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ABSTRACT

v-BUTSON-HADAMARD MATRICES AND THEIR
CRYPTOGRAPHIC APPLICATIONS

Sibel KURT
Master of Science, Department of Mathematics
Supervisor: Assist. Prof. Dr. Oguz YAYLA
June 2017, 37 pages

A Hadamard matrix is a square matrix with entries 1 whose rows are orthogonal to each
other. Hadamard matrices appear in various fields including cryptography, coding theory,
combinatorics etc. This thesis takes an interest in y-Butson-Hadamard matrix that is a gen-
eralization of Hadamard matrices for v € R N Z[(,,]. These matrices are examined for
non-existence cases in this thesis. In particular, the unsolvability of certain equations is stud-
ied in the case of cyclotomic number fields whose ring of integers is not a principal ideal
domain. Winterhof et al. considered the equations for v € Z. We first extend this result
to v € RN Z[(,] by using some new methods from algebraic number theory. Secondly,
we obtain another method for checking the non-existence cases of these equations, which
uses the tool of norm from algebraic number theory. Then, the direct applications of these
results to y-Butson-Hadamard matrices, y-Conference matrices, nearly perfect sequences
are obtained. Finally, the connection between nonlinear Boolean cryptographic functions
and ~y-Butson-Hadamard matrices having small || is established. In addition, a computer
search is done for checking the cases which are excluded by our results and for obtaining

new examples of existence parameters.

Keywords: Butson-Hadamard matrices, algebraic number fields, nearly perfect sequences,

conference matrices, cryptographic functions



OZET

~-BUTSON-HADAMARD MATRISLERI VE ONLARIN
KRIPTOGRAFIK UYGULAMALARI

Sibel Kurt
Yiiksek Lisans, Matematik Boliimii
Tez Damismani: Yrd. Do¢. Dr. Oguz Yayla
Haziran 2017, 37 sayfa

Hadamard matrisleri uygulamali matematikte, kuantum bilgisayar bilimlerinde, telekomii-
nikasyon, uydu teknolojileri, akilli telefonlar ve kablosuz iletisim gibi alanlarda kullanilir.
Modern KBCE (Kod bolmeli ¢coklu erisim) tabanli cep telefonlari, baz istasyonlarina ulasan
sinyallerin karigmasi gibi durumlar1 minimize etmede ve sinyalleri modiiliize etmek i¢in
Hadamard matrisleri kullanilir. Kablosuz aglarda saklanan bilgi, optik telekomiinikasyon,
sinir bilimi ve Oriintii tantma, Hadamard matrislerinin kullanildig1 diger alanlardandir. Ek
olarak, Hadamard matrisleri bilgisayar bilimlerinde 6rnegin, Hadamard kodlar (en iyi dogru-
lama kodu olarak bilinir.) ve Hadamard kapilar1 (kuantum kapilarinda kullanilir.) gibi bir cok
alana dogrudan uygulanabilir (bkz. [8]).

Bu tezde, Butson-Hadamard matrislerinin bir sinifi ¢calisilmig ve onlarin uygulamalari a-
rastirilmigtir.  Yakin tarihte v € Z i¢in m-li y-Butson Hadamard matrisleri WYZ [16]
makalesinde ¢aligilmigtir. Bu tezde, m-li y-Butson Hadamard matrisleri v € (Z[(,] N
R)\Z i¢in ¢alisilmis ve yeni y-Butson Hadamard 6rnekleri, onlarin var olmasini saglayan
gereklilikler m € Z* ve (,, birimin m-inci dereceden kokii olmak iizere aragtirilmistir.
WYZ [16] calismasindaki ve cebirsel say1 teorisindeki yontemlerden ve sonuglardan yarar-
lanilip m-li y-Butson-Hadamard matrisleri {izerinde yeni sonug¢lar bulunmustur. Buna ek
olarak, Hadamard matrisleri tizerindeki bu yeni sonug¢lar, kodlama teorisi ve kriptografideki
yeni uygulamalarin arastirilmasinda kullanilmasgtir.

Bu tezde y-Butson-Hadamard matrislerini yeni metotlarla analiz edip, onlar1 kodlama teorisi

ve kriptografiye uygulanmasi amaclanmistir. y-Butson-Hadamard matrisleri iizerindeki yakin
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zamanh ¢alismalarda kullanilan analizlerin daha genel hali gelistirilmis ve yeni y-Butson-
Hadamard matrisleri kesfedilmistir.

Girdileri =1 olan ve tiim satirlar1 birbirine dik olan karesel matrise, Hadamard matrisi denir.
Hadamard matrislerinin ilk genellestirilmesi, 1962 yilinda Butson tarafindan yapilmigtir.
Butson, Hadamard matrislerinin girdileri icin birimin 2-inci dereceden kokiinii almak ye-
rine, birimin m-inci dereceden karmasik kokiinti almistir [3]. vy-Butson-Hadamard matris-
leri, bir satirin diger satirin karmagik eslenigiyle i¢ carpimindan elde edilen vy degeri diginda,
Butson Hadamard matrislerine benzerdir. Butson-Hadamard matrisleri i¢in en yaygin sonug
Brock’un [2] ve Winterhof vd. [16] nin ¢calismalaridir.

Winterhof vd. y-Butson-Hadamard matrisinin var olabilmesi i¢in olan kosullari siklotomik
cismin say1 halkasi iizerindeki bir denkleme indirgediler. Yani, onlar asagida verilen denkle-
min,

ad = ((y+ v —7)(v—7)"", (0.1)

v € Z* boyutlu y-Butson Hadamard matrisini v € Z olmak iizere « € Z ¢oziimlerini
diisiindiiler. Onlar, D = ((y + 1)v — 7)(v — )" !’nin temel ideal ¢arpanlarina ayrilmasini
ve (1.1) denkleminin ¢6ziimiiniin var olmama kosullarini ele almislardir. Ayrica, D’nin ideal
carpanlarina ayrilabilmesi i¢in yalnizca y tamsayisim diisiinmiislerdir. Bu tezde, Boliim 3’de
v € Z[(n) N R i¢in olan yontem gelistirildi. v € Z[(,,,] N R olmak iizere (1.1) denkleminin
¢6ziimii olmamasi i¢in kogullari ele alindi. y € Z[(,,,] "R oldugunda (1.1)’in ¢dziimii olama-
masi i¢in ekstradan D’nin temel olmayan ideal ¢arpaninin normu ile temel ideal ¢arpaninin
normunun aralarinda asal olmasi kosuluna ihtiyacimiz vardir (bkz. Theorem 3.3).

Ikinci olarak, Bolim 4’te, belirli v € Z[(,,] N R igin y-Butson Hadamard matrisi var ol-
madigini kontrol etmek i¢in bir yeni yontem iiretildi. (1.1) denklemindeki o’y1 bolen asal
ideallerin normunun &’y1 da boldigii gercegi de kullanildi. Bu yiizden, D’yi bolen her asal
ideal p i¢in, eger p’nin normu tarafindan boliinen D’nin normu, p’nin normuyla aralarinda
asalsa, (1.1)’in ¢oziimii yoktur (bkz. Theorem 4.1). Ayrica, D’nin normunun c¢arpanlarina
ayrildiginda isler en fazla bir ise (1.1)’nin hi¢ bir ¢6ziimii olmadig: agiktir (bkz Corollary
4.2). Sabit bir m ve (,, i¢cin v € {2,3,...,100} iizerinde Teoremler 3.3 ve 4.1’in giiciinii
gormek icin (1.1) denkleminin var olmamasi bilgisayar tarama programi olan MAGMA [1]
ile detaylh bir aragstirma yapildi. Teorem 3.3 ve Teorem 4.1 kullanilarak bazi degerler i¢in
~v-Butson-Hadamard matrislerinin var olmadig1 goriildii. Diger yandan, bu iki teoremin bir-

birlerini kapsamadig1 gozlendi (bkz. Remark 4.4). Uygulamamizin MAGMA kodlar1 tezin
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ek kisminda verilmistir.

