ETKİN BAĞLANMIŞ KÜME YÖNTEMLERİNİN PROGRAMLANMASI VE KİMYASAL UYGULAMALARI

IMPLEMENTATION OF EFFICIENT COUPLED-CLUSTER METHODS AND THEIR CHEMICAL APPLICATIONS

ASLI ÜNAL

PROF. DR. UĞUR BOZKAYA Tez Danışmanı

Hacettepe Üniversitesi Lisansüstü Egitim-Öğretim ve Sınav Yönetmeliğinin Kimya Anabilim Dalı için öngördüğü DOKTORA TEZİ olarak hazırlanmıştır.

2023

ÖZET

ETKİN BAĞLANMIŞ KÜME YÖNTEMLERİNİN PROGRAMLANMASI VE KİMYASAL UYGULAMALARI

Aslı ÜNAL

Doktora, Kimya Bölümü Danışman: Prof. Dr. Uğur BOZKAYA Haziran 2023, 430 sayfa

Modern kuantum kimyasında, bağlanmış küme (Coupled-Cluster, CC) temelli yöntemlerin ve programların, oldukça güvenilir sonuçlar sağladığı bilinmektedir. Literatürde yüksek ilgiyle karşılanan bu yöntemler, daha büyük ölçekli moleküler sistemlere uygulanabilmeleri ve iki elektron integrallerinden (Two-Electron Integrals, TEIs) kaynaklanan hesapsal zorlukların aşılabilmesi amacıyla integral yaklaştırma teknikleriyle birlikte geliştirilmektedir. İki-elektron integrallerinin çekirdek bellekte tutulduğu programlar, disk temelli algoritmalara göre oldukça hızlı olmaktadır. Yoğunluk uyarlaması (Density Fitting, DF) ve Cholesky ayrıştırması (Cholesky Decomposition, CD) son zamanlarda oldukça popüler olan yaklaştırma tekniklerindendir. Tez çalışması kapsamında, optimize orbitalli ikili uyarılmış bağlanmış küme (Orbital Optimized Coupled-Cluster Doubles, OCCD) yönteminin daha büyük ölçekli moleküler sistemlere uygulanabilmesi amacıyla, son dönemlerdeki en modern integral tensör yaklaştırma yöntemleri olan DF ve CD teknikleri uygulanmıştır. Böylece, UHF referansıyla DF-CCSD, DF-OCCD ve CD-OCCD yöntemleri UHF referansıyla ilk kez geliştirilmiştir. Geliştirilen yöntemler,

etkin bir şekilde C++ dilinde kodlanarak, Psi4 (https://psicode.org) ve MacroQC (https://www.macroqc.hacettepe.edu.tr) programlarına ilave edilip kullanıcılara sunulmuştur.

Daha sonra, bu çalışma kapsamında uyarılmış hal enerjilerinin hesaplanmasında yüksek doğrulukta sonuçlar sağladığı bilinen hareket denklemi (*Equation-of-Motion*, EOM) temelli yöntemler geliştirilmiştir. Standart ve OO tabanlı CC ve MP (*Møller-Plesset*, MP) teorileri için geliştirilen hareket denklemleri, C++ dilinde etkin kodlanarak MacroQC yazılımına ilave edilmiştir. Bu kapsamda geliştirilen DF-EOM-CC, DF-EOM-OO-CC, DF-EOM-MP ve DF-EOM-OO-MP yöntemlerinin birçoğu ilk kez geliştirilmiştir. Geliştirilen yöntemler, DF-EOM-CCSD, DF/CD-EOM-CCSD, DF-EOM-CCD, DF-EOM-OCCD, DF-EOM-OCCD, DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-MP3, DF-EOM-OMP3, DF-EOM-MP2.5 ve DF-EOM-OMP2.5 olarak adlandırılmıştır.

Ek olarak, burada geliştirilen yöntemlerin doğruluk ve etkinlik değerlendirilmesinin yapılabilmesi amacıyla, elektronik yapıları bakımından zorlu birçok kimyasal sistem dikkate alınmıştır. Bu yöntemlerin ışığında, göz önüne alınan kimyasal yapıların doğası aydınlatılmaya çalışılmıştır. Bu kapsamda, çeşitli açık ve kapalı kabuklu moleküler sistemler, organik kromoforlar, poliaromatik hidrokarbonlardan oluşturulan radikalik yapılar ve su kümeleri gibi problematik moleküller araştırılmıştır. Bu tez çalışması, literatürde eksikliği çekilen yöntemlerin programlanması ve popüler alanlardaki kimyasal uygulama çalışmalarının sunulması ile teorik kimya alanına önemli yenilikler kazandırmıştır.

Anahtar Kelimeler: Elektron Korelasyonu, Bağlanmış Küme Teorisi, Møller-Plesset Pertürbasyon Teorisi, Su Kümeleri, Yoğunluk Uyarlaması

ABSTRACT

IMPLEMENTATION OF EFFICIENT COUPLED-CLUSTER METHODS AND THEIR CHEMICAL APPLICATIONS

Aslı ÜNAL

Doctor of Philosophy, Department of Chemistry Supervisor: Prof. Dr. Uğur BOZKAYA Haziran 2023, 430 pages

In modern quantum chemistry, Coupled-Cluster (CC) based methods and programs are known to provide highly reliable results. These methods, which have attracted much attention in the literature, are being developed together with integral approximation techniques to be applied to larger-scale molecular systems and to overcome the computational difficulties arising from two-electron integrals (TEIs). Programs that store two-electron integrals in core memory are considerably faster than disk-based algorithms. Density fitting (DF) and Cholesky decomposition (CD) are recently popular approximation techniques. In this study, to apply the Orbital Optimized Coupled-Cluster Doubles (OCCD) method to large-scale molecular systems, DF and CD techniques, which are the most modern integral tensor approximation techniques in recent times, are applied. Thus, DF-CCSD, DF-OCCD, and CD-OCCD methods are developed for the first time with UHF reference. The developed methods are efficiently coded in C++ language and added to Psi4 (https://psicode.org) and MacroQC (https://www.macroqc.hacettepe.edu.tr) programs and presented to the users.

Furthermore, Equation-of-Motion (EOM) based methods have been developed, which are known to provide highly accurate results in the calculation of excited state energies. The equations of motion developed for the standard and OO-based CC and MP (Møller-Plesset, MP) theories are efficiently coded in C++ and added to MacroQC software. Many of the DF-EOM-CC, DF-EOM-OO-CC, DF-EOM-MP and DF-EOM-OO-MP methods developed in this context are developed for the first time. The developed methods are named as DF-EOM-CCSD, DF/CD-EOM-CCSD, DF-EOM-CCD, DF-EOM-OCCD, DF-EOM-OCCD, DF-EOM-OCCD, DF-EOM-OMP2, DF-EOM-OMP3, DF-EOM-OMP3, DF-EOM-MP2.5 and DF-EOM-OMP2.5.

In addition, to evaluate the accuracy and efficiency of the methods developed here, several chemical systems with challenging electronic structures are considered. In the light of these methods, we attempt to elucidate the nature of the chemical structures considered. In this context, problematic molecules such as various open and closed shell molecular systems, organic chromophores, radical structures formed from polyaromatic hydrocarbons, and water clusters are investigated. This thesis brings important innovations to the field of theoretical chemistry by programming methods that are lacking in the literature and presenting chemical application studies in popular fields.

Keywords: Electron Correlation, Coupled-Cluster Theory, Møller-Plesset Perturbation Theory, Water Clusters, Density-Fitting

TEŞEKKÜR

Tez çalışmam süresince bilgi birikimi, donanımı ve değerli görüşleri ile yolumu aydınlatan, kıymetli tecrübesi ve desteğini asla benden esirgemeyen saygıdeğer danışman hocam Prof. Dr. Uğur BOZKAYA'ya,

Tüm lisans ve lisansüstü eğitimim boyunca bana kazandırdıkları bilgi ve tecrübeler için Kimya Bölümü'ndeki tüm hocalarıma,

Desteklerini hiçbir zaman esirgemeyen, güleryüzleri ve pozitif enerjileriyle yanımda olan Arş. Gör. Yavuz ALAGÖZ ve Betül ERMİŞ'e,

Her zaman bana destek olan ve motive eden tüm arkadaşlarıma,

Her daim yanımda olan, desteğini sonsuza kadar hissedeceğimi bildiğim, hayatımın her alanını anlamlandıran Cem MENTEN'e

Tüm yaşamım boyunca beni destekleyen, sevgileri ve varlıklarıyla bana güç veren, tüm zorlukları aşmamda yardımcı olan, çok sevgili annem, babam ve kardeşlerime,

Sonsuz saygı ve teşekkürlerimi sunarım.

* * *

Bu tez çalışması 114Z786, 116Z506, 118Z916, 119C023, 119Z948 ve 120Z243 no.lu TÜBİTAK-1001/COST/2247-B projelerinin desteğiyle gerçekleştirilmiştir.

* * *

Bu tez çalışmasında yer alan nümerik hesaplamaların büyük bir kısmı TÜBİTAK ULAKBİM, Yüksek Başarım ve Grid Hesaplama Merkezi'nde (TRUBA kaynaklarında) gerçekleştirilmiştir.

İÇİNDEKİLER

ÖZET	i
ABSTRACT	iii
İÇİNDEKİLER	vi
ŞEKİLLER DİZİNİ	XX
ÇİZELGELER DİZİNİ	xxvi
SİMGELER VE KISALTMALAR	xxxi
1. GİRİŞ	1
1.1. Klasik Dalga Fonksiyonu ve Schrödinger Eşitliği	1
1.2. Yaklaştırma Teknikleri	1
1.2.1. Varyasyon Yöntemi	1
1.2.2. Pertürbasyon Yöntemi	2
1.3. Elektron Korelasyon Yöntemleri	3
1.3.1. Møller–Plesset (MP) Pertürbasyon Teorisi	4
1.3.2. Bağlanmış Küme (CC) Teorisi	5
1.3.3. Optimize Orbitalli Bağlanmış Küme Yöntemleri	6
1.3.4. MP ve CC Yöntemler için Hareket Denklemi (EOM)	7
1.4. Uygulama Çalışmaları ile İlgili Genel Bilgiler	8
1.4.1. Açık ve Kapalı Kabuklu Kimyasal Sistemler	8
1.4.2. Anyonik Su Kümeleri	9
1.4.3. Katyonik Su Kümeleri	10
1.5. Tez Çalışmasının Amacı ve Kapsamı	11
2. YÖNTEM	14
2.1. İntegral Ayrıştırma Teknikleri	14
2.2. Yoğunluk Uyarlanmış Tekli ve İkili Uyarılmış Bağlanmış Küme Teorisi	
(DF-CCSD)	15
2.2.1. DF-CCSD Programı için Kullanılan Prosedür	15
2.2.1.1. Ön İşlemler	16

2.2.	1.2.	Fock Matrisi		16
2.2.2.	DF-	CCSD Enerji ve Amplitut	Eşitlikleri	17
2.2.	2.1.	Başlangıç T Amplitutları		19
2.2.	2.2.	1- ve 3-İndisli Ara Tensö	rler	20
2.2.	2.3.	F Ara Tensörleri		22
		2.2.2.3.1.	<i>F_{mi}</i> Ara Tensörleri	22
		2.2.2.3.2.	F_{ae} Ara Tensörleri	22
		2.2.2.3.3.	<i>F_{me}</i> Ara Tensörleri	23
2.2.	2.4.	$\mathcal F$ Ara Tensörleri		23
		2.2.2.4.1.	\mathcal{F}_{mi} Ara Tensörleri	24
		2.2.2.4.2.	\mathcal{F}_{ae} Ara Tensörleri	24
2.2.	2.5.	W Ara Tensörleri		24
		2.2.2.5.1.	W _{mnij} Ara Tensörleri	25
		2.2.2.5.2.	Wabef Ara Tensörleri	26
		2.2.2.5.3.	W _{mbej} Ara Tensörleri	28
2.2.	2.6.	T_1 Amplitut Eşitliği		30
2.2.	2.7.	T ₂ Amplitut Eşitliği		30
2.2.	2.8.	CCSD İterasyonları için	Yakınsama Kontrolü	32
		2.2.2.8.1.	T ₂ Amplitutları için RMS	32
		2.2.2.8.2.	Enerji Farkı	33
2.2.3.	DF-	CCSD Lagrangian (DF-C	CSD- Λ) Eşitlikleri için Önerilen Prosedür	33
2.2.	3.1.	Başlangıç λ_1 Amplitutlar	1	33
2.2.	3.2.	Başlangıç λ_2 Amplitutlar	1	34
2.2.	3.3.	1- ve 3-İndisli Ara Tensö	rler	34
2.2.	3.4.	$\tilde{\tau}$ ve τ Amplitutlari		37
2.2.	3.5.	V Ara Tensörleri		38
		2.2.3.5.1.	<i>V_{ijkl}</i> Ara Tensörleri	38
		2.2.3.5.2.	V _{iajb} Ara Tensörleri	38
2.2.	3.6.	Λ Ara Tensörleri		39
2.2.	3.7.	<i>G</i> Ara Tensörleri		40

		2.	.2.3.7.1.	\mathcal{G}_{mi} Ara Tensörleri	40
		2.	.2.3.7.2.	\mathcal{G}_{ae} Ara Tensörleri	41
	2.2.3.8.	${\mathcal Z}$ Ara Tensö	rleri		41
	2.2.3.9.	W Ara Tensö	örleri		42
		2.	.2.3.9.1.	\mathcal{W}_{mbej} Ara Tensörleri	42
		2.	.2.3.9.2.	\mathcal{W}_{mnie} Ara Tensörleri	44
		2.	.2.3.9.3.	\mathcal{W}_{mbij} Ara Tensörleri	44
	2.2.3.10.	λ_1 Amplitut	Eşitlikleri		46
	2.2.3.11.	λ_2 Amplitut	Eşitlikleri		48
	2.2.3.12.	Pseudo-CCS	D Enerji		53
	2.2.3.13.	DF-CCSD- Λ	İterasyonları	ı için Yakınsama Kontrolü	54
2.2	2.4. DF- C	CCSD Yönter	ni için Parçao	cık Yoğunluk Matrisleri (PDM)	55
	2.2.4.1.	CCSD PDM	Terimleri için	n Genel Tanım	55
	2.2.4.2.	CCSD- Λ For	nksiyoneli		56
	2.2.4.3.	PDM Eşitlikl	lerinin Açılın	ม	56
	2.2.4.4.	Referans PD	M Terimleri .		57
	2.2.4.5.	Korelasyon (OPDM Terim	leri	57
		2.	.2.4.5.1.	OO-Blok	57
		2.	.2.4.5.2.	VV-Blok	58
		2.	.2.4.5.3.	OV-Blok	58
	2.2.4.6.	Korelasyon 7	FPDM Teriml	leri	59
		2.	.2.4.6.1.	OOOO-Blok	59
		2.	.2.4.6.2.	VVVV-Blok	59
		2.	.2.4.6.3.	OVOV-Blok	60
		2.	.2.4.6.4.	OOVV-Blok	60
		2.	.2.4.6.5.	OOOV-Blok	61
		2.	.2.4.6.6.	OVVV-Blok	61
	2.2.4.7.	Ayrılabilir Tl	PDM Terimle	ri	61
		2.	.2.4.7.1.	OOOO-Blok	61
		2.	.2.4.7.2.	OVOV-Blok	62

2.2.4.7.3.	OOOV-Blok	62
2.2.4.8. 3-İndisli TPDM Terimle	ri	62
2.2.4.8.1.	1- ve 3-İndisli Ara Tensörler	63
2.2.4.8.2.	3-İndisli Referans TPDM Eşitlikleri	65
2.2.4.8.3.	3-İndisli Ayrılabilir TPDM Eşitlikleri	65
2.2.4.8.4.	3-İndisli Korelasyon TPDM Terimleri	67
2.2.4.9. PDM Ara Tensörleri		68
2.2.4.9.1.	$\widetilde{\mathcal{G}}_{mi}$ Ara Tensörleri	68
2.2.4.9.2.	$\widetilde{\mathcal{G}}_{ae}$ Ara Tensörleri	69
2.2.4.9.3.	V _{abcd} Ara Tensörleri	69
2.2.4.9.4.	\widetilde{V}_{iajb} Ara Tensörleri	70
2.2.4.9.5.	V _{ijka} Ara Tensörleri	71
2.2.4.9.6.	$\tilde{\Lambda}_{ieaf}$ Ara Tensörleri	72
2.2.4.9.7.	Y _{iajb} Ara Tensörleri	72
2.2.4.9.8.	<i>Y_{ijab}</i> Ara Tensörleri	73
2.2.4.9.9.	\widetilde{Y}_{ijab} Ara Tensörleri	74
2.2.4.9.10.	s_i^a Ara Tensörleri	75
2.2.4.9.11.	$ au_{ia}^Q$ Ara Tensörleri	75
2.2.4.9.12.	λ_Q Ara Tensörleri	76
2.2.4.9.13.	λ_{ai}^Q Ara Tensörleri	76
2.2.4.9.14.	$\widetilde{\mathcal{G}}_Q$ Ara Tensörleri	76
2.2.4.9.15.	\mathcal{G}^Q_{ij} Ara Tensörleri	76
2.2.4.9.16.	$\widetilde{\mathcal{G}}^Q_{ia}$ Ara Tensörleri	77
2.2.4.9.17.	$\widetilde{\mathcal{G}}^Q_{ai}$ Ara Tensörleri	77
2.2.4.9.18.	V^Q_{ab} Ara Tensörleri	77
2.2.4.9.19.	\widetilde{V}^Q_{ab} Ara Tensörleri	77
2.2.4.9.20.	\mathcal{V}^Q_{ij} Ara Tensörleri	78
2.2.4.9.21.	η^Q_{ij} Ara Tensörleri	78
2.2.4.9.22.	η^Q_{ia} Ara Tensörleri	78
2.2.4.9.23.	$ ilde{\eta}^Q_{ia}$ Ara Tensörleri	79

	2.2.4.9.24.	$ ilde{\eta}^Q_{ab}$ Ara Tensörleri	79
	2.2.4.9.25.	y_{ia}^Q Ara Tensörleri	79
2.2.4.10.Korelas	yon PDM Terim	leri	80
	2.2.4.10.1.	OO-Blok	80
	2.2.4.10.2.	VV-Blok	81
	2.2.4.10.3.	OV-Blok	82
2.2.4.11.PDM T	erimleri Üzerinde	en Enerji İfadeleri	83
2.3. Optimize Orbital	li Yoğunluk Uya	arlanmış İkili Uyarılmış Bağlanmış Küme	
Teorisi (DF-OCC	D)		84
2.3.1. DF-CCD Yö	ontemi için Spin (Orbital Enerji ve Amplitut Denklemleri	84
2.3.1.1. Başlang	gıç T_2 Amplitut E	Şitliği	84
2.3.1.2. 3-İndisl	i Ara Tensör		85
2.3.1.3. F Ara	Fensörleri		85
	2.3.1.3.1.	F_{mi} Ara Tensörü	85
	2.3.1.3.2.	F_{ae} Ara Tensörü	85
	2.3.1.3.3.	F_{me} Ara Tensörü	86
2.3.1.4. W Ara	Tensörleri		86
	2.3.1.4.1.	W_{mnij} Ara Tensörü	86
	2.3.1.4.2.	W_{abef} Ara Tensörü	86
	2.3.1.4.3.	W_{mbej} Ara Tensörü	87
2.3.1.5. T_2 Amp	olitut Eşitliği		87
2.3.1.6. DF-CC	D Enerji Eşitliği		87
2.3.2. DF-CCD La	grangian: Λ Spin	Orbital Denklemleri	88
2.3.2.1. Başlang	gıç λ_2 Amplitutla	rı	88
2.3.2.2. 3-İndisl	i Ara Tensör		88
2.3.2.3. F Ara	Fensörleri		88
	2.3.2.3.1.	F_{mi} Ara Tensörü	89
	2.3.2.3.2.	F_{ae} Ara Tensörü	89
	2.3.2.3.3.	F_{me} Ara Tensörü	89
2.3.2.4. V_{ijkl} Ar	a Tensörü		90

2.3.2.5	. W Ara Tensörleri		90
	2.3.2.5.1.	W_{mnij} Ara Tensörü	90
	2.3.2.5.2.	W _{abef} Ara Tensörü	90
2.3.2.6	. \mathcal{G} Ara Tensörleri		90
	2.3.2.6.1.	\mathcal{G}_{mi} Ara Tensörleri	91
	2.3.2.6.2.	\mathcal{G}_{ae} Ara Tensörleri	91
	2.3.2.6.3.	\mathcal{G}_{ai} Ara Tensörleri	91
	2.3.2.6.4.	\mathcal{G}_{ia} Ara Tensörleri	91
2.3.2.7	. \mathcal{W}_{mbej} Ara Tensörü		92
2.3.2.8	. λ_2 Amplitut Eşitliği		92
2.3.2.9	. Pseudo-CCD Enerji		92
2.3.2.1	$0.\Lambda$ Eşitlikleri için Yakınsa	ma Kontrolü	93
2.3.3. DF	-CCD Yöntemi için Spin C	Prbital PDM Denklemleri	93
2.3.3.1	. DF-CCD-PDM Eşitlikler	i için Genel Tanımlar	93
2.3.3.2	. CCD- Λ Fonksiyoneli		94
2.3.3.3	. Korelasyon OPDM Terin	ıleri	94
	2.3.3.3.1.	OO-Blok	94
	2.3.3.3.2.	VV-Blok	94
	2.3.3.3.3.	OV-Blok	95
2.3.3.4	. Korelasyon TPDM Terim	ıleri	95
	2.3.3.4.1.	OVOV-Blok	95
	2.3.3.4.2.	OOVV-Blok	95
2.3.3.5	. Ayrılabilir TPDM Teriml	eri	96
2.3.3.6	. PDM Ara Tensörleri		96
	2.3.3.6.1.	${\cal G}$ Ara Tensörleri	96
	2.3.3.6.2.	V Ara Tensörleri	97
	2.3.3.6.3.	Y Ara Tensörleri	97
2.3.3.7	. 3-İndisli TPDM Terimler	i	98
	2.3.3.7.1.	3-İndisli Referans ve Ayrılabilir TPDM	
		Eşitlikleri	98

			2.3.3.7.2.	3-İndisli Korelasyon TPDM Terimleri	98
2	2.3.3.8.	PDM Teri	imleri Cinsinde	en Enerji İfadeleri	99
2.3.4	. Kısı	ıtlamalı HF	F Referansına	(RHF) Adapte Edilmiş DF-CCD Yöntemi	
	için	Enerji ve A	Amplitut Denk	lemleri	100
2	2.3.4.1.	Başlangıç	T_2 Amplitutla	rı	100
2	2.3.4.2.	3- ve 4-İn	disli Ara Tenso	örler	100
2	2.3.4.3.	F Ara Ter	nsörleri		100
			2.3.4.3.1.	F_{mi} Ara Tensörü	101
			2.3.4.3.2.	F_{ae} Ara Tensörü	101
			2.3.4.3.3.	F_{me} Ara Tensörü	101
2	2.3.4.4.	${\cal F}$ Ara Te	nsörleri		101
2	2.3.4.5.	W Ara Te	ensörleri		101
			2.3.4.5.1.	W_{mnij} Ara Tensörü	102
			2.3.4.5.2.	W _{abef} Ara Tensörü	102
			2.3.4.5.3.	W_{mbej} Ara Tensörü	102
			2.3.4.5.4.	W_{mbje} Ara Tensörü	102
2	2.3.4.6.	T_2 Ampli	tut Eşitliği		103
2	2.3.4.7.	DF-CCD	Enerjisi		103
2.3.5	5. DF-	CCD Lagr	angian: Λ RHI	F Denklemleri	103
2	2.3.5.1.	Başlangıç	λ_2 Amplitutla	rı	103
2	2.3.5.2.	3- ve 4-İn	disli Ara Tenso	örleri	104
2	2.3.5.3.	F ve \mathcal{F} A	ra Tensörleri .		104
2	2.3.5.4.	$\mathcal Z$ Ara Te	nsörleri		104
			2.3.5.4.1.	\mathcal{Z}_{mbej} Ara Tensörü	104
			2.3.5.4.2.	\mathcal{Z}_{mbje} Ara Tensörü	105
2	2.3.5.5.	W Ara Te	ensörleri		105
			2.3.5.5.1.	\mathcal{W}_{mbej} Ara Tensörü	105
			2.3.5.5.2.	\mathcal{W}_{mbij} Ara Tensörü	105
2	2.3.5.6.	${\cal G}$ Ara Ter	nsörleri		106
			2.3.5.6.1.	\mathcal{G}_{ae} Ara Tensörü	106

2.3.5.6.2.	\mathcal{G}_{mi} Ara Tensörü 106
2.3.5.7. 3-İndisli \mathcal{G} Ara Tensörle	ri 106
2.3.5.8. V Ara Tensörü	
2.3.5.8.1.	V_{ijkl} Ara Tensörü 107
2.3.5.8.2.	V_{iajb} Ara Tensörü 107
2.3.5.8.3.	V_{iabj} Ara Tensörü 107
2.3.5.9. λ_2 Amplitut Eşitliği	
2.3.6. RHF Referansına Adapt	e Edilmiş DF-CCD Yöntemi için
Parçacık-Yoğunluk Matrisler	i (PDM) 108
2.3.6.1. PDM Ara Tensörleri	
2.3.6.1.1.	\mathcal{G} Ara Tensörleri 109
2.3.6.1.2.	V Ara Tensörleri 109
2.3.6.1.3.	Y Ara Tensörleri 110
2.3.6.2. 3-İndisli PDM Terimleri	
2.3.6.2.1.	1- ve 3-İndisli Ara Tensörler 111
2.3.6.2.2.	Korelasyon TPDM Terimleri 113
2.3.7. UHF Referansına Adapte E	Edilmiş DF-CCD Yöntemi için Enerji ve
Amplitut Denklemleri (UHF)) 114
2.3.7.1. F Ara Tensörleri	
2.3.7.1.1.	F_{mi} Ara Tensörü 115
2.3.7.1.2.	F_{ae} Ara Tensörü 115
2.3.7.1.3.	F_{me} Ara Tensörü 115
2.3.7.2. W Ara Tensörleri	
2.3.7.2.1.	W_{mnij} Ara Tensörü 116
2.3.7.2.2.	W_{abef} Ara Tensörü 116
2.3.7.2.3.	W_{mbej} Ara Tensörü 117
2.3.7.3. T_2 Amplitut Eşitliği	
2.3.7.4. DF-CCD Enerji Eşitliği	
2.3.8. UHF Referansına Adapte Edi	lmiş DF-CCD Lagrangian Denklemleri (UHF)120
2.3.8.1. DF-CCD-Λ Ara Tensörl	eri 120

2.3.8.1.1.	V_{ijkl} Ara Tensörü 1	20
2.3.8.1.2.	$\mathcal W$ Ara Tensörleri 1	21
2.3.8.2. λ_2 Amplitut Eşitlikleri	i1	23
2.3.8.3. Pseudo-CCD Enerji E	şitliği 1	25
2.3.9. UHF Referansına Ada	pte Edilmiş DF-CCD Yöntemi için	
Parçacık-Yoğunluk Matrisle	eri (PDM) (UHF) 1	26
2.3.9.1. PDM Ara Tensörleri		26
2.3.9.1.1.	V_{abcd} Ara Tensörü 1	26
2.3.9.1.2.	Y Ara Tensörleri 1	27
2.3.9.2. Korelasyon OPDM		29
2.3.9.2.1.	OO-Blok 1	30
2.3.9.2.2.	VV-Blok1	30
2.3.9.2.3.	OV-Blok 1	30
2.3.9.3. Korelasyon ve Ayrılab	ilir TPDM Terimleri 1	30
2.3.9.4. 3-İndisli TPDM Terim	ıleri 1	31
2.3.9.4.1.	1- ve 3-İndisli Ara Tensörler 1	31
2.3.9.4.2.	3-İndisli Referans ve Ayrılabilir TPDM	
	Terimleri 1	31
2.3.9.4.3.	3-İndisli Korelasyon TPDM 1	31
2.4. Yoğunluk Uyarlanmış Tekli ve	İkili Uyarılmış Bağlanmış Küme Teorisi için	
Hareket Denklemi (DF-EOM-C	CSD) 1	34
2.4.1. Tekli ve İkili Bağlanmı	ş Küme Teorisi için Hareket Denklemi	
(EOM-CCSD)		34
2.4.2. EOM-CCSD Spin Orbital I	Denklemleri 1	37
2.4.2.1. CCSD Ara Tensörleri.		37
2.4.2.1.1.	F Ara Tensörleri 1	37
2.4.2.1.2.	\mathcal{F} Ara Tensörleri 1	38
2.4.2.1.3.	W Ara Tensörleri 1	39
2.4.2.1.4.	\mathcal{Z} Ara Tensörü 1	40
2.4.2.1.5.	$\mathcal W$ Ara Tensörleri 1	40

	2.4.2.1.6.	1- ve 3-İndisli CCSD Ara Tensörleri	143
2.4.2.2. EOM-C	CSD Ara Tensö	irleri	143
	2.4.2.2.1.	${\cal V}$ Ara Tensörleri	144
	2.4.2.2.2.	X Ara Tensörleri	145
	2.4.2.2.3.	2- ve 4-İndisli R Ara Tensörleri	145
	2.4.2.2.4.	1- ve 3-İndisli R ve r Ara Tensörleri	146
2.4.2.3. EOM-C	CSD Diyagram	ları	147
	2.4.2.3.1.	σ_0 Diyagramları	147
	2.4.2.3.2.	σ_1 Diyagramları	. 147
	2.4.2.3.3.	σ_2 Diyagramları	148
2.4.3. Kısıtlamalı	HF Referansu	na (RHF) Adapte Edilmiş EOM-CCSD	
Denklemleri			. 148
2.4.3.1. EOM-C	CSD Ara Tensö	örleri	. 149
	2.4.3.1.1.	$\mathcal V$ Ara Tensörleri	. 149
	2.4.3.1.2.	X Ara Tensörleri	. 149
	2.4.3.1.3.	2- ve 4-İndisli R Ara Tensörleri	150
	2.4.3.1.4.	1- ve 3-İndisli R ve r Ara Tensörleri	151
2.4.3.2. EOM-C	CSD Diyagram	ları	152
	2.4.3.2.1.	σ_0 Diyagramları	152
	2.4.3.2.2.	σ_1 Diyagramları	153
	2.4.3.2.3.	σ_2 Diyagramları	153
2.4.4. Kısıtlamasız	HF Referans	na (UHF) Adapte Edilmiş EOM-CCSD	
Denklemleri	(UHF)		154
2.4.4.1. EOM-C	CSD Ara Tensö	orleri	154
	2.4.4.1.1.	$\mathcal V$ Ara Tensörleri	154
	2.4.4.1.2.	X Ara Tensörleri	156
	2.4.4.1.3.	2- ve 4-İndisli R Ara Tensörleri	156
	2.4.4.1.4.	1- ve 3-İndisli R ve r Ara Tensörleri	160
2.4.4.2. EOM-C	CSD Diyagram	ları	161
	2.4.4.2.1.	σ_0 Diyagramları	161

	2.4.4.2.2.	σ_1 Diyagramları 162
	2.4.4.2.3.	σ_2 Diyagramları 163
2.5.	Yoğunluk Uyarlanmış İkili Uya	ırılmış Bağlanmış Küme Teorisi için Hareket
	Denklemi (DF-EOM-CCD)	
2.5	5.1. EOM-CCD Spin Orbital D	enklemleri 166
	2.5.1.1. EOM-CCD Ara Tenso	örleri 166
	2.5.1.1.1.	V Ara Tensörleri 166
	2.5.1.1.2.	X Ara Tensörleri 167
	2.5.1.1.3.	2- ve 4-İndisli R Ara Tensörleri 167
	2.5.1.1.4.	1- ve 3-İndisli r ve R Ara Tensörleri 168
	2.5.1.1.5.	Δt_i^a Ara Tensörü 169
	2.5.1.2. EOM-CCD Diyagram	ları 169
	2.5.1.2.1.	σ_0 Diyagramları 169
	2.5.1.2.2.	σ_1 Diyagramları 170
	2.5.1.2.3.	σ_2 Diyagramları 170
2.6.	Yoğunluk Uyarlanmış İkinci D	ereceden Møller-Plesset Teorisi için Hareket
2.6.	Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2)	ereceden Møller-Plesset Teorisi için Hareket
2.6. 2.6	Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D	ereceden Møller-Plesset Teorisi için Hareket
2.6. 2.0	Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri	ereceden Møller-Plesset Teorisi için Hareket
2.6.	Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1.	ereceden Møller-Plesset Teorisi için Hareket
2.6.	Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2.	ereceden Møller-Plesset Teorisi için Hareket
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 	ereceden Møller-Plesset Teorisi için Hareket
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 	ereceden Møller-Plesset Teorisi için Hareket
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 enklemleri
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 enklemleri
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 2.6.1.2. EOM-MP2 Ara Tensör 	ereceden Møller-Plesset Teorisi için Hareket 171 171 171 171 171 171 3-İndisli CCSD Ara Tensörü
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 2.6.1.2. EOM-MP2 Ara Tensö 2.6.1.2.1. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 171 171 171 171 171 3-İndisli CCSD Ara Tensörü
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 2.6.1.2. EOM-MP2 Ara Tensö 2.6.1.2.1. 2.6.1.2.2. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 171 171 171 171 171 3-İndisli CCSD Ara Tensörü
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 6.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 2.6.1.2. EOM-MP2 Ara Tensö 2.6.1.2.1. 2.6.1.2.2. 2.6.1.2.3. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 171 171 171 171 171 3-İndisli CCSD Ara Tensörü
2.6.	 Yoğunluk Uyarlanmış İkinci D Denklemi (DF-EOM-MP2) 5.1. EOM-MP2 Spin Orbital D 2.6.1.1. CCSD Ara Tensörleri 2.6.1.1.1. 2.6.1.1.2. 2.6.1.1.3. 2.6.1.1.4. 2.6.1.1.5. 2.6.1.1.6. 2.6.1.2.1. 2.6.1.2.1. 2.6.1.2.2. 2.6.1.2.3. 2.6.1.2.4. 	ereceden Møller-Plesset Teorisi için Hareket 171 171 171 171 171 171 171 171 171 17

xvi

2.0	6.1.3. EOM-MP2 Diyagramlar	1	178
	2.6.1.3.1.	σ_0 Diyagramları	178
	2.6.1.3.2.	σ_1 Diyagramları	179
	2.6.1.3.3.	σ_2 Diyagramları	179
2.7. Yoğ	gunluk Uyarlanmış Üçüncü De	receden Møller-Plesset Teorisi için Hareket	
Der	nklemi (DF-EOM-MP3)		180
2.7.1.	DF-EOM-MP3 Spin Orbital I	Denklemleri	180
2.7	7.1.1. İkinci Dereceden T_1 Am	plitutları	181
2.7	7.1.2. CCSD Ara tensörleri		181
	2.7.1.2.1.	Farklı Derecelerden 1- ve 3-İndisli Ara	
		Tensörler	181
	2.7.1.2.2.	${\cal F}$ Ara Tensörleri	183
	2.7.1.2.3.	F Ara Tensörleri	183
	2.7.1.2.4.	W Ara Tensörleri	187
	2.7.1.2.5.	${\mathcal Z}$ Ara Tensörleri	190
	2.7.1.2.6.	W Ara Tensörleri	191
2.7	7.1.3. EOM-MP3 Ara Tensörle	eri	199
	2.7.1.3.1.	V Ara Tensörü	199
	2.7.1.3.2.	X Ara Tensörleri	199
	2.7.1.3.3.	1- ve 3-İndisli R ve r Ara Tensörleri	200
	2.7.1.3.4.	2- ve 4-İndisli R Ara Tensörleri	200
2.7	7.1.4. EOM-MP3 Diyagramlar	1	201
	2.7.1.4.1.	σ_0 Diyagramları	201
	2.7.1.4.2.	σ_1 Diyagramları	202
	2.7.1.4.3.	σ_2 Diyagramları	202
3. BULGU	LAR VE TARTIŞMA		203
3.1. DF/	CD-OCCD Yöntemleri için Do	oğruluk ve Etkinlik Analizleri	203
3.1.1.	DF-OCCD Yönteminin Etkin	liği	204
3.1.2.	Geometriler		205
3.1.3.	Hidrojen Transfer Reaksiyon	ları	211

3.1	.4. Kovalent Olmayan Etkileşimler	. 214
3.1	.5. O_4^+ Molekülünde Simetri Kırılması	. 219
3.2. I	DF/CD-EOM-CCSD Yöntemleri için Doğruluk ve Etkinlik Analizleri	. 220
3.2	.1. DF/CD Hibrit PPL Algoritmasının Değerlendirilmesi	. 224
3.2	2. DF/CD-EOM-CCSD Yöntemlerinin Doğruluğu	. 227
3.3. I	DF-EOM-OCCD Yönteminin Doğruluğu ve Etkinliği	. 230
3.3	.1. DF-EOM-OCCD Yönteminin Etkinliği	. 230
3.3	2. DF-EOM-OCCD Yönteminin Doğruluğu	. 231
	3.3.2.1. Açık Kabuklu Set	. 231
	3.3.2.2. Kapalı Kabuklu Set	. 235
3.4. I	DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM- κ -OMP2 Yöntemlerinin	
Ι	Doğruluğu ve Etkinliği	. 238
3.4	.1. Organik Kromoforlar	. 238
3.4	.2. Açık Kabuklu Sistem	. 243
3.4	.3. Radikal Seti	. 246
3.5. I	DF-EOM-OMP3/MP3/OMP2.5/MP2.5 Yöntemlerinin Doğruluğu ve Etkinliği	. 249
3.5	.1. DF-EOM-MP3 ve DF-EOM-OMP3 Yöntemleri için Uygulamalar	. 249
3.5	2. DF-EOM-MP2.5 ve DF-EOM-OMP2.5 Yöntemleri için Uygulamalar	. 252
3.6. I	Bağlanmış Küme Yöntemlerinin Anyonik Su Kümelerine Uygulanması	. 254
3.6	.1. Anyonik Su Kümeleri	. 254
3.6	2. Pentamer Anyonları	. 256
3.6	.3. Heksamer Anyonları	. 261
3.7. I	Bağlanmış Küme Yöntemlerinin Katyonik Su Kümelerine Uygulanması	. 266
3.7	.1. Katyonik Su Kümeleri	. 266
3.7	2. Dimer Katyonları	. 268
3.7	.3. Trimer Katyonları	. 271
3.7	.4. Tetramer Katyonları	. 274
3.7	.5. Pentamer Katyonları	. 278
3.7	.6. Heksamer Katyonları	. 283
4. SON	UÇ	. 288

5. KAYNAKLAR	296
EKLER	321
EK 1 – Süre Hesaplamalarında Kullanılan Alkan Seti	321
EK 2 – Kapalı Kabuklu Test Seti	326
EK 3 – Açık Kabuklu Test Seti	329
EK 4 – Organik Kromofor Seti	331
EK 5 – Açık Kabuklu Test Seti-2	336
EK 6 – Radikal Seti	337
EK 7 – Anyonik Su Kümelerinin Optimize Geometrileri	339
EK 8 – Katyonik Su Kümelerinin Optimize Geometrileri	356
ÖZGEÇMİŞ	389

ŞEKİLLER DİZİNİ

Şekil 3.1. OCCD ve DF-OCCD yöntemlerinin C_nH_{2n+2} (n=1–6) alkan seti için
cc-pVTZ baz seti kullanılarak elde edilen tek-nokta enerjilerinin hesap
süreleri (dk) 205
Şekil 3.2. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD
ve CCSD(T) yöntemleri için kapalı kabuklu moleküllerin bağ
uzunluklarındaki hatalar (cc-pCVQZ baz seti kullanılmıştır)
Şekil 3.3. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD
ve CCSD(T) yöntemleri için kapalı kabuklu moleküllerin bağ
uzunluklarındaki ortalama mutlak hatalar (cc-pCVQZ baz seti
kullanılmıştır)
Şekil 3.4. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve
CCSD(T) yöntemleri için göz önüne alınan açık kabuklu moleküllerin
bağ uzunluklarındaki hatalar (cc-pCVQZ baz seti kullanılmıştır) 207
Şekil 3.5. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve
CCSD(T) yöntemleri için göz önüne alınan açık kabuklu moleküllerin
bağ uzunluklarındaki ortalama mutlak hatalar (cc-pCVQZ baz seti
kullanılmıştır)
Şekil 3.6. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve
CCSD yöntemleri için hidrojen transfer reaksiyon enerjilerindeki hatalar
(CBS limitinde)
Şekil 3.7. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve
CCSD yöntemleri için hidrojen transfer reaksiyon enerjilerindeki MAE
değerleri (CBS limitinde) 212
Şekil 3.8. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD
ve CCSD yöntemleri için A24 setinin etkileşim enerjilerindeki hatalar
(CBS limitinde)

Şekil 3.9. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD
ve CCSD yöntemleri için A24 setinin etkileşim enerjilerindeki hatalar
(CBS limitinde) 215
Şekil 3.10.CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD
ve CCSD yöntemleri için O23 setinin etkileşim enerjilerindeki hatalar
(CBS limitinde) 215
Şekil 3.11.CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve
CCSD yöntemleri için O23 setinin etkileşim enerjilerinden hesaplanan
MAE değerleri. (CBS limitinde) 217
Şekil 3.12.RI-EOM-CCSD (from Q-CHEM) ve DF-EOM-CCSD yöntemleri ile
cc-pVTZ baz seti kullanılarak, C_nH_{2n+2} (n=1–8) alkan seti için uyarılma
enerjilerinin hesaplanmasında toplam CCSD ve EOM duvar süreleri
(dakika cinsinden). (Bu hesaplamalar için RHF referansı kullanılmıştır.) . 222
Şekil 3.13RI-EOM-CCSD (from Q-CHEM) ve DF-EOM-CCSD yöntemleri ile
cc-pVTZ baz seti kullanılarak, C_nH_{2n+2} (n=1–7) alkan seti için uyarılma
enerjilerinin hesaplanmasında toplam CCSD ve EOM duvar süreleri
(dakika cinsinden). (Bu hesaplamalar için UHF referansı kullanılmıştır.). 224
Şekil 3.14. C_nH_{2n+2} (n=1–9) seti için uyarılma enerjilerinin hesaplanmasında
kullanılan, DF-EOM-CCSD yönteminin DF ve hibrit DF/CD
yaklaşımlarındaki (10^{-4} , 10^{-3} ve 10^{-2} CD toleransları ile) PPL
teriminde kullanılan yardımcı baz fonksiyonlarının sayısının oranı,
M. Bu hesaplamalar için cc-pVTZ baz seti ile birlikte RHF referansı
kullanılmıştır

Şekil 3.15.DF-EOM-CCSD ve hibrit DF/CD-EOM-CCSD (10^{-4} , 10^{-3} ve 10^{-2}
CD toleransları ile) yöntemlerinden C_nH_{2n+2} (n=1–9) alkan seti için
cc-pVTZ baz seti kullanılarak uyarılma enerjilerinin hesaplanması için
toplam duvar süresi (dakika cinsinden). Bu hesaplamalar için RHF
referansı kullanılmıştır. Tüm hesaplamalar tek düğümlü (1 çekirdekli)
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2,10 GHz bilgisayarda (bellek \sim
64 GB) 10^{-7} enerji ve EOM özdeğer yakınsama toleransları ile tek bir
kök (single root) için gerçekleştirilmiştir 226
Şekil 3.16.Test seti için, EOM-CCSD(fT) yöntemine göre DF-EOM-CCSD,
DF/CD-EOM-CCSD ve RI-EOM-CCSD yöntemlerinden elde edilen
uyarılma enerjilerindeki ortalama mutlak hatalar (eV cinsinden)
(aug-cc-pVTZ baz seti kullanılmıştır)
Şekil 3.17.DF-EOM-OCCD ve EOM-OD (Q-CHEM) yöntemlerinin C_nH_{2n+2} (n
= 1-5) alkan seti için cc-pVTZ baz seti ile uyarılma enerjilerinin
hesap süreleri (dk). Bu hesaplamalar için RHF referansı kullanılmıştır.
Tüm hesaplamalar tek düğümlü (1 çekirdekli) Intel(R) Xeon(R) CPU
E5-2620 v4 @ 2,10 GHz bilgisayarda (bellek \sim 64 GB) 10^{-7} enerji ve
EOM özdeğer yakınsama toleransları ile ilk uyarılmış hal (single root)
için gerçekleştirilmiştir 231
Şekil 3.18 Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD,
DF-EOM-CCSD yöntemlerinin MRCISDT+Q yöntemine göre
hesaplanan hataları. Hesaplamalar aug-cc-pVTZ baz seti ile
gerçekleştirilmiştir
Şekil 3.19.Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD,
DF-EOM-CCSD yöntemlerinin MRCISDT+Q yöntemine göre
hesaplanan ortalama mutlak hataları. Hesaplamalar aug-cc-pVTZ baz
seti ile gerçekleştirilmiştir

Sekil 3.20.Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları. Hesaplamalar aug-cc-pVTZ baz seti ile Şekil 3.21.Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan ortalama mutlak hataları. Hesaplamalar aug-cc-pVTZ baz Şekil 3.23.Kapalı kabuklu organik kromofor seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-*k*-OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları..... 242 Sekil 3.24.Kapalı kabuklu organik kromofor seti için DF-EOM-MP2, DF-EOM-*k*-OMP2 DF-EOM-OMP2. ve DF-EOM-CCSD yöntemlerinin EOM-CCSD(fT) yöntemine göre hesaplanan MAE Şekil 3.26.Açık kabuklu test seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-*k*-OMP2 ve DF-EOM-CCSD yöntemlerinin, Şekil 3.27.Açık kabuklu test seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-*k*-OMP2 DF-EOM-CCSD ve yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan MAE değerleri. 245 Şekil 3.29.Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-*k*-OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları..... 248

Şekil 3.30.Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2,
DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD
yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan MAE
değerleri
Şekil 3.31.Açık kabuklu test seti için, referans yönteme göre DF-EOM-MP3 ve
DF-EOM-OMP3 yöntemlerinden elde edilen uyarılma enerjilerindeki
hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır) 251
Şekil 3.32.Açık kabuklu test seti için, referans yönteme göre DF-EOM-MP3 ve
DF-EOM-OMP3 yöntemlerinden elde edilen uyarılma enerjilerindeki
ortalama mutlak hatalar (eV cinsinden) (aug-cc-pVTZ baz seti
kullanılmıştır)
Şekil 3.33.Göz önüne alınan test seti için, referans yönteme göre DF-EOM-MP2.5
ve DF-EOM-OMP2.5 yöntemlerinden elde edilen uyarılma
enerjilerindeki hatalar (eV cinsinden) (aug-cc-pVTZ baz seti
kullanılmıştır)
Şekil 3.34.Göz önüne alınan test seti için, referans yönteme göre DF-EOM-MP2.5
ve DF-EOM-OMP2.5 yöntemlerinden elde edilen uyarılma
enerjilerindeki ortalama mutlak hatalar (eV cinsinden) (aug-cc-pVTZ
baz seti kullanılmıştır) 254
Şekil 3.35.DF-OLCCD/aug4-cc-pVDZ seviyesinde optimize edilen pentamer-2
anyonunun geometrisi
Şekil 3.36.DF-OLCCD/aug4-cc-pvdz seviyesinde optimize edilen heksamer-4
anyonunun geometrisi
Şekil 3.37.DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen monomer
katyonunun geometrisi
Şekil 3.38.Dimer katyonlarının DF-OLCCD/aug-cc-pVDZ seviyesinde optimize
edilen geometrileri ve CCSD(T)/CBS seviyesinde hesaplanan bağıl
enerjileri
Şekil 3.39.DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı trimer

katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri. 272

Şekil 3.40.DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı tetramer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri. 275

- Şekil 3.41.DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı pentamer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri. 279
- Şekil 3.42.DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı heksamer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri. 283

ÇİZELGELER DİZİNİ

Çizelge 3.1. Kapalı-kabuklu moleküllerden oluşan set için artan deneysel	
değerlere göre sıralanmış bağ uzunlukları (Å) 20	8
Çizelge 3.2. Açık-kabuklu moleküllerden oluşan set için artan deneysel değerlere	
göre sıralanmış bağ uzunlukları (Å) 21	0
Çizelge 3.3. MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD ve CCSD(T)	
yöntemleri ile CBS seviyesinde hesaplanan hidrojen transfer	
reaksiyonlarının reaksiyon enerjileri (kcal mol ⁻¹)	3
Çizelge 3.4. MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri ile CBS	
seviyesinde hesaplanan kapalı kabuk kovalent olmayan etkileşim	
enerjileri (kcal mol-1 cinsinden) ve referans enerjilere göre MAE	
değerleri	6
Çizelge 3.5. MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD ve CCSD(T)	
yöntemleri ile CBS seviyesinde hesaplanan açık kabuklu kovalent	
olmayan etkileşim enerjileri (kcal mol-1 cinsinden) ve CCSD(T)	
enerjileri referans alınarak hesaplanan MAE değerleri	8
Çizelge 3.6. Simetri kırılmasının gözlendiği O_4^+ (${}^4B_{1g}$) molekülü için 6-311G(d)	
baz seti kullanılarak hesaplanan toplam enerjiler (hartree), bağ	
uzunlukları (Å) ve harmonik titreşim frekansları (cm ⁻¹) 22	0
Çizelge 3.7. Göz önüne alınan test seti için, DF-EOM-CCSD,	
DF/CD-EOM-CCSD (CD toleranslari: 1×10^{-4} , 5×10^{-4} ,	
1×10^{-3} , 5×10^{-3} ve 1×10^{-2} olmak üzere), RI-EOM-CCSD and	
EOM-CCSD(fT) yöntemleriyle hesaplanan ilk beş uyarılma enerjisi	
(eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz seti kullanılmıştır 22	9

Çizelge 3.8. Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD,
DF-EOM-CCSD ve MRCISDT+Q yöntemleriyle hesaplanan ilk
beş uyarılma enerjisi. Hesaplamalar aug-cc-pVTZ baz seti ile
gerçekleştirilmiştir
Çizelge 3.9. Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD,
DF-EOM-CCSD ve EOM-CCSD(fT) yöntemleriyle hesaplanan ilk
beş uyarılma enerjisi. Hesaplamalar aug-cc-pVTZ baz seti ile
gerçekleştirilmiştir
Çizelge 3.10.Göz önüne alınan organik kromofor seti için DF-EOM-MP2,
DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve
EOM-CCSD(fT) yöntemleriyle hesaplanan ilk beş uyarılma enerjisi
(eV cinsinden) 23
Çizelge 3.11.Göz önüne alınan açık kabuklu test set için DF-EOM-MP2,
DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve
EOM-CCSD(fT) yöntemleriyle hesaplanan en düşük ilk beş
uyarılma enerjisi (eV cinsinden) 24
Çizelge 3.12.Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2,
DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve
EOM-CCSD(fT) yöntemleriyle hesaplanan en düşük ilk beş
uyarılma enerjisi (eV cinsinden) 24
Çizelge 3.13.Göz önüne alınan açık kabuklu test seti için DF-EOM-MP3,
DF-EOM-OMP3 ve MRCI kullanılarak elde edilen ilk beş uyarılma
enerjisi (eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz seti
kullanılmıştır
Çizelge 3.14.Göz önüne alınan test seti için, DF-EOM-MP2.5, DF-EOM-OMP2.5
ve referans yöntem (MRCI) kullanılarak elde edilen ilk beş uyarılma
enerjisi (eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz seti
kullanılmıştır

Çizelge 3.15Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹),
DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T)
yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.16Pentamer kümeleri için CBS seviyesinde VDE değerleri (kcal mol ⁻¹),
DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T)
yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.17 Pentamer kümeleri için CBS seviyesinde bağlanma enerjileri
(kcal mol ⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve
CCSD(T) yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.18Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹),
DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T)
yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.19Heksamer kümeleri için CBS seviyesinde hesaplanan VDE değerleri
(kcal mol ⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve
CCSD(T) yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.20 Heksamer kümeleri için CBS seviyesinde bağlanma enerjileri
(kcal mol ⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve
CCSD(T) yöntemine karşı hesaplanan MAE değerleri
Çizelge 3.21 Dimer kümeleri için CBS seviyesinde hesaplanan bağıl enerjiler
(kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.22 Dimer kümeleri için CBS seviyesinde hesaplanan VAE değerleri
(kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.23 Dimer kümeleri için CBS seviyesinde hesaplanan bağlanma enerjileri
(kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.24.Trimer kümeleri için CBS seviyesinde bağıl enerjiler (kcal
mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri

Çizelge 3.25.Trimer kümeleri için CBS seviyesinde dikey bağlanma enerjileri
(kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.26.Trimer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal
mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.27.Tetramer kümeleri için CBS seviyesinde bağıl enerjiler (kcal
mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.28.Tetramer kümeleri için CBS düzeyinde dikey bağlanma enerjileri
(kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
Çizelge 3.29.Tetramer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal
mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri
değerleri
değerleri
değerleri
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal
değerleri.278Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.280Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.281Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE281
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282 Çizelge 3.33Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 282 Çizelge 3.33Pentamer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 284 Çizelge 3.34Heksamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 284
değerleri. 278 Çizelge 3.30Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol ⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri. 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.31Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 280 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.32Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal 281 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 282 Çizelge 3.33Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal 284 Çizelge 3.34Heksamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 284 Çizelge 3.34Heksamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri 284

SİMGELER VE KISALTMALAR

Kısaltmalar

AIP	Adyabatik İyonlaşma Potansiyeli (Adiabatic Ionization Potential)
AO	Atomik Orbital (Atomic Orbital)
CBS	Tam Baz Seti (Complete Basis Set)
CC	Bağlanmış Küme (Coupled-Cluster)
CCD	İkili Uyarılmış Bağlanmış Küme (Coupled-Cluster Doubles)
CCSD(T)	Pertürbatif Üçlü Uyarılma Katkılarını içeren Tekli ve İkili Uyarılmış Bağlanmış Küme (Coupled-Cluster Singles and Doubles with Perturbative Triples)
CD	Cholesky Ayrıştırması (Cholesky Decomposition)
CI	Konfigürasyon Etkileşimi (Configuration Interaction)
СР	Denge Düzeltmesi (Counterpoise Correction)
DCFT	Yoğunluk-Kümülant Fonksiyonel Teorisi (Density-Cumulant Functional Theory)
DF	Yoğunluk Uyarlaması (Density-Fitting)
DFT	Yoğunluk Fonksiyoneli Teorisi (Density Functional Theory)
EE	Uyarılma Enerjisi (Excitation Energy)

EOM	Hareket Denklemi (Equation-of-Motion)
EOM-CCSD	Tekli ve İkili Uyarılmış Bağlanmış Küme Teorisi için Hareket Denklemi (<i>Equation-of-Motion Coupled-Cluster Singles and Doubles Theory</i>)
ERI	Elektron İtme İntegrali (Electron Repulsion Integral)
FCI	Tam Konfigürasyon Etkileşimi (Full Configuration Interaction)
HB	Yarı-Bağlı (Hemi-Bonded)
HF	Hartree-Fock
HTRE	Hidrojen Transfer Reaksiyon Enerjileri (Hydrogen Transfer Reaction Energies)
KS	Kohn-Sham (Kohn-Sham)
LCCD	Doğrusallaştırılmış İkili Uyarılmış Bağlanmış Küme (Linearized Coupled-Cluster Doubles)
MAE	Ortalama Mutlak Hata (Mean Absolute Error)
МО	Moleküler Orbital (Molecular Orbital)
MP	Møller-Plesset
MP2	İkinci Dereceden Møller-Plesset Pertürbasyon Teorisi (Second Order Møller-Plesset Perturbation Theory)
MP3	Üçüncü Dereceden Møller-Plesset Pertürbasyon Teorisi (<i>Third Order Møller-Plesset Perturbation Theory</i>)
MRCI	Multireferans Konfigürasyon Etkileşimi (<i>Multireference Configuration Interaction</i>)

NOF	Aritmetik İşlem Sayısı (Number of Flops)	
NRE	Çekirdek İtme Enerjisi (Nuclear Repulsion Energy)	
00	Optimize Orbitalli (Orbital Optimized)	
PDM	Parçacık Yoğunluk Matrisi (Particle Density Matrix)	
PHL	Parçacık-boşluk merdiven (Particle-Hole Ladder)	
PPL	Parçacık-parçacık Merdiven (Particle-Particle Ladder)	
РТ	Proton-Transfer Edilmiş (Proton-Transferred)	
RHF	Kısıtlamalı Hartree-Fock (Restricted Hartree-Fock)	
RI	Bire Çözümleme (Resolution of the Identity)	
RMS	Ortalama Karekök (Root Mean Square)	
ROHF	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock)	
ROHF SCF	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>)	
ROHF SCF SO	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital	
ROHF SCF SO SPE	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital Tek Nokta Enerjisi (<i>Single Point Energy</i>)	
ROHF SCF SO SPE TEI	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital Tek Nokta Enerjisi (<i>Single Point Energy</i>) İki Elektron Integrali (<i>Two Electron Integral</i>)	
ROHF SCF SO SPE TEI UHF	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> Hartree-Fock) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital Tek Nokta Enerjisi (<i>Single Point Energy</i>) İki Elektron Integrali (<i>Two Electron Integral</i>) Kısıtlamasız Hartree-Fock (<i>Unrestricted Hartree-Fock</i>)	
ROHF SCF SO SPE TEI UHF VAE	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> <i>Hartree-Fock</i>) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital Tek Nokta Enerjisi (<i>Single Point Energy</i>) İki Elektron Integrali (<i>Two Electron Integral</i>) Kısıtlamasız Hartree-Fock (<i>Unrestricted Hartree-Fock</i>) Dikey Bağlanma Enerjileri (<i>Vertical Attachment Energies</i>)	
ROHF SCF SO SPE TEI UHF VAE VDE	Kısıtlamalı Açık Kabuklu Hartree-Fock (<i>Restricted Open-Shell</i> <i>Hartree-Fock</i>) Kendi İçinde Uyumlu Alan Teorisi (<i>Self-Consistent Field Theory</i>) Spin Orbital Tek Nokta Enerjisi (<i>Single Point Energy</i>) İki Elektron Integrali (<i>Two Electron Integral</i>) Kısıtlamasız Hartree-Fock (<i>Unrestricted Hartree-Fock</i>) Dikey Bağlanma Enerjileri (<i>Vertical Attachment Energies</i>) Dikey Elektron Koparılma Enerjisi (<i>Vertical Detachment Energy</i>)	

ZPVE Sıfır Noktası Titreşim Enerjisi (Zero Point Vibrational Energy)

Simgeler

E_{nuc}	Nükleer itme enerjsi (Nuclear Repulsion Energy)
E_{scf}	SCF enerjisi
ϵ	Orbital enerjisi
ω	Uyarılma enerjisi
1. GİRİŞ

Kuantum kimyası, geleneksel yaklaşımların ötesine geçerek atomik ve moleküler etkileşimleri doğru bir şekilde hesaplamak için birçok teorinin ve hesaplamalı yöntemin geliştirilmesine olanak sağlamaktadır. Bu yöntemler, atom ve moleküllerin yapılarının, özelliklerinin, reaksiyonlarının kısacası doğalarının anlaşılmasında oldukça faydalıdır. Hesaplamalı yöntemler, ilgili kimyasal sistemler için kuantum mekaniğinin ilkelerini ve temel prensiplerini kullanarak, Shrödinger eşitliğini [1] çözmede kullanılır.

1.1. Klasik Dalga Fonksiyonu ve Schrödinger Eşitliği

Schrödinger denklemi 1926 yılında Erwin Schrödinger tarafından tanımlanmıştır [1]. Kuantum mekaniğinin en temel eşitliklerinden biridir ve ilgili kimyasal sistem için çözümleri dalga fonksiyonlarını bulmamızı sağlar. Klasik dalga denklemi Newton fiziğinin temellerine bağlı iken, Schrödinger eşitliği tamamen kuantum mekaniğine ait bir denklemdir. Schrödinger denklemi (zamandan bağımsız) Hidrojenin ötesinde analitik bir çözümünün mevcut olmamasıyla, ilk başlarda kuantum mekaniğinin sınırlarına ulaşıldığını düşündürse de, daha sonra yaklaştırma yöntemlerinin ortaya konulmasıyla ilerlemiştir.

1.2. Yaklaştırma Teknikleri

Schrödinger denkleminin çözümü, denklemdeki Hamiltonian matrisinin diyagonalize edilip, özdeğer ve özfonksiyonlarının bulunması anlamına gelmektedir. Birbiriyle etkileşen parçacıklar içeren çok elektronlu sistemlerde Schrödinger denkleminin yaklaşık çözümlerine erişebilmek için yaklaştırma tekniklerinden faydalanılmaktadır.

1.2.1. Varyasyon Yöntemi

Varyasyon yöntemi, Schrödinger denkleminin analitik çözümünün bulunmadığı durumlarda yaklaşık çözümlerle sistemin enerjisini hesaplamak için kullanılır. Burada sistemi

tanımlamak için bir deneme dalga fonksiyonu seçilir, ve bu deneme dalga fonksiyonu belirli bir hal için gerçek dalga fonksiyonlarının doğrusal kombinasyonu şeklinde yazılabilir. Bu yöntemle, sistemin temel hal enerjisi için bir üst sınır belirlenmiş olur. Varyasyonel integral aşağıdaki gibi tanımlanabilir.

$$E_0 \leq \frac{\langle \Psi^* | \dot{H} | \Psi \rangle}{\langle \Psi^* | \Psi \rangle} \tag{1}$$

Burada, Ψ deneme dalga fonksiyonu, E_0 ise temel hal enerjisidir. Birçok deneme fonksiyonu için, varyasyon integralinin en düşük değeri aranır ve ne kadar düşük olursa temel hal enerjisine o kadar yaklaşılmış olur. Seçilen deneme dalga fonksiyonuna eklenen açılım parametreleriyle, varyasyonel esneklik artırılarak gerçek enerjiye daha çok yaklaşılabilir. Varyasyon prensibiyle çalışan yöntemler genellikle yaklaşık çözümler için kullanılır, doğruluğu yüksek çözümler için daha sofistike yöntemler ile ilerlenmesi gerekir.

1.2.2. Pertürbasyon Yöntemi

Pertürbasyon teorisinde sisteme ait Hamiltonian, perturb edilmiş ve edilmemiş iki kısma ayrılarak tanımlanır [Eşitlik (2)]. Burada perturb edilmiş kısım, sistemdeki çok küçük bir değişikliğe karşılık gelir.

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{2}$$

Burada, \hat{H} perturb sistemi, \hat{H}_0 perturb edilmemiş sistemi, \hat{V} ise perturbasyonu ifade etmektedir. Burada amaç, perturb edilmiş sistemin özdeğer ve özfonksiyonlarını, perturb edilmemiş sisteminkilerle ilişkilendirmektir. Bu yüzden, perturbasyon teriminin önüne bir λ parametresi eklenir ve bu parametre 0 ya da 1 değerini alarak pertürbasyonun varlığını ifade eder.

1.3. Elektron Korelasyon Yöntemleri

Elektronik Schrödinger denklemi, elektron sayısı arttıkça karmaşıklaşan bir problemdir. Elektronlar arasındaki etkileşim, elektronların hareketleri, spinleri ve konumları gibi parametreler ile değişebilir. Hartree-Fock teorisi, birçok durum için makul sonuçlar sağlasa da, elektron korelasyonunun önemli olduğu durumlar için sağlam bir tanım içermez. HF enerjisi toplam enerjinin çok büyük bir bölümüne karşılık gelir fakat elektron-elektron etkileşimlerini yeterince doğru sağlayamaz. Çoğu durumda, elektron hareketlerindeki bu ilişkinin daha iyi tanımlanması, kimyasal problemlerin açıklanmasında kritik rol oynar. Elektronlar arasındaki bu etkileşim, korelasyon enerjisi olarak tanımlanır.

Elektron korelasyon enerjisi, belirli bir baz seti için, gerçek enerji ile Hartree-Fock (HF) enerjisi arasındaki fark olarak tanımlanabilir.

$$E_{corr} = E_{exact} - E_{HF} \tag{3}$$

Elektron korelasyon yöntemleri arasından ilk olarak konfigürasyon etkileşiminden (*Configuration Interaction*, CI) bahsedilebilir. CI yönteminin dalga fonksiyonu tüm olası slater determinantlarının doğrusal kombinasyonu ile ifade edilmektedir.

$$|\Psi\rangle = \sum_{I} c_{I} \Psi_{I} \tag{4}$$

Ancak, bu yöntem tüm olası determinantların dikkate alınmasından dolayı oldukça maliyetlidir ve günümüz teknolojisi ile yalnızca küçük sistemlere uygulanabilmektedir. Maliyet göz önüne alındığında, korelasyon enerjisinin hesaplanması için daha iyi ölçeklendirilmiş yöntemler geliştirilmiştir. Bu yöntemlerden oldukça önemli ve popüler olanlar Møller–Plesset (MP) pertürbasyon teorisi ve Bağlanmış Küme (CC) teorisi başlıkları altında toplanabilir.

1.3.1. Møller–Plesset (MP) Pertürbasyon Teorisi

Møller–Plesset (MP) pertürbasyon teorisi, kuantum mekaniği alanında geliştirilen post-HF yöntemlerden biridir [2–4]. Sistemin Hamiltonianı aşağıdaki gibi referans (\hat{H}_0) ve pertürbasyon (\hat{V}) kısımlarına ayrılarak tanımlanır.

$$\hat{H} = \hat{H}_0 + \lambda \hat{V} \tag{5}$$

Burada, λ pertürbasyon varlığının belirlenmesi için tanımlanan bir yardımcı parametredir. Daha sonra enerji ve dalga fonksiyonu bir Taylor serisine açılır ve aşağıdaki şekilde ifade edilir (Rayleigh-Schrödinger).

$$\Psi_n = \Psi_n^0 + \lambda \Psi_n^1 + \lambda^2 \Psi_n^2 + \dots$$
(6)

$$E_{n} = E_{n}^{0} + \lambda E_{n}^{1} + \lambda^{2} E_{n}^{2} + \dots$$
(7)

Burada, pertürbasyon serilerine açılan enerji ve dalga fonksiyonu aşağıdaki Schrödinger denkleminde yerine yazılır ve denklemin farklı λ parametreleri ile çözümünden enerji eşitlikleri elde edilir.

$$\hat{H}\Psi_n = E_n\Psi_n \tag{8}$$

Özetle, farklı birkaç açılımla elde edilebilecek olan MP2 korelasyon enerjisi son olarak aşağıdaki şekilde ifade edilebilir.

$$\Delta E_{MP2} = \frac{1}{4} \frac{\langle ab || ij \rangle \langle ij || ab \rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} \tag{9}$$

Burada, ϵ orbital enerjilerini ifade etmektedir. MPn yöntemler, tahmin kalitesi bakımından tartışılır olmasına rağmen en sık kullanılan post-HF yöntemlerdendir. Diğer korelasyon yöntemlerine kıyasla düşük maliyeti $[O(N^5)$ skalasında] ve varyasyonel olmasa da boyut-tutarlı oluşu popülaritesini açıklamaktadır.

1.3.2. Bağlanmış Küme (CC) Teorisi

Bağlanmış Küme (*Coupled-Cluster*, CC) teorisi varyasyonel olmayan boyut tutarlı bir yöntem olarak bilinmektedir [5–10]. Son yıllarda, daha yüksek teori seviyesinde hesaplamalar yapılmak istendiğinde, FCI sınırına yakınsamasından dolayı büyük popülerlik kazanmıştır. Dalga fonksiyonunun eksponansiyel açılımı ile oldukça karmaşık ve çözülmesi zor denklemlere sahip olsa da, sağladığı yüksek doğrulukta korelasyon enerjileri sebebiyle tercih edilmektedir. CC dalga fonksiyonu aşağıdaki şekilde ifade edilir.

$$|\Psi_{CC}\rangle = e^T |\Psi_{HF}\rangle \tag{10}$$

Bu eşitlikteki $e^{\hat{T}}$ üstel fonksiyonu bir Taylor serisine açılır.

$$e^{\hat{T}} = 1 + \hat{T} + \frac{\hat{T}^2}{2!} + \frac{\hat{T}^3}{3!} + \dots$$
 (11)

Burada, küme uyarma operatörü $\hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots$ şeklinde ifade edilir.

$$\hat{T}_1 = \sum_{i}^{Nocc} \sum_{a}^{Nvir} t_i^a \hat{a}^{\dagger} \hat{i}$$
(12)

$$\hat{T}_2 = \sum_{ij}^{Nocc} \sum_{ab}^{Nvir} t_{ij}^{ab} \hat{a}^{\dagger} \hat{b}^{\dagger} \hat{j} \hat{i}$$
(13)

Burada t_i^a ve t_{ij}^{ab} sırasıyla tekli ve ikili amplitutlardır, \hat{a}^{\dagger} ve \hat{i} sırasıyla oluşturma (creation) ve yok etme (annihilation) operatörleridirler. DF-CCSD korelasyon enerjisi aşağıdaki şekilde yazılabilir.

$$\Delta E = \langle 0|e^{-\hat{T}}\hat{H}_N e^{\hat{T}}|0\rangle \tag{14}$$

1.3.3. Optimize Orbitalli Bağlanmış Küme Yöntemleri

Optimize orbitalli (*Orbital Optimized*, OO) elektron korelasyon yöntemleri modern kuantum kimyasında oldukça yüksek ilgi görmektedir [11–37]. İkili uyarılmış bağlanmış küme (*Coupled-Cluster Doubles*, CCD) [11–13, 15, 23] bağlanmış çift fonksiyonelleri [38, 39], doğrusallaştırılmış ikili uyarılmış bağlanmış küme (*Linearized Coupled-Cluster Doubles*, LCCD) [28, 40], yoğunluk-kümülant fonksiyonel teorisi (*Density-Cumulant Functional Theory*, DCFT) [31], ikinci ve üçüncü dereceden pertürbasyon teorisi (*Second and Third Order Møller-Plesset Perturbation Theory*, MP2 and MP3) [23, 24, 27, 29, 32, 33, 41, 42], ve MP2.5 [34] yöntemleri gibi çeşitli bağlanmış küme (CC) ve pertürbasyon teorisi yöntemleri için OO yöntemler sunulmuştur. Bu çalışmalar, serbest radikaller [20, 27, 28, 33, 43–45], simetri kırılma problemleri [12, 23, 24, 27], geçiş halleri [20, 43–45], bağ kırılması [25, 30, 46], açık kabuk sistemlerdeki zayıf etkileşimler [32, 34, 40, 41, 47], iyonlaşma potansiyellerinin [48] ve elektron afinitesinin [49] doğrudan hesaplanması ve kimyasal reaktivitenin değerlendirilmesi [50] gibi zorlu problemlerin hesaplanmasında OO yöntemlerin çok faydalı olduğunu göstermiştir.

1998 yılında yapılan bir çalışmada, Sherrill vd. [12] konvansiyonel dört indisli integrallerle OCCD yönteminin enerji ve analitik gradientlerini sunmuşlardır. Bu çalışmada, DF-OCCD ile gösterilen DF yaklaşımlı OCCD yöntemi [12, 23, 25] için enerji ve analitik gradientler sunulmuştur. DF tekniğine ek olarak, enerji hesaplamaları için CD yaklaşımı da dikkate alınmış ve elde edilen yöntem CD-OCCD ile gösterilmiştir. Yayınlanan formüller Bozkaya ve Ünal tarafından kodlanıp, Bozkaya'nın DFOCC modülüne [32, 33, 40–42, 51–54] eklenmiştir. Yeni yöntemlerimiz hem kısıtlamalı hem de kısıtlamasız Hartree–Fock (RHF ve UHF) versiyonlarına sahiptir. Daha önceki çalışmalarda [53], DF-CCSD ve DF-CCD yöntemlerinin analitik gradientleri sunulsa da bunlar sadece RHF referansını içermektedir. Bu nedenle, bu tez çalışması kapsamında UHF tabanlı DF-CCD yöntemi ilk kez uygulanmaktadır. Bu çalışmada DF-OCCD yöntemi, bağ uzunluklarına, hidrojen transfer reaksiyonlarına, zayıf etkileşimlere ve simetri kırılma problemlerine uygulanmıştır.

1.3.4. MP ve CC Yöntemler için Hareket Denklemi (EOM)

Uyarılma enerjilerinin (*Excitation Energies*, EE) doğru hesaplanması, modern kuantum kimyasındaki en zorlu problemlerden biridir. CC yöntemleri için hareket denklemleri, çok çeşitli kimyasal sistemler için uyarılmış hal özelliklerinin hesaplanmasında oldukça doğru sonuçlar sağlamaktadır [55–73]. CCSD modeline dayalı EOM yaklaşımının (EOM-CCSD) doğruluğunun 0,1-0,2 eV olduğu bilinmektedir [57, 60]. Bununla birlikte, temel hal CC yöntemlerinde olduğu gibi, EOM-CC yöntemleri için de hesaplama maliyeti ve disk/bellek gereksinimleri sistem boyutuyla dik eğimli bir şekilde ölçeklenir.

Tez çalışması kapsamında, özellikle EOM-CCSD için en maliyetli terim olan parçacık-parçacık merdiven (*Particle–Particle Ladder*, PPL) terimi için geliştirilmiş bir algoritma ile yoğunluk uyarlanmış EOM-CCSD yönteminin yeni bir uygulaması sunulmuştur. Sunulan denklemler, mevcut yazarlar tarafından yeni bir bilgisayar kodunda uygulanmış ve MacroQC paketine eklenmiştir [74]. Geliştirilen DF-EOM-CCSD yönteminin hesaplama süresi Q-chem 5.3 yazılımınınki ile karşılaştırılmıştır [75]. DF-EOM-CCSD yöntemi, uyarılma enerjilerini elde etmek için bir test setine uygulanmıştır.

Ek olarak, EOM-MP yöntemler de yoğunluk uyarlaması tekniğiyle tez çalışması kapsamında geliştirilmiştir. EOM-CCSD ile ulaşılamayan daha büyük moleküller için nispeten daha düşük maliyetli yöntemlere de ihtiyaç duyulabilmektedir. Düşük maliyetli yöntemler skalasında ilk aday EOM-MP2 [76, 77] yöntemidir. Bununla birlikte, MP2 yönteminin açık kabuklu kimyasal sistemler üzerinde zorlukları olduğu iyi bilinmektedir [19–23, 26, 27, 32, 33]. Bu nedenle, OMP2 yöntemi MP2 yöntemine göre daha sağlam bir alternatif olarak görünmektedir. Ek olarak, yeni eklenen κ parametresi ile çok daha doğru sonuçlar elde edilmiştir. Tez kapsamında, DF tekniği ile geliştirilen EOM-OMP2 yöntemi (DF-EOM-OMP2) ilk kez sunulmaktadır. Burada geliştirilen formülasyonlar, tez kapsamında yeni bir bilgisayar kodunda uygulanmış ve MacroQC yazılım paketine eklenmiştir [74]. Yine bu çalışmada, DF-EOM-OMP2 yöntemine ek olarak DF-EOM-MP2 yöntemi de geliştirilmiştir. DF-EOM-OMP2 vönteminin sonuçları, çeşitli moleküler sistemlerin uyarılma enerjileri için DF-EOM-MP2 ve DF-EOM-CCSD yöntemlerinin

sonuçlarıyla karşılaştırılmıştır. Dahası, EOM-MP yöntemlerinden, DF-EOM-MP3, DF-EOM-OMP3, DF-EOM-MP2.5 ve DF-EOM-OMP2.5 yöntemleri de bu çalışma kapsamında ilk kez geliştirilmiştir.

1.4. Uygulama Çalışmaları ile İlgili Genel Bilgiler

Tez çalışması kapsamında geliştirilen yöntemlerin doğruluğunun ve etkinliğinin değerlendirilmesi, ayrıca ilgili yöntemlerin ışığında zorlu elektronik durumlara sahip yapıların ve enerjilerinin aydınlatılması amacıyla, farklı moleküler özelliklerdeki uygulama setleri oluşturulmuştur. Bu setler açık ve kapalı kabuklu sistemler, çeşitli iki veya daha fazla atomlu radikaller, poliaromatik hidrokarbonların radikalleri, organik kromoforlar ve su kümelerinden oluşturulmuştur [78–85].

1.4.1. Açık ve Kapalı Kabuklu Kimyasal Sistemler

Öncelikle süre hesaplamalarında kullanılabilmesi amacıyla, bir alkan seti oluşturulmuş [86], bu sayede yöntemlerin etkinlik değerlendirmeleri gerçekleştirilmiştir. Tez çalışması kapsamında geliştirilen yöntemler için gereken durumlarda, bir sunucu bilgisayar üzerindeki tek çekirdekte süre hesaplamaları için alkan seti kullanılmıştır. Süre hesaplamalarında kullanılan alkan seti için optimize geometrilere kısım EK 1'den ulaşılabilir. Alkan seti için limitler, çoğunlukla karşılaştırılacak olan yöntem için piyasadaki versiyonların izin verdiği ölçüde belirlenmiştir. Geliştirdiğimiz yöntemlerin birçoğunda, yüksek teori seviyelerine çıkıldığında dahi, kullanılan integral yaklaşım teknikleri ve programlanacak düzeydeki formülasyonların uygun faktörlenmeleriyle, büyük ölçekli alkan seti üyeleriyle kolaylıkla çalışılabilmektedir.

Sonrasında, geliştirilen yöntemlerin doğruluğunu değerlendirmek amacıyla, açık ve kapalı kabuklu kimyasal sistemler kullanılarak test setleri oluşturulmuştur. Bu setler, literatürde benzer çalışmalarda sıklıkla kullanılan yapılardan, deneysel verileri veya yüksek seviyeli referans enerjileri mevcut olan moleküllerden oluşturulmuştur [78–85]. Kapalı kabuk seti

için [83] EK 2, açık kabuklu setler için [82] EK 3 ve EK 5, organik kromoforlardan oluşan set için [81] EK 4 ve poliaromatik hidrokarbonlardan oluşturulan set için [79, 80] EK 6 kısımlarına bakılabilir.

1.4.2. Anyonik Su Kümeleri

Su kümelerinin yapıları ve enerjileri, sıvı su, buz ve hidratlar gibi yoğunlaşmış sulu ortamlarda bağlanma biçimlerinin ve kooperatif etkilerinin anlaşılması için yararlı modeller oluşturmaktadır. Bu nedenle, karmaşık yoğunlaştırılmış faz ortamlarında meydana gelen olayların daha iyi anlaşılabilmesi için, bu sistemlerin moleküler özelliklerini araştıran kapsamlı çalışmalar yapılmıştır [87–102]. Protonlanmış su kümeleri H⁺(H₂O)_n, ve negatif yüklü su kümeleri (H₂O)_n⁻, aynı zamanda, su içinde katyonların ve fazla elektronların çözünme modelleri olarak görev yapan önemli ilgi alanlarındandır. Boyut-spesifik spektroskopi, bu yüklü türler için nötral kümelere göre kolaylık sağlamaktadır. Bu nedenle, H⁺(H₂O)_n ve (H₂O)_n⁻ kümeleri için önemli ölçüde spektroskopik veri mevcuttur [103–105].

Hidratlı elektronlar, atmosfer kimyası ve radyasyon kimyası gibi birçok kimyasal ve biyolojik işlemlerde oynadığı önemli rol sebebiyle için büyük ilgi uyandırmaktadır [106]. Küçük anyonik su kümeleri $(H_2O)_n^-$, n = 2 - 6, hidratlı elektronun doğasını anlamak için uygun sistemler sunmaktadır. Bu küçük boyutlu kümeler için hem teorik [91–93, 100– 102, 107–116] hem de deneysel [103, 104, 117–121] bir çok çalışma gerçekleştirilmiştir. Bununla birlikte, küçük boyutlu su kümelerindeki fazla elektronun bağlanma özellikleri, genellikle gerçek yoğunlaşmış faz ortamlarındakinden farklı olmaktadır [122]. Kümeye ait bağlanma özelliklerinin, küme boyutu arttıkça yoğunlaşmış faz davranışına yakınlaşması beklenmektedir.

Hesaplama yöntemleri açısından, açık kabuklu kimyasal sistemler, kapalı kabuk sistemlere göre çok daha zorludur. Post-Hartree-Fock (HF) yöntemlerde, açık kabuklu sistemler için sık sık spin ve boşluk simetrisi kırılması [24, 27, 123–132] problemleri gözlemlenmektedir. Bu gibi durumlarda, orbital-relaksasyon etkileri oldukça önemli hale gelmektedir [12, 20, 21, 29, 43]. Optimize-obitalli yöntemlerin açık kabuklu kimyasal sistemler için çok yararlı

olduğu gösterilmiştir [12, 20, 24, 27–29, 45]. 2013 ve 2016 yıllarındaki çalışmalarda [28, 40], optimize-orbitalli doğrusallaştırılmış bağlanmış küme (*Orbital-Optimized Linearized Coupled-Cluster*, OLCCD) yönteminin [28] ve yoğunluk uyarlanmış versiyonunun (DF-OLCCD) [40] oldukça hassas denge geometrileri ve harmonik titreşim frekansları sağladığı gösterilmiştir. Ayrıca, OLCCD yöntemlerinin, tekli ve ikili bağlanmış küme yöntemine (*Coupled-Cluster Singles and Doubles*, CCSD) göre önemli ölçüde daha iyi olduğu gösterilmiştir [133]. Dahası, bu yöntemlerin performanslarının, açık kabuklu moleküllerin titreşim frekansları için, CCSD(T) yönteminden bile daha iyi olduğu söylenebilir [134, 135]. Bu nedenle, OLCCD ve DF-OLCCD yöntemlerinin açık ve kapalı kabuklu kimyasal sistemler için oldukça umut vaadettiği sonucuna varılmıştır.

Anyonik su kümeleri için birçok kuantum mekaniksel çalışma yapılmış olmasına rağmen [91–93, 100, 108–116], az sayıda yapı içeren bu çalışmalar çoğunlukla yoğunluk fonksiyonu teorisi (*Density Functional Theory*, DFT) ve ikinci dereceden Møller–Plesset pertürbasyon teorisi (*Second-Order Møller–Plesset Theory*, MP2) seviyeleriyle sınırlanmıştır. Ayrıca, bu çalışmaların bir kısmı yalnızca DFT ve MP2 seviyelerindeki dikey elektron koparılma enerjilerine (*Vertical Detachment Energies*, VDE) odaklanmıştır. Bu çalışma kapsamında, anyonik pentamer ve heksamer su kümelerinin $[(H_2O)_5^-$ ve $(H_2O)_6^-]$ yapıları, VDE'leri, bağıl ve bağlanma enerjileri, bugüne kadarki en kapsamlı şekliyle, DF-OLCCD, CCSD ve CCSD(T) gibi yüksek seviyeli bağlanmış küme yöntemler ile sunulmaktadır.

1.4.3. Katyonik Su Kümeleri

İyonize su kümeleri, $(H_2O)_n^+$, katalitik kimya [136–138], radyoterapi [139] ve foto-uyarılmış DNA baz çiftlerinin enerji salınımı gibi birçok kimyasal ve biyolojik süreçteki kritik rolleri nedeniyle oldukça önemlidir [140–145]. Küçük boyutlu katyonik su kümeleri $(H_2O)_n^+$, n = 2 - 6 iyonize suyun doğasını anlamak için uygun modeller olarak kullanılmaktadır. Kümelerin bağlanma özelliklerinin, küme boyutu arttıkça yoğun faz davranışına yakınsaması beklenmektedir. Tartışılan önemi nedeniyle, bu tür küçük boyutlu iyonize kümeler için çok sayıda hem deneysel [139, 146–148] hem de teorik [105, 149–156] çalışma yapılmıştır. Açık kabuklu moleküler sistemler, kapalı kabuklu moleküllere kıyasla elektronik açıdan daha karmaşıktır [12, 21, 24, 27, 29, 44, 45, 131, 132]. Yapılan çalışmalar, optimize orbitalli yöntemlerin açık kabuklu kimyasal sistemler için çok yararlı olduğunu göstermiştir [12, 20, 21, 24, 27, 29, 34, 44, 45]. Önceki çalışmalarda [40, 44, 84], OLCCD yönteminin [28, 40] açık kabuklu sistemler için çok isabetli moleküler özellikler sağladığı ve performansının CCSD [133] yönteminden önemli ölçüde daha iyi olduğu gösterilmiştir. Ayrıca, açık kabuklu moleküllerin harmonik titreşim frekansları için performansı, CCSD(T) ile CCSD'den bile daha iyi olabilir [134]. Bu nedenle, bu çalışmada, dikkate alınan iyonize kümelerin optimize edilmiş geometrilerini ve harmonik titreşim frekanslarını elde etmek için yoğunluğa uyarlanmış OLCCD (DF-OLCCD) yöntemi [40] kullanılmıştır.

Moleküler yapıların hatasız bir şekilde hesaplanması, model kümelerin doğru bir şekilde tanımlanması ve doğalarının anlaşılması için ilk aşamayı oluşturmaktadır. İyonize su kümeleri için çeşitli teorik çalışmalar [105, 149–155] yapılmış olmasına rağmen, DFT ve MP2 seviyesinde sınırlı sayıda yapı hesaplanmıştır. Açık kabuklu moleküler sistemler için yaygın DFT fonksiyonellerinin ve standart MP2 yönteminin sonuçlarının, kapalı kabuklu kimyasal sistemler kadar hatasız olmadığı bilinmektedir. Önceki çalışmalarda [12, 20, 21, 24, 27, 29, 34, 44, 45], standart yöntemlerin açık kabuklu moleküller için önemli ölçüde başarısız olabileceği ve optimize orbitalli yöntemlerin bu tür sistemler için yüksek doğrulukta sonuçlar elde etmek için çok yararlı olduğu gösterilmiştir. Bu çalışmada, DF-OLCCD, CCSD ve CCSD(T) gibi yüksek seviyeli CC yöntemlerle iyonize su kümelerinin [(H_2O)⁺_n, n = 2 - 6] yapıları, dikey bağlanma enerjileri (*Vertical Attachment Energies*, VAE), bağıl ve bağlanma enerjileri için bugüne kadarki en doğru ve kapsamlı çalışma sunulmaktadır.

1.5. Tez Çalışmasının Amacı ve Kapsamı

Bu tez çalışması, yoğunluk uyarlaması (*Density-Fitting*, DF) ve Cholesky Ayrıştırması (*Cholesky Decomposition*, CD) yaklaştırmaları uygulanmış optimize orbitalli bağlanmış küme yöntemi (DF-OCCD ve CD-OCCD) için enerji ve amplitut ifadelerinin programlandığı ilk çalışma olmuştur [157]. Ek olarak, Bozkaya vd. nin [53] 2016 yılında spin

orbital denklemlerini yayınladığı DF-CCSD yönteminin kısıtlamasız HF (Unrestricted Hartree-Fock, UHF) referansına spin adaptasyonu gerçekleştirilip bu çalışma kapsamında programlanmıştır. Bu programlar, Psi4 yazılımında [158, 159] Dr. Bozkaya'nın geliştirdiği DFOCC modülüne dahil edilmiştir. Ayrıca, yine tez çalışması kapsamında standart ve optimize orbitalli MP ve CC yöntemler için yoğunluk uyarlanmış (DF) hareket denklemi (Equation-of-Motion, EOM) formülasyonları geliştirilmiştir. Bu formülasyonlar, hem kısıtlamalı hem de kısıtlamasız HF (RHF ve UHF) referanslarına adapte edilmiştir. Bu çalışma, standart EOM-CC ve EOM-MP yöntemlerinin büyük moleküler sistemlere uygulanabilmesi adına DF ve CD tekniklerinin kullanıldığı, ek olarak EOM-OO-MP ve EOM-OO-CC yöntemlerinin geliştirilip programlandığı literatürdeki ilk çalışmadır. Geliştirilen, EOM-MP, EOM-CC, EOM-OO-MP ve EOM-OO-CC yöntemleri ortak bellek paralel programlama yöntemiyle C++ dilinde etkin bir şekilde programlanarak, DF ve CD yaklaşımlarının uygulanmış olduğu literatürdeki ilk programlama çalışmasıdır. Tez çalışması kapsamında üretilen kodların tamamı, araştırma grubumuz tarafından geliştirilen MacroQC [74, 160] programına eklenmiştir.

Tez çalışması kapsamında geliştirilen EOM formülasyonları için belirlenen adları: DF/CD-EOM-CCSD DF-EOM-CCD, DF-EOM-MP2, yöntem [161], DF-EOM-MP3, DF-EOM-MP2.5, DF-EOM-OCCD, DF-EOM-OMP2, DF-EOM-OMP3, DF-EOM-OMP2.5 şeklindedir. Bu yöntemlerin tamamı için, spin orbital, RHF ve UHF bazında formülasyonlar ilerleyen başlıkta açıkça sunulmuştur. İlgili formülasyonlar, açıkça ve tüm faktörizasyonlarıyla birlikte sunulmuştur. Bu tez çalışması kapsamında üretilen programlar üst düzey ab initio yöntemlerin çok daha büyük ölçekli zorlu kimyasal sistemlere uygulanmasını sağlayacaktır.

Bu tez çalışması kapsamında geliştirilen programlar zorluk derecesi yüksek kimyasal sistemlere uygulanmış ve bu sayede ilgili sistemlerin doğasının daha iyi anlaşılmasına katkıda bulunulmuştur [84, 85, 157, 161–163]. Geliştirilen yöntemlerin doğruluk ve etkinlik analizleri çeşitli uygulama setleri oluşturularak test edilmiştir. Bu amaçla, bir dizi açık ve kapalı kabuklu kimyasal sistem göz önüne alınmıştır. Göz önüne alınan kimyasal sistemler için optimize geometrilerin tamamı ekte sunulmuştur. Ek olarak, açık kabuklu kimyasal

sistemler olan anyonik [84] ve katyonik [85] su kümelerinin 1-6 üye sayısındaki bir çok konformeri aydınlatılmış, CCSD(T)/CBS seviyesinde bağıl, bağlanma ve dikey elektron koparılma enerjileri hesaplanmıştır.

Tez kapsamında geliştirilen yöntemler, teorik/hesaplamalı kimyacıların kullanabileceği ücretsiz yazılımlara eklenerek sunulmuştur. Geliştirilen yöntemlerden bazıları, zorlu kimyasal setlere uygulanarak, doğruluğu ve etkinliği açısından uygunluğu gösterilmek üzere yayınlamıştır [84, 85, 157, 161–163].

2. YÖNTEM

Bu kısımda, tez çalışması kapsamında geliştirilen yöntemlere ait formülasyonlar sunulmaktadır. Formülasyonlarda kullanılan notasyonda, AO'lar μ , ν , λ , σ , ... sembolleri ile, genel MO'lar p, q, r, s, ... sembolleri ile, dolu MO'lar i, j, k, l, ... sembolleri ile, son olarak da boş olan MO'lar ise a, b, c, d, ... sembolleri ile tanımlanmaktadır. Ayrıca, ilgili formüllerin kısıtlamasız spin versiyonlarında, indislerde kullanılan büyük harfler alfa spinini, küçük harfler ise beta spinini ifade etmek için kullanılmaktadır.

2.1. İntegral Ayrıştırma Teknikleri

Yoğunluk uyarlaması tekniği (DF), 4-indisli tensörlerin 3-indisli olanlar cinsinden ifade edilmesine yarayan, bu sayede integral saklama maliyetlerinin büyük ölçüde azalmasına yardımcı olan bir integral yaklaştırmasıdır [32, 164–168]. Literatürde bire çözümleme (*Resolution of Identity*, RI) olarak da adlandırılmaktadır. İki elektron integralleri (*Two-Electron Integral*, TEI), DF ve CD yaklaştırmaları kullanılarak atomik orbital (AO) bazında aşağıdaki gibi ifade edilebilmektedir.

$$(\mu\nu|\lambda\sigma)_{DF} = \sum_{Q}^{N_{aux}} b^Q_{\mu\nu} b^Q_{\lambda\sigma}$$
(15)

CD yaklaşımında, CD vektörleri $b^Q_{\mu\nu}$, CD prosedüründeki ana baz seti integrallerinden elde edilir ve Q bir Cholesky indisidir. DF yaklaşımında, DF faktörleri olan $b^Q_{\mu\nu}$ tensörleri aşağıdaki gibi tanımlanabilir.

$$b^{Q}_{\mu\nu} = \sum_{P}^{N_{aux}} (\mu\nu|P) [\mathbf{J}^{-\frac{1}{2}}]_{PQ}$$
(16)

Burada,

$$(\mu\nu|P) = \int \int \chi_{\mu}(\boldsymbol{r}_{1})\chi_{\nu}(\boldsymbol{r}_{1})\frac{1}{r_{12}}\varphi_{P}(\boldsymbol{r}_{2})\,d\boldsymbol{r}_{1}d\boldsymbol{r}_{2}$$
(17)

ve

$$J_{PQ} = \int \int \varphi_P(\boldsymbol{r}_1) \frac{1}{r_{12}} \varphi_Q(\boldsymbol{r}_2) \, d\boldsymbol{r}_1 d\boldsymbol{r}_2 \tag{18}$$

Burada, sırasıyla $\chi_{\mu}(\mathbf{r})$ ve $\varphi_{P}(\mathbf{r})$ ana ve yardımcı baz fonksiyonlardır. ERI tensörleri, AO bazındakine benzer şekilde, moleküler-orbital (MO) bazında aşağıdaki gibi yazılabilir.

$$(pq|rs)_{DF} = \sum_{Q}^{N_{aux}} b_{pq}^{Q} b_{rs}^{Q}$$
 (19)

Burada, b_{pq}^Q MO bazında CD/DF tensörüdür.

2.2. Yoğunluk Uyarlanmış Tekli ve İkili Uyarılmış Bağlanmış Küme Teorisi (DF-CCSD)

Kısıtlamasız Hartree-Fock (UHF) referansı için, Yoğunluk Uyarlaması (DF) ve Cholesky Ayrıştıması (CD) yaklaştırmaları uygulanmış, tekli ve ikili uyarılmış bağlanmış küme (*Coupled-Cluster Singles and Doubles*, CCSD) yöntemi için enerji ve amplitut ifadeleri bu kısımda sunulmaktadır. Ek olarak, UHF referansı için DF-CCSD yöntemine ait yoğunluk matrisleri de sunulmaktadır. Kapalı kabuklu sistemler için uygun olan kısıtlamalı Hartree Fock (RHF) referansı için geliştirilen DF-CCSD yöntemine ait formulasyon, Bozkaya vd. [53] tarafından önceki çalışmalarda ayrıntılı bir biçimde sunulmuştur. Ayrıca, DF-CCSD yöntemine ait spin orbital formülasyonlar Bozkaya vd. nin [53] çalışmasında mevcut olup, bu tez çalışması için UHF referansına göre spine adapte edilmiştir. Burada, geliştirilen denklemler (dondurulmuş çekirdek terimleri de dahil) C++ dilinde kodlanan bir bilgisayar programına dönüştürülerek, MacroQC [74] yazılımına ilave edilmiştir.

2.2.1. DF-CCSD Programı için Kullanılan Prosedür

Tez çalışmasının bu kısmında, DF-CCSD programı için gerekli olan ön işlemler ve sonrasında ilgili kodlarda kullanılacak olan formülasyon açıkça sunulmaktadır. Bu

kapsamda, T ve Λ -amplitut denklemleri ve yoğunluk matrisleri açıkça gösterilmiştir. Daha sonra, amplitut denklemleri ve yoğunluk matrisleri denklemleri içerisinde yer alan terimlerin daha düzenli biçimde ifade edilebilmesi amacıyla tanımlanan ara tensörler sunulmaktadır.

2.2.1.1. Ön İşlemler

Bu aşamada, DF-CCSD programı öncesinde gerçekleştirilen işlemler maddeler halinde sunulmuştur [169].

- (1) Nükleer itme enerjisi (E_{nuc}) okunur.
- (2) SCF enerjisi okunur (E_{scf}) .
- (3) Orbital energileri (ϵ) okunur.
- (4) SCF özvektörleri okunur (MO'lar).
- (5) Tek ve iki elektron integrali AO bazından MO bazına dönüştürülür.
- (6) MO integralleri kullanılarak DF-SCF enerjisi hesaplanır.

$$E_{scf} = \frac{1}{2} \sum_{i_{\alpha}}^{occ} \left(h_{ii}^{\alpha} + f_{ii}^{\alpha} \right) + \frac{1}{2} \sum_{i_{\beta}}^{occ} \left(h_{ii}^{\beta} + f_{ii}^{\beta} \right)$$
(20)

(7) Fock matrisi oluşturulur.

2.2.1.2. Fock Matrisi

Genel moleküler orbitaller ile tarif edilen spin kısıtlamasız (*unrestricted*) konvansiyonel fock matrisi aşağıdaki şekilde tanımlanmaktadır [170].

$$f_{PQ} = h_{PQ} + \sum_{M}^{occ} \langle PM || QM \rangle + \sum_{m}^{occ} \langle Pm || Qm \rangle$$
(21)

$$f_{pq} = h_{pq} + \sum_{m}^{occ} \langle pm || qm \rangle + \sum_{M}^{occ} \langle pM || qM \rangle$$
(22)

Yoğunluk uyarlanmış Fock matrisi genel moleküler orbitaller cinsinden aşağıdaki şekilde ifade edilmektedir [170].

$$f_{PQ} = h_{PQ} + \sum_{Q}^{N_{aux}} b_{PQ}^{Q} J^{Q} - \sum_{Q}^{N_{aux}} \sum_{M}^{occ} b_{PM}^{Q} b_{QM}^{Q}$$
(23)

$$f_{pq} = h_{pq} + \sum_{Q}^{N_{aux}} b_{pq}^{Q} J^{Q} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} b_{pm}^{Q} b_{pm}^{Q}$$
(24)

Burada, J^Q terimi aşağıdaki şekilde ifade edilmektedir [170].

$$J^{Q} = \sum_{M}^{occ} b_{MM}^{Q} + \sum_{m}^{occ} b_{mm}^{Q}$$
(25)

2.2.2. DF-CCSD Enerji ve Amplitut Eşitlikleri

Bu kısımda, DF-CCSD enerjisinin hesaplanabilmesi için gerekli adımlar ve formülasyon UHF referansı için sunulmaktadır. DF-CCSD enerji eşitliği spin orbital (SO) ve UHF formlarda aşağıda tanımlanmıştır.

