q, t ∈ Z[ζm] and q is squarefree. Suppose

that (i) to (iv) below are satisfied.
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(i) Every prime ideal t C Z[ζm] with t|(t) is principal.

(ii) (q) = q1q2 where q1 and q2 are non-principal prime ideals of Z[ζm].

(iii) gcd(2e+ 1− 2k, hm) = 1 for 0 ≤ k ≤ e− 1.

(iv) gcd(N(q), N(t)) = 1.

Then the following hold:

(i) there exists no BHγ(v,m).

(ii) there exists no v-periodic m-ary NPS of type γ.

Applying Theorem 3.3 to (5.2), we get a criterion for the non-existence of Cγ(v,m) and

almost m-ary NPS:

Corollary 5.10. Let v,m ∈ Z+, γ ∈ Z[ζm]∩R such that D = (γ+ 1)(v− 1)(v− 1− γ)v−1

and D = tq2e+1 where e > 0 be rational integer, q, t ∈ Z[ζm] and q is squarefree. If the

conditions (i) - (iv) given in Corollary 5.9 are satisfied, then

• There exists no Cγ(v,m),

• There exists no v-periodic an almost m-ary NPS of type γ.

Next, we apply Theorem 4.1 to (5.1), we get a criterion for the non-existence of BHγ(v,m)

and almost m-ary NPS:

Corollary 5.11. Let v,m ∈ Z+ and γ ∈ Z[ζm]∩R such that D = ((γ+ 1)v− γ)(v− γ)v−1

and p C Z[ζm] be a prime ideal with p|D and gcd(N(D)/N(p), N(p)) = 1. Then,

• There exists no BHγ(v,m),

• There exists no v-periodic an m-ary NPS of type γ.

Applying Theorem 3.3 to (5.2), we get a necessary criterion for the existence of Cγ(v,m)

and almost m-ary NPS.

Corollary 5.12. Let v ∈ Z+,D = (γ+1)(v−1)(v−1−γ)v−1 where v ∈ Z+, γ ∈ Z[ζm]∩R,

p C Z[ζm] be a prime ideal with p|D and gcd(N(D)/N(p), N(p)) = 1. Then;

• There exists no Cγ(v,m),
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• There exists no v-periodic an almost m-ary NPS of type γ.

We give some examples illustrating the results above.

Example 5.13. Consider BHγ(5, 23), γ = −1− ζ23, v = 5 and m = 23.

αα = (1− 4ζ23)(6 + ζ23)
4

Every prime ideal dividing (6 + ζ23)
4 is principal. (1− 4ζ23) has the non-principal ideal de-

composition over Z[ζ23]. Hence, BHγ(25, 23) does not exist by Corollary 5.9. Furthermore,

we conclude that a 23-ary NPS of period 5 and γ = −1− ζ23 does not exist.

Example 5.14. Consider BHγ(67, 23), γ = −1− ζ23, v = 67 and m = 23.

αα = (1− 66ζ23)(68 + ζ23)
66

Every prime ideal dividing (68 + ζ23)
66 is principal. (1− 66ζ23) has the non-principal ideal

decomposition over Z[ζ23]. Hence, BHγ(67, 23) does not exist by Corollary 5.9. Further-

more, we conclude that a 23-ary NPS of period 67 and γ = −1− ζ23 does not exist.

We tabulate existence results of NPS of length n ≤ 20 in Table 5.1. We obtained the exam-

ples in Table 5.1 by an exhaustive search on all sequences of length n. These examples are

obtained by using programming language MAGMA [1].
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Table 5.1: Samples of perfect sequences with non-integer correlations

v m γ |γ| a

3 5 ζ35 + ζ25 + 1 0.61 1, 1, ζ25

3 7 ζ57 + ζ27 + 1 0.55 ζ27 , ζ
2
7 , 1

4 5 ζ35 + ζ25 + 2 0, 38 1, 1, 1, ζ25

4 7 ζ47 + ζ37 + 2 0, 19 ζ27 , ζ
2
7 , ζ

2
7 , ζ

5
7

5 5 ζ35 + ζ25 + 3 1, 38 1, 1, 1, 1, ζ25

5 7 −ζ57 − ζ27 0, 44 ζ27 , ζ
2
7 , ζ

3
7 , ζ

6
7 , ζ

3
7

25 5 ζ35 + ζ25 + 23 21, 38 1, . . . , 1, ζ25

125 5 ζ35 + ζ25 + 123 121, 38 1, . . . , 1, ζ25

6 5 ζ35 + ζ25 + 4 2, 38 1, 1, 1, 1, 1, ζ25

6 6 −1 1 ζ46 , 1, ζ
4
6 , ζ

2
6 , ζ6, ζ

2
6

6 7 ζ47 + ζ37 + 4 2, 19 ζ27 , ζ
2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