Boliim 5°te Teorem 3.3 ve Teorem 4.1°den cikan iki yeni sonucu y-Butson-Hadamard mat-
rislerine uyguladik. Yani, v-Butson-Hadamard matrislerinin varolmama kosullar1 icin uy-
gun v € Z ve v € Z[(,] N R bulmaya ¢alistik. Bu ise o € Z[(,,] icin e = ((y + 1)v —
v)(v—=)?~! denkleminin ¢6ziimii i¢in gerekli kosullar bulmaya denktir. Bu yiizden, ana teo-
remlerimizi kullanarak, y-Butson-Hadamard matrislerinin var olmadig: kosullar1 elde ettik
(bkz. Corollary 5.9-(1) ve Corollary 5.11-(1)). Diger yandan, dolanir (circulant) y-Butson-
Hadamard matrisinin ilk satir1 neredeyse miikemmel diziye denktir (bkz. [5] ve Remark 5.8).
Miikemmel diziler literatiirde detayli bir sekilde calisilmis ve onlarin bir cok uygulamasi
tretilmistir (bkz. [7]). Bu yiizden, bizim teoremlerimizi neredeyse miikemmel dizilere uygu-
layip, onlarin var olmama durumlarinda gerekli kosullar1 belirttik (bkz. Corollary 5.9-(ii) ve
5.11-(i1)).

Buna ek olarak, y-Butson Hadamard matrisinin kosegeninin sifir olma durumunda bu mat-
ris, v-Konferans matrisi adim alir. Benzer olarak, v-Butson Hadamard matrisinin ve m-li
neredeyse miikemmel dizilerinin birbirlerine denklikleri gibi, bir -Konferans matrislerinin
de neredeyse miikemmel dizilere denklikleri vardir (bkz. Remark 5.8). Bolim 5’te, -
Konferans matrisleri ve m-li neredeyse miikkemmel diziler i¢in benzer varolmama sonuglari
elde ettik (bkz. Corollary 5.10 ve 5.12).

Dolanir «y-Butson-Hadamard matrislerinin ve kiigiik || i¢in -y tipinde neredeyse mitkemmel
dizilerinin var olan durumlari da tez kapsaminda diisiiniilebilir. Ciinkii, kii¢iik || degerlerine
sahip mitkemmel diziler bir ¢cok uygulamada kullanilir. Bu yiizden, v € {1,2,...,11} ve
m € {1,2,...,11} icin MAGMA’y1 kullanarak detayli bir bilgisayar taramasi yaptik ve -
tipinde neredeyse miikemmel dizilerin varligi (ya da dolanir y-Butson Hadamard matrisi)
icin y aradik. ~y tipinde yeni bir ¢cok neredeyse miikemmel diziler elde ettik gercekten de ¢ok
kiiciik v’ya sahip baz1 diziler bulduk (bkz. Tablo 5.1). Uygulamamizin MAGMA kodlar1
tezin ekler boliimiinde verilmistir.

Sonug olarak, tezde, bir Butson-Hadamard matrisi ile kriptografik fonksiyon arasindaki ilis-
ki arastirildi. Kriptografide, gizlilik (ya da giivenlik) dogrusal olmayan Boolean fonksiyon-
lar araciligiyla sifreli metnin icindeki mesaj1 karistiran blok sifreleme kullanilarak saglanir.
Lineer olmama durumu maksimum olan bir Boolean fonksiyonu, Bent fonksiyon olarak ad-
landirilir. Butson Hadamard matrisleri, kriptografik bent fonksiyonlarinin bir esiti (dengi)

olarak bilinir (bkz. [10] ya da Teorem 6.7). Boliim 6’da bu denklik kullanarak, y-Butson-
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Hadamard matrisini bir Boolean fonksiyonuna doniistiiriildii. Bir hayli kii¢iik bir || degeri-
ne sahip dolanir y-Butson-Hadamard matrisleri kullanilarak elde edilen biiyiik bir lineer ol-

mama Olciisiine sahip Boolean fonsiyonlar1 bulunabilecegi gézlemlenmistir (bkz. Tablo 6.1).

Anahtar Kelimeler: Butson-Hadamard matrisleri, cebirsel say1 cisimleri, neredeyse mii-

kemmel diziler, konferans matrisleri, kriptografik fonksiyonlar
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1. INTRODUCTION

Hadamard matrices are used in computational mathematics and quantum computer science.
They have also used in many practical areas e.g. telecommunication of satellites, modern cell
phones and wireless networks. Modern CDMA based cell phones use Hadamard matrices to
modulate the signals and to minimize the interference between signals arriving the base sta-
tion. Information hiding in wireless networks, optical telecommunication, neuroscience and
pattern recognition are other practical areas where Hadamard matrices are used. In addition,
Hadamard matrices are directly applied in computer science, for example, Hadamard codes
(known as best error correcting codes) and Hadamard gates (used in quantum gates), see [8]
for details and other applications.

In this thesis, a class of Butson-Hadamard matrices is studied and their applications are in-
vestigated. Very recently, new properties of m-ary y-Butson-Hadamard matrices for v € Z
are studied in [16]. In this thesis, we study m-ary ~y-Butson-Hadamard matrices for v €
(Z|¢n]) NR)\Z, and look for new y-Butson-Hadamard examples and their existence require-
ments, where m € Z7* and (,, is a primitive m-th root of unity. We use the methods in al-
gebraic number theory and results in [16] to find new results on m-ary y-Butson-Hadamard
matrices. Moreover, these new results on Hadamard matrices are used in the investigation of
new applications in cryptography and coding theory.

The aim of this study is to analyze the y-Butson-Hadamard matrices with new methods and
then apply them to the cryptography and coding theory. An extension of analysis in recent
work [16] on Butson-Hadamard matrices is developed and then new y-Butson Hadamard
matrices are explored.

A Hadamard matrix is a square matrix with entries 1 whose rows are orthogonal to each
other. First generalization of Hadamard matrices was made by Butson in 1962. Butson [3]
handled complex m-th root of unity for entries of Hadamard matrices, instead of 2-th root of
unity. v-Butson-Hadamard matrices are similar to Butson-Hadamard matrices, except inner
product of a row with a complex conjugate of another row is . The most common result for
Butson-Hadamard matrices is presented by [2] and [16].

Winterhof et al. [16] reduces the existence condition of a y-Butson Hadamard matrix to an
equation over ring of integers of a cyclotomic field. Namely, they consider the solutions

a € Z[(y) of the following equation

ad = ((y+ v —7y)(v—7)"", (1.1)



where v € Z7 is the dimension of the v-Butson Hadamard matrix and v € Z. Then they
consider the principal ideal factorization of D = ((y+ 1)v —7)(v —~)*"! and deal with the
unsolvability conditions of (1.1). They only consider integer ~ for ideal factorization of D.
In this thesis, we extend this method to v € Z[(,,] N R in Chapter 3. For the unsolvability of
(1.1) in case v € Z[(,] NR, we require an extra condition that the norm of nonprincipal part
of D is relatively prime to the norm of principal part of D (see Theorem 3.3).

Secondly, in Chapter 4, another novel method is built up for checking the cases in which a
~-Butson Hadamard matrix does not exist for certain v € Z[(,,] N R. We use the fact that
the norm of a prime ideal dividing o in (1.1), also divides &. Therefore, for any prime ideal
p dividing D, if the norm of D divided by the norm of p is relatively prime to the norm of p,
then (1.1) has no solution (see Theorem 4.1). In particular, if the norm of D is square-free
then it is clear that (1.1) has no solution (see Corollary 4.2). In addition, we perform an
exhaustive computer search by using MAGMA [1] on the set v € {2,3,...,100} for fixed
m and ( and for the non-existence of the equation (1.1) to see the strength of Theorems 3.3
and 4.1. It is seen that Theorems 3.3 and 4.1 exclude the existence of many values, on the
other hand, we see that they do not cover each other (see Remark 4.4). MAGMA codes of
our implementation are given in Appendix of this thesis.