SO [53]:

$$\Delta E = \sum_{i}^{occ} \sum_{a}^{vir} t_{i}^{a} f_{ia} + \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} \tau_{ij}^{ab} \langle ij || ab \rangle_{DF}$$
(26)

UHF:

$$\Delta E = \sum_{I}^{occ} \sum_{A}^{vir} t_{I}^{A} f_{IA} + \sum_{i}^{occ} \sum_{a}^{vir} t_{i}^{a} f_{ia}$$

$$+ \frac{1}{4} \sum_{I,J}^{occ} \sum_{A,B}^{vir} \tau_{IJ}^{AB} \langle IJ || AB \rangle_{DF}$$

$$+ \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} \tau_{ij}^{ab} \langle ij || ab \rangle_{DF}$$

$$+ \sum_{I,j}^{occ} \sum_{A,b}^{vir} \tau_{Ij}^{Ab} \langle Ij |Ab \rangle$$
(27)

Burada, T_1 ve T_2 amplitutları cinsinden ifade edilen τ tensörleri aşağıda tanımlanmıştır. SO [53]:

$$\tau_{ij}^{ab} = t_{ij}^{ab} + t_i^a t_j^b - t_i^b t_j^a$$
(28)

UHF:

 $\alpha\text{-}\alpha$ Blok:

$$\tau_{IJ}^{AB} = t_{IJ}^{AB} + t_{I}^{A} t_{J}^{B} - t_{I}^{B} t_{J}^{A}$$
(29)

 $\beta\text{-}\beta$ Blok:

$$\tau_{ij}^{ab} = t_{ij}^{ab} + t_i^a t_j^b - t_i^b t_j^a$$
(30)

 $\alpha\text{-}\beta$ Blok:

$$\tau_{Ij}^{Ab} = t_{Ij}^{Ab} + t_I^A t_j^b \tag{31}$$

2.2.2.1. Başlangıç T Amplitutları

Enerji eşitliğindeki amplitutların belirlenebilmesi için, amplitut denklemlerinin yinelemeli bir prosedür kullanılarak çözülmesi gerekmektedir. Denklemin sağ tarafındaki tüm amplitutların sıfıra eşitlenmesiyle, sol taraftaki T_1 ve T_2 için basit bir başlangıç değeri elde edilebilir [9]. Dolayısıyla, T_1 amplitutları için aşağıdaki eşitlik tanımlanabilir.

$$t_I^A D_I^A = f_{IA} \tag{32}$$

$$t_i^a D_i^a = f_{ia} \tag{33}$$

Burada, D_i^a ifadesi aşağıdaki şekilde tanımlanır.

$$D_I^A = f_{II} - f_{AA} \tag{34}$$

$$D_i^a = f_{ii} - f_{aa} \tag{35}$$

Başlangıç ${\cal T}_2$ amplitutları UHF form
da aşağıdaki şekilde tanımlanmaktadır.

$$t_{IJ}^{AB}D_{IJ}^{AB} = \langle IJ||AB\rangle \tag{36}$$

$$t_{ij}^{ab}D_{ij}^{ab} = \langle ij||ab\rangle \tag{37}$$

$$t_{Ij}^{Ab}D_{Ij}^{Ab} = \langle Ij|Ab\rangle \tag{38}$$

Burada, D_{ij}^{ab} ifadesi aşağıdaki şekilde tanımlanır.

$$D_{IJ}^{AB} = f_{II} + f_{JJ} - f_{AA} - f_{BB}$$
(39)

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(40)

$$D_{Ij}^{Ab} = f_{II} + f_{jj} - f_{AA} - f_{bb}$$
(41)

2.2.2.2. 1- ve 3-İndisli Ara Tensörler

DF-CCSD yöntemi için tanımlanan 1- ve 3-indisli ara tensörler, UHF versiyonları ile aşağıda sunulmuştur. UHF versiyonları için gereken durumlarda α ve β blokları ayrıca gösterilmiştir.

$$T_{IA}^{Q} = \sum_{J}^{occ} \sum_{B}^{vir} t_{IJ}^{AB} b_{JB}^{Q} + \sum_{j}^{occ} \sum_{b}^{vir} t_{Ij}^{Ab} b_{jb}^{Q}$$
(42)

$$T_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} t_{ij}^{ab} b_{jb}^{Q} + \sum_{J}^{occ} \sum_{B}^{vir} t_{Ji}^{Ba} b_{JB}^{Q}$$
(43)

$$t_Q = \sum_{M}^{occ} \sum_{F}^{vir} t_M^F b_{MF}^Q + \sum_{m}^{occ} \sum_{f}^{vir} t_m^f b_{mf}^Q$$
(44)

$$\tilde{\tau}_{IA}^Q = \sum_M^{occ} \sum_F^{vir} \tilde{\tau}_{IM}^{AF} b_{MF}^Q + \sum_m^{occ} \sum_f^{vir} \tilde{\tau}_{Im}^{Af} b_{mf}^Q$$
(45)

$$\tilde{\tau}_{ia}^Q = \sum_m^{occ} \sum_f^{vir} \tilde{\tau}_{im}^{af} b_{mf}^Q + \sum_M^{occ} \sum_F^{vir} \tilde{\tau}_{Mi}^{Fa} b_{MF}^Q$$
(46)

$$t_{IJ}^Q = \sum_E^{vir} t_I^E b_{JE}^Q \tag{47}$$

$$t_{ij}^Q = \sum_e^{vir} t_i^e b_{je}^Q \tag{48}$$

$$t_{AB}^Q = \sum_M^{occ} t_M^A b_{MB}^Q \tag{49}$$

$$t_{ab}^Q = \sum_m^{occ} t_m^a b_{mb}^Q \tag{50}$$

$$t_{IA}^Q = \sum_F^{vir} t_I^F b_{AF}^Q \tag{51}$$

$$t_{ia}^Q = \sum_f^{vir} t_i^f b_{af}^Q$$
(52)

$$t_{AI}^Q = \sum_M^{occ} t_M^A b_{MI}^Q \tag{53}$$

$$t_{ai}^Q = \sum_m^{occ} t_m^a b_{mi}^Q \tag{54}$$

$$\tilde{t}_{IA}^Q = \sum_M^{occ} t_{IM}^Q t_M^A \tag{55}$$

$$\tilde{t}_{ia}^Q = \sum_m^{occ} t_{im}^Q t_m^a$$
(56)

$$t_{IA}^{Q'} = t_{IA}^Q - t_{AI}^Q - \tilde{t}_{IA}^Q$$
(57)

$$t_{ia}^{Q'} = t_{ia}^{Q} - t_{ai}^{Q} - \tilde{t}_{ia}^{Q}$$
(58)

$$\tau_{IA}^{Q\prime} = \tilde{\tau}_{IA}^Q + t_{IA}^Q \tag{59}$$

$$\tau_{ia}^{Q'} = \tilde{\tau}_{ia}^Q + t_{ia}^Q \tag{60}$$

$$\tau_{IA}^{Q\prime\prime} = \tilde{\tau}_{IA}^Q - t_{AI}^Q \tag{61}$$

$$\tau_{ia}^{Q\prime\prime} = \tilde{\tau}_{ia}^Q - t_{ai}^Q \tag{62}$$

 $\tilde{\tau}^{ab}_{ij}$ ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\text{-}\alpha$ Blok:

$$\tilde{\tau}_{IJ}^{AB} = t_{IJ}^{AB} + \frac{1}{2} (t_I^A t_J^B - t_I^B t_J^A)$$
(63)

 $\beta\text{-}\beta$ Blok:

$$\tilde{\tau}_{ij}^{ab} = t_{ij}^{ab} + \frac{1}{2} (t_i^a t_j^b - t_i^b t_j^a)$$
(64)

 α - β Blok:

$$\tilde{\tau}_{Ij}^{Ab} = t_{Ij}^{Ab} + \frac{1}{2} t_I^A t_j^b$$
(65)

2.2.2.3. F Ara Tensörleri

DF-CCSD yöntemi için tanımlanan F ara tensörleri bu kısımda sunulmaktadır. Sırasıyla, F_{mi} , F_{ab} ve F_{me} blokları için gerekli formülasyon, spin orbital ve UHF versiyonlarıyla (α ve β bloklar olmak üzere) ilerleyen başlıklarda gösterilmiştir.

2.2.3.1. *F_{mi}* Ara Tensörleri

 F_{mi} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$F_{MI} = (1 - \delta_{MI}) f_{MI} + \frac{1}{2} \sum_{E}^{vir} f_{ME} t_{I}^{E} + \sum_{Q}^{N_{aux}} t_{Q} b_{MI}^{Q} + \sum_{Q}^{N_{aux}} \sum_{E}^{vir} \tau_{IE}^{Q''} b_{ME}^{Q}$$
(66)

 β Blok:

$$F_{mi} = (1 - \delta_{mi})f_{mi} + \frac{1}{2}\sum_{e}^{vir} f_{me}t_{i}^{e} + \sum_{Q}^{N_{aux}} t_{Q}b_{mi}^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} \tau_{ie}^{Q''}b_{me}^{Q}$$
(67)

2.2.2.3.2. *F*_{ae} **Ara Tensörleri**

 ${\cal F}_{ae}$ ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$F_{AE} = (1 - \delta_{AE}) f_{AE} - \frac{1}{2} \sum_{M}^{occ} f_{ME} t_{M}^{A} + \sum_{Q}^{Naux} t_{Q} b_{AE}^{Q} - \sum_{Q}^{Naux} \sum_{M}^{occ} \tau_{MA}^{Q'} b_{ME}^{Q}$$
(68)

 β Blok:

$$F_{ae} = (1 - \delta_{ae}) f_{ae} - \frac{1}{2} \sum_{m}^{occ} f_{me} t_{m}^{a} + \sum_{Q}^{N_{aux}} t_{Q} b_{ae}^{Q} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} \tau_{ma}^{Q'} b_{me}^{Q}$$
(69)

2.2.2.3.3. F_{me} Ara Tensörleri

 ${\cal F}_{me}$ ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$F_{ME} = f_{ME} + \sum_{Q}^{N_{aux}} t_Q b_{ME}^Q - \sum_{Q}^{N_{aux}} \sum_{N}^{occ} t_{NM}^Q b_{NE}^Q$$
(70)

 β Blok:

$$F_{me} = f_{me} + \sum_{Q}^{N_{aux}} t_Q b_{me}^Q - \sum_{Q}^{N_{aux}} \sum_{n}^{occ} t_{nm}^Q b_{ne}^Q$$
(71)

2.2.2.4. \mathcal{F} Ara Tensörleri

DF-CCSD yöntemi için \mathcal{F} ara tensörleri bu kısımda tanımlanmaktadır.

2.2.2.4.1. \mathcal{F}_{mi} Ara Tensörleri

 \mathcal{F}_{mi} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$\mathcal{F}_{MI} = F_{MI} + \frac{1}{2} \sum_{E}^{vir} t_I^E F_{ME}$$
(72)

 β Blok:

$$\mathcal{F}_{mi} = F_{mi} + \frac{1}{2} \sum_{e}^{vir} t_i^e F_{me}$$
(73)

2.2.2.4.2. \mathcal{F}_{ae} Ara Tensörleri

 \mathcal{F}_{ae} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$\mathcal{F}_{AE} = F_{AE} - \frac{1}{2} \sum_{M}^{occ} t_M^A F_{ME}$$
(74)

 β Blok:

$$\mathcal{F}_{ae} = F_{ae} - \frac{1}{2} \sum_{m}^{occ} t_m^a F_{me}$$
(75)

2.2.2.5. W Ara Tensörleri

DF-CCSD yöntemi için, amplitut denklemlerinde tanımlanan *W* ara tensörleri, bu kısımda sunulmuştur. Ayrıca, DF-CCSD yöntemindeki T-amplitut eşitlikleri için gerekli olan *W* ara tensörleri için tüm bloklar belirlenerek ilgili spin adaptasyonları gerçekleştirilip, ilerleyen başlıklarda ayrıntılı biçimde gösterilmiştir.

2.2.2.5.1. W_{mnij} Ara Tensörleri

 W_{mnij} ara tensörleri aşağıda sunulmaktadır.

 α Blok:

$$W_{MNIJ} = \langle MN || IJ \rangle_{DF} + P_{-}(MN)P_{-}(IJ) \sum_{Q}^{N_{aux}} t_{IM}^{Q} b_{JN}^{Q} + \sum_{E}^{vir} \sum_{F}^{vir} \tau_{IJ}^{EF} \langle MN | EF \rangle_{DF}$$
(76)

 β Blok:

$$W_{mnij} = \langle mn || ij \rangle_{DF} + P_{-}(mn)P_{-}(ij) \sum_{Q}^{N_{aux}} t_{im}^{Q} b_{jn}^{Q} + \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef} \langle mn | ef \rangle_{DF}$$
(77)

 $\alpha\text{-}\beta$ Blok:

$$W_{MnIj} = \langle Mn | Ij \rangle_{DF} + \sum_{Q}^{N_{aux}} t_{IM}^{Q} b_{jn}^{Q} + \sum_{Q}^{N_{aux}} t_{jn}^{Q} b_{IM}^{Q} + \sum_{E}^{vir} \sum_{f}^{vir} \tau_{Ij}^{Ef} \langle Mn | Ef \rangle_{DF}$$
(78)

Burada, $P_{-}(mn)P_{-}(ij)$ ifadesi şu şekilde tanımlanmaktadır:

$$P_{-}(mn)P_{-}(ij) = (1 - P(mn))(1 - P(ij))$$

= 1 - P(mn) - P(ij) + P(mn)P(ij) (79)

2.2.2.5.2. W_{abef} Ara Tensörleri

 W_{abef} ara tensörleri aşağıda sunulmaktadır. Burada, W_{abef} tensörü parçacık-parçacık merdiven (*Particle-Particle Ladder*, PPL) terimi olarak adlandırılır. Önceki çalışmaları takiben [171], PPL teriminin değerlendirilmesi için aşağıdaki ifadeler tanımlanmaktadır. Ayrıca, Bozkaya vd. nin önceki çalışmalarında bu terimle ilgili özel faktörizasyonlar ve algoritmalar yayınlanmıştır [52–54].

 α Blok:

$$W_{ABEF} = \langle AB || EF \rangle_{DF} - \sum_{M}^{occ} t_{M}^{B} \langle AM || EF \rangle_{DF} + \sum_{M}^{occ} t_{M}^{A} \langle BM || EF \rangle_{DF}$$
(80)

 β Blok:

$$W_{abef} = \langle ab||ef\rangle_{DF} - \sum_{m}^{occ} t^b_m \langle am||ef\rangle_{DF} + \sum_{m}^{occ} t^a_m \langle bm||ef\rangle_{DF}$$
(81)

 α - β Blok:

$$W_{AbEf} = \langle Ab|Ef \rangle_{DF} - \sum_{m}^{occ} t_m^b \langle Am|Ef \rangle_{DF} + \sum_{M}^{occ} t_M^A \langle Mb|Ef \rangle_{DF}$$
(82)

Wabef Ara Tensörü için En iyi Formlar

DF-CCSD yönteminin T-amplitut denkleminde, 4-boş orbital (*virtual*) içeren tek terimi olan W_{abef} (PPL terimi) ara tensörünün maliyetini en aza indirgemek amacıyla çeşitli faktörizasyonlar düşünülmüştür [52–54]. Bu amaçla, denklemler sadeleştirilerek, yoğunluk uyarlaması yaklaştırması uygulanmış ve aşağıda sunulmuştur. Burada DF tekniğine uygun olarak elde edilen yeni faktörizasyonlar ile 4-boyutlu integral tensörleri, 3-boyutlu ara tensörler kullanılarak tanımlanmıştır. Sonrasında, bu tensör anlık (*on the fly*) hesaplanır ve katkısı amplitut denklemine doğrudan eklenir [52–54]. \widetilde{W}_{abef} tensörü aşağıdaki şekilde tanımlanmaktadır. α Blok:

$$\widetilde{W}_{ABEF} = \langle AB|EF \rangle - \sum_{M}^{occ} t_{M}^{B} \langle AM|EF \rangle - \sum_{M}^{occ} t_{M}^{A} \langle MB|EF \rangle$$
(83)

 β Blok:

$$\widetilde{W}_{abef} = \langle ab|ef \rangle - \sum_{m}^{occ} t_{m}^{b} \langle am|ef \rangle - \sum_{m}^{occ} t_{m}^{a} \langle mb|ef \rangle$$
(84)

 α - β Blok:

$$\widetilde{W}_{AbEf} = \langle Ab|Ef \rangle - \sum_{m}^{occ} t_{m}^{b} \langle Am|Ef \rangle - \sum_{M}^{occ} t_{M}^{A} \langle Mb|Ef \rangle$$
(85)

 W_{abef} tensörünün DF tekniği uyarlanmış versiyonu aşağıdaki şekilde ifade edilmektedir. α Blok:

$$\widetilde{W}_{ABEF} = \sum_{Q}^{N_{aux}} (b_{AE}^Q - t_{AE}^Q) b_{BF}^Q - \sum_{M}^{occ} t_M^B \langle AM | EF \rangle_{DF}$$
(86)

 β Blok:

$$\widetilde{W}_{abef} = \sum_{Q}^{N_{aux}} (b_{ae}^Q - t_{ae}^Q) b_{bf}^Q - \sum_{m}^{occ} t_m^b \langle am | ef \rangle_{DF}$$
(87)

 $\alpha\text{-}\beta$ Blok:

$$\widetilde{W}_{AbEf} = \sum_{Q}^{N_{aux}} (b_{AE}^Q - t_{AE}^Q) b_{bf}^Q - \sum_{m}^{occ} t_m^b \langle Am | Ef \rangle_{DF}$$
(88)

 W_{abef} ve \widetilde{W}_{abef} tensörleri arasındaki ilişki aşağıdaki şekildedir.

$$\frac{1}{2}\sum_{ef}^{vir}\tau_{ij}^{ef}W_{abef} = \sum_{ef}^{vir}\tau_{ij}^{ef}\widetilde{W}_{abef}$$
(89)

Spin orbital durumunda, aşağıdaki tanımlamalar yapılabilir.

$$W_{abef} = \widetilde{W}_{abef} - \widetilde{W}_{abfe} \tag{90}$$

$$W_{abef} = \widetilde{W}_{abef} - \widetilde{W}_{baef} \tag{91}$$

2.2.2.5.3. W_{mbej} Ara Tensörleri

 W_{mbej} ara tensörü, amplitut denklemlerinde gerekli olan tüm spin blokları ile birlikte aşağıda sunulmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$W_{MBEJ} = \langle MB || EJ \rangle_{DF} + \sum_{Q}^{N_{aux}} \left(t_{JB}^{Q'} + \frac{1}{2} T_{JB}^{Q} \right) b_{ME}^{Q}$$

+
$$\sum_{Q}^{N_{aux}} t_{BE}^{Q} \left(t_{JM}^{Q} + b_{JM}^{Q} \right) - \sum_{Q}^{N_{aux}} t_{JM}^{Q} b_{BE}^{Q}$$

-
$$\frac{1}{2} \sum_{N}^{occ} \sum_{F}^{vir} t_{JN}^{BF} \langle EM | NF \rangle_{DF}$$
(92)

 $\beta\beta\beta\beta$ Blok:

$$W_{mbej} = \langle mb || ej \rangle_{DF} + \sum_{Q}^{N_{aux}} \left(t_{jb}^{Q'} + \frac{1}{2} T_{jb}^{Q} \right) b_{me}^{Q}$$

+
$$\sum_{Q}^{N_{aux}} t_{be}^{Q} \left(t_{jm}^{Q} + b_{jm}^{Q} \right) - \sum_{Q}^{N_{aux}} t_{jm}^{Q} b_{be}^{Q}$$

-
$$\frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{bf} \langle em | nf \rangle_{DF}$$
(93)

 $\alpha\beta\alpha\beta$ Blok:

$$W_{MbEj} = \langle Mb|Ej\rangle_{DF} + \sum_{Q}^{N_{aux}} \left(t_{jb}^{Q\prime} + \frac{1}{2}T_{jb}^{Q}\right)b_{ME}^{Q}$$
$$- \frac{1}{2}\sum_{N}^{occ}\sum_{F}^{vir} t_{Nj}^{Fb}\langle EM|NF\rangle_{DF}$$
(94)

 $\beta \alpha \beta \alpha$ Blok:

$$W_{mBeJ} = \langle Bm|Je\rangle_{DF} + \sum_{Q}^{N_{aux}} \left(t_{JB}^{Q\prime} + \frac{1}{2}T_{JB}^{Q}\right)b_{me}^{Q}$$
$$- \frac{1}{2}\sum_{n}^{occ}\sum_{f}^{vir} t_{Jn}^{Bf} \langle em|nf\rangle_{DF}$$
(95)

 $\alpha\beta\beta\alpha$ Blok:

$$W_{MbeJ} = -\langle Mb | Je \rangle_{DF} + \sum_{Q}^{N_{aux}} t_{be}^{Q} (t_{JM}^{Q} + b_{JM}^{Q}) - \sum_{Q}^{N_{aux}} t_{JM}^{Q} b_{be}^{Q} + \frac{1}{2} \sum_{n}^{occ} \sum_{F}^{vir} t_{Jn}^{Fb} \langle Me | Fn \rangle_{DF}$$

$$(96)$$

$$\beta \alpha \alpha \beta$$
 Blok:

$$W_{mBEj} = -\langle Bm | Ej \rangle_{DF} + \sum_{Q}^{N_{aux}} t_{BE}^{Q} (t_{jm}^{Q} + b_{jm}^{Q}) - \sum_{Q}^{N_{aux}} t_{jm}^{Q} b_{BE}^{Q} + \frac{1}{2} \sum_{N}^{occ} \sum_{f}^{vir} t_{Nj}^{Bf} \langle Em | Nf \rangle_{DF}$$

$$(97)$$

2.2.2.6. T_1 Amplitut Eşitliği

DF yaklaştırması uygulanmış T_1 amplitut denklemleri aşağıdaki gibi yazılabilir. α Blok:

$$t_{I}^{A}D_{I}^{A} = f_{IA} + \sum_{E}^{vir} t_{I}^{E}F_{AE} - \sum_{M}^{occ} t_{M}^{A}F_{MI} + \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE}F_{ME} + \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae}F_{me} + \sum_{Q}^{N_{aux}} t_{Q}b_{AI}^{Q} - \sum_{Q}^{N_{aux}} \sum_{M}^{occ} (T_{MA}^{Q} + t_{MA}^{Q})b_{MI}^{Q} + \sum_{Q}^{N_{aux}} \sum_{E}^{vir} T_{IE}^{Q}b_{AE}^{Q}$$
(98)

 β Blok:

$$t_{i}^{a}D_{i}^{a} = f_{ia} + \sum_{e}^{vir} t_{i}^{e}F_{ae} - \sum_{m}^{occ} t_{m}^{a}F_{mi} + \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae}F_{me} + \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea}F_{ME} + \sum_{Q}^{N_{aux}} t_{Q}b_{ai}^{Q} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} (T_{ma}^{Q} + t_{ma}^{Q})b_{mi}^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T_{ie}^{Q}b_{ae}^{Q}$$
(99)

2.2.2.7. T_2 Amplitut Eşitliği

DF yaklaştırması uygulanmış ${\cal T}_2$ amplitut denklemleri aşağıdaki gibi yazılabilir.

 $\alpha\text{-}\alpha$ Blok:

$$t_{IJ}^{AB} D_{IJ}^{AB} = \langle IJ || AB \rangle_{DF} + P_{-}(AB) \sum_{E}^{vir} t_{IJ}^{AE} \mathcal{F}_{BE} - P_{-}(IJ) \sum_{M}^{vir} t_{IM}^{AB} \mathcal{F}_{MJ} + \frac{1}{2} \sum_{M}^{occ} \sum_{N}^{occ} \tau_{MN}^{AB} W_{MNIJ} + \frac{1}{2} \sum_{E}^{vir} \sum_{F}^{vir} \tau_{IJ}^{EF} W_{ABEF} + P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE} W_{MBEJ} + P_{-}(IJ) P_{-}(AB) \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} W_{mBeJ} + P_{-}(IJ) P_{-}(AB) \sum_{Q}^{N_{aux}} (t_{AJ}^{Q} t_{IB}^{Q} + t_{IA}^{Q'} b_{JB}^{Q})$$
(100)

 $\beta\text{-}\beta$ Blok:

$$t_{ij}^{ab} D_{ij}^{ab} = \langle ij || ab \rangle_{DF} + P_{-}(ab) \sum_{e}^{vir} t_{ij}^{ae} \mathcal{F}_{be} - P_{-}(ij) \sum_{m}^{vir} t_{im}^{ab} \mathcal{F}_{mj} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau_{mn}^{ab} W_{mnij} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef} W_{abef} + P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} W_{mbej} + P_{-}(ij) P_{-}(ab) \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea} W_{MbEj} + P_{-}(ij) P_{-}(ab) \sum_{Q}^{N_{aux}} (t_{aj}^{Q} t_{ib}^{Q} + t_{ia}^{Q'} b_{jb}^{Q})$$
(101)

 α - β Blok:

$$t_{Ij}^{Ab} D_{Ij}^{Ab} = \langle Ij | Ab \rangle_{DF}$$

$$+ \sum_{e}^{vir} t_{Ij}^{Ae} \mathcal{F}_{be} + \sum_{E}^{vir} t_{Ij}^{Eb} \mathcal{F}_{AE} - \sum_{m}^{vir} t_{Im}^{Ab} \mathcal{F}_{mj} - \sum_{M}^{vir} t_{Mj}^{Ab} \mathcal{F}_{MI}$$

$$+ \sum_{M}^{occ} \sum_{n}^{occ} \tau_{Mn}^{Ab} W_{MnIj} + \sum_{E}^{vir} \sum_{f}^{vir} \tau_{Ij}^{Ef} W_{AbEf}$$

$$+ \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE} W_{MbEj} + \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} W_{mbej}$$

$$+ \sum_{M}^{occ} \sum_{e}^{vir} t_{Mj}^{Ae} W_{MbeI} + \sum_{m}^{occ} \sum_{E}^{vir} t_{Im}^{Eb} W_{mAEj}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} t_{jm}^{Ae} W_{mAeI} + \sum_{M}^{occ} \sum_{E}^{vir} t_{Mj}^{Eb} W_{MAEI}$$

$$+ \sum_{Q}^{Naux} t_{IA}^{Q'} b_{Jb}^{Q} - \sum_{Q}^{Naux} t_{AI}^{Q} t_{Jb}^{Q} - \sum_{Q}^{Naux} t_{bj}^{Q} t_{IA}^{Q} + \sum_{Q}^{Naux} t_{Jb}^{Q'} b_{IA}^{Q}$$

$$(102)$$

2.2.2.8. CCSD İterasyonları için Yakınsama Kontrolü

T amplitutlarını elde etmek amacıyla CCSD iterasyonları gerçekleştirilir ve her bir iterasyon adımı sonrasında yakınsama kontrolü için aşağıdaki yol izlenir [169, 170].

2.2.2.8.1. T_2 Amplitutları için RMS

 T_2 amplitutları cinsinden rms değeri aşağıdaki şekilde hesaplanır [169, 170].

$$rms = \left[\sum_{i}^{occ} \sum_{j}^{occ} \sum_{a}^{vir} \sum_{b}^{vir} \left(\left\{t_{ij}^{ab}\right\}^{n} - \left\{t_{ij}^{ab}\right\}^{n-1}\right)^{2}\right]^{1/2} / N \le \delta_{1}$$
(103)

Burada N, ikili uyarılmaların sayısıdır.

2.2.2.8.2. Enerji Farkı

Her bir iterasyonda, bir önceki iterasyonun enerji değeri ile fark alınıp rms değeri ile aşağıdaki şekilde kıyaslanır [169, 170].

$$\Delta E = E_{ccsd}^n - E_{ccsd}^{n-1} \le \delta_2 \tag{104}$$

Not: Yakınsama sağlanamazsa, Adım 2.2.2.3.'e geri dönülür.

2.2.3. DF-CCSD Lagrangian (DF-CCSD-Λ) Eşitlikleri için Önerilen Prosedür

Varyasyonel bir enerji fonksiyoneli elde etmek için bir Lagrangian tanımlanır [172]. Λ -amplitut denklemleri Lagrangianın T-amplitutlarına karşı durağan nokta olması koşuluyla elde edilir. Λ -amplitutlarının elde edilmesi amacıyla aşağıdaki prosedür izlenmelidir [52–54, 173].

2.2.3.1. Başlangıç λ_1 Amplitutları

Başlangıç için λ_1 amplitutları oluşturulur.

$$\lambda_I^A = f_{IA} / D_I^A \tag{105}$$

$$\lambda_i^a = f_{ia} / D_i^a \tag{106}$$

Burada, D^a_i ifadesi aşağıdaki şekilde tanımlanır.

$$D_I^A = f_{II} - f_{AA} \tag{107}$$

$$D_i^a = f_{ii} - f_{aa} \tag{108}$$

2.2.3.2. Başlangıç λ_2 Amplitutları

Başlangıç için λ_2 amplitutları oluşturulur.

$$\lambda_{IJ}^{AB} = \langle IJ || AB \rangle / D_{IJ}^{AB}$$
(109)

$$\lambda_{ab}^{ij} = \langle ij||ab\rangle / D_{ij}^{ab}$$
(110)

$$\lambda_{Ij}^{Ab} = \langle Ij|Ab \rangle / D_{Ij}^{Ab}$$
(111)

Burada, D_{ij}^{ab} ifadesi aşağıdaki şekilde tanımlanır.

$$D_{IJ}^{AB} = f_{II} + f_{JJ} - f_{AA} - f_{BB}$$
(112)

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(113)

$$D_{Ij}^{Ab} = f_{II} + f_{jj} - f_{AA} - f_{bb}$$
(114)

2.2.3.3. 1- ve 3-İndisli Ara Tensörler

DF-CCSD- Λ amplitut eşitlikleri için gerekli olan 1- ve 3-indisli ara tensörler aşağıda sunulmuştur.

$$V_{IJ}^{Q} = \sum_{\substack{M,N \\ occ}}^{occ} V_{IMJN} b_{MN}^{Q} + \sum_{\substack{m,n \\ occ}}^{occ} V_{ImJn} b_{mn}^{Q}$$
(115)

$$V_{ij}^{Q} = \sum_{m,n}^{occ} V_{imjn} b_{mn}^{Q} + \sum_{M,N}^{occ} V_{MiNj} b_{MN}^{Q}$$
(116)

$$\widetilde{V}_{IJ}^{Q} = \sum_{M,N}^{occ} V_{IMJN} t_{NM}^{Q} + \sum_{m,n}^{occ} V_{ImJn} t_{nm}^{Q}$$
(117)

$$\widetilde{V}_{ij}^{Q} = \sum_{m,n}^{occ} V_{imjn} t_{nm}^{Q} + \sum_{M,N}^{occ} V_{MiNj} t_{NM}^{Q}$$
(118)

$$V_{IJ}^{Q'} = \sum_{E,F}^{vir} V_{IEJF} b_{EF}^{Q} + \sum_{e,f}^{vir} V_{IeJf} b_{ef}^{Q}$$
(119)

$$V_{ij}^{Q\prime} = \sum_{e,f}^{vir} V_{iejf} b_{ef}^{Q} + \sum_{E,F}^{vir} V_{iEjF} b_{EF}^{Q}$$
(120)

$$V_{AI}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} V_{MAIE} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} V_{mAIe} b_{me}^{Q}$$
(121)

$$V_{ai}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} V_{maie} b_{me}^{Q} + \sum_{M}^{occ} \sum_{E}^{vir} V_{MaiE} b_{ME}^{Q}$$
(122)

$$\zeta_{IA}^{Q} = \sum_{M,N}^{occ} \Lambda_{IMNA} t_{MN}^{Q} + \sum_{m,n}^{occ} \Lambda_{ImnA} t_{mn}^{Q}$$
(123)

$$\zeta_{IA}^{Q} = \sum_{M,N}^{occ} \Lambda_{IMNA} t_{MN}^{Q} - \sum_{m,n}^{occ} \Lambda_{mInA} t_{mn}^{Q}$$
(124)

$$\zeta_{ia}^{Q} = \sum_{m,n}^{occ} \Lambda_{imna} t_{mn}^{Q} + \sum_{M,N}^{occ} \Lambda_{iMNa} t_{MN}^{Q}$$
(125)

$$\zeta_{ia}^{Q} = \sum_{m,n}^{occ} \Lambda_{imna} t_{mn}^{Q} - \sum_{M,N}^{occ} \Lambda_{MiNa} t_{MN}^{Q}$$
(126)

$$\zeta_{IJ}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} \Lambda_{IMJE} t_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} \Lambda_{ImJe} t_{me}^{Q}$$
(127)

$$\zeta_{ij}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \Lambda_{imje} t_{me}^{Q} + \sum_{M}^{occ} \sum_{E}^{vir} \Lambda_{iMjE} t_{ME}^{Q}$$
(128)

$$\mathcal{G}_Q = \sum_{E,F}^{vir} \mathcal{G}_{EF} b_{EF}^Q + \sum_{e,f}^{vir} \mathcal{G}_{ef} b_{ef}^Q$$
(129)

$$\mathcal{G}_Q' = \sum_M^{occ} \sum_E^{vir} \mathcal{G}_{EM}^Q t_M^E + \sum_m^{occ} \sum_e^{vir} \mathcal{G}_{em}^Q t_m^e$$
(130)

$$\mathcal{G}_{AI}^{Q} = \sum_{E}^{vir} \mathcal{G}_{AE} b_{IE}^{Q}$$
(131)

$$\mathcal{G}_{ai}^Q = \sum_{e}^{vir} \mathcal{G}_{ae} b_{ie}^Q \tag{132}$$

$$\mathcal{G}_{IA}^Q = \sum_{M}^{occ} \mathcal{G}_{MI} b_{MA}^Q \tag{133}$$

$$\mathcal{G}_{ia}^Q = \sum_m^{occ} \mathcal{G}_{mi} b_{ma}^Q \tag{134}$$

$$\lambda_{IA}^{Q} = \sum_{\substack{E\\vir}}^{vir} \lambda_{E}^{I} b_{EA}^{Q}$$
(135)

$$\lambda_{ia}^{Q} = \sum_{e}^{vir} \lambda_{e}^{i} b_{ea}^{Q}$$
(136)

$$\tilde{\lambda}_{IA}^Q = \sum_E^{vir} \lambda_E^I t_{EA}^Q \tag{137}$$

$$\tilde{\lambda}_{ia}^{Q} = \sum_{e}^{vir} \lambda_{e}^{i} t_{ea}^{Q}$$
(138)

$$\Lambda_{IA}^Q = \sum_J^{occ} \sum_B^{vir} \lambda_{AB}^{IJ} b_{JB}^Q + \sum_j^{occ} \sum_b^{vir} \lambda_{Ab}^{Ij} b_{jb}^Q$$
(139)

$$\Lambda_{ia}^Q = \sum_j^{occ} \sum_b^{vir} \lambda_{ab}^{ij} b_{jb}^Q + \sum_J^{occ} \sum_B^{vir} \lambda_{Ba}^{Ji} b_{JB}^Q$$
(140)

$$\tilde{\Lambda}_{IA}^Q = \sum_J^{occ} \sum_B^{vir} \lambda_{AB}^{IJ} t_{JB}^Q + \sum_j^{occ} \sum_b^{vir} \lambda_{Ab}^{Ij} t_{jb}^Q$$
(141)

$$\tilde{\Lambda}_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} \lambda_{ab}^{ij} t_{jb}^{Q} + \sum_{J}^{occ} \sum_{B}^{vir} \lambda_{Ba}^{Ji} t_{JB}^{Q}$$
(142)
$$\tilde{t}_{AI}^Q = \sum_E^{vir} t_{AE}^Q t_I^E \tag{143}$$

$$\tilde{t}_{ai}^Q = \sum_e^{vir} t_{ae}^Q t_i^e \tag{144}$$

2.2.3.4. $\tilde{\tau}$ ve τ Amplitutları

DF-CCSD- Λ amplitut eşitlikleri için gerekli olan $\tilde{\tau}$ ve τ tensörleri aşağıda sunulmuştur. α - α Blok:

$$\tilde{\tau}_{IJ}^{AB} = t_{IJ}^{AB} + \frac{1}{2} (t_I^A t_J^B - t_I^B t_J^A)$$
(145)

 $\beta\text{-}\beta$ Blok:

$$\tilde{\tau}_{ij}^{ab} = t_{ij}^{ab} + \frac{1}{2} (t_i^a t_j^b - t_i^b t_j^a)$$
(146)

 $\alpha\text{-}\beta$ Blok:

$$\tilde{\tau}_{Ij}^{Ab} = t_{Ij}^{Ab} + \frac{1}{2} t_I^A t_j^b$$
(147)

 τ tensörleri aşağıda sunulmuştur.

 $\alpha\text{-}\alpha$ Blok:

$$\tau_{IJ}^{AB} = t_{IJ}^{AB} + t_I^A t_J^B - t_I^B t_J^A \tag{148}$$

 $\beta\text{-}\beta$ Blok:

$$\tau_{ij}^{ab} = t_{ij}^{ab} + t_i^a t_j^b - t_i^b t_j^a \tag{149}$$

 α - β Blok:

$$\tau_{Ij}^{Ab} = t_{Ij}^{Ab} + t_I^A t_j^b \tag{150}$$

2.2.3.5. V Ara Tensörleri

DF-CCSD- Λ amplitut eşitliklerinde kullanılacak olan V tensörleri aşağıda sunulmuştur.

2.2.3.5.1. V_{ijkl} Ara Tensörleri

 V_{ijkl} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$V_{IJKL} = \frac{1}{2} \sum_{E,F}^{vir} \tau_{IJ}^{EF} \lambda_{EF}^{KL}$$
(151)

 $\beta\beta\beta\beta$ Blok:

$$V_{ijkl} = \frac{1}{2} \sum_{e,f}^{vir} \tau_{ij}^{ef} \lambda_{ef}^{kl}$$
(152)

 $\alpha\beta\alpha\beta$ Blok:

$$V_{IjKl} = \sum_{E,f}^{vir} \tau_{Ij}^{Ef} \lambda_{Ef}^{Kl}$$
(153)

2.2.3.5.2. V_{iajb} Ara Tensörleri

 V_{iajb} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$V_{IAJB} = \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{BE} \lambda_{AE}^{JM} + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Be} \lambda_{Ae}^{Jm}$$
(154)

 $\beta\beta\beta\beta$ Blok:

$$V_{iajb} = \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{be} \lambda_{ae}^{jm} + \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Eb} \lambda_{Ea}^{Mj}$$
(155)

 $\alpha\beta\alpha\beta$ Blok:

$$V_{IaJb} = \frac{1}{2} \sum_{m}^{occ} \sum_{E}^{vir} t_{Im}^{Eb} \lambda_{Ea}^{Jm}$$

$$(156)$$

 $\beta \alpha \beta \alpha$ Blok:

$$V_{iAjB} = \frac{1}{2} \sum_{M}^{occ} \sum_{e}^{vir} t_{Mi}^{Be} \lambda_{Ae}^{Mj}$$
(157)

 $\alpha\beta\beta\alpha$ Blok:

$$V_{IajB} = \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{BE} \lambda_{Ea}^{Mj} + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Be} \lambda_{ae}^{jm}$$
(158)

 $\beta \alpha \alpha \beta$ Blok:

$$V_{iAJb} = \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{be} \lambda_{Ae}^{Jm} + \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Eb} \lambda_{AE}^{JM}$$
(159)

2.2.3.6. Λ Ara Tensörleri

DF-CCSD- Λ amplitut eşitliklerinde kullanılacak olan Λ tensörleri aşağıda sunulmuştur. $\alpha\alpha\alpha\alpha$ Blok:

$$\Lambda_{IJKA} = \sum_{E}^{vir} \lambda_{EA}^{IJ} t_{K}^{E}$$
(160)

 $\beta\beta\beta\beta$ Blok:

$$\Lambda_{ijka} = \sum_{e}^{vir} \lambda_{ea}^{ij} t_k^e$$
(161)

 $\alpha\beta\alpha\beta$ Blok:

$$\Lambda_{IjKa} = \sum_{E}^{vir} \lambda_{Ea}^{Ij} t_{K}^{E}$$
(162)

 $\beta \alpha \beta \alpha$ Blok:

$$\Lambda_{iJkA} = \sum_{e}^{vir} \lambda_{Ae}^{Ji} t_{k}^{e}$$
(163)

2.2.3.7. *G* Ara Tensörleri

DF-CCSD- Λ amplitut eşitliklerinde kullanılacak olan \mathcal{G} ara tensörleri aşağıda sunulmuştur.

2.2.3.7.1. \mathcal{G}_{mi} Ara Tensörleri

 \mathcal{G}_{mi} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$\mathcal{G}_{MI} = \frac{1}{2} \sum_{N}^{occ} \sum_{E,F}^{vir} t_{MN}^{EF} \lambda_{EF}^{IN} + \sum_{n}^{occ} \sum_{E,f}^{vir} t_{Mn}^{Ef} \lambda_{Ef}^{In}$$
(164)

 β Blok:

$$\mathcal{G}_{mi} = \frac{1}{2} \sum_{n}^{occ} \sum_{e,f}^{vir} t_{mn}^{ef} \lambda_{ef}^{in} + \sum_{N}^{occ} \sum_{E,f}^{vir} t_{Nm}^{Ef} \lambda_{Ef}^{Ni}$$
(165)

2.2.3.7.2. \mathcal{G}_{ae} Ara Tensörleri

 \mathcal{G}_{ae} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 α Blok:

$$\mathcal{G}_{AE} = -\frac{1}{2} \sum_{M,N}^{occ} \sum_{F}^{vir} t_{MN}^{EF} \lambda_{AF}^{MN} - \sum_{M,n}^{occ} \sum_{f}^{vir} t_{Mn}^{Ef} \lambda_{Af}^{Mn}$$
(166)

 β Blok:

$$\mathcal{G}_{ae} = -\frac{1}{2} \sum_{m,n}^{occ} \sum_{f}^{vir} t_{mn}^{ef} \lambda_{af}^{mn} - \sum_{M,n}^{occ} \sum_{F}^{vir} t_{Mn}^{Fe} \lambda_{Fa}^{Mn}$$
(167)

2.2.3.8. \mathcal{Z} Ara Tensörleri

 $\ensuremath{\mathcal{Z}}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{Z}_{MBEJ} = \langle MB || EJ \rangle_{DF} - \sum_{N}^{occ} \sum_{F}^{vir} t_{NJ}^{BF} \langle MN || EF \rangle_{DF} + \sum_{n}^{occ} \sum_{f}^{vir} t_{Jn}^{Bf} \langle Mn | Ef \rangle_{DF}$$
(168)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{Z}_{mbej} = \langle mb||ej\rangle_{DF} - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle_{DF} + \sum_{N}^{occ} \sum_{F}^{vir} t_{Nj}^{Fb} \langle Nm|Fe\rangle_{DF}$$
(169)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{Z}_{MbEj} = \langle Mb|Ej\rangle_{DF} - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle Mn|Ef\rangle_{DF} + \sum_{N}^{occ} \sum_{F}^{vir} t_{Nj}^{Fb} \langle MN||EF\rangle_{DF}$$
(170)

 $\beta \alpha \beta \alpha$ Blok:

$$\mathcal{Z}_{mBeJ} = \langle Bm|Je\rangle_{DF} - \sum_{N}^{occ} \sum_{F}^{vir} t_{NJ}^{BF} \langle Nm|Fe\rangle_{DF} + \sum_{n}^{occ} \sum_{f}^{vir} t_{Jn}^{Bf} \langle mn||ef\rangle_{DF}$$
(171)

 $\alpha\beta\beta\alpha$ Blok:

$$\mathcal{Z}_{MbeJ} = -\langle Mb|Je\rangle_{DF} + \sum_{n}^{occ} \sum_{F}^{vir} t_{Jn}^{Fb} \langle Mn|Fe\rangle_{DF}$$
(172)

 $\beta\alpha\alpha\beta$ Blok:

$$\mathcal{Z}_{mBEj} = -\langle Bm|Ej\rangle_{DF} - \sum_{N}^{occ} \sum_{f}^{vir} t_{Nj}^{Bf} \langle Nm|Ef\rangle_{DF}$$
(173)

2.2.3.9. W Ara Tensörleri

 $\ensuremath{\mathcal{W}}$ ara tensörleri bu kısımda sunulmaktadır.

2.2.3.9.1. \mathcal{W}_{mbej} Ara Tensörleri

 \mathcal{W}_{mbej} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{W}_{MBEJ} = \mathcal{Z}_{MBEJ} + \sum_{Q}^{N_{aux}} t_{JB}^{Q'} b_{ME}^{Q} + \sum_{Q}^{N_{aux}} t_{BE}^{Q} (t_{JM}^{Q} + b_{JM}^{Q}) - \sum_{Q}^{N_{aux}} t_{JM}^{Q} b_{BE}^{Q}$$
(174)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{W}_{mbej} = \mathcal{Z}_{mbej} + \sum_{Q}^{N_{aux}} t_{jb}^{Q'} b_{me}^{Q} + \sum_{Q}^{N_{aux}} t_{be}^{Q} (t_{jm}^{Q} + b_{jm}^{Q}) - \sum_{Q}^{N_{aux}} t_{jm}^{Q} b_{be}^{Q}$$
(175)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{W}_{MbEj} = \mathcal{Z}_{MbEj} + \sum_{Q}^{N_{aux}} t_{jb}^{Q'} b_{ME}^{Q}$$
(176)

 $\beta \alpha \beta \alpha$ Blok:

$$\mathcal{W}_{mBeJ} = \mathcal{Z}_{mBeJ} + \sum_{Q}^{N_{aux}} t_{JB}^{Q'} b_{me}^{Q}$$
(177)

 $\alpha\beta\beta\alpha$ Blok:

$$\mathcal{W}_{MbeJ} = \mathcal{Z}_{MbeJ} + \sum_{Q}^{N_{aux}} t_{be}^{Q} (t_{JM}^{Q} + b_{JM}^{Q}) - \sum_{Q}^{N_{aux}} t_{JM}^{Q} b_{be}^{Q}$$
(178)

 $\beta \alpha \alpha \beta$ Blok:

$$\mathcal{W}_{mBEj} = \mathcal{Z}_{mBEj} + \sum_{Q}^{N_{aux}} t_{BE}^{Q} \left(t_{jm}^{Q} + b_{jm}^{Q} \right) - \sum_{Q}^{N_{aux}} t_{jm}^{Q} b_{BE}^{Q}$$
(179)

2.2.3.9.2. \mathcal{W}_{mnie} Ara Tensörleri

 \mathcal{W}_{mnie} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{W}_{MNIE} = P_{-}(MN) \sum_{Q}^{N_{aux}} \left(t_{IM}^{Q} + b_{IM}^{Q} \right) b_{NE}^{Q}$$
(180)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{W}_{mnie} = P_{-}(mn) \sum_{Q}^{N_{aux}} (t^{Q}_{im} + b^{Q}_{im}) b^{Q}_{ne}$$
 (181)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{W}_{MnIe} = \sum_{Q}^{N_{aux}} \left(t_{IM}^Q + b_{IM}^Q \right) b_{ne}^Q \tag{182}$$

 $\beta \alpha \beta \alpha$ Blok:

$$\mathcal{W}_{mNiE} = \sum_{Q}^{N_{aux}} \left(t_{im}^Q + b_{im}^Q \right) b_{NE}^Q \tag{183}$$

2.2.3.9.3. \mathcal{W}_{mbij} Ara Tensörleri

 \mathcal{W}_{mbij} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{W}_{MBIJ} = \langle MB || IJ \rangle_{DF} - \sum_{E}^{vir} t_{IJ}^{BE} \mathcal{F}_{ME} - \sum_{N}^{occ} t_{N}^{B} W_{MNIJ} + \sum_{E,F}^{vir} \tau_{IJ}^{EF} \langle MB | EF \rangle_{DF} + P_{-}(IJ) \sum_{E}^{vir} t_{I}^{E} \mathcal{Z}_{MBEJ} + P_{-}(IJ) \sum_{N}^{occ} \sum_{E}^{vir} t_{JN}^{BE} \langle MN || IE \rangle_{DF} + P_{-}(IJ) \sum_{n}^{occ} \sum_{e}^{vir} t_{Jn}^{Be} \langle Mn | Ie \rangle_{DF}$$
(184)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{W}_{mbij} = \langle mb || ij \rangle_{DF} - \sum_{e}^{vir} t_{ij}^{be} \mathcal{F}_{me} - \sum_{n}^{occ} t_{n}^{b} W_{mnij} + \sum_{e,f}^{vir} \tau_{ij}^{ef} \langle mb | ef \rangle_{DF} + P_{-}(ij) \sum_{e}^{vir} t_{i}^{e} \mathcal{Z}_{mbej} + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be} \langle mn || ie \rangle_{DF} + P_{-}(ij) \sum_{N}^{occ} \sum_{E}^{vir} t_{Nj}^{Eb} \langle Nm | Ei \rangle_{DF}$$
(185)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{W}_{MbIj} = \langle Mb|Ij\rangle_{DF} + \sum_{E}^{vir} t_{Ij}^{Eb} \mathcal{F}_{ME} - \sum_{n}^{occ} t_{n}^{b} W_{MnIj}$$

$$+ \sum_{E,f}^{vir} \tau_{Ij}^{Ef} \langle Mb|Ef\rangle_{DF} + \sum_{E}^{vir} t_{I}^{E} \mathcal{Z}_{MbEj} - \sum_{e}^{vir} t_{j}^{e} \mathcal{Z}_{MbeI}$$

$$+ \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be} \langle Mn|Ie\rangle_{DF} + \sum_{N}^{occ} \sum_{E}^{vir} t_{Nj}^{Eb} \langle MN||IE\rangle_{DF}$$

$$- \sum_{n}^{occ} \sum_{E}^{vir} t_{In}^{Eb} \langle Mn|Ej\rangle_{DF} \qquad (186)$$

 $\beta \alpha \beta \alpha$ Blok:

$$\mathcal{W}_{mBiJ} = \langle Bm|Ji\rangle_{DF} + \sum_{e}^{vir} t_{Ji}^{Be} \mathcal{F}_{me} - \sum_{N}^{occ} t_{N}^{B} W_{mNiJ} + \sum_{e,F}^{vir} \tau_{Ji}^{Fe} \langle Bm|Fe\rangle_{DF} + \sum_{e}^{vir} t_{i}^{e} \mathcal{Z}_{mBeJ} - \sum_{E}^{vir} t_{J}^{E} \mathcal{Z}_{mBEi} + \sum_{N}^{occ} \sum_{E}^{vir} t_{JN}^{BE} \langle Nm|Ei\rangle_{DF} + \sum_{n}^{occ} \sum_{e}^{vir} t_{Jn}^{Be} \langle mn||ie\rangle_{DF} - \sum_{N}^{occ} \sum_{e}^{vir} t_{Ni}^{Be} \langle Nm|Je\rangle_{DF}$$
(187)

2.2.3.10. λ_1 Amplitut Eşitlikleri

DF yaklaştırması uygulanmış Λ_1 amplitut denklemleri aşağıdaki gibi yazılabilir.

 α Blok:

$$\lambda_{A}^{I}D_{I}^{A} = \mathcal{F}_{IA} + \sum_{E}^{vir} \lambda_{E}^{I}\mathcal{F}_{EA} - \sum_{m}^{occ} \lambda_{A}^{M}\mathcal{F}_{IM} - \sum_{M}^{occ} \mathcal{G}_{MI}\mathcal{F}_{MA} + \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{E}^{M}\mathcal{W}_{IEAM} + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{e}^{m}\mathcal{W}_{IeAm} - \sum_{M,N}^{occ} \mathcal{G}_{MN}\mathcal{W}_{MINA} - \sum_{m,n}^{occ} \mathcal{G}_{mn}\mathcal{W}_{mInA} - \frac{1}{2}\sum_{M,N}^{occ} \sum_{E}^{vir} \lambda_{AE}^{MN}\mathcal{W}_{IEMN} - \frac{1}{2}\sum_{M,n}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Mn}\mathcal{W}_{IeMn} + \frac{1}{2}\sum_{m,N}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Nm}\mathcal{W}_{IemN} - \sum_{M,N}^{occ} \sum_{E}^{vir} \Lambda_{IMNE}\mathcal{Z}_{NEAM} - \sum_{m,N}^{occ} \sum_{e}^{vir} \lambda_{ImNe}\mathcal{Z}_{NeAm} - \sum_{M,N}^{occ} \sum_{E}^{vir} \Lambda_{ImNE}\mathcal{Z}_{nEAm} + \sum_{Q}^{occ} \sum_{E}^{vir} (\Lambda_{IE}^{Q} + \tilde{\Lambda}_{IE}^{Q} + 2V_{EI}^{Q} + \zeta_{IE}^{Q})b_{EA}^{Q} + \sum_{Q}^{Naux} \sum_{E}^{occ} (V_{MI}^{Q} + \tilde{V}_{MI}^{Q} - 2V_{MI}^{Q'} - \zeta_{IM}^{Q})b_{MA}^{Q} + \sum_{Q}^{Naux} (\mathcal{G}_{Q}^{\prime} - \mathcal{G}_{Q})b_{IA}^{Q} + \sum_{Q}^{Naux} \sum_{E}^{vir} \mathcal{G}_{EI}^{Q}(b_{EA}^{Q} - t_{EA}^{Q})$$
(188)

 β Blok:

$$\begin{split} \lambda_{a}^{i}D_{i}^{a} &= \mathcal{F}_{ia} + \sum_{e}^{vir} \lambda_{e}^{i}\mathcal{F}_{ea} - \sum_{m}^{occ} \lambda_{a}^{m}\mathcal{F}_{im} - \sum_{m}^{occ} \mathcal{G}_{mi}\mathcal{F}_{ma} \\ &+ \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{e}^{m}\mathcal{W}_{ieam} + \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{E}^{M}\mathcal{W}_{iEaM} \\ &- \sum_{m,n}^{occ} \mathcal{G}_{mn}\mathcal{W}_{mina} - \sum_{M,N}^{occ} \mathcal{G}_{MN}\mathcal{W}_{MiNa} \\ &- \frac{1}{2} \sum_{m,n}^{occ} \sum_{e}^{vir} \lambda_{ae}^{mn}\mathcal{W}_{iemn} - \frac{1}{2} \sum_{m,N}^{occ} \sum_{E}^{vir} \lambda_{Ea}^{Nm}\mathcal{W}_{iEmN} \\ &+ \frac{1}{2} \sum_{M,n}^{occ} \sum_{E}^{vir} \lambda_{Ea}^{Mn}\mathcal{W}_{iEMn} - \sum_{m,N}^{occ} \sum_{e}^{vir} \Lambda_{imne}\mathcal{Z}_{neam} \\ &- \sum_{M,N}^{occ} \sum_{e}^{vir} \lambda_{iMNe}\mathcal{Z}_{NeaM} - \sum_{m,n}^{occ} \sum_{E}^{vir} \Lambda_{iMne}\mathcal{Z}_{nEaM} \\ &+ \sum_{Q}^{occ} \sum_{e}^{vir} (\Lambda_{ie}^{Q} + \tilde{\Lambda}_{ie}^{Q} + 2V_{ei}^{Q} + \zeta_{ie}^{Q})b_{ea}^{Q} \\ &+ \sum_{Q}^{Naux} \sum_{e}^{occ} (V_{mi}^{Q} + \tilde{V}_{mi}^{Q} - 2V_{mi}^{Q'} - \zeta_{im}^{Q})b_{ma}^{Q} \\ &+ \sum_{Q}^{Naux} (\mathcal{G}_{Q}' - \mathcal{G}_{Q})b_{ia}^{Q} + \sum_{Q}^{Naux} \sum_{e}^{vir} \mathcal{G}_{ei}^{Q}(b_{ea}^{Q} - t_{ea}^{Q}) \end{split}$$
(189)

2.2.3.11. λ_2 Amplitut Eşitlikleri

DF yaklaştırması uygulanmış Λ_2 amplitut denklemleri aşağıdaki gibi yazılabilir.

 $\alpha\text{-}\alpha$ Blok:

$$\lambda_{AB}^{IJ} D_{IJ}^{AB} = \langle IJ || AB \rangle$$

$$+ P_{-}(AB) \sum_{E}^{vir} \lambda_{AE}^{IJ} \mathcal{F}_{EB} - P_{-}(IJ) \sum_{M}^{occ} \lambda_{AB}^{IM} \mathcal{F}_{JM}$$

$$+ \frac{1}{2} \sum_{M}^{occ} \sum_{N}^{occ} \lambda_{AB}^{MN} W_{IJMN} + \frac{1}{2} \sum_{E}^{vir} \sum_{F}^{vir} \lambda_{EF}^{IJ} W_{EFAB}$$

$$+ \sum_{M}^{occ} \sum_{N}^{occ} V_{MNIJ} \langle MN | AB \rangle_{DF} + P_{-}(IJ) P_{-}(AB) \lambda_{A}^{I} \mathcal{F}_{JB}$$

$$- P_{-}(AB) \sum_{M}^{occ} \lambda_{A}^{M} W_{IJMB} + P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{AE}^{IM} W_{JEBM}$$

$$+ P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{R}^{vir} \lambda_{Ae}^{Im} W_{JeBm}$$

$$+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{Naux} \left(\mathcal{G}_{AI}^{Q} - \mathcal{G}_{IA}^{Q} + \lambda_{IA}^{Q} - \tilde{\lambda}_{IA}^{Q} \right) b_{JB}^{Q}$$
(190)

 $\beta\text{-}\beta$ Blok:

$$\lambda_{ab}^{ij}D_{ij}^{ab} = \langle ij||ab \rangle$$

$$+ P_{-}(ab)\sum_{e}^{vir}\lambda_{ae}^{ij}\mathcal{F}_{eb} - P_{-}(ij)\sum_{m}^{occ}\lambda_{ab}^{im}\mathcal{F}_{jm}$$

$$+ \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\lambda_{ab}^{mn}W_{ijmn} + \frac{1}{2}\sum_{e}^{vir}\sum_{f}^{vir}\lambda_{ef}^{ij}W_{efab}$$

$$+ \sum_{m}^{occ}\sum_{n}^{occ}V_{mnij}\langle mn|ab \rangle_{DF} + P_{-}(ij)P_{-}(ab)\lambda_{a}^{i}\mathcal{F}_{jb}$$

$$- P_{-}(ab)\sum_{m}^{occ}\lambda_{a}^{m}\mathcal{W}_{ijmb} + P_{-}(ij)P_{-}(ab)\sum_{m}^{occ}\sum_{e}^{vir}\lambda_{ae}^{im}\mathcal{W}_{jebm}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{M}^{occ}\sum_{E}^{vir}\lambda_{Ea}^{Mi}\mathcal{W}_{jEbM}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{Q}^{Naux}\left(\mathcal{G}_{ai}^{Q} - \mathcal{G}_{ia}^{Q} + \lambda_{ia}^{Q} - \tilde{\lambda}_{ia}^{Q}\right)b_{jb}^{Q}$$
(191)

 $\alpha\text{-}\beta$ Blok:

$$\begin{split} \lambda_{Ab}^{Ij} D_{Ij}^{Ab} &= \langle Ij | Ab \rangle \\ &+ \sum_{e}^{vir} \lambda_{Ae}^{Ij} \mathcal{F}_{eb} + \sum_{E}^{vir} \lambda_{Eb}^{Ij} \mathcal{F}_{EA} - \sum_{m}^{occ} \lambda_{Ab}^{Im} \mathcal{F}_{jm} - \sum_{M}^{occ} \lambda_{Ab}^{Mj} \mathcal{F}_{IM} \\ &+ \sum_{M}^{occ} \sum_{n}^{occ} \lambda_{Ab}^{Mn} W_{IjMn} + \sum_{E}^{vir} \sum_{f}^{vir} \lambda_{Ef}^{Ij} W_{EfAb} \\ &+ \sum_{M}^{occ} \sum_{n}^{occ} V_{MnIj} \langle Mn | Ab \rangle_{DF} \\ &+ \lambda_{A}^{I} \mathcal{F}_{jb} + \lambda_{b}^{j} \mathcal{F}_{IA} - \sum_{M}^{occ} \lambda_{A}^{M} \mathcal{W}_{IjMb} + \sum_{m}^{occ} \lambda_{b}^{m} \mathcal{W}_{IjmA} \\ &+ \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{AE}^{Mj} \mathcal{W}_{JEbM} + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Im} \mathcal{W}_{jebm} \\ &+ \sum_{M}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Mj} \mathcal{W}_{IcbM} + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{Eb}^{Im} \mathcal{W}_{JEAm} \\ &+ \sum_{M}^{occ} \sum_{e}^{vir} \lambda_{be}^{m} \mathcal{W}_{IeAm} + \sum_{m}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Mj} \mathcal{W}_{IEAM} \\ &+ \sum_{M}^{Naux} \left(\mathcal{G}_{AI}^{Q} - \mathcal{G}_{IA}^{Q} + \lambda_{IA}^{Q} - \tilde{\lambda}_{IA}^{Q} \right) b_{Jb}^{Q} \\ &+ \sum_{Q}^{Naux} \left(\mathcal{G}_{bj}^{Q} - \mathcal{G}_{jb}^{Q} + \lambda_{jb}^{Q} - \tilde{\lambda}_{jb}^{Q} \right) b_{IA}^{Q} \end{split}$$

λ_2 Amplitut Eşitlikleri için Alternatif Form

 $\alpha\text{-}\alpha$ Blok:

$$\lambda_{AB}^{IJ}D_{IJ}^{AB} = \langle IJ||AB \rangle$$

$$+ P_{-}(AB) \sum_{E}^{vir} \lambda_{AE}^{IJ}\mathcal{F}_{EB} - P_{-}(IJ) \sum_{M}^{occ} \lambda_{AB}^{IM}\mathcal{F}_{JM}$$

$$+ \frac{1}{2} \sum_{M}^{occ} \sum_{N}^{occ} \lambda_{AB}^{MN} W_{IJMN} + \sum_{E}^{vir} \sum_{F}^{vir} \lambda_{EF}^{IJ} \widetilde{W}_{EFAB}$$

$$+ \sum_{M}^{occ} \sum_{N}^{occ} V_{MNIJ} \langle MN|AB \rangle_{DF} + P_{-}(IJ)P_{-}(AB) \lambda_{A}^{I}\mathcal{F}_{JB}$$

$$- P_{-}(AB) \sum_{M}^{occ} \lambda_{A}^{M} \mathcal{W}_{IJMB} + P_{-}(IJ)P_{-}(AB) \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{AE}^{IM} \mathcal{W}_{JEBM}$$

$$+ P_{-}(IJ)P_{-}(AB) \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Im} \mathcal{W}_{JeBm}$$

$$+ P_{-}(IJ)P_{-}(AB) \sum_{Q}^{Naux} \left(\mathcal{G}_{AI}^{Q} - \mathcal{G}_{IA}^{Q} + \lambda_{IA}^{Q} - \tilde{\lambda}_{IA}^{Q} \right) b_{JB}^{Q}$$
(193)

 $\beta\text{-}\beta$ Blok:

$$\lambda_{ab}^{ij}D_{ij}^{ab} = \langle ij||ab \rangle$$

$$+ P_{-}(ab)\sum_{e}^{vir}\lambda_{ae}^{ij}\mathcal{F}_{eb} - P_{-}(ij)\sum_{m}^{occ}\lambda_{ab}^{im}\mathcal{F}_{jm}$$

$$+ \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\lambda_{ab}^{mn}W_{ijmn} + \sum_{e}^{vir}\sum_{f}^{vir}\lambda_{ef}^{ij}\widetilde{W}_{efab}$$

$$+ \sum_{m}^{occ}\sum_{n}^{occ}V_{mnij}\langle mn|ab \rangle_{DF} + P_{-}(ij)P_{-}(ab)\lambda_{a}^{i}\mathcal{F}_{jb}$$

$$- P_{-}(ab)\sum_{m}^{occ}\lambda_{a}^{m}\mathcal{W}_{ijmb} + P_{-}(ij)P_{-}(ab)\sum_{m}^{occ}\sum_{e}^{vir}\lambda_{ae}^{im}\mathcal{W}_{jebm}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{M}^{occ}\sum_{E}^{vir}\lambda_{Ea}^{Mi}\mathcal{W}_{jEbM}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{Q}^{N_{aux}}\left(\mathcal{G}_{ai}^{Q} - \mathcal{G}_{ia}^{Q} + \lambda_{ia}^{Q} - \tilde{\lambda}_{ia}^{Q}\right)b_{jb}^{Q}$$
(194)

 α - β Blok:

$$\begin{split} \lambda_{Ab}^{Ij} D_{Ij}^{Ab} &= \langle Ij|Ab \rangle \\ &+ \sum_{e}^{vir} \lambda_{Ae}^{Ij} \mathcal{F}_{eb} + \sum_{E}^{vir} \lambda_{Eb}^{Ij} \mathcal{F}_{EA} - \sum_{m}^{occ} \lambda_{Ab}^{Im} \mathcal{F}_{jm} - \sum_{M}^{occ} \lambda_{Ab}^{Mj} \mathcal{F}_{IM} \\ &+ \sum_{M}^{occ} \sum_{n}^{occ} \lambda_{Ab}^{Mn} W_{IjMn} + \sum_{E}^{vir} \sum_{f}^{vir} \lambda_{Ef}^{Ij} \widetilde{W}_{EfAb} \\ &+ \sum_{M}^{occ} \sum_{n}^{occ} V_{MnIj} \langle Mn|Ab \rangle_{DF} \\ &+ \lambda_{A}^{I} \mathcal{F}_{jb} + \lambda_{b}^{j} \mathcal{F}_{IA} - \sum_{M}^{occ} \lambda_{A}^{M} \mathcal{W}_{IjMb} + \sum_{m}^{occ} \lambda_{b}^{m} \mathcal{W}_{IjmA} \\ &+ \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{AE}^{IM} \mathcal{W}_{jEbM} + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Im} \mathcal{W}_{jebm} \\ &+ \sum_{M}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Mj} \mathcal{W}_{IebM} + \sum_{m}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Im} \mathcal{W}_{jEAm} \\ &+ \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{be}^{Mj} \mathcal{W}_{IeAm} + \sum_{m}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Mj} \mathcal{W}_{IEAM} \\ &+ \sum_{m}^{Naux} \left(\mathcal{G}_{AI}^{Q} - \mathcal{G}_{IA}^{Q} + \lambda_{IA}^{Q} - \tilde{\lambda}_{IA}^{Q} \right) b_{jb}^{Q} \\ &+ \sum_{Q}^{Naux} \left(\mathcal{G}_{bj}^{Q} - \mathcal{G}_{jb}^{Q} + \lambda_{jb}^{Q} - \tilde{\lambda}_{jb}^{Q} \right) b_{IA}^{Q} \end{split}$$
(195)

2.2.3.12. Pseudo-CCSD Enerji

Burada, DF-CCSD yöntemi için Λ amplitutlarının yakınsama kontrolünün yapılabilmesi amacıyla, bu amplitutlar cinsinden ifade edilen bir pseudo enerji hesaplanmaktadır [52, 53]. DF-CCSD- Λ için tanımlanan pseudo enerji spin orbital ve UHF versiyonlarıyla aşağıdaki gibi ifade edilir. SO [53]:

$$E_{pseudo-ccsd} = E_{scf} + \sum_{i}^{occ} \sum_{a}^{vir} \lambda_{a}^{i} f_{ia} + \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} \left(\lambda_{ab}^{ij} + 2\lambda_{a}^{i}\lambda_{b}^{j}\right) \langle ij||ab\rangle$$
(196)

UHF:

$$E_{pseudo-ccsd} = E_{scf} + \sum_{I}^{occ} \sum_{A}^{vir} \lambda_{A}^{I} f_{IA} + \sum_{i}^{occ} \sum_{a}^{vir} \lambda_{a}^{i} f_{ia}$$

$$+ \frac{1}{4} \sum_{I,J}^{occ} \sum_{A,B}^{vir} (\lambda_{AB}^{IJ} + 2\lambda_{A}^{I}\lambda_{B}^{J}) \langle ij||ab \rangle$$

$$+ \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} (\lambda_{ab}^{ij} + 2\lambda_{a}^{i}\lambda_{b}^{j}) \langle ij||ab \rangle$$

$$+ \sum_{I,j}^{occ} \sum_{A,b}^{vir} (\lambda_{Ab}^{Ij} + \lambda_{A}^{I}\lambda_{b}^{j}) \langle Ij|Ab \rangle$$
(197)

2.2.3.13. DF-CCSD-A İterasyonları için Yakınsama Kontrolü

DF-CCSD- Λ iterasyonlarının yakınsama kontrolü için gereklilikler, aşağıda maddeler halinde açıklanmıştır [53, 169, 170].

1) λ_1 amplitutları için RMS hesaplanır.

$$rms1 = \left[\sum_{a}^{vir} \sum_{i}^{occ} \left(\left\{\lambda_{a}^{i}\right\}^{n} - \left\{\lambda_{a}^{i}\right\}^{n-1}\right)^{2}\right]^{1/2} M \le \delta_{1}$$
(198)

Burada M, tekli uyarılmaların sayısıdır.

2) λ_2 amplitutları için RMS hesaplanır.

$$rms2 = \left[\sum_{a}^{vir} \sum_{b}^{vir} \sum_{i}^{ooc} \sum_{j}^{occ} \left(\left\{\lambda_{ab}^{ij}\right\}^{n} - \left\{\lambda_{ab}^{ij}\right\}^{n-1}\right)^{2}\right]^{1/2} N \le \delta_{2}$$
(199)

Burada N, ikili uyarılmaların sayısıdır.

3) Enerji farkı aşağıdaki şekilde hesaplanmaktadır.

$$\Delta E = E_{pseudo-ccsd}^n - E_{pseudo-ccsd}^{n-1} \le \delta_3 \tag{200}$$

4) Eğer yakınsama sağlanmazsa 2.2.3.3. adımına geri dönülür.

2.2.4. DF-CCSD Yöntemi için Parçacık Yoğunluk Matrisleri (PDM)

DF-CCSD yöntemi için parçacık yoğunluk matrisleri (*Particle Density Matrix*, PDM) bu kısımda sunulmaktadır. Bu kısımda, DF-CCSD yöntemine ait spin orbital formülasyonlar Bozkaya vd. nin [53] çalışmasında mevcut olup, bu tez çalışması için UHF referansına göre spine adapte edilmiştir.

2.2.4.1. CCSD PDM Terimleri için Genel Tanım

DF-CCSD yöntemi için parçacık yoğunluk matrisleri (PDM) aşağıdaki gibi tanımlanır [52, 53, 174–176].

$$\gamma_{pq} = \frac{1}{2} P_{+}(pq) \langle 0 | (1+\hat{\Lambda}) e^{-\hat{T}} \hat{p}^{\dagger} \hat{q} e^{\hat{T}} | 0 \rangle$$
(201)

$$\Gamma_{pqrs} = \frac{1}{8} P_{+}(pq, rs) \langle 0 | (1 + \hat{\Lambda}) e^{-\hat{T}} \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} e^{\hat{T}} | 0 \rangle$$
(202)

Burada $\hat{P}_{\pm}(pq)$ terimi aşağıdaki şekilde tanımlanabilir.

$$\hat{P}_{\pm}(pq) = 1 \pm \hat{\mathcal{P}}(pq) \tag{203}$$

Burada $\hat{\mathcal{P}}(pq)$ sembolü, p ve q indislerinin yer değiştirmesi gerektiği anlamına gelir.

2.2.4.2. CCSD- Λ Fonksiyoneli

CCSD- Λ enerji fonksiyoneli aşağıdaki şekilde tanımlanır [52, 53, 170, 177].

$$\Delta \widetilde{E} = \langle 0 | (1 + \hat{\Lambda}) e^{-\hat{T}} \hat{H}_N e^{\hat{T}} | 0 \rangle$$
(204)

Böylece, PDM terimleri cinsinden enerji aşağıdaki şekilde yazılabilir [52, 53].

$$\widetilde{E} = \sum_{p,q} \gamma_{pq} h_{pq} + \sum_{p,q,r,s} \Gamma_{pqrs} \langle pq || rs \rangle$$
(205)

$$\Delta \widetilde{E} = \sum_{p,q} \gamma_{pq}^{corr} f_{pq} + \sum_{p,q,r,s} \Gamma_{pqrs}^{corr} \langle pq || rs \rangle$$
(206)

$$\widetilde{E} = E_{scf} + \Delta \widetilde{E}$$
(207)

2.2.4.3. PDM Eşitliklerinin Açılımı

DF-CCSD yöntemi için tanımlanan referans ve korelasyon PDM'ler aşağıdaki gibidir [52, 53, 170].

$$\gamma_{pq} = \gamma_{pq}^{ref} + \gamma_{pq}^{corr} \tag{208}$$

$$\Gamma_{pqrs} = \Gamma_{pqrs}^{ref} + \Gamma_{pqrs}^{corr}
+ \frac{1}{4} \delta_{pr}^{occ} \gamma_{qs}^{corr} + \frac{1}{4} \delta_{qs}^{occ} \gamma_{pr}^{corr}
- \frac{1}{4} \delta_{ps}^{occ} \gamma_{qr}^{corr} - \frac{1}{4} \delta_{qr}^{occ} \gamma_{ps}^{corr}$$
(209)

Alternatif olarak aşağıdaki şekilde yazılabilir [52, 53, 170].

$$\Gamma_{pqrs} = \Gamma_{pqrs}^{ref} + \Gamma_{pqrs}^{corr} + \Gamma_{pqrs}^{sep}$$
(210)

Burada Γ_{pqrs}^{sep} TPDM'in ayrılabilir kısmıdır [52, 53].

$$\Gamma_{pqrs}^{sep} = \frac{1}{4} \delta_{pr}^{occ} \gamma_{qs}^{corr} + \frac{1}{4} \delta_{qs}^{occ} \gamma_{pr}^{corr} - \frac{1}{4} \delta_{ps}^{occ} \gamma_{qr}^{corr} - \frac{1}{4} \delta_{qr}^{occ} \gamma_{ps}^{corr}$$
(211)

2.2.4.4. Referans PDM Terimleri

Referans PDM terimleri aşağıdaki şekilde tanımlanır [52, 53, 170].

$$\gamma_{pq}^{ref} = \delta_{pq}^{occ} \tag{212}$$

$$\Gamma_{pqrs}^{ref} = \frac{1}{4} \left(\delta_{pr}^{occ} \, \delta_{qs}^{occ} - \, \delta_{ps}^{occ} \, \delta_{qr}^{occ} \right) \tag{213}$$

2.2.4.5. Korelasyon OPDM Terimleri

Bu kısımda sunulan OPDM korelasyon terimleri için RHF versiyonlar önceki çalışmalarda yayınlanmıştır [52, 53]. Korelasyon OPDM terimleri için UHF versiyonlar aşağıdaki şekilde ifade edilmektedir.

2.2.4.5.1. OO-Blok

Korelasyon OPDM terimlerinden γ_{ij}^{corr} aşağıda α ve β bloklar halinde sunulmuştur. α -Blok:

 $\gamma_{IJ}^{corr} = -\frac{1}{2} \left(\widetilde{\mathcal{G}}_{IJ} + \widetilde{\mathcal{G}}_{JI} \right)$ (214)

 β -Blok:

$$\gamma_{ij}^{corr} = -\frac{1}{2} \left(\widetilde{\mathcal{G}}_{ij} + \widetilde{\mathcal{G}}_{ji} \right)$$
(215)

2.2.4.5.2. VV-Blok

Korelasyon OPDM terimlerinden γ_{ab}^{corr} aşağıda α ve β bloklar halinde sunulmuştur. α -Blok:

$$\gamma_{AB}^{corr} = -\frac{1}{2} \left(\widetilde{\mathcal{G}}_{AB} + \widetilde{\mathcal{G}}_{BA} \right)$$
(216)

 β -Blok:

$$\gamma_{ab}^{corr} = -\frac{1}{2} \left(\widetilde{\mathcal{G}}_{ab} + \widetilde{\mathcal{G}}_{ba} \right)$$
(217)

2.2.4.5.3. OV-Blok

Korelasyon OPDM terimlerinden γ_{ia}^{corr} aşağıda α ve β bloklar halinde sunulmuştur. α -Blok:

$$\gamma_{IA}^{corr} = \frac{1}{2} t_I^A + \frac{1}{2} \lambda_A^I$$

$$+ \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} \left(t_{IM}^{AE} - t_M^A t_I^E \right) \lambda_E^M$$

$$+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} \lambda_e^m$$

$$- \frac{1}{2} \sum_{M}^{occ} t_M^A \mathcal{G}_{IM} + \frac{1}{2} \sum_{E}^{vir} t_I^E \mathcal{G}_{EA}$$
(218)

 β -Blok:

$$\gamma_{ia}^{corr} = \frac{1}{2}t_i^a + \frac{1}{2}\lambda_a^i$$

$$+ \frac{1}{2}\sum_m^{occ}\sum_e^{vir} \left(t_{im}^{ae} - t_m^a t_i^e\right)\lambda_e^m$$

$$+ \frac{1}{2}\sum_m^{occ}\sum_E^{vir} t_{Mi}^{Ea}\lambda_E^M$$

$$- \frac{1}{2}\sum_m^{occ} t_m^a \mathcal{G}_{im} + \frac{1}{2}\sum_e^{vir} t_i^e \mathcal{G}_{ea}$$
(219)

2.2.4.6. Korelasyon TPDM Terimleri

Korelasyon TPDM terimleri farklı bloklar halinde aşağıda sunulmuştur [52, 53, 170].

2.2.4.6.1. OOOO-Blok

Korelasyon TPDM terimlerinden Γ_{ijkl}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ijkl}^{corr} = \frac{1}{8} P_+(ij,kl) V_{ijkl}$$
(220)

$$\Gamma_{ijkl}^{corr} = \frac{1}{8} \left(V_{ijkl} + V_{klij} \right)$$
(221)

2.2.4.6.2. VVVV-Blok

Korelasyon TPDM terimlerinden Γ_{abcd}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{abcd}^{corr} = \frac{1}{8} P_+(ab, cd) V_{abcd}$$
(222)

$$\Gamma_{abcd}^{corr} = \frac{1}{8} \left(V_{abcd} + V_{cdab} \right)$$
(223)

2.2.4.6.3. OVOV-Blok

Korelasyon TPDM terimlerinden Γ_{iajb}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{iajb}^{corr} = -\frac{1}{4} \left(V_{iajb} + V_{jbia} \right) - \frac{1}{8} t_i^b \lambda_a^j - \frac{1}{8} t_j^a \lambda_b^i$$

+
$$\frac{1}{8} \sum_m^{occ} t_m^b \Lambda_{mjia} + \frac{1}{8} \sum_m^{occ} t_m^a \Lambda_{mijb}$$
(224)

2.2.4.6.4. OOVV-Blok

Korelasyon TPDM terimlerinden Γ_{ijab}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ijab}^{corr} = \frac{1}{8}\tau_{ij}^{ab} + \frac{1}{8}\lambda_{ab}^{ij} + \frac{1}{8}Y_{ijab}
- \frac{1}{8}P_{-}(ij)P_{-}(ab)Y_{iajb}
+ \frac{3}{8}P_{-}(ij)P_{-}(ab)t_{i}^{a}s_{j}^{b}
- \frac{1}{8}P_{-}(ij)\sum_{m}^{occ}\tau_{mj}^{ab}\widetilde{\mathcal{G}}_{im}
+ \frac{1}{8}P_{-}(ab)\sum_{e}^{vir}\tau_{ij}^{eb}\widetilde{\mathcal{G}}_{ea}$$
(225)

Burada, s^b_j tensörü aşağıdaki şekilde tanımlanır.

$$s_j^b = \sum_m^{occ} t_m^b \sum_e^{vir} t_j^e \lambda_e^m$$
(226)

2.2.4.6.5. OOOV-Blok

Korelasyon TPDM terimlerinden Γ_{ijka}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ijka}^{corr} = -\frac{1}{8} P_{-}(ij) \mathcal{G}_{ik} t_{j}^{a} - \frac{1}{8} \sum_{e}^{vir} \lambda_{e}^{k} \tau_{ij}^{ea} - \frac{1}{8} \sum_{e}^{vir} t_{k}^{e} \lambda_{ea}^{ij} + \frac{1}{8} \sum_{m}^{occ} t_{m}^{a} V_{ijkm} + \frac{1}{4} P_{-}(ij) \sum_{f}^{vir} t_{j}^{f} V_{ifka}$$
(227)

2.2.4.6.6. OVVV-Blok

Korelasyon TPDM terimlerinden Γ_{abcd}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{icab}^{corr} = \frac{1}{8} P_{-}(ab) \mathcal{G}_{ca} t_{i}^{b}$$

$$- \frac{1}{8} \sum_{m}^{occ} \lambda_{c}^{m} \tau_{mi}^{ab} - \frac{1}{8} \sum_{m}^{occ} t_{m}^{c} \lambda_{ab}^{mi}$$

$$+ \frac{1}{8} \sum_{e}^{vir} t_{i}^{e} V_{ceab} + \frac{1}{4} P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} V_{icma}$$
(228)

2.2.4.7. Ayrılabilir TPDM Terimleri

Ayrılabilir TPDM terimlerine ait bloklar aşağıdaki şekilde ifade edilmektedir [52, 53, 170]. Bu kısımda, Γ_{abcd}^{corr} (VVVV-Blok), Γ_{ijab}^{corr} (OOVV-Blok) ve Γ_{icab}^{corr} (OVVV-Blok) terimleri sıfır olmaktadır.

2.2.4.7.1. OOOO-Blok

Ayrılabilir TPDM terimlerinden Γ_{ijkl}^{corr} aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ijkl}^{sep} = \frac{1}{4} \delta_{ik}^{occ} \gamma_{jl}^{corr} + \frac{1}{4} \delta_{jl}^{occ} \gamma_{ik}^{corr} - \frac{1}{4} \delta_{il}^{occ} \gamma_{jk}^{corr} - \frac{1}{4} \delta_{jk}^{occ} \gamma_{il}^{corr}$$
(229)

2.2.4.7.2. OVOV-Blok

Ayrılabilir TPDM Γ_{iajb}^{corr} bloğu aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{iajb}^{sep} = \frac{1}{4} \delta_{ij}^{occ} \gamma_{ab}^{corr}$$
(230)

2.2.4.7.3. OOOV-Blok

Ayrılabilir TPDM Γ_{ijka}^{corr} bloğu aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ijka}^{sep} = \frac{1}{4} \delta_{ik}^{occ} \gamma_{ja}^{corr} - \frac{1}{4} \delta_{jk}^{occ} \gamma_{ia}^{corr}$$
(231)

2.2.4.8. 3-İndisli TPDM Terimleri

3-indisli TPDM terimleri, 4-indisli tensörler cinsinden aşağıdaki şekilde genel olarak ifade edilmektedir [52, 53, 170].

$$\Gamma^Q_{pq} = 4 \sum_{r,s} \Gamma_{prqs} b^Q_{rs}$$
(232)

$$\Gamma^Q_{qp} = \Gamma^Q_{pq} \tag{233}$$

3-indisli Γ^Q_{pq} tensörü aşağıdaki şekilde terimlere ayrıştırılır [52, 53, 170].

$$\Gamma_{pq}^Q = \Gamma_{pq}^{Q(ref)} + \Gamma_{pq}^{Q(corr)} + \Gamma_{pq}^{Q(sep)}$$
(234)

2.2.4.8.1. 1- ve 3-İndisli Ara Tensörler

DF-SCF bazında (JK-FIT) ara tensörleri aşağıdaki şekilde ifade edilebilir [52, 53, 170].

$$J_Q = \sum_m^{occ} b_{mm}^Q \tag{235}$$

$$\gamma_Q = \sum_{m,n}^{occ} \gamma_{mn}^{corr} b_{mn}^Q$$
(236)

$$\widetilde{\gamma}_Q = \sum_{e,f}^{vir} \gamma_{ef}^{corr} b_{ef}^Q$$
(237)

$$\gamma_Q' = \sum_m^{occ} \sum_e^{vir} \gamma_{me}^{corr} b_{me}^Q$$
(238)

DF-CC bazında (RI) ara tensörleri aşağıdaki şekilde ifade edilebilir [52, 53, 170].

$$t_Q = \sum_m^{occ} \sum_e^{vir} t_m^e b_{me}^Q$$
(239)

$$t_{ai}^Q = \sum_m^{occ} t_m^a b_{mi}^Q \tag{240}$$

$$\tau_{ia}^Q = \sum_j^{occ} \sum_b^{vir} \tau_{ij}^{ab} b_{jb}^Q$$
(241)

$$\lambda_Q = \sum_{m}^{occ} \sum_{e}^{vir} \lambda_e^m b_{me}^Q$$
(242)

$$\lambda_{ia}^Q = \sum_e^{vir} \lambda_e^i b_{ea}^Q \tag{243}$$

$$\lambda_{ai}^Q = \sum_m^{occ} \lambda_a^m b_{mi}^Q \tag{244}$$

$$\Lambda_{ia}^Q = \sum_j^{occ} \sum_b^{vir} \lambda_{ab}^{ij} b_{jb}^Q$$
(245)

$$\mathcal{G}_Q = \sum_{\substack{e,f\\occ}}^{vir} \mathcal{G}_{ef} b_{ef}^Q$$
(246)

$$\widetilde{\mathcal{G}}_Q = \sum_{m,n}^{\infty} \mathcal{G}_{mn} b_{mn}^Q$$
(247)

$$\mathcal{G}_{ij}^Q = \sum_m^{occ} \mathcal{G}_{im} b_{jm}^Q \tag{248}$$

$$\mathcal{G}_{ia}^Q = \sum_m^{occ} \mathcal{G}_{mi} b_{ma}^Q \tag{249}$$

$$\mathcal{G}_{ai}^{Q} = \sum_{e}^{m} \mathcal{G}_{ae} b_{ie}^{Q}$$
(250)

$$\widetilde{\mathcal{G}}_{ia}^{Q} = \sum_{\substack{m \\ vir}}^{e} \widetilde{\mathcal{G}}_{mi} b_{ma}^{Q}$$
(251)

$$\widetilde{\mathcal{G}}_{ai}^{Q} = \sum_{e}^{vir} \widetilde{\mathcal{G}}_{ae} b_{ie}^{Q}$$
(252)

$$V_{ij}^Q = \sum_{m,n}^{occ} V_{imjn} b_{mn}^Q$$
(253)

$$\widetilde{V}_{ij}^Q = \sum_{m,n}^{occ} V_{imjn} t_{nm}^Q$$
(254)

$$V_{ij}^{Q\prime} = \sum_{e,f}^{vir} V_{iejf} b_{ef}^Q$$
(255)

$$V_{ai}^Q = \sum_{m}^{occ} \sum_{e}^{vir} V_{maie} b_{me}^Q$$
(256)

$$V_{ab}^Q = \sum_{m,n}^{occ} V_{manb} b_{mn}^Q$$
(257)

$$\widetilde{V}_{ab}^{Q} = \sum_{m,n}^{occ} V_{manb} t_{nm}^{Q}$$
(258)

$$\mathcal{V}_{ij}^Q = \sum_m^{occ} \sum_e^{vir} V_{imje} b_{me}^Q$$
(259)

$$\zeta_{ij}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \Lambda_{imje} t_{me}^{Q}$$
(260)

$$\zeta_{ia}^Q = \sum_{m,n}^{\infty} \Lambda_{imna} t_{mn}^Q$$
(261)

$$\eta_{ij}^Q = \sum_m^{occ} \sum_e^{vir} \Lambda_{imje} b_{me}^Q$$
(262)

$$\eta_{ia}^Q = \sum_{m,n}^{occ} \Lambda_{imna} b_{mn}^Q \tag{263}$$

$$\tilde{\eta}_{ia}^Q = \sum_{e,f}^{vir} \tilde{\Lambda}_{ieaf} b_{ef}^Q$$
(264)

$$\tilde{\eta}_{ab}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \tilde{\Lambda}_{maeb} b_{me}^{Q}$$
(265)

$$y_{ia}^Q = \sum_{m}^{occ} \sum_{e}^{vir} \widetilde{Y}_{imae} b_{me}^Q$$
(266)

2.2.4.8.2. 3-İndisli Referans TPDM Eşitlikleri

Referans TPDM terimleri 3-indisli tensörlerle aşağıdaki şekilde ifade edilebilmektedir [52, 53, 170].

$$\Gamma_{ij}^{Q(ref)} = \delta_{ij}J_Q - b_{ij}^Q \tag{267}$$

Burada, b_{ij}^Q DF-SCF bazında (JK-FIT) değerlendirilmektedir.

2.2.4.8.3. 3-İndisli Ayrılabilir TPDM Eşitlikleri

Ayrılabilir TPDM terimleri 3-indisli tensörlerle aşağıdaki şekilde ifade edilebilmektedir [52, 53, 170].

OO-Blok

Ayrılabilir TPDM $\Gamma_{ij}^{Q(sep)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170]. α Blok:

$$\Gamma_{IJ}^{Q(sep)} = \delta_{IJ} \left(\gamma_Q + 2\gamma'_Q + \widetilde{\gamma}_Q \right) + \gamma_{IJ}^{corr} J_Q - P_+(IJ) \sum_M^{occ} \gamma_{JM}^{corr} b_{IM}^Q - P_+(IJ) \sum_E^{vir} \gamma_{JE}^{corr} b_{IE}^Q$$
(268)

 β Blok:

$$\Gamma_{ij}^{Q(sep)} = \delta_{ij} \left(\gamma_Q + 2\gamma'_Q + \widetilde{\gamma}_Q \right) + \gamma_{ij}^{corr} J_Q - P_+(ij) \sum_m^{occ} \gamma_{jm}^{corr} b_{im}^Q - P_+(ij) \sum_e^{vir} \gamma_{je}^{corr} b_{ie}^Q$$
(269)

OV-Blok

Ayrılabilir TPDM $\Gamma_{ia}^{Q(sep)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170]. α Blok:

$$\Gamma_{IA}^{Q(sep)} = \gamma_{IA}^{corr} J_Q - \sum_{M}^{occ} \gamma_{MA}^{corr} b_{MI}^Q - \sum_{E}^{vir} \gamma_{EA}^{corr} b_{IE}^Q$$
(270)

 β Blok:

$$\Gamma_{ia}^{Q(sep)} = \gamma_{ia}^{corr} J_Q - \sum_{m}^{occ} \gamma_{ma}^{corr} b_{mi}^Q - \sum_{e}^{vir} \gamma_{ea}^{corr} b_{ie}^Q$$
(271)

VV-Blok

Ayrılabilir TPDM $\Gamma_{ab}^{Q(sep)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170]. α Blok:

 $\Gamma_{AB}^{Q(sep)} = \gamma_{AB}^{corr} J_Q \tag{272}$

 β Blok:

$$\Gamma_{ab}^{Q(sep)} = \gamma_{ab}^{corr} J_Q \tag{273}$$

2.2.4.8.4. 3-İndisli Korelasyon TPDM Terimleri

Korelasyon TPDM terimleri, 3-indisli tensörlerle aşağıdaki şekilde ifade edilebilmektedir [52, 53, 170].

OO-Blok

Korelasyon TPDM $\Gamma_{ij}^{Q(corr)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ij}^{Q(corr)} = \frac{1}{2} P_{+}(ij) \left(2 \mathcal{V}_{ij}^{Q} + V_{ij}^{Q} + \widetilde{V}_{ij}^{Q} - 2 V_{ij}^{Q'} - \zeta_{ij}^{Q} - \mathcal{G}_{ij} t_{Q} \right)
+ \frac{1}{2} P_{+}(ij) \sum_{m}^{occ} \mathcal{G}_{mj} t_{im}^{Q}
- \frac{1}{2} P_{+}(ij) \sum_{e}^{vir} \lambda_{e}^{j} \left(\tau_{ie}^{Q} + t_{ie}^{Q} \right)
- \frac{1}{2} P_{+}(ij) \sum_{e}^{vir} t_{j}^{e} \left(\Lambda_{ie}^{Q} + 2 V_{ei}^{Q} \right)$$
(274)

VV-Blok

Korelasyon TPDM $\Gamma_{ab}^{Q(corr)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ab}^{Q(corr)} = -\frac{1}{2}P_{+}(ab)\left(2V_{ab}^{Q} + 2\tilde{V}_{ab}^{Q} + \tilde{\eta}_{ab}^{Q} + \mathcal{G}_{ab}t_{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{m}^{occ}\lambda_{b}^{m}\left(\tau_{ma}^{Q} - t_{am}^{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{m}^{occ}t_{m}^{b}\left(\eta_{ma}^{Q} + \mathcal{G}_{am}^{Q} + \Lambda_{ma}^{Q} + 2V_{am}^{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{e,f}^{vir}V_{aebf}b_{ef}^{Q}$$
(275)

OV-Blok

Korelasyon TPDM $\Gamma_{ia}^{Q(corr)}$ bloğu aşağıdaki şekilde ifade edilir [52, 53, 170].

$$\Gamma_{ia}^{Q(corr)} = \frac{1}{2} \left(\tau_{ia}^{Q} + \Lambda_{ia}^{Q} + \zeta_{ia}^{Q} + 2y_{ia}^{Q} - \tilde{\eta}_{ia}^{Q} \right) \\
+ \frac{1}{2} \left(\lambda_{a}^{i} t_{Q} + t_{i}^{a} \lambda_{Q} - t_{i}^{a} \mathcal{G}_{Q} - t_{i}^{a} \tilde{\mathcal{G}}_{Q} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} t_{m}^{a} \left(\mathcal{G}_{im}^{Q} + V_{im}^{Q} - 2V_{im}^{Q'} - \eta_{mi}^{Q} \right) \\
- \frac{1}{2} \sum_{m}^{occ} \widetilde{\mathcal{G}}_{im} \tau_{ma}^{Q} + \frac{1}{2} \sum_{e}^{vir} \widetilde{\mathcal{G}}_{ea} \tau_{ie}^{Q} \\
+ \frac{1}{2} \sum_{e}^{vir} t_{ie}^{Q} \mathcal{G}_{ea} + \sum_{e}^{vir} t_{i}^{e} V_{ea}^{Q} \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \left(t_{me}^{Q} - t_{em}^{Q} \right) \left(\lambda_{ae}^{im} + 2V_{iema} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tau_{im}^{ae} \left(\widetilde{\mathcal{G}}_{em}^{Q} - \widetilde{\mathcal{G}}_{me}^{Q} + \lambda_{me}^{Q} - \lambda_{em}^{Q} \right)$$
(276)

2.2.4.9. PDM Ara Tensörleri

1-, 2-, 3- ve 4- indisli PDM ara tensörleri UHF referansına adapte edilmiş versiyonlarıyla aşağıda sunulmuştur. Bu kısımda elde edilen UHF bazında PDM ara tensörleri, C++ dilinde etkin kodlanarak MacroQC [74] yazılımına eklenmiştir.