5
7

7 5 2ζ35 + 2ζ25 + 3 0, 23 1, 1, 1, ζ25 , 1, ζ
2
5 , ζ

2
5

7 7 2ζ47 + 2ζ37 + 3 0, 60 ζ27 , ζ
2
7 , ζ

2
7 , ζ

3
7 , ζ

2
7 , ζ

3
7 , ζ

3
7

8 5 ζ35 + ζ25 + 1 0, 61 1, 1, 1, ζ25 , ζ
3
5 , 1, ζ

3
5 , ζ5

8 7 ζ47 + ζ37 + 6 4, 19 ζ27 , ζ
2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

5
7

8 8 0 0 ζ58 , ζ
5
8 , 1, ζ

5
8 , ζ

7
8 , ζ

7
8 , 1, ζ

7
8

9 7 ζ47 + ζ37 + 7 5, 19 ζ67 , ζ
5
7 . . .

9 9 ζ59 + ζ49 + 7 5, 12 ζ69 , ζ
6
9 , ζ

6
9 , ζ

6
9 , ζ

6
9 , ζ

6
9 , ζ

6
9 , ζ

6
9 , ζ

2
9

10 5 ζ35 + ζ25 + 8 6, 38 ζ25 , ζ
2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , ζ

2
5 , 1

10 7 ζ47 + ζ37 + 8 6, 19 ζ27 , ζ
2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

2
7 , ζ

5
7

10 10 ζ310 − ζ210 + 7 6, 38 ζ810, ζ
8
10, ζ

8
10, ζ

8
10, ζ

8
10, ζ

8
10, ζ

8
10, ζ

8
10, ζ

8
10, ζ

2
10

11 11 3ζ611 + 3ζ511 + 5 0.75 1, 1, 1, ζ611, 1, 1, ζ
6
11, 1, ζ

6
11, ζ

6
11, ζ

6
11

11 11 0 0 1, 1, ζ611, ζ
7
11, ζ

3
11, ζ

5
11, ζ

2
11, ζ

5
11, ζ

3
11, ζ

7
11, ζ

6
11

11 11 ζ611 + ζ511 + 9 7, 08 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ζ611
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6. Cryptographic Applications

There is a close relationship between the family of Hadamard matrices and cryptography.

For instance there is a class of functions called bent function used in block cipher cryptosys-

tems, and they can be constructed via Butson-Hadamard matrices. Functions used in block

cipher design have to satisfy some properties in order to resist attacks. Two of them are bal-

ancedness and nonlinearity. A function is said to be balanced if each value in its image set is

attained by the same probability. And, a function’s nonlinearity is measured by its minimum

distance to all linear functions.

The family of bent functions is a branch of the Boolean functions. Their Walsh spectrum

coefficients allow us to examine their non-linearity. Hence, we start with the definition of a

Boolean function.

Definition 6.1. A function f : (Z2)
n → Z2 is called a Boolean function of n variables. Let

Bn be the set of all Boolean functions of n variables. A function f ∈ Bn is represented with a

vector of length 2n having values f(x) for all x ∈ (Z2)
n where x values are in lexicographic

order.

Definition 6.2. For any f ∈ Bn, define (−1)f to be the function F : (Z2)
n → {−1, 1} such

that F (x) = (−1)f(x) for all x ∈ (Z2)
n.

For cryptographic systems, the method of confusion and diffusion is used as a fundamental

technique to achieve security [13]. Confusion is satisfied by including a highly nonlinear

function into the cryptosystem. These functions simultaneously have maximum distance to

affine functions and maximum distance to linear structures, as well. So they are called as

strong functions, i.e. not weak. A function is considered weak whenever it can be turned into

a cryptographically weak function by means of simple (linear or affine) transformations as a

minimum correlation to affine functions [11, p.549].