We applied our two novel results (Theorem 3.3 and Theorem 4.1) to ~-Butson-Hadamard
matrices in Chapter 5. Namely, we look for dimension v € Z and v € Z[(,,] N R for
which a y-Butson-Hadamard matrix does not exist. This is equivalent to finding necessary
conditions for solvability of a@ = ((y+1)v —7)(v — )"~ for some o € Z[(,,]. Hence, by
using our main theorems we obtain non-existence results for y-Butson-Hadamard matrices
(see Corollaries 5.9-(i) and 5.11-(1)). On the other hand, the first row of a circulant' ~-
Butson-Hadamard matrix is equivalent to a nearly perfect sequence (see [5] and Remark 5.8
in this thesis). Perfect sequences are extensively studied in literature and they have many
applications (see [7]). Therefore, we apply our main theorems to nearly perfect sequences
and state the necessary conditions for their non-existence (see Corollaries 5.9-(ii) and 5.11-
(i1)).

Furthermore, if the diagonal of a y-Butson-Hadamard matrix is allowed to be O then such a
matrix is called a y-Conference matrix. Similar to the equivalence of a y-Butson-Hadamard

matrix and an m-ary nearly perfect sequence, a y-Conference matrix is equivalent to an

Ithe other rows are cyclic shift of the first row



almost m-ary nearly perfect sequence (see Remark 5.8). In Chapter 5, we obtain analogous
non-existence results for y-Conference matrices and almost m-ary nearly perfect sequences
(see Corollaries 5.10 and 5.12).

The existence cases of circulant y-Butson-Hadamard matrices and nearly perfect sequence
of type v for small |v| is also considered in this thesis. Because, perfect sequences with
small integer -y values are used in many applications. Hence, we perform an exhaustive
computer search by using MAGMA [1] on period v € {1,2,...,11} and alphabet m €
{1,2,...,11}, and look for -, for which a nearly perfect sequence of type ~y (or a circulant
~v-Butson-Hadamard matrix) exists. We obtain many new nearly perfect sequences of type
7, in deed we have some sequences with very small || (see Table 5.1). MAGMA codes of
our implementation are given in Appendix of this thesis.

Finally, in this thesis, the relationship between a Butson-Hadamard matrix and a crypto-
graphic function is investigated. In cryptography, secrecy (or confidentiality) is satisfied by
using block ciphers which confuses a message into a ciphertext via a nonlinear Boolean
function. A nonlinear Boolean function attaining the maximum nonlinearity is called a bent
Jfunction. It is known that a Butson-Hadamard matrix is equivalent to cryptographic bent
function (see [10] or Theorem 6.7 in this thesis). By using this equivalence, we convert a
~v-Butson-Hadamard matrix into a Boolean function in Chapter 6. It is seen that one can find
a highly nonlinear Boolean function via circulant y-Butson-Hadamard matrices having very
small || values (see Table 6.1).

The outline of this thesis is as follows. In Chapter 2, the definitions and the theorems from
algebraic number theory are presented without proofs. In Chapter 3, a novel method based
on principal ideal factorization is presented. In Chapter 4, a new result for deciding the
non-existence of a solution to (1.1) is given. Then, in Chapter 5, the consequences of the
results given in Chapters 3 and 4 are applied to Hadamard matrices, Conference matrices and
sequences. Next, the a cryptographic application of the results given Chapter 5 is presented

in Chapter 6. Finally, the conclusion of this thesis is given in Chapter 7.



2. Algebraic Number Theory

In this chapter, primary concepts in algebraic number theory are studied since the factor-
ization of ideals over a ring of integers of a number field is used as a tool in the preceding
chapters. A ring of integers of a number field may not possess a unique factorization of
elements. If a ring of integers is not a principal ideal domain, then unique factorization of
elements into irreducibles fails. However, they do still retain many important algebraic prop-
erties of Z. In particular, they possess unique factorization of non-zero ideals. Hence, we
should consider ideals, rather than elements when we consider a factorization. It is known
that factorization of an ideal into prime ideals is unique over a Dedekind domain, and a ring
of integers is a particular example of Dedekind domains [9, p.175]. This is an outline of this
chapter, and the details are below. For proofs of theorems and other details please see [14]
and [9].

Definition 2.1. [4, p.106] A number field is a commutative field of characteristic 0 which is

a finite extension of the field Q of rational numbers.

Definition 2.2. [9, p.66] Let be ag,ay,as,...,a, € Qand ay # 0. A complex number «
satisfying apx™ + a1 ' 4+ asx™ 2 + ... + a, = 0 is called an algebraic number. Let be
bi,ba, ..., b, € Z. A complex number o satisfying x™ + bix" ' + ...+ b, = 0 is called an

algebraic integer.

Proposition 2.3. [4, p.126] Let o and (3 be algebraic integers. Then of and o + [ are

algebraic integers.

Proposition 2.4. [4, p.126] Let be o € C and P(X) be a monic polynomial with algebraic

integer coefficients. Then « is an algebraic integer if P(«) = 0.

A unit is called non-zero algebraic integer whose inverse is also an algebraic integer. The
algebraic integers form a subring of the field of algebraic numbers. For any number field
K and the set of algebraic integers B, O = B N K is called the ring of integers of K. We
will use term Ok to grasp which field has the ring of integers. The Ok is the subring of C,
on account of the fact that both K" and B are subrings of C. Moreover, Z C Q C K and
Z C B namely, Z C O. Let a € K, then caw € O for some non-zero Z. We note that for an
algebraic number 6 € B; a number field has the form Q(#)[14, Theorem 2.2].



2.1. Factorization of an element

In this section, factorization of an element is studied in the ring of integers of an algebraic
number field. The existence and uniqueness of factorizations are dealt with in this section.
A non-unit element p is called irreducible if p = mn then one of m or n must be a unit. A
non-unit element p is called prime if p/mn then p|m or p|n. If factorization into primes is
possible, then it is unique. In contrast, factorization into irreducibles may not be unique even
when it is possible. For instance, if we work in Z[\/—_l()], then there are two factorizations
10 = 2.5 and 10 = v/—101/—10. Here the elements 2, 5, v/—10 are all irreducible, however,
they are not prime. We will see in a moment that even though factorization into irreducibles
is always possible in O, there is an extensive list of O examples where such a factorization
is not unique.

Any element € R may be trivially factorized as x = uy where y = v~ 'z, if w is a unitin a
ring R. For a unit u if z = uy, then the element y is called an associate of x. Factorization
of z € R, z = yz is said to be proper if y or z are not units. If not a factorization is proper,
then one of the factors is a unit and the other is an associate of x. If a non-unit is reducible
in a domain D, then x = mn. If either of m or n is reducible, we can express it as a product

of proper factors; then carry on this process, seeking to write

T =pP1P2-..-.-Pm

where each p; is irreducible. If every x € D, neither a unit nor zero, is a product of a finite
number of irreducibles, then factorization into irreducibles is possible in D.

Let o be a non-zero nonunit algebraic integer. Since o = /ay/a and « is an algebraic
integer, then « is not irreducible. Hence, any element in the ring B of all algebraic integers
are reducible, so factorization into irreducibles is not possible in B. Thus, it is significant to

study domains in which factorization of an element into irreducibles is possible.

Definition 2.5. [/4, p.80] If there exists some M for which I, = I, for all m > M for a

given ascending chain of ideals of D
Lh<hLC...C,C...

then an integral domain D is called Noetherian. This condition is called the ascending chain

condition of ideals.



Let an integral domain D be Noetherian, then every non-empty set of ideals of D is of a
maximal element and vice versa.

We note that an integral domain D is Noetherian if and only if every non-empty set of ideals
of D has a maximal element. This means that an element is not properly contained in every
other element. This condition is called the maximal condition. Now, we state the importance

of a Noetherian domain in factorization of elements.

Theorem 2.6. [/4, p.81] A factorization into irreducibles is possible in D, if a domain D is

Noetherian.
Theorem 2.7. [14, p.81] In a number field K, the ring of integers O is Noetherian.

Therefore, it is now clear that factorization into irreducibles is possible in Og. Now the
criteria for being a unique factorization domain is discussed. We have already noted that a
prime p in Z satisfies the property that p|mn implies p|m or p|n. Similarly, in a domain D,
an element x is called to be prime if it is not zero or a unit and x|ab implies x|a or z|b. So, a

prime in a domain D is always irreducible clearly. Then the main theorem follows.