2.2.4.9.1. $\widetilde{\mathcal{G}}_{mi}$ Ara Tensörleri

 $\widetilde{\mathcal{G}}_{mi}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{\mathcal{G}}_{MI} = \mathcal{G}_{MI} + \sum_{E}^{vir} t_{M}^{E} \lambda_{E}^{I}$$
(277)

$$\widetilde{\mathcal{G}}_{mi} = \mathcal{G}_{mi} + \sum_{e}^{vir} t_m^e \lambda_e^i$$
(278)

2.2.4.9.2. $\widetilde{\mathcal{G}}_{ae}$ Ara Tensörleri

 $\widetilde{\mathcal{G}}_{ae}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{\mathcal{G}}_{AE} = \mathcal{G}_{AE} - \sum_{M}^{occ} t_{M}^{E} \lambda_{A}^{M}$$
(279)

$$\widetilde{\mathcal{G}}_{ae} = \mathcal{G}_{ae} - \sum_{m}^{occ} t_m^e \lambda_a^m$$
(280)

2.2.4.9.3. V_{abcd} Ara Tensörleri

 V_{abcd} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha \alpha \alpha \alpha \alpha$ Blok:

$$V_{ABCD} = \frac{1}{2} \sum_{M,N}^{occ} \tau_{MN}^{CD} \lambda_{AB}^{MN}$$
(281)

 $\beta\beta\beta\beta$ Blok:

$$V_{abcd} = \frac{1}{2} \sum_{m,n}^{occ} \tau_{mn}^{cd} \lambda_{ab}^{mn}$$
(282)

 $\alpha\beta\alpha\beta$ Blok:

$$V_{AbCd} = \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Cd} \lambda_{Ab}^{Mn} + \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Cd} \lambda_{Ab}^{Nm}$$
(283)

 $\beta \alpha \beta \alpha$ Blok:

$$V_{aBcD} = \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Dc} \lambda_{Ba}^{Nm} + \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Dc} \lambda_{Ba}^{Mn}$$
(284)

2.2.4.9.4. \widetilde{V}_{iajb} Ara Tensörleri

 \tilde{V}_{iajb} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha \alpha \alpha \alpha$ Blok:

$$\widetilde{V}_{IAJB} = V_{IAJB} + t_I^B \lambda_A^J \tag{285}$$

 $\beta\beta\beta\beta$ Blok:

$$\widetilde{V}_{iajb} = V_{iajb} + t_i^b \lambda_a^j \tag{286}$$

 $\alpha\beta\alpha\beta$ Blok:

$$\widetilde{V}_{IaJb} = V_{IaJb} \tag{287}$$

 $\beta \alpha \beta \alpha$ Blok:

$$\widetilde{V}_{iAjB} = V_{iAjB} \tag{288}$$

 $\alpha\beta\beta\alpha$ Blok:

$$\widetilde{V}_{IajB} = V_{IajB} + t_I^B \lambda_a^j \tag{289}$$

 $\beta \alpha \alpha \beta$ Blok:

$$\widetilde{V}_{iAJb} = V_{iAJb} + t_i^b \lambda_A^J \tag{290}$$

2.2.4.9.5. V_{ijka} Ara Tensörleri

 V_{ijka} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha\alpha\alpha\alpha$ Blok:

$$V_{IJKA} = \sum_{E}^{vir} t_{J}^{E} V_{IEKA}$$
(291)

 $\beta\beta\beta\beta$ Blok:

$$V_{ijka} = \sum_{e}^{vir} t_j^e V_{ieka}$$
(292)

 $\alpha\beta\alpha\beta$ Blok:

$$V_{IjKa} = \sum_{e}^{vir} t_j^e V_{IeKa}$$
(293)

 $\beta \alpha \beta \alpha$ Blok:

$$V_{iJkA} = \sum_{e}^{vir} t_J^E V_{iEkA}$$
(294)

$$\alpha\beta\beta\alpha$$
 Blok:

$$V_{IjkA} = \sum_{e}^{vir} t_j^e V_{IekA}$$
(295)

 $\beta \alpha \alpha \beta$ Blok:

$$V_{iJKa} = \sum_{E}^{vir} t_{J}^{E} V_{iEKa}$$
(296)

2.2.4.9.6. $\tilde{\Lambda}_{ieaf}$ Ara Tensörleri

 $\tilde{\Lambda}_{ieaf}$ ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha \alpha \alpha \alpha$ Blok:

$$\tilde{\Lambda}_{IEAF} = \frac{1}{2} \sum_{M,N}^{occ} \tau_{MN}^{AF} \Lambda_{MNIE}$$
(297)

 $\beta\beta\beta\beta$ Blok:

$$\tilde{\Lambda}_{ieaf} = \frac{1}{2} \sum_{m,n}^{occ} \tau_{mn}^{af} \Lambda_{mnie}$$
(298)

 $\alpha\beta\alpha\beta$ Blok:

$$\tilde{\Lambda}_{IeAf} = \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Af} \Lambda_{MnIe} - \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Af} \Lambda_{mNIe}$$
(299)

 $\beta \alpha \beta \alpha$ Blok:

$$\tilde{\Lambda}_{iEaF} = \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Fa} \Lambda_{mNiE} - \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Fa} \Lambda_{MniE}$$
(300)

2.2.4.9.7. *Y*_{*iajb*} Ara Tensörleri

 Y_{iajb} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha \alpha \alpha \alpha$ Blok:

$$Y_{IAJB} = \sum_{M}^{occ} \sum_{E}^{vir} (t_{MI}^{AE} + 2t_{M}^{A} t_{I}^{E}) \widetilde{V}_{JEMB}$$
$$- \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} \widetilde{V}_{JemB}$$
(301)
$\beta\beta\beta\beta$ Blok:

$$Y_{iajb} = \sum_{m}^{occ} \sum_{e}^{vir} (t_{mi}^{ae} + 2t_{m}^{a}t_{i}^{e})\widetilde{V}_{jemb}$$
$$- \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea}\widetilde{V}_{jEMb}$$
(302)

 $\alpha\beta\alpha\beta$ Blok:

$$Y_{IaJb} = \sum_{m}^{occ} \sum_{E}^{vir} (t_{Im}^{Ea} + 2t_{m}^{a} t_{I}^{E}) \widetilde{V}_{JEmb}$$
(303)

 $\beta \alpha \beta \alpha$ Blok:

$$Y_{iAjB} = \sum_{M}^{occ} \sum_{e}^{vir} (t_{Mi}^{Ae} + 2t_{M}^{A}t_{i}^{e}) \widetilde{V}_{jeMB}$$
(304)

2.2.4.9.8. *Y*_{*ijab*} Ara Tensörleri

 Y_{ijab} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. lpha lpha lpha lpha Blok:

$$Y_{IJAB} = \frac{1}{2} \sum_{M,N}^{occ} \tau_{MN}^{AB} V_{IJMN}$$
(305)

 $\beta\beta\beta\beta$ Blok:

$$Y_{ijab} = \frac{1}{2} \sum_{m,n}^{occ} \tau_{mn}^{ab} V_{ijmn}$$
(306)

 $\alpha\beta\alpha\beta$ Blok:

$$Y_{IjAb} = \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Ab} V_{IjMn} - \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Ab} V_{IjmN}$$
(307)

 $\beta \alpha \beta \alpha$ Blok:

$$Y_{iJaB} = \frac{1}{2} \sum_{m,N}^{occ} \tau_{Nm}^{Ba} V_{iJmN} - \frac{1}{2} \sum_{M,n}^{occ} \tau_{Mn}^{Ba} V_{iJMn}$$
(308)

2.2.4.9.9. \widetilde{Y}_{ijab} Ara Tensörleri

 \widetilde{Y}_{ijab} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir. $\alpha\alpha\alpha\alpha$ Blok:

$$\widetilde{Y}_{IJAB} = \frac{1}{2} (Y_{IJAB} - Y_{IAJB} + Y_{JAIB} + Y_{IBJA} - Y_{JBIA})
+ \frac{3}{2} (t_{I}^{A} s_{J}^{B} - t_{J}^{A} s_{I}^{B} - t_{I}^{B} s_{J}^{A} + t_{J}^{B} s_{I}^{A})
+ V_{IBJA} + V_{JAIB}$$
(309)

 $\beta\beta\beta\beta$ Blok:

$$\widetilde{Y}_{ijab} = \frac{1}{2} (Y_{ijab} - Y_{iajb} + Y_{jaib} + Y_{ibja} - Y_{jbia})
+ \frac{3}{2} (t_i^a s_j^b - t_j^a s_i^b - t_i^b s_j^a + t_j^b s_i^a)
+ V_{ibja} + V_{jaib}$$
(310)

 $\alpha\beta\alpha\beta$ Blok:

$$\widetilde{Y}_{IjAb} = \frac{1}{2} (Y_{IjAb} - Y_{IAjb} + Y_{jAIb} + Y_{IbjA} - Y_{jbIA})
+ \frac{3}{2} (t_I^A s_j^b + t_j^b s_I^A)
+ V_{IbjA} + V_{jAIb}$$
(311)

 $\beta \alpha \beta \alpha$ Blok:

$$\widetilde{Y}_{iJaB} = \frac{1}{2} \left(Y_{iJaB} - Y_{iaJB} + Y_{JaiB} + Y_{iBJa} - Y_{JBia} \right) + \frac{3}{2} \left(t_i^a s_J^B + t_J^B s_i^a \right) + V_{iBJa} + V_{JaiB}$$
(312)

2.2.4.9.10. s_i^a Ara Tensörleri

 \boldsymbol{s}^a_i ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$s_I^A = \sum_M^{occ} t_M^A \sum_E^{vir} t_I^E \lambda_E^M$$
(313)

$$s_i^a = \sum_m^{occ} t_m^a \sum_e^{vir} t_i^e \lambda_e^m$$
(314)

2.2.4.9.11. au_{ia}^Q Ara Tensörleri

 τ^Q_{ia} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\tau_{IA}^{Q} = \sum_{J}^{occ} \sum_{B}^{vir} \tau_{IJ}^{AB} b_{JB}^{Q} + \sum_{j}^{occ} \sum_{b}^{vir} \tau_{Ij}^{Ab} b_{jb}^{Q}$$
(315)

$$\tau_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} \tau_{ij}^{ab} b_{jb}^{Q} + \sum_{J}^{occ} \sum_{B}^{vir} \tau_{Ji}^{Ba} b_{JB}^{Q}$$
(316)

2.2.4.9.12. λ_Q Ara Tensörleri

 λ_Q ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\lambda_Q = \sum_{M}^{occ} \sum_{E}^{vir} \lambda_E^M b_{ME}^Q + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_e^m b_{me}^Q$$
(317)

2.2.4.9.13. λ_{ai}^Q Ara Tensörleri

 λ^Q_{ai} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\lambda_{AI}^{Q} = \sum_{M}^{occ} \lambda_{A}^{M} b_{MI}^{Q}$$
(318)

$$\lambda_{ai}^{Q} = \sum_{m}^{occ} \lambda_{a}^{m} b_{mi}^{Q}$$
(319)

2.2.4.9.14. $\widetilde{\mathcal{G}}_Q$ Ara Tensörleri

 $\widetilde{\mathcal{G}}_Q$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{\mathcal{G}}_Q = \sum_{M,N}^{occ} \mathcal{G}_{MN} b_{MN}^Q + \sum_{m,n}^{occ} \mathcal{G}_{mn} b_{mn}^Q$$
(320)

2.2.4.9.15. \mathcal{G}_{ij}^Q Ara Tensörleri

 \mathcal{G}^Q_{ij} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{G}_{IJ}^Q = \sum_M^{occ} \mathcal{G}_{IM} b_{JM}^Q \tag{321}$$

$$\mathcal{G}_{ij}^Q = \sum_m^{occ} \mathcal{G}_{im} b_{jm}^Q \tag{322}$$

2.2.4.9.16. $\widetilde{\mathcal{G}}_{ia}^Q$ Ara Tensörleri

 $\widetilde{\mathcal{G}}^Q_{ia}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{\mathcal{G}}_{IA}^Q = \sum_M^{occ} \widetilde{\mathcal{G}}_{MI} b_{MA}^Q$$
(323)

$$\widetilde{\mathcal{G}}_{ia}^{Q} = \sum_{m}^{occ} \widetilde{\mathcal{G}}_{mi} b_{ma}^{Q}$$
(324)

2.2.4.9.17. $\widetilde{\mathcal{G}}_{ai}^Q$ Ara Tensörleri

 $\widetilde{\mathcal{G}}^Q_{ai}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{\mathcal{G}}_{AI}^{Q} = \sum_{E}^{vir} \widetilde{\mathcal{G}}_{AE} b_{IE}^{Q}$$
(325)

$$\widetilde{\mathcal{G}}_{ai}^{Q} = \sum_{e}^{vir} \widetilde{\mathcal{G}}_{ae} b_{ie}^{Q}$$
(326)

2.2.4.9.18. V_{ab}^Q Ara Tensörleri

 V^Q_{ab} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$V_{AB}^{Q} = \sum_{M,N}^{occ} V_{MANB} b_{MN}^{Q} + \sum_{m,n}^{occ} V_{mAnB} b_{mn}^{Q}$$
(327)

$$V_{ab}^{Q} = \sum_{m,n}^{occ} V_{manb} b_{mn}^{Q} + \sum_{M,N}^{occ} V_{MaNb} b_{MN}^{Q}$$
(328)

2.2.4.9.19. \widetilde{V}_{ab}^Q Ara Tensörleri

 \widetilde{V}^Q_{ab} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{V}_{AB}^{Q} = \sum_{M,N}^{occ} V_{MANB} t_{NM}^{Q} + \sum_{m,n}^{occ} V_{mAnB} t_{nm}^{Q}$$
(329)

$$\widetilde{V}_{ab}^{Q} = \sum_{m,n}^{occ} V_{manb} t_{nm}^{Q} + \sum_{M,N}^{occ} V_{MaNb} t_{NM}^{Q}$$
(330)

2.2.4.9.20. \mathcal{V}_{ij}^Q Ara Tensörleri

 \mathcal{V}_{ij}^Q ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{IJ}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} V_{IMJE} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} V_{ImJe} b_{me}^{Q}$$
(331)

$$\mathcal{V}_{ij}^Q = \sum_m^{occ} \sum_e^{vir} V_{imje} b_{me}^Q + \sum_M^{occ} \sum_E^{vir} V_{iMjE} b_{ME}^Q$$
(332)

2.2.4.9.21. η_{ij}^Q Ara Tensörleri

 η^Q_{ij} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\eta_{IJ}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} \Lambda_{IMJE} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} \Lambda_{ImJe} b_{me}^{Q}$$
(333)

$$\eta_{ij}^Q = \sum_m^{occ} \sum_e^{vir} \Lambda_{imje} b_{me}^Q + \sum_M^{occ} \sum_E^{vir} \Lambda_{iMjE} b_{ME}^Q$$
(334)

2.2.4.9.22. η_{ia}^Q Ara Tensörleri

 η^Q_{ia} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\eta_{IA}^Q = \sum_{M,N}^{occ} \Lambda_{IMNA} b_{MN}^Q + \sum_{m,n}^{occ} \Lambda_{ImnA} b_{MN}^Q$$
(335)

$$\eta_{ia}^Q = \sum_{m,n}^{occ} \Lambda_{imna} b_{mn}^Q + \sum_{M,N}^{occ} \Lambda_{iMNa} b_{mn}^Q$$
(336)

2.2.4.9.23. $\tilde{\eta}_{ia}^Q$ Ara Tensörleri

 $\tilde{\eta}^Q_{ia}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\tilde{\eta}_{IA}^{Q} = \sum_{E,F}^{vir} \tilde{\Lambda}_{IEAF} b_{EF}^{Q} + \sum_{e,f}^{vir} \tilde{\Lambda}_{IeAf} b_{ef}^{Q}$$
(337)

$$\tilde{\eta}_{ia}^{Q} = \sum_{e,f}^{vir} \tilde{\Lambda}_{ieaf} b_{ef}^{Q} + \sum_{E,F}^{vir} \tilde{\Lambda}_{iEaF} b_{EF}^{Q}$$
(338)

2.2.4.9.24. $\tilde{\eta}^Q_{ab}$ Ara Tensörleri

 $\tilde{\eta}^Q_{ab}$ ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\tilde{\eta}_{AB}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} \tilde{\Lambda}_{MAEB} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} \tilde{\Lambda}_{mAeB} b_{me}^{Q}$$
(339)

$$\tilde{\eta}_{ab}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \tilde{\Lambda}_{maeb} b_{me}^{Q} + \sum_{M}^{occ} \sum_{E}^{vir} \tilde{\Lambda}_{MaEb} b_{ME}^{Q}$$
(340)

2.2.4.9.25. y_{ia}^Q Ara Tensörleri

 y^Q_{ia} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$y_{IA}^Q = \sum_M^{occ} \sum_E^{vir} \widetilde{Y}_{IMAE} b_{ME}^Q + \sum_m^{occ} \sum_e^{vir} \widetilde{Y}_{ImAe} b_{me}^Q$$
(341)

$$y_{ia}^Q = \sum_{m}^{occ} \sum_{e}^{vir} \widetilde{Y}_{imae} b_{me}^Q + \sum_{M}^{occ} \sum_{E}^{vir} \widetilde{Y}_{iMaE} b_{ME}^Q$$
(342)

2.2.4.10. Korelasyon PDM Terimleri

3-indisli korelasyon PDM terimlerinin UHF referansına adapte edilmiş versiyonları bu kısımda sunulmaktadır.

2.2.4.10.1. OO-Blok

Korelasyon PDM terimlerinden $\Gamma_{ij}^{Q(corr)}$ için, α ve β blokları aşağıdaki şekilde ifade edilmektedir.

 α Blok:

$$\Gamma_{ij}^{Q(corr)} = \frac{1}{2} P_{+}(IJ) \left(2 \mathcal{V}_{IJ}^{Q} + V_{IJ}^{Q} + \widetilde{V}_{IJ}^{Q} \right)
- \frac{1}{2} P_{+}(IJ) \left(2 \mathcal{V}_{IJ}^{Q'} + \zeta_{IJ}^{Q} + \mathcal{G}_{IJ} t_{Q} \right)
+ \frac{1}{2} P_{+}(IJ) \sum_{M}^{occ} \mathcal{G}_{MJ} t_{IM}^{Q}
- \frac{1}{2} P_{+}(IJ) \sum_{E}^{vir} \lambda_{E}^{J} \left(\tau_{IE}^{Q} + t_{IE}^{Q} \right)
- \frac{1}{2} P_{+}(IJ) \sum_{E}^{vir} t_{J}^{E} \left(\Lambda_{IE}^{Q} + 2 \mathcal{V}_{EI}^{Q} \right)$$
(343)

 β Blok:

$$\Gamma_{ij}^{Q(corr)} = \frac{1}{2} P_{+}(ij) \left(2 \mathcal{V}_{ij}^{Q} + V_{ij}^{Q} + \widetilde{V}_{ij}^{Q} \right)
- \frac{1}{2} P_{+}(ij) \left(2 V_{ij}^{Q'} + \zeta_{ij}^{Q} + \mathcal{G}_{ij} t_{Q} \right)
+ \frac{1}{2} P_{+}(ij) \sum_{m}^{occ} \mathcal{G}_{mj} t_{im}^{Q}
- \frac{1}{2} P_{+}(ij) \sum_{e}^{vir} \lambda_{e}^{j} \left(\tau_{ie}^{Q} + t_{ie}^{Q} \right)
- \frac{1}{2} P_{+}(ij) \sum_{e}^{vir} t_{j}^{e} \left(\Lambda_{ie}^{Q} + 2 V_{ei}^{Q} \right)$$
(344)

2.2.4.10.2. VV-Blok

Korelasyon PDM terimlerinden $\Gamma_{ab}^{Q(corr)}$ için, α ve β blokları aşağıdaki şekilde ifade edilmektedir.

 α Blok:

$$\Gamma_{AB}^{Q(corr)} = -\frac{1}{2} P_{+}(AB) \left(2V_{AB}^{Q} + 2\tilde{V}_{AB}^{Q} + \tilde{\eta}_{AB}^{Q} + \mathcal{G}_{AB}t_{Q} \right)
+ \frac{1}{2} P_{+}(AB) \sum_{M}^{occ} \lambda_{B}^{M} \left(\tau_{MA}^{Q} - t_{AM}^{Q} \right)
+ \frac{1}{2} P_{+}(AB) \sum_{M}^{occ} t_{M}^{B} \left(\eta_{MA}^{Q} + \mathcal{G}_{AM}^{Q} + \Lambda_{MA}^{Q} + 2V_{AM}^{Q} \right)
+ \frac{1}{2} P_{+}(AB) \sum_{E,F}^{vir} V_{AEBF} b_{EF}^{Q}
+ \frac{1}{2} P_{+}(AB) \sum_{E,F}^{vir} V_{AeBF} b_{ef}^{Q}$$
(345)

 β Blok:

$$\Gamma_{ab}^{Q(corr)} = -\frac{1}{2}P_{+}(ab)\left(2V_{ab}^{Q} + 2\tilde{V}_{ab}^{Q} + \tilde{\eta}_{ab}^{Q} + \mathcal{G}_{ab}t_{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{m}^{occ}\lambda_{b}^{m}\left(\tau_{ma}^{Q} - t_{am}^{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{m}^{occ}t_{m}^{b}\left(\eta_{ma}^{Q} + \mathcal{G}_{am}^{Q} + \Lambda_{ma}^{Q} + 2V_{am}^{Q}\right)
+ \frac{1}{2}P_{+}(ab)\sum_{e,f}^{vir}V_{aebf}b_{ef}^{Q}
+ \frac{1}{2}P_{+}(ab)\sum_{E,F}^{vir}V_{aEbF}b_{EF}^{Q}$$
(346)

2.2.4.10.3. OV-Blok

Korelasyon PDM terimlerinden $\Gamma_{ia}^{Q(corr)}$ için, α ve β blokları aşağıdaki şekilde ifade edilmektedir.

 α Blok:

$$\Gamma_{IA}^{Q(corr)} = \frac{1}{2} \left(\tau_{IA}^{Q} + \Lambda_{IA}^{Q} + \zeta_{IA}^{Q} + 2y_{IA}^{Q} - \tilde{\eta}_{IA}^{Q} \right) \\
+ \frac{1}{2} \left(\lambda_{A}^{I} t_{Q} + t_{I}^{A} \lambda_{Q} - t_{I}^{A} \mathcal{G}_{Q} - t_{I}^{A} \tilde{\mathcal{G}}_{Q} \right) \\
+ \frac{1}{2} \sum_{M}^{occ} t_{M}^{A} \left(\mathcal{G}_{IM}^{Q} + V_{IM}^{Q} - 2V_{IM}^{Q'} - \eta_{MI}^{Q} \right) \\
- \frac{1}{2} \sum_{M}^{occ} \tilde{\mathcal{G}}_{IM} \tau_{MA}^{Q} + \frac{1}{2} \sum_{E}^{vir} \tilde{\mathcal{G}}_{EA} \tau_{IE}^{Q} \\
+ \frac{1}{2} \sum_{E}^{vir} t_{IE}^{Q} \mathcal{G}_{EA} + \sum_{E}^{vir} t_{I}^{E} V_{EA}^{Q} \\
+ \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} \left(t_{ME}^{Q} - t_{EM}^{Q} \right) \left(\lambda_{AE}^{IM} + 2V_{IEMA} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tau_{IM}^{AE} \left(\tilde{\mathcal{G}}_{EM}^{Q} - \tilde{\mathcal{G}}_{ME}^{Q} + \lambda_{ME}^{Q} - \lambda_{EM}^{Q} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tau_{Im}^{AE} \left(\tilde{\mathcal{G}}_{em}^{Q} - \tilde{\mathcal{G}}_{me}^{Q} + \lambda_{me}^{Q} - \lambda_{em}^{Q} \right)$$
(347)

 β Blok:

$$\Gamma_{ia}^{Q(corr)} = \frac{1}{2} \left(\tau_{ia}^{Q} + \Lambda_{ia}^{Q} + \zeta_{ia}^{Q} + 2y_{ia}^{Q} - \tilde{\eta}_{ia}^{Q} \right) \\
+ \frac{1}{2} \left(\lambda_{a}^{i} t_{Q} + t_{i}^{a} \lambda_{Q} - t_{i}^{a} \mathcal{G}_{Q} - t_{i}^{a} \tilde{\mathcal{G}}_{Q} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} t_{m}^{a} \left(\mathcal{G}_{im}^{Q} + V_{im}^{Q} - 2V_{im}^{Q'} - \eta_{mi}^{Q} \right) \\
- \frac{1}{2} \sum_{m}^{occ} \tilde{\mathcal{G}}_{im} \tau_{ma}^{Q} + \frac{1}{2} \sum_{e}^{vir} \tilde{\mathcal{G}}_{ea} \tau_{ie}^{Q} \\
+ \frac{1}{2} \sum_{e}^{vir} t_{ie}^{Q} \mathcal{G}_{ea} + \sum_{e}^{vir} t_{i}^{e} V_{ea}^{Q} \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \left(t_{me}^{Q} - t_{em}^{Q} \right) \left(\lambda_{ea}^{im} + 2V_{iema} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \left(t_{ME}^{Q} - t_{EM}^{Q} \right) \left(\lambda_{Ea}^{Mi} + 2V_{iEMa} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tau_{im}^{ae} \left(\tilde{\mathcal{G}}_{em}^{Q} - \tilde{\mathcal{G}}_{me}^{Q} + \lambda_{me}^{Q} - \lambda_{em}^{Q} \right) \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{m}^{vir} \tau_{mi}^{ae} \left(\tilde{\mathcal{G}}_{EM}^{Q} - \tilde{\mathcal{G}}_{ME}^{Q} + \lambda_{ME}^{Q} - \lambda_{EM}^{Q} \right)$$
(348)

2.2.4.11. PDM Terimleri Üzerinden Enerji İfadeleri

3-indisli PDM terimleri üzerinden CCSD-Λ enerjisi aşağıdaki şekilde ifade edilmektedir [23, 25, 40, 52, 53, 157, 178].

$$\widetilde{E} = \sum_{p,q} \gamma_{pq} h_{pq} + \frac{1}{2} \sum_{Q}^{N_{aux}} \sum_{p,q} \Gamma^Q_{pq} b^Q_{pq}$$
(349)

$$\Delta \widetilde{E} = \sum_{p,q} \gamma_{pq}^{corr} f_{pq} + \frac{1}{2} \sum_{Q}^{N_{aux}} \sum_{p,q} \Gamma_{pq}^{Q(corr)} b_{pq}^{Q(corr)}$$
(350)

$$E_{ref} = \sum_{i,j}^{occ} \gamma_{ij}^{ref} h_{ij} + \frac{1}{2} \sum_{Q}^{N_{aux}} \sum_{i,j}^{occ} \Gamma_{ij}^{Q(ref)} b_{ij}^{Q(ref)}$$
(351)

2.3. Optimize Orbitalli Yoğunluk Uyarlanmış İkili Uyarılmış Bağlanmış Küme Teorisi (DF-OCCD)

Çalışmanın bu kısmında yoğunluk uyarlanmış ikili uyarılmış bağlanmış küme yöntemi (DF-CCD) ve bunun optimize orbitalli (OO) versiyonu (DF-OCCD) için gerekli formülasyon geliştirilmiştir. Optimize orbitalli bağlanmış küme yöntemleri ile ilgili önceki çalışmalar [23, 25, 40, 157, 178] dikkate alınarak uygun formülasyon belirlenmiştir. Bu kısımda, RHF ve UHF referanslı DF-CCD yöntemleri için enerji, amplitut (T ve Λ) denklemleri ve yoğunluk matrisleri açıkça gösterilmektedir. Burada geliştirilen formülasyon [157] C++ programlama dilinde etkin bir biçimde kodlanmış ve MacroQC [74] yazılımına ilave edilmiştir.

2.3.1. DF-CCD Yöntemi için Spin Orbital Enerji ve Amplitut Denklemleri

DF-CCD yöntemi için spin orbital formunda enerji ve amplitut eşitlikleri bu kısımda sunulmaktadır [23, 25, 157].

2.3.1.1. Başlangıç T_2 Amplitut Eşitliği

DF-CCD yöntemi için başlangıç T_2 amplitut eşitliği aşağıdaki şekilde ifade edilmektedir [23, 25, 157, 178].

$$t_{ij}^{ab}D_{ij}^{ab} = \langle ij||ab\rangle \tag{352}$$

Burada, D_{ij}^{ab} terimi aşağıdaki şekilde tanımlanır.

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(353)

2.3.1.2. 3-İndisli Ara Tensör

Burada gerekli olan 3-indisli ara tensör olan T_{ia}^Q tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$T_{ia}^Q = \sum_j^{occ} \sum_b^{vir} t_{ij}^{ab} b_{jb}^Q$$
(354)

2.3.1.3. F Ara Tensörleri

F ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır.

2.3.1.3.1. *F_{mi}* Ara Tensörü

 F_{mi} ara tensörleri konvansiyonel ve yoğunluk uyarlanmış (DF) formlarda aşağıdaki hali almaktadır [23, 25, 157, 178].

$$F_{mi} = (1 - \delta_{mi}) f_{mi} + \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} t_{in}^{ef} \langle mn || ef \rangle$$
(355)

DF:

$$F_{mi} = (1 - \delta_{mi})f_{mi} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T^{Q}_{ie} b^{Q}_{me}$$
(356)

2.3.1.3.2. F_{ae} Ara Tensörü

 F_{ae} ara tensörleri konvansiyonel ve yoğunluk uyarlanmış (DF) formlarda aşağıdaki hali almaktadır [23, 25, 157, 178].

$$F_{ae} = (1 - \delta_{ae})f_{ae} - \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\sum_{f}^{vir}t_{mn}^{af}\langle mn||ef\rangle$$
(357)

DF:

$$F_{ae} = (1 - \delta_{ae}) f_{ae} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} T^{Q}_{ma} b^{Q}_{me}$$
(358)

2.3.1.3.3. *F_{me}* Ara Tensörü

 F_{me} ara tensörü aşağıdaki şekildedir [23, 25, 157, 178].

$$F_{me} = f_{me} \tag{359}$$

2.3.1.4. W Ara Tensörleri

 ${\cal W}$ ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır.

2.3.1.4.1. W_{mnij} Ara Tensörü

 W_{mnij} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$W_{mnij} = \langle mn || ij \rangle_{DF} + \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mn | ef \rangle_{DF}$$
(360)

2.3.1.4.2. *W*_{abef} Ara Tensörü

 W_{abef} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$W_{abef} = \langle ab || ef \rangle_{DF} \tag{361}$$

2.3.1.4.3. *W*_{mbej} Ara Tensörü

 W_{mbej} ara tensörü konvansiyonel ve yoğunluk uyarlanmış (DF) formlarda aşağıdaki halini alır [157].

$$W_{mbej} = \langle mb||ej\rangle - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb} \langle mn||ef\rangle$$
(362)

DF:

$$W_{mbej} = \langle mb || ej \rangle_{DF} + \frac{1}{2} \sum_{Q}^{N_{aux}} T_{jb}^{Q} b_{me}^{Q}$$
$$- \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{bf} \langle em | nf \rangle_{DF}$$
(363)

2.3.1.5. T_2 Amplitut Eşitliği

DF-CCD yöntemi için T_2 amplitut eşitliği aşağıdaki şekilde ifade edilmektedir [157].

$$t_{ij}^{ab} D_{ij}^{ab} = \langle ij || ab \rangle_{DF} + P_{-}(ab) \sum_{e}^{vir} t_{ij}^{ae} F_{be} - P_{-}(ij) \sum_{m}^{vir} t_{im}^{ab} F_{mj} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab} W_{mnij} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} W_{abef} + P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} W_{mbej}$$
(364)

2.3.1.6. DF-CCD Enerji Eşitliği

DF-CCD yöntemi için enerji ifadesi aşağıdaki gibidir [157].

$$\Delta E = \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} t_{ij}^{ab} \langle ij || ab \rangle_{DF}$$
(365)

2.3.2. DF-CCD Lagrangian: A Spin Orbital Denklemleri

Bu kısımda, DF-CCD-Λ eşitlikleri spin orbital formda sunulmaktadır [23, 25, 40, 157, 178].

2.3.2.1. Başlangıç λ_2 Amplitutları

DF-CCD lagrangian denklemleri için başlangıç λ_2 amplitutları aşağıdaki şekilde ifade edilmektedir [23, 25, 157, 178].

$$\lambda_{ab}^{ij} = \langle ij || ab \rangle / D_{ij}^{ab}$$
(366)

Burada, D_{ij}^{ab} terimi aşağıdaki şekilde tanımlanır.

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(367)

2.3.2.2. 3-İndisli Ara Tensör

Burada gerekli olan 3-indisli ara tensör olan T_{ia}^Q tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$T_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} t_{ij}^{ab} b_{jb}^{Q}$$
(368)

2.3.2.3. F Ara Tensörleri

F ara tensörleri farklı bloklar halinde aşağıda sunulmaktadır.

2.3.2.3.1. *F*_{mi} Ara Tensörü

 F_{mi} tensörü konvansiyonel ve yoğunluk uyarlanmış (DF) formlarda aşağıda sunulmaktadır [23, 25, 157, 178].

$$F_{mi} = (1 - \delta_{mi}) f_{mi} + \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} t_{in}^{ef} \langle mn || ef \rangle$$
(369)

DF:

$$F_{mi} = (1 - \delta_{mi})f_{mi} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T^{Q}_{ie} b^{Q}_{me}$$
(370)

2.3.2.3.2. F_{ae} Ara Tensörü

 F_{ae} tensörü konvansiyonel ve yoğunluk uyarlanmış (DF) formlarda aşağıda sunulmaktadır [23, 25, 157, 178].

$$F_{ae} = (1 - \delta_{ae})f_{ae} - \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\sum_{f}^{vir}t_{mn}^{af}\langle mn||ef\rangle$$
(371)

DF:

$$F_{ae} = (1 - \delta_{ae}) f_{ae} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} T^{Q}_{ma} b^{Q}_{me}$$
(372)

2.3.2.3.3. F_{me} Ara Tensörü

 F_{me} tensörü aşağıdaki şekilde tanımlanmaktadır [23, 25, 157, 178].

$$F_{me} = f_{me} \tag{373}$$

2.3.2.4. *V*_{*ijkl*} Ara Tensörü

 V_{ijkl} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$V_{ijkl} = \frac{1}{2} \sum_{e,f}^{vir} t_{ij}^{ef} \lambda_{ef}^{kl}$$
(374)

2.3.2.5. W Ara Tensörleri

W ara tensörleri aşağıdaki eşitliklerle ifade edilmektedir [157].

2.3.2.5.1. W_{mnij} Ara Tensörü

 W_{mnij} ara tensörleri aşağıda sunulmuştur [157].

$$W_{mnij} = \langle mn || ij \rangle + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mn || ef \rangle$$
(375)

2.3.2.5.2. W_{abef} Ara Tensörü

 W_{abef} ara tensörü aşağıda sunulmuştur [157].

$$W_{abef} = \langle ab || ef \rangle_{DF} \tag{376}$$

2.3.2.6. *G* Ara Tensörleri

 \mathcal{G} ara tensörleri bu kısımda sunulmaktadır [157].

2.3.2.6.1. \mathcal{G}_{mi} Ara Tensörleri

 \mathcal{G}_{mi} ara tensörü aşağıdaki eşitlikle ifade edilmektedir.

$$\mathcal{G}_{mi} = \frac{1}{2} \sum_{n}^{occ} \sum_{e,f}^{vir} t_{mn}^{ef} \lambda_{ef}^{in}$$
(377)

2.3.2.6.2. \mathcal{G}_{ae} Ara Tensörleri

 \mathcal{G}_{ae} ara tensörü aşağıdaki eşitlikle ifade edilmektedir.

$$\mathcal{G}_{ae} = -\frac{1}{2} \sum_{m,n}^{occ} \sum_{f}^{vir} t_{mn}^{ef} \lambda_{af}^{mn}$$
(378)

2.3.2.6.3. \mathcal{G}_{ai} Ara Tensörleri

 \mathcal{G}_{ai} ara tensörü aşağıdaki eşitlikle ifade edilmektedir.

$$\mathcal{G}_{ai}^{Q} = \sum_{e}^{vir} \mathcal{G}_{ae} b_{ie}^{Q}$$
(379)

2.3.2.6.4. G_{ia} Ara Tensörleri

 \mathcal{G}_{ia} ara tensörü aşağıdaki eşitlikle ifade edilmektedir.

$$\mathcal{G}_{ia}^Q = \sum_m^{occ} \mathcal{G}_{mi} b_{ma}^Q \tag{380}$$

2.3.2.7. \mathcal{W}_{mbej} Ara Tensörü

 \mathcal{W}_{mbej} ara tensörü aşağıdaki şekilde ifade edilebilir [157].

$$\mathcal{W}_{mbej} = \langle mb||ej\rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle$$
(381)

2.3.2.8. λ_2 Amplitut Eşitliği

DF-CCD yöntemi için λ_2 amplitut eşitliği aşağıdaki şekilde ifade edilmektedir [157].

$$\lambda_{ab}^{ij}D_{ij}^{ab} = \langle ij||ab \rangle$$

$$+ P_{-}(ab)\sum_{e}^{vir}\lambda_{ae}^{ij}F_{eb} - P_{-}(ij)\sum_{m}^{occ}\lambda_{ab}^{im}F_{jm}$$

$$+ \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\lambda_{ab}^{mn}W_{ijmn} + \frac{1}{2}\sum_{e}^{vir}\sum_{f}^{vir}\lambda_{ef}^{ij}W_{efab}$$

$$+ \sum_{m}^{occ}\sum_{n}^{occ}V_{mnij}\langle mn|ab \rangle_{DF}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{m}^{occ}\sum_{e}^{vir}\lambda_{ae}^{im}W_{jebm}$$

$$+ P_{-}(ab)\sum_{e}^{vir}\mathcal{G}_{be}\langle ij||ae \rangle - P_{-}(ij)\sum_{m}^{occ}\mathcal{G}_{mj}\langle im||ab \rangle$$
(382)

2.3.2.9. Pseudo-CCD Enerji

Spin orbital formda pseudo enerji aşağıdaki şekilde ifade edilmektedir. Λ amplitutlarının yakınsama kontrolünün gerçekleştirilebilmesi için bu enerji hesaplanır [157].

$$E_{pseudo-ccd} = E_{scf} + \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} \lambda_{ab}^{ij} \langle ij || ab \rangle$$
(383)

2.3.2.10. A Eşitlikleri için Yakınsama Kontrolü

1) λ_2 amplitutlarının RMS değeri aşağıdaki şekilde hesaplanmaktadır [157, 169].

$$rms2 = \left[\sum_{a}^{vir} \sum_{b}^{vir} \sum_{i}^{occ} \sum_{j}^{occ} \left(\left\{\lambda_{ab}^{ij}\right\}^{n} - \left\{\lambda_{ab}^{ij}\right\}^{n-1}\right)^{2}\right]^{1/2} N \le \delta_{2} \quad (384)$$

Burada N, ikili uyarmaların sayısıdır.

2) Enerji farkı aşağıdaki şekilde hesaplanmaktadır.

$$\Delta E = E_{pseudo-ccd}^{n} - E_{pseudo-ccd}^{n-1} \le \delta_3$$
(385)

2.3.3. DF-CCD Yöntemi için Spin Orbital PDM Denklemleri

DF-CCD yöntemi için spin orbital parçacık-yoğunluk matrislerine (PDM) ait denklemler bu kısımda sunulmaktadır [23, 25, 157]. PDM Eşitliklerinin (OPDM ve TPDM) referans, korelasyon ve ayrılabilir kısımlarına nasıl açıldıkları ayrıntılı bir biçimde kısım 2.2.4.3. da sunulmuştur. Ayrıca, referans PDM terimleri için eşitliklere kısım 2.2.4.4. den ulaşılabilir.

2.3.3.1. DF-CCD-PDM Eşitlikleri için Genel Tanımlar

CCD yöntemi için OPDM terimi aşağıdaki şekilde ifade edilmektedir [23, 25, 157].

$$\gamma_{pq} = \frac{1}{2} P_{+}(pq) \langle 0 | (1 + \hat{\Lambda}_{2}) e^{-\hat{T}_{2}} \hat{p}^{\dagger} \hat{q} e^{\hat{T}_{2}} | 0 \rangle$$
(386)

CCD yöntemi için TPDM terimi aşağıdaki şekilde ifade edilmektedir.

$$\Gamma_{pqrs} = \frac{1}{8} P_{+}(pq, rs) \langle 0 | (1 + \hat{\Lambda}_{2}) e^{-\hat{T}_{2}} \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} e^{\hat{T}_{2}} | 0 \rangle$$
(387)

Burada, $\hat{P}_{\pm}(pq)$ terimi aşağıdaki şekilde tanımlanmaktadır.

$$\hat{P}_{\pm}(pq) = 1 \pm \hat{\mathcal{P}}(pq) \tag{388}$$

Burada, $\hat{\mathcal{P}}(pq)$ ifadesi, p ve q indislerini permütasyon işlemine tabi tutmaktadır.

2.3.3.2. CCD-A Fonksiyoneli

 Λ amplitutları içeren enerji fonksiyoneli aşağıdaki şekilde ifade edilmektedir [23, 25, 157].

$$\Delta \widetilde{E} = \langle 0 | (1 + \widehat{\Lambda}_2) e^{-\widetilde{T}_2} \widehat{H}_N e^{\widetilde{T}_2} | 0 \rangle$$
(389)

PDM terimleri cinsinden enerji ifadeleri kısım 2.2.4.2.'te [Eşitlik (205), (206) ve (207)] sunulmuştur.

2.3.3.3. Korelasyon OPDM Terimleri

OPDM ifadeleri için korelasyon terimleri bu kısımda sunulmuştur [23, 25, 157].

2.3.3.3.1. OO-Blok

 γ_{ij}^{corr} ifadesi için tanımlama aşağıdaki gibidir.

$$\gamma_{ij}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{ij} + \mathcal{G}_{ji} \right)$$
(390)

2.3.3.3.2. VV-Blok

 γ^{corr}_{ab} ifadesi için tanımlama aşağıdaki gibidir.

$$\gamma_{ab}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{ab} + \mathcal{G}_{ba} \right) \tag{391}$$

2.3.3.3.3. OV-Blok

 γ_{ia}^{corr} ifadesi aşağıdaki gibi tanımlanır.

$$\gamma_{ia}^{corr} = 0 \tag{392}$$

2.3.3.4. Korelasyon TPDM Terimleri

TPDM ifadeleri için korelasyon terimleri bu kısımda sunulmuştur [23, 25, 157]. Korelasyon TPDM terimlerinden Γ_{ijkl}^{corr} ve Γ_{abcd}^{corr} blokları, 2.2.4.6.1. ve 2.2.4.6.2. başlıklarında sunulan eşitliklerle aynıdır, o nedenle burada tekrar edilmeyecektir. Ayrıca, DF-CCD yöntemi için Γ_{ijka}^{corr} ve Γ_{icab}^{corr} terimleri sıfır olmaktadır.

2.3.3.4.1. OVOV-Blok

Korelasyon TPDM terimlerinden Γ_{iajb}^{corr} aşağıdaki şekilde ifade edilir.

$$\Gamma_{iajb}^{corr} = -\frac{1}{4}P_+(ia,jb)V_{iajb}$$
(393)

Daha açık ifade etmek gerekirse aşağıdaki formda yazılabilmektedir.

$$\Gamma_{iajb}^{corr} = -\frac{1}{4} \left(V_{iajb} + V_{jbia} \right)$$
(394)

2.3.3.4.2. OOVV-Blok

Korelasyon TPDM terimlerinden Γ_{ijab}^{corr} aşağıdaki şekilde ifade edilir.

$$\Gamma_{ijab}^{corr} = \frac{1}{8} t_{ij}^{ab} + \frac{1}{8} \lambda_{ab}^{ij} + \frac{1}{8} Y_{ijab} - \frac{1}{8} P_{-}(ij) P_{-}(ab) Y_{iajb} - \frac{1}{8} P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab} \mathcal{G}_{im} + \frac{1}{8} P_{-}(ab) \sum_{e}^{vir} t_{ij}^{eb} \mathcal{G}_{ea}$$
(395)

Daha açık ifade etmek gerekirse aşağıdaki formda yazılabilmektedir.

$$\Gamma_{ijab}^{corr} = \frac{1}{8} t_{ij}^{ab} + \frac{1}{8} \lambda_{ab}^{ij} + \frac{1}{8} Y_{ijab} - \frac{1}{8} \sum_{m}^{occ} t_{mj}^{ab} \mathcal{G}_{im} + \frac{1}{8} \sum_{m}^{occ} t_{mi}^{ab} \mathcal{G}_{jm} + \frac{1}{8} \sum_{e}^{vir} t_{ij}^{eb} \mathcal{G}_{ea} - \frac{1}{8} \sum_{e}^{vir} t_{ij}^{ea} \mathcal{G}_{eb} - \frac{1}{8} Y_{iajb} + \frac{1}{8} Y_{jaib} + \frac{1}{8} Y_{ibja} - \frac{1}{8} Y_{jbia}$$
(396)

2.3.3.5. Ayrılabilir TPDM Terimleri

DF-CCD yöntemi için ayrılabilir TPDM terimleri, DF-CCSD yöntemindeki eşitlikler ile aynıdır, ilgili eşitliklere 2.2.4.7. başlığından ulaşılabilir [23, 25, 157].

2.3.3.6. PDM Ara Tensörleri

PDM eşitlikleri için gerekli olan ara tensörler bu kısımda sunulmaktadır [23, 25, 157].

2.3.3.6.1. *G* Ara Tensörleri

 \mathcal{G} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{G}_{mi} = \frac{1}{2} \sum_{n}^{occ} \sum_{e,f}^{vir} t_{mn}^{ef} \lambda_{ef}^{in}$$
(397)

$$\mathcal{G}_{ae} = -\frac{1}{2} \sum_{m,n}^{occ} \sum_{f}^{vir} t_{mn}^{ef} \lambda_{af}^{mn}$$
(398)

2.3.3.6.2. *V* Ara Tensörleri

V ara tensörleri aşağıdaki şekilde ifade edilmektedir [23, 25, 157].

V_{ijkl} Ara Tensörü

 V_{ijkl} ara tensörü aşağıdaki gibi tanımlanır.

$$V_{ijkl} = \frac{1}{2} \sum_{e,f}^{vir} t_{ij}^{ef} \lambda_{ef}^{kl}$$
(399)

V_{abcd} Ara Tensörü

 V_{abcd} ara tensörü aşağıdaki gibi tanımlanır.

$$V_{abcd} = \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{cd} \lambda_{ab}^{mn}$$

$$\tag{400}$$

Viajb Ara Tensörü

 V_{iajb} ara tensörü aşağıdaki gibi tanımlanır.

$$V_{iajb} = \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{be} \lambda_{ae}^{jm}$$

$$\tag{401}$$

2.3.3.6.3. *Y* Ara Tensörleri

Y ara tensörleri aşağıdaki şekilde ifade edilmektedir [23, 25, 157].

Yiajb Ara Tensörü

 Y_{iajb} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$Y_{iajb} = \sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae} V_{jemb}$$

$$\tag{402}$$

Y_{ijab} Ara Tensörü

 Y_{ijab} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$Y_{ijab} = \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{ab} V_{ijmn}$$
(403)

\widetilde{Y}_{ijab} Ara Tensörü

 \widetilde{Y}_{ijab} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\widetilde{Y}_{ijab} = \frac{1}{2} (Y_{ijab} - Y_{iajb} + Y_{jaib} + Y_{ibja} - Y_{jbia}) + V_{ibja} + V_{jaib}$$

$$(404)$$

2.3.3.7. 3-İndisli TPDM Terimleri

3-indisli TPDM eşitlikleri için genel tanımlama DF-CCSD yönteminde (kısım 2.2.4.8.), Eşitlik (232) de sunulmuştur. Burada, 4-indisli TPDM eşitlikleri, 3-indisli olanlar cinsinden tanımlanmaktadır. Ayrıca, DF-CCSD yönteminde tanımlanan 1- ve 3-indisli ara tensörler (kısım 2.2.4.8.1.) burada da kullanılmaktadır.

2.3.3.7.1. 3-İndisli Referans ve Ayrılabilir TPDM Eşitlikleri

Burada DF-CCD yönteminde kullanılan 3-indisli referans ve ayrılabilir TPDM eşitlikleri, sırasıyla DF-CCSD yönteminin 2.2.4.8.2. ve 2.2.4.8.3. numaralı başlıklarında tanımlanmıştır.

2.3.3.7.2. 3-İndisli Korelasyon TPDM Terimleri

3-indisli korelasyon TPDM eşitlikleri aşağıdaki şekilde ifade edilmektedir [40, 157].

OO-Blok

 $\Gamma_{ii}^{Q(corr)}$ tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$\Gamma_{ij}^{Q(corr)} = \frac{1}{2} P_{+}(ij) \left(V_{ij}^{Q} - 2V_{ij}^{Q'} \right)$$
(405)

OV-Blok

 $\Gamma_{ia}^{Q(corr)}$ tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$\Gamma_{ia}^{Q(corr)} = \frac{1}{2} \left(T_{ia}^{Q} + \Lambda_{ia}^{Q} + 2y_{ia}^{Q} \right)
- \frac{1}{2} \sum_{m}^{occ} \mathcal{G}_{im} T_{ma}^{Q} + \frac{1}{2} \sum_{e}^{vir} \mathcal{G}_{ea} T_{ie}^{Q}
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} \left(\mathcal{G}_{em}^{Q} - \mathcal{G}_{me}^{Q} \right)$$
(406)

VV-Blok

 $\Gamma^{Q(corr)}_{ab}$ tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$\Gamma_{ab}^{Q(corr)} = -P_{+}(ab)V_{ab}^{Q} + \frac{1}{2}P_{+}(ae, bf)\sum_{e,f}^{vir} V_{aebf}b_{ef}^{Q}$$
(407)

2.3.3.8. PDM Terimleri Cinsinden Enerji İfadeleri

PDM terimleri cinsinden enerji ifadeleri DF-CCSD yönteminde 2.2.4.11. başlığında ayrıntılı bir biçimde sunulmaktadır. Burada, DF-CCD yöntemine uygun olan PDM terimleri yardımıyla, DF-CCSD yöntemi için tanımlanan enerji ifadeleri kullanılabilmektedir.

2.3.4. Kısıtlamalı HF Referansına (RHF) Adapte Edilmiş DF-CCD Yöntemi için Enerji ve Amplitut Denklemleri

Bu kısımda, kapalı kabuklu sistemler için uygun olan RHF referansına adapte edilen DF-CCD yöntemi için formülasyon geliştirilmiştir [157]. Burada geliştirilen formülasyon, C++ dilinde yazılan etkin kodlara dönüştürülerek MacroQC [74] yazılımına ilave edilmiştir.

2.3.4.1. Başlangıç T_2 Amplitutları

Kısıtlamalı HF referanslı DF-CCD yöntemi için başlangıçta kullanılacak olan T_2 amplitutları aşağıdaki şekilde tanımlanmaktadır [157].

$$t_{ij}^{ab} D_{ij}^{ab} = \langle ij|ab \rangle \tag{408}$$

$$t_{ij}^{ab} = t_{ji}^{ba} \tag{409}$$

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(410)

2.3.4.2. 3- ve 4-İndisli Ara Tensörler

Bazı ara tensörler aşağıdaki gibi tanımlanır [157].

$$u_{ij}^{ab} = 2t_{ij}^{ab} - t_{ji}^{ab}$$
(411)

$$T_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} u_{ij}^{ab} b_{jb}^{Q}$$
(412)

2.3.4.3. F Ara Tensörleri

F ara tensörleri bu kısımda sunulmaktadır.

2.3.4.3.1. *F*_{mi} Ara Tensörü

 F_{mi} ara tensörleri RHF orbitalleriyle aşağıdaki şekilde tanımlanmaktadır [157].

$$F_{mi} = \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T_{ie}^{Q} b_{me}^{Q}$$

$$\tag{413}$$

2.3.4.3.2. *F*_{ae} Ara Tensörü

 F_{ae} ara tensörleri RHF orbitalleriyle aşağıdaki şekilde tanımlanmaktadır [157].

$$F_{ae} = -\sum_{Q}^{N_{aux}} \sum_{m}^{occ} T_{ma}^{Q} b_{me}^{Q}$$
(414)

2.3.4.3.3. *F_{me}* Ara Tensörü

 ${\cal F}_{me}$ ara tensörleri RHF orbitalleriyle aşağıdaki şekilde tanımlanmaktadır [157].

$$F_{me} = 0 \tag{415}$$

2.3.4.4. \mathcal{F} Ara Tensörleri

 \mathcal{F} ara tensörleri aşağıdaki şekilde ifade edilmektedir [157].

$$\mathcal{F}_{ae} = F_{ae} \tag{416}$$

$$\mathcal{F}_{mi} = F_{mi} \tag{417}$$

2.3.4.5. W Ara Tensörleri

RHF referansına adapte edilmiş DF-CCD yöntemi için W ara tensörleri bu kısımda sunulmaktadır.

2.3.4.5.1. *W*_{mnij} Ara Tensörü

 W_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$W_{mnij} = \langle mn|ij \rangle_{DF} + \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mn|ef \rangle_{DF}$$
(418)

2.3.4.5.2. *Wabef* Ara Tensörü

 W_{abef} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$W_{abef} = \langle ab|ef \rangle_{DF} \tag{419}$$

2.3.4.5.3. W_{mbej} Ara Tensörü

 W_{mbej} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$W_{mbej} = \langle mb|ej\rangle_{DF} + \frac{1}{2} \sum_{Q}^{N_{aux}} T_{jb}^{Q} b_{me}^{Q}$$
$$- \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{bf} \langle me|fn\rangle_{DF}$$
(420)

2.3.4.5.4. W_{mbje} Ara Tensörü

 W_{mbje} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$W_{mbje} = \langle me|jb\rangle_{DF} - \frac{1}{2}\sum_{n}^{occ}\sum_{f}^{vir} t_{nj}^{bf} \langle me|fn\rangle_{DF}$$
(421)

2.3.4.6. T_2 Amplitut Eşitliği

 T_2 amplitut eşitliği aşağıdaki şekilde ifade edilmektedir [157].

$$t_{ij}^{ab}D_{ij}^{ab} = \langle ij|ab \rangle_{DF} + \hat{P}_{+}(ia,jb) \left\{ \sum_{e}^{vir} t_{ij}^{ae}F_{be} - \sum_{m}^{occ} t_{mj}^{ab}F_{mi} + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{ae} (2W_{mbej} - W_{mbje}) - \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae}W_{mbje} - \sum_{m}^{occ} \sum_{e}^{vir} t_{mj}^{ae}W_{mbie} + \sum_{m,n}^{occ} t_{mn}^{ab}W_{mnij} + \sum_{e,f}^{vir} t_{ij}^{ef}W_{abef}$$
(422)

2.3.4.7. DF-CCD Enerjisi

RHF referanlı DF-CCD yöntemi için enerji eşitliği aşağıdaki şekilde tanımlanmaktadır [157].

$$E_{ccd} = E_{scf} + \sum_{i,j}^{occ} \sum_{a,b}^{vir} u_{ij}^{ab} \langle ij|ab \rangle_{DF}$$
(423)

2.3.5. DF-CCD Lagrangian: Λ RHF Denklemleri

Çalışmanın bu kısmında, RHF referanslı DF-CCD- Λ eşitlikleri tanımlanmaktadır [23, 25, 40, 157, 178].

2.3.5.1. Başlangıç λ_2 Amplitutları

Başlangıç λ_2 amplitutları aşağıdaki gibi ifade edilebilir [157].

$$\lambda_{ab}^{ij} D_{ij}^{ab} = \langle ij|ab \rangle \tag{424}$$

$$\lambda_{ab}^{ij} = \lambda_{ba}^{ji} \tag{425}$$

$$D_{ij}^{ab} = f_{ii} + f_{jj} - f_{aa} - f_{bb}$$
(426)

2.3.5.2. 3- ve 4-İndisli Ara Tensörleri

Bazı ara tensörler şu şekildedir [157]:

$$\tilde{u}_{ab}^{ij} = 2\lambda_{ab}^{ij} - \lambda_{ab}^{ji} \tag{427}$$

$$\Lambda_{ia}^Q = \sum_j^{occ} \sum_b^{vir} \tilde{u}_{ab}^{ij} b_{jb}^Q$$
(428)

2.3.5.3. F ve \mathcal{F} Ara Tensörleri

F ve \mathcal{F} tensörleri farklı bloklar halinde DF-CCD enerji denklemlerinde, gerekli tüm bloklarının RHF versiyonları sunulmuştur (Bakınız 2.3.4.3. ve 2.3.4.4.). Λ -amplitut denklemleri ve ilgili ara tensörlerde, bu F ve \mathcal{F} tensörleri kullanılmaktadır.

2.3.5.4. \mathcal{Z} Ara Tensörleri

 \mathcal{Z} Ara Tensörleri bu kısımda sunulmaktadır.

2.3.5.4.1. \mathcal{Z}_{mbej} Ara Tensörü

 \mathcal{Z}_{mbej} ara tensörleri aşağıdaki gibi ifade edilmektedir [157].

$$\mathcal{Z}_{mbej} = \langle mb|ej\rangle_{DF} + \sum_{Q}^{N_{aux}} T_{jb}^{Q} b_{me}^{Q} - \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{bf} \langle me|fn\rangle_{DF}$$
(429)

2.3.5.4.2. \mathcal{Z}_{mbje} Ara Tensörü

 \mathcal{Z}_{mbje} ara tensörleri aşağıdaki gibi ifade edilmektedir [157].

$$\mathcal{Z}_{mbje} = \langle mb|je\rangle_{DF} - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle me|fn\rangle_{DF}$$
(430)

2.3.5.5. \mathcal{W} Ara Tensörleri

 $\mathcal W$ ara tensörleri bu kısımda gösterilmektedir.

2.3.5.5.1. \mathcal{W}_{mbej} Ara Tensörü

 \mathcal{W}_{mbej} ara tensörü aşağıdaki gibi ifade edilmektedir [157].

$$\mathcal{W}_{mbej} = \mathcal{Z}_{mbej} \tag{431}$$

 \mathcal{W}_{mbje} ara tensörü aşağıdaki gibi ifade edilmektedir [157].

$$\mathcal{W}_{mbje} = \mathcal{Z}_{mbje}$$
 (432)

2.3.5.5.2. \mathcal{W}_{mbij} Ara Tensörü

 \mathcal{W}_{mbij} ara tensörleri aşağıdaki şekilde ifade edilmektedir [157].

$$\mathcal{W}_{mbij} = \langle mb|ij\rangle_{DF} + \sum_{e}^{vir} t_{ij}^{eb} F_{me} + \sum_{e,f}^{vir} t_{ij}^{ef} \langle mb|ef\rangle_{DF} + \sum_{n}^{occ} \sum_{e}^{vir} u_{jn}^{be} (\langle mn|ie\rangle_{DF} - \frac{1}{2} \langle nm|ie\rangle_{DF}) - (1 + \frac{1}{2} P_{ij}) \sum_{n}^{occ} \sum_{e}^{vir} t_{ni}^{be} \langle nm|je\rangle_{DF}$$
(433)

2.3.5.6. *G* Ara Tensörleri

 \mathcal{G} ara tensörleri farklı bloklar halinde aşağıda sunulmuştur [157].

2.3.5.6.1. \mathcal{G}_{ae} Ara Tensörü

 \mathcal{G}_{ae} ara tensörleri aşağıdaki şekilde tanımlanmaktadır

$$\mathcal{G}_{ae} = -\sum_{m,n}^{occ} \sum_{f}^{vir} u_{mn}^{ef} \lambda_{af}^{mn} = -\sum_{m,n}^{occ} \sum_{f}^{vir} t_{mn}^{ef} \tilde{u}_{af}^{mn}$$
(434)

2.3.5.6.2. \mathcal{G}_{mi} Ara Tensörü

 \mathcal{G}_{mi} ara tensörleri aşağıdaki şekilde tanımlanmaktadır

$$\mathcal{G}_{mi} = \sum_{n}^{occ} \sum_{e,f}^{vir} u_{mn}^{ef} \lambda_{ef}^{in} = \sum_{n}^{occ} \sum_{e,f}^{vir} t_{mn}^{ef} \tilde{u}_{ef}^{in}$$
(435)

2.3.5.7. 3-İndisli G Ara Tensörleri

Bazı 3-indisli ara tensörler şu şekilde tanımlanmıştır [157].

$$\mathcal{G}_Q = 2\sum_{e,f}^{vir} \mathcal{G}_{ef} b_{ef}^Q \tag{436}$$

$$\mathcal{G}_{ai}^{Q} = \sum_{e}^{vir} \mathcal{G}_{ae} b_{ie}^{Q} \tag{437}$$

$$\mathcal{G}_{ia}^Q = \sum_m^{occ} \mathcal{G}_{mi} b_{ma}^Q \tag{438}$$

$$V_{ij}^{Q} = \sum_{m,n}^{occ} \left(2V_{imjn} - V_{imnj} \right) b_{mn}^{Q}$$
(439)

$$V_{ij}^{Q'} = \sum_{e,f}^{vir} \left(2V_{iejf} - V_{iefj} \right) b_{ef}^{Q}$$
(440)

$$V_{ai}^Q = \sum_m^{occ} \sum_e^{vir} \left(V_{maie} - 2V_{maei} \right) b_{me}^Q \tag{441}$$

2.3.5.8. *V* Ara Tensörü

Bu kısımda gerekli olan V ara tensörleri aşağıda tanımlanmıştır.

2.3.5.8.1. V_{ijkl} Ara Tensörü

 V_{ijkl} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$V_{ijkl} = \sum_{e,f}^{vir} t_{ij}^{ef} \lambda_{ef}^{kl}$$
(442)

2.3.5.8.2. *V_{iajb}* Ara Tensörü

 V_{iajb} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$V_{iajb} = \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{eb} \lambda_{ea}^{jm}$$

$$\tag{443}$$

2.3.5.8.3. V_{iabj} Ara Tensörü

 V_{iabj} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$V_{iabj} = -\frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{be} \lambda_{ae}^{jm} + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{be} \lambda_{ae}^{mj}$$
(444)

2.3.5.9. λ_2 Amplitut Eşitliği

RHF referanslı DF-CCD yöntemi için λ_2 amplitut eşitliği aşağıdaki şekilde ifade edilmektedir [157].

$$\lambda_{ab}^{ij}D_{ij}^{ab} = \langle ij|ab \rangle_{DF} + \hat{P}_{+}(ia,jb) \left\{ \sum_{e}^{vir} \lambda_{ae}^{ij}F_{eb} - \sum_{m}^{occ} \lambda_{ab}^{mj}F_{im} \right. + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tilde{u}_{ae}^{im} (2W_{jebm} - W_{jemb}) - \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{ae}^{mi}W_{jemb} - \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{ae}^{mj}W_{iemb} + \sum_{Q}^{N_{aux}} (\mathcal{G}_{ai}^{Q} - \mathcal{G}_{ia}^{Q})b_{jb}^{Q} \right\} + \sum_{m,n}^{occ} \lambda_{ab}^{mn}W_{ijmn} + \sum_{m}^{occ} \sum_{n}^{occ} V_{mnij} \langle mn|ab \rangle_{DF} + \sum_{e,f}^{vir} \lambda_{ef}^{ij}W_{efab}$$
(445)

2.3.6. RHF Referansına Adapte Edilmiş DF-CCD Yöntemi için Parçacık-Yoğunluk Matrisleri (PDM)

DF-CCD yöntemi için RHF referansına adapte edilmiş parçacık-yoğunluk matrislerine (PDM) ait denklemler bu kısımda sunulmaktadır [23, 25, 40, 157, 178]. DF-CCD yöntemine ait PDM denklemleri için genel tanımlar ve enerji ifadeleri 2.3.3.1. numaralı kısımda sunulmuştur. Ayrıca, OPDM ve TPDM'ler için, referans, korelasyon ve ayrılabilir terimler 2.3.3. numaralı ayrıntılı biçimde açıklanmıştır.
2.3.6.1. PDM Ara Tensörleri

2.3.6.1.1. *G* Ara Tensörleri

 \mathcal{G} ara tensörleri aşağıdaki gibi tanımlanmaktadır [157].

$$\mathcal{G}_{ae} = -\sum_{m,n}^{occ} \sum_{f}^{vir} u_{mn}^{ef} \lambda_{af}^{mn} = -\sum_{m,n}^{occ} \sum_{f}^{vir} t_{mn}^{ef} \tilde{u}_{af}^{mn}$$
(446)

$$\mathcal{G}_{mi} = \sum_{n}^{occ} \sum_{e,f}^{vir} u_{mn}^{ef} \lambda_{ef}^{in} = \sum_{n}^{occ} \sum_{e,f}^{vir} t_{mn}^{ef} \tilde{u}_{ef}^{in}$$
(447)

2.3.6.1.2. *V* Ara Tensörleri

V ara tensörleri bu kısımda gösterilmektedir.

Vijkl Ara Tensörü

 V_{ijkl} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$V_{ijkl} = \sum_{e,f}^{vir} t_{ij}^{ef} \lambda_{ef}^{kl}$$
(448)

V_{abcd} ve \widetilde{V}_{abcd} Ara Tensörleri

Bazı V ara tensörleri birbirleri cinsinden aşağıdaki şekilde tanımlanmaktadır [157].

$$V_{abcd} = \sum_{m,n}^{occ} t_{mn}^{cd} \lambda_{ab}^{mn}$$
(449)

Burada, aşağıdaki tanımlamalar yapılabilir.

$$\widetilde{V}_{abcd} = \begin{pmatrix} 2V_{abcd} - V_{abdc} \end{pmatrix}$$

$$(450)$$

$$\widetilde{V}_{abcd} = \sum_{m,n}^{\infty} t_{mn}^{cd} \widetilde{u}_{ab}^{mn}$$
(451)

Viajb Ara Tensörü

 V_{iajb} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$V_{iajb} = \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{eb} \lambda_{ea}^{jm}$$

$$\tag{452}$$

V_{iabj} Ara Tensörü

 V_{iabj} ara tensörü aşağıdaki şekilde tanımlanmaktadır [157].

$$V_{iabj} = -\frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{be} \lambda_{ae}^{jm} + \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{be} \lambda_{ae}^{mj}$$
(453)

2.3.6.1.3. *Y* Ara Tensörleri

Y ara tensörleri bu kısımda gösterilmiştir.

Y_{iajb} ve Y_{iabj} Ara Tensörleri

 Y_{iajb} ve Y_{iabj} ara tensörleri aşağıdaki şekilde ifade edilmektedir [157].

$$Y_{iajb} = \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{ae} V_{jebm} - \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} V_{jemb}$$
(454)

$$Y_{iabj} = -\sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae} V_{jemb}$$

$$(455)$$

Y_{ijab} Ara Tensörü

 Y_{ijab} tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$Y_{ijab} = \sum_{m,n}^{occ} t_{mn}^{ab} V_{ijmn}$$
(456)

\widetilde{Y}_{ijab} ve \widetilde{Y}'_{ijab} Ara Tensörleri

 \widetilde{Y}_{ijab} ve \widetilde{Y}'_{ijab} tensörleri aşağıdaki şekilde ifade edilmektedir [157].

$$\widetilde{Y}_{ijab} = \frac{1}{2} (Y_{ijab} - Y_{iajb} - Y_{jabi} - Y_{ibaj} - Y_{jbia}) - V_{ibaj} - V_{jabi}$$
(457)

$$\widetilde{Y}'_{ijab} = \widetilde{Y}_{ijab} + V_{ibaj} + V_{jabi} - V_{iajb} - V_{jbia}$$
(458)

2.3.6.2. 3-İndisli PDM Terimleri

Bu kısımda, RHF referanslı OPDM terimleri için genel açılım, Eşitlik 208'te gösterilmiştir. Ayrıca, Korelasyon OPDM terimlerinin açık formülleri 2.3.3.3. başlığı altında sunulmuştur. Yine, RHF referanslı TPDM terimleri için genel açılım Eşitlik 210'te gösterilmiştir. Burada, 3-indisli OPDM ve TPDM terimleri farklı bloklar halinde sunulmaktadır [157].

2.3.6.2.1. 1- ve 3-İndisli Ara Tensörler

Önceki bölümlerde tanımlanan ara tensörlerden, tanımlamalarında farklılık gösterenler bu kısımda sunulmaktadır [157]. Burada gerekli olan ve tekrar edilmeyen 1- ve 3-indisli ara tensörler için kısım 2.2.4.8.1.'ya bakılabilir.

$$J_Q = 2\sum_m^{occ} b_{mm}^Q \tag{459}$$

$$T_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} \left(2t_{ij}^{ab} - t_{ji}^{ab} \right) b_{jb}^{Q}$$
(460)

$$\Lambda_{ia}^Q = \sum_j^{occ} \sum_b^{vir} \tilde{u}_{ab}^{ij} b_{jb}^Q$$
(461)

$$\mathcal{G}_Q = 2\sum_{e,f}^{vir} \mathcal{G}_{ef} b_{ef}^Q \tag{462}$$

$$\widetilde{\mathcal{G}}_Q = 2\sum_{m,n}^{occ} \mathcal{G}_{mn} b_{mn}^Q$$
(463)

$$V_{ij}^Q = \sum_{m,n}^{occ} \left(2V_{imjn} - V_{imnj} \right) b_{mn}^Q \tag{464}$$

$$V_{ij}^{Q'} = \sum_{e,f}^{vir} \left(2V_{iejf} - V_{iefj} \right) b_{ef}^{Q}$$
(465)

$$V_{ai}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \left(V_{maie} - 2V_{maei} \right) b_{me}^{Q}$$
(466)

$$V_{ab}^{Q} = \sum_{m,n}^{occ} \left(2V_{manb} - V_{mabn} \right) b_{mn}^{Q}$$
(467)

$$y_{ia}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} \left(2\tilde{Y}_{imae} - \tilde{Y}_{imea}^{\prime} \right) b_{me}^{Q}$$

$$\tag{468}$$

Referans TPDM Terimleri

Referans TPDM terimlerinden $\Gamma_{ij}^{Q(ref)}$ aşağıdaki gibi tanımlanır [157].

$$\Gamma_{ij}^{Q(ref)} = 2\delta_{ij}J_Q - 2b_{ij}^Q \tag{469}$$

Burada, b_{ij}^Q DF-SCF bazında değerlendirilir (JK-FIT).

Ayrılabilir TPDM Terimleri

Kısıtlamalı HF referanslı TPDM terimleri için ayrılabilir kısım aşağıdaki şekilde bloklar halinde ifade edilir.

OO-Blok

Ayrılabilir TPDM terimlerinden $\Gamma_{ij}^{Q(sep)}$, aşağıdaki gibi ifade edilebilir [53, 157].

$$\Gamma_{ij}^{Q(sep)} = 2\delta_{ij} \left(\gamma_Q + 2\gamma'_Q + \widetilde{\gamma}_Q\right) + \gamma_{ij}^{corr} J_Q - P_+(ij) \sum_m^{occ} \gamma_{jm}^{corr} b_{im}^Q - P_+(ij) \sum_e^{vir} \gamma_{je}^{corr} b_{ie}^Q$$
(470)

Burada, b_{pq}^Q DF-SCF bazında değerlendirilir (JK-FIT).

VV-Blok

Ayrılabilir TPDM terimlerinden $\Gamma_{ab}^{Q(sep)}$, aşağıdaki gibi ifade edilebilir [53, 157].

$$\Gamma_{ab}^{Q(sep)} = \gamma_{ab}^{corr} J_Q \tag{471}$$

Burada, b_{pq}^Q DF-SCF bazında değerlendirilir (JK-FIT).

OV-Blok

Ayrılabilir TPDM terimlerinden $\Gamma_{ia}^{Q(sep)}$, aşağıdaki gibi ifade edilebilir [53, 157].

$$\Gamma_{ia}^{Q(sep)} = \gamma_{ia}^{corr} J_Q - \sum_{m}^{occ} \gamma_{ma}^{corr} b_{mi}^Q - \sum_{e}^{vir} \gamma_{ea}^{corr} b_{ie}^Q$$
(472)

Burada, b_{pq}^Q DF-SCF bazında değerlendirilir (JK-FIT).

2.3.6.2.2. Korelasyon TPDM Terimleri

Kısıtlamalı HF referanslı TPDM terimleri için korelasyon kısmı aşağıdaki şekilde bloklar halinde ifade edilir.

OO-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ij}^{Q(corr)}$, aşağıdaki gibi ifade edilebilir [157].

$$\Gamma_{ij}^{Q(corr)} = P_{+}(ij) \left(V_{ij}^{Q} - 2V_{ij}^{Q'} \right)$$
(473)

VV-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ab}^{Q(corr)}$, aşağıdaki gibi ifade edilebilir [157].

$$\Gamma_{ab}^{Q(corr)} = -P_{+}(ab) \left(2V_{ab}^{Q} \right) + P_{+}(ab) \sum_{e,f}^{vir} V_{aebf} b_{ef}^{Q}$$
(474)

OV-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ia}^{Q(corr)}$, aşağıdaki gibi ifade edilebilir [157].

$$\Gamma_{ia}^{Q(corr)} = \left(\tau_{ia}^{Q} + \Lambda_{ia}^{Q} + 2y_{ia}^{Q}\right) - \sum_{m}^{occ} \mathcal{G}_{im} T_{ma}^{Q} + \sum_{e}^{vir} \mathcal{G}_{ea} T_{ie}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{ae} \left(\mathcal{G}_{em}^{Q} - \mathcal{G}_{me}^{Q}\right)$$

$$(475)$$

2.3.7. UHF Referansına Adapte Edilmiş DF-CCD Yöntemi için Enerji ve Amplitut Denklemleri (UHF)

Bu kısımda, açık kabuklu sistemler için uygun olan kısıtlamasız HF (UHF) referansına adapte edilen DF-CCD yöntemi için formülasyon geliştirilmiştir [157]. Burada geliştirilen formülasyon, C++ dilinde yazılan etkin kodlara dönüştürülerek MacroQC [74] yazılımına ilave edilmiştir. Kısıtlamasız HF referanslı DF-CCD yöntemi için başlangıçta kullanılacak olan T_2 amplitutları farklı spin blokları için kısım 2.2.2.1.'deki eşitlikler kullanılmaktadır. Ayrıca, 3-indisli T_{ia}^Q ara tensörleri için UHF formda eşitlikler (43) ve (42)'de gösterilmiştir.

2.3.7.1. F Ara Tensörleri

F ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir.

2.3.7.1.1. *F_{mi}* Ara Tensörü

 F_{mi} ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir [157]. α Blok:

$$F_{MI} = (1 - \delta_{MI})f_{MI} + \sum_{Q}^{N_{aux}} \sum_{E}^{vir} T_{IE}^{Q} b_{ME}^{Q}$$
(476)

 β Blok:

$$F_{mi} = (1 - \delta_{mi})f_{mi} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T^{Q}_{ie} b^{Q}_{me}$$
(477)

2.3.7.1.2. *F*_{ae} Ara Tensörü

 F_{ae} ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir [157]. α Blok:

$$F_{AE} = (1 - \delta_{AE}) f_{AE} - \sum_{Q}^{N_{aux}} \sum_{M}^{occ} T_{MA}^{Q} b_{ME}^{Q}$$
(478)

 β Blok:

$$F_{ae} = (1 - \delta_{ae}) f_{ae} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} T^{Q}_{ma} b^{Q}_{me}$$
(479)

2.3.7.1.3. *F_{me}* Ara Tensörü

 F_{me} ara tensörü aşağıdaki şekilde ifade edilmektedir [157].

$$F_{me} = f_{me} \tag{480}$$

2.3.7.2. W Ara Tensörleri

W ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir.

2.3.7.2.1. *W*_{mnij} Ara Tensörü

 W_{mnij} ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir [157]. α Blok:

$$W_{MNIJ} = \langle MN || IJ \rangle_{DF} + \sum_{E}^{vir} \sum_{F}^{vir} t_{IJ}^{EF} \langle MN | EF \rangle_{DF}$$
(481)

 β Blok:

$$W_{mnij} = \langle mn || ij \rangle_{DF} + \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mn | ef \rangle_{DF}$$
(482)

 α - β Blok:

$$W_{MnIj} = \langle Mn|Ij\rangle_{DF} + \sum_{E}^{vir} \sum_{f}^{vir} t_{Ij}^{Ef} \langle Mn|Ef\rangle_{DF}$$
(483)

2.3.7.2.2. W_{abef} Ara Tensörü

 W_{abef} ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir [157]. α Blok:

$$W_{ABEF} = \langle AB || EF \rangle_{DF} \tag{484}$$

 β Blok:

$$W_{abef} = \langle ab || ef \rangle_{DF} \tag{485}$$

 $\alpha\text{-}\beta$ Blok:

$$W_{AbEf} = \langle Ab|Ef \rangle_{DF} \tag{486}$$

2.3.7.2.3. *W*_{mbej} **Ara Tensörü**

 W_{mbej} ara tensörleri farklı spin bloklarında aşağıdaki şekilde ifade edilmektedir [157]. $\alpha\alpha\alpha\alpha$ Blok:

$$W_{MBEJ} = \langle MB || EJ \rangle_{DF} + \frac{1}{2} \sum_{Q}^{N_{aux}} T_{JB}^{Q} b_{ME}^{Q}$$
$$- \frac{1}{2} \sum_{N}^{occ} \sum_{F}^{vir} t_{JN}^{BF} \langle EM | NF \rangle_{DF}$$
(487)

 $\beta\beta\beta\beta$ Blok:

$$W_{mbej} = \langle mb||ej\rangle_{DF} + \frac{1}{2} \sum_{Q}^{N_{aux}} T_{jb}^{Q} b_{me}^{Q}$$
$$- \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{bf} \langle em|nf\rangle_{DF}$$
(488)

 $\alpha\beta\alpha\beta$ Blok:

$$W_{MbEj} = \langle Mb|Ej\rangle_{DF} + \frac{1}{2}\sum_{Q}^{N_{aux}}T_{jb}^{Q}b_{ME}^{Q}$$
$$- \frac{1}{2}\sum_{N}^{occ}\sum_{F}^{vir}t_{Nj}^{Fb}\langle EM|NF\rangle_{DF}$$
(489)

 $\beta \alpha \beta \alpha$ Blok:

$$W_{mBeJ} = \langle Bm|Je\rangle_{DF} + \frac{1}{2}\sum_{Q}^{Naux} T_{JB}^{Q}b_{me}^{Q}$$
$$- \frac{1}{2}\sum_{n}^{occ}\sum_{f}^{vir} t_{Jn}^{Bf} \langle em|nf\rangle_{DF}$$
(490)

 $\alpha\beta\beta\alpha$ Blok:

$$W_{MbeJ} = -\langle Mb|Je\rangle_{DF} + \frac{1}{2}\sum_{n}^{occ}\sum_{F}^{vir} t_{Jn}^{Fb} \langle Me|Fn\rangle_{DF}$$
(491)

 $\beta \alpha \alpha \beta$ Blok:

$$W_{mBEj} = -\langle Bm|Ej\rangle_{DF} + \frac{1}{2}\sum_{N}^{occ}\sum_{f}^{vir} t_{Nj}^{Bf}\langle Em|Nf\rangle_{DF}$$
(492)

2.3.7.3. T_2 Amplitut Eşitliği

UHF referanslı DF-CCD yöntemi için T_2 amplitut eşitlikleri, $\alpha \alpha$, $\beta \beta$ ve $\alpha \beta$ blokları halinde aşağıda sunulmaktadır [157].

 $\alpha\alpha$ Blok:

$$t_{IJ}^{AB} D_{IJ}^{AB} = \langle IJ || AB \rangle_{DF} + P_{-}(AB) \sum_{E}^{vir} t_{IJ}^{AE} F_{BE} - P_{-}(IJ) \sum_{M}^{vir} t_{IM}^{AB} F_{MJ} + \frac{1}{2} \sum_{M}^{occ} \sum_{N}^{occ} t_{MN}^{AB} W_{MNIJ} + \frac{1}{2} \sum_{E}^{vir} \sum_{F}^{vir} t_{IJ}^{EF} W_{ABEF} + P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE} W_{MBEJ} + P_{-}(IJ) P_{-}(AB) \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} W_{mBeJ}$$
(493)

 $\beta\beta$ Blok:

$$t_{ij}^{ab}D_{ij}^{ab} = \langle ij||ab \rangle_{DF} + P_{-}(ab) \sum_{e}^{vir} t_{ij}^{ae}F_{be} - P_{-}(ij) \sum_{m}^{vir} t_{im}^{ab}F_{mj} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab}W_{mnij} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef}W_{abef} + P_{-}(ij)P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae}W_{mbej} + P_{-}(ij)P_{-}(ab) \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea}W_{MbEj}$$
(494)

 $\alpha\beta$ Blok:

$$t_{Ij}^{Ab} D_{Ij}^{Ab} = \langle Ij | Ab \rangle_{DF}$$

$$+ \sum_{e}^{vir} t_{Ij}^{Ae} F_{be} + \sum_{E}^{vir} t_{Ij}^{Eb} F_{AE} - \sum_{m}^{vir} t_{Im}^{Ab} F_{mj} - \sum_{M}^{vir} t_{Mj}^{Ab} F_{MI}$$

$$+ \sum_{M}^{occ} \sum_{n}^{occ} t_{Mn}^{Ab} W_{MnIj} + \sum_{E}^{vir} \sum_{f}^{vir} t_{Ij}^{Ef} W_{AbEf}$$

$$+ \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE} W_{MbEj} + \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} W_{mbej}$$

$$+ \sum_{M}^{occ} \sum_{e}^{vir} t_{Mj}^{Ae} W_{MbeI} + \sum_{m}^{occ} \sum_{E}^{vir} t_{Im}^{Eb} W_{mAEj}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} t_{jm}^{Ae} W_{mAeI} + \sum_{M}^{occ} \sum_{E}^{vir} t_{Mj}^{Eb} W_{MAEI}$$

$$(495)$$

2.3.7.4. DF-CCD Enerji Eşitliği

UHF referanslı DF-CCD yöntemi için enerji eşitliği aşağıdaki şekilde ifade edilmektedir [157].

$$\Delta E = \frac{1}{4} \sum_{I,J}^{occ} \sum_{A,B}^{vir} t_{IJ}^{AB} \langle IJ || AB \rangle_{DF} + \frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} t_{ij}^{ab} \langle ij || ab \rangle_{DF} + \sum_{I,j}^{occ} \sum_{A,b}^{vir} t_{Ij}^{Ab} \langle Ij |Ab \rangle$$

$$(496)$$

2.3.8. UHF Referansına Adapte Edilmiş DF-CCD Lagrangian Denklemleri (UHF)

Çalışmanın bu kısmında, UHF referanslı DF-CCD- Λ eşitlikleri sunulmaktadır [157]. Geliştirilen formülasyon, C++ dilinde yazılan etkin kodlara dönüştürülerek MacroQC [74] yazılımına ilave edilmiştir. Kısıtlamasız HF referanslı DF-CCD yöntemi için başlangıçta kullanılacak olan Λ_2 amplitutları farklı spin blokları için kısım 2.2.3.2.'deki eşitlikler kullanılmaktadır. Ayrıca, burada gerekli olan F ve \mathcal{F} tensörleri için kısım 2.3.7.1.'te tanımlanan eşitlikler kullanılmaktadır.

2.3.8.1. DF-CCD-A Ara Tensörleri

Burada, DF-CCD yönteminin λ_2 eşitliklerinde gerekli olan, W_{mnij} , W_{abef} ve W_{mbej} ara tensörleri kısım 2.3.7.2.'da sunulmuştur. Ayrıca, burada gerekli olan \mathcal{G}_{ia}^Q ve \mathcal{G}_{ai}^Q tensörleri kısım 2.2.3.3.'de, \mathcal{G} tensörleri ise kısım 2.2.3.7.'te sunulmaktadır.

2.3.8.1.1. V_{ijkl} Ara Tensörü

 V_{ijkl} ara tensörleri farklı bloklar halinde aşağıdaki şekilde ifade edilmektedir [157].

 $\alpha\alpha\alpha\alpha$ Blok:

$$V_{IJKL} = \frac{1}{2} \sum_{E,F}^{vir} t_{IJ}^{EF} \lambda_{EF}^{KL}$$
(497)

 $\beta\beta\beta\beta$ Blok:

$$V_{ijkl} = \frac{1}{2} \sum_{e,f}^{vir} t_{ij}^{ef} \lambda_{ef}^{kl}$$

$$\tag{498}$$

 $\alpha\beta\alpha\beta$ Blok:

$$V_{IjKl} = \sum_{E,f}^{vir} t_{Ij}^{Ef} \lambda_{Ef}^{Kl}$$
(499)

2.3.8.1.2. *W* Ara Tensörleri

 $\mathcal W$ ara tensörleri bu kısımda sunulmaktadır.

\mathcal{W}_{mbej} Ara Tensörleri

 \mathcal{W}_{mbej} ara tensörleri farklı spin blokları ile aşağıdaki şekilde ifade edilir [157].

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{W}_{MBEJ} = \langle MB || EJ \rangle_{DF} - \sum_{N}^{occ} \sum_{F}^{vir} t_{NJ}^{BF} \langle MN || EF \rangle_{DF} + \sum_{n}^{occ} \sum_{f}^{vir} t_{Jn}^{Bf} \langle Mn | Ef \rangle_{DF}$$
(500)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{W}_{mbej} = \langle mb||ej\rangle_{DF} - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle_{DF} + \sum_{N}^{occ} \sum_{F}^{vir} t_{Nj}^{Fb} \langle Nm|Fe\rangle_{DF}$$
(501)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{W}_{MbEj} = \langle Mb|Ej\rangle_{DF} - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle Mn|Ef\rangle_{DF} + \sum_{N}^{occ} \sum_{F}^{vir} t_{Nj}^{Fb} \langle MN||EF\rangle_{DF}$$
(502)

 $\beta \alpha \beta \alpha$ Blok:

$$\mathcal{W}_{mBeJ} = \langle Bm|Je\rangle_{DF} - \sum_{N}^{occ} \sum_{F}^{vir} t_{NJ}^{BF} \langle Nm|Fe\rangle_{DF} + \sum_{n}^{occ} \sum_{f}^{vir} t_{Jn}^{Bf} \langle mn||ef\rangle_{DF}$$
(503)

$$\alpha\beta\beta\alpha$$
 Blok:

$$\mathcal{W}_{MbeJ} = -\langle Mb|Je\rangle_{DF} + \sum_{n}^{occ} \sum_{F}^{vir} t_{Jn}^{Fb} \langle Mn|Fe\rangle_{DF}$$
(504)

 $\beta \alpha \alpha \beta$ Blok:

$$\mathcal{W}_{mBEj} = -\langle Bm|Ej\rangle_{DF} - \sum_{N}^{occ} \sum_{f}^{vir} t_{Nj}^{Bf} \langle Nm|Ef\rangle_{DF}$$
(505)

2.3.8.2. λ_2 Amplitut Eşitlikleri

 λ_2 amplitutları, $\alpha \alpha$, $\beta \beta$ ve $\alpha \beta$ spin bloklarıyla aşağıda sunulmuştur [157]. $\alpha \alpha$ Blok:

$$\lambda_{AB}^{IJ}D_{IJ}^{AB} = \langle IJ||AB \rangle$$

$$+ P_{-}(AB)\sum_{E}^{vir}\lambda_{AE}^{IJ}F_{EB} - P_{-}(IJ)\sum_{M}^{occ}\lambda_{AB}^{IM}F_{JM}$$

$$+ \frac{1}{2}\sum_{M}^{occ}\sum_{N}^{occ}\lambda_{AB}^{MN}W_{IJMN} + \frac{1}{2}\sum_{E}^{vir}\sum_{F}^{vir}\lambda_{EF}^{IJ}W_{EFAB}$$

$$+ \sum_{M}^{occ}\sum_{N}^{occ}V_{MNIJ}\langle MN|AB \rangle_{DF}$$

$$+ P_{-}(IJ)P_{-}(AB)\sum_{M}^{occ}\sum_{E}^{vir}\lambda_{AE}^{IM}W_{JEBM}$$

$$+ P_{-}(IJ)P_{-}(AB)\sum_{M}^{occ}\sum_{R}^{vir}\lambda_{AE}^{IM}W_{JEBM}$$

$$+ P_{-}(IJ)P_{-}(AB)\sum_{Q}^{occ}\sum_{R}^{vir}\lambda_{AE}^{IM}W_{JEBM}$$

$$(506)$$

 $\beta\beta$ Blok:

$$\lambda_{ab}^{ij}D_{ij}^{ab} = \langle ij||ab \rangle$$

$$+ P_{-}(ab)\sum_{e}^{vir}\lambda_{ae}^{ij}F_{eb} - P_{-}(ij)\sum_{m}^{occ}\lambda_{ab}^{im}F_{jm}$$

$$+ \frac{1}{2}\sum_{m}^{occ}\sum_{n}^{occ}\lambda_{ab}^{mn}W_{ijmn} + \frac{1}{2}\sum_{e}^{vir}\sum_{f}^{vir}\lambda_{ef}^{ij}W_{efab}$$

$$+ \sum_{m}^{occ}\sum_{n}^{occ}V_{mnij}\langle mn|ab \rangle_{DF}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{m}^{occ}\sum_{e}^{vir}\lambda_{ae}^{im}W_{jebm}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{M}^{occ}\sum_{E}^{vir}\lambda_{Ea}^{Mi}W_{jEbM}$$

$$+ P_{-}(ij)P_{-}(ab)\sum_{M}^{N_{aux}}(\mathcal{G}_{ai}^{Q} - \mathcal{G}_{ia}^{Q})b_{jb}^{Q}$$
(507)

 $\alpha\beta$ Blok:

$$\lambda_{Ab}^{Ij} D_{Ij}^{Ab} = \langle Ij|Ab \rangle$$

$$+ \sum_{e}^{vir} \lambda_{Ae}^{Ij} F_{eb} + \sum_{E}^{vir} \lambda_{Eb}^{Ij} F_{EA} - \sum_{m}^{occ} \lambda_{Ab}^{Im} F_{jm} - \sum_{M}^{occ} \lambda_{Ab}^{Mj} F_{IM}$$

$$+ \sum_{M}^{occ} \sum_{n}^{occ} \lambda_{Ab}^{Mn} W_{IjMn} + \sum_{E}^{vir} \sum_{f}^{vir} \lambda_{Ef}^{Ij} W_{EfAb}$$

$$+ \sum_{M}^{occ} \sum_{n}^{occ} V_{MnIj} \langle Mn|Ab \rangle_{DF}$$

$$+ \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{AE}^{IM} W_{JEbM} + \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Im} W_{Jebm}$$

$$+ \sum_{M}^{occ} \sum_{e}^{vir} \lambda_{Ae}^{Mj} W_{IebM} + \sum_{m}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Im} W_{JEAm}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{be}^{jm} W_{IeAm} + \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Mj} W_{IEAM}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} \lambda_{be}^{jm} W_{IeAm} + \sum_{M}^{occ} \sum_{E}^{vir} \lambda_{Eb}^{Mj} W_{IEAM}$$

$$+ \sum_{Q}^{Naux} (\mathcal{G}_{AI}^{Q} - \mathcal{G}_{IA}^{Q}) b_{Jb}^{Q} + \sum_{Q}^{Naux} (\mathcal{G}_{bj}^{Q} - \mathcal{G}_{Jb}^{Q}) b_{IA}^{Q}$$
(508)

2.3.8.3. Pseudo-CCD Enerji Eşitliği

Kısıtlamasız HF referanslı DF-CCD yöntemi için pseudo-CCD enerji eşitliği aşağıda sunulmaktadır [157]. Burada, Λ amplitutlarının yakınsama kontrolünün gerçekleştirilebilmesi amacıyla pseudo enerji hesaplanması gerekmektedir.

$$E_{pseudo-ccd} = E_{scf} + \frac{1}{4} \sum_{I,J}^{occ} \sum_{A,B}^{vir} \lambda_{AB}^{IJ} \langle ij || ab \rangle$$

+
$$\frac{1}{4} \sum_{i,j}^{occ} \sum_{a,b}^{vir} \lambda_{ab}^{ij} \langle ij || ab \rangle + \sum_{I,j}^{occ} \sum_{A,b}^{vir} \lambda_{Ab}^{Ij} \langle Ij |Ab \rangle$$
(509)

2.3.9. UHF Referansına Adapte Edilmiş DF-CCD Yöntemi için Parçacık-Yoğunluk Matrisleri (PDM) (UHF)

DF-CCD yöntemi için UHF referansına adapte edilmiş parçacık-yoğunluk matrislerine (PDM) ait denklemler bu kısımda sunulmaktadır [157].

2.3.9.1. PDM Ara Tensörleri

Bu kısımda, UHF referanslı DF-CCD yöntemine ait PDM eşitliklerindeki bazı tensörler ve amplitut denklemlerinde kullanılacak olan ara tensörler tanımlanmıştır. Burada gerekli olan ara tensörlerden bazıları önceki bölümlerde sunulduğundan tekrar edilmeyecektir. Bu kısımda farklı spin bloklarına ihtiyaç duyulan \mathcal{G} ara tensörleri kısım 2.2.3.7.'da, V_{ijkl} ara tensörleri kısım 2.3.8.1.1.'da, V_{iajb} ara tensörleri ise kısım 2.2.3.5.2.'da sunulmuştur.

2.3.9.1.1. *V*_{abcd} **Ara Tensörü**

 V_{abcd} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir [157]. $\alpha \alpha \alpha \alpha \alpha$ Blok:

$$V_{ABCD} = \frac{1}{2} \sum_{M,N}^{occ} t_{MN}^{CD} \lambda_{AB}^{MN}$$
(510)

 $\beta\beta\beta\beta$ Blok:

$$V_{abcd} = \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{cd} \lambda_{ab}^{mn}$$
(511)

 $\alpha\beta\alpha\beta$ Blok:

$$V_{AbCd} = \sum_{M,n}^{occ} t_{Mn}^{Cd} \lambda_{Ab}^{Mn}$$
(512)

 $\beta \alpha \beta \alpha$ Blok:

$$V_{aBcD} = \sum_{m,N}^{occ} t_{Nm}^{Dc} \lambda_{Ba}^{Nm}$$
(513)

2.3.9.1.2. *Y* Ara Tensörleri

 \boldsymbol{Y} ara tensörleri farklı spin bloklarıyla aşağıda sunulmaktadır.

Y_{iajb} Ara Tensörleri

 Y_{iajb} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir [157]. $\alpha\alpha\alpha\alpha\alpha$ Blok:

$$Y_{IAJB} = \sum_{M}^{occ} \sum_{E}^{vir} t_{MI}^{AE} V_{JEMB} - \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} V_{JemB}$$
(514)

 $\beta\beta\beta\beta$ Blok:

$$Y_{iajb} = \sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae} V_{jemb} - \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea} V_{jEMb}$$
(515)

 $\alpha\alpha\beta\beta$ Blok:

$$Y_{IAjb} = \sum_{M}^{occ} \sum_{E}^{vir} t_{MI}^{AE} V_{jEMb} - \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} V_{jemb}$$
(516)

 $\beta\beta\alpha\alpha$ Blok:

$$Y_{iaJB} = \sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae} V_{JemB} - \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea} V_{JEMB}$$
(517)

 $\alpha\beta\beta\alpha$ Blok:

$$Y_{IajB} = \sum_{m}^{occ} \sum_{E}^{vir} t_{Im}^{Ea} V_{jEmB}$$
(518)

 $\beta \alpha \alpha \beta$ Blok:

$$Y_{iAJb} = \sum_{M}^{occ} \sum_{e}^{vir} t_{Mi}^{Ae} V_{JeMb}$$
(519)

Y_{ijab} Ara Tensörleri

 Y_{ijab} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir [157]. $\alpha\alpha\alpha\alpha\alpha$ Blok:

$$Y_{IJAB} = \frac{1}{2} \sum_{M,N}^{occ} t_{MN}^{AB} V_{IJMN}$$
(520)

 $\beta\beta\beta\beta$ Blok:

$$Y_{ijab} = \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{ab} V_{ijmn}$$
(521)

$$\alpha\beta\alpha\beta$$
 Blok:

$$Y_{IjAb} = \sum_{M,n}^{occ} t_{Mn}^{Ab} V_{IjMn}$$
(522)

 $\beta \alpha \beta \alpha$ Blok:

$$Y_{iJaB} = \sum_{m,N}^{occ} t_{Nm}^{Ba} V_{iJmN}$$
(523)

 \widetilde{Y}_{ijab} Ara Tensörleri

 \tilde{Y}_{ijab} ara tensörleri farklı spin bloklarıyla aşağıdaki şekilde ifade edilmektedir [157]. $\alpha\alpha\alpha\alpha\alpha$ Blok:

$$\widetilde{Y}_{IJAB} = \frac{1}{2} (Y_{IJAB} - Y_{IAJB} + Y_{JAIB} + Y_{IBJA} - Y_{JBIA}) + V_{IBJA} + V_{JAIB}$$
(524)

 $\beta\beta\beta\beta$ Blok:

$$\widetilde{Y}_{ijab} = \frac{1}{2} \left(Y_{ijab} - Y_{iajb} + Y_{jaib} + Y_{ibja} - Y_{jbia} \right) + V_{ibja} + V_{jaib}$$
(525)

 $\alpha\beta\alpha\beta$ Blok:

$$\widetilde{Y}_{IjAb} = \frac{1}{2} (Y_{IjAb} - Y_{IAjb} + Y_{jAIb} + Y_{IbjA} - Y_{jbIA}) + V_{IbjA} + V_{jAIb}$$
(526)

 $\beta \alpha \beta \alpha$ Blok:

$$\widetilde{Y}_{iJaB} = \frac{1}{2} (Y_{iJaB} - Y_{iaJB} + Y_{JaiB} + Y_{iBJa} - Y_{JBia}) + V_{iBJa} + V_{JaiB}$$
(527)

2.3.9.2. Korelasyon OPDM

UHF referanslı DF-CCD yöntemine ait korelasyon OPDM terimleri aşağıdaki şekilde ifade edilmektedir [157].

2.3.9.2.1. OO-Blok

Korelasyon OPDM terimlerinden γ_{ij}^{corr} aşağıdaki şekilde ifade edilmektedir.

$$\gamma_{IJ}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{IJ} + \mathcal{G}_{JI} \right)$$
(528)

$$\gamma_{ij}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{ij} + \mathcal{G}_{ji} \right)$$
(529)

2.3.9.2.2. VV-Blok

Korelasyon OPDM terimlerinden γ_{ab}^{corr} aşağıdaki şekilde ifade edilmektedir.

$$\gamma_{AB}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{AB} + \mathcal{G}_{BA} \right)$$
(530)

$$\gamma_{ab}^{corr} = -\frac{1}{2} \left(\mathcal{G}_{ab} + \mathcal{G}_{ba} \right) \tag{531}$$

2.3.9.2.3. OV-Blok

 γ_{ia}^{corr} aşağıdaki şekilde ifade edilmektedir.

$$\gamma_{ia}^{corr} = 0 \tag{532}$$

2.3.9.3. Korelasyon ve Ayrılabilir TPDM Terimleri

UHF referanslı DF-CCD yöntemine ait korelasyon TPDM terimleri için 4-indisli terimler kısım 2.3.3.4.'te sunulmaktadır. Ayrıca, bu yönteme ait ayrılabilir TPDM ifadeleri DF-CCSD yöntemindeki eşitlikler ile aynıdır, ilgili eşitliklere 2.2.4.7. başlığından ulaşılabilir [23, 25, 157].

2.3.9.4. 3-İndisli TPDM Terimleri

UHF referanslı 3-indisli TPDM eşitlikleri için genel tanımlama DF-CCSD yönteminde (kısım 2.2.4.8.), Eşitlik (232) de sunulmuştur. Bu kısımda, 4-indisli TPDM eşitlikleri, 3-indisli olanlar cinsinden tanımlanmaktadır.

2.3.9.4.1. 1- ve 3-İndisli Ara Tensörler

UHF referanslı DF-CCD parçacık yoğunluk matrisleri için gerekli olan ara tensörler tez çalışmasının önceki bölümlerinde sunulmuştur. 3-indisli T_{ia}^Q ara tensörleri için UHF formda eşitlikler (43) ve (42)'de gösterilmiştir. Ayrıca, $\tilde{\mathcal{G}}_Q$ ara tensörü UHF formda Eşitlik (320)'de sunulmuştur. \mathcal{G}_{IJ}^Q ve \mathcal{G}_{ij}^Q ara tensörleri sırasıyla, Eşitlik (321) ve Eşitlik (322)'de sunulmuştur. Ayrıca, yine burada gerekli olan \mathcal{G}_{ia}^Q , \mathcal{G}_{ai}^Q , Λ_{ia}^Q , V_{ij}^Q , $V_{ij}^{Q'}$ ve V_{ai}^Q ara tensörleri kısım 2.2.3.3.'de gösterilmektedir. Son olarak, V_{ab}^Q ara tensörleri için UHF formda eşitlikler kısım 2.2.4.9.18.'da gösterilirken, y_{ia}^Q ara tensörleri için kısım 2.2.4.9.25.'da gösterilmiştir.

2.3.9.4.2. 3-İndisli Referans ve Ayrılabilir TPDM Terimleri

UHF referanslı DF-CCD yöntemine ait 3-İndisli Referans TPDM terimleri kısım 2.2.4.8.2.'da gösterilmiştir. Ayrıca, bu yönteme ait 3-indisli ayrılabilir TPDM terimleri için 2.2.4.8.3.'a bakılabilir.

2.3.9.4.3. 3-İndisli Korelasyon TPDM

UHF referanslı DF-CCD yöntemine ait 3-indisli Korelasyon TPDM terimleri bu kısımda tanımlanmaktadır.

OO-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ij}^{Q(corr)}$, aşağıdaki şekilde farklı spin bloklarıyla tanımlanmaktadır [157].

 α Blok:

$$\Gamma_{IJ}^{Q(corr)} = \frac{1}{2} P_{+}(IJ) \left(V_{IJ}^{Q} - 2V_{IJ}^{Q'} \right)$$
(533)

 β Blok:

$$\Gamma_{ij}^{Q(corr)} = \frac{1}{2} P_{+}(ij) \left(V_{ij}^{Q} - 2V_{ij}^{Q'} \right)$$
(534)

VV-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ab}^{Q(corr)}$, aşağıdaki şekilde farklı spin bloklarıyla tanımlanmaktadır [157].

 α Blok:

$$\Gamma_{AB}^{Q(corr)} = -\frac{1}{2} P_{+}(AB) \left(2V_{AB}^{Q} \right) + \frac{1}{2} P_{+}(AB) \sum_{E,F}^{vir} V_{AEBF} b_{EF}^{Q} + \frac{1}{2} P_{+}(AB) \sum_{e,f}^{vir} V_{AeBf} b_{ef}^{Q}$$
(535)

 β Blok:

$$\Gamma_{ab}^{Q(corr)} = -\frac{1}{2} P_{+}(ab) \left(2V_{ab}^{Q} \right) + \frac{1}{2} P_{+}(ab) \sum_{e,f}^{vir} V_{aebf} b_{ef}^{Q} + \frac{1}{2} P_{+}(ab) \sum_{E,F}^{vir} V_{aEbF} b_{EF}^{Q}$$
(536)

OV-Blok

Korelasyon TPDM terimlerinden $\Gamma_{ia}^{Q(corr)}$, aşağıdaki şekilde farklı spin bloklarıyla tanımlanmaktadır [157].