The nonlinearity of a function can be calculated by using the Walsh transform, one of the

important tools in cryptography. The definition of Walsh transform and its properties are

given below. After that, a method for computing the nonlinearity will be demonstrated.

The inner product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ (Z2)
n is x.y =∑n

i=1 xiyi mod 2.
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If F be any real-valued function defined on (Z2)
n, then the Walsh transform of F is the

function F̂ : (Z2)
n → R defined by the following formula. ∀ x ∈ (Z2)

n, F̂ (x) =∑
y∈(Z2)n

(−1)x.yF (y).

Let An be the set of all affine functions in Bn. Nonlinearity of a Boolean function is the

minimum distance of a Boolean function f to the set of all linear functions

nl(f) = min{d(f, An)},

Below we consider F (x) = (−1)f(x).

F̂ (x) =
∑

y∈(Z2)n

(−1)x.y(−1)f(x)

=
∑

f(x)=x·y

1−
∑

f(x)6=x·y

1,

= 2n − 2d(f, x · y).

Then, d(f, x · y) = 2n−1 − 1
2
F̂ (x) is the distance between f(x) and ly(x) = x · y.

Theorem 6.3. The nonlinearity of a Boolean function f on Zn2 can be expressed by nl(f) =

2n−1 − 1
2
max{|F̂ (x)| : x ∈ Zn2}.

Theorem 6.4. For any function f on Zn2 , the nonlinearity of f satisfies nl(f) ≤ 2n−1−2
n
2
−1.

A function f on Zn2 attains the upper bound of nonlinearity 2n−1 − 2
n
2
−1 is called a bent

function. It is clear that if F̂ (x) = ±2n/2 for all x ∈ Zn2 , a function f ∈ Bn is a bent

function. Maximal nonlinearity is hence attained by bent functions, with only even n. For

instance, let P (x) be a function from Z2 to Z2. P (x) is bent if all Walsh coefficients of

(−1)P (x) are ±1. This definition of a bent function over Z2 can be directly extended to

functions on Zq. First the Walsh transform is extended to the functions on Zq.

Definition 6.5. [10, p.339] Suppose F : (Zq)n → C and let ζ = e2iπ/q. The Walsh transform

of F is the function F̂ : (Zq)n → C defined for all x ∈ (Zq)n by the formula:

F̂ (x) =
∑

y∈(Zq)n

ζx.yF (y).

Then a generalized bent function is defined similarly.

Definition 6.6. Suppose f : (Zq)n → Zq) and define F : (Zq)→ C by the rule F (x) = ζf(x)

for all x ∈ (Zq)n, where ζ = e2iπ/q. If |F̂ (x)| = qn/2 ∀ x ∈ (Zq)n, then f is a generalized

bent function.
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The connection between Hadamard matrices and generalized bent functions is given in The-

orem 6.7.

Theorem 6.7. [10] Let the matrix Hf = (hx,y), where hx,y = F (x− y) for all x, y ∈ (Zq)n.

Then f is a generalized bent function if and only if Hf is a Butson-Hadamard matrix.

We give a well known result on the existence of a generalized bent function.

Theorem 6.8. [10, p.96] Assume that n is even or q ≡ 2 mod 4. Then there exists a

generalized bent function f : (Zq)n → Zq.

Therefore, we see that there is a one to one correspondence between generalized bent func-

tions and Butson-Hadamard matrices. We give an example below.

Example 6.9. f :Z2
3 → Z3 and f(x1, x2) = x1x2. The matrix H corresponding to the bent

function f is given below. The entries of the Hadamard matrix forms a power of 3-th of unity

ζ .

H =



ζf(0,0) ζf(0,2) ζf(0,1) ζf(2,0) ζf(2,2) ζf(2,1) ζf(1,0) ζf(1,2) ζf(1,1)

ζf(0,1) ζf(0,0) ζf(0,2) ζf(2,1) ζf(2,0) ζf(2,2) ζf(1,1) ζf(1,0) ζf(1,2)

ζf(0,2) ζf(0,1) ζf(0,0) ζf(2,2) ζf(2,1) ζf(2,0) ζf(1,2) ζf(1,1) ζf(1,0)

ζf(1,0) ζf(1,2) ζf(1,1) ζf(0,0) ζf(0,2) ζf(0,1) ζf(2,0) ζf(2,2) ζf(2,1)