Theorem 2.8. [14, p.87] Suppose that factorization into irreducibles in a domain D is pos-

sible. Then factorization in D is unique if and only if every irreducible is prime in D.

A domain D is called a unique factorization domain, if factorization into irreducibles is
possible and unique. In a unique factorization domain all irreducibles are primes, so we may
speak of a factorization into irreducibles as a prime factorization. A prime factorization is

unique in the usual sense.

2.2. Factorization of an ideal

Unique factorization of irreducible elements on the ring of integers Ok of some number
fields K does not hold. Therefore, ideal factorization is used for solving this issue. If d is
a proper ideal of O and there are no ideals of Ok certainly between d and Ok, then d is
called a maximal ideal of Of. The ideal d # Ok of Ok is prime if, whenever b and ¢ are
ideals of Ok with bc C d, then either b C d or ¢ C d. And, it is denoted that d|b or d|c. It is
clear that every maximal ideal is prime.

First, some properties of a ring of integers of a number field are presented below, which play

important role in classification of domains having unique factorization.
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Proposition 2.9. [14, p.106] The ring of integers O of a number field K has the following

properties.

(i) It is a domain, with field of fractions K,

(ii) it is Noetherian.

(iii) If o € K satisfies a monic polynomial equation with coefficients in Ok then o € Ok,

(iv) Every non-zero prime ideal of O is maximal.
In general, we will call a domain Dedekind if it satisfies the properties (i)-(iv) above.

Theorem 2.10. [6, p.40] Let D be a Dedekind domain. Any non-zero integral ideal d in D

may be written as a product

d=Dp1...pn

where the p; are prime ideals (not necessarily distinct), and this expression is unique up to

the order of the factors.

Therefore, in Dedekind domains, every non-zero ideal can be factored uniquely as a product
of prime ideals. We know that the ring O of integers of an algebraic number field K
is Dedekind, hence unique factorization of ideals holds in Og. Moreover, it is noted that
factorization of elements into irreducibles is unique in a ring of integers if and only if every
ideal is principal [14, Theorem 5.21]. Generally, a ring R is a principal ideal domain, if it is
a Dedekind domain and a unique factorization domain.

For a principal ideal d in a ring of integers Ok we have a unique factorization into ideals,
(dy=1L1,...1,,

but the ideals Iy, I5, . . ., I, may not be principal. However, the ideals in O are not far from
being principal, having at most two generators.
We would like to know how far is any ideal in a domain from unique factorization. We

should give a definition first.

Definition 2.11. [12, p.11] Two ideals FE, M in a domain D are said to be equivalent if
there exist non-zero €, |1 € D such that (e)E = () M. This is an equivalence relation. The
equivalence classes are called ideal classes. The number of ideal classes, hy, is called the

class number of K.



We note that hx = 1 if and only if Ok is a unique factorization domain (UFD) and if
and only if O is a principal ideal domain (PID) [9, p.178]. Therefore, the class number
measures how far O is from being a UFD and PID. We finalize this section with two results

on the class number of a number field.
Theorem 2.12. [9, p.178] The class number of K is finite.
Proposition 2.13. /9, p.179] For any ideal A C O, there is an integer k,1 < k < hp, such

that A* is principal.

2.3. Cyclotomic Fields

In this section, a special kind of number fields is investigated. The cyclotomic field is one of
the form Q((,,,) where (,, = €*™/™ is a primitive complex m-th roots of unity.

The minimum polynomial of ¢,,, = €2™/™ over Q is
fey="11 t-<c
i\(i,m)=1

Thus, the extension degree of Q((,,) is ¢(m), where ¢ is the Euler Phi function. The conju-
gates of (,,, are ¢! for 1 <4 < m — 1 and gcd(i,m) = 1. Namely, the monomorphisms of

cyclotomic fields are given as o; : Q((,,) — Cfor 1 <i <m — 1 and ged(i,m) = 1:
Ul(Cm) = C?Zn
Theorem 2.14. [15, p.11] Z[(,,] is the ring O of integers of Q((n).

Proof. Assume that 3 = By + B1(m + - .. + Bp_2Ch % is an integer in Q((,,). It should be

shown that the coefficients (3; are integers. For 0 < k < p — 2, the element

1s an integer.



3. Ideal Factorization Method

In this chapter, we study the equation D = aa over Z[(,,] for some m € Z* and D € Z[(,,]N
R. We present a condition for the non-existence of a solution « € Z[(,,] to this equation. Our
method extends the method in [16]. The authors in [16] consider the case D € 7Z, whereas
we study D € Z[(,,] N R. In particular, we consider D = ((y + 1)v — ) (v — ~)*~! for
some m,v € Z* and v € Z[(,,] "R, which we get in case of proving non-existence of some
Butson-Hadamard matrices in Chapter 5.

We first give definitions of the norm of an element in a number field and norm of an ideal of
the ring of integers of a number field.

Definition 3.1. [14, p.49] Let 04, . . ., 0., be monomorphisms K — C and let K = Q(0) be
a number field of degree m. o € K is an algebraic integer. For any a € K, we define the

norm.

N (a) = H oi()

Definition 3.2. [14, p.115] Let O be the ring of unit of a number field K and I be non-zero
ideal of O, the norm of I is defined by

N(I) = |Okl.

We note that if a = (a) is a principal ideal then N (a) = (N (a)) [14, Corollary 5.10]. If a|b
then N(a)|N(b) [14, Theorem 5.12]. For an ideal a, its conjugate ideal is a := {& : a € a}.
It can be seen that N (a) = N(a) and if a is a prime ideal, then a is also prime ideal.

The main theorem that there is no solution on D = aa € Z[(,,] for some vy € Z[(,,] is given
below. h,, denotes class numbers of cyclotomic number field Q((,,). The class numbers

Table 3.1 is listed for m < 70.

Theorem 3.3. Let D € Z[(,] N R such that D = tq***" where q,t € Z[(,) and q is
squarefree, provided that every prime ideal t < Z[(,,] with t|(t) is principal, (q) = 4.9,
where q, and q, are non-principal prime ideals of Z[(,,), € > 0 be rational integer, ged(2e +
1 —2khy,) = 1for0 < k < e—1and gcd(N(q),N(t)) = 1. Then, there exists no
a € Z[Gy) satisfying D = aa.

Proof. We first suppose that there exists o € Z[(,,,] for aa = t¢***! such that



Table 3.1: The class number h,,, of Q((,,) for m < 70 [15].

m hm|m hnp|m hpn|m hn|m hy, | m hm, m hom,
1 1 11 1 |21 1 |31 9 |41 121 |51 5 61 76301
2 1 (12 1 122 1 |32 1 |42 1 |52 3 62 9
3 1 |13 1 |23 3 |33 1 |43 211|533 48891 | 63 7
4 1 |14 1 |24 1 |34 1 |44 1 |54 1 64 17
5 1 (15 1 (25 1 |35 1 (45 1 |55 10 65 64
6 1 |16 1 (26 1 {36 1 |46 3 |56 2 66 1
7 1 |17 1 (27 1 |37 37 |47 695 |57 9 67 853513
8 1 (18 1 |28 1 |38 1 |48 1 |58 8 68 8
9 1 {19 1 (29 8 |39 2 |49 43 |59 41421 | 69 69
10 1 (20 1 |30 1 (40 1 |50 1 |60 1 70 1

(@) = g7 *qb

(@) = tafey™ "

for some t <1 Z[(,,,]. We have
(@) = gt 7 *qf = gt gk

We know that ¢; and ¢ are principal ideals of Z[(,,] but q?***'~?" is nonprincipal since
gcd(2e + 1 — 2k, h,,) = 1. Hence we get a contradiction.
Next, we assume that « = t,¢°, @ = t¢?*"' =% for some principal ideals t;, t, < Z[(] and

s € Z* U {0}, s < e. Then, ¢***172|t;. However, this contradicts to gcd(N(q), N(t)) = 1.

We now give an example of Theorem 3.3.