 α Blok:

$$\Gamma_{IA}^{Q(corr)} = \frac{1}{2} \left(T_{IA}^{Q} + \Lambda_{IA}^{Q} + 2y_{IA}^{Q} \right)
- \frac{1}{2} \sum_{M}^{occ} \mathcal{G}_{IM} T_{MA}^{Q} + \frac{1}{2} \sum_{E}^{vir} \mathcal{G}_{EA} T_{IE}^{Q}
+ \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{IM}^{AE} (\mathcal{G}_{EM}^{Q} - \mathcal{G}_{ME}^{Q})
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{Im}^{Ae} (\mathcal{G}_{em}^{Q} - \mathcal{G}_{me}^{Q})$$
(537)

 β Blok:

$$\Gamma_{ia}^{Q(corr)} = \frac{1}{2} \left(T_{ia}^{Q} + \Lambda_{ia}^{Q} + 2y_{ia}^{Q} \right)
- \frac{1}{2} \sum_{m}^{occ} \mathcal{G}_{im} T_{ma}^{Q} + \frac{1}{2} \sum_{e}^{vir} \mathcal{G}_{ea} T_{ie}^{Q}
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} \left(\mathcal{G}_{em}^{Q} - \mathcal{G}_{me}^{Q} \right)
+ \frac{1}{2} \sum_{M}^{occ} \sum_{E}^{vir} t_{Mi}^{Ea} \left(\mathcal{G}_{EM}^{Q} - \mathcal{G}_{ME}^{Q} \right)$$
(538)

2.4. Yoğunluk Uyarlanmış Tekli ve İkili Uyarılmış Bağlanmış Küme Teorisi için Hareket Denklemi (DF-EOM-CCSD)

2.4.1. Tekli ve İkili Bağlanmış Küme Teorisi için Hareket Denklemi (EOM-CCSD)

EOM-CCSD için hedef uyarılmış hal dalga fonksiyonları aşağıdaki gibi yazılır [179].

$$|\Psi_R\rangle = \hat{R}e^{\hat{T}}|0\rangle \tag{539}$$

$$\langle \Psi_L | = \langle 0 | e^{-\hat{T}} \hat{L}$$
(540)

Burada \hat{R} ve \hat{L} lineer operatörlerdir. CCSD için $\hat{R} = \hat{R}_1 + \hat{R}_2$ şeklinde tanımlanır [179].

$$\hat{R}_1 = \sum_{ia} r_i^a \{ \hat{a}^\dagger \hat{i} \}$$
(541)

$$\hat{R}_{2} = \frac{1}{4} \sum_{ijab} r_{ij}^{ab} \{ \hat{a}^{\dagger} \hat{b}^{\dagger} \hat{j} \hat{i} \}$$
(542)

Temel hal için aşağıdaki Schrödinger eşitliği kullanılır.

$$\hat{H}e^{\hat{T}}|0\rangle = Ee^{\hat{T}}|0\rangle$$
(543)

Burada aşağıdaki tanım hatırlanmalıdır.

$$\bar{H} = e^{-\hat{T}}\hat{H}e^{\hat{T}} \tag{544}$$

Buna göre, eşitlik (543), $e^{-\hat{T}}$ ile soldan çarpılarak aşağıdaki eşitlik elde edilir.

$$\bar{H}|0\rangle = E|0\rangle$$
 (545)

Burada CC enerjisi aşağıdaki şekilde tanımlanır.

$$E = \langle 0|\bar{H}|0\rangle \tag{546}$$

Ayrıca, normal sıralanmış Hamiltonian (\overline{H}) aşağıdaki şekilde yazılabilir.

$$\hat{\mathcal{H}} = e^{-\hat{T}} \hat{H}_N e^{\hat{T}} = \left(\hat{H}_N e^{\hat{T}} \right)_C \tag{547}$$

Burada, C alt indisi, yalnızca bağlı diyagramların dahil edilmesi gerektiği anlamına gelmektedir.

$$\hat{H}_N = \hat{H} - \langle 0|\hat{H}|0\rangle \tag{548}$$

$$\bar{H} = \hat{\mathcal{H}} + \langle 0|\hat{H}|0\rangle \tag{549}$$

Böylece (545) numaralı eşitliği yeniden yazabiliriz.

$$\hat{\mathcal{H}}|0\rangle = \Delta E|0\rangle \tag{550}$$

Burada, ΔE temel hal için CC korelasyon enerjisidir. Uyarılmış hal özdeğer eşitliği aşağıdaki şekilde ifade edilmektedir.

$$\hat{H}\hat{R}e^{\hat{T}}|0\rangle = E_R\hat{R}e^{\hat{T}}|0\rangle$$
(551)

Burada E_R , R uyarılmış halinin enerjisidir. (551) numaralı eşitliği tekrar yazabiliriz.

$$\bar{H}\hat{R}|0\rangle = E_R\hat{R}|0\rangle$$
 (552)

Ayrıca şu şekilde yazılabilir:

$$\hat{\mathcal{H}}\hat{R}|0\rangle = \Delta E_R \hat{R}|0\rangle \tag{553}$$

Burada ΔE_R , uyarılmış hal CC korelasyon enerjisidir. Uyarılmış hal enerjisi (ω) aşağıdaki şekilde yazılabilir.

$$\omega = E_R - E = \Delta E_R - \Delta E \tag{554}$$

Eşitlik (550), soldan \hat{R} ile çarpıldığında aşağıdaki eşitlik elde edilir.

$$\hat{R}\hat{\mathcal{H}}|0\rangle = \Delta E\hat{R}|0\rangle \tag{555}$$

Burada, (553) denkleminden, (555) denklemi çıkarılırsa aşağıdaki denklem elde edilir.

$$\left[\hat{\mathcal{H}},\hat{R}\right]|0\rangle = \omega\hat{R}|0\rangle \tag{556}$$

Ayrıca, şu şekilde tanımlanabilir:

$$\left(\hat{\mathcal{H}}\hat{R}|0\rangle\right)_{C} = \omega\hat{R}|0\rangle \tag{557}$$

Eşitlik (557), CCSD için aşağıdaki matris özdeğer denklemine eşdeğerdir:

$$\begin{pmatrix} 0 & \mathcal{H}_{0S} & \mathcal{H}_{0D} \\ 0 & \mathcal{H}_{SS} & \mathcal{H}_{SD} \\ 0 & \mathcal{H}_{DS} & \mathcal{H}_{DD} \end{pmatrix} \begin{pmatrix} R_0 \\ R_1 \\ R_2 \end{pmatrix} = \omega \begin{pmatrix} R_0 \\ R_1 \\ R_2 \end{pmatrix}$$
(558)

Burada, eşitlik (558), Davidson algoritması [180, 181] kullanılarak çözülmektedir. Bu nedenle, aşağıdaki şekilde tanımlamak gerekmektedir.

$$\sigma_I = \sum_J \mathcal{H}_{IJ} R_J \tag{559}$$

Daha açıkça aşağıdaki şekilde ifade edilebilir.

$$\sigma_0 = \mathcal{H}_{0S} R_1 + \mathcal{H}_{0D} R_2 \tag{560}$$

$$\sigma_1 = \mathcal{H}_{SS}R_1 + \mathcal{H}_{SD}R_2 \tag{561}$$

$$\sigma_2 = \mathcal{H}_{DS}R_1 + \mathcal{H}_{DD}R_2 \tag{562}$$

2.4.2. EOM-CCSD Spin Orbital Denklemleri

DF-EOM-CCSD yöntemine ait spin orbital denklemler bu kısımda sunulmaktadır [161]. Burada spin orbital denklemler, ara tensörler ve amplitut denklemlerinden oluşmaktadır. Ara tensörler kendi içerisinde, EOM formülasyonu için düzenlenen CCSD ara tensörleri ve EOM-CCSD ara tensörleri başlıklarına ayrılmaktadır.

2.4.2.1. CCSD Ara Tensörleri

DF-EOM-CCSD yöntemi için tanımlanan spin orbital CCSD ara tensörleri bu kısımda sunulmaktadır [161].

2.4.2.1.1. F Ara Tensörleri

DF-EOM-CCSD yöntemi için F ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır [52, 53, 161].

a. F_{ae} Ara Tensörü

 ${\cal F}_{ae}$ ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{ae} = f_{ae} - \frac{1}{2} \sum_{m}^{occ} f_{me} t_{m}^{a} + \sum_{m}^{occ} \sum_{f}^{vir} t_{m}^{f} \langle am || ef \rangle$$
$$- \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \sum_{f}^{vir} \tilde{\tau}_{mn}^{af} \langle mn || ef \rangle$$
(563)

Burada, $\tilde{\tau}^{ab}_{ij}$ aşağıdaki şekilde tanımlanmaktadır.

$$\tilde{\tau}_{ij}^{ab} = t_{ij}^{ab} + \frac{1}{2} \left(t_i^a t_j^b - t_i^b t_j^a \right)$$
(564)

b. F_{mi} Ara Tensörü

 F_{mi} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{mi} = f_{mi} + \frac{1}{2} \sum_{e}^{vir} f_{me} t_i^e + \sum_{n}^{occ} \sum_{e}^{vir} t_n^e \langle mn || ie \rangle$$

+
$$\frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} \tilde{\tau}_{in}^{ef} \langle mn || ef \rangle$$
(565)

c. F_{me} Ara Tensörü

 ${\cal F}_{me}$ ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{me} = f_{me} + \sum_{n}^{occ} \sum_{f}^{vir} t_n^f \langle mn || ef \rangle$$
(566)

2.4.2.1.2. \mathcal{F} Ara Tensörleri

DF-EOM-CCSD yöntemi için \mathcal{F} ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır [52, 53, 161].

a. \mathcal{F}_{ae} Ara Tensörü

 \mathcal{F}_{ae} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{F}_{ae} = F_{ae} - \frac{1}{2} \sum_{m}^{occ} t_m^a F_{me}$$
(567)

b. \mathcal{F}_{mi} Ara Tensörü

 \mathcal{F}_{mi} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{F}_{mi} = F_{mi} + \frac{1}{2} \sum_{e}^{vir} t_i^e F_{me}$$
 (568)

c. \mathcal{F}_{me} Ara Tensörü

 \mathcal{F}_{me} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{F}_{me} = F_{me} \tag{569}$$

2.4.2.1.3. W Ara Tensörleri

DF-EOM-CCSD yöntemi için W ara tensörleri farklı bloklar halinde aşağıdaki şekilde ifade edilmektedir. [52, 53, 161].

a. W_{mnij} Ara Tensörü

 W_{mnij} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$W_{mnij} = \langle mn || ij \rangle + P_{-}(ij) \sum_{e}^{vir} t_{j}^{e} \langle mn || ie \rangle$$

+
$$\frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef} \langle mn || ef \rangle$$
(570)

b. Wabef Ara Tensörü

 W_{abef} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$W_{abef} = \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \langle am || ef \rangle$$
(571)

c. W_{mbej} Ara Tensörü

 W_{mbej} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$W_{mbej} = \langle mb||ej\rangle + \sum_{f}^{vir} t_{j}^{f} \langle mb||ef\rangle - \sum_{n}^{occ} t_{n}^{b} \langle mn||ej\rangle - \sum_{n}^{occ} \sum_{n}^{vir} \left(\frac{1}{2}t_{jn}^{fb} + t_{j}^{f}t_{n}^{b}\right) \langle mn||ef\rangle$$
(572)

2.4.2.1.4. \mathcal{Z} Ara Tensörü

DF-EOM-CCSD yöntemi için \mathcal{Z} ara tensörü aşağıdaki şekilde tanımlanmaktadır. [52, 53, 161].

$$\mathcal{Z}_{mbej} = \langle mb||ej\rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle$$
(573)

2.4.2.1.5. W Ara Tensörleri

DF-EOM-CCSD yöntemi için W ara tensörleri farklı bloklar halinde aşağıdaki şekilde ifade edilmektedir. [52, 53, 161].

a. \mathcal{W}_{mnij} Ara Tensörü

 \mathcal{W}_{mnij} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{mnij} = W_{mnij}$$
 (574)

b. \mathcal{W}_{mbej} Ara Tensörü

 \mathcal{W}_{mbej} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{mbej} = W_{mbej} - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb} \langle mn || ef \rangle$$
(575)

Alternatif olarak aşağıdaki eşitlikle ifade edilebilir.

$$\mathcal{W}_{mbej} = \mathcal{Z}_{mbej} + \sum_{f}^{vir} t_{j}^{f} \langle mb || ef \rangle$$
$$- \sum_{n}^{occ} t_{n}^{b} \langle mn || ej \rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{j}^{f} t_{n}^{b} \langle mn || ef \rangle$$
(576)

c. \mathcal{W}_{mnie} Ara Tensörü

 \mathcal{W}_{mnie} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{mnie} = \langle mn || ie \rangle + \sum_{f}^{vir} t_i^f \langle mn || fe \rangle$$
 (577)

DF versiyonu aşağıdaki şekilde ifade edilir.

$$\mathcal{W}_{mnie} = P_{-}(mn) \sum_{Q}^{aux} (t^{Q}_{im} + b^{Q}_{im}) b^{Q}_{ne}$$
 (578)

d. \mathcal{W}_{mbij} Ara Tensörü

 \mathcal{W}_{mbij} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{mbij} = \langle mb||ij\rangle - \sum_{e}^{vir} t_{ij}^{be} \mathcal{F}_{me} - \sum_{n}^{occ} t_{n}^{b} W_{mnij} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef} \langle mb||ef\rangle + P_{-}(ij) \sum_{e}^{vir} t_{i}^{e} \mathcal{Z}_{mbej} + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be} \langle mn||ie\rangle$$
(579)

e. \mathcal{W}_{abef} Ara Tensörü

 \mathcal{W}_{abef} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{abef} = \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t^{b}_{m} \langle am || ef \rangle + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau^{ab}_{mn} \langle mn || ef \rangle$$
(580)

f. \mathcal{W}_{amef} Ara Tensörü

 \mathcal{W}_{amef} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{amef} = \langle am || ef \rangle - \sum_{n}^{occ} t_n^a \langle nm || ef \rangle$$
(581)

g. \mathcal{W}_{abei} Ara Tensörü

 \mathcal{W}_{abei} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{W}_{abei} = \langle ab || ei \rangle - \sum_{m}^{occ} t_{mi}^{ab} \mathcal{F}_{me} + \sum_{f}^{vir} t_{i}^{f} \mathcal{W}_{abef}$$

$$+ \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau_{mn}^{ab} \langle mn || ei \rangle$$

$$- P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{mi}^{af} \langle mb || ef \rangle$$

$$- P_{-}(ab) \sum_{m}^{occ} t_{m}^{a} \mathcal{Z}_{mbei} \qquad (582)$$

2.4.2.1.6. 1- ve 3-İndisli CCSD Ara Tensörleri

DF-EOM-CCSD yönteminin 1- ve 3-indisli ara tensörleri aşağıdaki şekilde tanımlanmaktadır [52, 53, 161].

$$T_{ia}^Q = \sum_j^{occ} \sum_b^{vir} t_{ij}^{ab} b_{jb}^Q$$
(583)

$$t_Q = \sum_m^{occ} \sum_f^{vir} t_m^f b_{mf}^Q$$
(584)

$$t_{ia}^Q = \sum_f^{vir} t_i^f b_{af}^Q \tag{585}$$

$$t_{ij}^Q = \sum_e^{vir} t_i^e b_{je}^Q \tag{586}$$

$$t_{ai}^Q = \sum_m^{occ} t_m^a b_{mi}^Q \tag{587}$$

$$t_{ab}^Q = \sum_m^{occ} t_m^a b_{mb}^Q \tag{588}$$

$$\tilde{\tau}_{ia}^Q = \sum_m^{occ} \sum_f^{vir} \tilde{\tau}_{im}^{af} b_{mf}^Q$$
(589)

$$\tilde{t}_{ia}^Q = \sum_m^{occ} t_{im}^Q t_m^a$$
(590)

$$\tilde{t}_{ai}^Q = \sum_e^{vir} t_{ae}^Q t_i^e$$
(591)

$$t_{ia}^{Q'} = t_{ia}^{Q} - t_{ai}^{Q} - \tilde{t}_{ia}^{Q}$$
(592)

$$\tau_{ia}^{Q\prime} = \tilde{\tau}_{ia}^{Q} + t_{ia}^{Q}$$
(593)

$$\tau_{ia}^{Q\prime\prime} = \tilde{\tau}_{ia}^Q - t_{ai}^Q \tag{594}$$

2.4.2.2. EOM-CCSD Ara Tensörleri

DF-EOM-CCSD yöntemi için tanımlanan ara tensörler bu kısımda sunulmaktadır [161].

2.4.2.2.1. \mathcal{V} Ara Tensörleri

DF-EOM-CCSD yöntemi için tanımlanan \mathcal{V} ara tensörleri bu kısımda sunulmaktadır [161]. a. \mathcal{V}_{ijkl} Ara Tensörü

 \mathcal{V}_{ijkl} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$\mathcal{V}_{ijmn} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn || ef \rangle$$
(595)

b. \mathcal{V}_{ijam} Ara Tensörü

 W_{abef} ara tensörü sigma denklemine aşağıdaki terim ile eklenmektedir.

$$\sigma_{ij}^{ab} \quad <= \quad \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} \tag{596}$$

Burada W_{abef} terimi açıldığında ifade aşağıdaki halini alır.

$$\sigma_{ij}^{ab} <= \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle ab || ef \rangle$$

$$- P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle am || ef \rangle$$
(597)

Bu kısımda aşağıdaki tanımlama yapılabilir.

$$\mathcal{V}_{ijam} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle am || ef \rangle$$
(598)

Son olarak sigma amplitutuna katkı aşağıdaki şekilde ifade edilir.

$$\sigma_{ij}^{ab} <= \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \mathcal{V}_{ijam}$$
(599)
2.4.2.2.2. X Ara Tensörleri

DF-EOM-CCSD yöntemi için X ara tensörleri farklı bloklar halinde aşağıdaki bu kısımda tanımlanmaktadır [161]. a. X_{ij} Ara Tensörü

 X_{ij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ij} = \sum_{Q}^{aux} \sum_{e}^{vir} \left(R_{ie}^{Q} - r_{ei}^{Q} - \tilde{r}_{ei}^{Q} \right) b_{je}^{Q} + \sum_{Q}^{aux} \left(t_{ij}^{Q} + b_{ij}^{Q} \right) r^{Q}$$
(600)

b. X_{ab} Ara Tensörü

 X_{ab} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ab} = \sum_{Q}^{aux} \sum_{m}^{occ} \left(R_{ma}^{Q} + r_{ma}^{Q} - \tilde{r}_{ma}^{Q} \right) b_{mb}^{Q} + \sum_{Q}^{aux} \left(t_{ab}^{Q} - b_{ab}^{Q} \right) r^{Q}$$
(601)

2.4.2.2.3. 2- ve 4-İndisli R Ara Tensörleri

DF-EOM-CCSD yöntemi için 2- ve 4-indisli R ara tensörleri aşağıda tanımlanmaktadır [161].

a. R_{im} Ara Tensörü

 R_{im} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{im} = \sum_{e}^{vir} r_i^e \mathcal{F}_{me}$$
(602)

b. R_{mnij} Ara Tensörü

 R_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mnij} = P_{-}(mn) \sum_{Q}^{aux} r_{im}^{Q} \{ b_{jn}^{Q} + t_{jn}^{Q} \}$$
(603)

c. R_{mbif} Ara Tensörü

 R_{mbif} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbif} = P_{-}(mb) \sum_{Q}^{aux} r^Q_{im} b^Q_{bf}$$
(604)

d. R_{mbij} Ara Tensörü

 R_{mbij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbij} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mbej}$$
(605)

2.4.2.2.4. 1- ve 3-İndisli *R* ve *r* Ara Tensörleri

DF-EOM-CCSD yöntemi için tanımlanan 1- ve 3-indisli R ve r ara tensörleri aşağıdaki şekilde tanımlanmaktadır [161].

$$r_{ia}^Q = \sum_e^{vir} r_i^e b_{ae}^Q \tag{606}$$

$$r_{ij}^Q = \sum_e^{vir} r_i^e b_{je}^Q \tag{607}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{im}^Q \tag{608}$$

$$r_{ab}^Q = \sum_m^{vir} r_m^a b_{mb}^Q \tag{609}$$

$$\tilde{r}_{ia}^Q = \sum_e^{vir} r_i^e t_{ae}^Q \tag{610}$$

$$\tilde{r}_{ai}^Q = \sum_m^{vir} r_m^a t_{im}^Q \tag{611}$$

$$r_{ia}^{Q\prime} = \sum_{m}^{occ} r_{im}^{Q} t_{m}^{a}$$
(612)

$$r^Q = \sum_m^{occ} \sum_e^{vir} r^e_m b^Q_{me}$$
(613)

$$R_{ia}^Q = \sum_m^{occ} \sum_e^{vir} r_{im}^{ae} b_{me}^Q$$
(614)

2.4.2.3. EOM-CCSD Diyagramları

DF-EOM-CCSD yöntemi için tanımlanan σ_0 , σ_1 ve σ_2 amplitutları bu kısımda sunulmaktadır [161].

2.4.2.3.1. σ_0 Diyagramları

DF-EOM-CCSD yöntemi için σ_0 eşitliği aşağıdaki şekilde ifade edilir.

$$\sigma_0 = \sum_{i}^{occ} \sum_{a}^{vir} r_i^a F_{ia} + \frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{vir} r_{ij}^{ab} \langle ij || ab \rangle$$
(615)

2.4.2.3.2. σ_1 Diyagramları

DF-EOM-CCSD yöntemi için σ_1 eşitliği aşağıdaki şekilde ifade edilir.

$$\sigma_{i}^{a} = \sum_{e}^{vir} r_{i}^{e} \mathcal{F}_{ae} - \sum_{m}^{occ} r_{m}^{a} \mathcal{F}_{mi}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e} \mathcal{W}_{maei} + \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} F_{me}$$

$$- \sum_{Q}^{aux} \sum_{m}^{occ} (t_{im}^{Q} + b_{im}^{Q}) R_{ma}^{Q}$$

$$+ \sum_{Q}^{aux} \sum_{e}^{vir} R_{ie}^{Q} (b_{ae}^{Q} - t_{ae}^{Q})$$
(616)

2.4.2.3.3. σ_2 Diyagramları

DF-EOM-CCSD yöntemi için spin orbital σ_2 eşitliği aşağıdaki şekilde ifade edilir.

$$\begin{aligned}
\sigma_{ij}^{ab} &= P_{-}(ab) \sum_{e}^{vir} r_{ij}^{eb} \mathcal{F}_{ae} - P_{-}(ij) \sum_{m}^{occ} r_{mj}^{ab} \mathcal{F}_{mi} \\
&+ \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} - P_{-}(ab) \sum_{m}^{occ} r_{m}^{a} \mathcal{W}_{mbij} \\
&+ \frac{1}{2} \sum_{m,n}^{occ} \tau_{mn}^{ab} (R_{mnij} - R_{mnji} + \mathcal{V}_{ijmn}) \\
&+ \frac{1}{2} \sum_{m,n}^{occ} r_{mn}^{ab} \mathcal{W}_{mnij} + P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} \mathcal{W}_{mbej} \\
&- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} R_{mbje} \\
&+ P_{-}(ij) P_{-}(ab) \sum_{Q}^{aux} r_{ib}^{Q'} t_{ja}^{Q} - P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab} R_{im} \\
&- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} t_{m}^{ar} R_{mbij} \\
&+ P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} t_{m}^{a} R_{mbij}
\end{aligned}$$
(617)

2.4.3. Kısıtlamalı HF Referansına (RHF) Adapte Edilmiş EOM-CCSD Denklemleri

Bu kısımda, kapalı kabuklu kimyasal sistemler için uygun olan kısıtlamalı HF referansına adapte edilmiş DF-EOM-CCSD yöntemi için formülasyon geliştirilmiştir [161]. RHF referanslı DF-EOM-CCSD yöntemi için gerekli olan, F, F, W, W gibi CCSD ara tensörleri önceki çalışmalarda ayrıntılı biçimde gösterilmiştir [52, 53]. Burada, RHF referanslı DF-EOM-CCSD yöntemi için gerekli olan ara tensörler ve amplitut denklemleri sunulmaktadır.

2.4.3.1. EOM-CCSD Ara Tensörleri

Bu kısımda, kısıtlamalı HF referansına (RHF) adapte edilen DF-EOM-CCSD yöntemi için tanımlanan EOM-CCSD ara tensörleri sunulmaktadır [161].

2.4.3.1.1. \mathcal{V} Ara Tensörleri

DF-EOM-CCSD yöntemi için \mathcal{V} ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır.

a. \mathcal{V}_{ijmn} Ara Tensörü

 \mathcal{V}_{ijmn} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijmn} = \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn|ef \rangle \tag{618}$$

b. \mathcal{V}_{ijam} Ara Tensörü

 \mathcal{V}_{ijam} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijam} = \sum_{e,f}^{vir} r_{ij}^{ef} \langle am|ef \rangle_{DF}$$
(619)

2.4.3.1.2. X Ara Tensörleri

DF-EOM-CCSD yöntemi için X ara tensörleri farklı bloklar halinde aşağıdaki şekilde tanımlanmaktadır.

a. X_{ij} Ara Tensörü

 X_{ij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ij} = \sum_{Q}^{N_{aux}} \left(t_{ij}^{Q} + b_{ij}^{Q} \right) r^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} \left(R_{ie}^{Q} - r_{ei}^{Q} - \tilde{r}_{ei}^{Q} \right) b_{je}^{Q}$$
(620)

b. X_{ab} Ara Tensörü

 X_{ab} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ab} = \sum_{Q}^{aux} \sum_{m}^{occ} \left(R_{ma}^{Q} + r_{ma}^{Q} - \tilde{r}_{ma}^{Q} \right) b_{mb}^{Q} + \sum_{Q}^{aux} \left(t_{ab}^{Q} - b_{ab}^{Q} \right) r^{Q}$$
(621)

2.4.3.1.3. 2- ve 4-İndisli R Ara Tensörleri

Bu kısımda, RHF referanslı DF-EOM-CCSD yöntemi için 2- ve 4-indisli R ara tensörleri farklı bloklar halinde tanımlanmaktadır.

a. R_{im} Ara Tensörü

 R_{im} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{im} = \sum_{e}^{vir} r_i^e \mathcal{F}_{me}$$
(622)

b. R_{mnij} Ara Tensörü

 R_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mnij} = \sum_{Q}^{Naux} r_{im}^{Q} \{ b_{nj}^{Q} + t_{jn}^{Q} \}$$
(623)

c. R_{mbif} Ara Tensörü

 R_{mbif} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbif} = \sum_{Q}^{Naux} r_{im}^{Q} b_{bf}^{Q}$$
(624)

d. R_{mbfi} Ara Tensörü

 R_{mbfi} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbfi} = \sum_{Q}^{Naux} r_{ib}^{Q} b_{mf}^{Q}$$
(625)

e. R_{mbij} Ara Tensörü

 R_{mbij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbij} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mbej}$$
(626)

f. \widetilde{R}_{mbij} Ara Tensörü

 \widetilde{R}_{mbij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\widetilde{R}_{mbij} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mbje}$$
(627)

2.4.3.1.4. 1- ve 3-İndisli *R* ve *r* Ara Tensörleri

RHF referanslı DF-EOM-CCSD yöntemi için 1- ve 3-indisli R ve r ara tensörleri farklı bloklar halinde bu kısımda sunulmaktadır.

$$\tilde{r}_{ij}^{ab} = 2r_{ij}^{ab} - r_{ji}^{ab}$$
(628)

$$R_{ia}^{Q} = \sum_{m}^{occ} \sum_{e}^{our} \left(2r_{im}^{ae} - r_{mi}^{ae}\right) b_{me}^{Q}$$
(629)

$$R_{ia}^Q = \sum_m^{occ} \sum_e^{vir} \tilde{r}_{im}^{ae} b_{me}^Q$$
(630)

$$r^{Q} = 2\sum_{m}^{occ} \sum_{e}^{vir} r^{e}_{m} b^{Q}_{me}$$
(631)

$$r_{ij}^Q = \sum_e^{vir} r_i^e b_{je}^Q \tag{632}$$

$$r_{ab}^Q = \sum_m^{vir} r_m^a b_{mb}^Q \tag{633}$$

$$r_{ia}^Q = \sum_e^{vir} r_i^e b_{ae}^Q \tag{634}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{mi}^Q \tag{635}$$

$$\tilde{r}_{ia}^Q = \sum_e^{vir} r_i^e t_{ae}^Q \tag{636}$$

$$\tilde{r}_{ai}^Q = \sum_m^{vir} r_m^a t_{im}^Q \tag{637}$$

$$r_{ia}^{Q\prime} = \sum_{m}^{occ} r_{im}^{Q} t_{m}^{a}$$
(638)

2.4.3.2. EOM-CCSD Diyagramları

Bu kısımda geliştirilen RHF referanslı DF-EOM-CCSD yöntemi için σ_0 , σ_1 ve σ_2 amplitutları sunulmaktadır [161].

2.4.3.2.1. σ_0 Diyagramları

DF-EOM-CCSD yönteminin σ_0 amplitutu için RHF referanslı eşitlik aşağıdaki şekilde ifade edilmektedir.

$$\omega r_0 = \sigma_0 = 2 \sum_{i}^{occ} \sum_{a}^{vir} r_i^a F_{ia} + \sum_{ij}^{occ} \sum_{ab}^{vir} \tilde{r}_{ij}^{ab} \langle ij|ab \rangle$$
(639)

2.4.3.2.2. σ_1 Diyagramları

DF-EOM-CCSD yönteminin σ_1 amplitutu için RHF referanslı eşitlik aşağıdaki şekilde ifade edilmektedir.

$$\sigma_{i}^{a} = \sum_{e}^{vir} r_{i}^{e} \mathcal{F}_{ae} - \sum_{m}^{occ} r_{m}^{a} \mathcal{F}_{mi} + \sum_{m}^{occ} \sum_{e}^{vir} \tilde{r}_{im}^{ae} \mathcal{F}_{me}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e} (2\mathcal{W}_{maei} - \mathcal{W}_{maie})$$

$$- \sum_{Q}^{N_{aux}} \sum_{m}^{occ} (t_{im}^{Q} + b_{im}^{Q}) \mathcal{R}_{ma}^{Q}$$

$$+ \sum_{Q}^{aux} \sum_{e}^{vir} \mathcal{R}_{ie}^{Q} (b_{ae}^{Q} - t_{ae}^{Q})$$
(640)

2.4.3.2.3. σ_2 Diyagramları

DF-EOM-CCSD yönteminin σ_2 amplitutu için RHF referanslı eşitlik aşağıdaki şekilde ifade edilmektedir.

$$\sigma_{ij}^{ab} = \hat{P}_{+}(ia,jb) \left\{ \sum_{e}^{vir} r_{ij}^{eb} \mathcal{F}_{ae} - \sum_{m}^{occ} r_{mj}^{ab} \mathcal{F}_{mi} - \sum_{m}^{occ} r_{m}^{a} \mathcal{W}_{mbij} \right. \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} \tilde{r}_{im}^{ae} (2\mathcal{W}_{mbej} - \mathcal{W}_{mbje}) - \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} r_{mi}^{ae} \mathcal{W}_{mbje} - \sum_{m}^{occ} \sum_{e}^{vir} r_{mj}^{ae} \mathcal{W}_{mbje} \\
- \sum_{m}^{occ} t_{mj}^{ab} R_{im} + \sum_{Q}^{aux} r_{ia}^{Q} \left(b_{jb}^{Q} + t_{jb}^{Q} - \tilde{t}_{jb}^{Q} \right) - \sum_{Q}^{aux} r_{ib}^{Q'} t_{ja}^{Q} \\
+ \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} u_{im}^{ae} (2R_{mbej} - R_{mbje}) - \frac{1}{2} \sum_{m}^{occ} \sum_{e}^{vir} t_{mi}^{ae} R_{mbje} - \sum_{m}^{occ} \sum_{e}^{vir} t_{mj}^{ae} R_{mbie} \\
- \sum_{m}^{occ} t_{m}^{a} (R_{mbij} - \tilde{R}_{mbji}) - \sum_{e}^{vir} X_{ae} t_{ij}^{eb} - \sum_{m}^{occ} X_{im} t_{mj}^{ab} \right\} \\
+ \sum_{m,n}^{occ} \tau_{mn}^{ab} (R_{mnij} + R_{nmji} + \mathcal{V}_{ijmn}) + \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} + \sum_{m,n}^{occ} r_{mn}^{ab} \mathcal{W}_{mnij} \tag{641}$$

2.4.4. Kısıtlamasız HF Referansına (UHF) Adapte Edilmiş EOM-CCSD Denklemleri (UHF)

Bu kısımda, açık kabuklu kimyasal sistemler için uygun olan kısıtlamasız HF (UHF) referansına adapte edilmiş DF-EOM-CCSD yöntemi için formülasyon geliştirilmiştir [161]. UHF referanslı DF-EOM-CCSD yöntemi için gerekli olan, F, F, W, W gibi CCSD ara tensörleri başlık 2.2. de gösterilmiştir. Burada, UHF referanslı DF-EOM-CCSD yöntemi için gerekli olan diğer ara tensörler ve amplitut denklemleri sunulmaktadır.

2.4.4.1. EOM-CCSD Ara Tensörleri

Bu kısımda, kısıtlamasız HF referansına (UHF) adapte edilen DF-EOM-CCSD yöntemi için tanımlanan EOM-CCSD ara tensörleri sunulmaktadır [161].

2.4.4.1.1. *V* Ara Tensörleri

 \mathcal{V} ara tensörleri aşağıda farklı bloklar halinde sunulmaktadır.

a. \mathcal{V}_{ijkl} Ara Tensörleri

 \mathcal{V}_{ijkl} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha\alpha\alpha$ Blok:

$$\mathcal{V}_{IJMN} = \sum_{E,F}^{vir} r_{IJ}^{EF} \langle MN | EF \rangle$$
(642)

 $\beta\beta\beta\beta$ Blok:

$$\mathcal{V}_{ijmn} = \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn|ef \rangle$$
(643)

 $\alpha\beta\alpha\beta$ Blok:

$$\mathcal{V}_{IjMn} = \sum_{E,f}^{vir} r_{Ij}^{Ef} \langle Mn | Ef \rangle$$
(644)

b. \mathcal{V}_{ijam} Ara Tensörleri

 W_{abef} ara tensörü, sigma denklemine aşağıdaki şekilde katkı sağlamaktadır.

$$\sigma_{ij}^{ab} \quad <= \quad \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} \tag{645}$$

Burada, W_{abef} tensörünün aşağıdaki şekilde ifade edildiği hatırlanmalıdır.

$$W_{abef} = \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \langle am || ef \rangle$$
(646)

Eşitlik yerine yazıldığında aşağıdaki halini alır.

$$\sigma_{ij}^{ab} <= \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle ab || ef \rangle$$

$$- P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle am || ef \rangle$$
(647)

Eşitliğin bir bölümü yeni bir ara tensör olan \mathcal{V}_{ijam} terimi ile ifade edilebilir.

$$\mathcal{V}_{ijam} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle am || ef \rangle$$
(648)

Böylece aşağıdaki ifade elde edilir.

$$\sigma_{ij}^{ab} <= \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b} \mathcal{V}_{ijam}$$
(649)

2.4.4.1.2. *X* Ara Tensörleri

X ara tensörleri aşağıda farklı bloklar halinde sunulmaktadır.

a. X_{ij} Ara Tensörleri

 X_{ij} ara tensörleri aşağıdaki şekilde sunulmaktadır. $\alpha \alpha$ Blok:

$$X_{IJ} = \sum_{Q}^{N_{aux}} \left(t_{IJ}^{Q} + b_{IJ}^{Q} \right) r^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} \left(R_{IE}^{Q} - r_{EI}^{Q} - \tilde{r}_{EI}^{Q} \right) b_{JE}^{Q}$$
(650)

 $\beta\beta$ Blok:

$$X_{ij} = \sum_{Q}^{N_{aux}} \left(t_{ij}^{Q} + b_{ij}^{Q} \right) r^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} \left(R_{ie}^{Q} - r_{ei}^{Q} - \tilde{r}_{ei}^{Q} \right) b_{je}^{Q}$$
(651)

b. X_{ab} Ara Tensörleri

 X_{ab} ara tensörleri aşağıdaki şekilde sunulmaktadır. $\alpha \alpha$ Blok:

$$X_{AB} = \sum_{Q}^{aux} \sum_{M}^{occ} \left(R_{MA}^{Q} + r_{MA}^{Q} - \tilde{r}_{MA}^{Q} \right) b_{MB}^{Q} + \sum_{Q}^{aux} \left(t_{AB}^{Q} - b_{AB}^{Q} \right) r^{Q}$$
(652)

 $\beta\beta$ Blok:

$$X_{ab} = \sum_{Q}^{aux} \sum_{m}^{occ} \left(R_{ma}^{Q} + r_{ma}^{Q} - \tilde{r}_{ma}^{Q} \right) b_{mb}^{Q} + \sum_{Q}^{aux} \left(t_{ab}^{Q} - b_{ab}^{Q} \right) r^{Q}$$
(653)

2.4.4.1.3. 2- ve 4-İndisli R Ara Tensörleri

Kısıtlamasız HF referanslı (UHF) DF-EOM-CCSD yöntemi için gerekli olan 2- ve 4-indisli R ara tensörleri, farklı spin bloklarıyla bu kısımda sunulmaktadır.

a. R_{im} Ara Tensörleri

 R_{im} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha \alpha$ Blok:

$$R_{IM} = \sum_{E}^{vir} r_{I}^{E} \mathcal{F}_{ME}$$
(654)

 $\beta\beta$ Blok:

$$R_{im} = \sum_{e}^{vir} r_i^e \mathcal{F}_{me}$$
(655)

b. R_{mnij} Ara Tensörleri

 R_{mnij} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha\alpha\alpha$ Blok:

$$R_{MNIJ} = \sum_{Q}^{Naux} r_{IM}^{Q} \{ b_{NJ}^{Q} + t_{JN}^{Q} \} - \sum_{Q}^{Naux} r_{IN}^{Q} \{ b_{MJ}^{Q} + t_{JM}^{Q} \}$$
(656)

 $\beta\beta\beta\beta$ Blok:

$$R_{mnij} = \sum_{Q}^{Naux} r_{im}^{Q} \{ b_{nj}^{Q} + t_{jn}^{Q} \} - \sum_{Q}^{Naux} r_{in}^{Q} \{ b_{mj}^{Q} + t_{jm}^{Q} \}$$
(657)

 $\alpha\beta\alpha\beta$ Blok:

$$R_{MnIj} = \sum_{Q}^{Naux} r_{IM}^{Q} \{ b_{nj}^{Q} + t_{jn}^{Q} \}$$
(658)

 $\beta \alpha \beta \alpha$ Blok:

$$R_{mNiJ} = \sum_{Q}^{Naux} r_{im}^{Q} \{ b_{NJ}^{Q} + t_{JN}^{Q} \}$$
(659)

c. R_{mbif} Ara Tensörleri

 R_{mbif} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha\alpha\alpha$ Blok:

$$R_{MBIF} = \sum_{Q}^{Naux} r_{IM}^Q b_{BF}^Q - \sum_{Q}^{Naux} r_{IB}^Q b_{MF}^Q$$
(660)

 $\beta\beta\beta\beta$ Blok:

$$R_{mbif} = \sum_{Q}^{Naux} r_{im}^{Q} b_{bf}^{Q} - \sum_{Q}^{Naux} r_{ib}^{Q} b_{mf}^{Q}$$
(661)

 $\alpha\beta\alpha\beta$ Blok:

$$R_{MbIf} = \sum_{Q}^{Naux} r_{IM}^{Q} b_{bf}^{Q}$$
(662)

 $\beta \alpha \beta \alpha$ Blok:

$$R_{mBiF} = \sum_{Q}^{Naux} r_{im}^{Q} b_{BF}^{Q}$$
(663)

$$\alpha\beta\beta\alpha$$
 Blok:

$$R_{MbiF} = -\sum_{Q}^{Naux} r_{ib}^{Q} b_{MF}^{Q}$$
(664)

 $\beta \alpha \alpha \beta$ Blok:

$$R_{mBIf} = -\sum_{Q}^{Naux} r_{IB}^{Q} b_{mf}^{Q}$$
(665)

d. R_{mbij} Ara Tensörleri

 R_{mbij} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha\alpha\alpha$ Blok:

$$R_{MBIJ} = \sum_{E}^{vir} r_{I}^{E} \mathcal{Z}_{MBEJ}$$
(666)

 $\beta\beta\beta\beta$ Blok:

$$R_{mbij} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mbej}$$
(667)

 $\alpha\beta\alpha\beta$ Blok:

$$R_{MbIj} = \sum_{E}^{vir} r_{I}^{E} \mathcal{Z}_{MbEj}$$
(668)

 $\beta \alpha \beta \alpha$ Blok:

$$R_{mBiJ} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mBeJ}$$
(669)

$$\alpha\beta\beta\alpha$$
Blok:

$$R_{MbiJ} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{MbeJ}$$
(670)

 $\beta \alpha \alpha \beta$ Blok:

$$R_{mBIj} = \sum_{E}^{vir} r_{I}^{E} \mathcal{Z}_{mBEj}$$
(671)

2.4.4.1.4. 1- ve 3-İndisli R ve r Ara Tensörleri

Kısıtlamasız HF referanslı (UHF) DF-EOM-CCSD yöntemi için gerekli olan 1- ve 3-indisli R ve r ara tensörleri, farklı spin bloklarıyla bu kısımda sunulmaktadır.

$$r^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} r_{M}^{E} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e} b_{me}^{Q}$$
(672)

$$r_{IJ}^{Q} = \sum_{E}^{vir} r_{I}^{E} b_{JE}^{Q}$$
(673)

$$r_{ij}^Q = \sum_e^{vir} r_i^e b_{je}^Q \tag{674}$$

$$r_{AB}^Q = \sum_M^{vir} r_M^A b_{MB}^Q \tag{675}$$

$$r_{ab}^Q = \sum_m^{vir} r_m^a b_{mb}^Q \tag{676}$$

$$r_{IA}^{Q} = \sum_{E}^{vir} r_{I}^{E} b_{AE}^{Q}$$

$$(677)$$

$$r_{ia}^Q = \sum_e^{vir} r_i^e b_{ae}^Q \tag{678}$$

$$r_{AI}^Q = \sum_M^{vir} r_M^A b_{MI}^Q \tag{679}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{mi}^Q \tag{680}$$

$$r_{IA}^{Q\prime} = \sum_{M}^{occ} r_{IM}^{Q} t_{M}^{A}$$
(681)

$$r_{ia}^{Q\prime} = \sum_{m}^{occ} r_{im}^{Q} t_{m}^{a}$$
(682)

$$\tilde{r}_{IA}^Q = \sum_E^{vir} r_I^E t_{AE}^Q \tag{683}$$

$$\tilde{r}_{ia}^Q = \sum_e^{vir} r_i^e t_{ae}^Q \tag{684}$$

$$\tilde{r}_{AI}^{Q} = \sum_{M}^{vir} r_{M}^{A} t_{IM}^{Q}$$
(685)

$$\tilde{r}_{ai}^Q = \sum_m^{vir} r_m^a t_{im}^Q \tag{686}$$

$$R_{IA}^{Q} = \sum_{M}^{occ} \sum_{E}^{vir} r_{IM}^{AE} b_{ME}^{Q} + \sum_{m}^{occ} \sum_{e}^{vir} r_{Im}^{Ae} b_{me}^{Q}$$
(687)

$$R_{ia}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} b_{me}^{Q} + \sum_{M}^{occ} \sum_{E}^{vir} r_{Mi}^{Ea} b_{ME}^{Q}$$
(688)

2.4.4.2. EOM-CCSD Diyagramları

Bu kısımda geliştirilen kısıtlamasız HF (UHF) referanslı DF-EOM-CCSD yöntemi için σ_0 , σ_1 ve σ_2 amplitutları sunulmaktadır [161].

2.4.4.2.1. σ_0 Diyagramları

UHF referanslı DF-EOM-CCSD yönteminin σ_0 amplitut denklemi aşağıdaki şekilde ifade edilmektedir.

$$\sigma_{0} = \sum_{I}^{occ} \sum_{A}^{vir} r_{I}^{A} F_{IA} + \sum_{i}^{occ} \sum_{a}^{vir} r_{i}^{a} F_{ia} + \frac{1}{4} \sum_{IJ}^{occ} \sum_{AB}^{vir} r_{IJ}^{AB} \langle IJ || AB \rangle + \frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{vir} r_{ij}^{ab} \langle ij || ab \rangle + \sum_{Ij}^{occ} \sum_{Ab}^{vir} r_{Ij}^{Ab} \langle Ij |Ab \rangle$$

$$(689)$$

2.4.4.2.2. σ_1 Diyagramları

UHF referanslı DF-EOM-CCSD yönteminin σ_1 amplitutları (α ve β bloklar) aşağıdaki şekilde ifade edilmektedir.

 α Blok:

$$\sigma_{I}^{A} = \sum_{E}^{vir} r_{I}^{E} \mathcal{F}_{AE} - \sum_{M}^{occ} r_{M}^{A} \mathcal{F}_{MI}$$

$$+ \sum_{M}^{occ} \sum_{E}^{vir} r_{M}^{E} \mathcal{W}_{MAEI} + \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e} \mathcal{W}_{mAeI}$$

$$+ \sum_{M}^{occ} \sum_{E}^{vir} r_{IM}^{AE} \mathcal{F}_{ME} + \sum_{m}^{occ} \sum_{e}^{vir} r_{Im}^{Ae} \mathcal{F}_{me}$$

$$- \sum_{Q}^{N_{aux}} \sum_{M}^{occ} (t_{IM}^{Q} + b_{IM}^{Q}) R_{MA}^{Q}$$

$$+ \sum_{Q}^{aux} \sum_{e}^{vir} R_{IE}^{Q} (b_{AE}^{Q} - t_{AE}^{Q})$$
(690)

 β Blok:

$$\sigma_{i}^{a} = \sum_{e}^{vir} r_{i}^{e} \mathcal{F}_{ae} - \sum_{m}^{occ} r_{m}^{a} \mathcal{F}_{mi}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e} \mathcal{W}_{maei} + \sum_{M}^{occ} \sum_{E}^{vir} r_{M}^{E} \mathcal{W}_{MaEi}$$

$$+ \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} F_{me} + \sum_{M}^{occ} \sum_{E}^{vir} r_{Mi}^{Ea} F_{ME}$$

$$- \sum_{Q}^{N_{aux}} \sum_{m}^{occ} (t_{im}^{Q} + b_{im}^{Q}) R_{ma}^{Q}$$

$$+ \sum_{Q}^{aux} \sum_{e}^{vir} R_{ie}^{Q} (b_{ae}^{Q} - t_{ae}^{Q})$$
(691)

2.4.4.2.3. σ_2 Diyagramları

UHF referanslı DF-EOM-CCSD yönteminin σ_2 amplitutları ($\alpha \alpha$, $\beta \beta$ ve $\alpha \beta$ bloklar) aşağıdaki şekilde ifade edilmektedir.

 $\alpha\alpha$ Blok:

$$\begin{aligned}
\sigma_{IJ}^{AB} &= P_{-}(AB) \sum_{E}^{vir} r_{IJ}^{FB} \mathcal{F}_{AE} - P_{-}(IJ) \sum_{M}^{occ} r_{MJ}^{AB} \mathcal{F}_{MI} \\
&+ \sum_{E,F}^{vir} r_{IJ}^{EF} \widetilde{W}_{ABEF} - P_{-}(AB) \sum_{M}^{occ} r_{M}^{AB} \mathcal{W}_{MBIJ} \\
&+ \frac{1}{2} \sum_{M,N}^{occ} \tau_{MN}^{AB} \mathcal{V}_{IJMN} + \frac{1}{2} \sum_{M,N}^{occ} r_{MN}^{AB} \mathcal{W}_{MNIJ} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{E}^{vir} r_{IM}^{AE} \mathcal{W}_{MBEJ} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{m}^{occ} \sum_{e}^{vir} r_{Im}^{Ae} \mathcal{W}_{mBeJ} \\
&+ P_{-}(IJ) \sum_{Q}^{Naux} \left(r_{IA}^{Q} b_{BJ}^{Q} - r_{IB}^{Q} b_{AJ}^{Q} \right) \\
&- P_{-}(IJ) \sum_{M}^{occ} t_{MJ}^{AB} R_{IM} + \frac{1}{2} P_{-}(IJ) \sum_{M,N}^{occ} \tau_{MN}^{AB} R_{MNIJ} \\
&- P_{-}(IJ) P_{-}(AB) \sum_{m}^{occ} \sum_{F}^{vir} t_{MJ}^{AF} R_{MBIF} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} \sum_{F}^{vir} t_{MJ}^{AF} R_{MBIF} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{M}^{occ} t_{M}^{A} R_{MBIJ} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{occ} t_{M}^{A} t_{M} R_{MBIJ} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} R_{M} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} \\
&+ P_{-}(IJ) P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} \\
&+ P_{-}(AB) \sum_{Q}^{vir} t_{M}^{AF} \\
&+ P_{-}(IJ) \sum_{Q}^{vir} t_{M}^{AF} \\
&+ P_{-}(AB) \sum_{E}^{vir} t_{AE}^{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(AB) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(AB) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{E}^{vir} t_{AE} \\
&+ P_{-}(IJ) \sum_{M}^{vir} t_{AE} \\
&$$

 $\beta\beta$ Blok:

$$\sigma_{ij}^{ab} = P_{-}(ab) \sum_{e}^{vir} r_{ij}^{eb} \mathcal{F}_{ae} - P_{-}(ij) \sum_{m}^{occ} r_{mj}^{ab} \mathcal{F}_{mi}
+ \sum_{e,f}^{vir} r_{if}^{ef} \widetilde{W}_{abef} - P_{-}(ab) \sum_{m}^{occ} r_{m}^{a} \mathcal{W}_{mbij}
+ \frac{1}{2} \sum_{m,n}^{occ} \tau_{mn}^{ab} \mathcal{V}_{ijmn} + \frac{1}{2} \sum_{m,n}^{occ} r_{mn}^{ab} \mathcal{W}_{mnij}
+ P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{e} \mathcal{W}_{mbej}
+ P_{-}(ij) P_{-}(ab) \sum_{M}^{occ} \sum_{e}^{vir} r_{Mi}^{Ea} \mathcal{W}_{MbEj}
+ P_{-}(ij) \sum_{Q}^{Naux} \left(r_{ia}^{Q} b_{j}^{Q} - r_{ib}^{Q} b_{aj}^{Q} \right)
- P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab} R_{im} + \frac{1}{2} P_{-}(ij) \sum_{m,n}^{occ} \tau_{mn}^{ab} R_{mnij}
- P_{-}(ij) P_{-}(ab) \sum_{M}^{occ} \sum_{e}^{vir} t_{Mj}^{A} R_{MbiF}
- P_{-}(ij) P_{-}(ab) \sum_{M}^{occ} \sum_{e}^{vir} t_{Mj}^{F} R_{MbiF}
- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} t_{m}^{a} R_{mbij}
+ P_{-}(ij) \sum_{Q}^{Naux} \left(r_{ia}^{Q} t_{jb}^{Q} - \sum_{Q}^{Naux} r_{ib}^{Q} t_{ja}^{Q} \right)
- P_{-}(ij) P_{-}(ab) \sum_{Q}^{vir} t_{mi}^{A} R_{mbij}
+ P_{-}(ij) \sum_{Q}^{Naux} \left(t_{jb}^{Q} r_{ia}^{Q} - \sum_{Q}^{Naux} r_{ib}^{Q} t_{ja}^{Q} \right)
- P_{-}(ij) P_{-}(ab) \sum_{Q}^{Vir} X_{ae} t_{ib}^{b} + P_{-}(ij) \sum_{m}^{occ} X_{im} t_{jm}^{ab}$$
(693)

 $\alpha\beta$ Blok:

$$\begin{aligned} \sigma_{Ij}^{Ab} &= \sum_{E}^{vir} r_{Ij}^{Eb} \mathcal{F}_{AE} + \sum_{e}^{vir} r_{Ij}^{Ae} \mathcal{F}_{be} - \sum_{M}^{cc} r_{Mj}^{Ab} \mathcal{F}_{MI} - \sum_{m}^{occ} r_{Im}^{Ab} \mathcal{F}_{mj} \\ &+ \sum_{E,J}^{vir} r_{Ij}^{Ef} \widetilde{W}_{AbEf} - \sum_{M}^{occ} r_{M}^{A} \mathcal{W}_{MbIj} + \sum_{m}^{occ} r_{m}^{b} \mathcal{W}_{mAIj} \\ &+ \sum_{E,J}^{occ} r_{Mn}^{Ab} \mathcal{V}_{IjMn} + \sum_{M,n}^{occ} r_{Mn}^{Ab} \mathcal{W}_{MnIj} \\ &+ \sum_{M}^{occ} \sum_{E}^{vir} r_{M}^{AE} \mathcal{W}_{MbEj} + \sum_{m}^{occ} \sum_{e}^{vir} r_{Im}^{Ae} \mathcal{W}_{mbej} + \sum_{m}^{occ} \sum_{E}^{vir} r_{Im}^{Eb} \mathcal{W}_{mAEj} \\ &+ \sum_{M}^{occ} \sum_{e}^{vir} r_{Mj}^{AE} \mathcal{W}_{MbeI} + \sum_{m}^{occ} \sum_{e}^{vir} r_{fm}^{be} \mathcal{W}_{mAeI} + \sum_{M}^{occ} \sum_{E}^{vir} r_{Mj}^{Eb} \mathcal{W}_{MAEI} \\ &- \sum_{e}^{occ} r_{Mj}^{vir} \mathcal{K}_{Mj}^{A} \mathcal{R}_{MbI} + \sum_{m}^{occ} \sum_{e}^{vir} r_{fm}^{be} \mathcal{W}_{mAeI} + \sum_{M}^{occ} \sum_{E}^{vir} r_{Mj}^{Eb} \mathcal{W}_{MAEI} \\ &- \sum_{M}^{occ} r_{Mj}^{vir} \mathcal{K}_{Mj}^{A} \mathcal{R}_{MbIf} + \sum_{m}^{occ} r_{jm}^{vir} \mathcal{K}_{mj}^{b} \mathcal{R}_{mAIf} - \sum_{M}^{occ} \sum_{E}^{vir} r_{Mj}^{Eb} \mathcal{W}_{MAEI} \\ &+ \sum_{M,n}^{occ} \sum_{f} r_{Mj}^{vI} \mathcal{R}_{MbIf} + \sum_{m}^{occ} r_{fm}^{vir} \mathcal{K}_{mj}^{b} \mathcal{R}_{mAIf} - \sum_{M}^{occ} \sum_{F}^{vir} \mathcal{K}_{Mj}^{Fb} \mathcal{R}_{MAIF} \\ &+ \sum_{M}^{occ} \sum_{F} r_{MI}^{vI} \mathcal{R}_{MbJF} - \sum_{m}^{occ} \sum_{f} r_{m}^{vir} \mathcal{K}_{mhJ}^{f} \mathcal{R}_{mAJf} - \sum_{m}^{occ} \sum_{F}^{vir} \mathcal{K}_{m}^{Fb} \mathcal{R}_{mAJF} \\ &- \sum_{M}^{occ} r_{M}^{vir} \mathcal{K}_{M}^{A} \mathcal{R}_{MbJF} - \sum_{m}^{occ} r_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{R}_{mbJ} - \sum_{m}^{occ} r_{m}^{vir} \mathcal{K}_{m}^{Fb} \mathcal{R}_{mAJF} \\ &- \sum_{M}^{occ} r_{M}^{vir} \mathcal{K}_{M}^{A} \mathcal{R}_{MbJ} + r_{MnJ}^{occ} \mathcal{K}_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{R}_{mAJF} \\ &- \sum_{m}^{occ} r_{M}^{vir} \mathcal{K}_{M}^{fh} \mathcal{R}_{mbJ} + \sum_{m}^{occ} r_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{R}_{mAJF} \\ &- \sum_{m}^{occ} r_{M}^{vir} \mathcal{K}_{M}^{fh} \mathcal{R}_{mbJ} + \sum_{m}^{occ} r_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{R}_{mAJF} \\ &- \sum_{m}^{occ} r_{M}^{vir} \mathcal{K}_{M}^{fh} \mathcal{K}_{m} - r_{Mj}^{occ} \mathcal{K}_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{K}_{m} \\ &- \sum_{m}^{occ} r_{M}^{vir} \mathcal{K}_{m}^{fh} \mathcal{K}_{m} - r_{m}^{occ} \mathcal{K}_{m}^{vir} \mathcal{K}_{m}^{fh} \mathcal{K}_{m}^{fh} \mathcal{K}_{m}^{fh} \mathcal{K}_{m}^{fh} \\ &- \sum_{m}^{occ} r_{M}^{vir} \mathcal{K}_{$$

2.5. Yoğunluk Uyarlanmış İkili Uyarılmış Bağlanmış Küme Teorisi için Hareket Denklemi (DF-EOM-CCD)

Bu kısımda uyarılmış hal enerjilerinin hesaplanması amacıyla, yoğunluk uyarlanmış ikili uyarılmış bağlanmış küme teorisi için hareket denklemi (*Density-Fitted Equation-of-Motion Coupled-Cluster Doubles*, DF-EOM-CCD) yöntemi ve optimize orbitalli versiyonu (DF-EOM-OCCD) geliştirilmiştir. Tez çalışmasının bu kısmında geliştirilen yöntemlerin (DF-EOM-CCD ve DF-EOM-OCCD), kısıtlamalı ve kısıtlamasız Hartree-Fock (RHF ve UHF) referansları için ayrı formülasyonlar elde edilmiş olup, C++ dilinde bir bilgisayar koduna dönüştürülmüştür. Ayrıca geliştirilen programlar, MacroQC [74] yazılımına ilave edilmiştir.

2.5.1. EOM-CCD Spin Orbital Denklemleri

Burada DF-EOM-CCD yöntemi için gerekli olan ara tensörler ve amplitut denklemleri gösterilmektedir. F, F, W, W gibi CCSD ara tensörleri 2.3.1. ve 2.3.2. başlıklarında sunulduğundan burada tekrar edilmeyecektir. Burada, DF-EOM-CCD yöntemi için gerekli olan diğer ara tensörler ve amplitut denklemleri sunulmaktadır.

2.5.1.1. EOM-CCD Ara Tensörleri

Bu kısımda, DF-EOM-CCD yöntemi için gerekli olan ara tensörler sunulmaktadır.

2.5.1.1.1. V Ara Tensörleri

DF-EOM-CCD yöntemi için tanımlanan \mathcal{V} ara tensörleri bu kısımda sunulmaktadır.

a. \mathcal{V}_{ijkl} Ara Tensörü

 \mathcal{V}_{ijkl} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijmn} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn || ef \rangle$$
(695)

b. \mathcal{V}_{ijam} Ara Tensörü

 \mathcal{V}_{ijam} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijam} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle am || ef \rangle$$
(696)

2.5.1.1.2. X Ara Tensörleri

X ara tensörleri aşağıdaki şekilde ifade edilmektedir.

a. X_{ij} Ara Tensörü

 X_{ij} tensörü aşağıdaki şekilde tanımlanmaktadır.

$$X_{ij} = \sum_{Q}^{aux} \sum_{e}^{vir} \left(R_{ie}^{Q} - r_{ei}^{Q} \right) b_{je}^{Q} + \sum_{Q}^{aux} b_{ij}^{Q} r^{Q}$$
(697)

b. X_{ab} Ara Tensörü

 X_{ab} tensörü aşağıdaki şekilde tanımlanmaktadır.

$$X_{ab} = \sum_{Q}^{aux} \sum_{m}^{occ} \left(R_{ma}^{Q} + r_{ma}^{Q} \right) b_{mb}^{Q} - \sum_{Q}^{aux} b_{ab}^{Q} r^{Q}$$
(698)

2.5.1.1.3. 2- ve 4-İndisli R Ara Tensörleri

DF-EOM-CCD yöntemi için tanımlanan R ara tensörleri bu kısımda sunulmaktadır.

a. R_{im} Ara Tensörü

 R_{im} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

$$R_{im} = \sum_{e}^{vir} r_i^e F_{me}$$
(699)

b. R_{mnij} Ara Tensörü

 R_{mnij} ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

$$R_{mnij} = P_{-}(mn) \sum_{Q}^{aux} r^{Q}_{im} b^{Q}_{jn}$$
(700)

c. R_{mbif} Ara Tensörü

 ${\cal R}_{mbif}$ ara tensörleri aşağıdaki şekilde tanımlanmaktadır.

$$R_{mbif} = P_{-}(mb) \sum_{Q}^{aux} r^Q_{im} b^Q_{bf}$$

$$\tag{701}$$

2.5.1.1.4. 1- ve 3-İndisli r ve R Ara Tensörleri

DF-EOM-CCD yöntemi için tanımlanan 1- ve 3-indisli r ve R ara tensörler aşağıdaki şekilde ifade edilmektedir.

$$r^Q = \sum_m^{occ} \sum_e^{vir} r^e_m b^Q_{me}$$
(702)

$$r_{ab}^Q = \sum_m^{vir} r_m^a b_{mb}^Q \tag{703}$$

$$r_{ij}^Q = \sum_e^{vir} r_i^e b_{je}^Q \tag{704}$$

$$r_{ia}^Q = \sum_e^{vir} r_i^e b_{ae}^Q \tag{705}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{im}^Q \tag{706}$$

$$R_{ia}^{Q} = \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} b_{me}^{Q}$$
(707)

2.5.1.1.5. Δt_i^a Ara Tensörü

DF-EOM-CCD yöntemi için tanımlanan Δt_i^a ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\Delta t_i^a = f_{ia} + t_{im}^{ae} F_{me} + T_{ma}^Q b_{mi}^Q + T_{ie}^Q b_{ae}^Q \tag{708}$$

2.5.1.2. EOM-CCD Diyagramları

DF-EOM-CCD yöntemi için tanımlanan σ_0 , σ_1 ve σ_2 amplitut denklemleri bu kısımda sunulmaktadır.

2.5.1.2.1. σ_0 Diyagramları

DF-EOM-CCD yöntemi için tanımlanan σ_0 amplitutu aşağıdaki şekilde ifade edilmektedir.

$$\omega r_0 = \sigma_0 = \sum_i^{occ} \sum_a^{vir} r_i^a F_{ia} + \frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{vir} r_{ij}^{ab} \langle ij || ab \rangle$$
(709)

2.5.1.2.2. σ_1 Diyagramları

DF-EOM-CCD yöntemi için tanımlanan σ_1 amplitutu aşağıdaki şekilde ifade edilmektedir.

$$\sigma_i^a = \Delta t_i^a r_0 + \sum_e^{vir} r_i^e F_{ae} - \sum_m^{occ} r_m^a F_{mi}$$

$$+ \sum_m^{occ} \sum_e^{vir} r_m^e \mathcal{W}_{maei} + \sum_m^{occ} \sum_e^{vir} r_{im}^{ae} F_{me}$$

$$- \sum_Q^{aux} \sum_m^{occ} b_{im}^Q R_{ma}^Q + \sum_Q^{aux} \sum_e^{vir} R_{ie}^Q b_{ae}^Q$$
(710)

2.5.1.2.3. σ_2 Diyagramları

DF-EOM-CCD yöntemi için tanımlanan σ_2 amplitutu aşağıdaki şekilde ifade edilmektedir.

$$\begin{aligned}
\sigma_{ij}^{ab} &= P_{-}(ab) \sum_{e}^{vir} r_{ij}^{eb} F_{ae} - P_{-}(ij) \sum_{m}^{occ} r_{mj}^{ab} F_{mi} \\
&+ \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} - P_{-}(ab) \sum_{m}^{occ} r_{m}^{a} W_{mbij} \\
&+ \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{ab} (R_{mnij} - R_{mnji} + \mathcal{V}_{ijmn}) \\
&+ \frac{1}{2} \sum_{m,n}^{occ} r_{mn}^{ab} \mathcal{W}_{mnij} - P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab} R_{im} \\
&+ P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae} \mathcal{W}_{mbej} \\
&- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae} R_{mbje} \\
&+ P_{-}(ij) P_{-}(ab) \sum_{Q}^{vir} r_{ia}^{Q} b_{jb}^{Q} \\
&+ P_{-}(ab) \sum_{e}^{vir} X_{ae} t_{ij}^{be} + P_{-}(ij) \sum_{m}^{occ} X_{im} t_{jm}^{ab}
\end{aligned}$$
(711)

2.6. Yoğunluk Uyarlanmış İkinci Dereceden Møller-Plesset Teorisi için Hareket Denklemi (DF-EOM-MP2)

Bu kısımda, yoğunluk uyarlanmış ikinci dereceden Møller-Plesset teorisi için hareket denklemi(*Density-Fitted Equation-of-Motion Second-Order Møller-Plesset Perturbation Theory*, DF-EOM-MP2) ve optimize orbitalli versiyonu (DF-EOM-OMP2) yöntemleri geliştirilmiştir. Tez çalışmasının bölümünde geliştirilen yöntemlerin (DF-EOM-MP2 ve DF-EOM-OMP2), RHF ve UHF referansları için ayrı formülasyonlar elde edilmiştir. Geliştirilen formülasyonlar, C++ dilinde etkin bir bilgisayar koduna dönüştürülerek MacroQC [74] yazılımına ilave edilmiştir.

2.6.1. EOM-MP2 Spin Orbital Denklemleri

Bu kısımda DF-EOM-MP2 yöntemi için elde edilen formülasyon sunulmaktadır. Burada, tensör ve amplitut derecelendirmeleri için Stanton ve Gauss'un 1995 yılındaki çalışmalarında rapor edilen notasyon takip edilmiştir [76].

2.6.1.1. CCSD Ara Tensörleri

DF-EOM-MP2 yöntemi için gerekli olan CCSD ara tensörleri bu kısımda sunulmaktadır.

2.6.1.1.1. 3-İndisli CCSD Ara Tensörü

3-indisli T_{ia}^Q ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$T_{ia}^{Q} = \sum_{j}^{occ} \sum_{b}^{vir} t_{ij}^{ab} b_{jb}^{Q}$$
(712)

2.6.1.1.2. *F* **Ara Tensörleri**

Bu kısımda, DF-EOM-MP2 yöntemi için gerekli olan F ara tensörleri sunulmaktadır.

a. F_{ae} Ara Tensörü

 ${\cal F}_{ae}$ ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{ae} = f_{ae} - \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \sum_{f}^{vir} t_{mn}^{af} \langle mn || ef \rangle$$
(713)

Bu ara tensör için yoğunluk uyarlanmış versiyon aşağıdaki şekilde ifade edilmektedir.

$$F_{ae} = f_{ae} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} T^{Q}_{ma} b^{Q}_{me}$$
(714)

b. F_{mi} Ara Tensörü

 ${\cal F}_{mi}$ ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{mi} = f_{mi} + \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} t_{in}^{ef} \langle mn || ef \rangle$$
(715)

Bu ara tensör için yoğunluk uyarlanmış versiyon aşağıdaki şekilde ifade edilmektedir.

$$F_{mi} = f_{mi} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T_{ie}^{Q} b_{me}^{Q}$$
(716)

c. F_{me} Ara Tensörü

 ${\cal F}_{me}$ ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$F_{me} = f_{me} \tag{717}$$

Kanonik durumda f_{me} ifadesi sıfıra eşit olmaktadır.

$$f_{me} = 0 \tag{718}$$

2.6.1.1.3. \mathcal{F} Ara Tensörleri

DF-EOM-MP2 yöntemi için \mathcal{F} ara tensörleri aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{F}_{ae} = F_{ae} \tag{719}$$

$$\mathcal{F}_{mi} = F_{mi} \tag{720}$$

$$\mathcal{F}_{me} = F_{me} \tag{721}$$

2.6.1.1.4. *W* Ara Tensörleri

DF-EOM-MP2 yöntemi için gerekli olan W ara tensörleri farklı bloklar halinde bu kısımda tanımlanmaktadır.

a. W_{mnij} Ara Tensörü

 W_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$W_{mnij} = \langle mn || ij \rangle + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mn || ef \rangle$$
(722)

b. Wabef Ara Tensörü

 W_{abef} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$W_{abef} = \langle ab || ef \rangle \tag{723}$$

2.6.1.1.5. Z Ara Tensörü

DF-EOM-MP2 yöntemi için tanımlanan \mathcal{Z} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{Z}_{mbej} = \langle mb||ej\rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle$$
(724)

Bu ara tensör için yoğunluk uyarlanmış versiyon aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{Z}_{mbej} = \langle mb||ej\rangle + \sum_{Q}^{Naux} T^{Q}_{jb} b^{Q}_{me} - \sum_{n}^{occ} \sum_{f}^{vir} t^{bf}_{jn} \langle me|fn\rangle$$
(725)

2.6.1.1.6. W Ara Tensörleri

DF-EOM-MP2 yöntemi için gerekli olan \mathcal{W} ara tensörleri farklı bloklar halinde bu kısımda tanımlanmaktadır.

a. \mathcal{W}_{mnij} Ara Tensörü

 \mathcal{W}_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mnij} = W_{mnij} \tag{726}$$

b. \mathcal{W}_{mbej} Ara Tensörü

 \mathcal{W}_{mbej} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mbej} = \langle mb||ej\rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf} \langle mn||ef\rangle$$
(727)

c. \mathcal{W}_{mnie} Ara Tensörü

 \mathcal{W}_{mnie} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mnie} = \langle mn || ie \rangle$$
 (728)

d. \mathcal{W}_{mbij} Ara Tensörü

 \mathcal{W}_{mbij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mbij} = \langle mb||ij\rangle - \sum_{e}^{vir} t_{ij}^{be} F_{me} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef} \langle mb||ef\rangle + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be} \langle mn||ie\rangle$$
(729)

e. \mathcal{W}_{abef} Ara Tensörü

 \mathcal{W}_{abef} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{abef} = \langle ab||ef\rangle + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab} \langle mn||ef\rangle$$
(730)

f. \mathcal{W}_{amef} Ara Tensörü

 \mathcal{W}_{amef} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{amef} = \langle am || ef \rangle \tag{731}$$

g. \mathcal{W}_{abei} Ara Tensörü

 \mathcal{W}_{abei} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{abei} = \langle ab || ei \rangle - \sum_{m}^{occ} t_{mi}^{ab} F_{me} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab} \langle mn || ei \rangle - P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{mi}^{af} \langle mb || ef \rangle$$
(732)

2.6.1.2. EOM-MP2 Ara Tensörleri

Bu kısımda, gerekli olan EOM-MP2 ara tensörleri tanımlanmaktadır.

2.6.1.2.1. \mathcal{V}_{ijmn} Ara Tensörü

 \mathcal{V}_{ijmn} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijmn} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn || ef \rangle$$
(733)

2.6.1.2.2. X Ara Tensörleri

DF-EOM-MP2 yöntemi için tanımlanan X ara tensörleri aşağıdaki şekilde ifade edilmektedir.

a. X_{ij} Ara Tensörü

 X_{ij} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$X_{ij} = \sum_{Q}^{Naux} b_{ij}^{Q} r^{Q} + \sum_{Q}^{Naux} \sum_{e}^{vir} b_{je}^{Q} (R_{ie}^{Q} - r_{ei}^{Q})$$
(734)

b. X_{ab} Ara Tensörü

 X_{ab} ara tensörü aşağıdaki şekilde tanımlanmaktadır.

$$X_{ab} = \sum_{Q}^{Naux} \sum_{m}^{vir} \left(R_{ma}^{Q} + r_{ma}^{Q} \right) b_{mb}^{Q} - \sum_{Q}^{Naux} b_{ab}^{Q} r^{Q}$$
(735)

2.6.1.2.3. 2- ve 4-İndisli R Ara Tensörleri

DF-EOM-MP2 yöntemi için tanımlanan 2- ve 4-indisli R ara tensörleri bu kısımda sunulmaktadır.

a. R_{im} Ara Tensörü

 R_{im} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{im} = \sum_{e}^{vir} r_i^e F_{me}$$
(736)

b. R_{mnij} Ara Tensörü

 R_{mnij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mnij} = \sum_{Q}^{Naux} r_{im}^{Q} b_{jn}^{Q} - \sum_{Q}^{Naux} r_{in}^{Q} b_{mj}^{Q}$$
(737)

c. R_{mbif} Ara Tensörü

 R_{mbif} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$R_{mbif} = \sum_{Q}^{Naux} r_{im}^{Q} b_{bf}^{Q} - \sum_{Q}^{Naux} r_{ib}^{Q} b_{mf}^{Q}$$
(738)

2.6.1.2.4. 1 ve 3-İndisli r ve R Ara Tensörleri

DF-EOM-MP2 yöntemi için tanımlanan 1- ve 3-indisli r ve R ara tensörleri bu kısımda sunulmaktadır.

$$r^Q = \sum_m^{occ} \sum_e^{vir} r^e_m b^Q_{me}$$
(739)

$$r_{ia}^Q = \sum_e^{vir} r_i^e b_{ae}^Q \tag{740}$$

$$r_{ij}^Q = \sum_e^{vir} r_i^e b_{je}^Q \tag{741}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{im}^Q \tag{742}$$

$$r_{ab}^Q = \sum_m^{vir} r_m^a b_{mb}^Q \tag{743}$$

$$R_{ia}^Q = \sum_m^{occ} \sum_e^{vir} r_{im}^{ae} b_{me}^Q$$
(744)

2.6.1.3. EOM-MP2 Diyagramları

DF-EOM-MP2 yöntemi için tanımlanan σ_0 , σ_1 ve σ_2 amplitutları bu kısımda sunulmaktadır.

2.6.1.3.1. σ_0 Diyagramları

DF-EOM-MP2 yöntemi için tanımlanan σ_0 eşitliği aşağıdaki gibidir.

$$\omega r_0 = \sigma_0 = \sum_i^{occ} \sum_a^{vir} r_i^a F_{ia} + \frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{vir} r_{ij}^{ab} \langle ij || ab \rangle$$
(745)

2.6.1.3.2. σ_1 Diyagramları

DF-EOM-MP2 yöntemi için tanımlanan σ_1 eşitliği aşağıdaki gibidir.

$$\sigma_i^a = f_i^a r_0 + \sum_e^{vir} r_i^e F_{ae} - \sum_m^{occ} r_m^a F_{mi}$$

$$+ \sum_m^{occ} \sum_e^{vir} r_{im}^{ae} F_{me} + \sum_m^{occ} \sum_e^{vir} r_m^e \mathcal{W}_{maei}$$

$$- \sum_Q^{Naux} \sum_m^{occ} R_{ma}^Q b_{mi}^Q + \sum_Q^{Naux} \sum_e^{vir} R_{ie}^Q b_{ae}^Q$$
(746)

2.6.1.3.3. σ_2 Diyagramları

DF-EOM-MP2 yöntemi için tanımlanan σ_2 eşitliği aşağıdaki gibidir.

$$\sigma_{ij}^{ab} = P_{-}(ab) \sum_{e}^{vir} r_{ij}^{eb} F_{ae} - P_{-}(ij) \sum_{m}^{occ} r_{mj}^{ab} F_{mi}$$

$$+ \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef} - P_{-}(ab) \sum_{m}^{occ} r_{m}^{a} W_{mbij}$$

$$+ \frac{1}{2} \sum_{m,n}^{occ} t_{mn}^{ab} V_{ijmn} + \frac{1}{2} \sum_{m,n}^{occ} r_{mn}^{ab} W_{mnij}$$

$$+ P_{-}(ij) P_{-}(ab) \sum_{m}^{cc} \sum_{m}^{vir} r_{im}^{ae} W_{mbej}$$

$$+ P_{-}(ij) P_{-}(ab) \sum_{Q}^{occ} r_{im}^{ab} R_{mnij} + P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab} R_{im}$$

$$- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{m}^{vir} t_{mj}^{af} R_{mbif}$$

$$+ P_{-}(ab) \sum_{e}^{vir} X_{ae} t_{ij}^{be} + P_{-}(ij) \sum_{m}^{occ} X_{im} t_{jm}^{ab}$$
(747)

2.7. Yoğunluk Uyarlanmış Üçüncü Dereceden Møller-Plesset Teorisi için Hareket Denklemi (DF-EOM-MP3)

Tez çalışmasının bu kısmında, yoğunluk uyarlanmış üçüncü dereceden Møller-Plesset teorisi için hareket denklemi (Density-Fitted Equation-of-Motion Third-Order Møller-Plesset DF-EOM-MP3) yöntemi ve optimize orbitalli versiyonu Perturbation Theory, (DF-EOM-OMP3) geliştirilmiştir. Ayrıca, DF-EOM-MP3 denklemleri üzerinde yapılan değişikliklerle DF-EOM-MP2.5 formülasyonu elde edilebilmektedir. Bu bağlamda, EOM-MP3 formülasyonlarında ikinci dereceden ikili uyarma amplitutları 0,5 katsayısı ile çarpıldığında EOM-MP2.5 modeli elde edilmiştir [182, 183]. Daha sonra, diğer yöntemlerde olduğu gibi, elde edilen spin orbital denklemlerine yoğunluk uyarlaması yaklaştırması uygulanıp, RHF ve UHF referanslarına adaptasyonları gerçekleştirilmiştir. Bu kısımda da, her bir yöntem için (DF-EOM-MP3, DF-EOM-MP2.5, DF-EOM-OMP3 ve DF-EOM-OMP2.5) elde edilen RHF ve UHF formülasyonları, C++ dilinde bir bilgisayar koduna dönüştürülmüştür. Geliştirilen programlar, MacroQC [74] yazılımına ilave edilmiştir.

2.7.1. DF-EOM-MP3 Spin Orbital Denklemleri

Burada, DF-EOM-MP3 yöntemi için geliştirilen formülasyon sunulmaktadır. Stanton ve Gauss'un 1995 yılındaki çalışmasında, bağlanmış küme teorisi kullanılarak, MP yöntemlerin farklı seviyelerdeki açılımlarının türetilebileceği gösterilmiştir [76]. Burada da benzer şekilde, tensör ve amplitut derecelendirmeleri için bahsi geçen çalışmadaki [76] notasyon takip edilmiştir.
2.7.1.1. İkinci Dereceden T_1 Amplitutları

İkinci dereceden T_1 amplitutları aşağıdaki şekilde ifade edilmektedir.

$$t_{i}^{a(2)} = \sum_{m}^{occ} \sum_{e}^{vir} t_{im}^{ae(1)} \mathcal{F}_{me}^{(1)} - \sum_{n}^{occ} \sum_{f}^{vir} t_{n}^{f(1)} \langle na||if\rangle - \frac{1}{2} \sum_{m}^{occ} \sum_{ef}^{vir} t_{im}^{ef(1)} \langle ma||ef\rangle - \frac{1}{2} \sum_{mn}^{occ} \sum_{e}^{vir} t_{mn}^{ae(1)} \langle nm||ei\rangle$$
(748)

2.7.1.2. CCSD Ara tensörleri

Bu kısımda, DF-EOM-MP3 yöntemi için gerekli olan CCSD ara tensörleri farklı bloklar ve derecelerde açıkça ifade edilmektedir.

2.7.1.2.1. Farklı Derecelerden 1- ve 3-İndisli Ara Tensörler

DF-EOM-MP3 formülasyonu için tanımlanan farklı derecelerden 1- ve 3-indisli ara tensörler aşağıda sunulmaktadır.

$$T_{ia}^{Q(1)} = \sum_{j}^{occ} \sum_{b}^{vir} t_{ij}^{ab(1)} b_{jb}^{Q}$$
(749)

$$T_{ia}^{Q[2]} = \sum_{j}^{occ} \sum_{b}^{vir} t_{ij}^{ab[2]} b_{jb}^{Q}$$
(750)

Burada, $t_{ij}^{ab[2]}$ amplitutu aşağıdaki şekilde ifade edilmektedir.

$$t_{ij}^{ab[2]} = t_{ij}^{ab(1)} + t_{ij}^{ab(2)}$$
(751)

Ayrıca, aşağıdaki eşitlik yazılabilir.

$$\tilde{\tau}_{ij}^{ab(1)} = t_{ij}^{ab(1)}$$
(752)

 $\tilde{\tau}_{ij}^{ab(2)}$ tensörü aşağıdaki gibidir.

$$\tilde{\tau}_{ij}^{ab(2)} = t_{ij}^{ab(2)} + \frac{1}{2} \left(t_i^{a(2)} t_j^{b(2)} - t_i^{b(2)} t_j^{a(2)} \right)$$
(753)

Aşağıdaki eşitlik yazılabilir.

$$\tau_{ij}^{ab(1)} = t_{ij}^{ab(1)} \tag{754}$$

Ek olarak, $\tau^{ab(2)}_{ij}$ ifadesi aşağıdaki gibi yazılır.

$$\tau_{ij}^{ab(2)} = t_{ij}^{ab(2)} + t_i^{a(2)} t_j^{b(2)} - t_i^{b(2)} t_j^{a(2)}$$
(755)

Burada, aşağıdaki 1- ve 3-indisli ara tensörler tanımlanmaktadır.

$$\tilde{\tau}_{ia}^{Q(2)} = \sum_{m}^{occ} \sum_{f}^{vir} \tilde{\tau}_{im}^{af(2)} b_{mf}^{Q}$$
(756)

$$t_Q^{(2)} = \sum_m^{occ} \sum_f^{vir} t_m^{f(2)} b_{mf}^Q$$
(757)

$$t_{ij}^{Q(2)} = \sum_{e}^{vir} t_i^{e(2)} b_{je}^Q$$
(758)

$$t_{ab}^{Q(2)} = \sum_{m}^{occ} t_{m}^{a(2)} b_{mb}^{Q}$$
(759)

$$t_{ia}^{Q(2)} = \sum_{f}^{vir} t_{i}^{f(2)} b_{af}^{Q}$$
(760)

$$t_{ai}^{Q(2)} = \sum_{m}^{occ} t_{m}^{a(2)} b_{mi}^{Q}$$
(761)

2.7.1.2.2. \mathcal{F} Ara Tensörleri

DF-EOM-MP3 yöntemi için \mathcal{F} ara tensörleri aşağıdaki gibidir.

$$\mathcal{F}_{ae}^{[3]} = F_{ae}^{[3]} \tag{762}$$

$$\mathcal{F}_{mi}^{[3]} = F_{mi}^{[3]} \tag{763}$$

$$\mathcal{F}_{me}^{[3]} = F_{me}^{[3]} \tag{764}$$

2.7.1.2.3. F Ara Tensörleri

DF-EOM-MP3 yöntemi için tanımlanan F ara tensörleri farklı bloklar halinde aşağıda sunulmaktadır.

a. ${\cal F}_{ae}$ Ara Tensörü

DF-EOM-MP3 yöntemi için ${\cal F}_{ae}$ ara tensörleri aşağıdaki gibidir.

$$F_{ae}^{[3]} = F_{ae}^{(0)} + F_{ae}^{(1)} + F_{ae}^{(2)} + F_{ae}^{(3)}$$
(765)

$$F_{ae}^{(0)} = f_{ae}$$
 (766)

$$F_{ae}^{(1)} = 0 (767)$$

$$F_{ae}^{(2)} = -\frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \sum_{f}^{vir} t_{mn}^{af(1)} \langle mn || ef \rangle$$
(768)

$$F_{ae}^{(3)} = \sum_{m}^{occ} \sum_{f}^{vir} t_{m}^{f(2)} \langle am || ef \rangle$$

$$- \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \sum_{n}^{vir} \tilde{\tau}_{mn}^{af(2)} \langle mn || ef \rangle$$
(769)

 $F_{ae}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$F_{ae}^{[3]} = f_{ae} + \sum_{m}^{occ} \sum_{f}^{vir} t_{m}^{f(2)} \langle am | | ef \rangle - \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \sum_{f}^{vir} \left(t_{mn}^{af(1)} + \tilde{\tau}_{mn}^{af(2)} \right) \langle mn | | ef \rangle$$
(770)

 $F_{ae}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$F_{ae}^{[3]} = f_{ae} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} T_{ma}^{Q(1)} b_{me}^{Q} + \sum_{Q}^{N_{aux}} t_{Q}^{(2)} b_{ae}^{Q} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} t_{ma}^{Q(2)} b_{me}^{Q} - \sum_{Q}^{N_{aux}} \sum_{m}^{occ} \tilde{\tau}_{ma}^{Q(2)} b_{me}^{Q}$$
(771)

Burada aşağıdaki açılım hatırlanmalıdır.

$$\tilde{\tau}_{ia}^Q = \sum_m^{occ} \sum_f^{vir} \tilde{\tau}_{im}^{af} b_{mf}^Q$$
(772)

Ayrıca, aşağıdaki ifadeler tanımlanmalıdır.

$$\tilde{\tau}_{ij}^{ab(1)} = t_{ij}^{ab(1)}$$
(773)

$$\tilde{\tau}_{ij}^{ab(2)} = t_{ij}^{ab(2)} + \frac{1}{2} \left(t_i^{a(2)} t_j^{b(2)} - t_i^{b(2)} t_j^{a(2)} \right)$$
(774)

$$\tau_{ij}^{ab(1)} = t_{ij}^{ab(1)} \tag{775}$$

$$\tau_{ij}^{ab(2)} = t_{ij}^{ab(2)} + t_i^{a(2)} t_j^{b(2)} - t_i^{b(2)} t_j^{a(2)}$$
(776)

Son olarak, aşağıdaki ifade hatırlanmalıdır.

$$t_{ij}^{ab[2]} = t_{ij}^{ab(1)} + t_{ij}^{ab(2)}$$
(777)

b. F_{mi} Ara Tensörü

DF-EOM-MP3 yöntemi için ${\cal F}_{mi}$ ara tensörleri aşağıdaki gibidir.

$$F_{mi}^{[3]} = F_{mi}^{(0)} + F_{mi}^{(1)} + F_{mi}^{(2)} + F_{mi}^{(3)}$$
(778)

$$F_{mi}^{(0)} = f_{mi} \tag{779}$$

$$F_{mi}^{(1)} = 0 (780)$$

$$F_{mi}^{(2)} = \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} t_{in}^{ef(1)} \langle mn || ef \rangle$$
(781)

$$F_{mi}^{(3)} = \sum_{n}^{occ} \sum_{e}^{vir} t_{n}^{e(2)} \langle mn || ie \rangle + \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} \tilde{\tau}_{in}^{ef(2)} \langle mn || ef \rangle$$
(782)

 ${\cal F}_{mi}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$F_{mi}^{[3]} = f_{mi} + \sum_{n}^{occ} \sum_{e}^{vir} t_{n}^{e(2)} \langle mn || ie \rangle + \frac{1}{2} \sum_{n}^{occ} \sum_{e}^{vir} \sum_{f}^{vir} (t_{in}^{ef(1)} + \tilde{\tau}_{in}^{ef(2)}) \langle mn || ef \rangle$$
(783)

 ${\cal F}_{mi}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$F_{mi}^{[3]} = f_{mi} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} T_{ie}^{Q(1)} b_{me}^{Q} + \sum_{Q}^{N_{aux}} b_{mi}^{Q} t_{Q}^{(2)}$$
$$- \sum_{Q}^{N_{aux}} \sum_{n}^{occ} t_{nm}^{Q(2)} b_{ni}^{Q} + \sum_{Q}^{N_{aux}} \sum_{e}^{vir} \tilde{\tau}_{ie}^{Q(2)} b_{me}^{Q}$$
(784)

c. F_{me} Ara Tensörü

DF-EOM-MP3 yöntemi için ${\cal F}_{me}$ ara tensörleri aşağıdaki gibidir.

$$F_{me}^{[3]} = F_{me}^{(0)} + F_{me}^{(1)} + F_{me}^{(2)} + F_{me}^{(3)}$$
(785)

Burada farklı dereceden tensörler aşağıdaki gibi ifade edilmektedir.

$$F_{me}^{(0)} = f_{me} (786)$$

Kanonik durumdaki aşağıdaki ifadeler yazılabilir.

$$f_{me} = 0 \tag{787}$$

$$F_{me}^{(1)} = 0 (788)$$

$$F_{me}^{(2)} = 0 (789)$$

$$F_{me}^{(3)} = \sum_{n}^{occ} \sum_{f}^{vir} t_{n}^{f(2)} \langle mn || ef \rangle$$
(790)

 $F_{me}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$F_{me}^{[3]} = \sum_{n}^{occ} \sum_{f}^{vir} t_n^{f(2)} \langle mn || ef \rangle$$
(791)

 ${\cal F}_{me}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$F_{me}^{[3]} = \sum_{Q}^{N_{aux}} b_{me}^{Q} t_{Q}^{(2)} - \sum_{Q}^{N_{aux}} \sum_{n}^{occ} t_{nm}^{Q(2)} b_{ne}^{Q}$$
(792)

2.7.1.2.4. W Ara Tensörleri

a. W_{mnij} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan W_{mnij} ara tensörü aşağıdaki gibidir.

$$W_{mnij}^{[3]} = W_{mnij}^{(0)} + W_{mnij}^{(1)} + W_{mnij}^{(2)} + W_{mnij}^{(3)}$$
(793)

$$W_{mnij}^{(0)} = 0 (794)$$

$$W_{mnij}^{(1)} = \langle mn || ij \rangle \tag{795}$$

$$W_{mnij}^{(2)} = \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef(1)} \langle mn || ef \rangle$$
(796)

$$W_{mnij}^{(3)} = P_{-}(ij) \sum_{e}^{vir} t_{j}^{e(2)} \langle mn || ie \rangle + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef(2)} \langle mn || ef \rangle$$
(797)

 $W_{mnij}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$W_{mnij}^{[3]} = \langle mn || ij \rangle + P_{-}(ij) \sum_{e}^{vir} t_{j}^{e(2)} \langle mn || ie \rangle$$

+
$$\frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \left(t_{ij}^{ef(1)} + \tau_{ij}^{ef(2)} \right) \langle mn || ef \rangle$$
(798)

 $W^{[3]}_{{\it mnij}}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$W_{mnij}^{[3]} = \langle mn || ij \rangle + P_{-}(ij) P_{-}(mn) \sum_{Q}^{Naux} t_{jn}^{Q(2)} b_{mi}^{Q} + \sum_{e}^{vir} \sum_{f}^{vir} \left(t_{ij}^{ef(1)} + \tau_{ij}^{ef(2)} \right) \langle mn | ef \rangle$$
(799)

b. W_{abef} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan W_{abef} ara tensörü aşağıdaki gibidir.

$$W_{abef}^{[3]} = W_{abef}^{(0)} + W_{abef}^{(1)} + W_{abef}^{(2)} + W_{abef}^{(3)}$$
(800)

Burada farklı dereceden tensörler aşağıdaki gibi ifade edilmektedir.

$$W_{abef}^{(0)} = 0 (801)$$

$$W_{abef}^{(1)} = \langle ab || ef \rangle \tag{802}$$

$$W_{abef}^{(2)} = 0 (803)$$

$$W_{abef}^{(3)} = -P_{-}(ab) \sum_{m}^{occ} t_{m}^{b(2)} \langle am || ef \rangle$$
(804)

 $W^{[3]}_{abef}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$W_{abef}^{[3]} = \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b(2)} \langle am || ef \rangle$$
(805)

 $W^{[3]}_{abef}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$W_{abef}^{[3]} = \langle ab || ef \rangle - P_{-}(ab) \Big[\sum_{Q}^{Naux} t_{bf}^{Q(2)} b_{ae}^{Q} + \sum_{Q}^{Naux} t_{be}^{Q(2)} b_{af}^{Q} \Big]$$
(806)

c. W_{mbej} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan W_{mbej} ara tensörü aşağıdaki gibidir.

$$W_{mbej}^{[3]} = W_{mbej}^{(0)} + W_{mbej}^{(1)} + W_{mbej}^{(2)} + W_{mbej}^{(3)}$$
(807)

$$W_{mbej}^{(0)} = 0 (808)$$

$$W_{mbej}^{(1)} = \langle mb || ej \rangle \tag{809}$$

$$W_{mbej}^{(2)} = -\frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb(1)} \langle mn || ef \rangle$$
(810)

$$W_{mbej}^{(3)} = \sum_{f}^{vir} t_{j}^{f(2)} \langle mb || ef \rangle$$

-
$$\sum_{n}^{occ} t_{n}^{b(2)} \langle mn || ej \rangle$$

-
$$\frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb(2)} \langle mn || ef \rangle$$
 (811)

 $W^{[3]}_{mbej}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$W_{mbej}^{[3]} = \langle mb||ej\rangle + \sum_{f}^{vir} t_{j}^{f(2)} \langle mb||ef\rangle - \sum_{n}^{occ} t_{n}^{b(2)} \langle mn||ej\rangle - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb[2]} \langle mn||ef\rangle$$

$$(812)$$

2.7.1.2.5. \mathcal{Z} Ara Tensörleri

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{Z} ara tensörü aşağıdaki gibidir.

$$Z_{mbej}^{[3]} = Z_{mbej}^{(0)} + Z_{mbej}^{(1)} + Z_{mbej}^{(2)} + Z_{mbej}^{(3)}$$
(813)

$$Z_{mbej}^{(0)} = 0 (814)$$

$$Z_{mbej}^{(1)} = \langle mb || ej \rangle \tag{815}$$

$$Z_{mbej}^{(2)} = -\sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf(1)} \langle mn || ef \rangle$$
(816)

$$Z_{mbej}^{(3)} = -\sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf(2)} \langle mn || ef \rangle$$
(817)

 $\mathcal{Z}^{[3]}_{mbej}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{Z}_{mbej}^{[3]} = \langle mb||ej\rangle - \sum_{n}^{occ} \sum_{f}^{vir} t_{nj}^{bf[2]} \langle mn||ef\rangle$$
(818)

 $\mathcal{Z}^{[3]}_{mbej}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{Z}_{mbej}^{[3]} = \langle mb||ej\rangle + T_{jb}^{Q[2]}b_{me}^Q + t_{nj}^{bf[2]}\langle mn|fe\rangle$$
(819)

2.7.1.2.6. \mathcal{W} Ara Tensörleri

DF-EOM-MP3 yöntemi için tanımlanan W ara tensörleri farklı bloklar halinde bu kısımda sunulmaktadır.

a. \mathcal{W}_{mnij} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{mnij} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{mnij}^{[3]} = W_{mnij}^{[3]} \tag{820}$$

b. \mathcal{W}_{mbej} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{mbej} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{mbej}^{[3]} = W_{mbej}^{(0)} + W_{mbej}^{(1)} + W_{mbej}^{(2)} + W_{mbej}^{(3)}$$
(821)

Burada farklı dereceden tensörler aşağıdaki gibi ifade edilmektedir.

$$\mathcal{W}_{mbej}^{(0)} = 0 \tag{822}$$

$$\mathcal{W}_{mbej}^{(1)} = W_{mbej}^{(1)}$$
 (823)

$$\mathcal{W}_{mbej}^{(2)} = W_{mbej}^{(2)} - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb(1)} \langle mn || ef \rangle$$
(824)

$$\mathcal{W}_{mbej}^{(3)} = W_{mbej}^{(3)} - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb(2)} \langle mn || ef \rangle$$
(825)

 $\mathcal{W}_{mbej}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mbej}^{[3]} = W_{mbej}^{[3]} - \frac{1}{2} \sum_{n}^{occ} \sum_{f}^{vir} t_{jn}^{fb[2]} \langle mn || ef \rangle$$
(826)

Alternatif olarak aşağıdaki gibi yazılabilir.

$$\mathcal{W}_{mbej}^{[3]} = \mathcal{Z}_{mbej}^{[3]} + \sum_{f}^{vir} t_j^{f(2)} \langle mb || ef \rangle - \sum_{n}^{occ} t_n^{b(2)} \langle mn || ej \rangle$$
(827)

 $\mathcal{W}_{mbej}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{mbej}^{[3]} = \mathcal{Z}_{mbej}^{[3]} + \sum_{Q}^{Naux} t_{jb}^{Q(2)} b_{me}^{Q} - \sum_{Q}^{Naux} t_{jm}^{Q(2)} b_{be}^{Q} - \sum_{Q}^{Naux} t_{bj}^{Q(2)} b_{me}^{Q} + \sum_{Q}^{Naux} t_{be}^{Q(2)} b_{mj}^{Q}$$

$$(828)$$

c. \mathcal{W}_{mnie} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{mnie} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{mnie}^{[3]} = \mathcal{W}_{mnie}^{(0)} + \mathcal{W}_{mnie}^{(1)} + \mathcal{W}_{mnie}^{(2)} + \mathcal{W}_{mnie}^{(3)}$$
(829)

Burada farklı dereceden tensörler aşağıdaki gibi ifade edilmektedir.

$$\mathcal{W}_{mnie}^{(0)} = 0 \tag{830}$$

$$\mathcal{W}_{mnie}^{(1)} = \langle mn || ie \rangle \tag{831}$$

$$\mathcal{W}_{mnie}^{(2)} = 0 \tag{832}$$

$$\mathcal{W}_{mnie}^{(3)} = \sum_{f}^{vir} t_i^{f(2)} \langle mn || fe \rangle$$
(833)

 $\mathcal{W}_{mnie}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mnie}^{[3]} = \langle mn || ie \rangle + \sum_{f}^{vir} t_i^{f(2)} \langle mn || fe \rangle$$
(834)

 $\mathcal{W}_{\textit{mnie}}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{mnie}^{[3]} = \langle mn || ie \rangle + P_{-}(mn) \sum_{Q}^{Naux} t_{im}^{Q(2)} b_{ne}^{Q}$$
(835)

d. \mathcal{W}_{mbij} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{mbij} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{mbij}^{[3]} = \mathcal{W}_{mbij}^{(0)} + \mathcal{W}_{mbij}^{(1)} + \mathcal{W}_{mbij}^{(2)} + \mathcal{W}_{mbij}^{(3)}$$
(836)

$$\mathcal{W}_{mbij}^{(0)} = 0$$
 (837)

$$\mathcal{W}_{mbij}^{(1)} = \langle mb || ij \rangle \tag{838}$$

$$\mathcal{W}_{mbij}^{(2)} = \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} t_{ij}^{ef(1)} \langle mb || ef \rangle + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be(1)} \langle mn || ie \rangle$$
(839)

$$\mathcal{W}_{mbij}^{(3)} = -\sum_{e}^{vir} t_{ij}^{be(1)} \mathcal{F}_{me}^{(2)} - \sum_{n}^{occ} t_{n}^{b(2)} W_{mnij}^{(1)} + P_{-}(ij) \sum_{e}^{vir} t_{i}^{e(2)} \mathcal{Z}_{mbej}^{(1)} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \tau_{ij}^{ef(2)} \langle mb || ef \rangle + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be(2)} \langle mn || ie \rangle$$
(840)

 $\mathcal{W}_{mbij}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{mbij}^{[3]} = \langle mb||ij\rangle - \sum_{e}^{vir} t_{ij}^{be(1)} \mathcal{F}_{me}^{(2)} - \sum_{n}^{occ} t_{n}^{b(2)} W_{mnij}^{(1)} + P_{-}(ij) \sum_{e}^{vir} t_{i}^{e(2)} \mathcal{Z}_{mbej}^{(1)} + \frac{1}{2} \sum_{e}^{vir} \sum_{f}^{vir} \left(t_{ij}^{ef(1)} + \tau_{ij}^{ef(2)} \right) \langle mb||ef\rangle + P_{-}(ij) \sum_{n}^{occ} \sum_{e}^{vir} t_{jn}^{be[2]} \langle mn||ie\rangle (841)$$

 $\mathcal{W}_{mbij}^{[3]}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{mbij}^{[3]} = \langle mb || ij \rangle - \sum_{e}^{vir} t_{ij}^{be(1)} \mathcal{F}_{me}^{(2)} - \sum_{n}^{occ} t_{n}^{b(2)} W_{mnij}^{(1)} \\ + P_{-}(ij) \sum_{e}^{vir} t_{i}^{e(2)} \mathcal{Z}_{mbej}^{(1)} + \sum_{e}^{vir} \sum_{f}^{vir} \left(t_{ij}^{ef(1)} + \tau_{ij}^{ef(2)} \right) \langle mb | ef \rangle \\ + P_{-}(ij) \sum_{Q}^{Naux} T_{jb}^{Q[2]} b_{mi}^{Q} - P_{-}(ij) \sum_{Q}^{Naux} t_{jn}^{be[2]} \langle mn | ei \rangle$$
(842)

e. \mathcal{W}_{abef} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{abef} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{abef}^{[3]} = \mathcal{W}_{abef}^{(0)} + \mathcal{W}_{abef}^{(1)} + \mathcal{W}_{abef}^{(2)} + \mathcal{W}_{abef}^{(3)}$$
(843)

$$\mathcal{W}_{abef}^{(0)} = 0 \tag{844}$$

$$\mathcal{W}_{abef}^{(1)} = \langle ab || ef \rangle \tag{845}$$

$$\mathcal{W}_{abef}^{(2)} = \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab(1)} \langle mn || ef \rangle$$
(846)

$$\mathcal{W}_{abef}^{(3)} = -P_{-}(ab) \sum_{m}^{occ} t_{m}^{b(2)} \langle am || ef \rangle + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau_{mn}^{ab(2)} \langle mn || ef \rangle$$
(847)

$$\mathcal{W}_{abef}^{[3]} = W_{abef}^{[3]} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab(1)} \langle mn || ef \rangle + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau_{mn}^{ab(2)} \langle mn || ef \rangle$$
(848)

 $\mathcal{W}^{[3]}_{abef}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{abef}^{[3]} = \langle ab || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{b(2)} \langle am || ef \rangle + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \left(t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)} \right) \langle mn || ef \rangle$$
(849)

 $\mathcal{W}^{[3]}_{abef}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{abef}^{[3]} = \langle ab || ef \rangle - P_{-}(ab) \sum_{Q}^{Naux} t_{bf}^{Q(2)} b_{ae}^{Q} + P_{-}(ab) \sum_{Q}^{Naux} t_{be}^{Q(2)} b_{af}^{Q} + \sum_{m}^{Occ} \sum_{n}^{Occ} \left(t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)} \right) \langle mn | ef \rangle$$
(850)

f. \mathcal{W}_{amef} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{amef} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{amef}^{[3]} = \mathcal{W}_{amef}^{(0)} + \mathcal{W}_{amef}^{(1)} + \mathcal{W}_{amef}^{(2)} + \mathcal{W}_{amef}^{(3)}$$
(851)

$$\mathcal{W}_{amef}^{(0)} = 0 \tag{852}$$

$$\mathcal{W}_{amef}^{(1)} = \langle am | | ef \rangle \tag{853}$$

$$\mathcal{W}_{amef}^{(2)} = 0 \tag{854}$$

$$\mathcal{W}_{amef}^{(3)} = -\sum_{n}^{occ} t_n^{a(2)} \langle nm || ef \rangle$$
(855)

 $\mathcal{W}_{amef}^{[3]}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{amef}^{[3]} = \langle am || ef \rangle - \sum_{n}^{occ} t_n^{a(2)} \langle nm || ef \rangle$$
(856)

 $\mathcal{W}^{[3]}_{amef}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{amef}^{[3]} = \langle am | | ef \rangle - P_{-}(ef) \sum_{Q}^{Naux} t_{ae}^{Q(2)} b_{mf}^{Q}$$
(857)

g. \mathcal{W}_{abei} Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{W}_{abei} ara tensörü aşağıdaki gibidir.

$$\mathcal{W}_{abei}^{[3]} = \mathcal{W}_{abei}^{(0)} + \mathcal{W}_{abei}^{(1)} + \mathcal{W}_{abei}^{(2)} + \mathcal{W}_{abei}^{(3)}$$
(858)

$$\mathcal{W}_{abei}^{(0)} = 0 \tag{859}$$

$$\mathcal{W}_{abei}^{(1)} = \langle ab || ei \rangle \tag{860}$$

$$\mathcal{W}_{abei}^{(2)} = \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} t_{mn}^{ab(1)} \langle mn || ei \rangle$$
$$- P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{mi}^{af(1)} \langle mb || ef \rangle$$
(861)

$$\mathcal{W}_{abei}^{(3)} = -\sum_{m}^{occ} t_{mi}^{ab(1)} \mathcal{F}_{me}^{(2)} + \sum_{f}^{vir} t_{i}^{f(2)} \mathcal{W}_{abef}^{(1)} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \tau_{mn}^{ab(2)} \langle mn || ei \rangle - P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{mi}^{af(2)} \langle mb || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{a(2)} \mathcal{Z}_{mbei}^{(1)}$$
(862)

 $\mathcal{W}^{[3]}_{abei}$ tensörü DF-EOM-MP3 yöntemi için aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{W}_{abei}^{[3]} = \langle ab || ei \rangle - \sum_{m}^{occ} t_{mi}^{ab(1)} \mathcal{F}_{me}^{(2)} + \sum_{f}^{vir} t_{i}^{f(2)} \mathcal{W}_{abef}^{(1)} + \frac{1}{2} \sum_{m}^{occ} \sum_{n}^{occ} \left(t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)} \right) \langle mn || ei \rangle - P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{mi}^{af[2]} \langle mb || ef \rangle - P_{-}(ab) \sum_{m}^{occ} t_{m}^{a(2)} \mathcal{Z}_{mbei}^{(1)}$$
(863)

 $\mathcal{W}^{[3]}_{abei}$ tensörü için yoğunluk uyarlanmış versiyon aşağıdaki gibidir.

$$\mathcal{W}_{abei}^{[3]} = \langle ab || ei \rangle - \sum_{m}^{occ} t_{mi}^{ab(1)} \mathcal{F}_{me}^{(2)} + \sum_{f}^{vir} t_{i}^{f(2)} \mathcal{W}_{abef}^{(1)} + \sum_{m}^{occ} \sum_{n}^{occ} \left(t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)} \right) \langle mn | ei \rangle + P_{-}(ab) \sum_{m}^{occ} \sum_{f}^{vir} t_{im}^{af[2]} \langle mb | ef \rangle + P_{-}(ab) \sum_{Q}^{Naux} T_{ia}^{Q[2]} b_{be}^{Q} - P_{-}(ab) \sum_{m}^{occ} t_{m}^{a(2)} \mathcal{Z}_{mbei}^{(1)}$$
(864)

2.7.1.3. EOM-MP3 Ara Tensörleri

Bu kısımda, DF-EOM-MP3 yöntemi için gerekli olan ara tensörler sunulmaktadır.