ζf(1,1) ζf(1,0) ζf(1,2) ζf(0,1) ζf(0,0) ζf(0,2) ζf(2,1) ζf(2,0) ζf(2,2)

ζf(1,2) ζf(1,1) ζf(1,0) ζf(0,2) ζf(0,1) ζf(0,0) ζf(2,2) ζf(2,1) ζf(2,0)

ζf(2,0) ζf(2,2) ζf(2,1) ζf(1,0) ζf(1,2) ζf(1,1) ζf(0,0) ζf(0,2) ζf(0,1)

ζf(2,1) ζf(2,0) ζf(2,2) ζf(1,0) ζf(1,1) ζf(1,2) ζf(0,1) ζf(0,0) ζf(0,2)

ζf(2,2) ζf(2,1) ζf(2,0) ζf(1,2) ζf(1,1) ζf(1,0) ζf(0,2) ζf(0,1) ζf(0,0)



=



ζ0 ζ2 ζ1 ζ6 ζ8 ζ7 ζ3 ζ5 ζ4

ζ1 ζf0 ζ2 ζ7 ζ6 ζ8 ζ4 ζ3 ζ5

ζ2 ζ1 ζ0 ζ8 ζ7 ζ6 ζ5 ζ4 ζ3

ζ3 ζ5 ζ4 ζ0 ζ2 ζ1 ζ6 ζ8 ζ7

ζ4 ζ3 ζ5 ζ1 ζ0 ζ2 ζ7 ζ6 ζ8

ζ5 ζ4 ζ3 ζ2 ζ1 ζ0 ζ8 ζ7 ζ6

ζ6 ζ8 ζ7 ζ3 ζ5 ζ4 ζ0 ζ2 ζ1

ζ7 ζ6 ζ8 ζ4 ζ3 ζ5 ζ1 ζ0 ζ2

ζ8 ζ7 ζ6 ζ5 ζ4 ζ3 ζ2 ζ1 ζ0


25



On the other hand, we can show an example for the other direction of Theorem 6.7. The

matrix H is a Butson-Hadamard matrix.

H =


ζ0 ζ2 ζ0 ζ0

ζ0 ζ0 ζ2 ζ0

ζ0 ζ0 ζ0 ζ2

ζ2 ζ0 ζ0 ζ0


Then, f : Z4 → Z4, as follows f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 2.

We now investigate the functions corresponding to γ-Butson Hadamard matrices. We start

with a circulant γ-Butson Hadamard matrix H and convert the first row of H into a truth

table of a function f as in Theorem 6.7 and Example 6.9. Then the Walsh transform of f is

calculated by Definition 6.5. We apply this conversion for the examples obtained in Table

5.1 and some of their trivial extensions. We tabulate our results in Table 6.1.

Table 6.1: Samples of γ-Butson Hadamard Matrices, corresponding Bollean functions f and

their Walsh spectrum F̂

m v γ |γ| f |F̂ |

5 5 ζ35 + ζ25 + 3 1.38 (0, 2, 0, 0, 0) (3.24, 1.90, 1.90, 1.90, 1.90)

5 25 ζ35 + ζ25 + 23 21.38 (0, 0, 0, 0, 0, 2, 0, . . . , 0) (23.19, 1.90, . . . , 1.90)

5 125 ζ35 + ζ25 + 123 121.38 (0, . . . , 0, 2, 0, . . . , 0) (123.19, 1.90, . . . , 1.90)

6 6 −1 1 (6, 2, 0, 2, 6, 1) (3.60, 1, 1, 4.35, 1, 1)

7 7 2ζ47 + 2ζ37 + 3 0.60 (2, 3, 3, 2, 3, 2, 2) (6.32, 1.22, . . . , 1.22)

8 8 0 0 (5, 7, 1, 5, 1, 7, 5, 5) (2.82, . . . , 2.82)

9 9 ζ59 + ζ49 + 7 5.12 (6, 2, 6, 6, 6, 6, 6, 6, 6) (7.06, 1.97, . . . , 1.97)

10 10 ζ310 − ζ210 + 7 6.38 (0, 6, 7, 3, 5, 2, 5, 3, 7, 6, 0) (3.55, 3.23, 1.32, 2.55, 4.30

3.59, 4.29, 2.55, 1.32, 3.23)