Example 3.4. Let D = ((—Co3 — (32)5+ 1+ (o3 + (32) (6 + (o3 + (32)* € Z[(23] be obtained
by setting v =5, m = 23, v = —1 — (o3 — (32. D has two non-principal prime ideals such
that D = pipapiqaqs where py, pa, p3 <1 Z[(a3] are principal prime ideals and q4, qs € Z[(23]

are the non-principal prime ideals, see Figure 3.1. By Theorem 3.3 we say that there is no

a € Z[Gy) satisfying D = aa.
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(—Coz — CE2)5+ 14 Coz + G3)(6 + Coz + (32)*

//\\

Figure 3.1: Ideal Decomposition of D for value v = 5,7 = 1 — (o3 — (52

We note that the method given in Theorem 3.3 to the case that ¢ has more than two non-
principal ideals factors does not work. We give two examples below. In the first one, powers
of the non-principal ideals are 1, but in the later, some of the non-principal ideals have power

more than 1.

Example 3.5. Let D = ((—Co3—(32) 46414 Coz+(32) (474 Coz + (32)% € Z|[(a3) be obtained
by setting v = 46, m = 23, v = —1 — (o3 — (32. D has four non-principal prime ideals
such that D = p1p3°p35q4qs5qeqr where py, o, p3 <0 Z[(e3] are principal prime ideals and
4,95, 96, g7 <1 Z[(23] are the non-principal ideals. The methodology in Example 3.4 does
not work for this example. Note that (o) = t1q5q7 is a principal ideal and satisfies D = aa
for a convenient principal ideal t; < Z[(s3] such that t, | D. The ideal factorization of this

example is shown in Figure 3.2.

= ((—Cos — G146 + 1+ Coz + G33) (AT + o3 + (5)*

4/\\

P py” ps 4

Figure 3.2: Ideal Decomposition of D for value v = 46,7 = 1 — (o3 — (32

Example 3.6. Ler D = ((—Cos — (33)39 + 1 + (o3 + (53)(40 + Cos + (33)* € Z[(o3) be
obtained by setting v = 39, m = 23, v = —1 — (o3 — (33. D has four prime non-principal
ideals such that D = p1papspapzpg pa>pe dodioqiidis where pi,pa, Pa, Pa, Ps, Po, Pr, Ps <

Z[(a3] are principal ideals and qo, q10, 411, q12 < Z[(23] are non-principal ideals. Note that
(o) = 1910935 is a principal ideal and satisfies D = aa for a convenient principal ideal

t) < Z[Cos) such that t, | D. The ideal factorization of this example is shown in Figure 3.3.
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(—Co3 — (33)39 + 1+ Coz + (33)(40 + Co3 + (32)

////\ \

p:  p® p®

Figure 3.3: Ideal Decomposition of D for value v = 39,y = 1 — (o3 — (53

In order to speak of the non-existence of a solution to the equation D = aa for o € Z[(,,]
with D is divisible by more than two non-principal ideals, one can consider principal parts

produced by the non-principal ones. We remark this method below.

Remark 3.77. 1f D is divisible by four non-principal prime ideals which are distinct and rel-
atively prime to each other, then there exists no solution a € Z[(,,] satisfying D = aa. In
other words, let ¢1, g2, q3,qs < Z[(,,) be non-principal prime ideals of Z[(,,| dividing D.

Assume that q1G2, 4394, 41G3, 424 are all principal in Z[(,,]. If ged(N(q192), N(g3q4)) = 1,
gcd(N(q1q3), N(g2q4)) = 1, then we can conclude that there exists no solution.
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4. Norm Method

In this section, we present another method for deciding an existence of a solution « € Z[(,,]
to the equation D = aa where m € Z* and D € Z[(,,] N R.
Theorem 4.1. Let p < Z[(,] be a prime ideal with p|D and ged(N(D)/N(p), N(p)) = 1.

Then there is no solution o € Z|(,,) satisfying D = aa.

Proof. Assume o € Z[(,] is a solution of D = aa and p < Z[(,] is a prime ideal
factor of a. We know that if p | D, then N(p) | N(D). We have N(p) 1 % since
ged(N(D)/N(p), N(p)) = 1. By N(p) = N(p), we have N(p) { 7. Hence, N (p)N(p) {
N(D). This is a contradiction to D = aa.

There is an immediate consequence of Theorem 4.1.

Corollary 4.2. If the norm of non-principal part of D is square-free, then there exists no

a € Z[Gy) satisfying D = aa.

Next, we give an example of Theorem 4.1. Below, we consider D = ((y+1)v—7)(v—")*"!

for some m,v € Z* and v € Z[(,,] N R.

Example 4.3. Let bev = 30, m = 23, vy = —1— (o3 —(32. Then D = ((—(o3—(32)39+1+
Coz + C32)(40 + o3 + (32)38 € Z[(o3] has four non-principal prime ideal factors, such that
D = p1p32°q304q2°q2° where p1, pa < Z[(a3] are principal prime ideals and q3, 44, qs, 46 <

Z[(a3] are non-principal prime ideals. Then,
N(D) = 47,229 63276304836881%.517725371091023%, N (p;) = 229

and

47°8.229%.632763048368812.517725371091023%

5302 ,229%) = 1.

ged(
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Hence, we say that there is no o € Z[(s3] satisfying D = aa by Theorem 4.1. The ideal

factorization of this example is shown in Figure 4.1.

((-ng— 30+1+<23+C 31+<23+C )

PN

29
b1 p3

Figure 4.1: Ideal Decomposition of D for value v = 30,y = 1 — (o3 — (53

Remark 4.4. We performed an exhaustive computer search by using MAGMA [1] to check
the cases for which Theorem 4.1 excludes the existence of a solution to D = aa. We fixed
m = 23,7 = —1 — (93 — (37 and searched on the set v € {2,3,...,100}. We obtained
that Theorem 4.1 excludes the existence of a solution for all v = {2,3,...,100} except

{6,8,15, 16,26, 44, 49, 62, 67, 75, 84, 85, 88, 94}.

We note that Theorem 4.1 does not completely cover Theorem 3.3 and vice versa. For
v = —1— (o3 — (33 and m = 23, the existence of a solution to the equation D = ada over
Z[Ca3] for v € {8,26} can be excluded by Theorem 3.3, but Theorem 4.1. On the other hand,
the existence of a solution to the equation D = o over Z[(y3] for v € {9, 10, 11,12,13, 14}
can be excluded by Theorem 4.1, but Theorem 3.3. Therefore, the two theorems do not cover

each other, but they intersect.
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5. Application to Butson-Hadamard Matrix, Conference Matrix,

Sequences

In this section, we define Butson-Hadamard matrix, conference matrix, perfect and nearly
perfect sequences and apply the results of the previous sections.
A Hadamard matrix is an (v X v) square matrix with entries 1 or —1 satisfying HH” = v]I.

Two examples of Hadamard matrices are given below.

1 1 1 1
1 1 1 1 - —
A= . B=
1 — 1 - 1 -
1 - — 1

A square matrix H = (h;;) of order v is called circulant if h; 11 mod v,j+1 mod v = i ; for all

0 <4,j < v. An example of a circulant matrix H is given below.

11 - - —

1 — — — 1

For an integer m > 2, let (,,, denote a primitive complex m-th root of unity and let £,, =
{1,¢m, C2, ..., (™ 1}, The identity matrix is denoted by I and all one matrix is denoted by
J.

Definition 5.1. A Butson-Hadamard matrix is a square matrix H of order v with entries in
Em such that HH' = vl Itis denoted by BH(v, m). BH(v, 2) is so called Hadamard matrix
of order v. In general, a v-Butson-Hadamard matrix is a square matrix H of order v with
entries in &,, such that HH = (v—") +~J fora~y € RNZ[(y]. Similarly, it is denoted
by BH, (v, m).

We demonstrate the equation H " = (v — 7)1 + ~J below.

15



v—y 0 0 0 0 A e B B
0 wv—v 0 0 0 vy Y
HE'=| 0 0 wv-y 0 0 |+[v 7771
0 0 0O v—vy 0 A e B e
0 0 0 0 v=o] [v7v 77 7]
vy Y Y Y
S e B
=7 v vy
Y v vy
R AR

Two examples on the existence of y-Butson-Hadamard matrices are presented below.