2.7.1.3.1. V Ara Tensörü

DF-EOM-MP3 yöntemi için tanımlanan \mathcal{V} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$\mathcal{V}_{ijmn} = \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} \langle mn || ef \rangle$$
(865)

2.7.1.3.2. X Ara Tensörleri

DF-EOM-MP3 yöntemi için tanımlanan X ara tensörleri farklı bloklar halinde aşağıdaki sunulmaktadır.

a. X_{ij} Ara Tensörü

 X_{ij} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ij} = \sum_{Q}^{aux} \sum_{e}^{vir} \left(R_{ie}^{Q} - r_{ei}^{Q} - \tilde{r}_{ei}^{Q} \right) b_{je}^{Q} + \sum_{Q}^{aux} \left(t_{ij}^{Q} + b_{ij}^{Q} \right) r^{Q}$$
(866)

b. X_{ab} Ara Tensörü

 X_{ab} ara tensörü aşağıdaki şekilde ifade edilmektedir.

$$X_{ab} = \sum_{Q}^{aux} \sum_{m}^{occ} \left(R_{ma}^{Q} + r_{ma}^{Q} - \tilde{r}_{ma}^{Q} \right) b_{mb}^{Q} + \sum_{Q}^{aux} \left(t_{ab}^{Q} - b_{ab}^{Q} \right) r^{Q}$$
(867)

2.7.1.3.3. 1- ve 3-İndisli R ve r Ara Tensörleri

Bu kısımda, DF-EOM-MP3 yöntemi için tanımlanan 1- ve 3-indisli R ve r ara tensörleri sunulmaktadır.

$$r^Q = \sum_{\substack{m \\ vir}}^{occ} \sum_{\substack{e \\ m}}^{vir} r^e_m b^Q_{me}$$
(868)

$$r_{ia}^Q = \sum_e^{on} r_i^e b_{ae}^Q \tag{869}$$

$$r_{ai}^Q = \sum_m^{vir} r_m^a b_{im}^Q \tag{870}$$

$$\tilde{r}^Q_{ia} = \sum_e^{vir} r^e_i t^Q_{ae} \tag{871}$$

$$\tilde{r}_{ai}^Q = \sum_m^{vir} r_m^a t_{im}^Q \tag{872}$$

$$R_{ia}^Q = \sum_m^{occ} \sum_e^{vir} r_{im}^{ae} b_{me}^Q$$
(873)

2.7.1.3.4. 2- ve 4-İndisli R Ara Tensörleri

Bu kısımda, DF-EOM-MP3 yöntemi için tanımlanan 2- ve 4-indisli R ara tensörleri sunulmaktadır.

a. R_{im} Ara Tensörü

 R_{im} aşağıdaki şekilde ifade edilmektedir.

$$R_{im} = \sum_{e}^{vir} r_i^e \mathcal{F}_{me}$$
(874)

b. R_{mnij} Ara Tensörü

 R_{mnij} aşağıdaki şekilde ifade edilmektedir.

$$R_{mnij} = \sum_{e}^{vir} r_i^e \langle mn || ej \rangle$$
(875)

c. R_{mbif} Ara Tensörü

 R_{mbif} aşağıdaki şekilde ifade edilmektedir.

$$R_{mbif} = \sum_{e}^{vir} r_i^e \langle mb || ef \rangle$$
(876)

d. R_{mbij} Ara Tensörü

 R_{mbij} aşağıdaki şekilde ifade edilmektedir.

$$R_{mbij} = \sum_{e}^{vir} r_i^e \mathcal{Z}_{mbej}$$
(877)

2.7.1.4. EOM-MP3 Diyagramları

Bu kısımda, DF-EOM-MP3 yöntemi için tanımlanan σ_0 , σ_1 ve σ_2 amplitutları gösterilmiştir.

2.7.1.4.1. σ_0 Diyagramları

DF-EOM-MP3 yöntemi için σ_0 eşitliği aşağıdaki şekilde ifade edilmektedir.

$$\omega r_0 = \sigma_0 = \sum_i^{occ} \sum_a^{vir} r_i^a F_{ia} + \frac{1}{4} \sum_{ij}^{occ} \sum_{ab}^{vir} r_{ij}^{ab} \langle ij || ab \rangle$$
(878)

2.7.1.4.2. σ_1 Diyagramları

DF-EOM-MP3 yöntemi için σ_1 eşitliği aşağıdaki şekilde ifade edilmektedir.

$$\sigma_{i}^{a} = f_{i}^{a}r_{0} + \sum_{e}^{vir} r_{i}^{e}\mathcal{F}_{ae}^{[3]} - \sum_{m}^{occ} r_{m}^{a}\mathcal{F}_{mi}^{[3]} + \sum_{m}^{occ} \sum_{e}^{vir} r_{im}^{ae}\mathcal{F}_{me}^{[3]} + \sum_{m}^{occ} \sum_{e}^{vir} r_{m}^{e}\mathcal{W}_{maei}^{[3]} + \frac{1}{2}\sum_{m}^{occ} \sum_{e,f}^{vir} r_{im}^{ef}\mathcal{W}_{amef}^{[3]} - \frac{1}{2}\sum_{m,n}^{occ} \sum_{e}^{vir} r_{mn}^{ae}\mathcal{W}_{mnie}^{[3]}$$
(879)

2.7.1.4.3. σ_2 Diyagramları

DF-EOM-MP3 yöntemi için σ_2 eşitliği aşağıdaki şekilde ifade edilmektedir.

$$\begin{aligned}
\sigma_{ij}^{ab} &= P_{-}(ab) \sum_{e}^{vir} r_{ij}^{eb} \mathcal{F}_{ae}^{[3]} - P_{-}(ij) \sum_{m}^{occ} r_{mj}^{ab} \mathcal{F}_{mi}^{[3]} \\
&+ \frac{1}{2} \sum_{e,f}^{vir} r_{ij}^{ef} W_{abef}^{[3]} - P_{-}(ab) \sum_{m}^{occ} r_{m}^{a} \mathcal{W}_{mbij}^{[3]} \\
&+ \frac{1}{2} \sum_{m,n}^{occ} r_{mn}^{ab} \mathcal{W}_{mnij}^{[3]} + \frac{1}{2} \sum_{m,n}^{occ} (t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)}) \mathcal{V}_{ijmn}^{[3]} \\
&+ P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{m}^{vir} r_{im}^{ae} \mathcal{W}_{mbej}^{[3]} \\
&+ P_{-}(ab) \sum_{e}^{vir} X_{aet}^{be[2]} + P_{-}(ij) \sum_{m}^{occ} X_{im} t_{jm}^{ab[2]} \\
&+ P_{-}(ij) \sum_{Q}^{occ} \left[r_{ia}^{Q} b_{j}^{Q} - r_{ib}^{Q} b_{aj}^{Q} \right] - P_{-}(ij) \sum_{m}^{occ} t_{mj}^{ab(1)} R_{im}^{(2)} \\
&+ P_{-}(ij) \sum_{Q}^{occ} \left[r_{ia}^{Q} t_{jb}^{Q(2)} - r_{ib}^{Q} t_{ja}^{Q(2)} \right] \\
&+ P_{-}(ij) \sum_{Q}^{occ} \left[r_{ia}^{Q} t_{jb}^{Q(2)} - r_{ib}^{Q} t_{ja}^{Q(2)} \right] + \frac{1}{2} P_{-}(ij) \sum_{m}^{occ} \sum_{n}^{occ} (t_{mn}^{ab(1)} + \tau_{mn}^{ab(2)}) R_{mnij} \\
&- P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} \sum_{m}^{vir} t_{mj}^{af[2]} R_{mbif} - P_{-}(ij) P_{-}(ab) \sum_{m}^{occ} t_{m}^{a(2)} R_{mbij} \end{aligned}$$
(880)

3. BULGULAR VE TARTIŞMA

Bu kısımda, tez çalışması kapsamında geliştirilen yöntemlerin ve programların doğruluk ve etkinlik bakımından değerlendirilmesi amacıyla uygulama çalışmaları gerçekleştirilmiştir. Buradaki uygulamaların bir kısmı, çalışma kapsamında geliştirilen yöntemler için dizayn edilmiştir [78–83, 157, 161]. Aynı zamanda, organik kromoforlar, poliaromatik hidrokarbonlardan oluşan radikal seti, hidrojen transfer reaksiyonları veya su kümeleri gibi yapısal özellikleri ve elektronik halleri bakımından ilgi çekici olan sistemlerin doğasının anlaşılması için çalışmalar da gerçekleştirilmiştir [78–83, 157, 161].

3.1. DF/CD-OCCD Yöntemleri için Doğruluk ve Etkinlik Analizleri

Bu tez çalışması kapsamında geliştirilen DF-OCCD yönteminin etkinliği, bir alkan seti kullanılarak OCCD[12, 23] yöntemiyle karşılaştırılmıştır. Göz önüne alınan alkan seti için Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu üçe yarılmış cc-pVTZ ana baz seti kullanılmıştır [184, 185]. Referans ve korelasyon enerjileri için ana baz setinin yardımcı baz setleri olarak sırasıyla, cc-pVTZ-JKFIT [186] ve cc-pVTZ-RI [187] kullanılmıştır. Ayrıca, denge geometrilerinin karsılaştırılması amacıyla bir dizi molekülden oluşan test setine [28] MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri uygulanmıştır. Geometriler için yapılan hesaplamalarda ana baz seti olarak, Dunning'in korelasyon uyumlu, polarize, çekirdek ve değerlik kabuğu dörde yarılmış cc-pCVQZ baz seti kullanılmıştır [184, 185]. Referans ve korelasyon enerjileri için yardımcı baz setleri olarak sırasıyla cc-pVQZ-JKFIT [186] ve cc-pVQZ-RI [187] kullanılmıştır. Tüm yöntemler için geometri optimizasyonları analitik gradientler kullanılarak gerçekleştirilmiştir. Ek olarak, DF-OCCD yönteminin performansını incelemek amacıyla hidrojen transfer reaksiyon enerjileri (Hydrogen Transfer Reaction Energies, HTRE) [27, 34, 188] göz önüne alınmıştır. Burada HTRE seti için cc-pVTZ ana baz seti ve bunun kanonik yardımcı baz setleri (cc-pVTZ-JKFIT [186] ve cc-pVTZ-RI [187]) kullanılmıştır. CD-OCCD hesaplamalarında CD kriteri olarak 10⁻⁴ kullanılmıştır. Tüm hesaplamalarda, referans ve korelasyon enerjilerine DF yaklaşımı uygulanmıştır.

DF-OCCD yönteminin acık kabuklu kovalent olmayan etkilesimler icin performansını araştırmak amacıyla kovalent olmayan etkileşim kompleksleri (A24 ve O20 setleri) [47, 189] kullanılmıştır. Zayıf etkileşimler için optimize geometride tek-nokta enerjiler hesaplanmıştır. Burada, toplam energiler tam baz seti (Complete Basis Set, CBS) limitlerine ekstrapole edilmiştir [190, 191]. Bu amaçla, iki-noktalı ekstrapolasyon yaklaşımı kullanılmıştır İki noktalı ekstrapolasyon hesaplamalarında, A24 seti için aug-cc-pVDZ ve [192]. aug-cc-pVTZ baz setleri kullanılırken, O20 seti için aug-cc-pVTZ ve aug-cc-pVQZ baz setleri kullanılmıştır. Kovalent olmayan etkileşim kompleksleri için yardımcı baz setleri olarak, aug-cc-pVXZ-JKFIT [186] ve aug-cc-pVXZ-RI [187], (X=D,T,Q) kullanılmıştır. He atomu için aug-cc-pVXZ-JKFIT baz seti mevcut olmadığından, def2-QZVPP-JKFIT yardımcı baz seti kullanılmıştır. Benzer şekilde, Li atomu için def2-QZVPP-JKFIT ve def2-QZVPP-RI baz setleri kullanılmıştır. Tüm moleküller arası etkileşim enerjileri için denge düzeltmeleri (Counter Poise, CP) dikkate alınmıştır [193]. Son olarak, simetri kırılma problemlerinin gözlendiği O4⁺ molekülü, DF-OCCD yönteminin performansını değerlendirmek amacıyla göz önüne alınmıştır.

3.1.1. DF-OCCD Yönteminin Etkinliği

OCCD ve DF-OCCD yöntemlerinin etkinliğini incelemek amacıyla bir alkan seti göz önüne alınmıştır. Konvansiyonel OCCD hesaplamaları Q-CHEM 5.3 paket programı [75] ile gerçekleştirilmiştir. OCCD ve DF-OCCD yöntemleri için hesaplama süresi Şekil 3.1. de grafiksel olarak sunulmuştur.

Şekil 3.1. OCCD ve DF-OCCD yöntemlerinin C_nH_{2n+2} (n=1–6) alkan seti için cc-pVTZ baz seti kullanılarak elde edilen tek-nokta enerjilerinin hesap süreleri (dk).

Bu kısımda süre hesaplamaları, Intel(R) Xeon(R) Gold 5218 CPU (2,30GHz bilgisayarın tek bir çekirdeği (1 core) ile (bellek ~ 500 GB) ve 10^{-7} enerji yakınsama toleransıyla gerçekleştirilmiştir. DF-OCCD yöntemi, konvansiyonel OCCD yöntemine göre hesaplama maliyetini önemli ölçüde azaltmıştır. Alkan setinin en büyük üyesi (C₆H₁₄) için OCCD yöntemine kıyasla hesaplama süresinde 7,8 kat azalma gözlemlenmiştir. DF-OCCD ve OCCD yöntemlerinin hesaplama maliyeti arasındaki farkın en önemli nedeni olarak, azaltılmış I/O süresi nedeniyle DF integral dönüşüm prosedürünün etkinliği gösterilebilir. DF yaklaşımının doğruluğu önceki çalışmalarda [32, 40–42, 53, 54] detaylı bir şekilde incelenmiştir ve konvansiyonel yöntemlere kıyasla oldukça ihmal edilebilir hatalar ortaya koyduğu gösterilmektedir: kovalent olmayan enerjiler 0,01-0,09 kcal mol⁻¹ arasında ortalama mutlak hata (*Mean Absolute Error, MAE*) göstermiştir. Denge bağ uzunlukları 10^{-4} Å'luk MAE değerine sahiptir ve titreşim frekansları 0,5 cm⁻¹ değerinde MAE göstermektedir [32, 40–42, 53, 54].

3.1.2. Geometriler

Çalışmanın ilk adımı olarak bir dizi kapalı kabuklu molekül dikkate alınmıştır [34]. Göz önüne alınan kapalı kabuklu moleküllerin bağ uzunlukları Çizelge 3.1. de sunulmuştur.

MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için deneysel verilere göre bağ uzunluklarındaki hatalar Şekil 3.2. de, MAE değerleri ise Şekil 3.3. te gösterilmiştir. MAE değerleri 0,006 (MP2), 0,009 (DF-CCD), 0,007 (DF-OCCD), 0,007 (CCSD) ve 0,002 [CCSD(T)] Å olarak hesaplanmıştır. DF-CCD yöntemi, deneysel verilere kıyasla en büyük hatayı getirirken, beklenildiği üzere CCSD(T) yönteminin hatası diğerlerine göre daha düşüktür. DF-OCCD, OCCD ve CCSD yöntemleri aynı MAE değerine sahiptir. DF-OCCD yöntemi, MP2 ve DF-CCD sonuçlarını sırasıyla %25 ve %31 oranında iyileştirmiştir.

Şekil 3.2. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için kapalı kabuklu moleküllerin bağ uzunluklarındaki hatalar (cc-pCVQZ baz seti kullanılmıştır).

Şekil 3.3. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için kapalı kabuklu moleküllerin bağ uzunluklarındaki ortalama mutlak hatalar (cc-pCVQZ baz seti kullanılmıştır).

Şekil 3.4. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için göz önüne alınan açık kabuklu moleküllerin bağ uzunluklarındaki hatalar (cc-pCVQZ baz seti kullanılmıştır).

#	Molekül	Bond	MP2	DF-CCD	DF-OCCD	CCSD	CCSD(T)	Deneysel
1	HF	R_{HF}	0,917	0,912	0,913	0,913	0,916	0,917
2	H_2O	R_{OH}	0,957	0,953	0,954	0,954	0,957	0,957
3	HOF	R_{OH}	0,966	0,961	0,962	0,962	0,966	0,966
4	H_2O_2	R_{OH}	0,962	0,957	0,958	0,959	0,962	0,967
5	HNC	R_{NH}	0,995	0,992	0,992	0,993	0,995	0,994
6	NH ₃	R_{NH}	1,008	1,008	1,009	1,009	1,011	1,012
7	N_2H_2	R_{NH}	1,026	1,025	1,025	1,025	1,028	1,028
8	C_2H_2	R_{CH}	1,060	1,060	1,060	1,060	1,062	1,062
9	HNO	R_{NH}	1,048	1,047	1,048	1,048	1,052	1,063
10	HCN	R_{CH}	1,063	1,063	1,063	1,064	1,066	1,065
11	C_2H_4	R_{CH}	1,078	1,079	1,079	1,079	1,081	1,081
12	CH_4	R_{CH}	1,083	1,084	1,085	1,085	1,086	1,086
13	N_2	R_{NN}	1,108	1,089	1,090	1,091	1,098	1,098
14	CH_2O	R_{CH}	1,098	1,098	1,098	1,099	1,101	1,099
15	CO	R_{CO}	1,132	1,119	1,121	1,122	1,129	1,128
16	HCN	R_{CN}	1,160	1,144	1,146	1,146	1,154	1,153
17	CO_2	R_{CO}	1,164	1,151	1,152	1,153	1,160	1,160
18	HNC	R_{CN}	1,170	1,160	1,161	1,162	1,169	1,169
19	C_2H_2	R_{CC}	1,205	1,195	1,197	1,197	1,204	1,203
20	CH ₂ O	R_{CO}	1,206	1,195	1,197	1,197	1,204	1,203
21	HNO	R_{NO}	1,215	1,193	1,196	1,197	1,209	1,212
22	N_2H_2	R_{NN}	1,249	1,233	1,235	1,236	1,247	1,252
23	C_2H_4	R_{CC}	1,326	1,323	1,325	1,325	1,331	1,334
24	HOF	R_{OF}	1,420	1,403	1,411	1,412	1,433	1,435
25	H_2O_2	R_{OO}	1,443	1,424	1,430	1,431	1,450	1,456
26	Li ₂	R_{LiLi}	2,720	2,683	2,677	2,679	2,676	2,673
27	LiF	R_{LiF}	1,569	1,559	1,560	1,560	1,563	1,564
28	LiH	R_{LiH}	1,590	1,596	1,596	1,596	1,596	1,596
29	BH	R_{BH}	1,222	1,228	1,229	1,229	1,230	1,232
	MAE		0,006	0,009	0,007	0,007	0,002	
	MAX		0,035	0,032	0,026	0,024	0,011	

Çizelge 3.1. Kapalı-kabuklu moleküllerden oluşan set için artan deneysel değerlere göre sıralanmış bağ uzunlukları (Å).

^{*a*} Helgaker vd. [194], buradaki referanslar [195–207]

Daha sonra, bir dizi açık kabuklu molekül dikkate alınmıştır [208]. Göz önüne alınan açık kabuklu moleküllerin bağ uzunlukları Çizelge 3.2. de sunulmuştur. MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için deneysel verilere kıyasla hesaplanan bağ uzunluklarındaki hatalar Şekil 3.4. te, MAE değerleri ise Şekil 3.5. te gösterilmiştir. MAE değerleri 0,014 (MP2), 0,015 (DF-CCD), 0,013 (DF-OCCD), 0,012 (CCSD) ve 0,007 [CCSD(T)] Å olarak hesaplanmıştır. DF-CCD yöntemi yine deneysel veriler ile karşılaştırıldığında en büyük hatayı verirken, CCSD(T) yöntemi beklendiği gibi en düşük hatayı vermiştir. Sonuç olarak, DF-OCCD ve CCSD yöntemlerinin performansları hemen hemen aynıdır.

Şekil 3.5. Deneysel veriye kıyasla MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleri için göz önüne alınan açık kabuklu moleküllerin bağ uzunluklarındaki ortalama mutlak hatalar (cc-pCVQZ baz seti kullanılmıştır).

#	Molekül	Bond	MP2	DF-CCD	DF-OCCD	CCSD	CCSD(T)	Deneysel ^a
1	OH	R_{OH}	0,965	0,965	0,966	0,966	0,969	0,970
2	HO ₂	R_{OH}	0,970	0,964	0,966	0,966	0,970	0,977
3	H_2O^+	R_{OH}	0,996	0,985	0,985	0,996	0,998	1,001
4	HF ⁺	R_{HF}	0,999	0,996	0,997	0,997	1,000	1,001
5	NH ₂	R_{NH}	1,019	1,020	1,021	1,021	1,024	1,025
6	HNF	R_{HN}	0,996	0,994	0,995	0,995	0,997	1,035
7	NH	R_{NH}	1,028	1,032	1,034	1,034	1,036	1,036
8	C ₂ H	R_{HC}	1,059	1,060	1,067	1,061	1,063	1,047
9	NH ⁺	R_{NH}	1,061	1,066	1,067	1,067	1,068	1,070
10	HCP ⁺	R_{HC}	1,079	1,078	1,079	1,079	1,081	1,073
11	CH ₃	R_{HC}	1,072	1,074	1,075	1,075	1,076	1,077
12	CO ⁺	R_{CO}	1,088	1,085	1,105	1,106	1,112	1,115
13	O ₂ +	R_{OO}	1,146	1,099	1,102	1,103	1,115	1,116
14	N_2^+	R_{NN}	1,126	1,104	1,107	1,108	1,116	1,116
15	СН	R_{CH}	1,110	1,115	1,117	1,117	1,118	1,120
16	НСО	R_{HC}	1,114	1,114	1,114	1,115	1,118	1,125
17	CN	R_{CN}	1,121	1,182	1,161	1,159	1,167	1,172
18	HCO	R_{CO}	1,176	1,164	1,168	1,168	1,176	1,175
19	CO_2^+	R_{CO}	1,162	1,160	1,166	1,167	1,174	1,177
20	BH ₂	R_{BH}	1,180	1,166	1,167	1,184	1,185	1,181
21	N ₃	R_{NN}	1,167	1,160	1,167	1,169	1,178	1,182
22	NO	R_{NO}	1,140	1,141	1,140	1,142	1,148	1,151
23	BO	R_{BO}	1,204	1,192	1,196	1,197	1,205	1,205
24	BH ⁺	R_{BH}	1,189	1,198	1,201	1,201	1,202	1,215
25	CNC	R_{CN}	1,230	1,230	1,236	1,236	1,244	1,245
26	C_2^{-}	R_{CC}	1,270	1,256	1,258	1,259	1,268	1,268
27	CF	R_{CF}	1,267	1,262	1,264	1,266	1,272	1,272
28	NF	R_{NF}	1,308	1,302	1,305	1,306	1,315	1,317
29	F_2^+	R_{FF}	1,344	1,273	1,280	1,281	1,306	1,322
30	OF	R_{OF}	1,330	1,327	1,336	1,338	1,350	1,326
31	HO ₂	R_{OO}	1,305	1,305	1,314	1,318	1,328	1,335
32	HNF	R_{NF}	1,307	1,307	1,310	1,311	1,317	1,373
33	HCP ⁺	R_{CP}	1,606	1,594	1,586	1,587	1,597	1,600
		MAE	0,014	0,015	0,013	0,012	0,007	

Çizelge 3.2. Açık-kabuklu moleküllerden oluşan set için artan deneysel değerlere göre sıralanmış bağ uzunlukları (Å).

^a Byrd vd. [208], buradaki referanslar [195, 209, 210]

3.1.3. Hidrojen Transfer Reaksiyonları

MP2, MP3 ve LCCD gibi kanonik yöntemlerin, serbest radikaller içeren HTRE'ler için oldukça başarısız olduğu gösterilmiştir [27, 28, 34, 188]. OMP2 ve OLCCD gibi optimize orbitalli (OO) yöntemlerin, kanonik versiyonlarıyla (MP2 ve LCCD) ile karşılaştırıldığında sırasıyla 5 ve 6 kat daha düşük MAE değerleri sağlayarak, çok daha iyi performans ortaya koyduğu Bozkaya vd. tarafından gösterilmiştir [27, 28, 34]. Bu nedenle, DF-OCCD yönteminin performansını incelemek amacıyla aynı test seti [27] göz önüne alınmıştır. MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD ve CCSD(T) yöntemleriyle CBS seviyesinde hesaplanan HTRE değerleri (kcal mol⁻¹ cinsinden) Çizelge 3.3. de sunulmuştur.

Göz önüne alınan yöntemlerin, CCSD(T) yöntemine göre hataları Şekil 3.6. da, hesaplanan MAE değerleri ise Şekil 3.7. de sunulmuştur. Buna göre MAE değerleri 14,6 (MP2), 8,2 (DF-CCD), 0,5 (DF-OCCD), 0,5 (CD-OCCD) ve 0,5 (CCSD) kcal mol⁻¹ olarak hesaplanmıştır. Böylece, DF-OCCD, CD-OCCD ve CCSD yöntemleri birbirlerine benzer sonuçlarıyla, MP2 ve DF-CCD yöntemlerinden önemli ölçüde daha iyidir denilebilir. Ayrıca, elde edilen sonuçlar, optimize edilmiş orbitaller kullanıldığında, DF-CCD hatalarında 16 kattan fazla bir azalma olduğunu ve MP2 ile karşılaştırıldığında, hatalarda 29 kattan fazla azalma olduğunu göstermektedir.

Şekil 3.6. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için hidrojen transfer reaksiyon enerjilerindeki hatalar (CBS limitinde).

Şekil 3.7. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için hidrojen transfer reaksiyon enerjilerindeki MAE değerleri (CBS limitinde).

	seviyesinde hesaplanan hidrojen	transter rea	ksiyonlarının ı	eaksiyon enerjile	rı (kcal mol ⁻¹).		
	Reaction	$MP2^{a}$	DF-CCD	DF-OCCD	CD-OCCD	\mathbf{CCSD}^{a}	$CCSD(T)^{a}$
	$CH_3 + H_2 \longrightarrow CH_4 + H$	-7,6	-2,6	-2,4	-2,4	-2,5	-3,5
0	$C_2H + H_2 \longrightarrow C_2H_2 + H$	-50,9	-41,2	-31,4	-31,3	-31,4	-31,9
З	$C_2H_3 + H_2 \longrightarrow C_2H_4 + H$	-20,0	-13,6	-8,7	-8,6	-8,7	-9,3
4	$C(CH_3)_3 + H_2 \longrightarrow HC(CH_3)_3 + H$	-1,2	4,1	4,7	4,7	4,8	3,8
Ś	$C_6H_5 + H_2 \longrightarrow C_6H_6 + H$	-44,7	-28,0	-10,7	-10,7	-10,6	-11,1
9	$C_2H + C_2H_4 \longrightarrow C_2H_2 + C_2H_3$	-30,9	-27,7	-22,7	-22,7	-22,8	-22,6
Г	$C(CH_3)_3 + C_2H_4 \longrightarrow HC(CH_3)_3 + C_2H_3$	18,8	17,7	13,4	13,4	13,4	13,1
∞	$C_6H_5 + C_2H_4 \longrightarrow C_6H_6 + C_2H_3$	-24,6	-14,4	-2,0	-2,0	-2,0	-1,7
6	$C_2H + HC(CH_3)_3 \longrightarrow C_2H_2 + C(CH_3)_3$	-49,7	-45,3	-36,1	-36,1	-36,2	-35,7
10	$C_6H_5 + HC(CH_3)_3 \longrightarrow C_6H_6 + C(CH_3)_3$	-43,4	-32,1	-15,5	-15,4	-15,4	-14,9
11	$C_2H + C_6H_6 \longrightarrow C_2H_2 + C_6H_5$	-6,2	-13,2	-20,7	-20,7	-20,8	-20,8
12	$C_2H + CH_4 \longrightarrow C_2H_2 + CH_3$	-43,3	-38,7	-29,0	-28,9	-29,0	-28,4
13	$C_2H_3 + CH_4 \longrightarrow C_2H_4 + CH_3$	-12,4	-11,0	-6,3	-6,3	-6,2	-5,8
14	$C(CH_3)_3 + CH_4 \longrightarrow HC(CH_3)_3 + CH_3$	6,4	6,7	7,1	7,1	7,2	7,3
15	$C_6H_5 + CH_4 \longrightarrow C_6H_6 + CH_3$	-37,1	-25,4	-8,3	-8,3	-8,2	-7,6
	MAE	14,6	8,2	0,5	0,5	0,5	
	Δ_{max}	33,6	17,9	1,1	1,1	1,1	

Çizelge 3.3. MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD ve CCSD(T) yöntemleri ile CBS

^a Bozkaya and Sherrill.[34]

3.1.4. Kovalent Olmayan Etkileşimler

DF-OCCD yönteminin performansını araştırmak amacıyla kovalent olmayan etkileşimler dikkate alınmış olup ilk kısımda A24 seti [189] kullanılmıştır. MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri ile A24 seti için CBS seviyesindeki etkileşim enerjileri Çizelge 3.4. de sunulmuştur. Referans enerjilere göre hatalar ve MAE değerleri sırasıyla Şekil 3.8. ve 3.9. da gösterilmektedir. MAE değerleri 0,11 (MP2), 0,25 (DF-CCD), 0,25 (DF-OCCD), 0,26 (CD-OCCD) ve 0,26 (CCSD) kcal mol⁻¹ olarak hesaplanmıştır. Elde edilen MAE değerleri ışığında, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemlerinin performansının aynı olduğu söylenebilir. HF orbitallerinin kapalı kabuklu sistemlerin çoğunda güvenilir bir biçimde kullanıldığı iyi bilinmektedir. DF-OCCD ve CCSD yöntemlerinin MP2 ile karşılaştırıldığında daha büyük bir MAE değeri vermesi beklenmeyen bir durumdur. Ancak, bu durum daha önceki bir çalışma ile tutarlıdır [211].

Şekil 3.8. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için A24 setinin etkileşim enerjilerindeki hatalar (CBS limitinde).

Şekil 3.9. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için A24 setinin etkileşim enerjilerindeki hatalar (CBS limitinde).

Şekil 3.10. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için O23 setinin etkileşim enerjilerindeki hatalar (CBS limitinde).

	Kompleks	MP2	DF-CCD	DF-OCCD	CD-OCCD	CCSD	Ref ^a
1	su····amonyak (C_s)	-6,53	-6,10	-6,14	-6,14	-6,14	-6,52
2	su dimer (C_s)	-4,89	-4,67	-4,71	-4,70	-4,71	-5,01
3	HCN dimer $(C_{\infty v})$	-4,89	-4,62	-4,64	-4,63	-4,63	-4,75
4	HF dimer (C_s)	-4,33	-4,27	-4,30	-4,30	-4,30	-4,57
5	amonyak dimer (C_{2h})	-3,14	-2,87	-2,89	-2,89	-2,89	-3,16
6	methane \cdots HF (C_{3v})	-1,68	-1,48	-1,51	-1,51	-1,52	-1,68
7	amonyak····metan (C_{3v})	-0,71	-0,63	-0,64	-0,64	-0,64	-0,78
8	metan \cdots su (C_s)	-0,62	-0,55	-0,56	-0,56	-0,56	-0,67
9	formaldehit dimer (C_s)	-4,46	-3,83	-4,00	-4,00	-4,01	-4,47
10	eten···water (C_s)	-2,78	-2,35	-2,31	-2,31	-2,30	-2,58
11	eten \cdots formaldehit (C_s)	-1,69	-1,37	-1,37	-1,37	-1,36	-1,63
12	etin dimer (C_{2v})	-1,67	-1,41	-1,38	-1,38	-1,36	-1,54
13	eten \cdots amonyak (C_s)	-1,52	-1,21	-1,17	-1,17	-1,17	-1,39
14	eten dimer (C_{2v})	-1,28	-0,84	-0,79	-0,78	-0,78	-1,11
15	metan····eten (C_s)	-0,56	-0,41	-0,38	-0,38	-0,37	-0,51
16	boran···metan (C_s)	$-1,\!48$	-1,13	-1,16	-1,15	-1,16	-1,52
17	metan···etan (C_s)	-0,81	-0,61	-0,61	-0,61	-0,62	-0,84
18	metan···etan (C_3)	-0,55	-0,44	-0,45	-0,45	-0,45	-0,62
19	metan dimer (D_{3d})	-0,49	-0,39	-0,39	-0,39	-0,39	-0,54
20	metan····Ar (C_{3v})	-0,41	-0,28	-0,28	-0,28	-0,28	-0,41
21	eten····Ar (C_{2v})	-0,43	-0,26	-0,23	-0,23	-0,23	-0,37
22	eten ··· etin (C_{2v})	0,47	1,13	1,22	1,22	1,23	0,78
23	eten dimer (D_{2h})	0,68	1,29	1,38	1,38	1,39	0,90
24	etin dimer (D_{2h})	0,70	1,41	1,49	1,49	1,50	1,08
	MAE	0,11	0,25	0,25	0,26	0,26	
	Δ_{max}	0,38	0,64	0,49	0,49	0,50	

Çizelge 3.4. MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri ile CBS seviyesinde hesaplanan kapalı kabuk kovalent olmayan etkileşim enerjileri (kcal mol⁻¹ cinsinden) ve referans enerjilere göre MAE değerleri.

 \overline{a} CCSD(T)/CBS + ΔE_{cc} + ΔE_{rel} + Δ CCSDT(Q) seviyesinde, burada ΔE_{cc} ve ΔE_{rel} sırasıyla, çekirdek korelasyonu ve görelilik düzeltmeleridir. [189]
DF-OCCD yönteminin performansını değerlendirmek amacıyla O20 [32, 47] test seti göz önüne alınmıştır. O20 seti için, MP2, DF-CCD, DF-OCCD, CCSD ve CCSD(T) yöntemleriyle hesaplanan kovalent olmayan etkileşim enerjileri (kcal mol⁻¹ cinsinden) Çizelge 3.5. sunulmuştur. CCSD(T) yöntemine kıyasla hesaplanan hatalar ve MAE değerleri sırasıyla, Şekil 3.10. ve 3.11. de sunulmuştur. MAE değerleri, 0,60 (MP2), 0,50 (DF-CCD), 0,36 (DF-OCCD), 0,38 (CD-OCCD) ve 0,34 (CCSD) kcal mol⁻¹ olarak hesaplanmıştır. Optimize orbitallerin kullanılmasıyla, DF-CCD yönteminin büyük ölçüde iyileştiği gözlenmiştir. Ek olarak, DF-OCCD, CD-OCCD ve CCSD yöntemlerinin performansı yaklaşık olarak birbirinin aynıdır.

Şekil 3.11. CCSD(T) yöntemine kıyasla MP2, DF-CCD, DF-OCCD, CD-OCCD ve CCSD yöntemleri için O23 setinin etkileşim enerjilerinden hesaplanan MAE değerleri. (CBS limitinde).

	Kompleks	$\mathbf{MP2}^{a}$	DF-CCD	DF-OCCD	CD-OCCD	CCSD ^a	CCSD(T) ^a
1	$H_2O\cdots NH_3^+$	-17,40	-16,94	-17,55	-17,55	-17,68	-18,40
2	НОН····CH ₃	-1,67	-1,43	-1,48	-1,48	-1,49	-1,75
3	$NH\cdots NH^b$	-1,04	-1,02	-1,01	-1,01	-1,01	-1,02
4	Li…Li ^c	0,04	-0,87	-0,93	-0,94	-0,94	-0,97
5	$H_2 O {\cdots} H N H_2^+$	-25,58	-25,16	-25,11	-25,10	-25,09	-25,41
6	$H_2 \cdots Li$	-0,02	-0,02	-0,02	0,04	-0,02	-0,02
7	$FH\cdots BH_2$	-4,11	-3,88	-3,94	-3,94	-3,95	-4,22
8	He…Li	0,00	0,00	0,00	0,00	0,00	0,00
9	$H_2O\cdots Al$	-7,12	-6,37	-6,89	-6,96	-6,84	-7,75
10	Ar…OH	-0,16	-0,14	-0,14	-0,14	-0,14	-0,16
11	FH···OH	-6,02	-5,80	-5,83	-5,90	-5,84	-6,10
12	Не…ОН	-0,02	-0,09	-0,11	0,46	-0,03	-0,05
13	$H_2O\cdots Be^+$	-63,95	-65,42	-65,45	-65,45	-65,42	-65,22
14	$\mathrm{HF}\mathrm{\cdot\cdot\cdot}\mathrm{CO}^+$	-35,82	-32,40	-28,90	-28,89	-28,82	-30,37
15	$H_2O\cdots Cl$	-2,95	-2,10	-2,57	-2,57	-2,66	-3,58
16	$H_2O\cdots Br$	-3,11	-2,24	-2,57	-2,49	-2,64	-3,48
17	$H_2O\cdots Li$	-11,64	-12,10	-12,45	-12,46	-12,46	-12,63
18	$FH\cdots NH_2$	-10,43	-9,98	-10,00	-10,00	-10,00	-10,33
19	NC…Ne	-0,06	-0,04	-0,06	-0,06	-0,06	-0,07
20	$\mathrm{He}\mathrm{\cdots}\mathrm{NH}^c$	-0,02	-0,03	-0,03	-0,03	-0,03	-0,04
	MAE	0,60	0,50	0,36	0,38	0,34	
	Δ_{max}	5,45	2,03	1,48	1,48	1,55	

Çizelge 3.5. MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD ve CCSD(T) yöntemleri ile CBS seviyesinde hesaplanan açık kabuklu kovalent olmayan etkileşim enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) enerjileri referans alınarak hesaplanan MAE değerleri.

^a Soydaş ve Bozkaya [47]. Aksi belirtilmedikçe tüm sistemler doublet durumdadır.

^b Dimerin en düşük quintet durumu dikkate alınır, en düşük singlet ve triplet durumlar çoklu referans dalga fonksiyonları gerektirir. [212]

^c Dimerin en düşük triplet hali kabul edilir.

3.1.5. O₄⁺ Molekülünde Simetri Kırılması

 O_4^+ molekülü, simetri kırılma probleminden [12, 23, 24, 40, 213–215] dolayı elektronik yapısı bakımından oldukça zorlu bir moleküldür. Simetri kırılması probleminin gözlendiği O_4^+ molekülü (${}^4B_{1g}$) için toplam enerjiler, bağ uzunlukları ve harmonik titreşim frekansı Çizelge 3.6. da sunulmuştur. Burada, CCSD(T) hesaplamaları MOLPRO paket programı [216] ile gerçekleştirilmiştir. Tüm dikkate alınan yöntemler O_4^+ molekülü için dikdörtgen biçiminde geometriler oluşturmaktadır. Bağ uzunlukları hesaplamalarında, CCSD(T) yöntemine göre en düşük hataları ($\Delta r = 0,011 - 0,012$ Å) DF-OCCD ve DF-CCSD yöntemleri sağlamaktadır.

Simetri kırılmasının gözlendiği ω (b_{3u}) modu için, DF-MP2, DF-CCD, DF-OCCD, DF-CCSD ve CCSD(T) yöntemlerinin en son deneysel değer olan 1323 cm⁻¹ e [217] göre mutlak hataları, 2130 (DF-MP2), 2612 (DF-CCD), 40 (DF-OCCD), 385 (DF-CCSD) ve 1027 [CCSD(T)] cm⁻¹ olarak hesaplanmıştır. Elde edilen sonuçlar dikkate alındığında, DF-MP2 ve DF-CCD yöntemlerinin sonuçlarının büyük hatalar içerdiği görülmektedir. Ayrıca, DF-OCCD yöntemi en düşük hata ile DF-CCSD ve CCSD(T) yöntemlerinden önemli ölçüde daha iyi performans göstermektedir. Burada incelenen O₄⁺ örneği, DF-OCCD yönteminin, kanonik yöntemlerin sonuçlarının dramatik hatalar içerdiği simetri kırılma problemlerinden muzdarip moleküllerin titreşim frekansı hesaplamaları için oldukça faydalı olduğunu göstermektedir.

Çizelge 3.6. Simetri kırılmasının gözlendiği O_4^+ (${}^4B_{1g}$) molekülü için 6-311G(d) baz seti kullanılarak hesaplanan toplam enerjiler (hartree), bağ uzunlukları (Å) ve harmonik titreşim frekansları (cm⁻¹).

Yöntem	E_{tot}	R_{oo}	R_{cc}	$\omega (b_{3u})$
DF-MP2	-299,729 379	1,2002	2,3984	3453
DF-CCD	-299,687 618	1,1479	2,4072	3935
DF-OCCD	-299,695 431	1,1505	2,4072	1283
DF-CCSD	-299,697 341	1,1515	2,4074	1708
CCSD(T)	$-299,732\ 447$	1,1626	2,4057	2350
Deneysel ^a				1320
Deneysel ^b				1323

^{*a*} Jacox ve Thompson[218]

^b Ricks, Douberly ve Duncan[217]

3.2. DF/CD-EOM-CCSD Yöntemleri için Doğruluk ve Etkinlik Analizleri

DF-EOM-CCSD ve RI-EOM-CCSD [219] yöntemleri kullanılarak elde edilen uyarılma enerjileri için hesaplama maliyetini karşılaştırmak amacıyla bir dizi alkan göz önüne alınmıştır. Burada, alkan seti için, Dunning'in korelasyon tutarlı polarize değerlik üçlü- ζ baz seti (aug-cc-pVTZ) donmuş çekirdek yaklaşımı ile birlikte kullanılmıştır [184, 185]. Ana baz seti için, referans ve korelasyon enerjilerinde sırasıyla aug-cc-pVTZ-JKFIT [186] ve aug-cc-pVTZ-RI [187] yardımcı baz seti çiftleri kullanılmıştır. Ek olarak, uyarılma enerjilerini karşılaştırmak için oluşturulan bir molekül setine DF-EOM-CCSD, EOM-RI-CCSD [219] ve EOM-CCSD(fT) [220] yöntemleri uygulanmıştır.

RI-EOM-CCSD ve DF-EOM-CCSD yöntemlerinin etkinliğini değerlendirmek amacıyla bir alkan seti göz önüne alınmıştır. Alkan setinin geometrileri için EK 1'e bakınız. Burada, RI-EOM-CCSD hesaplamaları Q-CHEM 5.3 [75] paketi ile gerçekleştirilmiştir [75]. RI-EOM-CCSD ve DF-EOM-CCSD yöntemleri için hesap süreleri, sırasıyla kısıtlamalı ve kısıtlamasız Hartree-Fock (RHF ve UHF) referansları için Şekil 3.12. ve 3.13. de

Süre hesaplamaları, tek düğümlü (1 çekirdekli) Intel(R) Xeon(R) CPU sunulmuştur. E5-2620 v4 @ 2,10 GHz bilgisayarda (bellek ~ 64 GB) 10^{-7} energi ve 10^{-7} EOM özdeğer yakınsama toleransları ile tek bir kök (single root) için gerçekleştirilmiştir. Q-CHEM 5.3 programındaki RI-CCSD kodu için MEM_TOTAL 64000, MEM_STATIC 2000 ve CC_MEMORY 51200 seçenekleri kullanılmıştır. Burada süre hesaplamaları ile ilgili değerlendirmemize, RI-EOM-CCSD ve DF-EOM-CCSD uygulamalarının RHF versiyonları ile başlayabiliriz. Alkan setinin en büyük üyesi (C_8H_{18}) için hesaplama süresinde, DF-EOM-CCSD yöntemi RI-EOM-CCSD yöntemine göre 2 kattan daha hızlıdır. DF-EOM-CCSD yöntemi, RI-EOM-CCSD yöntemine kıyasla hesaplama maliyetini önemli ölçüde azaltmaktadır. C8H18 molekülü için CCSD süreleri RI-EOM-CCSD ve DF-EOM-CCSD için sırasıyla 750 ve 471 dakikadır. Bu sonuçlara göre DF-EOM-CCSD yöntemi için hesaplama süresinde 1,6 kat hızlanma vardır. Ayrıca, C₈H₁₈ molekülü için EOM süreleri 1351 dakika (RI-EOM-CCSD) ve 537 dakikadır (DF-EOM-CCSD). Burada, DF-EOM-CCSD için hesaplama süresinde 2,5 kat hızlanma vardır. C_8H_{18} için CCSD iterasyonu başına düşen ortalama hesaplama süresi (t_{ccsd}/n_{iter}) 42,8 dakika (DF-EOM-CCSD) ve 62,5 dakika (RI-EOM-CCSD) olarak hesaplanmıştır. Dolayısıyla, bu tez çalışması kapsamında geliştirdiğimiz DF-EOM-CCSD yöntemi, CCSD iterasyonu başına ortalama hesaplama maliyeti açısından RI-EOM-CCSD kodundan 1,5 kat daha hızlıdır.

Şekil 3.12. RI-EOM-CCSD (from Q-CHEM) ve DF-EOM-CCSD yöntemleri ile cc-pVTZ baz seti kullanılarak, C_nH_{2n+2} (n=1–8) alkan seti için uyarılma enerjilerinin hesaplanmasında toplam CCSD ve EOM duvar süreleri (dakika cinsinden). (Bu hesaplamalar için RHF referansı kullanılmıştır.)

Benzer şekilde, EOM kısmı için Davidson iterasyonlarının sayısı 12 (DF-EOM-CCSD) ve 18'dir (RI-EOM-CCSD). Alkan setinin en büyük üyesi olan C₈H₁₈ molekülü için bir Davidson iterasyonu (t_{eom}/n_{iter}) başına ortalama hesap süresi 44,8 dakika (DF-EOM-CCSD) ve 75,1 dakika (RI-EOM-CCSD) olarak elde edilmiştir. Dolayısıyla, bu tez çalışması kapsamında geliştirilen DF-EOM-CCSD yöntemi, EOM-CCSD iterasyonu başına ortalama hesaplama maliyeti açısından RI-EOM-CCSD kodundan 1,7 kat daha hızlıdır. RI-EOM-CCSD yöntemine kıyasla, DF-EOM-CCSD yönteminin bu denli etkin oluşu, çok daha verimli olan PPL algoritmamıza atfedilmektedir. Kapalı kabuk durumu için, DF-CCSD yöntemi [52, 53] için aritmetik işlem sayısı (*Number of Flops*, NOF) $\frac{1}{4}O^2V^4 + 2O^3V^3 + \frac{1}{4}O^4V^2$ iken, RI-CCSD yönteminin [219] $\frac{5}{8}O^2V^4 + 4O^3V^3 + \frac{27}{8}O^4V^2$ olduğu bildirilmiştir. Yöntemler için uygulama maliyeti karşılaştırıldığında, DF-CCSD [52, 53] parçacık-parçacık merdiven (*Particle-Hole Ladder*, PPL) kontraksiyon terimi açısından, RI-CCSD [219] uygulamasından 2,5 kat daha verimlidir. Ayrıca, DF-EOM-CCSD

yöntemi parçacık-boşluk merdiveni (*Particle-Hole Ladder*, PHL) terimleri bakımından RI-CCSD yöntemine kıyasla 2 kat daha verimlidir. Dahası, VVVV-tipi integrallerin anında dönüşüm (on the fly) maliyeti, bizim durumumuzda $\frac{1}{2}V^4N_{aux}$ iken, RI-CCSD [219] yöntemi için V^4N_{aux} olarak görünmektedir. Aslında, büyük ölçekli hesaplamalar için, optimize edilmiş yardımcı baz setler kullanıldığında, en maliyetli terim bu integral dönüşüm adımıdır. Dolayısıyla, burada geliştirilen algoritma bu integral terimi için 2 kat daha verimli görünmektedir. Temel olarak, EOM yönteminin PPL terimi için de aynı algoritma kullanılmış ve aynı durum RI-EOM-CCSD için de gözlenmiştir. Sonuç olarak DF-EOM-CCSD yönteminin verimliliği korunmuştur.

Hesaplama süresi değerlendirmesinin ikinci adımı olarak, RI-EOM-CCSD ve DF-EOM-CCSD yöntemlerinin uygulamalarının UHF versiyonları ele alınabilir. DF-EOM-CCSD yöntemi, RI-EOM-CCSD ile karşılaştırıldığında hesaplama maliyetini belirgin bir şekilde azaltmaktadır (Şekil 3.13.), C7H16 molekülü için DF-EOM-CCSD yönteminin hesaplama süresinde 1,8 kat azalma vardır. C7H16 molekülü için CCSD süresi RI-EOM-CCSD ve DF-EOM-CCSD için sırasıyla 1168 ve 920 dakikadır ve DF-EOM-CCSD için hesaplama süresinde 1,3 kat azalma vardır. Ayrıca, C7H16 molekülü için EOM süresi 3221 dakika (RI-EOM-CCSD) ve 1568 dakikadır (DF-EOM-CCSD). Dolayısıyla, DF-EOM-CCSD için hesaplama süresinde 2,1 kat azalma vardır. C₇H₁₆ molekülünde, UHF-CCSD kısmı için iterasyon sayısı 11 (DF-EOM-CCSD) ve 12'dir (RI-EOM-CCSD). C7H16 için UHF-CCSD iterasyonu başına ortalama hesaplama süresi (t_{ccsd}/n_{iter}) 83,7 dakika (DF-EOM-CCSD) ve 97,3 dakikadır (RI-EOM-CCSD). Dolayısıyla, bu tez kapsamında geliştirilen DF-EOM-CCSD yöntemi, UHF-CCSD iterasyonu başına ortalama hesaplama maliyeti açısından RI-EOM-CCSD kodundan 1,2 kat daha hızlıdır. Benzer şekilde, EOM kısmı için Davidson iterasyonlarının sayısı 12 (DF-EOM-CCSD) ve 18'dir (RI-EOM-CCSD). C₇H₁₆ molekülü için Davidson iterasyonu başına ortalama hesap süresi (t_{eom}/n_{iter}) 130,7 dakika (DF-EOM-CCSD) ve 178,9 dakikadır (RI-EOM-CCSD). Dolayısıyla, DF-EOM-CCSD yöntemi, EOM-CCSD iterasyonu başına ortalama hesaplama maliyeti açısından RI-EOM-CCSD yönteminden 1,4 kat daha hızlıdır. Sonuç olarak, DF-EOM-CCSD yöntemi UHF referansı için de etkinliğini korumaktadır.

Şekil 3.13. RI-EOM-CCSD (from Q-CHEM) ve DF-EOM-CCSD yöntemleri ile cc-pVTZ baz seti kullanılarak, C_nH_{2n+2} (n=1–7) alkan seti için uyarılma enerjilerinin hesaplanmasında toplam CCSD ve EOM duvar süreleri (dakika cinsinden). (Bu hesaplamalar için UHF referansı kullanılmıştır.)

3.2.1. DF/CD Hibrit PPL Algoritmasının Değerlendirilmesi

Bu tez çalışması kapsamında geliştirilen DF-EOM-CCSD yönteminin verimliliğine ilişkin yapılan değerlendirmelerin son adımı olarak, CCSD ve EOM bölümlerindeki PPL terimlerinin incelenmesi için DF ve DF/CD hibrit yaklaşımlarının karşılaştırmalı hesaplama süresi sonuçları bu kısımda sunulmaktadır. DF ve DF/CD yaklaşımları için EOM-CCSD yönteminin PPL teriminde kullanılan yardımcı baz fonksiyonlarının sayısının oranları Şekil 3.14. de grafiksel olarak sunulmuştur. PPL algoritmasının en maliyetli terimi yardımcı baz fonksiyonlarının sayısı ile doğrusal skalada olduğundan (buna *M* diyelim), *M*'nin azaltılması PPL teriminin değerlendirilmesinde önemli iyileştirmeler sağlamaktadır. Örneğin, C₉H₂₀ molekülü için cc-pVTZ ana baz seti ile *M* değerleri, geliştirilen kanonik DF ve hibrit DF/CD algoritmaları için sırasıyla 1329 ve 1208'dir. Buradan, M_{DF}/M_{DF-CD} oranı 1,10 olarak hesaplanmış ve bu da yardımcı baz fonksiyonların sayısında %10'dan fazla bir azalma olduğunu göstermiştir.

Göz önüne alınan alkan seti için $[C_nH_{2n+2} \ (n=1-9)], M_{DF}/M_{DF-CD}$ değerleri, *n* değerleriyle ilişkili olarak grafiğe dökülüp, doğrusal bir ilişki elde edilmiştir. Doğrusal uyum (linear fit) için denklem ve R^2 değeri $M_{DF}/M_{DF-CD} = 0,0122n + 0,9883$ ve $R^2 = 0,9939$ olarak bulunmuştur. İlk olarak, n değeri arttıkça M_{DF}/M_{DF-CD} oranının da arttığı görülmektedir. Bu korelasyonun nedeni, molekül boyutu arttıkça, hibrit DF/CD algoritmasının ERI tensörünün seyrekliğini daha iyi kullanmasıdır. Dolayısıyla, elde edilen doğrusal denklem, daha büyük moleküller söz konusu olduğunda, hibrit DF/CD algoritmasının hesap süresi üzerinde daha büyük bir etkiye sahip olacağını göstermektedir. Örneğin, M_{DF}/M_{DF-CD} oranı $C_{20}H_{42}$ ve $C_{50}H_{102}$ molekülleri için yaklaşık 1,23 ve 1,60 olacaktır, bu da PPL terimlerinde %23 ve %60'a kadar hızlanma elde edilebileceğini gösterir.

Şekil 3.14. C_nH_{2n+2} (n=1–9) seti için uyarılma enerjilerinin hesaplanmasında kullanılan, DF-EOM-CCSD yönteminin DF ve hibrit DF/CD yaklaşımlarındaki (10⁻⁴, 10⁻³ ve 10⁻² CD toleransları ile) PPL teriminde kullanılan yardımcı baz fonksiyonlarının sayısının oranı, M. Bu hesaplamalar için cc-pVTZ baz seti ile birlikte RHF referansı kullanılmıştır.

Alkan seti için, DF-EOM-CCSD ve hibrit DF/CD-EOM-CCSD (10^{-4} , 10^{-3} ve 10^{-2} CD toleransları) yöntemleri ile hesap süreleri Şekil 3.15. de grafiksel olarak sunulmuştur. Test setinin en büyük üyesi olan C₉H₂₀ için hesaplama süreleri 2205,9 dakika (DF-EOM-CCSD), 2186,6 dakika ($tol_{CD} = 10^{-4}$ ile DF/CD-EOM-CCSD), 1326,6 dakika ($tol_{CD} = 10^{-3}$ ile DF/CD-EOM-CCSD) ve 1232,0 dakikadır ($tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD). $tol_{CD} = 10^{-4}$ ile DF/CD-EOM-CCSD yönteminin maliyeti DF-EOM-CCSD yöntemininkine kıyasla biraz azalırken, $tol_{CD} = 10^{-3}$ ve $tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD yönteminin maliyeti kanonik DF-EOM-CCSD yöntemininkine kıyasla biraz azalırken, $tol_{CD} = 10^{-3}$ ve $tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD yönteminin maliyeti kanonik DF-EOM-CCSD yöntemininkine kıyasla biraz azalırken, $tol_{CD} = 10^{-3}$ ve $tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD yönteminin maliyeti kanonik DF-EOM-CCSD yöntemininkine kıyasla biraz azalırken, $tol_{CD} = 10^{-3}$ ve $tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD yönteminin maliyeti kanonik DF-EOM-CCSD yöntemininkine kıyasla verimlilik konusunda önemli gelişmeler sağlamaktadır. Ayrıca, yukarıdaki tartışmada, daha büyük moleküller için daha fazla iyileştirmenin gözlemlenebileceğini göstermektedir. Sonuç olarak, burada geliştirilen yeni hibrit DF/CD PPL algoritması büyük boyutlu kimyasal sistemler için oldukça umut verici görünmektedir.

Şekil 3.15. DF-EOM-CCSD ve hibrit DF/CD-EOM-CCSD $(10^{-4}, 10^{-3} \text{ ve } 10^{-2} \text{ CD} \text{ toleranslari ile})$ yöntemlerinden C_nH_{2n+2} (n=1–9) alkan seti için cc-pVTZ baz seti kullanılarak uyarılma enerjilerinin hesaplanması için toplam duvar süresi (dakika cinsinden). Bu hesaplamalar için RHF referansı kullanılmıştır. Tüm hesaplamalar tek düğümlü (1 çekirdekli) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2,10 GHz bilgisayarda (bellek ~ 64 GB) 10^{-7} enerji ve EOM özdeğer yakınsama toleransları ile tek bir kök (single root) için gerçekleştirilmiştir.

Bu aşamada, orijinal dört indisli ERI tensörlerinin CD ayrıştırmasının neden tercih edilmediğini anlatmak gerekmektedir. Dört indisli ERI'lerden üretilen CD faktörlerinin sayısı, aynı doğruluk elde edilmek istenirse, DF faktörlerininkinden genellikle çok daha yüksek olmaktadır. Örneğin, C₈H₁₈ molekülü için ana baz seti cc-pVTZ olmak üzere, yardımcı baz fonksiyonların sayısı 1188 (DF), 2018 ($tol_{CD} = 10^{-4}$), 1621 ($tol_{CD} = 10^{-3}$) ve 1005 ($tol_{CD} = 10^{-2}$) olarak hesaplanmıştır. Bu nedenle, konvansiyonel dört-indisli ERI'lerin kısmi CD ayrışımından elde edilen yardımcı baz fonksiyonlarının sayısı, yalnızca 10^{-2} 'lik gevşek bir CD toleransı ile kullanıldığında DF ile benzer bir sayı verebilir. Bununla birlikte, geliştirilen hibrit yöntemle yardımcı baz fonksiyonların sayısı 1095 ($tol_{CD} = 10^{-4}$), 593 ($tol_{CD} = 10^{-3}$) ve 63 ($tol_{CD} = 10^{-2}$) olarak bulunmuştur. Bu nedenle, hibrit DF/CD yaklaşımımız, yardımcı baz fonksiyonların sayısın önemli ölçüde azaltır.

3.2.2. DF/CD-EOM-CCSD Yöntemlerinin Doğruluğu

Bu bölümde, DF-EOM-CCSD yönteminin doğruluğunu değerlendirmek amacıyla bir test seti göz önüne alınmıştır. Test seti için aug-cc-pVTZ baz seti ile DF-EOM-CCSD, DF/CD-EOM-CCSD, RI-EOM-CCSD ve EOM-CCSD(fT) yöntemlerinden elde edilen uyarılma enerjileri (eV cinsinden) Çizelge 3.7. da sunulmuştur. Göz önüne alınan molekül setinin geometrileri için EK 2'ye bakınız. EOM-CCSD(fT) yöntemine göre ortalama mutlak hatalar (MAE) Şekil 3.16. te gösterilmiştir. EOM-CCSD(fT) yöntemine göre MAE değerleri 0,71 eV (CIS), 0,26 eV (DF-EOM-CCSD), 0,26 eV ($tol_{CD} = 10^{-4} \text{ ile DF/CD-EOM-CCSD}$), $0,27 \text{ eV} (tol_{CD} = 5 \times 10^{-4} \text{ ile DF/CD-EOM-CCSD}), 0,27 \text{ eV} (tol_{CD} = 10^{-3})$ ile DF/CD-EOM-CCSD), 0,30 eV ($tol_{CD} = 5 \times 10^{-3}$ ile DF/CD-EOM-CCSD), 0,33 eV ($tol_{CD} = 10^{-2}$ ile DF/CD-EOM-CCSD) ve 0,27 (RI-EOM-CCSD) olarak bulunmuştur. Elde edilen sonuçlar ışığında, DF-EOM-CCSD, RI-EOM-CCSD ve DF/CD-EOM-CCSD ($tol_{CD} = 10^{-4} - 10^{-3}$) yöntemlerine ait sonuçların neredeyse aynı olduğu görülmektedir. Ek olarak, $tol_{CD} = 5 \times 10^{-3}$ and 10^{-2} ile DF/CD-EOM-CCSD yönteminin hataları, DF-EOM-CCSD yaklaşımından farklı olarak yalnızca 0,03 ve 0,06 eV olarak elde edilmiştir. Elde edilen sonuçlar ve hesaplama verimliliği göz önüne alındığında, DF/CD-EOM-CCSD yönteminin buradaki gibi düşük CD toleranslarıyla rahatlıkla kullanılabileceği görülmektedir. DF-EOM-CCSD ve RI-EOM-CCSD sonuçları arasındaki farklar çoğu durum için 0,00 ile 0,06 eV arasında olmaktadır.

Şekil 3.16. Test seti için, EOM-CCSD(fT) yöntemine göre DF-EOM-CCSD, DF/CD-EOM-CCSD ve RI-EOM-CCSD yöntemlerinden elde edilen uyarılma enerjilerindeki ortalama mutlak hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır).

Çizelge 3.7. Göz önüne alınan test seti için, DF-EOM-CCSD, DF/CD-EOM-CCSD (CD toleransları: yöntemleriyle hesaplanan ilk beş uyarılma enerjisi (eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz 1×10^{-4} , 5×10^{-4} , 1×10^{-3} , 5×10^{-3} ve 1×10^{-2} olmak üzere), RI-EOM-CCSD and EOM-CCSD(fT) seti kullanılmıştır.

DF-	-EOM-CCSD L	DF/CD-EOM-CCSD	¹ DF/CD-EOM-CCSD	^b DF/CD-EOM-CCSD ^c	DE/CD-EOM-CCSD	DE/CD-EOM-CCSD	0 [€] EOM-RI-CCSD [∱] E	OM-CCSD(fT) ^f
L	5,78	5,78	5,78	5,78	5,78	5,79	5,83	5,51
	6,67	6,67	6,67	6,68	6,71	6,73	6,70	6,41 6,41
	127	0,72	10,72	0,7 0,7 0,0	0,07	0,10	0,12	0,4/ L01
	7.69	7.69	7,70	7.70	7.73	7.76	7.73	7,48
2	4,53	4,53	4,53	4,53	4,53	4,54	4,57	4,25
	6,57	6,57	6,57	6,58	6,61 7.50	6,63	6,60 7,50	6,36
	7,60 160	7,60	7.61	7,61	7,64	7,67	7,63	7,40
	7,68	7,68	7,68	7,69	7,72	7,75	7,71	7,50
3	5,69	5,69	5,70	5,70	5,75	5,78	5,70	5,30
	0,0/ 6,49	2,0/ 6,49	6.50	5,00 6,50	6.58	6,64	0,00 6,47	6.21
	6,54	6,54	6,55	6,56	6,63	6,69	6,52	6,25
	6,65	6,65	6,65	6,66	6,74	6,79	6,63	6,36
4	6,79	6,79	6,79	6,79	6,81 6 05	6,84 6,00	6,80	6,50
	0,92 7,03	0,92	0,92 7,04	0,92 7,04	0,0 1,09	0,90	0,91	0,02
	7,42	7,42	7,42	7,43	7,47	7,51	7,41	7,18
	7,45	7,45	7,45	7,46	7,50	7,54	7,43	7,21
S	6,36	6,36	6,36	6,37	6,42	6,47	6,39	6,02
	0,40 77,7	0,40 77	0,40 ATA	0,40 6,77	0,03 6 84	0,0U 6,01	6,45 6,77	0,10 6,17
	0,0	0,,0	0,70	0,77	7,00 7,00	7.08	0,/4 6,00	0,47 6,63
	7.21	7.21	7.22	7.22	7.28	7.34	7.18	6.69
9	7,48	7,48	7,49	7,49	7,51	7.54	7,46	7.23
	8,09	8,09	8,09	8,09	8,10	8,12	8,08	7,81
	8,13	8,13	8,13	8,13	8,16	8,19	8,11	7,89
	8,20	8,55 8,55	8,55 8,55	8,20 8,56	8,57	8,59 8,59	8.56 8.56	8.36
	4,07	4,07	4,07	4.07	4,07	4.07	4,07	3,82
	7,20	7,20	7,20	7,20	7,21	7,22	7,22	7,07
	8,09	8,09	8,09	8,09	8,09	8,10	8,11	7,97
	8,18 8,61	8,18 8,61	8,18 8,61	8,18 8,61	8,19	8,21 8,63	8,20 8,64	8,57
8	5.70	5.70	5.70	5.70	5.70	5.70	5.74	5.45
)	6,92	6,92	6,93	6,93	6,94	6,96	6,92	6,68
	6,69	6,99	7,00	7,00	7,01	7,03	7,01	6,71
	10,1	10,7	10,7	10.7	2C,1 2C,1	40,1 477	10,1	7.53
6	6.19	6.19	6.20	6.20	6.27	6.32	6.18	5.88
	6,57	6,57	6,57	6,58	$6,\overline{62}$	6,65	6,53	6,00
	6,/3 6,80	6,73 6,80	6,74 6,80	6,74 6,80	6,81 6 01	6,86 6 03	6,72	6,43 6,60
	6.92	6,92	6,92	6,03	7.00	7.05	7.34	7.03
10	5,82	5, 82	5,83	5,84	5,89	5,93	$5, \underline{81}$	5,50
	6,59 6 62	6,59	6,60 6,62	6,60	6,65 6 67	6,70	6,58	6,29 6 16
	0,02	0,02	0,02 6,85	0,03 6,86	0,07	0,70	0,J	0,10 6,54
	6,87	6,87	6,87	6,88	6,91	6,96	6,91	6,49
^a Bu he	esaplamalar. 1 ×	$< 10^{-4}$ CD toleransi k	ullanılarak hibrit DF/C	D algoritması ile gercek	lestirilmistir. ^b Bu hesar	plamalar. 5×10^{-4} CD	toleransı kullanılarak	
hibrit L	DF/CD algoritm	ası ile gerceklestirilm	istir. ^c Bu hesanlamalar	1×10^{-3} CD toleransi	kullanılarak hibrit DF/	3D algoritması ile gerc	eklestirilmistir. ^d Bu	
hesanla	malar 5×10^{-1}	³ CD toleransi kullan	ilarak hihrit DF/CD alo	oritması ile verceklestiri	lmistir ^e Bu hesanlama	lar 1×10^{-2} CD toler	ansı kullanılarak hibrit	
DF/CD) algoritması ile	gerceklestirilmistir. ^f	Bu hesanlamalar. O-C	HEM 5.3 programi ile ge	erceklestirilmistir.			
	, 415VIIIII0	. 501 your gun ungun	~ ン (mmmmhnonn nr					

3.3. DF-EOM-OCCD Yönteminin Doğruluğu ve Etkinliği

Tez çalışması kapsamında geliştirilen DF-EOM-OCCD yöntemi, Q-CHEM 5.3 [75] yazılımında mevcut olan konvansiyonel EOM-OD yöntemi ile maliyet karşılaştırması amacıyla bir alkan setine uygulanmıştır. Alkan seti için Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu üçe yarılmış cc-pVTZ [184, 185] baz seti kullanılmıştır. cc-pVTZ ana baz fonksiyonu için cc-pVTZ-JKFIT [186] ve cc-pVTZ-RI [187] yardımcı baz fonksiyonları kullanılmıştır. Tez çalışması kapsamında geliştirilen, DF-EOM-CCD, DF-EOM-OCCD ve DF-EOM-CCSD yöntemlerinin doğruluğunu ve etkinliğini incelemek amacıyla, açık ve kapalı kabuklu kimyasal türlerden oluşan setler için uyarılma enerjisi hesaplamaları gerçekleştirilmiştir. Elde edilen sonuçlar, Q-CHEM 5.3 yazılımında mevcut olan EOM-CCSD(fT) [75] ve MRCISDT+Q [221] yöntemlerine ait referans değerler ile karşılaştırılmıştır. Göz önüne alınan açık ve kapalı kabuklu setler için Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu üçe yarılmış difüze aug-cc-pVTZ [184, 185] baz seti kullanılmıştır. Aug-cc-pVTZ ana baz fonksiyonu için aug-cc-pVTZ-JKFIT [186] ve aug-cc-pVTZ-RI [187] yardımcı baz fonksiyonları kullanılmıştır.

3.3.1. DF-EOM-OCCD Yönteminin Etkinliği

DF-EOM-OCCD yönteminin etkinliğini değerlendirmek amacıyla bir alkan seti göz önüne alınmıştır. Elde edilen hesap süreleri, Q-CHEM yazılımında mevcut olan EOM-OD yöntemi ile karşılaştırmalı olarak Şekil 3.17. te sunulmuştur. Göz önüne alınan alkan setinin geometrileri için EK 1'e bakınız. C_nH_{2n+2} (n = 1—5) seti için DF-EOM-OCCD ve EOM-OD yöntemlerinin toplam, OCCD ve EOM kısmı olarak ayrı ayrı değerlendirilmiştir. Hesaplamalarda, ilk uyarılmış hal için enerji ve EOM özdeğer yakınsama toleransı olarak 10^{-7} kullanılmıştır. DF-EOM-OCCD yöntemi EOM-OD yöntemine göre hesaplama maliyetini ciddi oranda azaltmaktadır. DF-EOM-OCCD yöntemi toplam hesap süresi bakımından, EOM-OD yöntemine göre alkan setinin en büyük üyesi için (C₅H₁₂) toplamda 16,9 kat daha hızlıdır. Yine DF-EOM-OCCD yöntemi EOM-OD yöntemine göre, OCCD kısmında 23,0 kat, EOM kısmında ise 7,0 kat daha hızlıdır. DF-EOM-OCCD yönteminin, Q-Chem yazılımında mevcut olan EOM-OD yönteminden çok daha hızlı çalışmasının nedeni olarak, büyük oranda PPL teriminin etkin kodlanması gösterilebilir.

Şekil 3.17. DF-EOM-OCCD ve EOM-OD (Q-CHEM) yöntemlerinin C_nH_{2n+2} (n = 1–5) alkan seti için cc-pVTZ baz seti ile uyarılma enerjilerinin hesap süreleri (dk). Bu hesaplamalar için RHF referansı kullanılmıştır. Tüm hesaplamalar tek düğümlü (1 çekirdekli) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2,10 GHz bilgisayarda (bellek ~ 64 GB) 10^{-7} enerji ve EOM özdeğer yakınsama toleransları ile ilk uyarılmış hal (single root) için gerçekleştirilmiştir.

3.3.2. DF-EOM-OCCD Yönteminin Doğruluğu

3.3.2.1. Açık Kabuklu Set

DF-EOM-OCCD yönteminin doğruluğunu değerlendirmek amacıyla bir dizi açık kabuklu kimyasal tür ile çalışılmıştır. DF-EOM-OCCD, DF-EOM-CCD, DF-EOM-CCSD, EOM-OD ve MRCISDT+Q [221] yöntemleri dikkate alınmıştır. Göz önüne alınan açık kabuk seti için aug-cc-pVTZ baz seti ile DF-EOM-CCD, DF-EOM-OCCD DF-EOM-CCSD, EOM-OD ve MRCISDT+Q yöntemlerinden elde edilen en düşük ilk 5 uyarılma enerjisi (eV cinsinden) Çizelge 3.8. te sunulmuştur. Açık kabuklu setin molekül geometrileri için EK 3'e bakınız. Göz önüne alınan açık kabuklu set için CC hesaplamalarından elde edilen uyarılmış enerjiler, Li vd. çalışmasında yer alan MRCISDT+Q [221] yönteminden elde edilen sonuçlarla

karşılaştırılmıştır. Referans yönteme göre hatalar ve ortalama mutlak hatalar (MAE) sırasıyla Şekil 3.18. ve 3.19. de gösterilmiştir. Göz önüne alınan set için, MAE değerleri, 0,19 (DF-EOM-CCD), 0,07 (DF-EOM-OCCD), 0,07 (EOM-OD) ve 0,13 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Dolayısıyla, dikkate alınan test seti için DF-EOM-OCCD, DF-EOM-CCSD kalitesine oldukça yaklaşmakta, hatta bazı yapılar için daha iyi olduğu görülmektedir. Son olarak, mevcut sonuçlar DF-EOM-OCCD yaklaşımının, yöntemin genel hesaplama maliyetini etkilemeden DF-EOM-CCD yöntemini önemli ölçüde iyileştirdiğini ve EOM-CCSD kalitesine yaklaştırdığını göstermektedir. Göz önüne alınan test seti için elde edilen veriler, tez çalışması kapsamında geliştirilen optimize orbitalli CC yöntemlerin, uyarılmış hal hesaplamaları için oldukça uygun olduğunu göstermektedir.

Şekil 3.18. Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin MRCISDT+Q yöntemine göre hesaplanan hataları. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

Şekil 3.19. Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin MRCISDT+Q yöntemine göre hesaplanan ortalama mutlak hataları. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

Molekül	DF-EOM-CCD ^a	DF-EOM-OCCD ^a	\mathbf{EOM} - \mathbf{OD}^b	DF-EOM-CCSD ^c	$\mathbf{MRCISD+Q}^d$
C_2H_3	3,51	3,17	3,17	3,27	3,03
	4,53	4,44	4,44	4,28	4,74
	5,07	4,84	4,84	4,76	5,36
	6,75	6,51	6,49	6,45	6,30
	7,31	7,07	7,04	7,01	6,86
CH ₂ N	4,22	3,96	3,96	4,07	3,84
	4,39	4,40	4,40	4,30	4,31
	4,87	4,66	4,66	4,71	4,48
	5,31	5,23	5,23	5,08	6,13
	6,65	6,79	7,04	6,53	6,83
CH_2O^+	3,61	3,72	3,72	3,37	3,71
	5,19	5,26	5,27	4,91	5,26
	5,79	5,75	5,77	5,65	5,60
	6,69	6,47	6,41	6,33	6,14
	7,20	7,06	7,08	7,24	7,85
CH ₃	5,99	5,91	5,89	5,89	5,85
	7,04	6,99	6,99	7,02	6,99
	7,04	6,99	6,99	7,02	7,14
	7,30	7,23	7,21	7,21	7,66
	7,30	7,23	7,21	7,21	8,52
ClO ₂	3,33	3,26	3,28	3,24	3,25
	3,35	3,29	3,32	3,27	3,28
	3,58	3,57	3,62	3,66	3,62
	4,90	4,85	4,88	4,80	4,80
	5,88	5,83	5,86	5,80	5,77
NH ₂	2,14	2,12	2,12	2,12	2,11
	7,53	7,53	7,53	7,52	6,54
	7,81	7,76	7,75	7,74	7,78
	8,22	8,21	8,21	8,20	7,85
	9,03	9,04	9,04	9,03	9,25
NO ₂	2,89	2,95	2,98	2,82	2,81
	3,16	3,20	3,28	3,23	3,24
	3,60	3,60	4,96	3,68	3,66
	4,81	4,88	7,84	5,00	5,57
	4,85	4,97	7,86	5,02	5,87

Çizelge 3.8. Açık Kabuklu set için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD ve MRCISDT+Q yöntemleriyle hesaplanan ilk beş uyarılma enerjisi. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

^a Bu çalışma.

^b Hesaplamalar Q-Chem programı ile gerçekleştirilmiştir [75].

^c Hesaplamalar MacroQC programı ile gerçekleştirilmiştir [74, 161].

^d MRCISD+Q sonuçları ref. [221]'ten alınmıştır.

3.3.2.2. Kapalı Kabuklu Set

DF-EOM-OCCD yönteminin doğruluğunu değerlendirmek amacıyla bir dizi kapalı kabuklu kimyasal tür ile çalışılmıştır. Göz önüne alınan kapalı kabuk seti için uyarılma enerjisi hesaplamalarında, tez çalışması kapsamında geliştirilen DF-EOM-CCD, DF-EOM-OCCD ve DF-EOM-CCSD [74, 161] yöntemleri, ek olarak da Q-CHEM 5.3 [75] programında mevcut olan EOM-OD ve EOM-CCSD(fT) yöntemleri kullanılmıştır. Kapalı kabuk setinin molekül geometrileri için EK 2'ye bakınız. Ayrıca, kapalı kabuk seti için aug-cc-pVTZ baz seti ile DF-EOM-CCD, DF-EOM-OCCD DF-EOM-CCSD ve EOM-CCSD(fT) yöntemlerinden elde edilen en düşük ilk 5 uyarılma enerjisi (eV cinsinden) Çizelge 3.9. te sunulmuştur. Ana baz setinin yardımcı baz setleri olarak aug-cc-pVTZ-JKFIT ve aug-cc-pVTZ-RI kullanılmıştır. Göz önüne alınan kapalı kabuklu set için EOM-CCSD(fT) yöntemine göre hesaplanan hatalar ve ortalama mutlak hatalar (MAE) sırasıyla Şekil 3.20. ve 3.21. de sunulmuştur. Uyarılmış hal hesaplamaları sonucunda referans alınan yönteme (EOM-CCSD(fT)) göre elde edilen MAE değerleri, 0,20 (DF-EOM-CCD), 0,26 (DF-EOM-OCCD), 0,30 (EOM-OD) ve 0,26 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Dolayısıyla, dikkate alınan test seti için DF-EOM-OCCD yönteminin verimliliği, DF-EOM-CCSD yöntemine büyük ölçüde yakındır.

Şekil 3.20. Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

Şekil 3.21. Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan ortalama mutlak hataları. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

#	Molekül	$\mathbf{DF}\textbf{-}\mathbf{EOM}\textbf{-}\mathbf{CCD}^a$	DF-EOM-OCCD ^a	EOM-OD ^b	DF-EOM-CCSD ^c	$EOM-CCSD(fT)^b$
1	Asetamit	5,63	5,77	5,84	5,78	5,50
		6,63	6,69	6,74	6,69	6,41
		6,74	6,73	6,76	6,73	6,48
		7,29	7,38	7,43	7,33	7,07
		7,66	7,73	7,78	7,71	7,48
2	Aseton	4,42	4,52	4,58	4,53	4,24
		6,56	6,61	6,65	6,59	6,36
		7,54	7,58	7,62	7,56	7,37
		7,59	7,64	7,67	7,62	7,40
		7,68	7,72	7,75	7,69	7,50
3	Siklopropen	6,83	6,80	6,80	6,79	6,50
		6,91	6,92	6,92	6,92	6,62
		7,08	7,04	7,03	7,05	6,81
		7,46	7,43	7,42	7,43	7,19
		7,49	7,45	7,45	7,46	7,22
4	E-butadien	6,36	6,40	6,44	6,37	6,16
		6,51	6,45	6,76	6,46	6,47
		6,82	6,77	6,92	6,77	6,64
		6,99	6,93	7,64	6,94	7,37
		7,71	7,66	7,71	7,66	7,44
5	Eten	7,53	7,48	7,46	7,50	7,24
		8,08	8,09	8,12	8,09	7,90
		8,17	8,13	8,18	8,14	7,96
		8,25	8,20	8,56	8,21	8,35
		8,56	8,55	8,89	8,55	8,67
6	Formaldehit	3,95	4,04	4,08	4,06	3,81
		7,15	7,22	7,26	7,21	7,08
		8,07	8,11	8,15	8,10	7,98
		8,14	8,20	8,24	8,19	8,08
		8,58	8,64	8,68	8,62	8,52
7	Formamit	5,55	5,68	5,75	5,69	5,43
		6,93	6,93	6,94	6,94	6,68
		6,94	7,00	7,04	7,00	6,71
		7,46	7,56	7,61	7,52	7,30
		7,68	7,77	7,79	7,72	7,53

Çizelge 3.9. Kapalı Kabuk seti için DF-EOM-CCD, DF-EOM-OCCD, EOM-OD, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemleriyle hesaplanan ilk beş uyarılma enerjisi. Hesaplamalar aug-cc-pVTZ baz seti ile gerçekleştirilmiştir.

^a Bu çalışma.

^b Hesaplamalar Q-Chem programı ile gerçekleştirilmiştir [75].

^c Hesaplamalar MacroQC programı ile gerçekleştirilmiştir [74, 161].

3.4. DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM-*κ*-OMP2 Yöntemlerinin Doğruluğu ve Etkinliği

Çalışmanın bu kısmında, tez kapsamında geliştirilen DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM-κ-OMP2 yöntemlerden elde edilen uyarılma enerjilerini karşılaştırmak amacıyla, kapalı kabuklu ve açık kabuklu kimyasal sistemler için hesaplamalar gerçekleştirilmiştir. Bu kapsamda, DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-κ-OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) [75] yöntemlerinden elde edilen sonuçlar karşılaştırmalı olarak bu bölümde sunulmuştur. Göz önüne alınan molekül setleri için, Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu yarılmış baz setleri ve bunların difyuz versiyonları (cc-pVXZ ve aug-cc-pVXZ) kullanılmıştır. cc-pVXZ ve aug-cc-pVXZ (X=D,T,Q) baz setleri için cc-pVXZ-JKFIT, cc-pVXZ-RI, aug-cc-pVXZ-JKFIT ve aug-cc-pVXZ-RI yardımcı baz seti çiftleri kullanılmıştır.

3.4.1. Organik Kromoforlar

DF-EOM-OMP2 yönteminin doğruluğunu değerlendirmek amacıyla kromofor grup içeren kapalı kabuklu kimyasal türlerden oluşan test seti ile çalışılmıştır. Bu kısımda kullanılan organik kromofor seti, Jaroslav vd. nin [222] önceki çalışmasındaki bir kromofor setinden oluşturulmuş ve Şekil 3.22.'de sunulmuştur. Burada göz önüne alınan test seti, DFT fonksiyonellerinden B3LYP ile cc-pVTZ baz seti kullanılarak optimize edilmiştir (Optimize geometriler için EK 4'e bakınız). Optimize geometriler için cc-pVTZ baz seti ile DF-EOM-MP2, DF-EOM-OMP2, DF-EOM-κ-OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemlerinden elde edilen en düşük beş uyarılma enerjisi (eV cinsinden) hesaplanmış ve Çizelge 3.10.'da sunulmuştur. Ana baz setine ek olarak, referans ve korelasyon enerjileri için sırasıyla, cc-pVTZ-JKFIT ve cc-pVTZ-RI yardımcı baz setleri kullanılmıştır.

Şekil 3.22. Göz önüne alınan organik kromofor seti.

Çizelge 3.10. Göz önüne alınan organik kromofor seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemleriyle hesaplanan ilk beş uyarılma enerjisi (eV cinsinden).

Molekül	DF-EOM-MP2	DF-EOM-OMP2	DF-EOM- <i>k</i> -OMP2	DF-EOM-CCSD	EOM-CCSD(fT)
1	3,93	4,09	3,75	3,97	3,59
	7,06	7,17	6,76	7,08	6,65
	7,54	7,66	7,35	7,64	7,15
	8,32	8,35	8,03	8,42	7,97
	8,81	8,92	8,59	8,85	8,34
2	4,67	5,04	4,53	4,35	3,94
	5,09	5,42	4,91	4,71	4,32
	7,13	7,78	7,21	6,79	6,48
	9,49	9,77	9,51	9,36	9,04
	10,04	10,41	10,01	9,87	9,24
3	3,77	3,81	3,47	3,66	3,41
	7,84	7,87	7,53	7,75	7,52
	7,90	7,87	7,67	7,79	7,77
	8,17	8,12	7,93	8,02	8,56
	8,94	9,01	8,68	8,99	9,01
4	4,84	4,87	4,19	4,50	3,90
	5,37	5,43	4,76	5,14	4,57

	6,61	6,67	6,06	6,33	6,00
	6,82	6,90	6,26	6,56	6,16
	6,87	6,91	6,31	6,62	6,84
5	2,74	2,86	2,03	2,34	1,70
	4,40	4,55	3,70	4,04	3,42
	5,25	5,32	4,54	4,87	4,17
	5,64	5,94	5,18	5,32	4,77
	6,60	6,70	6,01	6,30	5,67
6	3,45	3,45	2,83	3,39	2,79
	5,14	5,21	4,59	5,05	4,50
	6,37	6,35	5,91	6,25	5,84
	6,68	6,70	6,15	6,60	5,89
	6,70	6,75	6,25	6,61	6,06
7	4,06	4,23	3,86	4,02	3,63
	5,23	5,28	4,66	4,99	4,41
	6,06	6,16	5,58	5,85	5,34
	7,26	7,30	6,80	7,08	6,51
	7,36	7,43	6,94	7,21	6,74
8	4,43	4,82	4,26	4,09	3,61
	4,97	5,32	4,74	4,57	4,43
	5,31	5,38	4,76	5,03	5,17
	6,15	6,29	5,62	5,77	5,75
	6,57	7,09	6,46	6,23	6,36
9	3,27	3,41	2,92	3,16	2,62
	3,45	3,62	3,15	3,36	2,81
	5,19	5,17	4,57	5,04	4,35
	6,09	6,38	5,73	5,95	5,37
	6,92	7,00	6,56	6,82	6,30
10	2,50	2,60	2,12	2,37	1,85
	3,79	3,99	3,54	3,74	3,22
	4,23	4,32	3,70	4,10	3,50
	6,14	6,24	5,86	6,11	5,57
	6,70	6,70	6,12	6,56	5,70
11	4,28	4,31	3,82	4,00	3,54
	4,84	4,88	4,43	4,62	4,93
	5,82	5,89	5,27	5,53	6,24
	6,34	6,36	5,88	6,07	6,53
	6,93	6,96	6,53	6,72	7,34
12	4,88	4,96	4,51	4,68	4,21
	5,23	5,35	4,92	5,06	4,63

Çizelge 3.10. Devamı

	5,88	5,97	5,39	5,63	5,06
	6,40	6,49	6,06	6,25	5,76
	6,68	6,80	6,37	6,55	6,08
13	4,62	4,63	4,16	4,34	3,90
	5,36	5,38	4,96	5,17	4,70
	5,60	5,65	5,04	5,31	4,73
	6,26	6,30	5,85	6,01	6,63
	7,25	7,33	6,80	7,09	7,85
14	3,01	3,03	2,48	2,61	2,09
	4,20	4,23	3,78	3,92	3,40
	5,57	5,63	5,10	5,26	4,82
	6,19	6,22	5,69	5,84	5,30
	6,23	6,27	5,75	5,86	8,23

Çizelge 3.10. Devamı

DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin Q-Chem yazılımında mevcut olan EOM-CCSD(fT) [75] yöntemine göre hataları ve ortalama mutlak hata (MAE) değerleri sırasıyla Şekil 3.23. ve Şekil 3.24.'da gösterilmiştir. MAE değerleri (eV cinsinden) 0,69 (DF-EOM-MP2), 0,81 (DF-EOM-OMP2), 0,30(DF-EOM- κ -OMP2) ve 0,48 (DF-EOM-CCSD) olarak hesaplanmıştır. Bu sonuçlar, DF-EOM- κ -OMP2 yaklaşımının, yöntemin genel hesaplama maliyetini etkilemeden DF-EOM-MP2 ve DF-EOM-OMP2 yöntemini önemli ölçüde iyileştirdiğini göstermektedir.

Şekil 3.23. Kapalı kabuklu organik kromofor seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları.

Şekil 3.24. Kapalı kabuklu organik kromofor seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin EOM-CCSD(fT) yöntemine göre hesaplanan MAE değerleri.

3.4.2. Açık Kabuklu Sistem

Bu bölümde, geliştirilen DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM-κ-OMP2 yöntemlerinin doğruluğunu değerlendirmek amacıyla bir dizi açık kabuklu molekül dikkate alınmıştır (Şekil 3.25.). Göz önüne alınan açık kabuklu test set için aug-cc-pVQZ baz seti ile DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemlerinden elde edilen en düşük ilk beş uyarılma enerjisi (eV cinsinden) Çizelge 3.11. de sunulmustur. EOM-CCSD(fT) yöntemine göre hatalar ve MAE değerleri sırasıyla Şekil 3.26. ve 3.27.'de gösterilmiştir. İlk uyarılma enerjileri için MAE değerleri 0,30 (DF-EOM-MP2), 0,24 (DF-EOM-OMP2), 0,12 (DF-EOM- κ -OMP2) ve 0,15 (DF-EOM-CCSD) eV olarak hesaplanmıştır. DF-EOM-*k*-OMP2 yönteminin MAE ve maksimum hata değerleri DF-EOM-MP2 yöntemine göre 2,5 kat daha düşüktür. Dolayısıyla, açık kabuklu test seti için DF-EOM- κ -OMP2 yöntemi, DF-EOM-MP2 yöntemini iyilestirmektedir ve ilk uyarılma enerjileri için DF-EOM-CCSD kalitesine yaklaşmaktadır. İlk 5 uyarılma enerjisi dikkate alındığında, EOM-CCSD(fT) yöntemine göre MAE değerleri 0,27 (DF-EOM-MP2), 0,29 (DF-EOM-OMP2), 0,18 (DF-EOM-κ-OMP2) ve 0,15 (DF-EOM-CCSD) eV olarak hesaplanmıştır. EOM-CCSD(fT) yöntemine göre ilk 5 uyarılma enerjisi için maksimum mutlak hatalar ise 0,79 (DF-EOM-MP2), 0,93 (DF-EOM-OMP2), 0,56 (DF-EOM- κ -OMP2) ve 0,39 (DF-EOM-CCSD) eV olarak hesaplanmıştır. DF-EOM- κ -OMP2 yönteminin MAE ve maksimum hata değerleri DF-EOM-MP2 yöntemininkilerden belirgin şekilde daha düşüktür. Dolayısıyla, bu sonuçlar DF-EOM-κ-OMP2 yaklaşımının DF-EOM-MP2 yöntemini önemli ölçüde düzelttiğini ve iyileştirilmiş optimize orbitallerin uyarılmış hal hesaplamaları için daha uygun olduğunu göstermektedir.

Şekil 3.25. Göz önüne alınan açık kabuklu moleküllerden oluşan test seti.

Molekül	DF-EOM-MP2	DF-EOM-OMP2	DF-EOM- <i>k</i> -OMP2	DF-EOM-CCSD	EOM-CCSD(fT)
CN	1,71	1,62	1,14	1,25	1,09
	1,71	1,62	1,14	1,25	1,09
	3,69	3,54	3,07	3,03	3,06
	6,44	7,00	6,47	6,03	6,07
	7,23	7,90	7,35	7,13	7,06
CO ⁺	3,87	3,60	3,32	3,44	3,11
	3,87	3,60	3,32	3,44	3,11
	6,46	6,20	5,97	6,06	5,67
	8,08	8,14	7,82	7,69	7,33
	8,63	9,02	8,66	8,68	8,38
BeF	4,20	4,20	4,16	4,21	4,10
	4,20	4,20	4,16	4,21	4,10
	6,35	6,29	6,28	6,34	6,22
	6,35	6,33	6,31	6,36	6,30
	7,25	7,22	7,20	7,25	7,21
BeH	2,44	2,42	2,38	2,55	2,48
	2,44	2,42	2,38	2,55	2,48
	5,48	5,45	5,39	5,56	5,54
	5,55	5,53	5,47	5,75	5,67
	5,76	5,74	5,66	5,98	6,22
BH ₂	1,00	0,98	0,91	1,18	1,13
	5,36	5,37	5,28	5,66	5,52
	5,68	5,62	5,56	5,76	5,71
	6,23	6,23	6,14	6,51	6,42
	6,32	6,28	6,20	6,55	6,42
CH ₃	5,91	5,82	5,73	5,94	5,83
	6,82	6,79	6,70	7,02	6,91
	6,82	6,79	6,70	7,02	6,91
	7,22	7,13	7,04	7,24	7,14
	7,22	7,13	7,04	7,24	7,14
HCO	2,21	2,22	1,97	2,11	1,89
	5,71	5,62	5,50	5,55	5,39
	6,32	6,45	6,20	6,27	5,98
	6,66	6,54	6,42	6,46	6,28
	6,92	7,01	6,79	6,87	6,55

Çizelge 3.11. Göz önüne alınan açık kabuklu test set için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemleriyle hesaplanan en düşük ilk beş uyarılma enerjisi (eV cinsinden).