11 11 3ζ611 + 3ζ511 + 5, 0.75 (0, 6, 6, 6, 0, 6, 0, 0, 6, 0, 0) (1.85, 3.42, . . . , 3.42)

11 11 ζ611 + ζ511 + 9 7.08 (0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0) (9.044, 1.979, . . . , 1.979)

11 11 0 0 (0, 6, 7, 3, 5, 2, 5, 3, 7, 6, 0) (3.31, . . . , 3.31)

We note that nonlinearity is an important concept in cryptography. Looking at Table 6.1, it

is seen that the smaller |γ| values, the more flat Walsh spectrum and so the higher nonlin-
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earity. Therefore one can obtain new familes of nonlinear functions by searching matrices

BHγ(v,m) for non integer γ ∈ Z[ζm] having small absolute value.
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7. CONCLUSION

In this thesis, we studied the γ-Butson-Hadamard matrices and their cryptographic applica-

tions. We studied the existence cases of γ-Butson-Hadamard matrices for γ ∈ (Z[ζm]∩R)\Z

by using the tools from algebraic number theory.

Firstly, we converted the existence condition of a γ-Butson-Hadamard matrix to an equation

over a ring of integers of a cyclotomic number field. Then we obtained two novel results

stating necessary conditions for the non-existence of this equation. Then the direct applica-

tions of these results to γ-Butson-Hadamard matrices were shown. We presented examples

of non-existence cases in details and obtained existence examples by computer search.

It is known that a sequence obtained from the first row of a circulant γ-Butson-Hadamard

matrix is used in many applications. They are known as nearly perfect sequences. Therefore

the analogous consequences of our results applied to the concept of sequences were pre-

sented. Examples of non-existence cases for nearly perfect sequences were given in details.

On the other hand, the exhaustive search on nearly perfect sequences was performed, and the

existence results were tabulated. In deed, some examples of nearly perfect sequences with

|γ| < 1 were obtained, which points to new research directions.

There is another family of matrices known as Conference matrices. The results obtained for

γ-Butson-Hadamard matrices were similarly extended to Conference matrices. Two novel

necessary conditions for the non-existence of a Conference matrix were presented.

Finally, the connection of γ-Butson-Hadamard matrices to cryptographic functions was drawn.

Cryptographers look for nonlinear Boolean (multivariate) functions on residue rings. These

functions are used in block ciphers to provide confidentiality of the message between two

parties. In this thesis, it was shown that a γ-Butson-Hadamard matrix can be converted to a

Boolean function whose nonlinearity is proportional with the value |γ|. And, the examples

of nonlinear functions obtained from γ-Butson-Hadamard matrices were presented.
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Appendix: MAGMA CODES

We present the MAGMA source code for the main Theorem 3.3 in Chapter 3.

I s S e l f C o n j := f u n c t i o n ( p ,w)

w_prime :=w;

w h i l e I s D i v i s i b l e B y ( w_prime , p ) do

w_prime := E x a c t Q u o t i e n t ( w_prime , p ) ;

end w h i l e ;

f o r j i n [ 1 . . w_prime ] do

i f ( p^ j mod w_prime ) eq w_prime−1 t h e n

r e t u r n t r u e ;

end i f ;

end f o r ;

r e t u r n f a l s e ;

end f u n c t i o n ;

e x p o n e n t := f u n c t i o n ( n , q )

s : = 0 ;

w h i l e I s D i v i s i b l e B y ( n , q ) and ( n o t ( n eq 0 ) ) do

s + : = 1 ;

n := E x a c t Q u o t i e n t ( n , q ) ;

end w h i l e ;

r e t u r n s ;

end f u n c t i o n ;

I s V a l i d E x p o n e n t := f u n c t i o n ( e , h )

f o r k i n [ 0 . . F l o o r ( e / 2 ) ] do

i f GCD( e−2∗k , h ) ne 1 t h e n

r e t u r n f a l s e ;

end i f ;

end f o r ;

r e t u r n t r u e ;

end f u n c t i o n ;

31



set_mh : = [ [ 2 3 , 3 ] , [ 2 9 , 8 ] , [ 3 1 , 9 ] , [ 3 7 , 3 7 ] , [ 3 9 , 2 ] , [ 4 1 , 1 2 1 ] , [ 4 3 , 2 1 1 ] ,