Example 5.2. BH.(5,5) exists for v € {=& — & + 2,0,5,& + & + 3} with || €
{1.38,0,5,3.61}, respectively. For instance, the matrix H has v = —& — &2 + 2 with
|v] =1.38

11— 1 1
1 1 1 - 1
H=]1 1 1 1 -=¢|.
—2 1 1 1 1
1 -2 1 1 1

Example 5.3. Similarly, we obtained by an exhaustive search that BH.(8,5) exists for v €
(=& & +5,-6 - &.8,8+& + 1,6+ +6} with [y] € {6.61,1.61,8,0.61,4.38},

respectively. In particular, the matrix H has v = —&2 — &2 + 2 with |y] = 0.61
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11 ¢ g 1¢ ¢ 1
111 ¢ @1 a6
G 11 1¢¢1¢
g_ | 6 111G 1)
1 ¢ ¢ 1 1 1 ¢ ¢
21 ¢ ¢ 11 1 ¢
¢ 1 ¢ 6111
RS T AN CI

We now investigate a property that a y-Butson-Hadamard matrix H satisfy. It is clear that

det(H) € Z|(»] and we have the following equalities:
HH' = (v—")] +7/,
det(HH') = det((v — 1) +~.J)
det(H) det(H) = ((v + v —y)(v = )"

Therefore, a BH, (v, m) exists then the following equation has a solution o € Z[(,,,]

aa = ((v+1)v—7)(v—9)""" (5.1)

Example 5.4. Let v = 4. Then the determinant of a Hadamard matrix is obtained as follows.
We first reduce rows and columns of (4 — ~)I + ~J, then obtain its determinant from the

reduced matrix on the far-right easily.

H4HZ = (4 - ’Y)I + 7,

det(H H, ) = det((4 — ) +~7J)

det(Hy) det(Hy) = (7 + 1)4 —7)(4 = )"

det(Hy) det(Hy) = ((v +1)4 —7)(4 = 7).

Next, the concept of a conference matrix is introduced.
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Definition 5.5. A square matrix C of order v with 0 on the diagonal and all off-diagonal
entries in &, is called a y-conference matrix C.,(v, m) ifC@T =w—=1=I+~Jfora
v € RNZ[(m)-

A matrix C with entries in &3 and having the firstrow (0, (2, (2, (2,1,(3, (3, (3, (3,1, (3, ¢, C3)
. ) . —T

is an example of a circulant conference matrix. Note that CC" = 101 4 2J.

Similar to the case y-Butson-Hadamard matrices, we obtain that a y-conference matrix C' =

C, (v, m) satisfies
det(C)det(C) = (v + (v — 1)(v — 1 — 7)*""
and hence we have an other main equation
aad=(y+1)(v—1)(w—-1—~)"" (5.2)

Therefore, a C., (v, m) exists then equation (5.2) has a solution a € Z[(,,].

We continue with the concept of sequences. A v-periodic sequence a = (ag, a1, ..., 0y 1, .- .)
an m-ary sequence if ag, a1, ...,a,_1 € En = {1,(m,C%, ..., ¢!} and an almost m-ary
sequence if ag = 0and ay,...,a,_1 € &,.

For 0 <t < v — 1, the autocorrelation function C,(t) is defined by

v—1
Cg@) = Z aima
=0
where @ is the complex conjugate of a € C.

Definition 5.6. An m-ary or almost m-ary sequence a of period v is called a perfect sequence
(PS) if Co(t) = 0 forall 1 <t <wv— 1. Similarly, an almost m-ary sequence a of period v
is called a nearly perfect sequence (NPS) of type v if Cy(t) =y forall1 <t <wv— 1.

Proposition 5.7. If a NPS of type v exists, then 7y is a real number.

Proof. Let a be a NPS of type v with period v. We know that autocorrelation value of a is vy
and C,(t) = Cy(v —t) = 7. So,
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7= Oa(t>7

and so

This means that v € R.

For instance, (0,¢3, (2, (3, 1,2, (3, G, 5,1, (3, (3, (3) is a 3-ary NPS of period 13 and type
v =2

Remark 5.8. NPSs are equivalent to circulant y-Butson-Hadamard matrices and conference
matrices. Let a = (ag, a1, ...,a,_1,...) be an m-ary NPS of period v. Let H = (h; ;) be a
circulant matrix defined by hg ; = a; for j = 0,1,...,v — 1 then H is a circulant -Butson-
Hadamard matrix of order v. Similarly, an almost m-ary NPS is equivalent to a circulant

conference matrix.

In this thesis, we consider the case v € (Z[(,,] N R)\Z. Such sequences indeed exists and
have a counter part in cryptographic and coding theoretic applications (see Chapter 6). For
instance, the sequence a = (1,1,—£2,1,1) has v = —& — &2 + 2 with |y| = 1.38. The
sequence a = (1,1,£2,£3,1,£3,&5,1) has v = —& — €2 + 2 with |y| = 0.61.

Now, we give three direct consequences of Theorem 3.3. Namely, applying Theorem 3.3 to

(5.1), we get a criterion for the non-existence of BH., (v, m) and m-ary NPS:

Corollary 5.9. Let v,m € Z* and y € Z[(n] N R such that D = ((y + 1)v — ) (v — )" !
and D = tq**™! where e > 0 be rational integer, q,t € Z[(,,] and q is squarefree. Suppose

that (i) to (iv) below are satisfied.
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(i) Every prime ideal t < Z[(,,] with t|(t) is principal.
(ii) (q) = q.q, where q, and q, are non-principal prime ideals of Z[(,,)-
(iii) gced(2e +1 =2k, hy,) =1for0 <k <e—1
(iv) ged(N(q), N(t)) = 1.
Then the following hold:
(i) there exists no BH.(v,m).
(ii) there exists no v-periodic m-ary NPS of type 7.

Applying Theorem 3.3 to (5.2), we get a criterion for the non-existence of C, (v, m) and

almost m-ary NPS:

Corollary 5.10. Let v,m € Z", v € Z[(n]| "R such that D = (y+1)(v —1)(v — 1 —7)*~*
and D = tg***! where e > 0 be rational integer, q,t € 7Z|(,] and q is squarefree. If the

conditions (i) - (iv) given in Corollary 5.9 are satisfied, then
o There exists no C. (v, m),
e There exists no v-periodic an almost m-ary NPS of type 7.

Next, we apply Theorem 4.1 to (5.1), we get a criterion for the non-existence of BH., (v, m)

and almost m-ary NPS:

Corollary 5.11. Letv,m € Z" and y € Z[(,,]) "R such that D = ((y+ 1)v — ) (v — )"~}
and p < Z[() be a prime ideal with p|D and ged(N(D)/N(p), N(p)) = 1. Then,

e There exists no BH, (v, m),
o There exists no v-periodic an m-ary NPS of type 7.

Applying Theorem 3.3 to (5.2), we get a necessary criterion for the existence of C, (v, m)

and almost m-ary NPS.

Corollary 5.12. Letv € Z*, D = (y+1)(v—1)(v—1—7)"" ' wherev € Z", v € Z[(,») "R,
p < Z[(n] be a prime ideal with p|D and gcd(N(D)/N(p), N(p)) = 1. Then,

o There exists no C(v, m),
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o There exists no v-periodic an almost m-ary NPS of type 7.

We give some examples illustrating the results above.

Example 5.13. Consider BH,(5,23), v = —1 — (23, v = 5 and m = 23.

a = (1 — 4Cy3) (6 + (o)’

Every prime ideal dividing (6 + Co3)* is principal. (1 — 4(y3) has the non-principal ideal de-
composition over Z|(s3]. Hence, BH, (25, 23) does not exist by Corollary 5.9. Furthermore,

we conclude that a 23-ary NPS of period 5 and v = —1 — (23 does not exist.

Example 5.14. Consider BH, (67,23), v = —1 — (33, v = 67 and m = 23,
ao = (1 — 66C23>(68 + €23)66

Every prime ideal dividing (68 + (23)% is principal. (1 — 66(s3) has the non-principal ideal
decomposition over Z[(s3]. Hence, BH.,(67,23) does not exist by Corollary 5.9. Further-

more, we conclude that a 23-ary NPS of period 67 and v = —1 — (23 does not exist.