Şekil 3.26. Açık kabuklu test seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları.

Şekil 3.27. Açık kabuklu test seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan MAE değerleri.

3.4.3. Radikal Seti

Bu bölümde, geliştirilen DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM- κ -OMP2 yöntemlerinin doğruluğunu değerlendirmek amacıyla bir dizi açık kabuklu radikallerden oluşan molekül ele alınmıştır (Şekil 3.28.). Göz önüne alınan açık kabuklu test set için 6-311++G(d,p) baz seti ile DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemlerinden elde edilen en düşük ilk beş uyarılma enerjisi (eV cinsinden) Çizelge 3.12. de sunulmuştur. EOM-CCSD(fT) yöntemine göre hatalar ve MAE değerleri sırasıyla Şekil 3.29. ve 3.27.'de gösterilmiştir.

Şekil 3.28. Göz önüne alınan açık kabuklu radikal seti.

Molekül	DF-EOM-MP2	DF-EOM-OMP2	DF-EOM-K-OMP2	DF-EOM-CCSD	EOM-CCSD(fT)
Allil	3,79	3,49	3,28	3,63	3,36
	4,95	4,75	4,60	4,88	4,87
	5,51	5,30	5,14	5,43	5,44
	5,62	5,42	5,27	5,55	5,55
	5,85	5,78	5,59	5,73	6,36
Nitrometil	2,89	3,13	2,73	2,69	2,03
	3,24	3,56	3,09	3,08	2,28
	3,33	3,56	3,17	3,13	2,52
	5,34	5,63	5,19	5,04	4,28
	5,84	6,15	5,73	5,60	4,47
Benzil	3,89	3,59	3,17	3,53	3,16
	3,95	3,60	3,22	3,54	3,13
	4,72	4,44	4,21	4,49	4,41
	4,84	4,69	4,28	4,58	4,42
	4,93	4,96	4,54	4,72	4,38
Anilino	2,81	2,60	2,33	2,57	2,41
	3,64	3,19	2,78	3,24	2,84
	4,03	3,59	3,22	3,59	3,19
	4,94	4,79	4,38	4,67	4,45
	5,04	5,00	4,60	4,82	4,50
Naftalin	1,60	1,38	0,81	1,20	0,68
	2,39	2,48	1,83	2,07	1,62
	3,54	3,47	2,89	3,29	2,67
	4,03	4,13	3,58	3,79	3,32
	4,31	4,15	3,68	4,01	3,44

Çizelge 3.12. Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2, DF-EOM-CCSD ve EOM-CCSD(fT) yöntemleriyle hesaplanan en düşük ilk beş uyarılma enerjisi (eV cinsinden).

İlk uyarılma enerjileri için MAE değerleri 0,67 (DF-EOM-MP2), 0,51 (DF-EOM-OMP2), 0,20 (DF-EOM- κ -OMP2) ve 0,39 (DF-EOM-CCSD) eV olarak hesaplanmıştır. DF-EOM- κ -OMP2 yönteminin MAE ve maksimum hata değerleri DF-EOM-MP2 yöntemine göre 3,3 kat daha düşüktür. Dolayısıyla bu kısımda da açık kabuklu radikal seti için DF-EOM- κ -OMP2 yöntemi, DF-EOM-MP2 yöntemini iyileştirmektedir ve ilk uyarılma enerjileri için DF-EOM-CCSD kalitesine yaklaşmaktadır. İlk 5 uyarılma enerjisi dikkate alındığında, EOM-CCSD(fT) yöntemine göre MAE değerleri 0,65 (DF-EOM-MP2), 0,60 (DF-EOM-OMP2), 0,32 (DF-EOM- κ -OMP2) ve 0,41 (DF-EOM-CCSD) eV olarak hesaplanmıştır. DF-EOM- κ -OMP2 yöntemini mAE değerleri DF-EOM-MP2 yöntemine ait sonuçlardan belirgin şekilde daha düşüktür.

Şekil 3.29. Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan hataları.

Şekil 3.30. Göz önüne alınan açık kabuklu radikal seti için DF-EOM-MP2, DF-EOM-OMP2, DF-EOM- κ -OMP2 ve DF-EOM-CCSD yöntemlerinin, EOM-CCSD(fT) yöntemine göre hesaplanan MAE değerleri.

3.5. DF-EOM-OMP3/MP3/OMP2.5/MP2.5 Yöntemlerinin Doğruluğu ve Etkinliği

Bu çalışmada, DF-EOM-MP3, DF-EOM-OMP3 ve EOM-CCSD(fT) yöntemleri, uyarılma enerjilerinin karşılaştırılması amacıyla, açık kabuklu gruplardan oluşan bir dizi kimyasal sisteme uygulanmıştır. Ayrıca, geliştirilen DF-EOM-MP2.5, DF-EOM-OMP2.5 yöntemleri, göz önüne alınan açık kabuklu bir sistemin uyarılma enerjilerinin hesaplanmasında kullanılmış ve EOM-CCSD(fT) referansıyla karşılaştırılmıştır. Açık kabuklu yapılar içeren kimyasal set için ana baz seti olarak, Dunning'in korelasyon tutarlı polarize değerlik üçlü-difyuz baz seti (aug-cc-pVTZ) kullanılmıştır [184, 185]. Ana baz seti (aug-cc-pVTZ) için aug-cc-pVTZ-JKFIT [186] ve aug-cc-pVTZ-RI [187] yardımcı baz seti çiftleri, sırasıyla referans ve korelasyon enerjileri için kullanılmıştır. Göz önüne alınan test setinin geometri optimizasyonu için DFT fonksiyonellerinden B3LYP yöntemi ve Dunning'in korelasyon tutarlı polarize kabuk ve valens üçlü baz seti (cc-pVTZ) kullanılmıştır.

3.5.1. DF-EOM-MP3 ve DF-EOM-OMP3 Yöntemleri için Uygulamalar

DF-EOM-MP3 ve DF-EOM-OMP3 yöntemlerinin doğruluğunu değerlendirmek amacıyla bir dizi açık kabuklu kimyasal tür ile çalışılmıştır. DF-EOM-MP3 ve DF-EOM-OMP3 yöntemleri referans yöntem (*Multireference Configuration Interaction*, MRCI [221]) sonuçlarıyla karşılaştırılmış ve elde edilen en düşük beş uyarılma enerjisi (eV cinsinden) Çizelge 3.13.'de sunulmuştur. Referans yönteme göre hatalar ve ortalama mutlak hatalar (MAE) sırasıyla Şekil 3.31. ve 3.32.'de gösterilmiştir. MAE değerleri 0,40 (DF-EOM-MP3) ve 0,34 (DF-EOM-OMP3) eV olarak hesaplanmıştır. Maksimum hatalar ise 1,08 (DF-EOM-MP3) ve 1,17 (DF-EOM-OMP3) eV olarak bulunmuştur. Elde ettiğimiz sonuçlar, orbital optimizasyonu yaklaştırmasının DF-EOM-MP3 yöntemini iyileştirdiğini ve açık kabuklu kimyasal yapılar için daha doğru sonuçlar sağladığını göstermektedir.

Molekül	EOM-MP3	EOM-OMP3	MRCI
C ₂ H ₃	3,58	3,20	3,03
	4,70	4,61	4,74
	5,34	5,14	5,36
	6,94	6,73	6,30
	7,39	7,29	6,86
CH ₂ N	4,38	4,14	3,84
	4,40	4,47	4,31
	5,20	5,02	4,48
	5,54	5,48	6,13
	6,67	6,93	6,83
CH_2O^+	3,70	3,89	3,71
	5,28	5,44	5,26
	6,24	6,31	5,60
	6,90	6,71	6,14
	7,49	7,43	7,85
CH ₃	6,13	6,04	5,85
	6,92	6,87	6,99
	6,92	6,88	7,14
	7,44	7,35	7,66
	7,44	7,35	8,52
ClO ₂	3,81	3,79	3,25
	3,88	3,86	3,28
	4,12	4,20	3,62
	5,55	5,51	4,80
	6,49	6,47	5,77
NH ₂	2,06	2,04	2,11
	7,54	6,42	6,54
	8,03	7,55	7,78
	8,34	7,97	7,85
	9,04	8,33	9,25
NO ₂	3,61	3,74	2,81
	3,94	4,01	3,24
	4,08	4,18	3,66
	5,26	5,45	5,57
	5.46	5.59	5.87

Çizelge 3.13. Göz önüne alınan açık kabuklu test seti için DF-EOM-MP3, DF-EOM-OMP3 ve MRCI kullanılarak elde edilen ilk beş uyarılma enerjisi (eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz seti kullanılmıştır.

Şekil 3.31. Açık kabuklu test seti için, referans yönteme göre DF-EOM-MP3 ve DF-EOM-OMP3 yöntemlerinden elde edilen uyarılma enerjilerindeki hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır).

Şekil 3.32. Açık kabuklu test seti için, referans yönteme göre DF-EOM-MP3 ve DF-EOM-OMP3 yöntemlerinden elde edilen uyarılma enerjilerindeki ortalama mutlak hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır).

3.5.2. DF-EOM-MP2.5 ve DF-EOM-OMP2.5 Yöntemleri için Uygulamalar

DF-EOM-MP2.5 ve DF-EOM-OMP2.5 yöntemlerinin doğruluğunu değerlendirmek amacıyla açık kabuklu test seti dikkate alınmıştır. Geliştirilen bu yöntemler referans yöntemlerin sonuçlarıyla karşılaştırılmış ve elde edilen en düşük beş uyarılma enerjisi (eV cinsinden) Çizelge 3.14. te sunulmuştur. Referans yönteme (MRCI [221]) göre hatalar ve ortalama mutlak hatalar (MAE) sırasıyla Şekil 3.33. ve 3.34.'de gösterilmiştir. MAE değerleri 0,38 (DF-EOM-MP2.5) ve 0,22 (DF-EOM-OMP2.5) eV olarak hesaplanmıştır. Maksimum hatalar ise 1,15 (DF-EOM-MP2.5) ve 1,22 (DF-EOM-OMP2.5) eV olarak bulunmuştur. Elde ettiğimiz sonuçlar ışığında, açık kabuklu kimyasal yapılar için optimize orbitalli yöntemlerin çok daha doğru sonuçlar sağladığı görülmektedir.

Şekil 3.33. Göz önüne alınan test seti için, referans yönteme göre DF-EOM-MP2.5 ve DF-EOM-OMP2.5 yöntemlerinden elde edilen uyarılma enerjilerindeki hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır).
Molekül	EOM-MP2.5	EOM-OMP2.5	MRCI
C ₂ H ₃	3,57	3,15	3,03
	4,68	4,51	4,74
	5,23	4,97	5,36
	6,87	6,63	6,30
	7,35	7,18	6,86
CH ₂ N	4,36	4,04	3,84
	4,37	4,39	4,31
	5,08	4,80	4,48
	5,53	5,35	6,13
	6,62	6,81	6,83
CH_2O^+	3,68	3,81	3,71
	5,23	5,29	5,26
	6,04	5,95	5,60
	6,93	6,61	6,14
	7,43	7,21	7,85
CH ₃	6,06	5,99	5,85
	6,90	6,85	6,99
	6,90	6,86	7,14
	7,37	7,30	7,66
	7,37	7,30	8,52
ClO ₂	3,76	3,56	3,25
	3,82	3,63	3,28
	4,08	4,02	3,62
	5,37	5,10	4,80
	6,32	6,07	5,77
NH ₂	2,03	2,01	2,11
	7,48	7,49	6,54
	7,94	7,88	7,78
	8,28	8,27	7,85
	8,98	8,99	9,25
NO ₂	3,58	3,40	2,81
	3,60	3,56	3,24
	4,05	3,99	3,66
	5,23	5,24	5,57
	5.34	5.29	5.87

Çizelge 3.14. Göz önüne alınan test seti için, DF-EOM-MP2.5, DF-EOM-OMP2.5 ve referans yöntem (MRCI) kullanılarak elde edilen ilk beş uyarılma enerjisi (eV cinsinden). Hesaplamalarda aug-cc-pVTZ baz seti kullanılmıştır.

Şekil 3.34. Göz önüne alınan test seti için, referans yönteme göre DF-EOM-MP2.5 ve DF-EOM-OMP2.5 yöntemlerinden elde edilen uyarılma enerjilerindeki ortalama mutlak hatalar (eV cinsinden) (aug-cc-pVTZ baz seti kullanılmıştır).

3.6. Bağlanmış Küme Yöntemlerinin Anyonik Su Kümelerine Uygulanması

3.6.1. Anyonik Su Kümeleri

Anyonik su kümelerinin $[(H_2O)_n^-, n = 5, 6]$ geometri optimizasyonları ve harmonik titreşim frekansı hesaplamaları DF-OLCCD yöntemi ile gerçekleştirilmiştir [40]. Tez çalışması kapsamında incelenen yapılar, önceden yayınlanmış yapılara ve tahminlerimize dayanılarak araştırılmıştır. Bu amaçla, Herbert ve Head-Gordon'un [91] çalışmasında önerildiği gibi, Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu ikiye yarılmış baz seti [184, 185] (aug4-cc-pVDZ, a4DZ olarak ifade edilen) modifiye edilerek kullanılmıştır. Aug4-cc-pVDZ baz seti, hidrojen atomları için üç adet fazladan difyüz *s* fonksiyonu içermektedir. İlk sıradaki difyüz fonksiyon bileşeni, orijinal bileşenin 1/3 ile çarpılması ile elde edilmektedir [91]. İkinci ve üçüncü difyüz fonksiyonlar 1/3 ün katlarıyla orantılı olarak aynı şekilde elde edilmiştir [91]. Modifiye edilmiş Dunning baz setlerinin (aug4-cc-pVXZ) eldesi, Herbert ve Head-Gordon [91] un yöntemiyle gerçekleştirilmiştir. Ayrıca, optimize edilmiş geometrilerin tek-nokta enerjileri (*Single Point Energies*, SPE), CCSD(T) yöntemi ile hesaplanmıştır. SPE hesaplamalarında, modifiye edilmiş Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu üçe ve dörde yarılmış baz setleri (aug4-cc-pVTZ, a4TZ ve aug4-cc-pVQZ, a4QZ) [184, 185] kullanılmıştır. Aug4-cc-pVXZ ana baz setleri ile birlikte sırasıyla referans ve korelasyon enerjileri için aug-cc-pVXZ-JKFIT [186] ve aug-cc-pVXZ-RI [187] yardımcı baz seti çiftleri kullanılmıştır. Ayrıca, toplam enerjiler, tam baz seti (CBS) limitine ekstrapole edilmiştir [190, 191]. Halkier vd. nin çalışmasında [192] iki noktalı ekstrapolasyon tekniği aşağıdaki şekilde kullanılmıştır.

$$E_X^{HF} = E_{CBS}^{HF} + Ae^{-\alpha X}, ag{881}$$

$$E_X^{corr} = E_{CBS}^{corr} + BX^{-3}.$$
(882)

Burada, E_{CBS}^{HF} ve E_{CBS}^{corr} sırasıyla CBS seviyesinde Hartree-Fock (HF) ve korelasyon enerjileridir. *A* ve *B* sırasıyla fit edilme parametreleridir. Ayrıca *X*, aug4-cc-pVXZ baz setlerinin sayısıdır. α bileşeni, önerildiği üzere 1,63 olarak alınmıştır [192]. İki nokta ekstrapolasyon prosedürü için aug4-cc-pVTZ ve aug4-cc-pVQZ baz setleri kullanılmıştır. Heksamerler için CCSD(T)/a4TZ ve CCSD(T)/a4QZ enerjileri aşağıdaki denklemlerden elde edilmiştir:

$$E_{CCSD(T)/a4TZ} = E_{CCSD(T)/a4DZ} + \delta_{MP2}^{TD}, \qquad (883)$$

ve

$$E_{CCSD(T)/a4QZ} = E_{CCSD(T)/a4TZ} + \delta_{MP2}^{QT}, \qquad (884)$$

Burada

$$\delta_{MP2}^{TD} = E_{MP2/a4TZ} - E_{MP2/a4DZ}, \tag{885}$$

$$\delta_{MP2}^{QT} = E_{MP2/a4QZ} - E_{MP2/a4TZ}.$$
(886)

Pentamerler için CCSD(T)/a4TZ enerjileri hesaplanmış, CCSD(T)/a4QZ enerjileri Eşitlik (892) ile elde edilmiştir. Her küme için, farklı kümelerin bağıl enerjileri CCSD(T)/CBS seviyesinde hesaplanmıştır. Ayrıca, tüm yapıların bağlanma enerjisi aşağıdaki denkleme göre hesaplanmıştır.

$$(n-1)\mathrm{H}_2\mathrm{O} + \mathrm{H}_2\mathrm{O}^- \longrightarrow (\mathrm{H}_2\mathrm{O})_n^-$$
 (887)

Hem bağıl hem de bağlanma enerjileri, DF-OLCCD/a4DZ seviyesinde sıfır noktası titreşim enerjileri (*Zero Point Vibrational Energy*, ZPVE) düzeltmelerini içermektedir. Her bir yapı için, dikey elektron koparılma enerjileri (*Vertical Detachment Energy*, VDE) de hesaplanmıştır [223].

$$VDE = E$$
(neutral at optimized anion geometry) – E (optimized anion) (888)

Açık kabuklu kimyasal yapılar için, kısıtlamasız (*Unrestricted*) orbitaller kullanılarak α ve β spin orbitallerinin karıştırılmasına izin verilmemiştir. Bütün hesaplamalar, Intel(R) Xeon(R) CPU E5-2690 @ 2,90 GHz ve E5-2620 v3 @ 2,40 GHz bilgisayarlara (bellek ~ 64 GB) sahip sunucularda, PSI4 program paketi ile gerçekleştirilmiştir.

3.6.2. Pentamer Anyonları

Kulkarni, Bartolotti ve Pathak [108, 112], Lee, Lee ve Kim [112] ve Herbert ve Head-Gordon'un [93] çalışmalarında, sırasıyla 7, 11 ve 6 adet pentamer sunulmuştur. Tez çalışmasının bu kısmında, on altı adet anyonik pentamer kümesi DF-OLCCD/a4DZ seviyesinde optimize edilmiştir. Anyonik pentamer kümelerinin CBS seviyesindeki bağıl enerjileri Çizelge 3.30. de gösterilmektedir. CCSD(T)/CBS sonuçlarına göre en düşük enerjili pentamer kümesinin (pentamer-2) optimize edilmiş geometrisi, Şekil 3.35. de gösterilmiş, diğer kümelerin geometrileri için EK 7'e bakınız. Hesaplanan OH bağ uzunlukları (r_{OH}) 0,964 ve 0,988 Å arasındadır, bu değerler nötral H₂O'nunkinden 0,06-0,03 kadar daha uzundurlar [224]. Hesaplanan bağ açıları 100,5° – 106,8° olup, bunlar H₂O için 104,478° olan değerinden az miktarda sapmıştır [224]. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,757 ile 2,222 Å arasındadır.

Şekil 3.35. DF-OLCCD/aug4-cc-pVDZ seviyesinde optimize edilen pentamer-2 anyonunun geometrisi.

Anyonik pentamer kümelerinin CCSD(T)/CBS seviyesinde hesaplanan (Çizelge 3.30.) bağıl enerjileri 3,9 kcal mol⁻¹ kadar fark göstermektedir. Anyonik kümelerin enerjileri birbirine oldukça yakın olduğundan, farklı yöntemler farklı enerji sıralamaları sağlayabilmektedir. CCSD(T)/CBS seviyesindeki en düşük enerjili küme yapısı pentamer-2 anyonudur. Enerji hesaplamalarında kullanılan diğer yöntemlerin CCSD(T) yöntemine göre ortalama mutlak hataları (MAE) 0,7 (MP2), 0,6 (MP3), 0,2 (DF-OLCCD) ve 0,3 (CCSD) olarak elde edilmiştir. Göz önüne alınan yöntemlerin tamamı, CCSD(T) yöntemi ile karşılaştırıldığında makul derecede doğruluk göstermektedir. Bunun yanı sıra, DF-OLCCD ve CCSD yöntemlerinin performansı oldukça dikkat çekicidir. Önceki çalışmalarda sunulduğu üzere [28, 40], açık kabuk sistemler için DF-OLCCD yönteminin sonuçları büyük ölçüde doğrudur.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	$\Delta \mathbf{DF}\text{-}\mathbf{OLCCD}$
Pentamer-1	-1,5	-1,2	-0,4	-0,3	0,1	-0,5
Pentamer-2	0,0	0,0	0,0	0,0	0,0	0,0
Pentamer-3	0,2	0,4	0,4	0,4	0,3	0,1
Pentamer-4	3,3	3,4	3,6	3,2	3,4	0,2
Pentamer-5	1,6	1,5	1,8	1,5	1,8	0,0
Pentamer-6	2,5	2,4	2,8	2,5	2,7	0,1
Pentamer-7	1,3	1,3	1,5	1,2	1,7	-0,2
Pentamer-8	3,5	3,5	4,1	3,5	3,9	0,2
Pentamer-9	0,1	0,3	0,3	0,4	0,4	-0,1
Pentamer-10	0,7	0,9	1,3	1,1	1,4	-0,1
Pentamer-11	-1,5	-1,4	-0,1	-0,3	0,2	-0,3
Pentamer-12	-0,9	-0,7	-0,2	-0,1	0,1	-0,3
Pentamer-13	3,3	3,4	3,5	3,0	3,2	0,3
Pentamer-14	-1,3	-1,2	-0,3	-0,2	0,1	-0,3
Pentamer-15	-1,5	-1,2	-0,4	-0,3	0,1	-0,5
Pentamer-16	1,9	1,8	3,4	2,9	3,6	-0,2
MAE	0,7	0,6	0,2	0,3		

Çizelge 3.15. Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Anyonik pentamerler için VDE değerleri Çizelge 3.16. de sunulmuştur. CCSD(T)/CBS seviyesindeki VDE değerleri, kümelerin çoğunda anyondaki ekstra elektronun bağlanmasını göstermektedir. VDE değerleri genel olarak $\sim 4, 0 - 9, 9$ kcal mol⁻¹ aralığında olup, pentamer-11 ve pentamer-16 gibi bazı kümeler için sıfıra yakındır. Özellikle, VDE değeri 9,9 kcal mol⁻¹ olan pentamer-7 anyonu, VDE değeri 9,5 kcal mol⁻¹[225] olan deneysel veri ile büyük ölçüde uyum içerisindedir. VDE için, dikkate alınan diğer yöntemlerin CCSD(T) yöntemine göre MAE değerleri 1,1 (MP2), 1,2 (MP3), 0,2 (DF-OLCCD) ve 0,4 (CCSD) kcal mol⁻¹ olarak hesaplanmıştır. DF-OLCCD yönteminin VDE değerleri açısından hatası ihmal edilebilir ölçüde olup, performansı da diğer yöntemlere göre oldukça iyidir. Bu sonuç, açık kabuklu sistemler için VDE hesaplamalarında, daha maliyetli olan CCSD(T) yönteminin hesaplama açısından uygun olmadığı durumlarda DF-OLCCD yönteminin güvenle kullanılabileceğini göstermektedir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	Δ (DF-OLCCD)
Pentamer-1	0,2	0,2	0,5	0,5	0,6	-0,1
Pentamer-2	7,4	7,2	8,5	8,3	8,9	-0,3
Pentamer-3	6,5	6,5	7,7	7,5	8,1	-0,3
Pentamer-4	7,1	7,0	8,4	8,1	8,7	-0,3
Pentamer-5	6,8	6,7	8,0	7,7	8,3	-0,3
Pentamer-6	6,3	6,2	7,3	7,1	7,6	-0,3
Pentamer-7	8,4	8,3	9,6	9,3	9,9	-0,3
Pentamer-8	3,8	3,7	5,0	4,8	5,2	-0,3
Pentamer-9	3,4	3,3	4,5	4,3	4,7	-0,3
Pentamer-10	2,7	2,7	3,7	3,6	4,0	-0,2
Pentamer-11	-0,1	-0,1	0,1	0,1	0,1	-0,1
Pentamer-12	1,1	1,1	1,8	1,7	1,9	-0,1
Pentamer-13	7,1	6,9	8,4	8,1	8,8	-0,4
Pentamer-14	0,2	0,2	0,6	0,5	0,6	-0,1
Pentamer-15	0,2	0,2	0,5	0,5	0,6	-0,1
Pentamer-16	-0,1	-0,1	0,1	0,0	0,1	0,0
MAE	1,1	1,2	0,2	0,4		

Çizelge 3.16. Pentamer kümeleri için CBS seviyesinde VDE değerleri (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Konu ile ilgili önceki çalışmalar incelendiğinde, kullanılan en yüksek dereceli teorinin, Herbert ve Head-gordon [93] un çalışmasına ait olduğu görülmektedir. Çalışmalarında B3LYP/6-31++G (d,p) seviyesinde optimize edilmiş altı adet pentamer sunmuşlar ve CCSD(T)/6-31++G(d,p) seviyesinde VDE hesaplamaları gerçekleştirmişlerdir. VDE değerleri 7,4 ile 11,0 kcal mol⁻¹ arasında değişmektedir. Elde edilen VDE sonuçları, pentamer-2 anyonunun en düşük enerjili küme olmasına rağmen, en yüksek VDE değerine sahip olmadığını göstermektedir (8,9 kcal mol⁻¹). Enerji karşılaştırmasında pentamer-7 anyonu, pentamer-2 anyonuna kıyasla 1,7 kcal mol⁻¹ daha yüksek enerjili olmasına rağmen, en yüksek VDE değerine (9,9 kcal mol⁻¹) sahiptir. Bağıl enerjiler, farklı anyonik kümeler arasındaki enerji farklılıklarını göstermektedir. Bu nedenle, nispeten daha kararlı bir kümenin daima en yüksek VDE değerine sahip olduğu söylenemez. Burada, pentamer-7 kümesinin nötral halinin, pentamer-2 kümesinin nötral haline kıyasla önemli ölçüde kararsız olduğu (enerjide daha yüksek) olduğu sonucuna varılmıştır.

Son olarak, anyonik pentamerler için bağlanma enerjileri Çizelge 3.32. de sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, anyonik pentamer kümelerinde hidrojen bağı etkileşimlerine bağlı olarak güçlü bağlara işaret etmektedir. Anyonik pentamerler için, CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri -22, 4 ile -26, 3 kcal mol⁻¹ arasında değişmektedir. Su molekülleri başına düşen ortalama bağlanma enerjisi -5, 0 kcal mol⁻¹ dir. Diğer yöntemlerin CCSD(T) yöntemine kıyasla MAE değerleri 2,5 (MP2), 2,4 (MP3), 0,5 (DF-OLCCD) ve 2,5 (CCSD) kcal mol⁻¹ olarak hesaplanmıştır. DF-OLCCD yönteminin (MAE = 0,5 kcal mol⁻¹) performansı, MP2, MP3 ve hatta CCSD yönteminden bile önemli ölçüde iyidir. Bu sonuçlar, öncekiler çalışmalarda olduğu gibi [28, 40], DF-OLCCD yönteminin açık kabuklu sistemler için son derece hassas moleküler özellikler sağladığını desteklemektedir.

Çizelge 3.17. Pentamer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	Δ (DF-OLCCD)
Pentamer-1	-24,6	-24,6	-27,1	-23,8	-26,3	-0,9
Pentamer-2	-23,2	-23,3	-26,7	-23,5	-26,3	-0,4
Pentamer-3	-23,0	-22,9	-26,3	-23,1	-26,0	-0,3
Pentamer-4	-19,8	-19,9	-23,2	-20,3	-22,9	-0,3
Pentamer-5	-21,6	-21,9	-24,9	-22,0	-24,5	-0,4
Pentamer-6	-20,7	-20,9	-23,9	-21,0	-23,6	-0,3
Pentamer-7	-21,9	-22,1	-25,3	-22,3	-24,6	-0,6
Pentamer-8	-19,7	-19,8	-22,7	-20,0	-22,4	-0,2
Pentamer-9	-23,1	-23,0	-26,4	-23,1	-25,9	-0,5
Pentamer-10	-22,5	-22,4	-25,4	-22,4	-24,9	-0,5
Pentamer-11	-24,6	-24,7	-26,8	-23,8	-26,1	-0,7
Pentamer-12	-24,1	-24,1	-27,0	-23,6	-26,2	-0,8
Pentamer-13	-19,9	-20,0	-23,2	-20,5	-23,1	-0,1
Pentamer-14	-24,4	-24,5	-27,0	-23,7	-26,3	-0,8
Pentamer-15	-24,6	-24,6	-27,2	-23,8	-26,3	-0,9
Pentamer-16	-21,3	-21,5	-23,3	-20,6	-22,7	-0,6
MAE	2,4	2,4	0,5	2,5		

3.6.3. Heksamer Anyonları

Lee, Lee ve Kim [112], Herbert ve Head-Gordon'un [91, 93] önceki çalışmalarında sırasıyla onbir, beş ve yedi heksamer konformeri sunulmuştur. Bu çalışmada, DF-OLCCD/a4DZ seviyesinde optimize edilen onsekiz anyonik heksamer kümesi sunulmuştur. Bu kümelerin CBS düzeyinde hesaplanan bağıl enerjileri, Çizelge 3.33. de gösterilmiştir. En düşük enerjili heksamer kümesinin (heksamer-4) optimize geometrisi, Şekil 3.36. de gösterilmiştir. Tez çalışması kapsamında optimize edilen diğer heksamer kümelerine ait geometriler için EK 7'e bakınız. Hesaplanan OH bağ uzunlukları (r_{OH}) 0,964 ve 0,990 Å arasındadır, bu değerler nötral H₂O yapısına göre [224] 0,06-0,032 Å daha uzundur ve hesaplanan bağ açıları 100,2° ile 107,1°, arasında değişmektedir [224]. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,734 ile 2,380 Å arasındadır.

Şekil 3.36. DF-OLCCD/aug4-cc-pvdz seviyesinde optimize edilen heksamer-4 anyonunun geometrisi.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	$\Delta (\text{DF-OLCCD})$
Hexamer-1	-0,6	-0,5	0,6	0,5	1,1	-0,4
Hexamer-2	-0,5	-0,3	0,6	0,7	1,0	-0,5
Hexamer-3	-0,6	-0,6	0,3	0,3	0,6	-0,3
Hexamer-4	0,0	0,0	0,0	0,0	0,0	0,0
Hexamer-5	4,3	4,2	4,3	4,0	4,3	0,0
Hexamer-6	3,4	3,1	3,6	3,4	3,7	-0,1
Hexamer-7	1,9	1,6	3,1	2,5	3,2	-0,1
Hexamer-8	0,4	0,4	0,5	0,5	0,6	-0,1
Hexamer-9	1,0	1,1	1,3	1,2	1,4	-0,1
Hexamer-10	0,6	0,5	2,2	1,6	2,5	-0,2
Hexamer-11	0,8	0,7	2,1	1,6	2,3	-0,2
Hexamer-12	-0,4	-0,3	0,6	0,5	1,0	-0,4
Hexamer-13	-0,2	-0,1	0,2	0,4	0,5	-0,3
Hexamer-14	3,4	3,3	3,7	3,3	3,8	-0,1
Hexamer-15	1,7	1,6	1,8	2,0	2,3	-0,5
Hexamer-16	0,9	1,0	1,6	1,5	1,9	-0,3
Hexamer-17	5,7	5,3	5,7	5,2	5,8	-0,1
Hexamer-18	0,0	0,0	0,3	0,6	0,7	-0,3
MAE	0,8	0,9	0,2	0,4		

Çizelge 3.18. Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Anyonik heksamer kümelerinin (Çizelge 3.33.) CCSD(T)/CBS seviyesindeki bağıl enerjileri arasında 5,8 kcal mol⁻¹ kadar fark gözlenmektedir. Anyonik kümelerin enerjileri birbirine yakın olduğu için, farklı yöntemler farklı enerji sıralamaları sağlayabilmektedir. Yine de, DF-OLCCD, CCSD ve CCSD(T) yöntemlerinin enerji sıralamaları birbiriyle uyumludur. CCSD(T)/CBS seviyesindeki, en düşük enerjiye sahip küme heksamer-4 anyonudur. Kullanılan yöntemlerin CCSD(T) yöntemine kıyasla hesaplanan MAE değerleri, 0,8 (MP2), 0,9 (MP3), 0,2 (DF-OLCCD) ve 0,4 (CCSD) kcal mol⁻¹ dir. CCSD(T) yöntemi ile karşılaştırıldığında tüm yöntemlerin sonuçları doğruluk açısından oldukça makuldur. Bununla birlikte, DF-OLCCD yönteminin performansı, MP2, MP3 ve CCSD yöntemlerinden dikkat çekici ölçüde daha iyidir.

Anyonik heksamerler için VDE değerleri Çizelge 3.19. te sunulmuştur. CCSD(T)/CBS seviyesindeki VDE değerlerinden, ~2,7–11,2 kcal mol⁻¹ arasında değişen kümelerin çoğu için ekstra elektronun bağlanmasını gösterirken, heksamer-10 gibi kümeler için sıfıra yakındır. Özellikle, heksamer-4

anyonunun 11,2 kcal mol⁻¹ olan VDE değeri, 11,1 kcal mol⁻¹ olan deneysel değer ile oldukça uyumludur [90, 225]. Ayrıca, heksamer-6 için VDE değeri 4,6 kcal mol⁻¹ olup, deneysel değer olan 4,8 kcal mol⁻¹ ile oldukça olduğu tespit edilmiştir [225]. Kullanılan yöntemlerin CCSD(T) yöntemine kıyasla hesaplanan MAE değerleri 1,0 (MP2), 1,0 (MP3), 0,1 (DF-OLCCD) ve 0,3 (CCSD) kcal mol⁻¹ dir. Elde edilen sonuçlar ışığında, dikkate alınan tüm yöntemlerin performansları makul derecede iyidir denilebilir. Özellikle, DF-OLCCD ve CCSD yöntemlerinin sonuçları büyük ölçüde doğrudur.

Çizelge 3.19. Heksamer kümeleri için CBS seviyesinde hesaplanan VDE değerleri (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	Δ (DF-OLCCD)
Hexamer-1	-0,1	-0,1	0,3	0,2	0,3	-0,1
Hexamer-2	-0,1	-0,1	0,2	0,2	0,3	-0,1
Hexamer-3	0,1	0,1	0,5	0,4	0,6	-0,1
Hexamer-4	9,7	9,6	11,0	10,6	11,2	-0,2
Hexamer-5	5,8	5,6	7,1	6,8	7,3	-0,2
Hexamer-6	3,4	3,4	4,5	4,3	4,6	-0,1
Hexamer-7	0,1	0,1	0,5	0,4	0,6	-0,1
Hexamer-8	7,0	6,8	8,2	7,9	8,4	-0,2
Hexamer-9	4,1	4,0	5,3	5,0	5,4	-0,1
Hexamer-10	-0,2	-0,2	0,0	-0,1	0,0	-0,1
Hexamer-11	0,2	0,2	0,6	0,5	0,7	-0,1
Hexamer-12	0,5	0,5	1,0	0,9	1,1	-0,1
Hexamer-13	1,7	1,7	2,6	2,4	2,7	-0,1
Hexamer-14	5,9	5,8	7,1	6,8	7,3	-0,2
Hexamer-15	2,0	2,0	3,0	2,8	3,1	-0,1
Hexamer-16	2,8	2,7	3,6	3,4	3,7	-0,1
Hexamer-17	8,2	8,0	9,4	9,0	9,6	-0,2
Hexamer-18	1,8	1,8	2,7	2,5	2,8	-0,1
MAE	1,0	1,0	0,1	0,3		

Konu ile ilgili önceki çalışmalara bakıldığında, Herbert ve Head-Gordon [93] heksamer kümeleri için en yüksek teori seviyesini kullanmışlardır. Çalışmalarında, B3LYP/6-31++G(d,p) seviyesinde optimize edilmiş yedi adet heksamer sunup ve bunların VDE değerlerini CCSD(T)/6-31++G(d,p) seviyesinde hesaplamışlardır. Çalışmalarında sundukları VDE değerleri 0,8 ile 17,1 kcal

mol⁻¹ arasında değişmektedir. Son olarak bu çalışmada, anyonik heksamer kümeleri için hesaplanan bağlanma enerjileri Çizelge 3.35. da sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, anyonik heksamer kümelerinde hidrojen bağı etkileşimlerinden kaynaklanan güçlü bağlanmalara işaret etmektedir. Anyonik heksamerler için, CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri –29, 3 ile –35, 1 kcal mol⁻¹ arasında değişmektedir. Su molekülleri başına düşen ortalama bağlanma enerjisi, –5, 5 kcal mol⁻¹ olarak elde edilmiştir. Bu değer, pentamer yapıları için hesaplanan değere (–5, 0 kcal mol⁻¹) oldukça yakındır. Kullanılan yöntemlerin CCSD(T) yöntemine kıyasla hesaplanan MAE değerleri 1,1 (MP2), 2,8 (MP3), 2,0 (DF-OLCCD) ve 3,2 (CCSD) kcal mol⁻¹ dir. Şaşırtıcı bir şekilde, MP2 yöntemi CCSD(T) ile karşılaştırıldığında en düşük MAE değerini sağlamaktadır. MAE değerlerine incelendiğinde DF-OLCCD yönteminin hatası tolere edilebilir durumda iken, MP3 ve CCSD yöntemlerinin ki ise oldukça büyüktür.

Çizelge 3.20. Heksamer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal mol⁻¹), DF-OLCCD yönteminin hataları [Δ (DF-OLCCD)] ve CCSD(T) yöntemine karşı hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)	Δ (DF-OLCCD)
Hexamer-1	-33,7	-31,9	-32,1	-31,0	-34,0	1,9
Hexamer-2	-33,6	-31,7	-32,0	-30,8	-34,0	2,0
Hexamer-3	-33,7	-32,0	-32,4	-31,1	-34,5	2,1
Hexamer-4	-33,1	-31,4	-32,8	-31,5	-35,1	2,2
Hexamer-5	-28,8	-27,2	-28,6	-27,5	-30,8	2,1
Hexamer-6	-29,7	-28,2	-29,3	-28,1	-31,4	2,1
Hexamer-7	-31,2	-29,8	-30,0	-29,0	-31,8	1,9
Hexamer-8	-32,7	-31,0	-32,3	-31,0	-34,5	2,2
Hexamer-9	-32,1	-30,3	-31,5	-30,3	-33,7	2,1
Hexamer-10	-32,5	-30,8	-30,8	-29,8	-32,6	1,8
Hexamer-11	-32,3	-30,7	-30,9	-29,9	-32,8	1,9
Hexamer-12	-33,5	-31,7	-32,1	-30,9	-34,1	2,0
Hexamer-13	-33,3	-31,5	-32,4	-31,1	-34,5	2,2
Hexamer-14	-29,8	-28,1	-29,3	-28,1	-31,3	2,0
Hexamer-15	-31,4	-29,8	-30,7	-29,5	-32,8	2,1
Hexamer-16	-32,2	-30,4	-31,2	-30,0	-33,2	2,0
Hexamer-17	-27,4	-26,1	-27,3	-26,3	-29,3	2,0
Hexamer-18	-33,1	-31,4	-32,2	-30,9	-34,4	2,2
MAE	1,1	2,8	2,0	3,2		

Heksamer kümeleri için, DF-OLCCD/a4DZ seviyesindeki geometri optimizasyonlarının toplam maliyeti, geometri iterasyonlarının sayısına bağlı olarak ~ 2 gün ile ~ 2 hafta arasında değişmektedir. Harmonik titreşim frekansları analitik gradientlerin sonlu farkları (*finite differences*) ile hesaplanmaktadır. İlk başta, Hessian hesaplaması için perturb geometriler oluşturulmaktadır. Daha sonra, PSI4 programındaki *mode sow* özelliği sayesinde, her bir dosya farklı düğümlere gönderilirken, aynı anda perturb geometrilerde analitik gradient hesaplamaları yapılabilmektedir. Burada, *mode sow* özelliği ile her bir perturb geometri için program tarafından çalıştırılmaya hazır bir input oluşturulur ve paralel biçimde farklı düğümlerde çalıştırılmasına olanak sağlanmış olunur. Son olarak, PSI4 Hessian'ı ve titreşim frekanslarını hesaplamak için perturb geometrilerden bilgileri

toplar. Heksamerler için, CCSD(T)/a4DZ seviyesindeki tek nokta enerji hesaplamaları birkaç gün sürerken, CCSD(T)/a4TZ seviyesindeki pentamerler için ~1 hafta almaktadır. Heksamer kümeleri için kullandığımız yaklaşık enerji denklemlerinin [Eşitlik (891)] doğruluğunu test etmek için, gerçek a4TZ enerjilerine sahip olduğumuz pentamer kümelerine uyguladık. Pentamer kümelerinde bu yaklaşımı kullandığımız zaman, CCSD(T) yöntemi için bağıl enerjiler, VDE'ler ve bağlanma enerjilerinden elde edilen ortalama sapmalar sırasıyla 0,1, $\leq 0, 1$ ve 0,1 kcal mol⁻¹ dir. Dolayısıyla, bu sonuçlar, heksamer kümeleri için uyguladığımız yaklaşımın [Eşitlik (891)] oldukça güvenli olduğunu göstermektedir.

Son olarak, bu çalışmada DF-OLCCD denklemlerinin yakınsamasında, önemli bir sayısal problem gözlemlemiş bulunmaktayız. Bozkaya vd. tarafından geliştirilen, optimize-orbitalli algoritmalar [28, 32], dikkate alınan kimyasal sistemler için herhangi bir güçlük çekmeden yakınsama gerçekleştirmektedirler. Dahası, başlangıçtaki SCF orbitallerinin, DF-OLCCD için sadece bir başlangıç tahmini olduğunu belirtmek gerekmektedir. Bu nedenle, açık kabuklu yapılar için, kısıtlamasız HF (UHF) ve kısıtlanmış açık kabuklu HF (ROHF) orbitallerinin yanı sıra, başlangıç tahmini olarak Kohn-Sham (KS) orbitalleri de kullanılabilir. Bununla birlikte, çalışma kapsamında CCSD(T) hesaplamalarındaki UHF iterasyonlarında bazı yakınsama problemleri ile karşılaşılmıştır. Bu problemler, farklı başlangıç tahminleri ve SCF algoritmaları kullanılarak aşılabilmiştir. Ayrıca, bu çalışmaya özel olarak geliştirilen baz setlerimizde, önemli ölçüde doğrusal bağımlılık (*linear dependency*) problemleri gözlemlenmiştir. SCF prosedüründe, doğrusal bağımlılık problemleri nedeniyle, sadece bir veya iki baz fonksiyonu ortadan kalkmıştır.

3.7. Bağlanmış Küme Yöntemlerinin Katyonik Su Kümelerine Uygulanması

3.7.1. Katyonik Su Kümeleri

Katyonik su kümelerinin $[(H_2O)_n^+, n = 2-6]$ geometri optimizasyonları ve harmonik titreşim frekansı hesaplamaları DF-OLCCD yöntemi kullanılarak gerçekleştirilmiştir [40]. Bu tez çalışması kapsamında göz önüne alınan katyonik su kümeleri, tahminlerimizin yanı sıra daha önceden yayınlanmış olan yapılara dayalı olarak araştırılmıştır. Bu amaçla, Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu ikiye yarılmış baz seti (aug-cc-pVDZ, aDZ olarak gösterilir) kullanılmıştır [184, 185]. Ayrıca, optimize edilmiş geometriler için tek nokta enerjileri (SPE'ler) CCSD(T) yöntemi ile hesaplanmıştır. SPE hesaplamalarında, Dunning'in korelasyon uyumlu, polarize, değerlik kabuğu üçe ve dörde yarılmış baz setleri (aug-cc-pVTZ ve aug-cc-pVQZ) kullanılmıştır [184, 185]. Ana baz setleri için (aug-cc-pVXZ), referans ve korelasyon enerjilerinde sırasıyla, aug-cc-pVXZ-JKFIT [186] ve aug-cc-pVXZ-RI [187] yardımcı baz seti çiftleri kullanılmıştır. Ayrıca, toplam enerjiler, tam baz seti (CBS) limitine extrapole edilmiştir [190, 191]. Halkier vd. nin [192] çalışmasında, iki noktalı ekstrapolasyon tekniği aşağıdaki şekilde kullanılmıştır.

$$E_X^{HF} = E_{CBS}^{HF} + Ce^{-\alpha X}$$
(889)

$$E_X^{corr} = E_{CBS}^{corr} + DX^{-3}$$
(890)

Burada, E_{CBS}^{HF} ve E_{CBS}^{corr} sırasıyla CBS seviyesinde Hartree–Fock (HF) ve korelasyon enerjileridir. C ve D fit etme parametreleri ve X de aug-cc-pVXZ baz setlerinin sayısıdır. α bileşeni, önerildiği üzere 1,63 olarak alınmıştır [192]. İki nokta ekstrapolasyon prosedürü için aug-cc-pVTZ ve aug-cc-pVQZ baz setleri kullanılmıştır. Heksamerler için CCSD(T)/aug-cc-pVTZ ve CCSD(T)/aug-cc-pVQZ enerjileri önceki çalışmamızda olduğu gibi [84], aşağıdaki denklemlerden elde edilmiştir:

$$E_{CCSD(T)/aTZ} = E_{CCSD(T)/aDZ} + \delta_{MP2}^{TD},$$
(891)

ve

$$E_{CCSD(T)/aQZ} = E_{CCSD(T)/aTZ} + \delta_{MP2}^{QT}, \qquad (892)$$

burada

$$\delta_{MP2}^{TD} = E_{MP2/aTZ} - E_{MP2/aDZ}, \tag{893}$$

$$\delta_{MP2}^{QT} = E_{MP2/aQZ} - E_{MP2/aTZ}.$$
(894)

Pentamerler için CCSD(T)/aTZ enerjileri hesaplanmış, CCSD(T)/a4QZ enerjileri Eşitlik (892) ile elde edilmiştir. Her küme için, farklı kümelerin bağıl enerjileri CCSD(T)/CBS seviyesinde hesaplanmıştır. Ayrıca, tüm yapıların bağlanma enerjisi aşağıdaki denkleme göre hesaplanmıştır.

$$(n-1)\mathrm{H}_2\mathrm{O} + \mathrm{H}_2\mathrm{O}^+ \longrightarrow (\mathrm{H}_2\mathrm{O})_n^+$$
 (895)

Hem bağıl hem de bağlanma enerjileri, DF-OLCCD/aDZ seviyesinde sıfır noktası titreşim enerjileri (ZPVE) düzeltmelerini içermektedir. Her bir yapı için, dikey bağlanma enerjileri (*Vertical Attachment Energies*, VAE) de hesaplanmıştır.

$$VAE = E(optimized \ cation) - E(neutral \ at \ optimized \ cation \ geometry).$$
(896)

Açık kabuklu kimyasal yapılar için, kısıtlamasız (*Unrestricted*) orbitaller kullanılmıştır. Bütün hesaplamalar, PSI4 program paketi ile gerçekleştirilmiştir.

3.7.2. Dimer Katyonları

Yarı-bağlı (*Hemi-Bonded*, HB) ve proton-transferli (*Proton-Transferred*, PT) formlarda 2 katyonik dimer, DF-OLCCD/aDZ seviyesinde optimize edilmiştir. Bu tez çalışması kapsamında elde edilen yapılar, önceki teorik çalışmalarla uyumludur [138, 149, 152]. Dimerlerin CBS seviyesindeki bağıl enerjileri Çizelge 3.21.'da sunulmuştur. Dimerlere ait optimize edilmiş geometriler Şekil 3.38.'da gösterilmiştir. Hesaplanan r_{OH} değerleri 0,983-1,047 Å arasında değişmektedir ve nötr H₂O yapısından 0,025-0,089 Å daha uzundur [224]; hesaplanan bağ açıları da 105,1°-113,1° arasındadır ve H₂O için 104,478° değerinden 0,62°-8,62° kadar sapma gösterir. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri dimer-1 ve dimer-2 için sırasıyla 2,050 ve 1,491 Å'dir.

Şekil 3.37. DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen monomer katyonunun geometrisi.

(a) dimer-1 ($\Delta E = 8, 7 \text{ kcal mol}^{-1}$)

(b) dimer-2 ($\Delta E = 0, 0$ kcal mol⁻¹)

Şekil 3.38. Dimer katyonlarının DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen geometrileri ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Dimer-1	7,5	12,6	9,1	11,0	8,7
Dimer-2	0,0	0,0	0,0	0,0	0,0
MAE	0,6	1,9	0,2	1,2	

Çizelge 3.21. Dimer kümeleri için CBS seviyesinde hesaplanan bağıl enerjiler (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Katyonik dimer kümelerinin (Çizelge 3.21.) CCSD(T)/CBS seviyesindeki bağıl enerjileri 8,7 kcal mol⁻¹ kadar farklılık göstermektedir ki bu değer Schaefer vd. [149] tarafından CCSD(T)/aug-cc-pVQZ seviyesinde bildirilen 8,8 kcal mol⁻¹ değeri ile çok iyi bir uyum içindedir.

Önceki çalışmalarda tartışıldığı gibi [138, 149, 152], PT formu (dimer-2) HB formundan (dimer-1) büyük ölçüde daha kararlıdır. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre ortalama mutlak hataları (MAE) 0,6 (MP2), 1,9 (MP3), 0,2 (DF-OLCCD) ve 1,2 (CCSD) kcal mol⁻¹ dir. Göz önüne alınan tüm yöntemlerin sonuçları, CCSD(T) yöntemi ile karşılaştırıldığında oldukça doğrudur. Özellikle DF-OLCCD yönteminin performansı dikkat çekicidir. Önceki çalışmalarda tartışıldığı gibi [40, 84], açık kabuklu sistemler için DF-OLCCD yönteminin sonuçları önemli ölçüde doğrudur.

Katyonik dimerler için VAE değerleri Çizelge 3.22.'de sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri dimer-1 ve dimer-2 için sırasıyla 220,9 ve 194,9 kcal mol⁻¹ dir. Nötr su dimeri için deneysel adyabatik [226] ve dikey [227] iyonlaşma potansiyelleri (*Adiabatic Ionization Potential*, AIP ve *Vertical Ionization Potential*, VIP) sırasıyla 249,3-251,4 ve 279,0 kcal mol⁻¹ olarak bildirilmiştir. Bu çalışmada, katyon yapıları optimize edildiği için AIP ve VIP yerine VAE değeri hesaplanmıştır. Bu değerler arasındaki ilişki VIP >AIP >VAE şeklindedir. Deneysel AIP ve VIP değerleri arasındaki fark 26,6-29,7 kcal mol⁻¹ arasındadır. Buradan, AIP ve VAE arasındaki farkın ~30 kcal mol⁻¹ olacağı kabaca tahmin edilebilir, bu da VAE için ~220 kcal mol⁻¹, 220,9 ve 194,9 kcal mol⁻¹ olan hesaplama sonuçlarımızla uyumludur. Dimer-1 HB formunda olduğundan, geometrisi PT formunda olan dimer-2'ye kıyasla nötr dimere daha yakındır. Bu nedenle, dimer-2 ile karşılaştırıldığında VAE değeri, tahmin edilen değere daha yakındır. Göz önüne alınan diğer yöntemlerin, CCSD(T) yöntemine göre hesaplanan MAE değerleri 4,7 (MP2), 2,7 (MP3), 2,1 (DF-OLCCD) ve 2,2 (CCSD) kcal mol⁻¹ dir. DF-OLCCD ve CCSD yöntemlerinin performansları, göz önüne alınan diğer yöntemlerden oldukça iyidir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Dimer-1	224,0	221,1	219,6	220,4	220,9
Dimer-2	201,2	189,6	192,1	191,1	194,9
MAE	4,7	2,7	2,1	2,2	

Çizelge 3.22. Dimer kümeleri için CBS seviyesinde hesaplanan VAE değerleri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Son olarak, bağlanma enerjileri Eşitlik (895)'e göre hesaplanarak, Çizelge 3.23. de sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, hidrojen bağı etkileşimleri nedeniyle katyonik dimer kümelerinde güçlü bağlanmalara işaret etmektedir. Katyonik dimerler için,

CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri dimer-1 ve dimer-2 için sırasıyla –33,2 ve –43,5 kcal mol⁻¹ dir. Su molekülleri başına bağlanma enerjileri dimer-1 ve dimer-2 için sırasıyla –16,6 ve –21,8 kcal mol⁻¹ dir, bu da bağlanmanın PT formu için daha güçlü olduğunu gösterir. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre MAE değerleri 0,6 (MP2), 1,9 (MP3), 0,3 (DF-OLCCD) ve 1,4 (CCSD) kcal mol⁻¹ dir. DF-OLCCD yönteminin performansı (MAE=0,3 kcal mol⁻¹), diğer yöntemlerden önemli ölçüde daha iyidir. CCSD yönteminin performansının MP2'den daha iyi olmaması şaşırtıcıdır. Bu sonuç, DF-OLCCD yönteminin açık kabuklu sistemler için oldukça doğru moleküler özellikler sağladığına dair önceki gözlemlerimizle tutarlıdır [40, 84].

Çizelge 3.23. Dimer kümeleri için CBS seviyesinde hesaplanan bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Dimer-1	-34,2	-29,9	-33,3	-30,7	-33,2
Dimer-2	-43,3	-44,0	-44,0	-43,3	-43,5
MAE	0,6	1,9	0,3	1,4	

3.7.3. Trimer Katyonları

Çalışmanın bu kısmında, DF-OLCCD/aDZ seviyesinde 8 adet katyonik trimer kümesi optimize edilmiştir. Bu kümelerin CBS seviyesindeki bağıl enerjileri Çizelge 3.24.'da sunulmuştur. Katyonik trimer kümelerinin birkaçına ait optimize edilmiş geometriler Şekil 3.39.'de gösterilirken, diğer kümelerin geometrileri için EK 8'ya bakılabilir.

CCSD(T)/CBS sonuçlarına göre, en düşük enerjili küme trimer-8 olarak belirlenmiştir. Hesaplanan r_{OH} değerleri 0,968–1,049Å arasındadır ve nötr H₂O'dan 0,010-0,091Å daha uzundur [224]; hesaplanan bağ açıları ise 107,2°–113,0°'dır ve H₂O için 104,478° olan değerden 2,72-8,52° sapma göstermektedir. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,435-1,630Å arasındadır.

Şekil 3.39. DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı trimer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri.

Çizelge 3.24. Trimer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol^{-1} cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Trimer-1	0,1	0,1	0,1	0,1	0,1
Trimer-2	0,3	0,3	0,3	0,3	0,3
Trimer-3	0,1	0,1	0,1	0,1	0,1
Trimer-4	0,2	0,2	0,2	0,2	0,2
Trimer-5	0,3	0,3	0,3	0,3	0,3
Trimer-6	10,7	15,9	11,9	14,4	11,7
Trimer-7	14,7	18,1	11,2	13,3	10,8
Trimer-8	0,0	0,0	0,0	0,0	0,0
MAE	0,6	1,4	0,1	0,6	

Katyonik trimer kümelerinin (Çizelge 3.24.) CCSD(T)/CBS seviyesindeki bağıl enerjileri 11,7 kcal mol⁻¹ kadar farklılık göstermektedir. En büyük bağıl enerjiler HB formunda olan trimer-6 ve trimer-7 (10,8 ve 11,7 kcal mol⁻¹) için elde edilmiştir. Diğer tüm kümeler PT formundadır ve bağıl enerjileri 0,3 kcal mol⁻¹ kadar farklılık gösterir. Bu yapılar arasında farklı torsiyon açıları ve uzay yönelimleri gibi küçük geometrik farklılıklar vardır. Bir küme yapısının diğerlerinden farklı olup olmadığına karar vermek için nükleer itme enerjiler (*Nuclear Repulsion Energy*, NRE) dikkate alınıp, 0,001 toleransı kullanılmıştır. İki yapının NRE değerleri arasındaki fark 0,001'den büyükse, bunlar farklı yapılar olarak kabul edilmiştir. CCSD(T)/CBS seviyesinde, trimer-8 katyonu en düşük enerjili kümedir. Göz önüne alınan diğer yöntemlerin, CCSD(T) yöntemine göre MAE değerleri 0,6 (MP2), 1,4 (MP3), 0,1 (DF-OLCCD) ve 0,6 (CCSD) kcal mol⁻¹ dir. CCSD(T) ile karşılaştırıldığında, tüm yöntemlerin sonuçları oldukça doğrudur. Ancak, DF-OLCCD yönteminin performansı dikkat çekicidir. Önceki çalışmalarda tartışıldığı gibi [40, 84], açık kabuklu sistemler için DF-OLCCD yönteminin sonuçları büyük ölçüde doğrudur.

Daha sonra, Çizelge 3.25.'de sunulan katyonik trimer kümelerinin VAE değerleri ele alınabilir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri PT ve HB kümeleri için sırasıyla 169,8–170,5 kcal mol⁻¹ ve 195,7–197,8 kcal mol⁻¹ dir. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre MAE değerleri 6,4 (MP2), 4,8 (MP3), 2,6 (DF-OLCCD) ve 3,1 (CCSD) kcal mol⁻¹ dir. DF-OLCCD yönteminin performansı, dikkate alınan diğer yöntemlerden oldukça iyidir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Trimer-1	176,6	164,4	167,0	166,0	170,0
Trimer-2	176,4	164,2	166,9	165,9	169,8
Trimer-3	176,8	164,6	167,3	166,2	170,2
Trimer-4	176,5	164,2	166,9	165,9	169,9
Trimer-5	176,6	164,4	167,1	166,1	170,1
Trimer-6	201,1	194,1	196,4	197,3	197,8
Trimer-7	203,9	195,1	194,2	194,9	195,7
Trimer-8	177,1	164,8	167,5	166,5	170,5
MAE	6,4	4,8	2,6	3,1	

Çizelge 3.25. Trimer kümeleri için CBS seviyesinde dikey bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Son olarak, Eşitlik (895)'e göre değerlendirilen bağlanma enerjileri dikkate alınabilir. Çizelge 3.26., göz önüne alınan katyonik trimerler için bağlanma enerjilerini göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, hidrojen bağı etkileşimleri nedeniyle katyonik trimer kümelerinde güçlü bağlanmalara işaret etmektedir. Katyonik trimerler için CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri -54,1 ila -68,3 kcal mol⁻¹ arasında değişmektedir. Su molekülleri başına ortalama bağlanma enerjisi -21,6 kcal mol⁻¹ dir. Dikkate alınan diğer yöntemlerin CCSD(T) yöntemine göre MAE değerleri 0,7 (MP2), 1,7 (MP3), 0,7 (DF-OLCCD) ve 1,2 (CCSD) kcal mol⁻¹ dir. DF-OLCCD ve MP2 yöntemlerinin performansları (MAE=0,7 kcal mol⁻¹) MP3 ve CCSD yöntemlerinden biraz daha iyidir. CCSD yönteminin performansının MP2'den daha iyi olmaması biraz şaşırtıcıdır. Bu sonuç, DF-OLCCD yönteminin açık kabuklu sistemler için oldukça doğru moleküler özellikler sağladığına dair önceki gözlemlerimizle tutarlıdır [40, 84].

Çizelge 3.26. Trimer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Trimer-1	-68,3	-68,9	-69,1	-67,7	-68,3
Trimer-2	-68,0	-68,7	-68,9	-67,5	-68,1
Trimer-3	-68,2	-68,9	-69,1	-67,7	-68,3
Trimer-4	-68,0	-68,7	-68,9	-67,5	-68,1
Trimer-5	-67,9	-68,6	-68,8	-67,4	-68,0
Trimer-6	-55,1	-50,5	-54,7	-50,8	-54,1
Trimer-7	-51,7	-49,0	-56,1	-52,6	-55,7
Trimer-8	-68,3	-68,9	-69,1	-67,7	-68,3
MAE	0,7	1,7	0,7	1,2	

3.7.4. Tetramer Katyonları

DF-OLCCD/aDZ seviyesinde 17 katyonik tetramer kümesi optimize edilmiştir. Bu kümelerin CBS seviyesindeki bağıl enerjileri Çizelge 3.27.'de sunulmuştur. Birkaç tetramer kümesinin optimize edilmiş geometrisi Şekil 3.40.'de gösterilirken, diğer kümelerin geometrileri için EK 8'ya bakılabilir. CCSD(T)/CBS sonuçlarına göre, en düşük enerjili küme tetramer-9'dur. Hesaplanan r_{OH} değerleri 0,966–1,064 Å arasındadır ve nötr H₂O yapısından 0,008–0,106 Å daha uzundur [224]; hesaplanan

bağ açıları ise 105,0–115,1°'dir ve H₂O için 104,478° olan değerden 0,52-10,62° sapma gösterir [224]. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,395–2,403 Å arasındadır.

(c) tetramer-2 ($\Delta E = 8, 4 \text{ kcal mol}^{-1}$) (d) tetramer-14 ($\Delta E = 10, 6 \text{ kcal mol}^{-1}$)

Şekil 3.40. DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı tetramer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri.

Katyonik tetramer kümelerinin (Çizelge 3.27.) CCSD(T)/CBS seviyesindeki bağıl enerjileri 10,6 kcal mol⁻¹ kadar farklılık göstermektedir. En büyük bağıl enerjiler HB formunda olan tetramer-2 ve tetramer-14 (8,4 ve 10,6 kcal mol⁻¹) için elde edilmiştir. Diğer tüm kümeler PT formundadır ve bağıl enerjileri 4,8 kcal mol⁻¹ kadar farklılık gösterir. CCSD(T)/CBS seviyesinde, tetramer-9 katyonu en düşük enerjili kümedir. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre hesaplanan MAE değerleri 0,3 (MP2), 0,5 (MP3), 0,0 (DF-OLCCD) ve 0,3 (CCSD) kcal mol⁻¹ dir. Tüm yöntemlerin sonuçları CCSD(T) ile karşılaştırıldığında oldukça doğrudur. Ancak, DF-OLCCD yönteminin doğruluğu CCSD(T) ile karşılaştırıldığında çok daha iyidir.

Daha sonra, Çizelge 3.28.'te sunulan katyonik tetramer kümelerinin VAE değerleri ele alınabilir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri PT ve HB kümeleri için sırasıyla 141,3–160,0 kcal mol⁻¹ ve 177,2–192,7 kcal mol⁻¹ dir. Tetramer kümeleri için hesaplanan VAE değerleri, trimerler ve dimerler gibi daha küçük boyutlu kümelere kıyasla daha düşüktür; bu da katyonik tetramer kümelerinin elektron eksikliğinin daha küçük boyutlu kümelere kıyasla daha az olduğunu göstermektedir. Göz önüne alınan diğer yöntemlerin, CCSD(T) yöntemine göre hesaplanan MAE değerleri 6,8 (MP2), 5,6 (MP3), 3,0 (DF-OLCCD) ve 4,0 (CCSD) kcal mol⁻¹ dir. DF-OLCCD yönteminin performansı yine dikkate alınan diğer yöntemlerden daha iyidir.

Çizelge 3.27. Tetramer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol^{-1} cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Tetramer-1	3,2	3,4	3,2	3,4	3,2
Tetramer-2	8,1	9,4	8,4	9,3	8,4
Tetramer-3	2,2	2,5	2,4	2,5	2,4
Tetramer-4	0,1	0,2	0,1	0,2	0,1
Tetramer-5	0,1	0,1	0,1	0,1	0,1
Tetramer-6	3,2	3,4	3,2	3,4	3,2
Tetramer-7	3,2	3,4	3,3	3,4	3,2
Tetramer-8	0,1	0,1	0,1	0,1	0,1
Tetramer-9	0,0	0,0	0,0	0,0	0,0
Tetramer-10	3,2	3,3	3,2	3,3	3,2
Tetramer-11	2,2	2,4	2,3	2,5	2,3
Tetramer-12	4,3	4,7	4,5	4,7	4,4
Tetramer-13	4,7	5,0	4,8	5,1	4,8
Tetramer-14	14,5	17,1	11,2	12,9	10,6
Tetramer-15	3,3	3,5	3,3	3,5	3,3
Tetramer-16	2,4	2,7	2,6	2,7	2,6
Tetramer-17	4,3	4,6	4,4	4,6	4,4
MAE	0,3	0,5	0,0	0,3	

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Tetramer-1	167,0	154,0	156,8	155,8	160,0
Tetramer-2	198,2	188,5	190,3	189,4	192,7
Tetramer-3	150,4	137,4	140,3	139,3	143,5
Tetramer-4	163,4	151,0	153,8	152,8	156,8
Tetramer-5	163,3	150,9	153,6	152,6	156,7
Tetramer-6	168,0	155,0	157,8	156,8	161,1
Tetramer-7	166,6	153,5	156,4	155,4	159,6
Tetramer-8	163,4	151,0	153,7	152,7	156,8
Tetramer-9	163,4	151,0	153,7	152,7	156,7
Tetramer-10	167,0	153,9	156,7	155,7	160,0
Tetramer-11	150,1	137,1	140,0	139,0	143,1
Tetramer-12	164,2	151,8	154,6	153,5	157,7
Tetramer-13	164,7	152,2	155,1	153,9	158,1
Tetramer-14	185,7	178,8	175,7	175,9	177,2
Tetramer-15	167,0	153,9	156,7	155,7	160,0
Tetramer-16	148,3	135,2	138,1	137,1	141,3
Tetramer-17	163,9	151,4	154,2	153,1	157,3
MAE	6,8	5,6	3,0	4,0	

Çizelge 3.28. Tetramer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Son olarak, Eşitlik (895)'e göre değerlendirilen bağlanma enerjileri dikkate alınabilir. Çizelge 3.29.'de göz önüne alınan katyonik tetramerler için bağlanma enerjileri sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, hidrojen bağı etkileşimleri nedeniyle katyonik tetramer kümelerinde güçlü bağlanmalara işaret etmektedir. Katyonik tetramerler için CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri -75, 2 ile -87, 2 kcal mol⁻¹ arasında değişmektedir. Su molekülleri başına ortalama bağlanma enerjisi -19, 9 kcal mol⁻¹ dir. Göz önüne alınan diğer yöntemlerin, CCSD(T) yöntemine göre MAE değerleri 0,3 (MP2), 0,8 (MP3), 1,1 (DF-OLCCD) ve 1,2 (CCSD) kcal mol⁻¹ dir. MP2 yönteminin performansı (MAE=0,3 kcal mol⁻¹) diğer yöntemlerden belirgin bir şekilde daha iyidir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Tetramer-1	-83,7	-84,3	-84,9	-82,7	-83,8
Tetramer-2	-79,5	-79,0	-80,4	-77,6	-79,4
Tetramer-3	-85,2	-85,7	-86,3	-84,2	-85,2
Tetramer-4	-86,9	-87,6	-88,1	-86,1	-87,0
Tetramer-5	-87,0	-87,8	-88,3	-86,3	-87,1
Tetramer-6	-83,4	-84,0	-84,6	-82,4	-83,5
Tetramer-7	-83,7	-84,3	-84,9	-82,7	-83,8
Tetramer-8	-87,0	-87,7	-88,2	-86,2	-87,1
Tetramer-9	-87,1	-87,9	-88,3	-86,3	-87,2
Tetramer-10	-83,8	-84,4	-85,0	-82,8	-83,9
Tetramer-11	-85,3	-85,8	-86,3	-84,2	-85,2
Tetramer-12	-82,9	-83,3	-84,0	-81,7	-82,9
Tetramer-13	-82,5	-82,9	-83,6	-81,4	-82,5
Tetramer-14	-71,2	-69,4	-75,7	-72,0	-75,2
Tetramer-15	-83,5	-84,1	-84,8	-82,6	-83,6
Tetramer-16	-85,1	-85,6	-86,2	-84,0	-85,0
Tetramer-17	-83,0	-83,4	-84,1	-81,8	-83,0
MAE	0,3	0,8	1,1	1,2	

Çizelge 3.29. Tetramer kümeleri için CBS seviyesinde bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

3.7.5. Pentamer Katyonları

Bu çalışma kapsamında, DF-OLCCD/aDZ seviyesinde 23 katyonik pentamer kümesi optimize edilmiştir. Bu kümelerin CBS seviyesindeki bağıl enerjileri Çizelge 3.30.'te rapor edilmiştir. Seçilen birkaç pentamer kümesinin optimize edilmiş geometrisi Şekil 3.41.'de gösterilirken, diğer kümelerin geometrileri için EK 8'ya bakılabilir. CCSD(T)/CBS sonuçlarına göre, en düşük enerjili küme pentamer-7'dir. Hesaplanan r_{OH} değerleri 0,965–1,104 Å arasındadır ve nötr H₂O'dan 0,007–0,146 Å daha uzundur [224]; hesaplanan bağ açıları ise 104,1°-115,1°'dir ve H₂O için 104,478° olan değerden 0,38°-11,02° sapma gösterir. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,322–2,258 Å arasındadır.

(c) pentamer-12 ($\Delta E = 3, 4 \text{ kcal mol}^{-1}$)

(d) pentamer-2 ($\Delta E = 7, 3 \text{ kcal mol}^{-1}$)

Şekil 3.41. DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı pentamer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri.

Katyonik pentamer kümelerinin (Çizelge 3.30.) CCSD(T)/CBS seviyesindeki bağıl enerjileri 7,3 kcal mol⁻¹ kadar farklılık göstermektedir. En büyük bağıl enerji pentamer-2 için elde edilmiştir (7,3 kcal mol⁻¹). CCSD(T)/CBS seviyesinde, pentamer-7 katyonu en düşük enerjili kümedir. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre MAE değerleri 0,1 (MP2), 0,3 (MP3), 0,3 (DF-OLCCD) ve 0,3 (CCSD) kcal mol⁻¹ dir. Tüm yöntemlerin sonuçları CCSD(T) ile karşılaştırıldığında oldukça doğrudur.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Pentamer-1	1,3	1,5	1,4	1,5	1,4
Pentamer-2	7,3	8,0	7,1	8,0	7,3
Pentamer-3	5,3	5,7	5,0	5,8	5,3
Pentamer-4	4,6	5,1	4,7	5,1	4,7
Pentamer-5	3,2	3,7	3,3	3,8	3,3
Pentamer-6	1,1	1,2	1,1	1,2	1,1
Pentamer-7	0,0	0,0	0,0	0,0	0,0
Pentamer-8	1,1	1,3	1,3	1,3	1,2
Pentamer-9	1,1	1,3	1,2	1,3	1,2
Pentamer-10	5,2	5,7	4,9	5,8	5,2
Pentamer-11	3,1	3,6	3,5	3,6	3,4
Pentamer-12	3,6	3,8	7,4	3,8	3,4
Pentamer-13	1,2	1,4	1,3	1,4	1,3
Pentamer-14	1,1	1,3	1,3	1,3	1,2
Pentamer-15	6,7	7,3	6,4	7,3	6,7
Pentamer-16	3,1	3,5	3,4	3,6	3,3
Pentamer-17	0,1	0,1	0,1	0,1	0,1
Pentamer-18	1,2	1,4	1,3	1,4	1,2
Pentamer-19	0,0	0,0	0,0	0,0	0,0
Pentamer-20	2,2	2,5	1,8	2,5	2,1
Pentamer-21	2,5	2,7	2,1	2,7	2,3
Pentamer-22	1,1	1,3	1,3	1,3	1,2
Pentamer-23	6,6	7,3	6,4	7,3	6,6
MAE	0,1	0,3	0,3	0,3	

Çizelge 3.30. Pentamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Çizelge 3.31.'da sunulan katyonik pentamer kümeleri için CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri incelendiğinde, 118,5–165,5 kcal mol⁻¹ aralığında olduğu görülmektedir. Elde edilen VAE değerleri, daha küçük boyutlu kümelere kıyasla (dimer, trimer, vb.) daha düşüktür, bu da katyonik pentamer kümelerinin elektron eksikliğinin daha küçük boyutlu kümelere kıyasla daha az olduğunu göstermektedir. Göz önüne alınan diğer yöntemlerin, CCSD(T) yöntemine göre hesaplanan

MAE değerleri 6,7 (MP2), 6,1 (MP3), 3,1 (DF-OLCCD) ve 4,2 (CCSD) kcal mol⁻¹ dir. DF-OLCCD

yönteminin performansı, dikkate alınan diğer yöntemlerden belirgin şekilde daha iyidir.

Çizelge 3.31. Pentamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol^{-1} cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Pentamer-1	158,1	145,6	148,4	147,4	151,4
Pentamer-2	172,0	159,5	162,4	161,2	165,5
Pentamer-3	156,3	143,0	146,2	145,1	149,6
Pentamer-4	136,1	122,9	125,8	124,8	129,1
Pentamer-5	153,5	140,5	143,3	142,3	146,5
Pentamer-6	159,5	146,7	149,7	148,6	152,9
Pentamer-7	143,1	130,0	132,9	131,9	136,1
Pentamer-8	125,2	112,7	115,4	114,5	118,5
Pentamer-9	134,0	121,4	124,2	123,2	127,3
Pentamer-10	167,4	154,1	157,2	156,1	160,6
Pentamer-11	170,8	157,6	160,6	159,6	163,8
Pentamer-12	162,8	149,6	156,8	151,7	156,1
Pentamer-13	129,0	116,4	119,2	118,2	122,3
Pentamer-14	134,1	121,6	124,3	123,4	127,4
Pentamer-15	161,5	149,0	151,9	150,7	155,0
Pentamer-16	147,2	134,1	137,0	136,1	140,3
Pentamer-17	164,6	151,4	154,4	153,4	157,6
Pentamer-18	156,9	144,3	147,1	146,1	150,2
Pentamer-19	163,6	150,5	153,4	152,5	156,6
Pentamer-20	151,5	139,0	141,8	140,8	144,9
Pentamer-21	154,5	141,8	144,7	143,6	147,9
Pentamer-22	151,2	138,7	141,5	140,5	144,5
Pentamer-23	141,1	128,6	131,4	130,3	134,6
MAE	6,7	6,1	3,1	4,2	

Son olarak, Eşitlik (895)'e göre değerlendirilen bağlanma enerjileri dikkate alınabilir. Çizelge 3.32.'de göz önüne alınan katyonik pentamerler için bağlanma enerjileri sunulmuştur. CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri, hidrojen bağı etkileşimleri nedeniyle katyonik pentamer

kümelerinde güçlü bağlanmalara işaret etmektedir. Katyonik pentamerler için CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri -92, 6 ila -100, 7 kcal mol⁻¹ arasında değişmektedir. Su molekülleri başına ortalama bağlanma enerjisi -19, 6 kcal mol⁻¹ dir. Dikkate alınan diğer yöntemlerin CCSD(T) yöntemine göre hesaplanan MAE değerleri 0,1 (MP2), 0,3 (MP3), 1,6 (DF-OLCCD) ve 1,5 (CCSD) kcal mol⁻¹ dir. MP2 yönteminin performansı (MAE=0,1 kcal mol⁻¹) diğer yöntemlere göre yine oldukça iyidir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Pentamer-1	-99,5	-99,9	-100,9	-98,1	-99,5
Pentamer-2	-92,6	-92,6	-94,3	-90,7	-92,6
Pentamer-3	-94,6	-94,7	-96,4	-92,8	-94,6
Pentamer-4	-95,9	-96,0	-97,3	-94,2	-95,8
Pentamer-5	-97,8	-97,9	-99,2	-96,0	-97,6
Pentamer-6	-99,5	-100,1	-101,0	-98,2	-99,5
Pentamer-7	-100,7	-101,3	-102,2	-99,5	-100,7
Pentamer-8	-99,9	-100,4	-101,3	-98,5	-99,9
Pentamer-9	-99,9	-100,4	-101,3	-98,5	-99,9
Pentamer-10	-94,6	-94,8	-96,4	-92,9	-94,6
Pentamer-11	-98,1	-98,3	-99,3	-96,4	-97,9
Pentamer-12	-96,4	-96,9	-94,2	-95,1	-96,6
Pentamer-13	-99,7	-100,1	-101,0	-98,2	-99,6
Pentamer-14	-99,9	-100,3	-101,3	-98,5	-99,8
Pentamer-15	-93,0	-93,1	-94,8	-91,2	-93,1
Pentamer-16	-98,1	-98,3	-99,3	-96,4	-97,9
Pentamer-17	-100,5	-101,2	-102,0	-99,3	-100,6
Pentamer-18	-99,7	-100,2	-101,1	-98,3	-99,7
Pentamer-19	-100,6	-101,3	-102,1	-99,4	-100,7
Pentamer-20	-97,4	-97,8	-99,3	-96,0	-97,6
Pentamer-21	-97,0	-97,5	-99,0	-95,6	-97,2
Pentamer-22	-99,8	-100,2	-101,2	-98,4	-99,8
Pentamer-23	-93,1	-93,2	-94,9	-91,3	-93,2
MAE	0,1	0,3	1,6	1,5	

Çizelge 3.32. Pentamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

3.7.6. Heksamer Katyonları

25 katyonik heksamer kümesi DF-OLCCD/aDZ seviyesinde optimize edilmiştir. Bu kümelerin CBS seviyesindeki bağıl enerjileri Çizelge 3.33.'de sunulmuştur. Seçilen birkaç heksamer kümesinin optimize edilmiş geometrisi Şekil 3.42.'de gösterilirken, diğer kümelerin geometrileri için EK 8'ya bakılabilir. CCSD(T)/CBS sonuçlarına göre, en düşük enerjili küme heksamer-4'tür. Hesaplanan r_{OH} değerleri 0,965–1,073Å arasındadır ve nötr H2O'dan 0,007–0,115 Å daha uzundur [224]; hesaplanan bağ açıları ise 104,0–113,3°'tür ve H₂O için 104,478° olan değerden 0,48–8,82° sapma gösterir. Ayrıca, hesaplanan OH hidrojen bağı mesafeleri 1,344–2,191Å arasındadır.

Şekil 3.42. DF-OLCCD/aug-cc-pVDZ seviyesinde optimize edilen bazı heksamer katyonları ve CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjileri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Heksamer-1	1,3	1,3	1,3	1,4	1,2
Heksamer-2	2,7	3,1	2,9	3,0	2,9
Heksamer-3	0,9	1,0	1,0	1,0	1,0
Heksamer-4	0,0	0,0	0,0	0,0	0,0
Heksamer-5	0,2	0,2	0,2	0,2	0,2
Heksamer-6	1,0	1,0	1,0	1,0	1,0
Heksamer-7	4,8	5,5	5,2	5,6	4,9
Heksamer-8	2,1	2,2	2,0	2,2	1,9
Heksamer-9	0,1	0,1	0,1	0,1	0,1
Heksamer-10	0,5	0,5	0,4	0,5	0,4
Heksamer-11	0,5	0,5	0,4	0,5	0,4
Heksamer-12	3,7	4,1	4,0	4,2	3,9
Heksamer-13	1,9	2,0	1,7	2,0	1,6
Heksamer-14	1,7	1,9	1,6	1,9	1,4
Heksamer-15	4,4	4,6	4,2	4,6	4,0
Heksamer-16	3,5	3,8	3,5	3,8	3,4
Heksamer-17	1,7	1,9	1,6	1,9	1,4
Heksamer-18	4,3	4,6	4,2	4,6	4,0
Heksamer-19	2,0	2,2	2,0	2,2	1,9
Heksamer-20	4,4	5,1	4,7	5,1	4,4
Heksamer-21	3,2	3,6	3,5	3,6	3,3
Heksamer-22	0,1	0,1	0,1	0,1	0,2
Heksamer-23	2,8	3,1	2,8	3,1	2,7
Heksamer-24	0,4	0,6	0,4	0,6	0,3
Heksamer-25	2,7	2,8	2,8	2,8	2,7
MAE	0,1	0,3	0,1	0,3	

Çizelge 3.33. Heksamer kümeleri için CBS seviyesinde bağıl enerjiler (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Katyonik heksamer kümelerinin (Çizelge 3.33.) CCSD(T)/CBS seviyesindeki bağıl enerjileri 4,9 kcal mol⁻¹ kadar farklılık göstermektedir. En büyük bağıl enerji heksamer-7 için elde edilmiştir (4,9 kcal mol⁻¹). CCSD(T)/CBS seviyesinde, heksamer-4 katyonu en düşük enerjili kümedir. Dikkate alınan diğer yöntemlerin CCSD(T) yöntemine göre hesaplanan MAE değerleri 0,1 (MP2), 0,3

(MP3), 0,1 (DF-OLCCD) ve 0,3 (CCSD) kcal mol⁻¹ dir. Tüm yöntemlerin sonuçları CCSD(T) ile karşılaştırıldığında oldukça doğrudur.

Çizelge 3.34.'da sunulan katyonik heksamer kümelerinin VAE değerleri ele alındığında, CCSD(T)/CBS seviyesinde hesaplanan bu değerlerin 121,9–153,7 kcal mol⁻¹ aralığında olduğu görülmektedir. Elde edilen VAE değerleri daha küçük boyutlu kümelere kıyasla daha düşüktür. Göz önüne alınan diğer yöntemlerin CCSD(T) yöntemine göre hesaplanan MAE değerleri 6,6 (MP2), 5,7 (MP3), 2,7 (DF-OLCCD) ve 3,2 (CCSD) kcal mol⁻¹ dir. DF-OLCCD yönteminin performansı yine bu kümeler için de diğer yöntemlerden daha iyidir.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Heksamer-1	155,3	143,5	145,9	145,4	148,6
Heksamer-2	150,1	138,8	141,3	140,7	143,7
Heksamer-3	141,8	130,2	132,9	132,2	135,5
Heksamer-4	136,2	124,3	126,9	126,4	129,5
Heksamer-5	137,0	125,1	127,7	127,2	130,3
Heksamer-6	128,5	116,2	119,1	118,4	121,9
Heksamer-7	139,4	127,4	130,0	129,5	132,7
Heksamer-8	147,6	136,1	138,8	138,1	141,4
Heksamer-9	152,7	140,9	143,4	142,9	146,1
Heksamer-10	154,9	143,0	145,6	145,0	148,2
Heksamer-11	156,0	144,3	146,7	146,2	149,3
Heksamer-12	154,4	142,5	145,0	144,5	147,6
Heksamer-13	153,5	141,6	144,2	143,7	146,9
Heksamer-14	160,3	148,4	150,9	150,4	153,6
Heksamer-15	149,5	138,0	140,7	140,0	143,3
Heksamer-16	146,0	134,6	137,3	136,5	139,8
Heksamer-17	160,4	137,4	151,0	150,4	153,7
Heksamer-18	153,0	141,5	144,2	143,5	146,8
Heksamer-19	145,1	133,1	135,7	135,2	138,3
Heksamer-20	151,2	139,2	141,8	141,3	144,6
Heksamer-21	157,1	145,3	147,8	147,3	150,4
Heksamer-22	136,8	124,9	127,5	127,0	130,1
Heksamer-23	137,6	125,5	128,4	127,8	131,2
Heksamer-24	139,9	127,9	130,4	129,9	133,1
Heksamer-25	142,3	130,7	133,4	132,7	136,0
MAE	6,6	5,7	2,7	3,2	

Çizelge 3.34. Heksamer kümeleri için CBS düzeyinde dikey bağlanma enerjileri (kcal mol^{-1} cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

Molekül	MP2	MP3	DF-OLCCD	CCSD	CCSD(T)
Heksamer-1	-111,0	-110,8	-110,3	-108,9	-110,8
Heksamer-2	-110,7	-110,1	-109,6	-108,2	-110,2
Heksamer-3	-111,9	-111,6	-111,1	-109,6	-111,5
Heksamer-4	-113,6	-113,4	-112,8	-111,4	-113,3
Heksamer-5	-112,8	-112,6	-112,0	-110,6	-112,4
Heksamer-6	-111,9	-111,6	-111,0	-109,7	-111,5
Heksamer-7	-107,4	-106,4	-106,2	-104,4	-106,9
Heksamer-8	-110,3	-109,9	-109,5	-107,9	-110,1
Heksamer-9	-112,7	-112,5	-111,9	-110,5	-112,4
Heksamer-10	-111,8	-111,6	-111,1	-109,6	-111,6
Heksamer-11	-111,8	-111,5	-111,0	-109,6	-111,6
Heksamer-12	-109,1	-108,5	-108,0	-106,5	-108,6
Heksamer-13	-109,4	-109,1	-108,8	-107,2	-109,4
Heksamer-14	-109,3	-109,0	-108,7	-107,0	-109,3
Heksamer-15	-106,4	-105,9	-105,8	-104,0	-106,5
Heksamer-16	-108,5	-108,0	-107,7	-106,1	-108,3
Heksamer-17	-109,3	-109,0	-108,7	-107,0	-109,3
Heksamer-18	-106,0	-105,5	-105,3	-103,5	-106,0
Heksamer-19	-110,2	-109,7	-109,3	-107,7	-109,9
Heksamer-20	-107,8	-106,9	-106,7	-104,9	-107,5
Heksamer-21	-109,8	-109,2	-108,7	-107,2	-109,4
Heksamer-22	-112,8	-112,6	-112,0	-110,6	-112,5
Heksamer-23	-108,8	-108,4	-108,0	-106,4	-108,6
Heksamer-24	-111,3	-111,0	-110,5	-109,0	-111,1
Heksamer-25	-110,3	-110,0	-109,4	-108,0	-109,9
MAE	0,3	0,2	0,6	2,1	

Çizelge 3.35. Heksamer kümeleri için CBS düzeyinde bağlanma enerjileri (kcal mol⁻¹ cinsinden) ve CCSD(T) yöntemine göre hesaplanan MAE değerleri.

4. SONUÇ

Bu tez çalışması kapsamında, başlangıçta UHF referanslı DF-CCSD ve DF-OCCD yöntemleri geliştirilmiş, sonrasında standart yöntemlerden MP2, MP3, MP2.5, CCD ve CCSD yöntemleri; optimize orbitalli yöntemlerden: OMP2, OMP3, OMP2.5 ve OCCD yöntemleri için hareket denklemi (EOM) formülasyonları geliştirilmiştir. Burada geliştirilen EOM-CC, EOM-OO-CC, EOM-MP ve EOM-OO-MP yöntemlerinin, hem kısıtlamalı hem de kısıtlamasız HF referansları için gerekli formülasyon sunulmuştur.

Moleküler integrallerden kaynaklanan hesaplama zorluklarını (bellekte tutma, diskte saklama vb.) aşmak için son dönemlerdeki modern integral yaklaştırma yöntemlerinden olan yoğunluk uyarlaması (DF) tekniği kullanılmıştır. Geliştirilen yoğunluk uyarlanmış standart EOM yöntemleri: DF-EOM-MP2, DF-EOM-MP3, DF-EOM-MP2.5, DF-EOM-CCD ve DF-EOM-CCSD olarak; EOM-OO yöntemleri: DF-EOM-OMP2, DF-EOM-OMP3, DF-EOM-OMP3, DF-EOM-OMP2.5 ve DF-EOM-OCCD olarak adlandırılmıştır. Tez çalışması kapsamında geliştirilen tüm yöntemler C++ programlama dilinde etkin bir şekilde programlanıp MacroQC [74] ab initio program paketine dahil edilmiş ve tüm dünyadaki kullanıcılara ücretsiz olarak sunulmuştur.

Daha sonra, geliştirilen DF-OCCD/CCSD, EOM-MP, EOM-CC ve EOM-OO yöntemleri zorluk derecesi yüksek kimyasal sistemlere uygulanmıştır. Tez çalışması kapsamında gerçekleştirilen uygulama çalışmaları, yöntemlerin doğrulunu ve etkinliklerini incelemek için faydalı olmasının yanı sıra, ilgili moleküler sistemlerin doğasının anlaşılmasını da sağlamaktadır. Bu amaçla, açık ve kapalı kabuklu türlerden oluşan farklı kimyasal sistemler tez çalışması kapsamında göz önüne alınmıştır. Bu moleküler sistemlerin tamamı için optimize geometriler ekte sunulmuştur.

Burada geliştirilen yöntemlerin doğruluğunu ve etkinliğini incelemek, ayrıca ilgili kimyasal sistemlerin moleküler özelliklerini aydınlatmak amacıyla birçok test seti dikkate alınmıştır. Yöntemlerin etkinliklerini tespit etmek amacıyla piyasada mevcut olan programlarla hesaplama süresi bakımından karşılaştırmalar gerçekleştirilmiştir. Yine yöntemlerin doğruluğunu belirlemek için açık ve kapalı kabuklu kimyasallardan oluşan test setleri, organik kromoforlar, poliaromatik hidrokarbonlardan oluşan radikal seti kullanılmıştır. Ek olarak, CC ve OO yöntemlerinin etkinliklerini incelenmesi amacıyla kovalent olmayan etkileşimlerin dikkate alındığı kimyasal sistemler ile uygulama çalışmaları gerçekleştirilmiştir. Bu bağlamda, açık kabuklu kimyasal
sistemler olan anyonik ve katyonik su kümelerinin 1-6 üye sayısındaki geometrileri aydınlatılmış, CCSD(T)/CBS seviyesinde bağıl, bağlanma ve dikey elektron koparılma enerjileri hesaplanmıştır.

Tez çalışmasının ilk kısmında, yoğunluk uyarlanmış optimize orbitalli CCD (DF-OCCD) yönteminin enerji ve amplitut denklemleri sunulmuştur. DF-OCCD yöntemine ek olarak, enerji hesaplamaları için OCCD yönteminde Cholesky ayrıştırması uygulanmış versiyonu (CD-OCCD) da geliştirilmiştir. DF-OCCD yöntemi ile kapalı ve açık kabuklu molekül geometrileri, hidrojen transferi reaksiyon enerjileri (HTRE) ve kovalent olmayan komplekslerin etkileşim enerjileri için hesaplamalar gerçekleştirilmiş olup, elde edilen sonuçlar, MP2, DF-CCD, CCSD ve CCSD(T) yöntemlerinin sonuçlarıyla karşılaştırılmıştır. DF-OCCD dalga fonksiyonuna ait MO'ların minimizasyonu için, önceki OO yöntemlerinde olduğu gibi Lagrangian tabanlı bir teknik kullanılmıştır [23, 24, 28, 32, 34, 40, 41]. N, baz fonksiyonların sayısı olmak üzere, hem OCCD hem de CCSD yöntemleri $O(N^6)$ olarak ölceklendirilmektedir. Ancak burada, konvansiyonel OCCD yöntemninin temel dezavantajı, her CC iterasyonunda dört-indisli integrallerin dönüştürülmesi gerekmesidir [12, 23]. MO dönüşümü $O(N^5)$ olarak ölçeklendirilse de, çok küçük moleküler sistemler dışında çekirdek bellekte (core memory) gerçekleştirilemez; bu nedenle, bu adım oldukça yavaş olan I/O prosedürü nedeniyle CC iterasyonlarının en maliyetli kısmıdır. Bu noktada, DF yaklaşımıyla, MO dönüşümlerinin maliyeti $O(N^4)$ 'e düşürülür ve bellek gereksinimleri önemli ölçüde (N faktörü kadar) azalır. Bu nedenle, bircok durumda DF yaklasımı ile cekirdek bellekte MO dönüsümlerini gerçeklestirmek mümkün hale gelmektedir. DF algoritması için yeterli bellek olmasa bile, çekirdek dışı (out-of-core) algoritmadan hala önemli ölçüde daha hızlıdır. Bu nedenle, DF yaklaşımı, konvansiyonel OCCD yönteminin maliyetini önemli ölçüde azaltır. DF-OCCD yöntemi, göz önüne alınan molekül geometrileri, HTRE'ler ve etkileşim enerjileri için MP2 ve DF-CCD yöntemlerini önemli ölçüde iyileştirmiştir. Örneğin, hidrojen transfer reaksiyonları için, DF-OCCD yöntemi kullanıldığında sırasıyla DF-CCD ve MP2 yöntemlerindeki hatalar 16 ve 29 kat azalmaktadır. Ayrıca DF-OCCD yöntemi, simetri kırılma problemlerinde standart yöntemlere göre oldukça doğru titreşim frekansları sağlamaktadır. Dahası, göz önüne alınan sistemlerden bazıları için DF-OCCD ve CCSD yöntemlerinin performansı neredeyse aynıdır.

Tez çalışmasının ikinci kısmında, EOM-CCSD hesaplamalarının en maliyetli terimi olan parçacık-parçacık merdiveni (PPL) terimi için geliştirilmiş bir algoritma ile yoğunluk uyarlanmış EOM-CCSD (DF-EOM-CCSD) yönteminin yeni bir uygulaması sunulmuştur. PPL teriminin daha iyi değerlendirilmesi amacıyla, hibrit bir DF/CD algoritması da geliştirilmiştir.

DF-EOM-CCSD yönteminin uyarılma enerjilerini hesaplama süresi, RI-EOM-CCSD (Q-CHEM 5.3 [75]) yöntemininkiyle karşılaştırılmıştır. Elde edilen sonuçlar, DF-EOM-CCSD yönteminin, RI-EOM-CCSD yöntemine kıyasla hesaplama maliyetini önemli ölçüde azalttığını göstermektedir. Örneğin, RHF referansı ve cc-pVTZ baz seti kullanıldığı durumda, göz önüne alınan alkan setinin en büyük üyesi olan C_8H_{18} molekülü için, hesaplama maliyetinde 2 kattan fazla bir azalma vardır. Burada maliyetten elde edilen kazanç çoğunlukla, eklenen yeni PPL algoritmasının hızlandırması sayesindedir. RHF tabanlı DF-EOM-CCSD yönteminde, PPL kontraksiyon terimi için aritmetik işlem sayısı (NOF), Q-CHEM 5.3 programındaki RI-EOM-CCSD yöntemine göre 2,5 kat daha düşüktür. Ayrıca, PPL teriminde kullanılan VVVV-tipi dönüşüm adımının ön faktörü, NOF değerini 2 kat azaltmaktadır. Geliştirilen yöntem, gösterdiği performansı UHF referansı için de korumaktadır. Örneğin, UHF tabanlı sistem için göz önüne alınan alkan setinin en büyük üyesi C₇H₁₆ molekülünde, RI-EOM-CCSD yöntemine kıyasla hesaplama maliyeti 1,8 kat azalmıştır. Ayrıca, elde edilen sonuçlar, önerilen hibrit DF/CD algoritmasının, kanonik DF algoritmasını daha da iyileştirdiğini ve molekül boyutu arttıkça iyileştirme derecesini de artırdığını göstermektedir. Burada elde edilen ön sonuçlar, yeni hibrit DF/CD PPL algoritmasının büyük boyutlu kimyasal sistemler için çok umut verici olduğunu göstermektedir. Son olarak, geliştirilen DF-EOM-CCSD ve DF/CD-EOM-CCSD yöntemleri göz önüne alınan bir test seti için uyarılma enerjilerini hesaplamada kullanılmış ve elde edilen sonuçlar, CIS, RI-EOM-CCSD ve EOM-CCSD(fT) yöntemlerininkiyle karşılaştırılmıştır. Elde edilen veriler, DF-EOM-CCSD ve DF/CD-EOM-CCSD yöntemlerinin (10^{-4} – 10^{-3} CD toleransları ile) RI-EOM-CCSD yöntemi ile aynı sonuçları verdiğini göstermektedir. Ayrıca, göz önüne alınan test seti için DF/CD-EOM-CCSD yaklaşımı, 5×10^{-3} ve 10^{-2} gibi düşük CD toleransları ile DF-EOM-CCSD yöntemininkilere kıyasla tolere edilebilir hatalar (0,03 ve 0,06 eV) sağlamaktadır.

Tez çalışmasının üçüncü kısmında, geliştirilen DF-EOM-OCCD yöntemi, Q-CHEM 5.3 [75] yazılımında mevcut olan konvansiyonel EOM-OD yöntemi ile maliyet karşılaştırması yapılması amacıyla bir alkan setine uygulanmıştır. C_nH_{2n+2} (n = 1—5) seti için DF-EOM-OCCD ve EOM-OD yöntemlerinin toplam, OCCD ve EOM kısmı olarak ayrı ayrı değerlendirilmiştir. DF-EOM-OCCD yöntemi EOM-OD ye göre hesaplama maliyetini ciddi oranda azaltmaktadır. DF-EOM-OCCD yöntemi toplam hesap süresi bakımından, EOM-OD yöntemine göre alkan setinin en büyük üyesi için (C_5H_{12}) toplamda 16,9 kat daha hızlıdır. Yine DF-EOM-OCCD yöntemi EOM-OD yöntemine göre, OCCD kısmında 23,0 kat, EOM kısmında ise 7,0 kat daha hızlıdır. DF-EOM-OCCD yönteminin, Q-Chem yazılımında mevcut olan EOM-OD yönteminden çok daha hızlı çalışmasının nedeni olarak,

büyük oranda PPL teriminin daha etkin kodlanması gösterilebilir. Tez çalışması kapsamında geliştirilen DF-EOM-CCD, DF-EOM-OCCD ve DF-EOM-CCSD yöntemlerinin doğruluğunu ve etkinliğini incelemek amacıyla, açık ve kapalı kabuklu kimyasal türlerden oluşan setler için uyarılma enerjisi hesaplamaları gerçekleştirilmiştir. Elde edilen sonuçlar, Q-Chem yazılımında mevcut olan EOM-CCSD(fT) [75] yöntemi ve MRCI [221] referansları ile karşılaştırılmıştır. Açık kabuklu set için MAE değerleri referans yönteme göre (MRCI [221]), 0,19 (DF-EOM-CCD), 0,07 (DF-EOM-OCCD), 0,07 (EOM-OD) ve 0,13 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Kapalı kabuklu set için, MAE değerleri, 0,20 (DF-EOM-CCD), 0,26 (DF-EOM-OCCD), 0,30 (EOM-OD) ve 0,26 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Dolayısıyla, dikkate alınan test setleri için DF-EOM-OCCD yönteminin sonuçları, DF-EOM-CCSD yönteminin kalitesine oldukça yakındır ve bu sayede umut vadedici olduğu düşünülmektedir.