[ 4 6 , 3 ] , [ 4 7 , 6 9 5 ] , [ 4 9 , 4 3 ] , [ 5 1 , 5 ] , [ 5 2 , 3 ] , [ 5 6 , 2 ] , [ 6 2 , 9 ] ] ;

set_mh : = { [ 2 3 , 3 ] } ;

q _ s e t : = { 2 , 3 , 1 3 , 2 9 , 3 1 , 4 1 , 7 1 , 7 3 ,

1 2 7 , 1 3 1 , 1 5 1 , 1 6 3 , 1 7 9 , 1 9 3 , 1 9 7 } ;

f o r mh i n set_mh do

m:=mh [ 1 ] ;

h :=mh [ 2 ] ;

K:= C y c l o t o m i c F i e l d (m) ;

O:= R i n g O f I n t e g e r s (K ) ;

u n i t y :=K . 1 ;

f o r gamma i n [−1−u n i t y−u n i t y ^22] do

Im ( gamma ) ;

s e t _ v : = { } ;

s e t _ c o n j : = { } ;

f o r v i n [ 4 6 . . 4 6 ] do

v ;

i f n o t ( I s D i v i s i b l e B y ( v +2 ,m) ) t h e n

end i f ;

D: = ( ( gamma+1)∗v−gamma )∗

( v−gamma ) ^ ( v−1); / / hadamard

/ / D: = ( gamma + 1 )∗ ( v−1)∗

( v−1−gamma ) ^ ( v−1); / / D e t e r m i n a n t

o f C o n f e r e n c e M at r i x

i f D eq 0 t h e n

c o n t i n u e v ;

end i f ;
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D _ f a c t o r s := F a c t o r i z a t i o n (D∗O ) ;

s e t _ n o n : = [ ] ; \ \ s e t o f non−p r i n c i p a l

s e t _ p r i n : = { } ; \ \ s e t o f p r i n c i p a l

s e t _ r a m : = { } ; \ \ s e t o f r a m i f i e d

f o r Q i n D _ f a c t o r s do

i f I s P r i n c i p a l (Q[ 1 ] ) t h e n

I n c l u d e (~ s e t _ p r i n ,Q ) ;

e l s e

I n c l u d e (~ se t_non ,Q ) ;

end i f ;

end f o r ;

i f (# s e t _ n o n eq 2) t h e n

I n c l u d e (~ s e t _ v , v ) ;

s e t _ v ;

f o r Q i n s e t _ n o n do

p r i n t f " v : %o Q: %o

end f o r ;

s e t _ n o n [ 1 ] [ 1 ] ∗ s e t _ n o n [ 2 ] [ 1 ] ;

end i f ;

end f o r ;

p r i n t f "m: %o gamma : %o s e t _ v :

end f o r ;

end f o r ;

We present source code of the Walsh spectrum for value of TT, q, n in MAGMA.

Abs := f u n c t i o n ( x )

r e t u r n S q r t ( Re ( x∗ComplexConjugate ( x ) ) ) ;
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end f u n c t i o n ;

WalshSpectrum := f u n c t i o n ( TT , q , n )

K:=GF( q ) ; \ \ G e n e r a l F i e l d

carK := C a r t e s i a n P o w e r (K, n ) ;

w:= RootOfUni ty ( q ) ;

S := [ ] ;

f o r i i n carK do

s := T u p l i s t ( i ) ;

Append (~S , s ) ;

end f o r ;

F : = [ ] ;

t :=K! 0 ;

f o r x i n [ 1 . . q^n ] do

F [ x ] : =w−w;

f o r y i n [ 1 . . q^n ] do

f o r l i n [ 1 . . n ] do

s := S [ x ] [ l ] ;

m:= S [ y ] [ l ] ;

t +:=K! ( s ∗m) ;

end f o r ;

F [ x ] + : =w^ ( I n t e g e r s ( ) ! ( t + TT [ y ] ) ) ;

t : = 0 ;

end f o r ;

end f o r ;

r e t u r n F ;

end f u n c t i o n ;
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q : = 5 ; \ \ The v a l u e s o f q , n , TT i s s e l e c t e d .

n : = 4 ;

TT : = [ 0 , 2 , 0 , 0 ] ;

f o r x i n WalshSpectrum ( TT , q , n ) do

x , Abs ( x ) ;

end f o r ;
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