We tabulate existence results of NPS of length n < 20 in Table 5.1. We obtained the exam-
ples in Table 5.1 by an exhaustive search on all sequences of length n. These examples are

obtained by using programming language MAGMA [1].
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Table 5.1: Samples of perfect sequences with non-integer correlations

v | m gl ol a

315 G4+ 0.61 1,1,¢2

37| G4+¢+1 0.55 (2,621

4 |5 G+¢¢E+2 0,38 1,1,1,¢2

4|7 GH+E+2 | 0,19 CHENCNE

5 |5 G+¢E+3 1,38 1,1,1,1,¢2

5 17 (2 — (7 0,44 (7,63, 63,08, ¢3

25 | 5 | G+¢+23 | 21,38 L., 1,¢2

125 | 5 | ¢3+¢2+123 | 121,38 1...,1,¢2

6 | 5 G+¢E+4 2,38 1,1,1,1,1,¢2

6 | 6 -1 1 R NCNeNCN¢

6 | 7| G+E+4 | 2,19 2,636 GG
715 | 2¢3+2¢+3 | 0,23 1,1,1,¢3,1,¢3,¢2

T 7| 27 +2¢+3 | 0,60 CHCRCNCNCNENE.

8 | 5 G+E+1 0,61 1,1,1,¢2,¢3,1,E8, ¢

8 | 7| G+G+6 4,19 CNCNENCHCNCNCNE:

8 | 8 0 0 (8,65, 1,63,¢5,¢5, 1, ¢

9 | 7 G+E+7 5,19 ¢ ¢

9 | 9] G+¢G+7 | 512 e eNeNeNeNeNeNe N
10 5] G+¢G+8 | 6,38 CHENHENCHENCHENCR
10 (7| G+E+8 | 619 CNCHCRCERERCRCNENENE:
10 | 10| ¢h—Cho+7 6,38 | Cfo» Co» Clos Clo CTo» Clo Cos CTo» Clos i
11 |11 | 3¢ +3¢f; +5 | 0.75 1,1,1,¢01, 1,1, ¢y, 1,6y, Gy, €y
1|11 0 0 | L,LGP,¢Ths Gy G G G G G O
1 11| ¢+ +9 7,08 1,1,1,1,1,1,1,1,1,1,¢%
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6. Cryptographic Applications

There is a close relationship between the family of Hadamard matrices and cryptography.
For instance there is a class of functions called bent function used in block cipher cryptosys-
tems, and they can be constructed via Butson-Hadamard matrices. Functions used in block
cipher design have to satisfy some properties in order to resist attacks. Two of them are bal-
ancedness and nonlinearity. A function is said to be balanced if each value in its image set is
attained by the same probability. And, a function’s nonlinearity is measured by its minimum
distance to all linear functions.

The family of bent functions is a branch of the Boolean functions. Their Walsh spectrum
coefficients allow us to examine their non-linearity. Hence, we start with the definition of a
Boolean function.

Definition 6.1. A function f : (Z3)" — Zs is called a Boolean function of n variables. Let
B,, be the set of all Boolean functions of n variables. A function f € B,, is represented with a
vector of length 2™ having values f(x) for all x € (Z3)"™ where x values are in lexicographic

order.

Definition 6.2. For any f € B,, define (—1)7 to be the function F : (Zy)" — {—1,1} such
that F(z) = (—=1)/@ for all v € (Z,)"

For cryptographic systems, the method of confusion and diffusion is used as a fundamental
technique to achieve security [13]. Confusion is satisfied by including a highly nonlinear
function into the cryptosystem. These functions simultaneously have maximum distance to
affine functions and maximum distance to linear structures, as well. So they are called as
strong functions, i.e. not weak. A function is considered weak whenever it can be turned into
a cryptographically weak function by means of simple (linear or affine) transformations as a
minimum correlation to affine functions [11, p.549].

The nonlinearity of a function can be calculated by using the Walsh transform, one of the
important tools in cryptography. The definition of Walsh transform and its properties are
given below. After that, a method for computing the nonlinearity will be demonstrated.

The inner product of two vectors © = (z1,...,2,) and y = (y1,...,yn) € (Z2)" is .y =
Yoo xiy; mod 2.
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If F be any real-valued function defined on (Z)", then the Walsh transform of F' is the
function ' : (Z,)" — R defined by the following formula. V z € (Z,)", F(z) =
2 ye(zo) (1) F(y).

Let A,, be the set of all affine functions in B,,. Nonlinearity of a Boolean function is the

minimum distance of a Boolean function f to the set of all linear functions

nl(f) = man{d(f, An)},
Below we consider F(z) = (—1)/®),

F)= Y (-7 (-1
= ) 1- > 1
f(@)=zy f(@)#zy
=2"—-2d(f,x-y).

Then, d(f, = - y) = 2"~ — LF(x) is the distance between f(z) and l,(z) = z - y.

1
2
Theorem 6.3. The nonlinearity of a Boolean function f on ZY can be expressed by nl(f) =

2n—1 — %maw{|ﬁ($)| cx € 2L}
Theorem 6.4. For any function f on 73, the nonlinearity of f satisfies nl(f) < 271 —2571,

A function f on Z attains the upper bound of nonlinearity 2"~' — 22 ~! is called a bent
function. It is clear that if F'(x) = 42%/2 for all z € Z, a function f € B, is a bent
function. Maximal nonlinearity is hence attained by bent functions, with only even n. For
instance, let P(x) be a function from Zs to Zy. P(x) is bent if all Walsh coefficients of
(—1)P@) are +£1. This definition of a bent function over Z, can be directly extended to

functions on Z,. First the Walsh transform is extended to the functions on Z,.

Definition 6.5. [10, p.339] Suppose F : (Z,)" — C and let { = €*™/9. The Walsh transform
of F is the function F (Zy)™ — C defined for all x € (Z,)" by the formula:
Fle)= ) C7F@).
YE(Zg)™

Then a generalized bent function is defined similarly.

Definition 6.6. Suppose f : (Z,)" — Z,) and define F : (Z,) — C by the rule F(x) = ¢/®
for all x € (Z,)", where ¢ = e*™/1. If |F(x)| = ¢"/> VY x € (Z,)", then f is a generalized
bent function.
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The connection between Hadamard matrices and generalized bent functions is given in The-

orem 6.7.

Theorem 6.7. [10] Let the matrix Hy = (hy,), where hyy, = F(x —y) forall x,y € (Z,)".

Then f is a generalized bent function if and only if H; is a Butson-Hadamard matrix.
We give a well known result on the existence of a generalized bent function.

Theorem 6.8. [10, p.96] Assume that n is even or ¢ = 2 mod 4. Then there exists a

generalized bent function f : (Z,)" — Z,.

Therefore, we see that there is a one to one correspondence between generalized bent func-

tions and Butson-Hadamard matrices. We give an example below.

Example 6.9. f:73 — Zs3 and f(x1,23) = x179. The matrix H corresponding o the bent

function f is given below. The entries of the Hadamard matrix forms a power of 3-th of unity

C.

_Cf(O,O) ¢f02) ¢ fO (20 ¢f(22)  cf@Y ¢ fO0) ¢fO2) 1)
¢ cf00) £f02) f21) ¢ f20) ¢f22) fAD cf10) f(12)
¢f02) cfO  £f00) (f22) f21) ¢f20) (12 cfQ1) (1.0
¢fA0) ¢ f2) o fL1) - ff00) ¢ f02) ¢ fO)  ¢f(20) ¢f(22)  f21)
H = Cf(l,l) gf(LO) Cf(L?) Cf(O,l) Cf(070) Cf(O’Q) Cf(ll) Cf(ZO) gf(2,2)
¢f2) cf@D cfQ0) f(02)  cfO1)  ¢f00) (f22) cf@1) (20
@0 1@ cf@D cfA0) (f12) (S (f0.0)  £f(02) (f(01)
¢reD 20 ¢f22) cfA0) cfAD ¢ f12) 01 £f0.0)  £f(0.2)

(@2 @D (JRO (J0D (fLD (S0 (f0D (SO (f00)
¢ ¢t E e
¢t
¢ ¢t
¢ @ Ed
= ¢ ¢ e
¢ ¢t ¢ T
¢ ¢ e e ¢eed
¢r ¢t e
¢ ¢t e
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On the other hand, we can show an example for the other direction of Theorem 6.7. The

matrix H is a Butson-Hadamard matrix.