Tez calısmasının dördüncü kısmında, DF-EOM-MP2, DF-EOM-OMP2 ve DF-EOM-κ-OMP2 yöntemleri, RHF ve UHF referanslarıyla geliştirilmiştir. Geliştirilen, EOM-MP yöntemlerinin sonuçları, kapalı ve açık kabuklu kimyasal sistemlerin uyarılma enerjileri için DF-EOM-CCSD ve EOM-CCSD(fT) [75] yöntemlerinin sonuçları ile karşılaştırılmıştır. DF-EOM- κ -OMP2 yönteminin sonuçları, göz önüne alınan tüm setler için en az EOM-CCSD kalitesindedir. OMP2 yönteminin, açık kabuklu sistemlerin temel hal enerjileri için MP2 yönteminden daha doğru sonuç verdiği iyi bilinirken, kapalı kabuklu sistemler için de MP2 yönteminin sonuçlarından oldukça iyidir. Bununla birlikte, yeni bulgularımız OMP2 yönteminin kapalı kabuklu moleküllerin uyarılmış halleri için de önemli ölçüde daha iyi performans gösterdiğini ortaya koymaktadır. Bu nedenle, optimize orbitallerin, uyarılma enerjileri gibi uyarılmış hal özelliklerinin incelenmesi için çok yararlı olduğu görülmüstür. Göz önüne alınan kapalı kabuklu organik kromofor sisteminde, ilk uyarılma enerjilerinin EOM-CCSD(fT) yöntemine göre MAE değerleri 0,69 (DF-EOM-MP2), 0,81 (DF-EOM-OMP2), 0,30 (DF-EOM-κ-OMP2) ve 0,48 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Ayrıca, açık kabuklu sistemde, ilk uyarılma enerjilerinin EOM-CCSD(fT) yöntemine göre MAE değerleri 0,30 (DF-EOM-MP2), 0,24 (DF-EOM-OMP2), 0,12 (DF-EOM-*κ*-OMP2) ve 0,15 (DF-EOM-CCSD) eV olarak hesaplanmıştır. Ek olarak, göz önüne alınan açık kabuklu radikal sisteminde, ilk uyarılma enerjilerinin EOM-CCSD(fT) yöntemine göre MAE değerleri 0,67 (DF-EOM-MP2), 0,51 (DF-EOM-OMP2), 0.20 (DF-EOM- κ -OMP2) ve 0.39 (DF-EOM-CCSD) eV olarak hesaplanmıstır. Sonuç olarak, göz önüne alınan moleküler sistemler için, DF-EOM-*k*-OMP2 yöntemi diğer yöntemler ile karşılaştırıldığında daha düşük hatalara sahiptir. DF-EOM-*k*-OMP2 yönteminin maliyeti DF-EOM-MP2 ve DF-EOM-CCSD yöntemleri ile aynıdır. $O(N^6)$ olan yöntem maliyeti, EOM sigma (σ) denklemlerinden kaynaklanır. Bununla birlikte, DF-EOM- κ -OMP2 yaklaşımının hesaplama maliyeti DF-EOM-CCSD yönteminden önemli ölçüde daha düşüktür çünkü amplitut denkleminin maliyeti OMP2 için $O(N^5)$ iken CCSD için $O(N^6)$ dır. Sonuç olarak, DF-EOM- κ -OMP2 yöntemi DF-EOM-CCSD yönteminden yaklaşık iki kat daha az maliyetlidir. Elde ettiğimiz bulgular, DF-EOM- κ -OMP2 yönteminin DF-EOM-CCSD yöntemine kıyasla önemli ölçüde daha düşük bir maliyetle doğru sonuçlar sağladığını göstermektedir.

Tez çalışmasının beşinci kısmında, DF-EOM-MP3 ve DF-EOM-OMP3 yöntemleri, RHF ve UHF referanslarıyla ilk kez geliştirilmiştir. Geliştirilen yöntemler, açık ve kapalı kabuklu kimyasal türlerden oluşan sistemler için uyarılma enerjilerinin hesaplanmasında kullanılmıştır. Göz önüne alınan açık kabuklu set için, referans yönteme göre elde edilen MAE değerleri, 0,40 (DF-EOM-MP3) ve 0,34 (DF-EOM-OMP3) eV olarak hesaplanmıştır. Referans enerjiler için, Li vd.nin [221] çalışmasında mevcut olan MRCI sonuçları kullanılmıştır. Elde ettiğimiz sonuçlar, açık kabuklu kimyasal yapılar için optimize orbitalli yaklaştırmaların daha doğru sonuçlar sağladığını burada da göstermektedir. Ayrıca çalışma kapsamında, DF-EOM-MP2.5 ve DF-EOM-OMP2.5 yöntemleri RHF ve UHF referanslarıyla ilk kez geliştirilmiştir. Bu yöntemlerin doğruluğunu incelemek amacıyla göz önüne alınan açık kabuklu kimyasal set için uyarılmış hal enerjileri hesaplanmıştır. Göz önüne alınan set için elde edilen MAE değerleri 0,38 (DF-EOM-MP2.5) ve 0,22 (DF-EOM-OMP2.5) eV olarak hesaplanmıştır. Diğer yöntemlered de gözlendiği gibi, optimize orbitalli DF-EOM-OMP2.5 yöntemi, DF-EOM-MP2.5 yöntemine göre daha doğru sonuçlar sağlamaktadır.

Tez çalışmasının altıncı kısmında, anyonik pentamer ve heksamer kümeleri için DF-OLCCD, CCSD ve CCSD(T) gibi yüksek seviyeli coupled-cluster yöntemler ile yapıların ve enerjilerin kapsamlı bir araştırması gerçekleştirilmiştir. Geometri optimizasyonu ve harmonik titreşim frekansı hesaplamaları DF-OLCCD/aug4-cc-pVDZ seviyesinde gerçekleştirilmiştir. Tek nokta enerji hesaplamaları CCSD(T) yöntemi ile gerçekleştirilmiş ve toplam enerjiler tam baz seti (CBS) limitine ekstrapole edilmiştir. Bu kısımda onaltı adet anyonik pentamer kümesi ve onsekiz adet anyonik heksamer kümesi sunulmuştur. Bu kümeler için bağıl enerjiler, dikey koparılma enerjileri (VDE) ve bağlanma enerjileri hesaplanmıştır.

DF-OLCCD yönteminin formal skalası, DF-CCSD yönteminde olduğu gibi $O(N^6)$ 'dir (burada N baz fonksiyonu sayısıdır). Bununla birlikte, DF-OLCCD amplitut denklemleri DF-CCSD

ile karsılastırıldığında daha basit iken, DF-OLCCD her bir iterasyonda parçacık yoğunluğu matrislerini (PDM) gerektirmektedir. DF-CCSD için, parçacık-parçacık merdiven (PPL) terimi olarak adlandırılan en pahalı terimin [53] maliyeti, $\frac{1}{2}V^4N_{aux}$ + $\frac{1}{4}O^2V^4$ büyüklüğündedir, burada O, V ve N_{aux} , sırasıyla dolu ve boş orbitalleri ve yardımcıları baz fonksiyonlarını ifade etmektedir. DF-OLCCD amplitut denklemi de PPL terimini içermektedir. Ek olarak, DF-OLCCD PDM denklemleri, PPL [40] benzeri bir terimin maliyetini de $(\frac{1}{2}V^4N_{aux} + \frac{1}{4}O^2V^4)$ içermektedir. Bununla birlikte, DF-OLCCD amplitut denklemlerinin basitleştirilmiş yapısı ve başarılı orbital-optimizasyon (OO) algoritmaları sayesinde, OO iterasyonları genellikle birkaç adımda yakınsamaktadır. Burada, orbitallerin yakınsaması gerçekleştikten sonra, moleküler orbitaller (MO) yarı-kanonik (semicanonical) hale getirilip, PDM'lerin hesaplanmasını gerektirmeyen standart DF-LCCD iterasyonlarına geçilmektedir. Bu nedenle, DF-OLCCD ve DF-CCSD yöntemlerinin maliyeti, enerji hesaplamaları açısından benzerlik göstermektedir. Ayrıca, analitik gradientlerde, DF-CCSD için ek olarak Λ_2 -amplitut denklemlerinin çözülmesi gerekirken [53], DF-OLCCD için λ_{ab}^{ij} ve t_{ij}^{ab} terimleri birbirine eşit olduğundan böyle bir ekstra maliyet yoktur. Ayrıca, DF-OLCCD yönteminde orbitaller optimize edildiğinden, Z-vektör denklemini [228] çözmemize gerek yoktur. Bu nedenle, enerji gradientlerinin analitik çözümünde yani geometri optimizasyonlarında, DF-OLCCD yöntemi DF-CCSD yöntemine kıyasla daha düşük maliyetlidir. Mevcut DF-OLCCD programı [74] ile, 1500-2000 baz fonksiyonlarına kadar enerji ve analitik gradient hesaplamaları yapılabilmektedir.

Elde ettiğimiz sonuçlar, CCSD(T)/CBS seviyesindeki anyonik pentamer kümelerine ait bağıl enerjilerin, 3,9 kcal mol⁻¹ kadar farklı olduğunu göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VDE değerleri $\leq 9,9$ kcal mol⁻¹ dir. En büyük VDE değeri (9,9 kcal mol⁻¹), pentamer-7 kümesinde gözlenmiştir ve bu değer 9,5 kcal mol⁻¹olan deneysel değer ile uyum göstermektedir [225]. Ayrıca, CCSD(T)/CBS sonuçları, anyonik pentamer kümelerinde hidrojen bağı etkileşimlerinden kaynaklanan güçlü bağlanmalara işaret etmektedir. Anyonik pentamerler için, su molekülleri başına düşen ortalama bağlanma enerjisi, -5,0 kcal mol⁻¹ dir. Anyonik heksamer kümeleri için, CCSD(T)/CBS seviyesinde hesaplanan bağıl enerjiler 5,8 kcal mol⁻¹ kadar fark göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VDE değerleri $\leq 11,2$ kcal mol⁻¹ dir. En büyük VDE değeri (11,2 kcal mol⁻¹), heksamer-10 kümesi için gözlenmiştir ve bu VDE değeri, 11,1 kcal mol⁻¹ [90, 225] olan deneysel değer ile yüksek uyum göstermektedir. Ayrıca, CCSD(T)/CBS sonuçları, anyonik heksamer kümelerinde hidrojen bağı etkileşimlerinden kaynaklanan güçlü bağlanmalara işaret etmektedir. Anyonik heksamerler için, su molekülleri başına düşen ortalama bağlanma enerjisi –5,5 kcal mol⁻¹ dir ve pentamerler için elde edilen değer ile oldukça uyumludur. Elde ettiğimiz sonuçlar, CCSD(T) yöntemi ile kıyaslandığında, DF-OLCCD yönteminin anyonik su kümeleri için çok doğru enerji değerleri sağladığını göstermektedir. Daha önceki çalışmalarda da gösterildiği üzere [28, 40], DF-OLCCD yönteminin performansı açık-kabuklu moleküler sistemler için CCSD(T) kalitesine yaklaşmaktadır. DF-OLCCD [40] yönteminin düşük maliyetli analitik gradientleri, CCSD veya CCSD(T) gibi yüksek seviyeli coupled-cluster yöntemleriyle karşılaştırıldığında, bu çalışmada olduğu gibi yüksek doğrulukta hesaplamalar yapabilmek için oldukça uygundur. Genel olarak, DF-OLCCD yöntemi, açık kabuklu kimyasal sistemlerde denge geometrilerinin ve moleküler özelliklerinin hesaplanması bakımından oldukça umut vericidir.

Tez çalışmasının son kısmında, DF-OLCCD, CCSD ve CCSD(T) gibi yüksek seviyeli bağlanmış küme yöntemleri ile katyonik su kümelerinin $[(H_2O)_n^+, n = 2 - 6]$ yapıları ve enerjetikleri üzerine kapsamlı bir çalışma yapılmıştır. Geometri optimizasyonu ve harmonik titreşim frekansı hesaplamaları DF-OLCCD/aug-cc-pVDZ seviyesinde gerçekleştirilmiştir. Tek nokta enerji hesaplamaları CCSD(T) yöntemi ile gerçekleştirilmiş ve toplam enerjiler tam baz seti (CBS) limitine ekstrapole edilmiştir. Bu kısımda, 2 dimer, 8 trimer, 18 tetramer, 23 pentamer ve 25 heksamer küme sunulmuştur. Bu kümeler için bağıl enerjiler, dikey bağlanma enerjileri (VAE) ve bağlanma enerjileri değerlendirilmiştir. Sonuçlar, dimer katyonun proton transferi (PT) formunun yarı-bağlı (HB) formundan 8,7 kcal mol⁻¹ daha kararlı olduğunu göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri dimer-1 (HB) ve dimer-2 (PT) için sırasıyla 220,9 ve 194,9 kcal mol⁻¹ dir. Ayrıca, CCSD(T)/CBS seviyesinde hesaplanan bağlanma enerjileri dimer-1 ve dimer-2 için sırasıyla -33,2 ve -43,5 kcal mol⁻¹ dir.

Katyonik trimer kümeleri için bağıl enerjiler CCSD(T)/CBS seviyesinde 11,7 kcal mol⁻¹ kadar farklılık göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri 169,8–197,8 kcal mol⁻¹ dir. Ayrıca, hesaplanan bağlanma enerjileri CCSD(T)/CBS seviyesinde -54,1 ila -68,3 kcal mol⁻¹ arasında değişmektedir ve su molekülleri başına ortalama bağlanma enerjisi -21,6 kcal mol⁻¹ dir. Katyonik tetramer kümeleri için, bağıl enerjiler CCSD(T)/CBS seviyesinde 10,6 kcal mol⁻¹ kadar farklılık göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri 141,3–192,7 kcal mol⁻¹ dir. Ayrıca, hesaplanan bağlanma enerjileri CCSD(T)/CBS seviyesinde -75,2 ila -87,2 kcal mol⁻¹ arasında değişmektedir ve su molekülleri başına ortalama bağlanma enerjisi -19,9 kcal mol⁻¹ dir. Katyonik pentamer kümeleri için, bağıl enerjiler CCSD(T)/CBS seviyesinde 7,3 kcal mol⁻¹ kadar

farklılık göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri 118,5-165,5 kcal mol⁻¹ dir. Ayrıca, hesaplanan bağlanma enerjileri CCSD(T)/CBS seviyesinde -92,6 ila -100,7 kcal mol⁻¹ arasında değismektedir ve su molekülleri basına ortalama bağlanma enerjisi -19,6 kcal mol⁻¹ dir. Katyonik heksamer kümeleri için, bağıl enerjiler CCSD(T)/CBS seviyesinde 4,9 kcal mol⁻¹ kadar farklılık göstermektedir. CCSD(T)/CBS seviyesinde hesaplanan VAE değerleri 121,9-153,7 kcal mol⁻¹ dir. Ayrıca, hesaplanan bağlanma enerjileri CCSD(T)/CBS seviyesinde -106,0 ila -113,3 kcal mol⁻¹ arasında değişmektedir ve su molekülleri başına ortalama bağlanma enerjisi -18,3 kcal mol⁻¹ dir. Genel olarak, CCSD(T)/CBS sonuçları hidrojen bağı etkileşimleri nedeniyle katyonik kümelerde güçlü bağlanmalara işaret etmektedir. Burada elde edilen sonuçlar, DF-OLCCD yönteminin iyonize su kümeleri için CCSD(T) kalitesine yaklaştığını göstermektedir. DF-OLCCD yönteminin, CCSD(T) yöntemine göre ortalama mutlak hatası (MAE), dikkate alınan kümelerin bağıl enerjileri için 0,1-0,3 kcal mol⁻¹ dir. Önceki çalışmalarda tartışıldığı gibi [28, 40], DF-OLCCD yöntemi açık kabuklu moleküler sistemler için çok faydalı sonuçlar sağlamaktadır. Ayrıca, CCSD(T) ile karşılaştırıldığında DF-OLCCD yönteminin düşük maliyetli analitik gradiyentleri, iyonik moleküler kümelerin yüksek doğruluklu çalışmaları için çok cazip hale getirmektedir. Genel olarak, DF-OLCCD yönteminin zorlu kimyasal sistemlerde moleküler özelliklerin hesaplanması için çok umut verici olduğu sonucuna varılmıştır.

5. KAYNAKLAR

- [1] E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Physical Review 28 (**1926**) 1049.
- [2] C. Møller, M. S. Plesset, Note on an approximation treatment for many-electron systems, Physical Review 46 (1934) 618.
- [3] E. Schrödinger, Quantisierung als eigenwertproblem, Annalen der physik 385 (1926) 437–490.
- [4] M. Head-Gordon, J. A. Pople, M. J. Frisch, Mp2 energy evaluation by direct methods, Chemical Physics Letters 153 (1988) 503–506.
- [5] O. Sinanoğlu, Many-electron theory of atoms and molecules. i. shells, electron pairs vs many-electron correlations, The Journal of Chemical Physics 36 (1962) 706–717.
- [6] J. Cizek, On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods, The Journal of Chemical Physics 45 (1966) 4256.
- [7] J. Cizek, J. Paldus, Correlation problems in atomic and molecular systems iii. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst, International Journal of Quantum Chemistry 5 (1971) 359–379.
- [8] R. J. Bartlett, Many-body perturbation theory and coupled cluster theory for electron correlation in molecules, Annual Review of Physical Chemistry 32 (1981) 359–401.
- [9] T. D. Crawford, H. F. Schaefer, An introduction to coupled cluster theory for computational chemists, Reviews in Computational Chemistry 14 (2000) 33–136.
- [10] R. J. Bartlett, M. Musiał, Coupled-cluster theory in quantum chemistry, Reviews of Modern Physics 79 (2007) 291–352.
- [11] G. E. Scuseria, H. F. Schaefer, The optimization of molecular orbitals for coupled cluster wavefunctions, Chemical Physics Letters 142 (1987) 354–358.

- C. D. Sherrill, A. I. Krylov, E. F. C. Byrd, M. Head-Gordon, Energies and analytic gradients for a coupled-cluster doubles model using variational brueckner orbitals: Application to symmetry breaking in O₄⁺, The Journal of Chemical Physics 109 (1998) 4171–4181.
- [13] A. I. Krylov, C. D. Sherrill, E. F. C. Byrd, M. Head-Gordon, Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model, The Journal of Chemical Physics 109 (1998) 10669–10678.
- [14] T. B. Pedersen, H. Koch, C. Hättig, Gauge invariant coupled cluster response theory, The Journal of Chemical Physics 110 (1999) 8318–8327.
- [15] A. I. Krylov, C. D. Sherrill, M. Head-Gordon, Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models, The Journal of Chemical Physics 113 (2000) 6509–6527.
- [16] S. R. Gwaltney, C. D. Sherrill, M. Head-Gordon, A. I. Krylov, Second order perturbation corrections to singles and doubles coupled-cluster methods: General theory and applications to the valence optimized doubles model, The Journal of Chemical Physics 113 (2000) 3548–3560.
- T. B. Pedersen, B. Fernández, H. Koch, Gauge invariant coupled cluster response theory using optimized nonorthogonal orbitals, The Journal of Chemical Physics 114 (2001) 6983–6992.
- [18] A. Köhn, J. Olsen, Orbital-optimized coupled-cluster theory does not reproduce the full configuration-interaction limit, The Journal of Chemical Physics 122 (2005) 084116.
- [19] R. C. Lochan, M. Head-Gordon, Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules, The Journal of Chemical Physics 126 (2007) 164101.
- [20] F. Neese, T. Schwabe, S. Kossmann, B. Schirmer, S. Grimme, Assessment of orbital-optimized, spin-component scaled second-order many-body perturbation theory for thermochemistry and kinetics, The Journal of Chemical Physics 5 (2009) 3060.

- [21] W. Kurlancheek, M. Head-Gordon, Violations of n-representability from spin-unrestricted orbitals in Møller–Plesset perturbation theory and related double-hybrid density functional theory, Molecular Physics 107 (2009) 1223–1232.
- [22] S. Kossmann, F. Neese, Correlated ab initio spin densities for larger molecules:
 Orbital-optimized spin-component-scaled MP2 method, The Journal of Physical Chemistry A 114 (2010) 11768.
- [23] U. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer, C. D. Sherrill, Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory, The Journal of Chemical Physics 135 (2011) 104103.
- [24] U. Bozkaya, Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems, The Journal of Chemical Physics 135 (2011) 224103.
- [25] U. Bozkaya, H. F. Schaefer, Symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles method: Improving upon CCSD(T) and CCSD(T)Λ: Preliminary application, The Journal of Chemical Physics 136 (2012) 204114.
- [26] W. Kurlancheek, K. Lawler, R. C. Lochan, M. Head-Gordon, Exploring the competition cetween localization and delocalization of the neutral soliton defect in polyenyl chains with the orbital optimized second order opposite spin method, The Journal of Chemical Physics 136 (2012) 054113.
- [27] U. Bozkaya, C. D. Sherrill, Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory, The Journal of Chemical Physics 138 (2013) 184103.
- [28] U. Bozkaya, C. D. Sherrill, Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions, The Journal of Chemical Physics 139 (2013) 054104.

- [29] U. Bozkaya, Analytic energy gradients for the orbital-optimized third-order møller– plesset perturbation theory, The Journal of Chemical Physics 139 (**2013**) 104116.
- [30] J. B. Robinson, P. J. Knowles, Rigorously extensive orbital-invariant renormalized perturbative triples corrections from quasi-variational coupled cluster theory, The Journal of Chemical Physics 138 (2013) 074104.
- [31] A. Y. Sokolov, H. F. Schaefer, Orbital-optimized density cumulant functional theory, The Journal of Chemical Physics 139 (2013) 204110.
- [32] U. Bozkaya, Orbital-optimized second-order perturbation theory with density-fitting and cholesky decomposition approximations: An efficient implementation, Journal of Chemical Theory and Computation 10 (2014) 2371–2378.
- [33] U. Bozkaya, Analytic energy gradients and spin multiplicities for orbital-optimized second-order perturbation theory with density-fitting approximation: An efficient implementation, Journal of Chemical Theory and Computation 10 (2014) 4389–4399.
- [34] U. Bozkaya, C. D. Sherrill, Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T) quality for noncovalent interactions, The Journal of Chemical Physics 141 (2014) 204105.
- [35] J. Lee, M. Head-Gordon, Regularized orbital-optimized second-order Møller-Plesset perturbation theory: A reliable fifth-order-scaling electron correlation model with orbital energy dependent regularizers, Journal of Chemical Theory and Computation 14 (2018) 5203–5219.
- [36] J. Lee, M. Head-Gordon, Two single-reference approaches to singlet biradicaloid problems: Complex, restricted orbitals and approximate spin-projection combined with regularized orbital-optimized Møller-Plesset perturbation theory, The Journal of Chemical Physics 150 (2019) 244106.
- [37] L. W. Bertels, J. Lee, M. Head-Gordon, Third-order Møller-Plesset perturbation theory made useful? Choice of orbitals and scaling greatly improves accuracy for thermochemistry, kinetics, and intermolecular interactions, The Journal of Physical Chemistry Letters 10 (2019) 4170–4176.

- [38] C. Kollmar, A. Heßelmann, The role of orbital transformations in coupled-pair functionals, Theoretical Chemistry Accounts 127 (2010) 311–325.
- [39] C. Kollmar, F. Neese, An orbital-invariant and strictly size extensive post-Hartree-Fock correlation functional, The Journal of Chemical Physics 135 (2011) 084102.
- [40] U. Bozkaya, Orbital-optimized linearized coupled-cluster doubles with density-fitting and cholesky decomposition approximations: An efficient implementation, Physical Chemistry Chemical Physics 18 (2016) 11362–11373.
- [41] U. Bozkaya, Orbital-optimized MP3 and MP2.5 with density-fitting and cholesky decomposition approximations, Journal of Chemical Theory and Computation 12 (2016) 1179–1188.
- [42] U. Bozkaya, Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation, Journal of Computational Chemistry 39 (2018) 351–360.
- [43] E. Soydaş, U. Bozkaya, Assessment of orbital-optimized third-order Møller–Plesset perturbation theory and its spin-component and spin-opposite scaled variants for thermochemistry and kinetics, Journal of Chemical Theory and Computation 9 (2013) 1452–1460.
- [44] E. Soydaş, U. Bozkaya, Assessment of the orbital-optimized coupled-electron pair theory for thermochemistry and kinetics: Improving on CCSD and CEPA(1), Journal of Computational Chemistry 35 (2014) 1073–1081.
- [45] E. Soydaş, U. Bozkaya, Assessment of orbital-optimized MP2.5 for thermochemistry and kinetics: Dramatic failures of standard perturbation theory approaches for aromatic bond dissociation energies and barrier heights of radical reactions, Journal of Chemical Theory and Computation 11 (2015) 1564–1573.
- [46] J. B. Robinson, P. J. Knowles, Benchmark quasi-variational coupled cluster calculations of multiple bond breaking, Journal of Chemical Theory and Computation 8 (2012) 2653–2660.

- [47] E. Soydaş, U. Bozkaya, Accurate open-shell noncovalent interaction energies from the orbital-optimized Møller-Plesset perturbation theory: Achieving CCSD quality at the MP2 level by orbital optimization, Journal of Chemical Theory and Computation 9 (2013) 4679–4683.
- [48] U. Bozkaya, The extended Koopmans' theorem for orbital-optimized methods: Accurate computation of ionization potentials, The Journal of Chemical Physics 139 (2013) 154105.
- [49] U. Bozkaya, Accurate electron affinities from the extended Koopmans' theorem based on orbital-optimized methods, Journal of Chemical Theory and Computation 10 (2014) 2041–2048.
- [50] D. Yildiz, U. Bozkaya, Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices, Journal of Computational Chemistry 37 (2016) 345–353.
- [51] U. Bozkaya, Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller–Plesset perturbation theory, The Journal of Chemical Physics 141 (2014) 124108.
- [52] U. Bozkaya, A noniterative asymmetric triple excitation correction for the density-fitted coupled-cluster singles and doubles method: Preliminary applications, The Journal of Chemical Physics 144 (2016) 144108.
- [53] U. Bozkaya, C. D. Sherrill, Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation, The Journal of Chemical Physics 144 (2016) 174103.
- [54] U. Bozkaya, C. D. Sherrill, Analytic energy gradients for the coupled-cluster singles and doubles with perturbative triples method with the density-fitting approximation, The Journal of Chemical Physics 147 (2017) 044104–044114.

- [55] J. F. Stanton, R. J. Bartlett, The equation of motion coupled-cluster method. a systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties, The Journal of Chemical Physics 98 (1993) 7029–7039.
- [56] J. D. Watts, R. J. Bartlett, Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies, Chemical Physics Letters 233 (1995) 81–87.
- [57] S. R. Gwaltney, M. Nooijen, R. J. Bartlett, Simplified methods for equation-of-motion coupled-cluster excited state calculations, Chemical Physics Letters 248 (1996) 189–198.
- [58] S. Hirata, M. Nooijen, I. Grabowski, R. J. Bartlett, Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis, The Journal of Chemical Physics 114 (2001) 3919–3928.
- [59] K. W. Sattelmeyer, J. F. Stanton, J. Olsen, J. Gauss, A comparison of excited state properties for iterative approximate triples linear response coupled cluster methods, Chemical Physics Letters 347 (2001) 499–504.
- [60] H. Larsen, K. Hald, J. Olsen, P. Jørgensen, Triplet excitation energies in full configuration interaction and coupled-cluster theory, The Journal of Chemical Physics 115 (2001) 3015–3020.
- [61] S. Hirata, Higher-order equation-of-motion coupled-cluster methods, The Journal of Chemical Physics 121 (2004) 51.
- [62] C. E. Smith, R. A. King, T. D. Crawford, Coupled cluster methods including triple excitations for excited states of radicals, The Journal of Chemical Physics 122 (2005) 054110.
- [63] J. R. Gour, P. Piecuch, M. Włoch, Active-space equation-of-motion coupled-cluster methods for excited states of radicals and other open-shell systems: EA-EOMCCSDt and IP-EOMCCSDt, The Journal of Chemical Physics 123 (2005) 134113.

- [64] L. V. Slipchenko, A. I. Krylov, Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations, The Journal of Chemical Physics 123 (2005) 084107.
- [65] M. Musiał, R. J. Bartlett, Addition by subtraction in coupled cluster theory. II. equation-of-motion coupled cluster method for excited, ionized, and electron-attached states based on the nCC ground state wave function, The Journal of Chemical Physics 127 (2007) 024106.
- [66] A. I. Krylov, Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker's guide to Fock space, Annual Review of Physical Chemistry 59 (2008) 433–462.
- [67] M. Musial, R. J. Bartlett, Multireference Fock-space coupled-cluster and equation-of-motion coupled-cluster theories: The detailed interconnections, The Journal of Chemical Physics 129 (2008) 134105.
- [68] T. Kuś, V. F. Lotrich, R. J. Bartlett, Parallel implementation of the equation-of-motion coupled-cluster singles and doubles method and application for radical adducts of cytosine, The Journal of Chemical Physics 130 (2009) 124122.
- [69] M. Musiał, The excited, ionized and electron attached states within the EOM-CC approach with full inclusion of connected triple excitations, Molecular Physics 108 (2010) 2921–2931.
- [70] K. Sneskov, O. Christiansen, Excited state coupled cluster methods, Wiley Interdisciplinary Reviews: Computational Molecular Science 2 (**2011**) 566–584.
- [71] R. J. Bartlett, Coupled-cluster theory and its equation-of-motion extensions, Wiley Interdisciplinary Reviews: Computational Molecular Science 2 (**2012**) 126–138.
- [72] M. Musiał, M. Olszówka, D. I. Lyakh, R. J. Bartlett, The equation-of-motion coupled cluster method for triple electron attached states, The Journal of Chemical Physics 137 (2012) 174102.

- [73] D. A. Matthews, J. F. Stanton, A new approach to approximate equation-of-motion coupled cluster with triple excitations, The Journal of Chemical Physics 145 (2016) 124102.
- U. Bozkaya, B. Ermiş, Y. Alagöz, A. Ünal, A. K. Uyar, MACROQC 1.0: An electronic structure theory software for large-scale applications, The Journal of Chemical Physics 156 (2022) 044801.
- [75] E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Qinghui, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. H. Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, Ádám Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, Ádám Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang,

X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya,
B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. D. III,
R. A. D. Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. G. III, S. Hammes-Schiffer,
T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S.
Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld,
J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P.
Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. V. Voorhis, T. A.
Wesolowski, K. B. Whaley, H. L. W. III, P. M. Zimmerman, S. Faraji, P. M. W. Gill,
M. Head-Gordon, J. M. Herbert, A. I. Krylov, Software for the frontiers of quantum chemistry: An overview of developments in the q-chem 5 package, The Journal of Chemical Physics 155 (2021) 084801.

- [76] J. F. Stanton, J. Gauss, Perturbative treatment of the similarity transformed hamiltonian in equation-of-motion coupled-cluster approximations, The Journal of chemical physics 103 (1995) 1064–1076.
- [77] D. Kumar, A. K. Dutta, P. U. Manohar, Resolution of the identity and cholesky representation of EOM-MP2 approximation: Implementation, accuracy and efficiency, Journal of Chemical Sciences 129 (2017) 1611–1626.
- [78] D. Maurice, M. Head-Gordon, On the nature of electronic transitions in radicals: An extended single excitation configuration interaction method, The Journal of Physical Chemistry 100 (1996) 6131–6137.
- [79] S. Hirata, M. Head-Gordon, Time-dependent density functional theory for radicals:
 An improved description of excited states with substantial double excitation character,
 Chemical physics letters 302 (1999) 375–382.
- [80] S. Hirata, T. J. Lee, M. Head-Gordon, Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene, The Journal of chemical physics 111 (1999) 8904–8912.

- [81] J. Fabian, L. Diaz, G. Seifert, T. Niehaus, Calculation of excitation energies of organic chromophores: a critical evaluation, Journal of Molecular Structure: THEOCHEM 594 (2002) 41–53.
- [82] C. Adamo, V. Barone, Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model for organic free radicals, Chemical physics letters 314 (1999) 152–157.
- [83] D. Kánnár, P. G. Szalay, Benchmarking coupled cluster methods on valence singlet excited states, Journal of Chemical Theory and Computation 10 (2014) 3757–3765.
- [84] A. Ünal, U. Bozkaya, Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics, The Journal of Chemical Physics 148 (2018) 124307.
- [85] A. Ünal, U. Bozkaya, Ionized water clusters $(H2O)^{+n}$, n = 2 6: A high-accuracy study of structures and energetics, International Journal of Quantum Chemistry 120 (2020) e26100.
- [86] NIST, Computational chemistry comparison and benchmark database, https:// cccbdb.nist.gov, 2023. Accessed: 2023-06-05.
- [87] A. W. Castleman, R. G. Keesee, Ionic clusters, Chemical Reviews 86 (1986) 589–818.
- [88] R. Ludwig, Water: From clusters to the bulk, Angewandte Chemie International Edition 40 (2001) 1808–1827.
- [89] M. B. Day, K. N. Kirschner, G. C. Shields, Global search for minimum energy $(H_2O)_n$ clusters, The Journal of Physical Chemistry A 109 (**2005**) 6773–6778.
- [90] N. I. Hammer, J. R. Roscioli, M. A. Johnson, Identification of two distinct electron binding motifs in the anionic water clusters: A vibrational spectroscopic study of the (H₂O) 6-isomers, The Journal of Physical Chemistry A 109 (**2005**) 7896–7901.
- [91] J. M. Herbert, M. Head-Gordon, Calculation of electron detachment energies for water cluster anions: An appraisal of electronic structure methods, with application to $(H_2O)_{20}^-$ and $(H_2O)_{24}^-$, The Journal of Physical Chemistry A 109 (**2005**) 5217–5229.

- [92] T. Sommerfeld, S. D. Gardner, A. DeFusco, K. D. Jordan, Low-lying isomers and finite temperature behavior of $(H_2O)_6^-$, The Journal of Chemical Physics 125 (**2006**) 174301.
- [93] J. M. Herbert, M. Head-Gordon, Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters, Physical Chemistry Chemical Physics 8 (2006) 68–78.
- [94] H. M. Lee, S. B. Suh, J. Y. Lee, P. Tarakeshwar, K. S. Kim, Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer, The Journal of Chemical Physics 112 (2000) 9759–9772.
- [95] J. F. Perez, C. Z. Hadad, A. Restrepo, Structural studies of the water tetramer, International Journal of Quantum Chemistry 108 (2008) 1653–1659.
- [96] A. Madarasz, P. J. Rossky, L. Turi, Response of observables for cold anionic water clusters to cluster thermal history, The Journal of Physical Chemistry A 114 (2010) 2331–2337.
- [97] G. Hincapie, N. Acelas, M. Castan, J. David, A. Restrepo, Structural studies of the water hexamer, The Journal of Physical Chemistry A 114 (2010) 7809–7814.
- [98] E. Miliordos, E. Apra, S. S. Xantheas, Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters $(H_2O)_n$, n = 2-6 and several hexamer local minima at the CCSD(T) level of theory, The Journal of Chemical Physics 139 (2013) 114302.
- [99] H. R. Leverentz, H. W. Qi, D. G. Truhlar, Assessing the accuracy of density functional and semiempirical wave function methods for water nanoparticles: Comparing binding and relative energies of (H₂O)₁₆ and (H₂O)₁₇ to CCSD(T) results, Journal of Chemical Theory and Computation 9 (**2013**) 995–1006.
- [100] P. Xu, M. S. Gordon, Renormalized coupled cluster approaches in the cluster-in-molecule framework: Predicting vertical electron binding energies of the anionic water clusters $(H_2O)_n^-$, The Journal of Physical Chemistry A 118 (**2014**) 7548–7559.

- [101] L. Turi, Hydrated electrons in water clusters: Inside or outside, cavity or noncavity?, Journal of Chemical Theory and Computation 11 (2015) 1745–1755.
- [102] M. P. Coons, Z.-Q. You, J. M. Herbert, The hydrated electron at the surface of neat liquid water appears to be indistinguishable from the bulk species, Journal of the American Chemical Society 138 (2016) 10879–10886.
- [103] J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, D. M. Neumark, Observation of large water-cluster anions with surface-bound excess electrons, Science 307 (2005) 93–96.
- [104] L. Turi, W.-S. Sheu, P. J. Rossky, Characterization of excess electrons in water-cluster anions by quantum simulations, Science 309 (2005) 914–917.
- [105] H. M. Lee, K. S. Kim, Water dimer cation: Density functional theory vs ab initio theory, Journal of Chemical Theory and Computation 5 (2009) 976–981.
- B. C. Garrett, D. A. Dixon, D. M. Camaioni, D. M. Chipman, M. A. Johnson, C. D. Jonah, G. A. Kimmel, J. H. Miller, T. N. Rescigno, P. J. Rossky, S. S. Xantheas, S. D. Colson, A. H. Laufer, D. Ray, P. F. Barbara, D. M. Bartels, K. H. Becker, K. H. Bowenand, S. E. Bradforth, I. Carmichael, J. V. Coe, L. R. Corrales, J. P. Cowin, M. Dupuis, K. B. Eisenthal, J. A. Franz, M. S. Gutowski, K. D. Jordan, B. D. Kay, J. A. LaVerne, S. V. Lymar, T. E. Madey, C. W. McCurdy, D. Meisel, S. Mukamel, A. R. Nilsson, T. M. Orlando, N. G. Petrik, S. M. Pimblott, J. R. Rustad, G. K. Schenter, S. J. Singer, A. Tokmakoff, L.-S. Wang, C. Wittig, T. S. Zwier, Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances, Chemical Reviews 105 (2005) 355–389.
- [107] J. Schnitkert, P. J. Rossky, Excess electron migration in liquid water, The Journal of Physical Chemistry 93 (1989) 6965–6969.
- [108] S. A. Kulkarni, L. J. Bartolotti, R. K. Pathak, Ab initio studies of anionic clusters of water pentamer, The Journal of Chemical Physics 113 (2000) 2697—2700.

- [109] A. L. Sobolewski, W. Domcke, Ab initio investigation of the structure and spectroscopy of hydronium-water clusters, The Journal of Physical Chemistry A 106 (2002) 4158–4167.
- [110] A. L. Sobolewski, W. Domcke, Anionic water clusters with large vertical electron binding energies and their electronic spectra: $(H_2O)_{11}^-$ and $(H_2O)_{14}^-$, Physical Chemistry Chemical Physics 5 (2003) 1130–1136.
- [111] C.-G. Zhan, D. A. Dixon, The nature and absolute hydration free energy of the solvated electron in water, The Journal of Physical Chemistry B 107 (**2003**) 4403–4417.
- [112] H. M. Lee, S. Lee, K. S. Kim, Structures, energetics, and spectra of electron-water clusters, $e^- (H_2O)_{2-6}$ and $e^- HOD(D_2O)_{1-5}$., The Journal of Chemical Physics 119 (2003) 187–194.
- [113] Y. V. Novakovskaya, N. F. Stepanov, Nonempirical description of the atmospherically important anionic species. i. water cluster anions, Structural Chemistry 15 (2004) 65–70.
- [114] A. D. Kulkarni, S. R. Gadre, S. Nagase, Quantum chemical and electrostatic studies of anionic water clusters, $(H_2O)_n$, Journal of Molecular Structure: THEOCHEM 851 (2008) 213–219.
- B. Temelso, K. A. Archer, G. C. Shields, Benchmark structures and binding energies of small water clusters with anharmonicity corrections, The Journal of Physical Chemistry A 115 (2011) 12034–12046.
- [116] L. Turi, P. J. Rossky, Theoretical studies of spectroscopy and dynamics of hydrated electrons, Chemical Reviews 112 (2012) 5641–5674.
- [117] H. Haberland, C. Ludewigt, H. G. Schindler, D. R. Worsnop, Experimental observation of the negatively charged water dimer and other small $(H_2O)_n^-$ clusters, The Journal of Chemical Physics 81 (**1984**) 3742–3744.
- [118] H. Haberland, H. G. Schindler, D. R. Worsnop, Mass spectra of negatively charged water and ammonia clusters, Berichte der Bunsengesellschaft für physikalische Chemie 88 (1984) 270–272.

- [119] M. Knapp, O. Echt, D. Kreisle, E. Recknagel, Trapping of low energy electrons at preexisting, cold water clusters, The Journal of Chemical Physics 85 (1986) 636–637.
- [120] J. V. Coe, G. H. Lee, J. G. Eaton, S. T. Arnold, H. W. Sarkas, K. H. Bowen, C. Ludewigt, H. Haberland, D. R. Worsnop, Photoelectron spectroscopy of hydrated electron cluster anions, $(H_2O)_{11}^- = 2-69$, The Journal of Chemical Physics 92 (**1990**) 3980–3982.
- [121] A. Sanov, W. C. Lineberger, Dynamics of cluster anions: A detailed look at condensed-phase interactions, PhysChemComm 5 (2002) 165–177.
- [122] D. M. Neumark, Spectroscopy and dynamics of excess electrons in clusters, Molecular Physics 106 (2008) 2183–2197.
- [123] E. R. Davidson, W. T. Borden, Symmetry breaking in polyatomic molecules: Real and artifactual, The Journal of Physical Chemistry 87 (1983) 4783–4790.
- W. D. Allen, D. A. Horner, R. L. DeKock, R. B. Remington, H. F. Schaefer, The lithium superoxide radical: Symmetry breaking phenomena and potential energy surfaces, Chemical Physics 133 (1989) 11–45.
- [125] J. F. Stanton, J. Gauss, R. J. Bartlett, On the choice of orbitals for symmetry breaking problems with application to NO₃, The Journal of Chemical Physics 97 (1992) 5554–5559.
- [126] R. S. Grev, I. L. Alberts, H. F. Schaefer, C_3^+ is bent, The Journal of Physical Chemistry 94 (**1990**) 3379–3381.
- [127] Y. Xie, W. D. Allen, Y. Yamaguchi, H. F. Schaefer, Is the oxywater radical cation more stable than neutral oxywater?, The Journal of Chemical Physics 104 (1996) 7615–7623.
- [128] N. A. Burton, I. L. Alberts, Y. Yamaguchi, H. F. Schaefer, Interpretation of excited state Hartree–Fock analytic derivative anomalies for NO₂ and HCO₂ using the molecular orbital hessian, The Journal of Chemical Physics 95 (1991) 7466–7478.
- [129] T. D. Crawford, J. F. Stanton, W. D. Allen, H. F. Schaefer, Hartree–Fock orbital instability envelopes in highly correlated single-reference wave functions, The Journal of Chemical Physics 107 (1997) 10626–10632.

- [130] P. Y. Ayala, H. B. Schlegel, A nonorthogonal CI treatment of symmetry breaking in sigma formyloxyl radical, The Journal of Chemical Physics 108 (1998) 7560–7567.
- [131] N. J. Russ, T. D. Crawford, G. S. Tschumper, Real versus artifactual symmetry- breaking effects in Hartree–Fock, density-functional, and coupled-cluster methods, The Journal of Chemical Physics 120 (2004) 7298–7306.
- B. Mintz, T. D. Crawford, Symmetry breaking in the cyclic C₃C₂H radical, Physical Chemistry Chemical Physics 12 (2010) 15459–15467.
- [133] G. D. Purvis, R. J. Bartlett, A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, The Journal of Chemical Physics 76 (1982) 1910–1918.
- [134] K. Raghavachari, G. W. Trucks, J. A. Pople, E. Replogle, A fifth-order perturbation comparison of electron correlation theories, Chemical Physics Letters 158 (1989) 207.
- [135] R. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods, Chemical Physics Letters 165 (1990) 513–522.
- [136] J. D. Herr, J. Talbot, R. P. Steele, Structural progression in clusters of ionized water, $(H_2O)_{n=1-5}^+$, The Journal of Physical Chemistry A 119 (**2015**) 752–766.
- [137] J. D. Herr, R. P. Steele, Ion-radical pair separation in larger oxidized water clusters, $(H_2O)_{n=6-21}^+$, The Journal of Physical Chemistry A 120 (**2016**) 7225–7239.
- [138] J. J. Talbot, X. Cheng, J. D. Herr, R. P. Steele, Vibrational signatures of electronic properties in oxidized water: Unraveling the anomalous spectrum of the water dimer cation, Journal of the American Chemical Society 138 (2016) 11936–11945.
- [139] K. Mizuse, J.-L. Kuo, A. Fujii, Structural trends of ionized water networks: Infrared spectroscopy of water cluster radical cations $(H_2O)_n^+$ (n = 3 11), Chemical Science 2 (2011) 868–876.
- [140] H. Tachikawa, T. Takada, Proton transfer rates in ionized water clusters $(H_2O)_n$ (n = 2 4), RSC Advances 5 (2015) 6945–6953.

- [141] X. Chen, W. Fang, H. Wang, Slow deactivation channels in UV-photoexcited adenine DNA, Physical Chemistry Chemical Physics 16 (2014) 4210.
- [142] C. Greve, T. Elsaesser, Ultrafast two-dimensional infrared spectroscopy of guanine-cytosine base pairs in DNA oligomers, The Journal of Physical Chemistry B 117 (2013) 14009–14017.
- [143] A. L. Sobolewski, W. Domcke, C. Hattig, Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 17903–17906.
- [144] A. Abo-Riziq, L. Grace, E. Nir, M. Kabelac, P. Hobza, M. S. de Vries, Photochemical selectivity in guanine-cytosine base-pair structures, Proceedings of the National Academy of Sciences of the United States of America 102 (2004) 20–23.
- [145] D. Kina, A. Nakayama, T. Noro, T. Taketsugu, M. S. Gordon, Ab initio QM/MM molecular dynamics study on the excited-state hydrogen transfer of 7-azaindole in water solution, The Journal of Physical Chemistry A 112 (2008) 9675–9683.
- [146] F. Dong, S. Heinbuch, J. J. Rocca, E. R. Bernstein, Dynamics and fragmentation of van der waals clusters: (H₂O)_n, (CH₃OH)_n, and (NH₃)_n upon ionization by a 26.5 ev soft x-ray laser, The Journal of Chemical Physics 124 (**2006**) 224319.
- [147] G. H. Gardenier, M. A. Johnson, A. B. McCoy, Spectroscopic study of the ion-radical h-bond in $(H_4O_2)^+$, The Journal of Physical Chemistry A 113 (**2009**) 4772–4779.
- [148] K. Mizuse, A. Fujii, Characterization of a solvent-separated ion-radical pair in cationized water networks: Infrared photodissociation and ar-attachment experiments for water cluster radical cations $(H_2O)_n^+$ (n = 3-8), The Journal of Physical Chemistry A 117 (**2013**) 929–938.
- [149] Q. Cheng, F. A. Evangelista, A. C. Simmonett, Y. Yamaguchi, H. F. Schaefer, Water dimer radical cation: Structures, vibrational frequencies, and energetics, The Journal of Physical Chemistry A 113 (2009) 13779–13789.

- [150] E. Livshits, R. S. Granot, R. Baer, A density functional theory for studying ionization processes in water clusters, The Journal of Physical Chemistry A 115 (2011) 5735–5744.
- [151] H. Do, N. A. Besley, Structure and bonding in ionized water clusters, The Journal of Physical Chemistry A 117 (2013) 5385–5391.
- [152] T. Stein, C. A. Jiménez-Hoyos, G. E. Scuseria, Stability of hemi-bonded vs proton-transferred structures of $(H_2O)_2^+$, $(H_2S)_2^+$, and $(H_2Se)_2^+$ studied with projected Hartree–Fock methods, The Journal of Physical Chemistry A 118 (**2014**) 7261–7266.
- [153] H. M. Lee, I.-S. Youn, K. S. Kim, CO capture and conversion to HOCO radical by ionized water clusters, The Journal of Physical Chemistry A 118 (2014) 7274–7279.
- [154] M. Tang, C.-E. Hu, Z.-L. Lv, X.-R. Chen, L.-C. Cai, Ab initio study of ionized water radical cation $(H_2O)_8^+$ in combination with the particle swarm optimization method, The Journal of Physical Chemistry A 120 (**2016**) 9489–9499.
- [155] D. M. Chipman, Hemibonding between water cation and water, The Journal of Physical Chemistry A 120 (2016) 9618–9624.
- [156] J. Chalabala, F. Uhlig, P. Slavíček, Assessment of real-time time-dependent density functional theory (RT-TDDFT) in radiation chemistry: Ionized water dimer, The Journal of Physical Chemistry A 122 (2018) 3227–3237.
- [157] U. Bozkaya, A. Ünal, Y. Alagöz, Energy and analytic gradients for the orbital-optimized coupled-cluster doubles method with the density-fitting approximation: An efficient implementation, The Journal of Chemical Physics 153 (2020) 244115.
- [158] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. D. Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability, Journal of Chemical Theory and Computation 13 (2017) 3185–3197.

- [159] Psi4, Psi4, http://www.psicode.org/psi4manual/master/occ.html, 2023. Accessed: 2023-06-05.
- [160] MQC, Macroqc, https://macroqc.hacettepe.edu.tr, 2023. Accessed: 2023-06-05.
- [161] A. Ünal, U. Bozkaya, Efficient implementation of equation-of-motion coupled-cluster singles and doubles method with the density-fitting approximation: An enhanced algorithm for the particle-particle ladder term, Journal of Chemical Theory and Computation 18 (2022) 1489–1500.
- [162] S. A. Servan, A. Ünal, B. Hamarat, U. Bozkaya, Assessment of the density-fitted second-order quasidegenerate perturbation theory for transition energies: Accurate computations of singlet-triplet gaps for charge-transfer compounds, The Journal of Physical Chemistry A 124 (2020) 6889–6898.
- [163] U. Bozkaya, A. Ünal, State-of-the-art computations of vertical ionization potentials with the extended Koopmans' theorem integrated with the CCSD(T) method, The Journal of Physical Chemistry A 122 (2018) 4375–4380.
- [164] P. Löwdin, Approximate formulas for many-center integrals in the theory of molecules and crystals, The Journal of Chemical Physics 21 (1953) 374–375.
- [165] J. L. Whitten, Coulombic potential energy integrals and approximations, The Journal of Chemical Physics 58 (1973) 4496–4501.
- [166] B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, On some approximations in applications of x_{α} theory, The Journal of Chemical Physics 71 (**1979**) 3396–3402.
- [167] C. A. White, M. Head-Gordon, A j matrix engine for density functional theory calculations, The Journal of Chemical Physics 104 (**1996**) 2620–2629.
- [168] A. Sodt, J. E. Subotnik, M. Head-Gordon, Linear scaling density fitting, The Journal of Chemical Physics 125 (2006).
- [169] Y. Yamaguchi, unpublished notes, Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA (2011).

- [170] U. Bozkaya, unpublished notes, Hacettepe Üniversitesi (2023).
- [171] G. E. Scuseria, C. L. Janssen, H. F. Schaefer, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations, The Journal of Chemical Physics 89 (1988) 7382–7387.
- [172] T. Helgaker, P. Jørgensen, Analytical calculation of geometrical derivatives in molecular electronic structure theory, Advances in Quantum Chemistry 19 (1988) 183–245.
- [173] J. Gauss, J. F. Stanton, R. J. Bartlett, Coupled-cluster open-shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations, The Journal of Chemical Physics 95 (1991) 2623–2638.
- [174] E. A. Salter, G. W. Trucks, R. J. Bartlett, Analytic energy derivatives in many-body methods. i. first derivatives, The Journal of Chemical Physics 90 (**1989**) 1752–1766.
- [175] P. Jørgensen, J. Simons, Geometrical derivatives of energy surfaces and molecular properties, volume 166, Springer Science & Business Media, 2012.
- [176] R. J. Bartlett, The coupled-cluster revolution, Molecular Physics 108 (**2010**) 2905–2920.
- [177] J. Gauss, J. F. Stanton, Analytic gradients for the coupled-cluster singles, doubles, and triples (CCSDT) model, The Journal of Chemical Physics 116 (2002) 1773–1782.
- [178] Y. Alagöz, U. Bozkaya, A. Ünal, Efficient implementations of the symmetric and asymmetric triple excitation corrections for the orbital-optimized coupled-cluster doubles method with the density-fitting approximation, The Journal of Chemical Physics 155 (2021) 114104.
- [179] I. Shavitt, R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, Cambridge University Press, 2009.
- [180] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Journal of Computational Physics 17 (**1975**) 87–94.

- B. Liu, The simultaneous expansion method for the iterative solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Numerical algorithms in chemistry: algebraic methods (1978) 49–53.
- U. Bozkaya, C. D. Sherrill, Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T) quality for noncovalent interactions, The Journal of Chemical Physics 141 (2014) 204105.
- U. Bozkaya, Orbital-optimized MP3 and MP2.5 with density-fitting and cholesky decomposition approximations, Journal of chemical theory and computation 12 (2016) 1179–1188.
- T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen, The Journal of Chemical Physics 90 (1989) 1007–1023.
- [185] D. E. Woon, T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. v. core-valence basis sets for boron through neon, The Journal of Chemical Physics 103 (1995) 4572–4585.
- [186] F. Weigend, A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency, Physical Chemistry Chemical Physics 4 (2002) 4285–4291.
- [187] F. Weigend, A. Köhn, C. Hättig, Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations, The Journal of Chemical Physics 116 (2002) 3175–3183.
- [188] B. Temelso, C. D. Sherrill, R. C. Merkle, R. A. Freitas, High-level ab initio studies of hydrogen abstraction from prototype hydrocarbon systems, The Journal of Physical Chemistry A 110 (2006) 11160–11173.
- [189] J. Rezác, P. Hobza, Describing noncovalent interactions beyond the common approximations: How accurate is the "gold standart", CCSD(T) at the complete basis set limit?, Journal of Chemical Theory and Computation 9 (2013) 2151–2155.

- [190] D. Feller, The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water, The Journal of Chemical Physics 98 (1993) 7059–7071.
- [191] T. Helgaker, W. Klopper, H. Koch, J. Noga, Basis-set convergence of correlated calculations on water, The Journal of Chemical Physics 106 (1997) 9639–9646.
- [192] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, J. Olsen, Basis-set convergence of the energy in molecular Hartree–Fock calculations, Chemical Physics Letters 302 (1999) 437–446.
- [193] S. F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics 19 (1970) 553–566.
- T. Helgaker, J. Gauss, P. Jørgensen, J. Olsen, The prediction of molecular equilibrium structures by the standard electronic wave functions, The Journal of Chemical Physics 106 (1997) 6430.
- [195] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules, Van Nostrand, Princeton, 1979.
- [196] F. W. Dalby, The spectrum and structure of the hno molecule, Canadian Journal of Physics 36 (1958) 1336.
- [197] L. Halonen, T.-K. Ha, Equilibrium structure and anharmonic force field of hypofluorous acid (HOF), The Journal of Chemical Physics 89 (1988) 4885.
- [198] G. Pelz, K. M. T. Yamada, G. Winnewisser, Torsional dependence of the effective rotational constants of H_2O_2 and H_2S_2 , The Journal of Molecular Spectroscopy 159 (1993) 507.
- [199] A. R. Hoy, I. M. Mills, G. Strey, Anharmonic force constant calculations, Molecular Physics 24 (1972) 1265.
- [200] R. A. Creswell, A. G. Robiette, On the anharmonic force field and equilibrium structure of hnc, Molecular Physics 36 (1978) 869.

- [201] A. Baldacci, S. Ghersetti, S. C. Hurlock, K. N. Rao, Infrared bands of ¹²C₂HD, The Journal of Molecular Spectroscopy 59 (1976) 116.
- [202] G. Winnewisser, A. G. Maki, D. R. Johnson, Rotational constants for HCN and DCN, The Journal of Molecular Spectroscopy 39 (1971) 149.
- [203] H. C. Allen, E. K. Plyler, The structure of ethylene from infrared spectra, Journal of the American Chemical Society 80 (1958) 2673.
- [204] D. L. Gray, A. G. Robiette, The anharmonic force field and equilibrium structure of methane, Molecular Physics 37 (1979) 1901.
- [205] J. L. Duncan, The ground-state average and equilibrium structures of formaldehyde and ethylene, Molecular Physics 28 (1974) 1177.
- [206] P. Jensen, P. R. Bunker, The potential surface and stretching frequencies of \tilde{X}^3 b_1 methylene (CH₂) determined from experiment using the morse oscillator-rigid bender internal dynamics hamiltonian, The Journal of Chemical Physics 89 (**1988**) 1327.
- [207] T. Tanaka, Y. Morino, Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states, The Journal of Molecular Spectroscopy 33 (1978) 538.
- [208] E. F. C. Byrd, C. D. Sherrill, M. Head-Gordon, The theoretical prediction of molecular radical species: A systematic study of equilibrium geometries and harmonic vibrational frequencies, The Journal of Physical Chemistry A 105 (2001) 9736.
- [209] G. Herzberg, Molecular Spectra and Molecular Structure. Spectra of Diatomic Molecules, Van Nostrand, New York, 1950.
- [210] A. J. Cormack, A. J. Yencha, R. J. Donovan, K. P. Lawley, A. Hopkirk, G. C. King, High-resolution threshold photoelectron spectroscopy of molecular fluorine, Chemical Physics 213 (1996) 439.
- [211] A. V. Copan, A. Y. Sokolov, H. F. Schaefer, Benchmark study of density cumulant functional theory: Thermochemistry and kinetics, Journal of Chemical Theory and Computation 10 (2014) 2389–2398.

- [212] G. S. F. Dhont, J. H. van Lenthe, G. C. Groenenboom, A. van der Avoird, Ab initio calculation of the $NH(^{3}\Sigma^{-})-NH(^{3}\Sigma^{-})$ interaction potentials in the quintet, triplet, and singlet states, The Journal of Chemical Physics 123 (**2005**) 184302.
- [213] W. E. Thompson, M. E. Jacox, The vibrational spectra of molecular ions isolated in solid neon. ii. O_4^+ and O_4^- , The Journal of Chemical Physics 91 (**1989**) 3826.
- [214] R. Lindh, L. A. Barnes, The fraternal twins of quartet O_4^+ , The Journal of Chemical Physics 100 (**1994**) 224.
- [215] L. A. Barnes, R. Lindh, Symmetry breaking in O_4^+ : An application of the brueckner coupled-cluster method, Chemical Physics Letters 223 (**1994**) 207.
- [216] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, Molpro, version 2012.1, a package of ab initio programs, 2012. See http://www.molpro.net.
- [217] A. M. Ricks, G. E. Douberly, M. A. Duncan, Ir photodissociation spectroscopy of O_4^+ , O_6^+ and O_8^+ cluster ions, International Journal of Mass Spectrometry 283 (**2009**) 69–76.
- [218] M. E. Jacox, W. E. Thompson, Evidence for the stabilization of rectangular O_4^+ in solid neon, The Journal of Chemical Physics 100 (**1994**) 750.
- [219] E. Epifanovsky, D. Zuev, X. Feng, K. Khistyaev, Y. Shao, A. I. Krylov, General implementation of the resolution-of-the-identity and cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks, The Journal of Chemical Physics 139 (2013) 134105.
- [220] P. U. Manohar, A. I. Krylov, A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions, The Journal of Chemical Physics 129 (2008) 194105.

- [221] Z. Li, W. Liu, Critical assessment of TD-DFT for excited states of open-shell systems:
 I. doublet–doublet transitions, Journal of Chemical Theory and Computation 12 (2015) 238–260.
- [222] J. Fabian, L. Diaz, G. Seifert, T. Niehaus, Calculation of excitation energies of organic chromophores: A critical evaluation, Journal of Molecular Structure: THEOCHEM 594 (2002) 41–53.
- [223] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, G. B. Ellison, Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations, Chemical Reviews 102 (2002) 231.
- [224] A. R. Hoy, P. R. Bunker, A precise solution of the rotation bending schrödinger equation for a triatomic molecule with application to the water molecule, Journal of Molecular Spectroscopy 74 (1979) 1–8.
- [225] J. Kim, I. Becker, O. Cheshnovsky, M. A. Johnson, Photoelectron spectroscopy of the 'missing' hydrated electron clusters $(H_2O)_n^-$, n = 3, 5, 8 and 9: Isomers and continuity with the dominant clusters n = 6, 7 and \leq 11, Chem. Phys. Lett. 297 (**1998**) 90–96.
- [226] S. P. de Visser, L. J. de Koning, N. M. M. Nibbering, Reactivity and thermochemical properties of the water dimer radical cation in the gas phase, Journal of Physical Chemistry 99 (1995) 15444–15447.
- [227] S. Tomoda, Y. Achiba, K. Kimura, Photoelectron spectrum of the water dimer, Chemical Physics Letters 87 (1982) 197–200.
- [228] N. C. Handy, H. F. Schaefer, On the evaluation of analytic energy derivatives for correlated wave functions, The Journal of Chemical Physics 81 (1984) 5031–5033.

EKLER

EK 1 – Süre Hesaplamalarında Kullanılan Alkan Seti

CH₄ (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

C0.00000000.00000000.0000000H0.627600000.627600000.62760000H-0.62760000-0.62760000-0.62760000H-0.62760000-0.627600000.62760000

C₂H₆ (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

 C
 0.0000000
 0.0000000
 0.76800000

 C
 0.0000000
 0.0000000
 -0.76800000

 H
 -1.01920000
 0.00000000
 1.15730000

 H
 0.50960000
 -0.88260000
 1.15730000

 H
 0.50960000
 -0.88260000
 -1.15730000

 H
 1.01920000
 0.00000000
 -1.15730000

 H
 -0.50960000
 -0.88260000
 -1.15730000

 H
 -0.50960000
 0.88260000
 -1.15730000

C₃H₈ (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

C0.00000000.586300000.0000000C-1.26810000-0.262600000.00000000C1.26810000-0.262600000.00000000H0.000000001.244900000.87600000H-0.000300001.24530000-0.87580000H-2.157600000.374200000.00000000H2.157600000.374300000.00000000H-1.32710000-0.901400000.88000000H-1.32710000-0.90140000-0.88000000

H 1.32710000 -0.90140000 -0.88000000 H 1.32720000 -0.90140000 0.88000000

C₄H₁₀ (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

С 0.0000000 0.76630000 0.00000000 0.0000000 -0.76630000 0.00000000 С C -1.40520000 1.37260000 0.00000000 0.00000000 1.40520000 -1.37260000 С H 0.55470000 1.12710000 0.87540000 Н 0.55470000 1.12710000 -0.87540000 H -0.55470000 -1.12710000 0.87540000 H -0.55470000 -1.12710000 -0.87540000 H -1.37150000 2.46560000 0.00000000 Н 1.37150000 -2.46560000 0.00000000 H -1.97340000 1.06060000 -0.88210000 H -1.97340000 1.06060000 0.88210000 Н 1.97340000 -1.06060000 -0.88210000 Н 1.97340000 -1.06060000 0.88210000

 C_5H_{12} (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

C 0.0000000 0.0000000 0.31470000 C 0.0000000 1.28340000 -0.52250000 С 0.0000000 -1.28340000 -0.52250000 С 0.0000000 2.55860000 0.32380000 С 0.0000000 -2.55860000 0.32380000 Н 0.87580000 0.00000000 0.97750000 Н -0.87580000 0.00000000 0.97750000 Н 0.87530000 1.28380000 -1.18400000 H -0.87530000 1.28380000 -1.18400000 H -0.87530000 -1.28380000 -1.18400000 Н 0.87530000 -1.28380000 -1.18400000 Н 0.00000000 3.45620000 -0.30120000 Н 0.00000000 -3.45620000 -0.30120000 H -0.88210000 2.60740000 0.97010000 H 0.88210000 2.60740000 0.97010000 H 0.88210000 -2.60740000 0.97010000

 C_6H_{14} (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

C 1.39160000 2.91240000 0.00000000 C -1.39160000 -2.91240000 0.00000000 C 0.0000000 0.76600000 0.00000000 C 0.0000000 -0.76600000 0.00000000 C -1.40320000 -1.38200000 0.00000000 С 1.40320000 1.38200000 0.00000000 Н -2.40550000 -3.32270000 0.00000000 Н 2.40550000 3.32270000 0.00000000 H 0.87690000 3.30630000 0.88210000 H 0.87690000 3.30630000 -0.88210000 H -0.87690000 -3.30630000 -0.88210000 H -0.87690000 -3.30630000 0.88210000 Н 1.95740000 1.02100000 -0.87520000 Н 1.95740000 1.02100000 0.87520000 H -1.95740000 -1.02100000 -0.87520000 H -1.95740000 -1.02100000 0.87520000 H -0.55380000 1.12930000 0.87600000 H -0.55380000 1.12930000 -0.87600000 Н 0.55380000 -1.12930000 -0.87600000 Н 0.55380000 -1.12930000 0.87600000

C₇H₁₆ (B3LYP/6-311G* seviyesinde optimize geometri, CCCBDB web sitesinden alıntılanmıştır, http://cccbdb.nist.gov/)

C0.00000000.00000000.49470000C0.00000001.28290000-0.34370000C0.0000000-1.28290000-0.34370000C0.00000002.566800000.49370000C0.0000000-2.566800000.49370000C0.0000000-3.84240000-0.35260000C0.0000000-3.84240000-0.35260000H-0.876600000.000000001.15560000H0.876500001.28380000-1.00480000H0.876500001.28380000-1.00480000

Η	0.87650000	-1.28380000	-1.00480000
Η	-0.87650000	-1.28380000	-1.00480000
Η	0.87590000	2.56620000	1.15390000
Η	-0.87590000	2.56620000	1.15390000
Η	-0.87590000	-2.56620000	1.15390000
Η	0.87590000	-2.56620000	1.15390000
Η	0.00000000	4.73890000	0.27370000
Η	0.88270000	3.88890000	-0.99820000
Η	-0.88270000	3.88890000	-0.99820000
Η	0.00000000	-4.73890000	0.27370000
Η	-0.88270000	-3.88890000	-0.99820000
Η	0.88270000	-3.88890000	-0.99820000

 $C_8H_{18} \ (B3LYP/6-311G* \ seviyes inde \ optimize \ geometri, \ CCCBDB \ web \ sites inden \ aluntulanmıştır, http://cccbdb.nist.gov/)$

С	0.00250000	0.76660000	0.00000000
С	-0.00250000	-0.76660000	0.00000000
С	-1.40050000	1.38380000	0.00000000
С	1.40050000	-1.38380000	0.00000000
С	-1.40050000	2.91680000	0.00000000
С	1.40050000	-2.91680000	0.00000000
С	-2.80670000	3.52270000	0.00000000
С	2.80670000	-3.52270000	0.00000000
Н	0.55630000	1.12660000	0.87680000
Н	0.55630000	1.12660000	-0.87680000
Н	-0.55630000	-1.12660000	0.87680000
Н	-0.55630000	-1.12660000	-0.87680000
Н	-1.95470000	1.02370000	-0.87660000
Н	-1.95470000	1.02370000	0.87660000
Н	1.95470000	-1.02370000	-0.87660000
Н	1.95470000	-1.02370000	0.87660000
Н	-0.84750000	3.27710000	0.87610000
Н	-0.84750000	3.27710000	-0.87610000
Н	0.84750000	-3.27710000	0.87610000
Н	0.84750000	-3.27710000	-0.87610000
Н	-2.77190000	4.61580000	0.00000000
Н	-3.37280000	3.20880000	-0.88270000
Н	-3.37280000	3.20880000	0.88270000
Н	2.77190000	-4.61580000	0.00000000
Н	3.37280000	-3.20880000	-0.88270000
Н	3.37280000	-3.20880000	0.88270000
C₉H₂₀ (AM1 seviyesinde optimize geometri)

С	-4.99698600	0.36383200	-0.0000200
С	-3.75024200	-0.48195100	0.00000700
С	-2.49951800	0.37096000	-0.00000400
С	-1.24980000	-0.48288200	0.00000300
С	0.00000100	0.37106700	-0.00000300
С	1.24979800	-0.48288200	0.00000100
С	2.49951700	0.37096000	0.00000000
С	3.75024100	-0.48195100	-0.00000100
С	4.99698800	0.36383200	0.00000000
Н	-5.90627300	-0.28447500	0.00000600
Н	-5.03037100	1.01776700	0.90489100
Н	-5.03037200	1.01774600	-0.90491000
Н	-3.74726000	-1.14877500	0.90264700
Н	-3.74726100	-1.14879700	-0.90261600
Н	-2.49998300	1.03734700	-0.90267900
Η	-2.49998000	1.03736800	0.90265600
Н	-1.24977400	-1.14930400	0.90270600
Н	-1.24977400	-1.14931800	-0.90269000
Н	0.00000200	1.03748300	-0.90270800
Н	0.00000400	1.03749300	0.90269400
Н	1.24976800	-1.14930800	0.90270200
Н	1.24976900	-1.14931400	-0.90269500
Н	2.49998100	1.03735800	-0.90266700
Н	2.49998200	1.03735700	0.90266700
Н	3.74725700	-1.14878800	0.90262900
Н	3.74725700	-1.14878500	-0.90263400
Η	5.90627500	-0.28447800	0.00000100
Н	5.03037800	1.01775600	-0.90490000
Н	5.03037700	1.01775600	0.90490100

$C_{10}H_{22}$ (AM1 seviyesinde optimize geometri)

С	5.63024600	-0.28503500	0.00000300
С	4.36362000	0.53064100	-0.00000300
С	3.13369200	-0.35196300	0.00000000
С	1.86390600	0.47171100	-0.00000300
С	0.63492500	-0.41191100	-0.00000100
С	-0.63492600	0.41191400	0.00000000
С	-1.86390600	-0.47171000	-0.00000300
С	-3.13369100	0.35196300	0.00000100

С	-4.36362000	-0.53064300	-0.00000300
С	-5.63024600	0.28503300	0.00000700
Η	6.52375000	0.38486600	-0.00000400
Η	5.67929500	-0.93796700	0.90491200
Η	5.67929300	-0.93798500	-0.90489200
Η	4.34466500	1.19721600	0.90263200
Η	4.34466800	1.19720800	-0.90264300
Η	3.15011400	-1.01815800	-0.90267200
Η	3.15011400	-1.01815300	0.90267500
Η	1.84791900	1.13794800	0.90270000
Η	1.84792000	1.13794400	-0.90270900
Η	0.65088500	-1.07813500	-0.90271100
Η	0.65088600	-1.07813400	0.90270900
Η	-0.65088700	1.07813400	0.90271200
Η	-0.65088700	1.07813900	-0.90270800
Η	-1.84792200	-1.13794100	-0.90271000
Η	-1.84792000	-1.13794800	0.90269900
Η	-3.15011100	1.01815100	0.90267800
Η	-3.15011100	1.01816000	-0.90266900
Η	-4.34466700	-1.19720600	-0.90264700
Η	-4.34466400	-1.19722200	0.90262800
Η	-6.52375200	-0.38486600	0.00000000
Н	-5.67929400	0.93796600	0.90491500
Η	-5.67929500	0.93798500	-0.90488800

EK 2 – Kapalı Kabuklu Test Seti

Tez çalışması kapsamında geliştirilen yöntemlerin doğruluğunu değerlendirmek amacıyla göz önüne alınan kapalı kabuklu moleküllerden oluşturulan test seti için geometriler burada sunulmuştur.

1-Asetamit

С	1.360012888	-0.343164579	-0.004143703
С	-0.076339324	0.146077119	-0.007436705
Ν	-1.031873618	-0.827044572	-0.005588741
0	-0.356650354	1.328760140	-0.001120857
Н	1.816451380	-0.071068715	0.947476849
Н	1.459108811	-1.418247420	-0.149557637
Η	1.904652553	0.178216915	-0.789171868
Н	-1.997600530	-0.547478634	0.007182606
Н	-0.807245551	-1.803863852	-0.011645532

2-Aseton

С	0.000000000	0.000000000	0.184533914
0	0.000000000	0.000000000	1.393539117
С	-1.288329519	-0.000007571	-0.611807513
С	1.288329519	0.000007571	-0.611807513
Η	-2.140675074	-0.000283976	0.062182601
Η	2.140675074	0.000283976	0.062182601
Η	-1.332914603	0.877057882	-1.261382322
Η	-1.332681316	-0.876734901	-1.261850843
Η	1.332914603	-0.877057882	-1.261382322
Н	1.332681316	0.876734901	-1.261850843

3-Siklopentadien

Η	0.000000000	-0.874682970	-1.873919542
Η	0.000000000	0.874682970	-1.873919542
Η	-2.205179343	0.000000000	-0.606592909
Η	2.205179343	0.000000000	-0.606592909
Η	-1.344917974	0.000000000	1.877425720
Η	1.344917974	0.000000000	1.877425720
С	-1.176513449	0.000000000	-0.280409978
С	1.176513449	0.000000000	-0.280409978
С	0.000000000	0.000000000	-1.213270251
С	-0.732776483	0.000000000	0.987347529
С	0.732776483	0.000000000	0.987347529

4-Siklopropen

С	0.847340224	-0.000009393	0.000000000
С	-0.514215096	0.643264872	0.000000000
С	-0.514202490	-0.643309917	0.000000000
Н	1.443168258	-0.000003717	-0.910559528
Н	1.443168258	-0.000003717	0.910559528
Н	-1.055507919	1.571124592	0.000000000
Н	-1.055478458	-1.571179556	0.000000000

5-E-bütadien

С	0.606997950	-0.399031152	0.000000000
С	-0.606997950	0.399031152	0.000000000
С	1.840518939	0.108705872	0.000000000
С	-1.840518939	-0.108705872	0.000000000
Η	0.474444760	-1.476783653	0.000000000
Η	-0.474444760	1.476783653	0.000000000
Η	2.716018491	-0.525335359	0.000000000
Η	2.010289007	1.178431092	0.000000000
Η	-2.716018491	0.525335359	0.000000000
Η	-2.010289007	-1.178431092	0.000000000

6-Eten

С	0.6620555023	0.0000000000	-0.0000000000
С	-0.6620555023	-0.0000000000	0.0000000000
Н	1.2316711058	0.9206569263	-0.0000000000
Н	1.2316711058	-0.9206569263	-0.0000000000
Н	-1.2316711058	-0.9206569263	0.0000000000
Н	-1.2316711058	0.9206569263	0.0000000000

7-Formaldehit

0	0.000000000	0.000000000	0.671855230
С	0.000000000	0.000000000	-0.527135527
Н	0.936935231	0.000000000	-1.116314101
Н	-0.936935231	0.000000000	-1.116314101

8-Formamit

С	-0.160660619	-0.385608410	0.000000000
0	-1.193140976	0.243913417	0.000000000
Ν	1.082952570	0.157816246	0.000000000
Η	-0.132754009	-1.490219234	0.00000000
Η	1.184051082	1.159008392	0.00000000
Η	1.904603813	-0.418502293	0.000000000

9-Furan

0	0.000000000	0.000000000	1.158015618
С	-1.092690521	0.000000000	0.346054700
С	1.092690521	0.000000000	0.346054700
С	-0.715883197	0.000000000	-0.954960662
С	0.715883197	0.000000000	-0.954960662
Η	-2.046501773	0.000000000	0.841081023
Η	2.046501773	0.000000000	0.841081023
Η	-1.369066297	0.000000000	-1.810055370
Η	1.369066297	0.000000000	-1.810055370

10-İmidazol

Ν	-0.745357151	-0.811965874	0.000000000
С	-0.992296549	0.527763583	0.000000000
С	0.621171243	-0.974426229	0.000000000
Ν	0.118241171	1.222457711	0.000000000
С	1.131467726	0.293670158	0.000000000
Η	-1.430781807	-1.546457173	0.000000000
Η	-1.991610617	0.930432795	0.000000000
Η	1.083978333	-1.944480327	0.000000000
Η	2.166227232	0.590875896	0.000000000

EK 3 – Açık Kabuklu Test Seti

Tez çalışması kapsamında geliştirilen yöntemlerin doğruluğunu değerlendirmek amacıyla, göz önüne alınan açık kabuklu moleküllerden oluşturulan test seti için geometriler bu kısımda sunulmuştur.

 C_2H_3

С	0.0000000000	0.0000000000	0.0000000000
С	1.340000000	0.0000000000	0.0000000000
Η	-0.7798821613	0.0000000000	-0.7771645993
Η	1.9243244760	0.0000000000	0.9461019537
Η	1.9233400656	0.0000000000	-0.9408312111

 CH_2N

С	0.0000000000	0.0000000000	0.0000000000
Ν	1.2655000000	0.0000000000	0.0000000000
Η	-0.5399827194	0.0000000000	-0.9594892718
Н	-0.5398152487	0.0000000000	0.9595835020

CH_2O^+

С	0.0000000000	0.0000000000	0.0000000000
0	1.2078000000	0.0000000000	0.0000000000
Η	-0.5868103436	0.0000000000	-0.9493855016
Η	-0.5866446356	0.0000000000	0.9494879049

CH₃

С	0.0000000000	0.0000000000	0.0000000000
Н	1.0767000000	0.0000000000	0.0000000000
Η	-0.5383500000	0.0000000000	-0.9324495523
Η	-0.5383500000	-0.0000000000	0.9324495523

ClO₂

Cl	0.0000000000	0.0000000000	0.0000000000
0	1.4698000000	0.0000000000	0.0000000000
0	-0.6764016437	0.0000000000	-1.3049110531

$\mathbf{NH}_{\mathbf{2}}$

Ν	0.0000000000	0.0000000000	0.0000000000
Η	1.0240000000	0.0000000000	0.0000000000
Н	-0.2373098532	0.0000000000	-0.9961224993

NO_2

Ν	0.0000000000	0.0000000000	0.0000000000
0	1.1930000000	0.0000000000	0.0000000000
0	-0.8302239663	0.0000000000	-0.8567246732

EK 4 – Organik Kromofor Seti

1-Akrolein

С	0.6745016548	-0.3493413884	0.000000000
С	-0.5632271795	0.4465783137	0.000000000
С	-1.7577808746	-0.1401143067	0.000000000
0	1.7872975463	0.1202493982	0.000000000
Η	0.5168957370	-1.4481721211	0.000000000
Η	-0.4456491730	1.5233857916	0.000000000
Η	-2.6794137199	0.4251016836	0.000000000
Η	-1.8462769448	-1.2204540402	0.000000000

2-Nitrometan

С	-1.3250715330	-0.0028043627	0.0000000000
Ν	0.1740665822	-0.0092969185	0.0000000000
Η	-1.6326212384	1.0404662386	0.0000000000
Η	-1.6636324834	-0.4964893726	-0.9034221439
Η	-1.6636324834	-0.4964893726	0.9034221439
0	0.7287741828	0.0017287741	1.0845831974
0	0.7287741828	0.0017287741	-1.0845831974

3-Azometan

Ν	-0.4267714403	-0.4442497625	0.0000000000
Ν	0.4267714403	0.4442497625	0.0000000000
С	-1.7953274859	0.0693568289	0.0000000000
С	1.7953274859	-0.0693568289	0.0000000000
Η	-1.8266054829	1.1602021603	0.0000000000
Η	1.8266054829	-1.1602021603	0.0000000000
Η	-2.3048865445	-0.3305046729	-0.8782522466
Η	-2.3048865445	-0.3305046729	0.8782522466
Η	2.3048865445	0.3305046729	-0.8782522466
Η	2.3048865445	0.3305046729	0.8782522466

4-Naftalin

С	1.5022924998	0.7516591653	-1.8245026459
С	1.7651144476	-0.4322737869	-1.1023483070
С	0.9228634630	-0.8304782535	-0.0975853074
С	-0.2225518042	-0.0679762038	0.2363315301
С	-0.4882775595	1.1292850686	-0.4944079673
С	0.4022518067	1.5124518706	-1.5265923364
С	-1.6336938482	1.8917827059	-0.1604869046
С	-2.4759454155	1.4935798555	0.8442750083
С	-2.2131233317	0.3096452210	1.5664308284
С	-1.1130821765	-0.4511423958	1.2685160505
Η	2.1747061971	1.0560697198	-2.6156275879
Η	2.6365039698	-1.0249049418	-1.3474992118
Η	1.1244764153	-1.7392747468	0.4557693525
Η	0.1994301683	2.4214578210	-2.0794866162
Η	-1.8353084822	2.8005802425	-0.7138406906
Η	-3.3473333532	2.0862145211	1.0894214075
Η	-2.8855365708	0.0052339024	2.3575554962
Η	-0.9102564259	-1.3601497652	1.8214079016

5-Azulen

С	-0.5532018415	-0.7480054556	-0.0000015332
С	-0.5532022031	0.7480064894	-0.0000014360
С	0.5486317207	1.5892100507	-0.0000015231
С	1.9019509255	1.2611443229	-0.0000017691
С	2.4911642105	-0.0000010958	-0.0000016321
С	1.9019509167	-1.2611445586	-0.0000012503
С	0.5486296807	-1.5892094882	-0.0000012224
С	-1.8966745389	-1.1458887444	-0.0000022179
С	-2.7002720513	-0.000003474	-0.0000006158
С	-1.8966728889	1.1458895014	-0.000003545
Н	0.3205750875	2.6507512704	-0.0000009799
Н	2.5885192293	2.0989769018	-0.0000019669
Н	3.5756936120	-0.000008789	-0.0000017364
Н	2.5885176463	-2.0989784609	-0.0000010526
Н	0.3205728803	-2.6507505867	-0.0000011685
Н	-2.2421329857	-2.1679068853	-0.0000034363
Н	-3.7804608030	0.000006279	0.0000001524
Η	-2.2421326170	2.1679072137	0.000002382

6-Heptafulven

С	1.2783154103	0.0000058417	0.000003908
С	0.5696813689	1.2787851366	0.0000030876
С	-0.7483209289	1.5609385354	0.0000017133
С	-1.8879512082	0.6741032640	-0.0000028283
С	-1.8879448137	-0.6741213444	-0.0000028063
С	-0.7483062890	-1.5609459152	0.0000017647
С	0.5696933155	-1.2787800983	0.0000033261
С	2.6293710418	0.0000123156	-0.0000043042
Η	-1.0015346132	2.6151627294	0.0000039670
Η	-2.8534486611	1.1660453371	-0.0000058192
Η	-2.8534376987	-1.1660724419	-0.0000060681
Η	-1.0015102135	-2.6151724310	0.0000041425
Η	1.2341977342	-2.1364352806	0.0000069745
Η	1.2341776976	2.1364464969	0.0000064572
Η	3.1936045959	0.9217974581	-0.0000065078
Η	3.1936130703	-0.9217676704	-0.0000064873

7-Benzaldehit

0.0315713405	-1.1011847800	0.0000222664
-1.3361048804	-1.3169244491	-0.0000057774
-2.2130633093	-0.2327413069	-0.0000187529
-1.7213005038	1.0676369430	-0.0000029726
-0.3496065717	1.2845971389	0.0000254633
0.5321871704	0.2036701867	0.0000394757
1.9893770621	0.4493972869	0.0000762173
2.8370566236	-0.4118670524	-0.0000529953
-1.7256036098	-2.3261028530	-0.0000179612
-3.2814099125	-0.4040101526	-0.0000412771
-2.4044430465	1.9061625478	-0.0000127488
0.0440982959	2.2940891191	0.0000388211
2.2747203601	1.5215253499	-0.0000605352
0.7323632768	-1.9247131221	0.0000332755
	0.0315713405 -1.3361048804 -2.2130633093 -1.7213005038 -0.3496065717 0.5321871704 1.9893770621 2.8370566236 -1.7256036098 -3.2814099125 -2.4044430465 0.0440982959 2.2747203601 0.7323632768	0.0315713405-1.1011847800-1.3361048804-1.3169244491-2.2130633093-0.2327413069-1.72130050381.0676369430-0.34960657171.28459713890.53218717040.20367018671.98937706210.44939728692.8370566236-0.4118670524-1.7256036098-2.3261028530-3.2814099125-0.4040101526-2.40444304651.90616254780.04409829592.29408911912.27472036011.52152534990.7323632768-1.9247131221

8-Nitrozobenzen

С	2.5198327792	-0.0000534653	0.0000792717
С	1.8276414340	1.2069072616	0.0000048674
С	0.4399053402	1.2148967158	-0.0001452643
С	-0.2300679146	0.0000011955	-0.0001728109
С	0.4398536975	-1.2149145454	-0.0001464503

С	1.8275980002	-1.2069796429	0.0000038201
Ν	-1.7085264529	0.0000365428	-0.0002396146
0	-2.2752778462	1.0822473159	0.0003445916
0	-2.2753291917	-1.0821505697	0.0003429013
Н	3.6015278808	-0.0000684213	0.0001939443
Н	2.3681410023	2.1432333958	0.0000640373
Н	-0.1247407402	2.1340313275	-0.0001950575
Н	-0.1248179621	-2.1340333190	-0.0001971307
Н	2.3680501011	-2.1433330326	0.0000621617

9-1,4-Benzokinon

Η	-1.2534390458	-2.1701530659	0.000008454
С	-0.6678213074	-1.2601744020	0.0000009576
С	-1.4393122598	0.0051065627	0.0000017364
0	-2.6572323619	0.0050677495	0.0000004332
С	-0.6677770016	1.2704215729	0.0000013688
Η	-1.2535091648	2.1803245468	0.0000009927
С	0.6677780173	1.2704212908	0.0000017015
Η	1.2535105941	2.1803240635	0.0000033685
С	1.4393125648	0.0051060082	-0.000004324
0	2.6572328427	0.0050665515	0.0000001617
С	0.6678211769	-1.2601746520	0.0000004969
Η	1.2534385805	-2.1701535904	0.0000004872

10-1,2-Benzokinon

С	0.6771799243	-0.7781426600	-0.0000079456
С	-0.6308880550	-1.4505904234	-0.000007881
С	-1.7673730024	-0.7365042438	0.0000025284
С	0.6706787110	0.7846599326	0.0000177491
С	-0.6428494805	1.4463215130	0.0000020791
С	-1.7734195858	0.7229257619	-0.000001384
0	1.7264736334	-1.3799373307	-0.0000038844
0	1.7149660837	1.3951415891	-0.0000037210
Η	-0.6234897443	-2.5322315621	-0.0000026694
Η	-2.7251241128	-1.2414705776	0.0000022769
Η	-0.6443287525	2.5279875522	-0.000009654
Η	-2.7353360690	1.2199031157	-0.0000032490

11-Piridazin

Ν	-0.6643954176	-1.2151460260	0.000008592
С	-1.3186385579	-0.0568900528	-0.000006667
С	-0.6888109018	1.1847039392	-0.0000015341
Ν	0.6643914367	-1.2151483247	0.0000003892
С	1.3186383137	-0.0568941879	-0.000002280
С	0.6888145181	1.1847015686	-0.0000014348
Η	-2.3983689821	-0.1405433729	-0.0000004488
Η	-1.2657919608	2.0992516809	-0.0000022113
Η	2.3983684028	-0.1405512314	-0.000002621
Н	1.2657983586	2.0992476239	-0.0000019450

12-Pirimidin

Ν	-0.9475928659	-0.8419728841	0.4623251112
С	-2.0118562211	-0.2751848909	-0.1066172018
Η	-2.8437148356	-0.9297407421	-0.3437580418
С	-2.0650358344	1.0827378167	-0.3860225764
Η	-2.9324399694	1.5333865668	-0.8472735472
С	-0.9494252196	1.8332148970	-0.0440771734
Η	-0.9130310649	2.9012634977	-0.2299922593
Ν	0.1254508822	1.2875584256	0.5258143626
С	0.0653104432	-0.0247940394	0.7476211420
Η	0.9348846856	-0.4766886473	1.2101201840

13-Pirazin

Η	2.0604201269	1.2518388269	-0.0000029823
С	1.1302288521	0.6953842148	-0.0000021159
Ν	0.0000142982	1.3997455505	-0.0000019530
С	-1.1302147856	0.6954075075	-0.0000009071
Н	-2.0603945331	1.2518814153	-0.0000013644
С	-1.1302292110	-0.6953843722	-0.0000004448
Н	-2.0604204479	-1.2518390469	0.0000005469
Ν	-0.0000146416	-1.3997457607	0.0000001231
С	1.1302144408	-0.6954076594	-0.0000004923
Н	2.0603941249	-1.2518816512	-0.0000011734

14-S-tetrabenzen

Ν	0.6589735494	-1.1890779304	0.0000013267
Ν	-0.6589619228	-1.1890845981	-0.0000009619
С	-1.2613074362	-0.0000062882	-0.0000015861
Η	-2.3430001798	-0.0000116037	-0.000001367
Ν	-0.6589735852	1.1890781730	-0.0000009703
Ν	0.6589612870	1.1890847878	0.0000013351
С	1.2613070397	0.0000064186	0.0000009680
Η	2.3429997543	0.0000120481	0.0000028298

EK 5 – Açık Kabuklu Test Seti-2

DF-EOM-MP2 ve DF-EOM-OMP2 yöntemlerinin doğruluk değerlendirmelerinde kullanılan açık kabuklu test seti için optimize geometriler aşağıda sunulmaktadır.

CN

С	0.0000	0.0000	0.0000
Ν	0.0000	0.0000	1.1718

 CO^+

С	0.0000	0.0000	0.0000
0	0.0000	0.0000	1.1151

BeF

Be	0.0000	0.0000	0.0000
F	0.0000	0.0000	1.3650

BeH

Be 0.0000 0.0000 0.0000 H 0.0000 0.0000 1.3430

BH_2

В	0.0000000000	0.0000000000	-0.0908856081
Η	0.0000000000	1.0695206774	0.4194148585
Η	0.0000000000	-1.0695206774	0.4194148585

CH₃

С	0.0000000000	0.0000000000	-0.0000128796
Н	0.0000000000	0.0000000000	1.0762885327
Н	0.0000000000	0.9320729326	-0.5381395284
Η	0.0000000000	-0.9320729326	-0.5381395284

HCO

Η	-0.7430221638	0.0000000000	-1.3513212984
С	0.1014193815	0.0000000000	-0.6190051419
0	-0.0293277517	0.0000000000	0.5498282154

EK 6 – Radikal Seti

DF-EOM-MP2 ve DF-EOM-OMP2 yöntemlerinin doğruluk değerlendirmelerinde kullanılan açık kabuklu radikal seti için optimize geometriler aşağıda sunulmaktadır.

Allil

С	1.0515786706	1.0180900169	0.1037742605
С	1.9359213154	2.0764462233	0.1688059490
С	3.3046106345	1.9534442808	0.3028263475
Η	-0.0148705546	1.1767910971	-0.0017554850
Η	1.4039513891	-0.0073680293	0.1567015319
Η	1.5235218801	3.0824979877	0.1103073446
Η	3.9493945795	2.8227982619	0.3486041518
Η	3.7733920853	0.9765001615	0.3671358997

Nitrometil

С	0.0001581121	0.0000000000	0.0000000000
Ν	1.4137493627	0.0000000000	0.0000000000
0	1.9699001086	0.0000000000	1.0880795066
0	1.9699001085	0.0000000000	-1.0880795066
Н	-0.4861257132	0.0000000000	0.9637688596
Н	-0.4861257132	0.0000000000	-0.9637688597

Benzil

С	3.2508905659	0.9851588884	3.4290529053
С	1.8600293809	0.7759766711	3.2366149274
С	4.0405305384	1.4992320523	2.4206500702
С	1.3186042175	1.1170250133	1.9694026278
С	1.0530416711	0.2542267271	4.2587747066
С	2.1176168269	1.6308369468	0.9682146472
С	3.4833095769	1.8268898284	1.1830274505
Η	3.6885532100	0.7334126476	4.3903272456
Η	5.1017164368	1.6502424311	2.5914231847
Η	0.2571232402	0.9663572822	1.7973943617
Η	1.4719431202	-0.0025377384	5.2247758933
Η	-0.0083486542	0.0962361535	4.1071374076
Η	1.6809777470	1.8836493984	0.0072411938
Η	4.1074121224	2.2311936982	0.3934633784

Anilino

С	6.3155900387	1.8621559923	-0.6705335679
С	6.8877468783	0.5988007568	-0.3333887139
С	4.9500287803	2.0311529760	-0.7186695681
С	5.9902241491	-0.4748783504	-0.0483081028
Ν	8.2176868218	0.5020926077	-0.3067056597
С	4.6261679832	-0.2904390683	-0.1000691423
С	4.0959942382	0.9600448783	-0.4348564896
Η	7.0015206908	2.6739319308	-0.8853853327
Η	4.5321498998	2.9985312741	-0.9774152004
Η	6.4062280729	-1.4448311759	0.2108275776
Η	8.4748155566	-0.4551117036	-0.0525875650
Η	3.9583319265	-1.1172136669	0.1191213065

Naftalin

С	3.4122369307	1.8159783357	2.1380256913
С	2.8376185274	3.0845214108	2.4730189261
С	3.5239802601	3.9329704582	3.3716794031
С	1.6004268151	3.4512470072	1.8957485263
С	2.7258749925	0.9675294199	1.2393651410
С	4.6494285051	1.4492527791	2.7152963442
С	4.7537237269	3.5443454365	3.9320652653
С	0.9376647887	2.5890840263	1.0044962188
С	1.4961319059	1.3561547223	0.6789788722
С	5.3121909351	2.3114160697	3.6065477749
Η	3.0929793367	4.8959548179	3.6305960721
Η	1.1592019072	4.4115049634	2.1467156697
Η	3.1568758726	0.0045448466	0.9804491756
Η	5.0906533940	0.4889947345	2.4643295125
Η	5.2641758973	4.2105121615	4.6193985954
Η	-0.0108576475	2.8897109325	0.5724801149
Н	0.9856801197	0.6899880767	-0.0083548327
Н	6.2607137325	2.0107898013	4.0385635292

EK 7 – Anyonik Su Kümelerinin Optimize Geometrileri

Anyonik Su Kümelerinin DF-OLCCD/aug4-cc-pVDZ Seviyesinde Optimize Edilen Geometrileri

Monomer

Η	-0.760988935603	0.528282771537	0.000000000000
0	0.000000012513	-0.066573230665	0.000000000000
Η	0.760988737011	0.528282710120	0.000000000000

Pentamer-1

O 1.608154440345 1.361034692673 0.377155846630

0	-1.046453305920	1.423866205174	-0.370404447963
0	-1.241980084724	-0.524306660841	1.731422539585
0	1.084543744484	-1.312158820300	0.284370216786
0	-0.474550993489	-0.846326171130	-2.054037351486
Η	-1.368073203883	0.858556849715	0.355599958711
Η	-0.982909451744	0.797947186884	-1.115262794243
Η	1.795161078651	-1.936024630065	0.480207349784
Η	1.475093172732	-0.411921089522	0.376374458155
Η	-1.895200806696	-1.208861899850	1.920329926942
Η	-0.478317508308	-1.003428374577	1.358436606078
Η	0.138427382513	-1.170272732787	-1.367205483832
Η	0.038485962723	-0.874828236104	-2.870999306606
Н	1.720385371165	1.785020704051	1.237118976993
Η	0.672440991235	1.543264396091	0.125220189704

0	0.896904838481	-1.527733471126	0.089446516771
Η	1.477925678637	-0.739947470004	0.045216905779
Η	1.515004490426	-2.268592715153	0.141199338818
0	-1.470728529185	-0.389761512378	1.546189526582
Η	-0.673706781311	-0.924404897860	1.395268111643
Η	-1.185767150970	0.488349461139	1.231213710217
0	-1.510941133762	-0.724096059479	-1.395133703966
Η	-0.657104629397	-1.162774034420	-1.240400656197
Η	-1.887292939537	-0.736479286127	-0.497467325578
0	-0.518854612711	1.782560646720	-0.161949477087
Η	0.450287483987	1.708254707238	-0.169888634286
Η	-0.803407793017	1.131286089474	-0.827766674023
0	2.344122296029	0.891215578749	-0.075180213945
Н	2.966060099604	0.926561918407	-0.824378155437
Η	2.916409484020	1.066944025044	0.693477002203

0	1.802594286312	-0.244634639390	1.460680026028	
Н	1.133802368782	-0.306392730308	2.166865376556	
Н	2.636133895370	-0.355460732004	1.946825686163	
0	-1.673497032442	1.438805110674	0.330599511449	
Н	-1.535270062313	1.612782453905	1.272263488301	
Н	-0.782455235369	1.570275027959	-0.065690582864	

0	0.789068718291	-1.325911899159	-1.169764174091
Η	-0.141411129651	-1.453583842716	-0.899548820123
Η	1.256356203893	-1.303615808607	-0.317582122054
0	-1.886645271194	-1.338067900941	-0.109594930039
Η	-1.806007505916	-1.730233074168	0.771071443364
Н	-1.909824851538	-0.373123937262	0.067561747471
0	0.899012473298	1.497176041975	-0.753759252512
Η	1.395235108260	1.296341439735	0.058132205322
Η	0.855930143730	0.608681606085	-1.161740863877

0	0.633803525009	1.996674323258	-0.582975754511
0	-3.920414705152	-0.339441765010	0.155693575240
0	2.982350236986	-1.437387259140	-0.355805585932
0	1.295092955414	0.085339303378	1.372341395117
0	-1.127448720011	-0.201603388619	-0.464936554480
Η	1.055157320801	1.495204350804	0.147663859124
Η	-2.988885856077	-0.244292155152	-0.118038586958
Η	2.525782224064	-2.193804293308	-0.762632980441
Η	1.930344598450	-0.467232863575	0.874330743210
Η	-0.647135780126	0.628553045731	-0.668672792688
Η	1.255577693467	1.903739295386	-1.319347980819
Η	-3.851314256740	-0.733661297232	1.033525680398
Η	3.271485023221	-0.921933749190	-1.128963341524
Η	0.437341449670	-0.287588632052	1.110629806089
Η	-0.820146124359	-0.822892732522	-1.141496608210

0	-2.149986924704	1.549636018324	-0.008490218655
Η	-2.182580341356	2.358795592645	-0.533669903084
Η	-1.221571143094	1.516443994226	0.306506169841
0	1.773921898054	-1.015408659665	1.995706295062
Η	1.415082985265	-1.619170360135	2.668590904509
Н	2.728518126304	-1.007488434168	2.193162487565
0	-1.583472187362	-0.680903639466	-1.913511652391
Η	-1.878858812396	0.001505834197	-1.287336425493
Η	-0.726394726408	-0.960259074324	-1.555827807632
0	1.185999515434	-1.140320113675	-0.768558829041
Η	1.944342707641	-1.464806934246	-1.270942796030

Η	1.408877186968	-1.337410772324	0.163546495789
0	0.571410325884	1.344188748394	0.574093609149
Η	0.840476672358	0.731651661316	-0.132846288486
Η	0.880015429593	0.873054332755	1.365378627508

0	-3.638474586159	-0.176042276856	1.151336796250
0	-1.014078782910	0.258272876516	0.297603279458
0	1.776841307961	-0.210453681115	1.263604159932
0	0.811228488170	-1.219655845342	-1.372266618935
0	2.282017260816	1.205896121458	-1.341882519858
Η	-3.888838001979	0.505865955911	1.797660082980
Η	-4.242301259063	-0.006093038836	0.408364595674
Η	-1.118439519752	1.186437841520	0.042079935005
Η	-1.909433627458	0.026133990992	0.626094958405
Η	0.820896250489	-0.031987163583	1.253264737195
Η	2.118383343388	0.445512663142	0.633172894106
Η	1.305088313625	-1.389139245478	-0.552267101650
Η	-0.014368838938	-0.844260509443	-1.013656669558
Η	1.723837308564	1.948527826312	-1.604855570257
Η	1.752758544175	0.412371834590	-1.564386884222

0	-0.955214073978	-1.484264306673	1.324304360531	
0	-2.916920529911	0.552252401691	0.363258537623	
0	-0.511519244135	1.985042621902	-0.675625999987	
0	1.289337515650	0.101121777143	0.520005342295	
0	2.801420202802	-1.061344504571	-1.453645667618	
Η	1.921325268690	0.372305492617	1.199655992565	
Η	1.851525097594	-0.322502939233	-0.170009495970	
Η	-0.897838677784	-2.277261861801	0.776453479162	
Η	-0.150421217374	-0.983606343372	1.089214089718	
Η	-2.229680190857	1.125373665439	-0.015260617713	
Η	-2.396793943934	-0.180260034109	0.733258779430	
Η	0.152268931885	1.404992256330	-0.256069018521	
Η	-0.365231522096	1.847911428960	-1.620292601216	
Η	3.195326346111	-1.924739199924	-1.236592758192	
Η	3.567994033579	-0.535142607254	-1.742981278735	

Η	-3.381635375969	1.610615937368	0.903784848173
0	-2.643770349001	1.056010399375	1.185803913347
Η	-1.852617046727	1.563488340766	0.912161213559
Η	0.515637915283	2.116042658435	0.192515051794
0	-0.392106111280	2.099760417120	-0.140602718430
Η	-0.469718546151	1.244791449668	-0.614814623254
Н	3.327030704391	0.059908474636	-0.804842616616
0	3.309781031758	-0.785624852834	-0.327766973723
Η	3.846353988529	-0.604865126527	0.462585317610
Η	1.683034345199	-1.600710208551	-0.016554988212
0	0.816436577527	-2.003287790448	0.198907128533
Η	0.768870111715	-1.923291293947	1.161075351864
Η	-1.870001620925	-0.307444902498	-0.290759980477
0	-1.216870693110	-0.436659756228	-0.997732985695
Η	-0.558838790156	-1.050733553136	-0.613405247163

Pentamer-9

	1.251011715000	0.1075 + 2 + 1175
-0.876904446768	-1.497108728408	-0.177711405038
-1.429099400842	-0.731061534417	-0.412565071532
-0.167594006883	0.099906256134	2.755688478537
0.405290159899	-0.338592167466	2.113214670332
0.672984882948	0.378784412869	1.495683258201
-2.481809901305	1.575270548812	0.214369607001
-1.907228447476	1.277082377926	-0.512638279992
-2.341882775430	1.647864435099	-1.298678957329
2.170156848520	-1.523641785428	-1.076735037946
1.509536649913	-0.960542457100	-1.499102283468
0.657262548254	-1.260859231393	-1.108917677369
1.295871332252	0.749866412857	-0.580347134883
1.001032252292	1.437567419326	0.046452754058
0.082386860269	1.610661138770	-0.225139383361
	-0.876904446768 -1.429099400842 -0.167594006883 0.405290159899 0.672984882948 -2.481809901305 -1.907228447476 -2.341882775430 2.170156848520 1.509536649913 0.657262548254 1.295871332252 1.001032252292 0.082386860269	-0.876904446768-1.497108728408-1.429099400842-0.731061534417-0.1675940068830.0999062561340.405290159899-0.3385921674660.6729848829480.378784412869-2.4818099013051.575270548812-1.9072284474761.277082377926-2.3418827754301.6478644350992.170156848520-1.5236417854281.509536649913-0.9605424571000.657262548254-1.2608592313931.2958713322520.7498664128571.0010322522921.4375674193260.0823868602691.610661138770

Η	0.246982051368	-1.269156567980	0.498873996407	
0	0.898098028198	-1.848696766652	0.033284972322	

Н	0.390788721963	-2.245154143158	-0.687278357630
Η	-3.731066367088	0.466708834433	-0.437294823273
0	-3.272955661615	-0.322563264575	-0.108818210925
Η	-3.238382332239	-0.900862979886	-0.887644922519
Η	2.093096318142	-0.626293651495	-0.472693195519
0	2.654248099094	0.155945548858	-0.677670990242
Η	3.285718284503	0.189709708629	0.051568571549
Η	0.082151477777	2.103906180769	-1.166184208993
0	0.566963033655	2.032478844645	-0.332808809230
Η	1.335656289752	1.464293416207	-0.544647917669
Η	-0.388478103865	0.785949115181	0.775266890353
0	-0.747517073163	-0.009258318831	1.213830613465
Η	-1.645072147450	-0.094574559441	0.841476290933

0	1.636261681749	1.610087761975	0.286654989757
Н	1.783364041021	1.993478510872	1.160110990301
Η	1.902823931231	0.668696396513	0.370912476704
0	2.036153400865	-1.121580576315	0.383312077729
Η	1.193716996022	-1.392915184169	-0.046433372733
Η	2.729704283613	-1.566082683176	-0.118537018106
0	-2.419897678988	-0.369517060992	0.889816325247
Η	-2.405464048427	-0.151266721508	1.829980214856
Η	-2.018025776930	0.401176973297	0.448079860031
0	-0.870919509775	1.340881711763	-0.781668545771
Η	0.006948634163	1.564374482983	-0.397058671720
Η	-1.109660174401	2.092808683533	-1.336406161289
0	-0.410238375825	-1.547953711071	-0.815259660850
Н	-0.532238906205	-0.661816142791	-1.196169762944
Η	-1.096623747302	-1.550531045589	-0.124963403365

Η	0.516234255400	-0.329163582544	1.415390874128
0	-0.424701546404	-0.314703159174	1.698220688228
Н	-0.418996047545	-0.546543798215	2.636474816946
Η	2.701431494253	-0.605532557427	0.320943466407
0	1.944576504885	-0.006235399694	0.335445601283
Н	1.500900559271	-0.106968526808	-0.538363600200
Η	-0.605594601733	1.510436453010	0.789153465900

0	-0.305568616326	2.163178852463	0.132602347678
Η	0.642465641651	2.221113699982	0.322290925323
Η	-1.310093846413	-2.716076490929	-0.394455877031
0	-1.525519090862	-1.777419410139	-0.469391080047
Η	-1.251901602840	-1.397948135179	0.388442305007
Η	-0.409772211359	-0.638910893691	-1.553683111296
0	0.233047390173	0.045574219617	-1.820926782669
Н	-0.124132677551	0.857543434264	-1.417442035748

0	-0.200881992734	2.601755400883	-0.780963900310
Η	-0.322131109311	3.386475057191	-0.231937412147
Η	-0.772106836326	1.929596276000	-0.348353005273
0	-2.042319281427	-1.942128396804	-0.376198136345
Η	-1.596589405738	-2.087191256809	-1.227540223364
Η	-1.726163134048	-2.689953290369	0.157702163502
0	-1.347076444060	0.606160381097	0.785150356788
Η	-1.626442800014	-0.243675291241	0.395656989678
Η	-0.417551311480	0.453541969777	1.039967497076
0	1.530041669828	0.727967667510	0.824711575464
Η	1.769602302179	-0.094481077821	0.357116292657
Η	1.302171282216	1.357284042661	0.120825522735
0	2.063852495396	-1.834895384596	-0.398868647080
Η	1.676942880336	-2.539075420392	0.147849146557
Η	1.654872493858	-1.993739223205	-1.265627949759

Η	-0.998676547195	0.487488750923	1.311279763755
Η	2.904500698853	0.170141867614	0.807406830644
0	-1.415906165387	-0.365223191389	1.528417692623
0	0.008860326651	1.752430053635	0.146607498026
Η	0.930156505645	1.407458740109	0.139930239532
Η	0.083326105983	2.714760426501	0.154325445479
0	0.481883242021	-1.764212784275	-0.131442127933
Η	-0.111369366002	-1.487247951446	0.593244301959
Η	-0.020345454963	-1.462865402975	-0.908013316672
0	-1.385113795052	-0.025864726955	-1.553716101833
Η	-1.655423972004	0.270666791841	-2.431532538403
Η	-0.937181804727	0.744254351417	-1.153360635297

0	2.317584572284	0.285589622302	0.050241901484
Η	1.789840300956	-0.544578991658	0.002668578296
Η	-2.100812594765	-0.438743580139	0.847494578660

Η	-1.519090916836	-0.535533376977	-0.518513154944
Η	1.439687057486	0.291203004006	-0.947127582840
0	-1.046704569231	-1.387999792602	-0.492243168613
0	-1.734312062505	1.409863790987	-0.422301047708
Η	-0.858032948882	1.592529502452	-0.033498422900
Η	-2.357219908923	1.875508265427	0.149043154968
0	0.927711331343	1.334531649948	0.582452669093
Η	1.475252228189	1.989941811988	1.033130332147
Η	0.829624650907	0.579790515242	1.208551503432
0	0.323905251684	-0.992151327853	1.870919608315
Η	1.017024778990	-1.658551543109	1.958133140055
Η	-0.202228327288	-1.277473697894	1.087466778204
0	1.451630310250	-0.462175505252	-1.566863360023
Η	1.690316249977	-0.078290686878	-2.419280504767
Η	-0.281070678179	-1.224884825008	-1.072964704532

Η	-2.723186326394	0.614613738177	0.390327346422
Η	2.664684975579	1.410006092516	-1.570918761354
0	-2.325837343298	1.245796029645	1.019893374464
0	-2.543753112132	-0.942970781664	-0.773786037744
Η	-1.575048904294	-0.871034028995	-0.677319671072
Η	-2.699595576108	-0.943130610661	-1.726469631638
0	-0.003703511406	-0.002250909081	0.036306542150
Η	-0.583901301795	0.586243281118	0.554491590220
Η	0.634310675279	-0.391445862010	0.662024908622
0	2.464789973375	-0.869650831760	1.129242178945
Η	2.755462956165	-0.426812654155	0.309182644908
Η	2.786866986431	-1.775472601148	1.047244519686
0	2.404997324723	0.513032455690	-1.327911795116
Н	1.463718046666	0.576458237633	-1.077296710830
Η	-2.667658153931	2.110033947549	0.759651544272

0	0.226521544692	1.491922215056	1.007137310499
Η	1.053089648797	1.460793496534	0.470806821609
Η	0.407948688849	2.110721645487	1.725382536195
0	2.477261344790	1.110985389088	-0.476115678060
Η	2.475763279655	0.132860280618	-0.579901374605
Η	2.540299037708	1.461531935995	-1.372905299682
0	2.168450246528	-1.618895963504	-0.567686949297
Н	2.776674419643	-2.188072397337	-0.081287108651
Η	1.325286998672	-1.656150866261	-0.057400127301
0	-2.572280649767	-1.213381597503	-0.481485236764
Н	-2.533835789362	-0.237013509734	-0.552054394570
Η	-3.383427825086	-1.385529338444	0.012579914364
0	-2.196525359420	1.545895048967	-0.402879073073
Η	-1.337908846871	1.649226114267	0.054304045242
Η	-2.152335905793	2.143439704612	-1.159757894218
0	-0.112391104300	-1.413327627005	0.916386834548
Н	-0.064591814796	-0.476228040120	1.171241988900
Η	-0.964697063879	-1.479252548875	0.442675373285

0	0.742106003338	1.727504626276	0.559361164206
Η	1.608671800075	1.303068655631	0.372979085085
Η	0.948081053571	2.633852923050	0.818455824717
0	-0.779589273057	0.555662566447	-1.642566608517
Η	-0.283824953678	1.141301674532	-1.042841450004
Η	-0.282325618812	-0.277606377517	-1.582287346458
0	-0.668720712373	-0.596224751883	1.628558878974
Η	-0.250851594772	0.279654901013	1.556169218513
Η	-1.557195308701	-0.453153284145	1.247617433558
0	0.723832984899	-1.691222891886	-0.426700942527
Η	0.700426767559	-2.654323672631	-0.469817123154
Η	0.197780025233	-1.442321558589	0.374005787360
0	2.842998331086	0.109735542683	-0.154497348508
Η	3.536677136469	-0.170067192144	0.456207650532
Η	2.268364659056	-0.674048917720	-0.266891055750
0	-2.925403987996	-0.133090346515	-0.016377532994
Н	-2.283749140428	0.175287345573	-0.693334475830
Η	-3.574002317700	0.576947052282	0.058543667524

0	-1.651496434996	1.517503836262	-0.006919929043
Η	-2.130732402319	2.352998981889	-0.048932491148
Η	-0.698799440633	1.764936734124	0.026384833033
0	-1.291163761697	-1.072068168865	1.339217940985
Η	-1.347790065158	-1.339296603443	0.399358764279
Η	-1.622185322921	-0.159842754183	1.290566344132
0	1.398434895721	-0.681993093456	1.424062313201
Η	0.441315572501	-0.906635336431	1.525803414917
Η	1.863289794751	-1.154706660480	2.125471713279
0	-1.256826447290	-1.008337496410	-1.497834951375
Η	-1.510197317159	-0.086063726997	-1.325460079676
Η	-0.296894732055	-0.955589049395	-1.651704366208
0	1.634658831491	-0.627397643288	-1.358585854663
Η	2.359952851644	-1.077731177916	-1.809902869629
Η	1.732127830404	-0.858650567426	-0.412513968514
0	1.071696529713	1.859115871229	0.086209696169
Η	1.391743686640	1.384288042639	-0.698793278344
Η	1.321069926401	1.245415821875	0.799543988769

0	-0.582367947122	-0.905990369774	1.695467692867
Η	-0.248769837757	-1.536124812010	1.027614751503
Η	0.202652539501	-0.368206064664	1.893820234037
0	0.474213958577	-2.414795277857	-0.521760908599
Η	1.431861986919	-2.287920204959	-0.491098441428
Η	0.164965456799	-1.747989289097	-1.174670181076
0	1.846981655806	0.862253982058	1.620114559550
Η	2.039448248183	1.573503383796	2.258623468538
Η	2.727098221277	0.472290449568	1.460570017725
0	-0.538666360616	-0.365495033923	-2.130499251003
Η	0.066693592348	0.372105904119	-1.938643242287
Η	-1.291322956846	-0.126338807404	-1.553898311041
0	-2.094744367656	0.786583591022	-0.018627828859
Η	-1.688678177241	0.212970596006	0.664621576505
Η	-1.423637585050	1.478447176073	-0.134601894246
0	0.628578349990	1.894408101016	-0.715225491223
Η	1.136354903787	2.678906781594	-0.961567897919
Η	1.105021406857	1.548424253275	0.068611679662

0	0.875020719689	-1.291195216396	-0.764374172155	
0	0.766748063789	1.540330456113	-0.943250160792	
0	-1.313100245456	2.073083759673	0.913808937332	
0	-1.128754612973	-2.110016719923	1.247023125093	
0	3.249208569632	0.095341375158	-0.181095863812	
0	-2.429535332865	-0.162502198965	-0.392960335251	
Н	0.601229968996	-0.357962501574	-0.861458269816	
Η	0.320802828768	-1.643535832082	-0.046205489102	
Η	1.655040546159	1.436631782104	-0.563711378794	
Η	0.199243501792	1.856829521675	-0.213938785695	
Η	-1.803684006328	1.333896421857	0.496035150841	
Η	-1.204075079052	1.787573931166	1.830910629521	
Η	-1.440146693795	-3.030613437231	1.313821070963	
Η	-0.986206171742	-1.859854781022	2.178827086109	
Η	3.835653839114	-0.061326330862	-0.931430266230	
Η	2.547125099106	-0.580145374076	-0.288886274891	
Н	-2.147058615036	-0.895071180202	0.189348109895	
Η	-1.888787690049	-0.288335375062	-1.185358672915	

0	-2.457444892668	0.887453721913	2.358417417093
Η	-2.071023611042	1.394391331216	1.628480669352
Η	-2.091953748240	0.002252494212	2.216715947475
0	-0.605550610381	-1.003431315871	0.724084400048
Η	-0.869902104750	-0.131315601072	0.373750482464
Н	-0.494901777195	-1.526577786423	-0.090060941355
0	2.227013632395	-0.698742873256	0.641968373329
Η	2.395300144172	-1.469690816255	0.079763863235
Η	1.284414784722	-0.815307752320	0.884042979213
0	1.363378634645	0.975619631842	-1.384032430883
Η	1.882428336625	0.549367678681	-0.665523849872
Η	1.996541430574	1.459998672251	-1.932192001109
0	0.535239363348	-1.765069881844	-1.788026408810
Η	0.335151515314	-2.140036808852	-2.656306408935
Η	0.772890752668	-0.836432261840	-1.970391126527
0	-1.134400999752	1.620718887241	-0.306079794948
Н	-1.750139356198	1.633763042421	-1.051584814946
Η	-0.249845762959	1.616956340959	-0.726155348394

0	1.351402928332	1.177035156214	-1.158687716026
Η	2.168909594755	1.106087460082	-0.639894776592
Η	0.976205802938	0.284784146257	-1.041016960593
0	0.432583002827	-1.293017010046	-0.014257150739
Η	-0.190793323820	-0.830650278735	0.577787207686
Η	-0.157263071960	-1.907003056302	-0.480605576737
0	-1.732934315138	0.147559332516	1.098836765783
Η	-2.084705113108	0.285168060422	1.987115090603
Η	-1.503873663113	1.044321369540	0.761275870325
0	3.084082150541	-0.445714472305	0.609767128068
Η	2.263744640868	-0.958688802848	0.495905685515
Η	3.208183162697	-0.399305858900	1.565661766475
0	-2.255044681388	-2.084512138342	-0.631275144823
Η	-2.373519263970	-1.276836484250	-0.100462875237
Η	-2.939137786539	-2.039664463910	-1.310132291882
0	-0.763817250319	2.471327072840	0.046231014208
Н	0.034243164647	2.137245853686	-0.421851843379
Η	-1.247312538935	2.988162960380	-0.610003865297

0	1.908655741221	0.847277074993	-0.399337221009
0	1.966761758584	-1.716962511591	0.808950551996
0	-0.880776847856	-1.659153466045	-0.010121373144
0	-0.424946699259	0.237008456540	-2.102788154728
0	-0.724162905735	2.168478702286	-0.008826941265
0	-2.040540758563	0.213650710100	1.638873752223
Η	2.814832348122	1.182845578588	-0.419874350054
Η	1.989410609839	-0.008425710863	0.070066919347
Η	2.636439729791	-2.289100517485	0.391012011258
Η	2.224636785322	-1.727903294346	1.748073560901
Η	-0.741153146923	-1.121854215569	-0.816497328621
Η	0.020345062827	-1.863020372567	0.293540213756
Η	-0.744376803875	0.973108134275	-1.543973599474
Η	0.533858265745	0.315952649016	-1.969380960055
Η	0.207223626932	1.911955944193	0.102695499833
Η	-1.197720166781	1.621186347649	0.646280815582
Н	-1.654758072716	-0.521204093921	1.106992435396
Η	-2.993792600011	0.093349427745	1.553585692552

0	-0.165054763145	-1.823047746526	0.511135745769
Η	-0.923401921102	-1.568375911873	-0.044022006171
Η	0.603007858960	-1.674611767789	-0.075360260662
0	-2.285059180174	-0.522026219110	-1.080201990267
Η	-3.221810500600	-0.662574698278	-0.857016843961
Н	-2.268600837888	-0.662498232850	-2.043263152640
0	-0.264896128941	0.135651865311	2.424032749074
Η	-0.967179715794	-0.117642813358	3.035658671945
Η	-0.188487113856	-0.632675903753	1.808969806659
0	1.962221097996	-1.108540204341	-1.249893246707
Η	1.928772642058	-0.136632897983	-1.113152092580
Η	1.678163218182	-1.232228920772	-2.164898052723
0	1.759635694965	1.614275434389	-0.690575665210
Η	0.811545574765	1.715456769998	-0.435356390337
Η	2.238451032268	1.812978702299	0.123996216555
0	-0.850728723425	1.749315951477	0.155237157735
Η	-0.754328255626	1.292754535042	1.013939600357
Н	-1.413837890189	1.141884508468	-0.356236590456

0	1.197818929959	2.134707835322	0.370824581369
Η	1.208699569810	2.545273113686	1.243722677171
Η	1.795829565643	1.357465363508	0.444576312841
0	1.213114485195	-2.300306338890	0.263835046343
Η	1.456257460487	-3.119210793466	-0.183267541169
Н	0.362185421888	-2.026558947980	-0.148821187009
0	2.818233918524	-0.073180820920	0.517253394575
Η	3.501365916822	-0.109049558738	-0.163371530406
Η	2.310757227210	-0.907485309162	0.412228943339
0	-3.060511446443	0.102099202095	0.641474530455
Η	-2.497935769820	0.775580923812	0.216335669331
Η	-3.052172018514	0.330333221912	1.579114425807
0	-1.107495781543	-1.409362421396	-0.879143325907
Η	-1.844305299217	-1.298184398571	-0.254216155143
Н	-0.964261566396	-0.491272293906	-1.167565967023
0	-1.108024128974	1.485157649014	-0.909846960988
Н	-1.242179240070	2.137465288768	-1.607686513522
Η	-0.290475209976	1.771930853309	-0.440836934204

0	2.714313797709	-0.533666212553	1.044802568227	
Η	2.404634994762	0.229224670828	0.522713081966	
Η	2.606544612364	-0.262291868642	1.964877694509	
0	-0.820209106010	2.405546736321	-0.171194688070	
Η	-0.795171955260	3.166526548911	0.422632847194	
Н	-1.443627963414	1.772613170717	0.248949199335	
0	-1.736643956100	-1.956180239989	-0.075252607775	
Н	-0.801615248002	-1.893452371514	-0.378473730574	
Η	-2.220923269749	-2.294748380930	-0.837752757990	
0	0.868400563110	-1.668932718416	-0.875070019189	
Η	1.469903787370	-1.697578239018	-0.110882060826	
Η	0.981808894178	-0.746911717698	-1.167070766987	
0	1.476371547620	1.146904057436	-0.904172264053	
Η	1.928278922280	1.707634936632	-1.546196334026	
Η	0.674044487539	1.654739820150	-0.638046260520	
0	-2.504950552442	0.502262650761	0.921585996873	
Н	-2.499802220418	0.401049671483	1.881834922240	
Η	-2.260943073440	-0.385207643688	0.578564291342	

0	-2.427178816629	-0.308465679615	0.693840415791
0	-0.526961168578	1.631272454025	0.884768486220
0	0.672947280899	1.617750611202	-1.681608911145
0	1.934975662938	0.335304211966	1.489125920862
0	1.385294622451	-1.054892334061	-0.953225203123
0	-0.964186099755	-2.339727166753	-0.436652776481
Н	-3.156068782948	-0.121896524122	0.088120606821
Η	-1.960323222238	-1.078727371943	0.297039162812
Η	-0.879406939144	2.399460924187	1.353142699386
Η	-1.267974005855	0.978954987859	0.856031837579
Η	0.169672078845	1.774931328736	-0.859688608127
Η	0.165869172636	2.061615775172	-2.372383671468
Η	1.096909175864	0.833914703399	1.425925021065
Η	2.615951667965	1.008052709871	1.358899289249
Η	1.702560195900	-0.695949922085	-0.102517612239
Η	1.165189782329	-0.242984513354	-1.445970109439
Η	-0.092219034624	-1.924160230363	-0.643450333028
Н	-0.748742244770	-3.108437762519	0.104399757382

0	0.077407296027	0.882475194304	2.078308716410
Η	0.686463014003	1.273686481668	1.428142113156
Η	-0.785883398164	1.139013873280	1.717786711349
0	1.157156329505	1.617085488972	-0.529128513065
Η	1.430941334304	0.738224285216	-0.873226376185
Η	1.707160993689	2.265002954348	-0.991180949061
0	-1.607528911288	1.515567313575	-0.350532918873
Η	-0.670398187462	1.709983307854	-0.565239178921
Η	-2.115061067988	2.195804597148	-0.811680057637
0	1.548521299483	-1.045222506671	-1.163348948153
Η	2.423933788654	-1.407892471395	-1.348063830828
Η	1.276721069535	-1.417796040786	-0.289865017158
0	-1.535125672176	-1.284125027924	-1.034308765892
Η	-0.753927528201	-1.276833185648	-1.608219793256
Η	-1.704319561433	-0.336365366075	-0.875905610827
0	0.283264176266	-1.818947633883	1.127381380637
Н	0.232189460190	-0.971616123664	1.612134059658
Н	-0.516796541362	-1.797752661184	0.567977779842

0	1.377403085263	-1.522602790088	-0.979549294581
Η	1.133886133797	-1.516456559428	-1.915410845817
Η	0.583088056624	-1.160644487982	-0.524811117960
0	-0.699928825500	-0.203597726331	0.312882135002
Η	-1.329570135268	0.029421191389	-0.401150495913
Н	-0.205893135414	0.626777446334	0.471632910196
0	1.001470101977	2.058591354088	0.488108672252
Η	0.787950075430	2.614769017798	-0.273870925830
Η	1.827616821433	1.599498941445	0.230792318956
0	-2.449673938863	0.423868660128	-1.791494776208
Η	-2.612427072155	1.366566159373	-1.965095453206
Η	-2.183359650998	0.084536192373	-2.663403885526
0	3.185693774703	0.423857905612	-0.229084929368
Η	2.620656798139	-0.315979533316	-0.548101628445
Η	3.664680936602	0.050854777206	0.521146324577
0	-2.371396486649	-1.263682942387	2.409363354255
Н	-1.748702323606	-0.903938690952	1.749752217735
Η	-3.229377693359	-1.149158708655	1.982094713940

0	0.098015649835	-1.686926140439	0.911266200542	
Η	-0.240777132164	-2.575849851002	1.071690288632	
Η	0.060824481188	-1.572795553342	-0.059848903827	
0	1.043390139236	1.499160367392	-0.442601126118	
Η	0.271195551001	1.496453246861	0.173330560686	
Η	1.083075444061	2.390025696935	-0.812365714815	
0	2.725247378365	-0.263609093573	1.343346860927	
Η	1.977545231298	-0.880851554563	1.341078538959	
Η	2.416079987931	0.440712463643	0.752786898652	
0	-2.657741000988	0.187605347116	-1.077913477415	
Η	-3.076304914252	0.737082661116	-1.753752566816	
Η	-1.854830637825	-0.161049696652	-1.510224729932	
0	-0.029093507387	-0.708382167322	-1.714984611585	
Η	0.478228119486	0.104326135822	-1.497821091941	
Η	0.311317283187	-1.014676394028	-2.567427860179	
0	-1.105371543711	0.980501599790	1.168563653193	
Η	-0.811461392593	0.079328418496	1.388499508120	
Η	-1.796421766868	0.824775248599	0.495476960477	

0	-2.431917778314	0.708001217932	0.292901247930
Η	-2.107651910804	0.091768339586	0.976036346241
Η	-2.234229351343	0.225772785887	-0.531973203242
0	3.559586677506	-0.966925152910	-0.455352255580
Η	4.066462720176	-0.695391794936	-1.236387856074
Η	4.206065242649	-0.921937451386	0.266283745676
0	-0.873300495557	-1.146377401082	1.860277999129
Η	-0.134920691074	-0.933792077639	1.251476987899
Η	-0.513828856255	-0.971971429922	2.738585811134
0	-1.188090516082	-0.636603865818	-1.920153528272
Η	-1.295631906053	-1.574938579740	-2.117104064091
Η	-0.355453096077	-0.589807284643	-1.404555090254
0	0.892528503883	-0.246815206321	-0.103308545934
Η	0.799517322822	0.717495673186	0.030706993274
Η	1.846188009871	-0.430962628322	-0.217008369416
0	-0.152789347788	2.304816346581	0.344894753700
Η	-0.160454682264	2.952748758076	-0.369812670096
Η	-1.037412514390	1.875561467197	0.308086414202

0	-2.850624801119	-1.532782625368	0.029896441090
Η	-1.922210626095	-1.226029557703	-0.048407335812
Η	-3.076859079054	-1.828267299698	-0.860544674682
0	-0.527984331252	-0.012887106827	-0.133203530478
Η	-1.123478947370	0.722613711447	0.094934243455
Н	0.133673834317	-0.025305516259	0.585933897064
0	3.463885040403	0.237730128686	-0.278678225441
Н	2.891392176763	0.103313793437	0.499532136945
Н	3.785850016615	1.141243889403	-0.162248374728
0	1.404154724647	-0.011079832395	-2.416118385510
Η	2.174517180997	0.054907551381	-1.827061275363
Η	0.663392988303	0.032112841726	-1.790087645735
0	-3.025998960580	1.270536950546	0.692944709847
Η	-3.229265981593	0.325107194347	0.563680274276
Η	-2.930914070925	1.365931287057	1.650536999097
0	1.512666247329	0.002639901362	1.873925419142
Н	1.537179668354	-0.729907862946	2.515534292243
Η	1.476066203673	0.791835042983	2.448042042622

0	-1.034538683875	1.202976392264	-1.265259316285
0	-0.302691114796	-1.402671801192	1.642254672731
0	1.526539166831	1.530762052306	-0.397366548604
0	1.840554673926	-1.253631392016	-0.218932847828
0	-0.894065585445	1.441032978776	1.531047664508
0	-0.956533313329	-1.595657360726	-1.218441236144
Η	1.299056313261	-1.363609717215	0.588646719205
Η	1.770953461731	0.580875225625	-0.342314980926
Η	-0.080071588490	1.440916127909	-1.188016308952
Η	-0.550247634765	-0.470766537023	1.781516993827
Η	-0.789146532524	-1.637368555339	0.833173676639
Η	-1.107953585008	-0.639436946775	-1.366626681643
Η	-1.219170771584	1.464345455034	0.609275670654
Η	-1.416091497580	1.786374452996	-1.935939654600
Η	-1.608136873154	-2.036835315882	-1.777770000338
Η	-1.565381110169	1.912240672480	2.041367886767
Η	1.205594668820	1.736718399589	0.494030860772
Η	1.215527235612	-1.548405744186	-0.900706279215

EK 8 – Katyonik Su Kümelerinin Optimize Geometrileri

Monomer

0	-0.00000004097	-0.065790246069	0.000000000000
Η	-0.817668270830	0.522069467852	0.000000000000
Η	0.817668335852	0.522069480068	0.000000000000

Dimer-1

0	-1.019704553986	0.010255293942	0.102471209583
Н	-1.137375212800	0.634813431479	-0.648571533493
Н	-1.226955080285	-0.876926495025	-0.267415287436
Н	1.132013601760	0.649824932233	0.643341300125
Η	1.234271983559	-0.864171531024	0.274345495011
0	1.019581352800	0.018505814497	-0.102578323412

Dimer-2

0	1.300861230581	-0.141694615626	0.117739470684
Η	1.946215131553	0.591277676360	-0.013689105053
Н	-0.169197074809	0.076929070411	-0.002144366357
0	-1.206850198502	0.102635882279	-0.141998790631
Η	-1.657517884925	0.733899610096	0.451216556488
Н	-1.611523473038	-0.782215914422	-0.050370072964

Trimer-1

Η	2.311528633520	0.502718214299	1.225659319719
0	2.013107195903	0.013088825206	0.446347246810
Н	2.795577292850	-0.391453376366	0.045352891587
Η	-2.635739962580	0.940186821834	-1.195432260178
0	-1.877140676976	1.014952786288	-0.574314668306
Η	-0.917057387979	-0.241646824655	-0.178512644429
Η	-0.579348930833	-1.511119559040	0.784296612992
0	-0.241747054463	-0.948993194378	0.066796314411
Η	0.703854217029	-0.553241019731	0.289465940513

Trimer-2

Η	-2.550133405577	-0.707690161875	-1.021659954734
0	-2.034634131662	-0.595679007518	-0.210019178055
Η	-2.654001122901	-0.694643526369	0.527686820536
0	2.270440523734	-0.307837572743	0.150592559266
Η	0.799679579793	0.383916694548	0.121459991115
Η	2.607491666060	-0.826729587621	0.914410374369
0	-0.066021745609	0.899225056292	0.068399113822
Η	-0.906619522420	0.297830374940	-0.099407672237
Η	0.008977255997	1.615425806047	-0.584889566406

Trimer-3

Η	2.435719773940	0.520786274040	1.103182615582
0	2.071445890865	0.041261750707	0.345766131434
Н	2.814917314330	-0.385064080114	-0.103895203448
Н	-2.368775208065	1.007192686203	-1.438003598210
0	-1.992891739056	0.922804879253	-0.533208305955
Н	-0.891015773426	-0.213048997238	-0.146336502658
Н	-0.537411513288	-1.375949603335	0.934179188476
0	-0.216956218367	-0.903756158499	0.147065610444
Н	0.743106638703	-0.511087227881	0.291678872699

Trimer-4

Η	-2.504749533927	-0.761906997605	-1.006983121297
0	-2.040666045895	-0.579545109738	-0.177449871202
Η	-2.703412976202	-0.617856873411	0.527362487051
0	2.269999460290	-0.323881943746	0.082835660725
Η	0.805060304873	0.380318814489	0.119744546641
Η	2.632933820281	-0.849396701002	0.830112926681
0	-0.060832609575	0.897695388157	0.102512346617
Η	-0.905214862162	0.303072914511	-0.069397124569
Η	0.001153196615	1.636734531131	-0.526188866572

Trimer-5

0	2.229127032007	0.468042878438	0.224974933348
Η	0.632097222237	0.633574573614	0.000456642217
Η	2.787482380716	-0.159368969859	-0.285671872121
0	-1.717830769613	-1.237475256249	-0.106049886659
0	-0.349100889614	0.837972947875	-0.116208142014
Η	-0.625251642944	1.541378971490	0.495536595183
Η	-2.123519677592	-1.658694728478	0.664987488933
Η	-0.959154485106	-0.008441600690	-0.053905389636
Η	-2.285812065608	-1.436236831670	-0.864522713386

Trimer-6

0	0.867551617017	1.029067905608	-0.077823312299
Η	1.324497360957	1.165043958780	0.778785829888
Η	-0.108491683422	1.024471954881	0.107761709277
0	0.886764687087	-1.012818459451	0.090447245203
Η	1.359097921950	-1.139554748502	-0.759172336406
Η	-0.086255661780	-1.027364091676	-0.109486316596
0	-1.630933280718	-0.015128225092	-0.011743444796
Η	-2.227850496065	-0.144177483336	0.741492185681
Η	-2.219175559630	0.103785817894	-0.773355057066

Trimer-7

0	0.174826284317	-1.103216058384	0.366785266475
Н	-0.614589093551	-0.487658233473	0.144563208583
Н	0.308879259003	-1.073766154579	1.338694406223
0	1.478251360774	0.466334971565	0.125001703578
Η	0.985003639937	0.948666660805	-0.570459822996
Η	2.156728078921	-0.058207567739	-0.346432714813
0	-1.564062515666	0.585732162227	-0.458487170989
Н	-2.134471971843	0.332839889008	-1.200187771353
Н	-2.114284613132	1.149895957106	0.105330718143

Trimer-8

Н	0.843962791603	0.316544303960	0.041412255307	
0	-2.175979819994	-0.543252646080	-0.077716058889	
Η	-3.104755460201	-0.231619441115	-0.156056721782	

0	2.068852996265	-0.423293647117	0.037274333197	
Н	2.201525389133	-1.257197316970	0.509603019347	
Η	2.635859811916	-0.448174707299	-0.746891679428	
0	-0.001720839701	0.939485019806	0.015523821429	
Н	-0.875652689278	0.440650088096	0.027654623449	
Η	0.026551564260	1.609279119915	0.719743726236	

Tetramer-1

0	1.727896000761	-0.247854707916	0.150368650515	
0	0.426488390201	1.878096011425	-0.203578681370	
0	-2.055483511962	0.284390794187	-0.043221581946	
0	-0.129757312093	-1.923846181299	0.075534904220	
Η	0.999199398455	-0.989107096121	0.102271300003	
Η	2.202938723294	-0.298217138440	0.996466988528	
Η	1.270389049054	0.667792157350	0.050957541171	
Η	0.688798716303	2.807469428724	-0.185414144102	
Η	-0.532358091595	1.831930660547	-0.071667568688	
Η	-3.030976216782	0.391840510767	-0.062869995308	
Η	-0.109815979977	-2.750819679836	-0.425590618148	
Η	-0.998461613609	-1.514654649709	-0.072507573918	

Tetramer-2

0	-1.691867123538	0.639267237735	-0.002500794609
0	-0.826104145098	-1.646654043916	0.345805681888
0	1.528276035674	-0.962766633580	0.061341738790
0	0.885301553591	1.763478947549	-0.360876531165
Η	-0.979838700394	1.243707504166	-0.286973902856
Η	-2.516683687311	0.896784579872	-0.437053501353
Η	0.233169656965	-1.429680163394	0.275440767842
Η	-1.294390293257	-0.686248803815	0.165528456740
Η	1.611574097379	0.009019265373	0.022788539642
Η	2.309187632287	-1.331104602435	0.496277959364
Η	1.093381791192	2.463026848380	0.277206013424
Н	1.200402951389	2.114569543250	-1.207877502112

Tetramer-3

Н	3.156257721816	0.028464021851	-0.810872022583
0	2.967033510618	0.264171554960	0.107476096711
Η	1.579004514736	0.300926209582	0.732570600232
Η	3.663548643867	0.877344832857	0.380312786431
0	0.692973464201	0.315461869241	1.238412259242
Η	0.602501536958	-0.489723169788	1.772150146509
Η	-0.160454547128	0.487182546171	0.631535158031
0	-1.246323673535	0.800829635021	-0.199278133714
Η	-1.806827881476	1.557966507771	0.018063733194
Η	-1.822772503279	0.095033411818	-0.559168046818
0	-2.529637000374	-1.459534056806	-1.178283682198
Η	-3.370988135417	-1.602280248196	-1.661911560579

Tetramer-4

Η	3.005179323249	-0.243320110666	0.099470909846
0	2.301114175524	-0.904213479887	0.149351205798
Η	-1.725788308418	-0.770146126938	2.759804143536
Н	2.700444538361	-1.741857339331	-0.123463332920
0	-1.614707382323	-0.134472253708	2.019674383519
Н	-0.660539063692	-0.401629591583	0.634832841996
Н	-0.945257842785	2.363247190618	-1.555316167298
0	-0.614748788633	1.492787619699	-1.816782168842
Н	-0.954519467022	1.335893254796	-2.708794718086
Н	-0.392663344688	0.325842064166	-0.832737502378
0	-0.187470447935	-0.470838622872	-0.236677615640
Η	0.811171684269	-0.602405182993	-0.107909361464

Tetramer-5

0	-0.002771725410	1.199672180947	-2.293784118571
Η	0.688404019140	1.416258188913	-2.956764313741
0	-1.823039329214	0.580837811868	1.508665212580
Η	-2.716828869822	0.464981093508	1.158316517380
Η	-1.891749865567	1.249564122579	2.204048819035
0	1.473003729900	-1.987642844198	0.438679486152
Η	2.250257019844	-2.093844365573	1.004393472275
Η	1.043857943188	-2.853321158361	0.407029879546
0	0.359574715566	0.299195438147	0.214932535955
Η	0.748394661388	-0.632878001994	0.318156680236
Η	0.302339473419	0.578703477797	-0.736848157589
0	-0.493056024775	-1.169484721490	-1.185521658967
---	-----------------	-----------------	-----------------
0	-0.289067346609	-1.422630205878	1.303933137356
0	0.171324647187	1.232933758455	-1.508789928268
0	0.604109222612	1.383880170374	1.413763924505
Η	0.812574832908	2.059380822547	2.095087641393
Η	0.502395588283	1.656186614322	-0.700372941755
Η	0.681907735386	1.586525182226	-2.249854992244
Η	-0.207651312334	-0.194603101436	-1.384085219465
Η	-1.411571660653	-1.310947880418	-1.470289147897
Η	-0.407691242111	-1.341074108206	-0.167102193159
Η	0.041339488557	-2.203996876198	1.767854627817
Н	0.094863814585	-0.643461729650	1.737617772565

Tetramer-7

0	-1.352580844540	1.082853896483	-0.160648629941
0	1.663051501097	-1.165215504845	0.393617579413
0	0.995076250780	1.337284170752	-0.984739235671
Н	-0.395445856171	1.229979575903	-0.543486256474
Η	1.548473926791	0.565748249971	-0.778821751833
Η	-1.560524537234	1.764796925539	0.499376435314
Η	2.473975306766	-1.683983317779	0.585845405190
Η	1.235967419070	1.639074475241	-1.871484875622
0	-1.277077723958	-1.268891835077	0.734080661102
Η	-0.406722207300	-1.624788297379	0.967240171320
Η	-1.397711605528	0.147169380247	0.263020203319
Η	-1.949839046189	-1.816294496956	1.159057856125

0	0.203234331007	-2.497788074791	-0.647361738866
0	-2.256451445897	0.959630203867	0.105172026124
0	0.041853583453	-0.075501276681	0.516326852956
0	2.019012332426	1.455947267637	-0.000598418268

Η	-2.876290226293	1.059472618622	0.840894887308
Η	-0.879337494377	0.302182585429	0.314710910273
Η	2.548268747502	1.826612935865	0.719059670499
Η	0.823149148001	-3.219398211359	-0.402540960409
Η	-2.798642920817	0.854966100380	-0.688700971790
Η	0.790218625047	0.568387725541	0.279954860806
Η	2.096389463712	2.076404847566	-0.737866143174
Η	0.174852634935	-0.965626618261	0.094447431674

0	-1.666086712023	1.798587501730	-0.120200450890
Η	-2.245222053011	1.800572366330	-0.894001888241
Η	-2.138257943349	2.284700368324	0.570030214487
0	2.442836309010	0.477501223675	-0.183489134038
Η	3.107504609864	0.694363092445	0.484868940746
Η	2.744123682399	0.888157146734	-1.005275564986
0	-0.873043222678	-2.426426938106	-0.209271760737
Η	-0.530584051787	-3.294168812402	0.097207698396
0	0.032336620118	0.001166521197	0.517180753517
Η	-0.659515262697	0.685661547433	0.226964742779
Η	0.968315701299	0.228986980837	0.198220925454
Η	-0.231320591806	-0.920809694315	0.255019866800

Tetramer-10

0	-0.887360186847	-1.683034826010	0.318522109845
0	1.897120644835	-0.842494809041	-0.039246211337
0	-1.596469048341	0.710163111932	0.134047215982
Η	0.059130156423	-1.807965699182	0.137883481101
Η	-1.358236320001	-2.430805725081	-0.074418170610
Η	2.782170715814	-1.266623162482	-0.061181691699
Η	-1.362410414753	-0.301879574135	0.199075501451
Η	-1.996055416589	1.016737429057	0.965046230190
0	0.607659404378	1.788943567638	-0.431074420492
Η	1.407827611192	1.264169583778	-0.279295698752
Η	0.868739566133	2.711932729799	-0.543785768647
Н	-0.733670520432	1.233785896404	-0.061597774986

0	-1.361416358333	-0.888064485018	0.209438257565
0	-2.273266332395	1.369778963424	-0.528340437466
0	0.987287475999	-0.967031067815	0.924189910594
0	2.789301211107	0.476526573026	-0.620985606968
Η	-1.541119595050	-1.609491027861	-0.413602520487
Η	-1.722762484009	-0.003932754115	-0.143829415727
Η	-2.223247998627	1.766192645702	-1.408731844111
Η	-3.073661827181	1.723699835112	-0.116337639103
Η	-0.338895822051	-0.872285256699	0.502487815025
Η	1.189140647476	-1.034063378960	1.866885067965
Η	3.755577931251	0.622258172288	-0.533883935449
Η	1.702818007028	-0.452874296715	0.496149160034

0	-1.055647318903	0.900732673718	0.040474920602
Η	-1.936777794099	0.371038553814	-0.022551545351
Η	-1.071923314283	1.492245690340	0.810486572636
0	3.454582179917	0.038040344999	0.123224658055
Η	4.113868989785	-0.637605505263	0.333065981378
Η	1.875438035414	-0.386457073990	-0.021707603412
0	-3.271317361969	-0.284764198362	-0.133179129991
Η	-3.475704206193	-1.163267750942	0.215816531305
Η	-3.831511457677	-0.160750461664	-0.912122830340
0	0.911624998150	-0.684771920583	-0.031142624466
Η	-0.209961468496	0.295540275211	0.044413591593
Η	3.913764307488	0.677488997338	-0.437526316353

Η	-1.564850205763	0.677229175841	0.672350349140
0	-1.503227887595	-0.346134324418	0.677214718586
Η	-2.361947341418	-0.748854784581	0.468130973004
Η	3.378498198802	-0.928652495685	0.073098403619
0	2.782428646190	-0.612955877595	-0.619741870271
Η	3.323745170448	-0.579641908780	-1.420716688837
Η	1.215278233385	-1.110665962864	-0.735145312336
0	0.240400928213	-1.348315194726	-0.843581477583
Η	-1.944070454222	2.778133559889	0.112307113719
0	-1.508510509602	2.180517508706	0.735467389907
Η	-1.468169755942	2.648747392680	1.581062232893

Η	0.862516450662	-0.202231043986	-0.470538121744
0	-0.016990605514	-0.326536436156	-0.950576141241
0	-1.553678856445	-1.575495680813	0.675272131003
0	2.168911716963	0.456987362441	0.273298495377
Η	-0.965833517443	1.879999224775	-0.875251129873
Н	-2.249638806900	-1.108357848197	1.158404365345
Η	-1.915078917914	-2.448499502524	0.466400406264
Η	0.232338755601	1.843181843545	0.114096093058
Н	2.978318364316	0.599733935478	-0.239316768145
Η	2.472155995705	0.129761354943	1.132802479615
0	-0.646077178192	1.452949973543	-0.059434361491
Η	-0.655603380067	-0.819049526483	-0.311501900993

Tetramer-15

Η	2.869989871671	-0.991955746417	0.333447415466
0	1.954249411505	-0.656440853519	0.221774299215
Η	1.312371258890	1.366058797827	-0.259616609487
0	0.480623802325	1.863122020934	-0.243184181054
Н	0.669822287541	2.772552987893	-0.508088709247
Η	-0.817347853413	1.125171280033	-0.350904475643
0	-1.642011129661	0.511268452867	-0.315204437290
Η	-2.068556280650	0.465919979671	-1.186850081387
Η	-1.337979483722	-0.436774800134	-0.013323517667
0	-0.770392956691	-1.734719928743	0.363611415456
Η	-1.173087542969	-2.302729426136	1.034744778386
Н	0.188186384123	-1.732086107540	0.522127689555

Η	0.399904155742	-3.652775055947	-1.528713112814
0	0.140810516976	-2.742664820149	-1.270410539064
Η	0.622720583145	-1.777388912858	0.187593657042
0	0.782345156278	-1.050623604292	0.825873701930
Η	1.174607781013	-1.435153963561	1.620719559117

Н	0.793485095872	3.263759256206	-0.415860472729	
0	-0.092941334735	2.878051418991	-0.421696183567	
Η	-0.498501889617	3.135862947744	-1.261021984289	
Η	-0.502596891775	1.609093999690	0.306594373698	
0	-0.865559402568	0.779460999297	0.777749785948	
Η	-1.264755925526	1.021111761000	1.628178243074	
Η	-0.163911093110	-0.009646284404	0.866802883125	

0	0.431214058252	-0.024021769765	-1.347793192158
Η	0.655799655302	0.824493578227	-1.763155508279
Η	1.232951920776	-0.669497100207	-1.397490502112
0	-2.463260099213	1.482284164962	1.939276266886
Η	-3.333662720594	1.573584322475	1.529609326843
Η	-2.621704836569	1.518636761687	2.892492599820
0	2.378287256283	-1.602656001071	-1.590298054569
Η	3.077500767969	-1.747289454885	-0.938089332566
Η	2.278279946724	-2.433812068380	-2.075507343457
0	-0.357123854718	0.156096270664	1.048318944545
Η	0.075188713281	0.110782124556	-0.380626491420
Η	-1.191638062330	0.637372053883	1.347103407179

0	1.435948033302	1.404210916680	1.744228857293	
Η	1.976627464301	2.060443457942	1.284321351142	
Н	1.706944407742	1.442070781962	2.671648531242	
0	2.407208217621	-1.878557338873	-0.918169504741	
Н	2.451479702295	-2.815496445385	-1.208266405563	
Н	1.166882575449	-1.233837294125	0.109880168182	
0	-1.706553064351	-0.609594075323	-0.292076569229	
Н	-2.062232816639	0.240023400222	-0.642488492181	
Н	-2.445479887068	-1.089925815399	0.102625583180	
0	-2.515330238378	1.749721132969	-1.315577952875	
Н	-3.051304134743	2.408388556800	-0.854326983201	
Н	-2.772015424899	1.824313415610	-2.244460375751	
0	0.537583360435	-0.805030086539	0.741707548350	
Н	0.921428623351	0.055571706553	1.094841171845	
Н	-0.413495406923	-0.681561924601	0.319270945310	

Η	-1.673998350115	0.179959913959	-0.678861966371
Η	0.740110778206	1.756530953022	2.380012362154
0	-1.152328318485	0.155623494338	-1.506135354400
0	-2.192540067602	0.232399735923	1.097979508817
Η	-2.456815472033	-0.602608636359	1.511657890930
Η	-2.919858831899	0.838930255245	1.302132936500
0	0.792277647023	-1.411242047387	-1.433214022814
Η	1.227003541390	-1.626912391730	-2.273981456052
Η	1.453433201696	-0.938581994429	-0.775222559914
0	2.274789699666	-0.240633891960	0.241580429647
Η	1.676565511412	0.326581172247	0.821891945534
0	0.538831565006	1.236399707973	1.591474851276
Η	-0.395057829936	0.980440328181	1.656320197000
Η	-1.757531966908	0.322393178834	-2.240312894674
Η	-0.036594448391	-0.801033729149	-1.571677918149

Pentamer-3

Η	-1.347743111992	-1.183536204040	-0.109232135589
Η	0.198682944300	-1.908717864847	-0.268984479820
0	-0.844908967208	-2.049258521826	-0.355273222958
0	-2.055780440907	0.088558299236	0.213966615900
Η	-1.578877600987	0.920730201739	0.401472839561
Η	-2.839376488873	0.075367139009	0.779478378033
0	-0.477310247107	2.422085793539	0.543425708842
Η	-0.388587216456	2.807605842746	1.428050962458
Η	1.222611147086	1.650617035742	-0.074551696289
0	1.976341460396	1.109515342457	-0.410897474454
Η	1.842039625010	-0.671718320570	-0.203338015500
0	1.555030278306	-1.592651594954	-0.022203568847
Η	-1.085415241914	-2.323570754773	-1.254612013395
Η	-0.753607605305	3.165945094660	-0.013139816804
Η	2.296147284922	-2.187523069418	-0.193438127733

Pentamer-4

O 0.687880889675 -1.735669006761 -0.850624202806

Η	1.363703187087	-1.084560191828	-0.540203977957
Η	1.144134265048	-2.415645976782	-1.363640464647
0	0.197856060647	0.809115881449	2.313638803428
Н	0.026954293755	0.817292725397	3.280049122871
Η	-1.156584367177	1.204141895881	0.924252402784
0	-1.317287723019	-0.547320050086	-1.638062404340
Η	-0.450220382508	-1.107840758336	-1.358187525523
Η	-2.094951029112	-1.124853262920	-1.702022110194
0	-1.738950785567	1.201541339969	0.144475034682
Η	-1.904103374626	2.126234598170	-0.083657404934
Η	-1.496836812914	0.181706976646	-0.936803400023
0	2.138635597852	0.296990327017	0.085167804960
Η	3.049736669331	0.547131546136	-0.117694868662
Н	2.023903467400	0.465044291908	1.031445387530

0	-0.482995712789	-0.032097790965	2.135838236310	
Н	-1.217620684029	0.188670971832	1.341405714853	
Н	-0.331360541240	0.731949729485	2.713241897779	
0	-2.098659844837	0.463463976737	0.395374139977	
Н	-1.737890481673	0.527088727238	-0.526228971160	
Н	-2.883367294470	-0.101260980960	0.363915945793	
0	-1.024415442339	0.576289939229	-2.032014052788	
Н	-0.078778487062	0.452367064978	-2.198962767844	
Н	-1.365923385560	1.091917671960	-2.773477991824	
0	1.886485924870	-0.160640319631	-1.686091788053	
Н	2.663783779289	-0.146574055361	-2.285748662734	
0	1.746379565217	-0.844971371142	1.179279004931	
Н	0.403413657156	-0.361082559867	1.766669475008	
Н	2.170071698794	-1.657255092912	1.486122532209	
Н	1.952423736274	-0.758268131196	0.233909827824	

Η	-1.678504676554	-3.088350761041	-0.600941845934
0	-1.530521950011	-2.428763998606	0.089980478608
Η	-3.089659817700	2.263165186168	-0.713230198820
0	-2.726165028219	1.711449797064	-0.007167188928
Η	-1.571670907273	0.682717278794	-0.281004820781
Н	4.590857202203	0.369186645366	0.402413667714

0	3.847689302209	-0.001182375081	-0.092599135449	
Η	4.206863115534	-0.230386056885	-0.959468092771	
Η	2.274248333350	0.485099770429	0.258698814547	
0	1.361138638580	0.769758154247	0.556642245723	
Η	-1.165092825372	-0.934190020785	-0.245262406563	
0	-0.871740749015	-0.006818175652	-0.509600238766	
Η	0.026053818483	0.235483143208	-0.106862953738	
Η	-2.813774926436	2.227957311733	0.805335204990	
Η	-2.055329050170	-2.716031538074	0.849040317190	

Η	-0.948882445300	2.824285885132	-0.940718543407
Н	-2.299310438378	-2.118782076149	-1.412805619437
0	-0.966077572291	2.475951255101	-0.039566023522
0	3.276742110417	0.016305629317	-0.870873497068
Н	2.125526750789	-0.681859448345	0.421531319045
Н	4.238084048294	-0.147043204957	-0.976321455896
0	1.359131984981	-0.990831287793	0.941144193924
Η	1.687546358974	-1.218225262487	1.820505452964
Η	-0.002522380567	-0.370976717759	0.774543461036
0	-0.956523854395	-0.011475057764	0.680036381891
Η	-1.533654825509	-0.611724517375	0.117834733297
Η	-0.974195150403	0.936175553364	0.347352466748
0	-2.555263853254	-1.483844669105	-0.730421913023
Η	-3.359204205597	-1.840258109743	-0.328413200372
Η	-1.441102277789	3.131503314373	0.488840881326

Η	2.191355963959	-0.038947016656	-0.436194158212
Η	-1.301380085892	0.823958445971	0.289503235632
0	1.332297235215	-0.040402959731	-0.920176085278
0	-0.771542119153	-0.005127032306	0.386049889102
Η	0.106171225846	0.020430310558	-0.188197702076
Η	-1.337100577785	-0.816313796855	0.201072416130
0	-2.309596699756	-2.051616227750	0.023288471839
Η	-2.412641360388	-2.555247380934	-0.795321255257
Η	-2.455172720544	-2.682768548475	0.741294898601
Η	1.462988004102	0.460616843626	-1.734939780714
0	3.637926190946	-0.153384111096	0.459144980631

Н	4.287520898183	-0.854884737144	0.320281675062
Η	4.131624655048	0.576991207151	0.854115096853
0	-2.006917038889	2.397541549894	0.065398645914
Η	-2.803279803573	2.732989943627	0.530862959806

ц	1 516700071112	0 455607228478	1 607296029765
п	-1.310/862/1113	0.433097326476	-1.09/280938/03
0	-1.360490457998	-0.037713062265	-0.882500023878
0	2.000228078435	2.400019844584	0.056067696025
Η	1.306909604197	0.818985947790	0.258867851021
Η	2.810638375424	2.723342157010	0.505612609018
0	0.783824178924	-0.014449191128	0.354830071255
Η	-0.110462096604	0.016327454909	-0.192317028886
Η	1.346719759738	-0.820050952178	0.140376992942
0	2.314419968875	-2.051715688083	-0.083375114599
Η	2.464802039584	-2.703501530973	0.614897713269
Η	2.407342989526	-2.531935017639	-0.916901417367
Η	-2.203923743189	-0.034597057661	-0.371782222656
0	-3.619968244905	-0.148066925757	0.570133257943
Η	-4.114767596649	0.586315996264	0.956132623309
Η	-4.263431316487	-0.860641671931	0.461864897093

2.526863140744	-0.180761392404	0.033041447021	
3.128951074578	-0.461622761896	-0.672661804957	
3.114485946487	0.042059385421	0.770696480460	
-1.950267202925	-1.096371348955	0.090367880877	
-2.310036841227	-1.465603391634	-0.731812404909	
-1.000840837374	-1.464565387784	0.252992579222	
0.763432623229	2.045909790703	-0.743829515607	
-0.931937124058	1.732571526735	-0.225397033128	
1.443393839338	1.374290874233	-0.497721945827	
-1.767359917331	1.361818794454	0.131580624386	
-2.472746388301	2.009599475069	0.007996505190	
-1.937914401530	-0.040888290773	0.059855068655	
0.379604037947	-1.984053987487	0.457153338847	
1.170541483550	-1.413744915994	0.391782013662	
0.553570425388	-2.637822115841	1.147153918194	
	2.526863140744 3.128951074578 3.114485946487 -1.950267202925 -2.310036841227 -1.000840837374 0.763432623229 -0.931937124058 1.443393839338 -1.767359917331 -2.472746388301 -1.937914401530 0.379604037947 1.170541483550 0.553570425388	2.526863140744 -0.180761392404 3.128951074578 -0.461622761896 3.114485946487 0.042059385421 -1.950267202925 -1.096371348955 -2.310036841227 -1.465603391634 -1.000840837374 -1.464565387784 0.763432623229 2.045909790703 -0.931937124058 1.732571526735 1.443393839338 1.374290874233 -1.767359917331 1.361818794454 -2.472746388301 2.009599475069 -1.937914401530 -0.040888290773 0.379604037947 -1.984053987487 1.170541483550 -1.413744915994 0.553570425388 -2.637822115841	2.526863140744-0.1807613924040.0330414470213.128951074578-0.461622761896-0.6726618049573.1144859464870.0420593854210.770696480460-1.950267202925-1.0963713489550.090367880877-2.310036841227-1.465603391634-0.731812404909-1.000840837374-1.4645653877840.2529925792220.7634326232292.045909790703-0.743829515607-0.9319371240581.732571526735-0.2253970331281.4433938393381.374290874233-0.497721945827-1.7673599173311.3618187944540.131580624386-2.4727463883012.0095994750690.007996505190-1.937914401530-0.0408882907730.0598550686550.379604037947-1.9840539874870.4571533388471.170541483550-1.4137449159940.3917820136620.553570425388-2.6378221158411.147153918194

0	-0.176695491540	1.248641156445	-0.519471706792
0	-4.052525047089	-0.245511135644	0.695095259497
0	3.590814493505	-1.150687766584	0.042945293906
0	2.047231178389	0.994946717734	0.476820033568
0	-1.642936380977	-0.784419330213	-0.635279486333
Η	0.784120240103	1.084951582063	-0.086337552833
Η	-2.540427477588	-0.707246604268	-0.255142471556
Η	3.679934012767	-1.925239473515	0.613825927837
Η	2.620733829172	0.197242101119	0.380768758521
Η	-0.763177352204	0.407700935360	-0.627555588894
Η	-0.106140073924	1.731992477790	-1.356344976175
Η	-4.919477845046	-0.699691792240	0.757400597522
Η	4.457493879780	-1.041003013548	-0.370886463157
Н	2.196635321085	1.365465945758	1.356058212251
Η	-1.694179142611	-1.413546068840	-1.365766144162

Pentamer-12

0.624556583959	-1.905157852891	-0.099302507619
0.743663125012	-2.701888572493	-0.633373593229
-0.284212175176	-0.821999845671	-0.485112409618
-3.184754030228	0.057905919283	0.426644354311
-3.437101120995	-0.423505096123	1.226341352120
-3.981373539985	0.095046470593	-0.120595444304
2.852452679037	-0.304509549222	0.499326838004
1.514897932889	-1.554698092642	0.105384978312
2.545733383966	0.626305819801	0.425569689972
0.782117908891	2.049601391878	-0.108609465794
1.001440982546	2.625014259583	-0.857128560216
0.596761454785	2.660798598320	0.620082343698
-0.860048411011	0.018147989301	-0.693338591478
-0.346066364865	0.832649148766	-0.444359498239
-1.755232685190	-0.004389670854	-0.229143155043
	0.624556583959 0.743663125012 -0.284212175176 -3.184754030228 -3.437101120995 -3.981373539985 2.852452679037 1.514897932889 2.545733383966 0.782117908891 1.001440982546 0.596761454785 -0.860048411011 -0.346066364865 -1.755232685190	0.624556583959-1.9051578528910.743663125012-2.701888572493-0.284212175176-0.821999845671-3.1847540302280.057905919283-3.437101120995-0.423505096123-3.9813735399850.0950464705932.852452679037-0.3045095492221.514897932889-1.5546980926422.5457333839660.6263058198010.7821179088912.0496013918781.0014409825462.6250142595830.5967614547852.660798598320-0.8600484110110.018147989301-0.3460663648650.832649148766-1.755232685190-0.004389670854

Pentamer-13

H -1.631093780278 -0.567494903048 -0.068518142893

0	-1.043174292195	0.009408045480	-0.646283673410
Η	-0.069668908783	-0.369878860510	-0.746161494917
Н	-2.437090190809	-1.946488006338	1.548692603161
0	-2.670289952450	-1.396805217495	0.788608240115
Η	-3.425307551207	-1.832390853913	0.370143226543
Η	-1.042777218944	0.945142704261	-0.326904641469
0	-0.818114356539	2.615676064896	0.101793174817
Η	-1.545081424073	3.261624338466	0.235099651128
Η	3.790928458091	-0.740547742267	1.139016713660
0	3.249237671207	-0.113842577736	0.641092038051
Η	3.831181431236	0.637147585525	0.464793286530
Η	1.527302068032	-1.181529312824	-1.799823476307
0	1.219426240331	-0.960612866252	-0.911556149178
Η	2.000108897486	-0.646874710212	-0.398201720706

Η	-1.307907420761	0.821968382757	-0.276187750082
0	-1.998649463120	2.397790221907	-0.035746878906
Η	-2.826750732433	2.723039720410	-0.450144034655
Η	-2.449129053226	-2.689115430370	-0.764772545420
0	-2.325477173483	-2.054422445827	-0.045746561817
Η	-2.444554678615	-2.555650476783	0.772202422520
Η	4.135192675197	0.610994460371	-0.844260301459
0	3.658076145536	-0.129305113621	-0.447694791095
Η	4.328273599175	-0.804565149948	-0.278364642066
Η	1.462250279013	0.409860250976	1.732616896797
0	1.333325675334	-0.057911184064	0.898319176077
Η	2.195061371463	-0.042694009628	0.418978573860
Η	0.099462996082	0.007032212172	0.178749839842
0	-0.783265207222	-0.008761391346	-0.386844773525
Η	-1.351053199711	-0.820057599774	-0.207687134267

0	2.459796775533	-0.379139607947	-0.248686516665	
Η	3.127753714111	-0.494101681227	0.443835207235	
Η	1.028664813475	-1.541946851402	-0.172739229548	
0	0.205904563429	-2.072121372475	-0.193942555813	
Η	-1.108141226121	-1.448737970390	-0.027733579510	
Η	0.392470938305	-2.905604573958	0.258870880646	

0	-1.738431409938	1.533755104900	0.114200321888
Η	-0.765978708894	1.788109747685	0.171711358016
0	0.859865624453	2.025655085029	0.279896239266
Η	1.536592162651	1.375752862221	0.031356839803
Η	1.270957292006	2.897257688416	0.218611899656
0	-2.030523554829	-0.982955458656	0.090325828351
Η	-2.651776119499	-1.262305270310	-0.601902910814
Η	-1.927026782387	0.052553232118	0.090930115649
Η	2.959228120149	-0.447892860031	-1.076230851034

Н	1.022311869725	-1.310036791400	0.266614486651
0	2.393610939960	-0.812447098129	0.082048911257
Η	2.604954377766	0.131007464853	-0.058559538236
Η	-0.051210347021	-1.811611171112	1.403320021672
0	0.094687331993	-1.730244096867	0.448616927726
Η	-0.719311389401	-1.247401158338	-0.033059510450
Η	3.042189241840	-1.331218586225	-0.410830823331
Η	-4.108548344803	1.148523563431	0.801728418349
0	-3.263716846917	1.269915024006	0.348494220445
Η	-3.314704327957	2.149375650019	-0.049139189449
Η	-2.352681995415	0.030927693783	-0.370777826282
0	-1.751493194635	-0.647811579393	-0.760646555979
Η	-2.276320638360	-1.193975695520	-1.360036779360
0	2.694069613724	1.977675488256	-0.117171680445
Η	3.500405263915	2.528385202897	-0.210554964364

0	-1.355722633075	-1.002185879511	0.926337674983
Η	-1.692682053046	-1.234134547304	1.801331316162
Η	0.000388569821	-0.367118055009	0.777465926940
0	2.583477877522	-1.471626029761	-0.675947843839
Η	2.341423275756	-2.105277043981	-1.364549229357
Η	3.372515367880	-1.834592941090	-0.250810718101
0	0.951572798049	0.002872659936	0.693300697874
Η	1.543249254999	-0.597526567427	0.146482089410
Η	0.961891221331	0.946354610763	0.348517741435
0	-3.260628214528	-0.004762234253	-0.902949146565
Η	-4.228287035572	-0.137798462449	-0.993422156652

Н	-2.118664294135	-0.697189507156	0.399085713305
0	0.924668691355	2.479262639786	-0.064825588196
Н	0.976443178154	2.810533770556	-0.971470690908
Н	1.329577777819	3.160230609972	0.489603830359

0	0.832667660525	2.622837880102	-0.154886694591
0	-3.258344974855	-0.157425168684	-0.715006883462
0	2.708071540237	-1.398957577401	-0.663013272581
0	-1.241866478865	-0.946528349046	0.887080076310
0	1.021003397411	0.037548873599	0.669172790735
Н	1.571087682564	3.254548873767	-0.290611460094
Н	-3.863990553552	0.577731683804	-0.551806449697
Н	-3.770213181154	-0.795769127189	-1.228855526128
Н	2.506086249886	-1.975281028969	-1.412660512888
Н	3.455190597842	-1.810904728968	-0.207980549619
Н	-2.015590214621	-0.653694242330	0.351271662501
Н	-1.568085848636	-1.160917986769	1.770426185438
Н	0.047428942604	-0.344950433243	0.746431746224
Н	1.632181948227	-0.553573394036	0.131253441429
Η	1.029360462315	0.963557405162	0.322013240630

0	-2.615369125011	-1.470297099831	-0.547513776719
0	-0.941557676281	0.063070254311	0.701108379872
0	-0.894908914205	2.488895602319	-0.204713413513
0	1.352364127482	-0.964956306807	0.964838305649
Η	-3.395614367193	-1.805396579466	-0.085331006867
Η	-2.395248004164	-2.138614996773	-1.210308381829
Η	-1.550169018704	-0.559814403103	0.200119436883
Η	0.004671962183	-0.316487678347	0.794796538535
Η	-0.943225781351	0.984105106642	0.300315753565
Η	-0.965712908193	2.768886227333	-1.127125045033
Η	-1.271150074906	3.208536503911	0.319802232662
Η	2.113877557507	-0.705710438029	0.411841102035
Η	1.696558073066	-1.152690751515	1.847594181681
0	3.256173015539	-0.116977783754	-0.940030163416
Η	4.219047191532	-0.278601951292	-1.034135415288

0	-0.618278726830	-1.827699305011	-0.226365850557
0	-2.701583269598	-0.001245840085	0.522946238811
0	3.170550034471	0.003518441510	0.831262315552
0	-0.620354985261	1.826547552677	-0.228883665929
0	1.033820285139	-0.000004665517	-0.845715583336
Η	-1.478744779258	-1.427850385714	-0.004192763757
Η	-0.796446203706	-2.655206184379	-0.692017522923
Η	-3.571978096105	-0.002096458006	0.097967556720
Η	-2.901026640842	-0.000548374675	1.471265530082
Η	4.107188111576	-0.012726403213	0.536916499934
Η	-1.480553119664	1.426344343175	-0.006361911680
Η	-0.798950123006	2.653832674163	-0.694755213808
Η	0.446112967159	0.811988735623	-0.648090115921
Η	1.835014311662	0.000908845429	-0.258839348103
Η	0.447078408016	-0.812361435705	-0.646904971939

Pentamer-21

0	-0.756430022878	-1.919782404629	-0.063003473270
0	-2.909424665715	-0.023391865666	0.247444636617
0	3.348710164564	0.051051156720	0.385142070807
0	-0.663303936202	1.773014409502	0.046239355326
0	1.003812745184	-0.021018658403	-0.654178182545
Η	-1.610722046617	-1.430871135028	0.050204910447
Η	-3.621626607037	-0.044779525514	-0.409077789432
Η	-3.373075849057	-0.025935267880	1.098298761438
Η	3.612698231165	-0.198203995681	1.280583235555
Η	4.125896594744	-0.087181244686	-0.173159209898
Η	-1.563707191016	1.402234850793	0.070342459138
Η	-0.736776020651	2.678441391817	-0.282252099298
Η	0.433123385889	0.784096145938	-0.401918248634
Η	1.905578201824	-0.025166896171	-0.196273784239
Η	0.457803143502	-0.828711393189	-0.428017139157

Pentamer-22

O 0.847809571727 2.623119158498 -0.141660370267

0	-3.252073112639	-0.154676358922	-0.729600451664
0	2.695121614182	-1.403178085008	-0.665013803023
0	-1.247169546114	-0.942816584004	0.884662779648
0	1.018662036238	0.035017314769	0.678062309227
Η	1.588932260502	3.246988124936	-0.298739602234
Η	-3.859721510435	0.578813711266	-0.568239287257
Η	-3.757955459103	-0.789999827354	-1.253418746015
Η	2.490658768247	-1.973076218938	-1.418571477184
Η	3.441781460165	-1.819754283173	-0.213866234221
Η	-2.017219134235	-0.650426460024	0.343591962312
Η	-1.578358363994	-1.156610425768	1.766082008241
Η	0.043248554116	-0.344251648484	0.749688413831
Η	1.626942318067	-0.554413529482	0.135440789174
Η	1.032142418914	0.963639669734	0.338244116302

0	-0.870984882556	2.035963609789	-0.182903934549
0	-2.462160504673	-0.413439676676	0.097243105041
0	2.043984942638	-0.958275168913	-0.070215985657
0	-0.189731300077	-2.083916075430	0.083370764228
0	1.721546488490	1.550144006084	0.048538030228
Η	-1.548337096298	1.363945609735	-0.005435283137
Η	-1.290265995240	2.897506446606	-0.063525780516
Η	-3.016684974836	-0.541232791583	0.881582307044
Η	-3.079224475815	-0.485674530772	-0.646408763849
Η	1.125789592347	-1.440754968296	-0.007988150039
Η	2.648133976143	-1.273524481967	0.621720176167
Η	-1.016223024876	-1.560861306875	0.043040473594
Η	-0.349161906356	-2.905015695555	-0.401186632388
Η	1.925620436633	0.074831552268	-0.008455275995
Η	0.749246593630	1.800020334505	-0.032953189071

0	-0.299868634553	-2.869044298277	-0.091566607365	
0	1.635627511074	0.679378887472	-1.073140323500	
0	-1.097068569311	3.416125199922	0.954835311011	
0	-1.905586917559	-0.755818749253	0.441639619714	
0	2.509922429790	-1.828091118964	0.249824118225	
Η	-1.385149825330	-1.583322609098	0.342254990521	

Η	2.028531251614	-0.136106154915	-0.719401069083
Η	-0.427897410763	3.827016073816	1.518092567812
Η	0.616671136399	-2.931152847125	0.211243786055
Η	-0.589868063913	-3.776745183696	-0.248436071886
Η	1.950648277879	0.756815951423	-1.983488456423
Η	-1.654102656317	4.141126373874	0.640322065288
Η	-2.375859343346	-0.807228754533	1.282537196878
Η	3.410401501192	-2.068570036865	0.556868154765
0	-0.815799622595	1.290027209444	-0.532489227362
Η	0.140380858683	1.052656852317	-0.748157435383
Η	-0.862868124045	2.108611496908	0.041136785458
Η	-1.282987103556	0.486948706894	-0.085198454664

Η	1.289930488074	2.793062109833	-1.044329292363
Η	-5.169438056529	0.076429582155	0.461238754644
Η	2.524752679180	-0.343758472856	0.232461693919
Η	4.402174809205	-1.744352337554	-0.465525400578
Η	1.646295979858	1.021865253347	0.368352188211
Η	-2.961300119762	-0.413297805969	-0.537519259567
Η	1.651328415576	3.287886161381	0.370848999336
Η	-4.797338834221	1.208237868420	-0.500318489371
Η	0.920160947169	-0.488881840280	0.795982432305
Η	-2.379528609259	-1.542432093653	-1.424025479954
Η	-0.499360527221	-1.551227227611	1.759963472223
Η	-0.952670641078	-1.166221261339	0.290847556447
0	1.334349958965	2.517289090301	-0.119186019924
0	-4.418136299959	0.477468982710	0.005163263166
0	3.839149481118	-0.987914465005	-0.736971663569
0	-0.165912384115	-1.328463148398	0.881565086956
0	1.810246489587	0.107147153927	0.742722309331
0	-2.127183338189	-0.857188478870	-0.792698337846

Η	2.957399434840	-0.625421887787	0.332943264766
Η	4.397051890792	-1.982675370399	-1.070861406902
Η	-4.796674233886	-0.905777234743	-1.229061751021
Η	-2.804194819757	-1.069140769222	0.109110763449
Η	-0.695685849878	-0.083829254458	-0.030186968409

Н	-0.206305139007	3.517224691306	0.810706681616
Н	0.958473973417	0.120240202076	0.211242566955
Η	-0.042154713827	1.432393500969	-0.130788160448
Η	-5.082650307112	-1.603994719849	0.108349746882
Η	5.144423224378	-0.716133303102	-0.630298550712
Η	2.206769180289	-0.776609103527	1.698673591853
Η	-0.278427503982	3.603770333221	-0.726485406473
0	4.262459920255	-1.106201647942	-0.687817571143
0	-1.866638289551	-1.095615533477	0.454551458501
0	-0.380188509644	2.994057239686	0.016811755247
0	-4.449259877359	-1.024075127486	-0.335436438601
0	0.113599373701	0.454717172981	-0.284365155692
0	2.209255816667	-0.280223343394	0.870700225969

ц	2 611321256072	1 830108288474	2 066804657201
11	2.011321230972	-1.039100200474	2.000694037201
Η	-2.425880256179	2.707814778994	1.798601323132
Η	-1.472027602003	0.556342846201	0.670711134287
Н	1.713074164779	-0.970526882081	0.123885278833
Н	2.462007274440	1.923801498599	-2.204290306430
Н	0.139961882134	-0.378451233449	-0.178815672661
Η	1.543485271178	0.379596873326	-0.791509449356
Н	2.568902812578	2.455243390660	-0.762780790606
Н	-1.905198236117	-0.705322262379	-0.172433176475
Н	3.201042551249	-2.546461814873	0.833536703957
Н	-3.790735790523	-2.166504497331	-0.593459680753
Н	-3.523357254705	-1.404285841137	-1.899477735229
0	-3.273911657465	-1.441373144362	-0.967417174133
0	-1.614051225717	2.287297085139	1.443719235514
0	-1.163686339406	-0.300457403342	0.326102797719
0	1.133434063199	-0.492717229468	-0.533226955753
0	2.101633847213	1.813926701331	-1.314189069270
0	2.745847553916	-1.741422667279	1.114896925170

Н	0.801527762036	0.009506286521	0.001046130240	
Н	-0.675870565503	-0.249241052321	-0.782825478634	
Н	2.802758244925	-0.511894415802	0.611331372878	
Н	-2.633604331663	-1.244889318549	-0.524129553595	

Η	4.842597573568	-1.166548104075	-0.549489721744
Η	-0.223419585544	1.287766570081	-0.345562969568
Η	1.743045282970	-1.169573576837	1.553261747187
Η	-0.887527041069	3.091770539918	0.919652715268
Η	-4.905108169932	-1.359386142869	0.748884798656
Η	-1.979528760285	-1.636959348601	-1.881926192969
Η	5.157867070746	-0.056821026168	0.462972365375
Η	-0.627628452195	3.514872197984	-0.538560995780
0	0.098953410276	0.390218140373	-0.644859109835
0	1.876452953367	-0.442675479442	0.932559666418
0	-1.783255224812	-1.302197121007	-0.997755145111
0	4.427857990166	-0.492621372912	0.004341875001
0	-4.023468443052	-0.932265043462	0.706385986297
0	-0.811723601740	2.747494288319	0.019826469283

Η	-1.901488752729	0.932582319809	0.291242662001
Η	-4.339384861112	-1.656609979673	-0.827023684307
Η	-1.450291146851	2.791392112100	-0.974881845612
Η	-2.169942802706	3.183911540637	0.332213139291
Η	-3.123437604966	-2.015996029141	-1.701819846806
Η	-1.100844155828	-0.443474717878	0.847393485643
Η	3.149633176395	-0.026436029850	-0.277814552823
Η	0.979884835871	-0.769215310629	0.734791496431
Η	5.494047987491	-0.706290390954	0.047015426472
Η	5.412724658793	0.486640848280	-0.914621208540
Η	0.381575738838	-1.359440803441	2.060824185058
Η	-2.530900077228	-0.558019361289	-0.042453830368
0	-2.012132787654	-0.008965541109	0.616098008281
0	2.158179434165	0.042018556727	-0.299179052180
0	0.163074359861	-1.126900916756	1.149490969700
0	4.899599507347	-0.012547874977	-0.266062467753
0	-3.456920854397	-1.354253553780	-1.081253875573
0	-1.676288115110	2.469530826864	-0.092306239409

Н	1.481768806817	0.766948086979	-0.012863945942
Н	2.596965745800	-2.799674973559	-0.778468217703
Н	-1.179966984603	0.577076967876	2.556345024066

Η	-2.318700994972	0.012781840697	-0.815560532926
Η	-3.504199059783	-0.779765290290	0.026541600507
Н	-0.349387405987	0.060508405416	1.318598097915
Η	2.604147967712	-2.797580858593	0.755127000575
Η	-0.367995373683	0.052775468963	-1.315505217598
Η	-2.306836193586	0.017868778023	0.846768583694
Η	1.393050887077	-0.792338034061	-0.008619991232
Η	-1.216290501815	0.561362535550	-2.544560927494
Η	3.251119628827	2.769237352831	-0.034099851597
0	0.850103871413	0.025430191731	-0.006975268895
0	2.226145105049	-2.346239609800	-0.010528903802
0	-1.207986435888	-0.016533900578	1.794588883103
0	-2.950241412682	0.017733326622	0.020134014659
0	2.310034746057	2.495077395916	-0.018143378560
0	-1.233328255533	-0.027345650214	-1.778678491449

Н	-0.374271718217	2.542006717451	-0.207531202149
Η	-3.783076061844	-2.180266444101	-0.056698329885
Η	3.299713217648	-2.472400373439	-1.139777477673
Η	1.539012906109	2.819062899801	1.370893539646
Η	-1.388013308600	0.606422258015	-0.644663948529
Η	-3.275195223244	-1.927025478435	1.378629762176
Η	3.495197659051	-2.705656797742	0.365158754155
Η	2.092908457104	2.863819563010	-0.051862286472
Η	-1.933591714549	-0.871343488254	-0.179727971323
Η	1.405901535655	0.430577083752	0.472001282785
Η	-0.259183314745	-0.495025940802	-0.207091276108
Η	1.745882306845	-1.071721329798	0.139872476237
0	-1.279851500745	2.305893749096	-0.530874075789
0	1.027300179039	-0.463580743261	0.420912701721
0	-3.189404901633	-1.624313196764	0.465290038285
0	3.065472917820	-2.120039597103	-0.271638536234
0	1.419206748820	2.429766927629	0.492030684885
0	-1.204359703204	-0.372627027614	-0.653801887904

Η	0.021339444769	0.468673178085	-0.269088539829
Η	-4.084011226724	1.191421759861	-1.115030364186

Η	-4.221899658421	1.544444069846	0.373118518257
Η	1.506567331055	-2.346148446938	-0.313014241699
Η	1.462961737272	-0.197743200876	-0.722640331847
Η	-2.100675319997	0.429640448506	0.122202105899
Η	2.682910233601	-2.047061904410	-1.280152677314
Η	2.602872117692	3.301137643916	0.126662480090
Η	-0.643407937723	-3.648344786125	0.969036649702
Η	2.627449784498	2.505201972024	1.448040179972
Н	-1.332049078652	-0.875515204745	0.533578542370
Η	1.446905357051	1.356561264728	-0.174860085481
0	-1.224823562982	0.075927458030	0.389989032310
0	0.947462209858	0.665169031841	-0.698581626981
0	-3.687129962992	1.034777569757	-0.248986151592
0	2.114487013364	-1.649761100837	-0.607770876346
0	2.184094744245	2.565375572211	0.591920271344
0	-0.332134814749	-2.797486632639	0.592467407250

Η	2.818054134616	0.176414612108	-0.059061326120
Η	0.880429476703	0.558969937433	-1.006904411498
Η	-1.851368276273	2.772376195567	0.426093053959
Η	4.033821790344	-1.540570491658	1.143014535716
Η	-0.509313374632	-0.383677777442	-1.157773386538
Η	2.951574522857	0.906874743605	-1.441060556959
Η	-3.807794333704	-0.902714257680	1.726307358947
Η	-2.013404053564	-1.733293061827	-0.306441047123
Η	-1.460762977750	-2.407917964343	-1.588112739116
Η	-2.288051750093	1.348260843744	0.860409517756
Η	4.025932686727	-0.237411722169	1.951293773292
Η	-0.641337447355	1.125254354216	-0.582150971920
0	-1.238885273510	-1.779616862961	-0.888556597700
0	-3.118262425488	-0.599672317812	1.097404771835
0	2.329795218935	0.697703459822	-0.733470517847
0	-0.126914451973	0.543687904248	-1.221674584727
0	-1.544229203148	1.860099653768	0.507304706019
0	3.563796535387	-0.702200572171	1.241158865603

Heksamer-11

Н 0.924735670452 0.716022274625 -0.844575764356

Η	-3.667513891892	-1.787187585171	0.533084523192
Η	2.191658130222	-0.113901803110	-0.114672227225
Η	-2.629801916678	0.876732158368	0.648454739375
Η	-1.084938688734	-1.993109916724	-0.150519332388
Η	-0.077741327307	-2.965899205729	-0.820060712008
Η	0.849572909005	-0.938441599402	-0.621423593646
Η	4.330777673621	-0.153046134539	0.617080701838
Η	-0.012132349650	2.454517069965	-1.669819901884
Η	-2.614300743073	2.361746733241	1.069854418977
Η	3.424591460794	0.333676994251	1.765127948457
Η	-0.712672622196	1.948230702047	-0.358862959968
0	1.464872637045	-0.162396321601	-0.803321896078
0	3.413435700464	-0.137162767676	0.921385176374
0	0.138855209316	1.968039116533	-0.849722803365
0	-2.865765170653	-1.243877102279	0.373422236331
0	-0.141311529053	-2.135110864919	-0.331538014927
0	-2.068195992411	1.663922818214	0.686393739824

Η	1.579388475488	2.651817450831	0.982636201364
Η	0.443920986523	2.139695473289	0.016715103586
Η	2.118815653268	0.858240515841	0.067008455187
Η	2.102896135996	-0.895543509629	0.079445746140
Η	3.111210557857	-0.034462716458	-0.917716432912
Η	1.532478025458	-2.665126367124	1.020505781337
Η	0.405251615690	-2.146332292460	0.048529606839
Η	-1.623049474410	-2.879469352030	-0.910393672401
Η	-1.947433859794	-1.606085005050	-0.096088549296
Η	-1.569867961286	2.894270023340	-0.956232928827
Η	-1.917504468256	1.638801917673	-0.123683400337
Η	-3.968420301885	0.043643074031	0.907184571809
0	1.406427632151	2.082974551140	0.222068672159
0	-1.177497348054	2.148070574022	-0.485813435783
0	-3.072266960948	0.031863483966	0.507551239644
0	-1.216962804418	-2.133846517799	-0.450858527969
0	1.369003102140	-2.104520250809	0.251771562439
0	2.674429766346	-0.024507135885	-0.052148942820

Η	-0.073235672146	0.091383204397	0.882140688132
Η	-3.324791704403	-2.249446523534	-0.548696915318
Η	-3.070337201812	2.062283505765	-0.255304603975
Η	2.590089084124	2.363908618496	-0.290149041428
Η	3.532008354811	-1.432865527412	0.246077774827
Η	1.027287014150	-1.586267976562	0.233037199644
Η	0.630259395738	1.456439051999	0.400752916361
Η	-1.031401170274	1.323072210956	0.408322477315
Η	-0.506421906013	-1.899790660771	0.251070517036
Η	2.515855833306	0.812138502191	-0.419031172169
Η	-2.857482246038	0.538224789573	-0.459915742758
Η	3.154319565931	-1.479026789108	-1.233710628715
0	-0.176701594215	1.107176687293	0.899900387218
0	0.195737400681	-1.414532282414	0.709226585287
0	2.860661901875	-1.125921439700	-0.381142388116
0	1.979005506248	1.624361815327	-0.401391929405
0	-2.393164078680	1.387442527820	-0.395185127558
0	-2.628490055683	-1.578530610380	-0.381919775777

Η	-3.380195859896	-0.606142571737	0.271552162080
Η	-1.431798344799	3.163379012519	-0.261522117564
Η	-2.384311069089	0.572400403742	0.066571268802
Η	1.001323295008	1.858393209541	-0.112577424910
Η	0.189549307789	-1.414485067866	0.907414803507
Н	2.540490742175	1.872329076341	-0.117843669167
Η	-1.224996794205	-1.286065144106	0.093526090781
Η	1.561435216466	-0.941069659074	2.646442507556
Η	1.550596715206	0.098507098944	1.477545025020
Η	1.533034381482	-1.279645885922	-2.509523728196
Η	0.181614190786	-1.524231708536	-0.705749510262
Η	1.547708963947	-0.101970203232	-1.479213857583
0	1.018316604698	-0.576349048514	1.935984871142
0	-1.070388510212	2.262775515786	-0.110135317669
0	-0.342178662411	-1.776784037396	0.124804092821
0	1.779358464135	1.276627595262	-0.077887812462
0	1.008150178202	-0.830129117890	-1.834989205301
0	-2.499393784814	-0.382062756623	-0.055206300974

\mathbf{O}	0.001476024410	1 250200106074	0 745102007265
υ	-0.0814/0924410	1.238398186074	0.745193097365
Η	0.687455867238	1.619074323280	0.270419581900
Η	-0.886369873095	1.552695135220	0.285178198714
0	2.609017818141	1.495444702724	-0.323598657356
Η	2.851131121452	1.926681481390	-1.156130056445
Η	2.651965046091	-0.474671247592	-0.433863425270
0	-2.801776409617	1.244300380580	-0.305086976672
Η	-3.431503566383	1.522214621873	0.376863347065
Η	-3.126819390267	1.671405826953	-1.111374513337
0	2.265714487630	-1.368783963426	-0.446804384554
Η	2.995462045534	-1.996407887218	-0.365215801663
Η	0.931886167691	-1.463801492428	0.357482678068
0	0.071229374166	-1.269361169214	0.859583929263
Η	0.002466968482	-0.241723421444	0.883537835835
Η	-0.723651136993	-1.566891938266	0.335417728011
0	-2.222962803691	-1.597067850393	-0.485404080569
Н	-2.607667592733	-0.684842083761	-0.469291121773
Н	3.198998881765	1.898735074954	0.330521644801

0	-1.342046728479	2.068876482346	-0.794349372732
0	-1.025406453338	-0.481149215177	-0.505658334820
0	1.101093975526	-0.488205177073	0.959190568029
0	-3.056617618720	-1.896060612130	0.243043293687
0	3.173480554876	-1.476946606144	-0.460799013655
Н	-1.219443448862	0.510656830909	-0.639608562216
Η	-1.836686126442	-0.991782337089	-0.198279739120
Η	-0.236736057011	-0.578447389432	0.121938790221
Η	1.874808638446	-0.879047419848	0.487009431260
Η	1.119327847571	-0.870030164076	1.847484603778
Η	-3.414795074770	-2.555075725681	-0.367565527589
Η	-3.813850374395	-1.570051875015	0.748179335215
Η	3.968356453910	-0.976286378244	-0.686241795788
Η	3.404802143379	-2.402588234520	-0.611723255683
Η	-0.497578866408	2.408018902031	-0.379235569590
0	1.018333868373	2.464174298791	0.426691715744
Η	1.429208660447	3.212803401544	0.876877921705
Η	1.304228702309	1.665454872065	0.894213822856

0	1.218580281728	2.194474984819	-0.037681651473
Η	1.635860974892	3.078695674507	-0.129199445660
0	-1.075082030095	-0.735562748520	-1.848941684524
Η	-1.635248582536	-1.137700616738	-2.524887570403
Η	-1.559160944460	0.023645346964	-1.478955886285
0	0.225646221013	-1.798974599871	0.084148594235
Η	1.137628841459	-1.364978589904	0.053311234239
Η	-0.287038402340	-1.499689166593	-0.737666509156
0	-1.042255174722	-0.543128613977	1.925261257967
Η	-0.275852353755	-1.416405597504	0.876805602186
Η	-1.604627729880	-0.883915361223	2.632547254366
0	-1.688243659755	1.391307615559	-0.050425515914
Η	-2.409159989903	2.035799643719	-0.078044185975
Η	-1.531609354828	0.172649573980	1.481345393460
Η	-0.873956748518	1.921908080745	-0.074550327249
0	2.465634058568	-0.540540064071	-0.091148400705
Η	2.414489957261	0.415384195879	0.060401709097
Η	3.333679871477	-0.830809883148	0.217062409644

0	1.154404308643	-2.134529971009	-0.013432192820
0	2.556836449583	0.407953055805	0.022370253885
0	0.111138454075	2.011993059878	0.014825446668
0	-1.232321175212	0.356609611194	1.886427696061
0	-1.399459711931	-1.329698167212	-0.018748444287
0	-1.215434296808	0.386802960437	-1.894765918916
Н	1.725686420847	-1.325945887278	-0.000799322637
Н	3.132424942625	0.507442194389	0.795919654801
Н	3.156242780721	0.519035524963	-0.731364349339
Н	-0.897266032813	1.178869652519	1.485274054265
Н	1.013253231561	1.641435225407	0.018162134576
Н	-1.450466609160	-0.723057996961	0.796500861940
Н	-1.866431812033	0.600708179129	2.572904538854
Н	-0.481810550447	-1.729025790094	-0.017696666607
Н	-1.442968707550	-0.709919708390	-0.824632010912
Н	-0.885099995314	1.203245752407	-1.478065161352
Η	-1.841742406107	0.640611504574	-2.584882420682
Н	0.232343630754	2.971617870826	0.021419638474

0	2.603500774883	0.223535676779	0.260897913694
Η	1.434180030848	0.769789172803	-0.397785818411
Н	2.420332824382	-0.729904516226	0.421624933822
0	-3.276214913477	-0.985763388606	0.638930937355
Η	-4.119770505089	-1.486010638129	0.634270950591
0	0.528375511969	1.073355095388	-0.824434463129
Η	0.119023779376	1.841020333361	-0.323734585110
Η	-0.093072440795	0.289330293328	-0.846986514804
0	-0.896403324017	-1.149617177034	-0.881321047797
Η	-1.036380961887	-1.514896519000	-1.766472956666
Η	-1.773349586556	-1.171792857787	-0.448983927378
Η	3.466502710401	0.278118733687	-0.170399680382
0	1.555207837979	-2.249417764153	0.444596109424
Η	0.629630411589	-2.234451856080	0.159954003203
Η	1.649442843091	-3.009929797908	1.031151600141
0	-0.608341048306	3.071774430747	0.391671641013
Η	-0.762131923422	3.899373703609	-0.084258971606
Η	-0.444540253843	3.325398379423	1.310085841411

0	2.347663134356	-0.767478821263	-0.378316683097
Н	3.042004904528	-1.045575758803	0.239084794447
Η	2.175942812219	0.239589945300	-0.282456510029
0	-0.978101076858	1.875396863235	0.194928288825
Н	-1.487877746454	1.417330290832	-0.496091933381
Н	-1.406186360562	2.735436236085	0.307437726019
0	0.264079545212	-1.973679236900	-0.003265263132
Η	-0.253375901600	-2.166888583044	-0.798214337784
Η	1.420595350202	-1.321887145147	-0.210908607771
0	-2.063083737154	-0.331099494631	-1.349511753979
Η	-2.995197652412	-0.528572381456	-1.584352619457
0	-1.369918747938	-0.592919016047	1.586095069189
Η	-1.277476911317	0.371396558173	1.515859803136
Η	-0.352070630303	-1.512542419793	0.620699403098
0	1.781607298875	1.685713547498	-0.118158278910
Η	2.177728261955	2.368791274390	-0.674595375142
Η	0.823345519421	1.881205077160	-0.060713318694
Η	-1.585669391975	-0.786677645581	2.507088704766

0	-3.922053251243	0.068014434801	-0.511570109267
0	-1.425892775238	0.007150572644	0.524588532160
0	0.233489055297	2.434832915605	0.114120800999
0	2.907186291204	1.078445157398	-0.263695497222
0	2.277260931614	-1.535875622474	-0.327064049316
0	-0.016442262478	-2.015196958927	0.483144324587
Η	-4.705720972039	0.120397697546	0.051104535755
Η	-4.234816102687	-0.294047045942	-1.350519948665
Η	-2.323602272731	-0.002176977216	0.122394139846
Η	-1.027261576357	0.871476645736	0.336010492136
Η	-0.061822330415	3.370786271805	0.104016877456
Η	3.752515733375	1.456332041543	0.009793673723
Η	2.564019612883	-0.592711560603	-0.318750004909
Η	0.953365407729	-1.821379934320	0.128983672235
Η	2.583743149132	-1.920354747611	-1.158562024566
Η	0.028758249905	-2.398012953106	1.373018796007
Η	-0.619300082240	-1.143203355253	0.489457612345
Η	2.240275736745	1.759796978445	-0.096807900391

0	0.081994079055	0.363860545806	0.637850495608
Η	-0.211213934431	1.274128577745	0.346345725945
Η	-0.708482367762	-0.264135392809	0.734274234314
0	-4.060127444429	-0.833885952007	-0.815329504993
Η	-4.973053239947	-1.190647033698	-0.835047222972
0	-1.842577942901	-1.296999508998	0.894387973175
Η	-2.060555815604	-1.654784394739	1.764563123931
Н	-2.684101770009	-1.206587747153	0.410013759395
0	4.429374049639	-0.563625409916	0.141185705461
Η	5.180146537797	-0.127721218721	-0.283118584167
Η	0.803927707390	-0.014612147446	0.012625535676
Η	4.817010709639	-1.242680515971	0.707955741377
0	1.915466471787	-0.456608476954	-0.880827617336
Η	1.804706945860	-1.169018801190	-1.522580368772
Η	2.823607360742	-0.545161171940	-0.515597676131
0	-0.742991997274	2.756467552376	-0.009015658377
Η	-0.744592221780	3.129793777969	-0.900364938581
Η	-0.573888703068	3.500105545250	0.584804093932

0	1.309933936462	0.078697377279	1.012554588540
0	0.807671584666	2.642349196199	-0.447242944876
0	-1.865957375538	1.798174633479	-0.482998959815
0	-1.261140652785	-0.299607821221	0.771405654123
0	-1.940537446099	-2.498933290292	-0.430034943828
0	2.950221461120	-1.484160923244	-0.458864104174
Η	-0.260453075853	-0.253655119779	0.874085315461
Η	1.939846166861	-0.508104396772	0.529672426897
Η	1.202047342114	1.904146377583	0.073247533614
Η	-1.049152088996	2.332824083335	-0.551340379890
Η	-2.590377267528	2.402762618234	-0.275722872431
Η	-1.582601025764	0.552788563677	0.287676395625
Η	-1.537502016618	-1.128369639607	0.274552634386
Η	-2.153394507336	-2.564754553881	-1.370987233565
Η	-2.528837762666	-3.124549538494	0.014635018037
Η	3.684392201797	-1.115164220873	-0.968263436435
Η	3.222692680126	-2.386586568048	-0.245734384425
Η	1.650299985688	0.134931494072	1.916522380911

0	0.043318091756	-1.826743212846	-0.153778338797
Н	-0.245676444333	-2.568437366847	-0.700499305582
Н	1.085823178222	-0.777820115797	-0.621753864332
0	1.647128280038	0.048226360964	-0.810773285961
Η	2.571358493563	-0.041610156951	-0.430699692590
Η	1.146235597426	0.819726581010	-0.376136142362
0	0.182242026235	1.749008289437	0.400716618963
Η	-0.033490502860	2.648069243849	0.122186363834
Η	-0.658559627217	1.307100258911	0.629142773613
0	4.086094004210	-0.080157175294	0.072413136056
Η	4.837801424790	-0.135602242776	-0.532247494521
Η	4.400046208450	-0.416738655091	0.921738293736
0	-1.874306824554	-0.095890424009	0.986635362268
Η	-0.760769180862	-1.407856620855	0.210857835333
Η	-2.753095735531	0.002464039371	0.572460420228
0	-4.231917503681	0.240002577756	-0.578715430684
Η	-5.195280406799	0.257995244592	-0.396974503298
Η	-2.054382643339	-0.233979828627	1.927161670320

1.911161777456	-0.010934181837	0.533247431411
2.172334695664	0.872598861700	0.132912047480
2.559557542708	-0.735308235544	0.275948946126
-5.054270371709	-0.277058853673	-0.464972420645
-5.582661237859	0.217151328171	-1.104435627055
-5.468690476888	-1.147422347423	-0.411280407849
2.502321004758	2.331513055125	-0.401282326635
2.829808933410	3.028311965552	0.183153100427
2.841695300151	2.541415208153	-1.281273013568
3.660244294144	-1.822801115014	-0.072191589756
4.173325698772	-2.252454999968	0.625768581907
3.557670040221	-2.485592338633	-0.768360348839
-2.607481532863	0.538965069765	0.503863477917
-1.275223287187	-0.283250407420	0.185977538156
-3.466660217016	0.225293286397	0.154768023246
-0.442571156335	-0.800099856832	-0.076652717259
0.948579102896	-0.270025474089	0.294096626496
-2.804155617119	0.930712536931	1.363380420490
	1.911161777456 2.172334695664 2.559557542708 -5.054270371709 -5.582661237859 -5.468690476888 2.502321004758 2.829808933410 2.841695300151 3.660244294144 4.173325698772 3.557670040221 -2.607481532863 -1.275223287187 -3.466660217016 -0.442571156335 0.948579102896 -2.804155617119	1.911161777456-0.0109341818372.1723346956640.8725988617002.559557542708-0.735308235544-5.054270371709-0.277058853673-5.5826612378590.217151328171-5.468690476888-1.1474223474232.5023210047582.3315130551252.8298089334103.0283119655522.8416953001512.5414152081533.660244294144-1.8228011150144.173325698772-2.2524549999683.557670040221-2.485592338633-2.6074815328630.538965069765-1.275223287187-0.283250407420-3.4666602170160.225293286397-0.442571156335-0.8000998568320.948579102896-0.270025474089-2.8041556171190.930712536931