[0 ¢ ¢ ¢
© ¢
© ¢
RIS

Then, f : 74 — Zy, as follows f(0) =0, f(1) =0, f(2) =0, f(3) =2.

We now investigate the functions corresponding to y-Butson Hadamard matrices. We start
with a circulant y-Butson Hadamard matrix /' and convert the first row of H into a truth
table of a function f as in Theorem 6.7 and Example 6.9. Then the Walsh transform of f is
calculated by Definition 6.5. We apply this conversion for the examples obtained in Table

5.1 and some of their trivial extensions. We tabulate our results in Table 6.1.

Table 6.1: Samples of y-Butson Hadamard Matrices, corresponding Bollean functions f and

their Walsh spectrum F

m | v gl ol f la

515 G+¢E+3 1.38 (0,2,0,0,0) (3.24,1.90,1.90, 1.90, 1.90)

5125 | 4¢2+23 | 2138 | (0,0,0,0,0,2,0,...,0) (23.19,1.90, .. .,1.90)

51125 | 2+ ¢2+123 | 121.38 (0,...,0,2,0,...,0) (123.19,1.90, . ..,1.90)

6 | 6 ~1 1 (6,2,0,2,6,1) (3.60,1,1,4.35,1,1)

77T | 203+2¢34+3 | 0.60 (2,3,3,2,3,2,2) (6.32,1.22,...,1.22)

8 | 8 0 0 (5,7,1,5,1,7,5,5) (2.82,...,2.82)

9 9 G+ +T 5.12 (6,2,6,6,6,6,6,6,6) (7.06,1.97,...,1.97)

1010 | ¢y—CG+7 6.38 | (0,6,7,3,5,2,5,3,7,6,0) | (3.55,3.23,1.32,2.55,4.30
3.59,4.29,2.55,1.32, 3.23)

11| 11 | 3¢5 +3¢, +5, | 0.75 |(0,6,6,6,0,6,0,0,6,0,0) (1.85,3.42,...,3.42)

1| 11 | ¢+ ¢ +9 7.08 | (0,6,0,0,0,0,0,0,0,0,0) | (9.044,1.979,...,1.979)

11| 11 0 0 (0,6,7,3,5,2,5,3,7,6,0) (3.31,...,3.31)

We note that nonlinearity is an important concept in cryptography. Looking at Table 6.1, it

is seen that the smaller || values, the more flat Walsh spectrum and so the higher nonlin-
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earity. Therefore one can obtain new familes of nonlinear functions by searching matrices

BH, (v, m) for non integer v € Z[(,,,] having small absolute value.
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7. CONCLUSION

In this thesis, we studied the y-Butson-Hadamard matrices and their cryptographic applica-
tions. We studied the existence cases of y-Butson-Hadamard matrices for v € (Z[(,,]"R)\Z
by using the tools from algebraic number theory.

Firstly, we converted the existence condition of a y-Butson-Hadamard matrix to an equation
over a ring of integers of a cyclotomic number field. Then we obtained two novel results
stating necessary conditions for the non-existence of this equation. Then the direct applica-
tions of these results to y-Butson-Hadamard matrices were shown. We presented examples
of non-existence cases in details and obtained existence examples by computer search.

It is known that a sequence obtained from the first row of a circulant y-Butson-Hadamard
matrix is used in many applications. They are known as nearly perfect sequences. Therefore
the analogous consequences of our results applied to the concept of sequences were pre-
sented. Examples of non-existence cases for nearly perfect sequences were given in details.
On the other hand, the exhaustive search on nearly perfect sequences was performed, and the
existence results were tabulated. In deed, some examples of nearly perfect sequences with
|7] < 1 were obtained, which points to new research directions.

There is another family of matrices known as Conference matrices. The results obtained for
~v-Butson-Hadamard matrices were similarly extended to Conference matrices. Two novel
necessary conditions for the non-existence of a Conference matrix were presented.

Finally, the connection of v-Butson-Hadamard matrices to cryptographic functions was drawn.
Cryptographers look for nonlinear Boolean (multivariate) functions on residue rings. These
functions are used in block ciphers to provide confidentiality of the message between two
parties. In this thesis, it was shown that a v-Butson-Hadamard matrix can be converted to a
Boolean function whose nonlinearity is proportional with the value |y|. And, the examples

of nonlinear functions obtained from ~y-Butson-Hadamard matrices were presented.
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Appendix: MAGMA CODES

We present the MAGMA source code for the main Theorem 3.3 in Chapter 3.

IsSelfConj:=function (p,w)

w_prime:=w;

while IsDivisibleBy (w_prime,p) do
w_prime:=ExactQuotient (w_prime,p);

end while;

for j in [1..w_prime] do
if (p”j mod w_prime) eq w_prime—1 then

return true;

end 1if;

end for;

return false;

end function ;

exponent:=function(n,q)
s:=0;
while IsDivisibleBy(n,q) and (not (n eq 0)) do

n:=ExactQuotient(n,q);
end while;
return s;

end function;

IsValidExponent:=function (e, h)
for k in [O..Floor(e/2)] do
if GCD(e—2%k,h) ne 1 then
return false;
end if;
end for;
return true;

end function;
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set_mh:=([23,3],[29,8],[31,9],[37,37],[(39,2],[41,121],[43,211],
[46,3],[47,695],(49,43],[51,5],[52,3]1,[56,2],[62,9]];
set_mh:={[23,3]};
q_set:={2,3,13,29,31,41,71,73,
127,131,151,163,179,193,197};
for mh in set_mh do

m:=mh[1];

h:=mh[2];

K:=CyclotomicField (m);
O:=RingOfIntegers (K);

unity :=K.1;
for gamma in [—l—unity —unity*22] do
Im(gamma);
set_v:={};
set_conj:={};
for v in [46..46] do

v

if not (IsDivisibleBy(v+2,m)) then

end if;

D:=((gamma+1)*v—gamma) *
(v—gamma)”*(v—1); //hadamard
//D:=(gamma+1)*(v—1)x
(v—1—gamma)"(v—1); //Determinant
of Conference Matrix
if D eq O then
continue v;

end if;
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D_factors:=Factorization (DxO);

set_non:=[]; \\ set of non—principal
set_prin:={}; \\set of principal

set_ram:={}; \\set of ramified

for Q in D_factors do
if IsPrincipal (Q[1]) then
Include (~set_prin ,Q);
else
Include (~set_non ,Q);
end if;

end for;

if (#set_non eq 2) then
Include (~set_v ,v);

set_v

for Q in set_non do
printf "v: %o Q: %o
end for;

set_non[1][1]*set_non[2][1];

end if;
end for;
printf "m: %o gamma: %o set_v:
end for;

end for;
We present source code of the Walsh spectrum for value of 77, ¢, n in MAGMA.

Abs:=function (x)

return Sqrt(Re(xxComplexConjugate(x)));
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end function;

WalshSpectrum:=function (TT,q,n)
K:=GF(q); \\ General Field
carK:=CartesianPower (K,n);

w:=RootOfUnity (q);
S = [1];
for i in carK do

s:=Tuplist(1i);
Append(~S,s);

end for;
F:=[];
t:=K!0;

for x in [1..g9”n] do
F[x]:=w—w;
for y in [1..g9”n] do
for 1 in [1..n] do
s:=S[x][11];
m:=S[y][1];
t+:=K!(s*m);
end for;
F(x]+:=w”(Integers ()!(t + TT[y]));
t:=0;
end for;
end for;
return F;

end function;

34



q:=35; \\ The values of q, n, TT is selected.
n:=4;

TT:=[0,2,0,0];
for x in WalshSpectrum (TT,q,n) do

x,Abs(x);

end for;
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