

i

INTEGRATION TESTING MATURITY ASSESSMENT FOR

SAFETY CRITICAL AVIONICS SOFTWARE

GÜVENLİK KRİTİK AVİYONİK YAZILIMLAR İÇİN

TÜMLEŞTİRME TEST OLGUNLUĞUNU

DEĞERLENDİRME

GÜLSÜM GÜNGÖR

DOÇ. DR. AYÇA KOLUKISA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

 as a Partial Fulfillment to the Requirements

 for he Award of the Degree of Master of Science

in Computer Engineering

2023

ii

iii

ABSTRACT

INTEGRATION TESTING MATURITY ASSESSMENT FOR SAFETY

CRITICAL AVIONICS SOFTWARE

Gülsüm GÜNGÖR

Master’s Degree, Department of Computer Engineering

Supervisor: Doç. Dr. Ayça KOLUKISA TARHAN

September 2023, 111 pages

Safety-critical software failures lead to serious results such as loss of live or damage to the

environment; therefore, safety-critical software verification requires special attention.

Avionics system software is one type of safety-critical software. “DO-178C: Software

Considerations in Airborne Systems and Equipment Certification” was released in 2011 by

RTCA, Inc., (Radio Technical Commission for Aeronautics) which defines processes for

aircraft systems software verification and development. On the other hand, there are well-

defined guidelines to improve validation and verification processes of software system

development, specifically for software testing. TMMI (Test Maturity Model Integration) was

produced by TMMI Foundation as a guide for organizations to improve their test processes

and product quality. However, avionics system software has own safety-related software

iv

characteristics, and TMMI does not specifically address software testing practices of these

characteristics. To fill this gap, in this thesis study, first, avionics software characteristics as

the base for software testing are identified. Then, processes and practices in DO-178C and

TMMI (Release 1.3) documents are compared with each other bi-directionally. Finally,

based on the avionics software characteristics and the results of the comparison, a guidance

document approach for integration testing maturity is developed. Considering the critical

role of integration testing in preventing safety-critical software defects, it is thought that this

approach will be useful for evaluating the integration testing processes of avionics software.

A case study was implemented to understand the effectiveness and applicability of this

approach. Two groups of test engineers from same team tried to assess test processes applied.

The first group applied TMMI model and the second group applied TMMI with guidance

approach to assess their processes. At the end, it was observed that the guidance approach

provided more improvement actions for avionics integration test processes by referring to

domain specific needs of avionics software testing.

Keywords: Safety-critical, avionics software, integration testing, DO-178C, TMMI, test

maturity

v

ÖZET

GÜVENLİK KRİTİK AVİYONİK YAZILIMLAR İÇİN

TÜMLEŞTİRME TEST OLGUNLUĞUNU DEĞERLENDİRME

Gülsüm GÜNGÖR

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ayça KOLUKISA TARHAN

Eylül 2023, 111 sayfa

Güvenlik kritik yazılım hataları, can kaybı ve çevresel zararlar gibi birçok ciddi soruna yol

açabilmektedir; bu nedenle, güvenlik kritik yazılımların doğrulanması özel bir çaba

gerektirmektedir. Güvenlik kritik yazılımların bir türü de aviyonik sistem yazılımlarıdır.

2011 yılında, RTCA (Radio Technical Commission for Aeronautics) tarafından yayınlanmış

olan “DO-178C: Software Considerations in Airborne Systems and Equipment

Certification” dokümanı, havacılıkta yazılım geliştirme ve doğrulama faaliyetlerine ait

süreçlere değinmektedir. Diğer yandan, yazılım geliştirme ve yazılım test faaliyetlerini

iyileştirmek için tanımlanmış ve kabul görmüş kılavuzlar bulunmaktadır. Bunlar biri olan

TMMI (Test Olgunluk Model Entegrasyon), TMMI Foundation tarafından geliştirilmiştir ve

vi

kurumlarda test süreçlerinin ve ürün kalitesinin iyileştirmesi için kılavuz niteliğindedir. Ne

var ki aviyonik sistem yazılımları güvenlik kritik yazılım karakteristiklerine sahiptir ve

TMMI modeli, özel olarak bu karakteristiklere değinmemektedir. Bu boşluğu doldurmak

amacıyla, bu tez çalışmasında, ilk olarak test aktivitelerine temel olarak aviyonik yazılım

karakteristikleri belirlenmiştir. Ardından, DO-178C ve TMMI (Sürüm 1.3) dokümanlarının

süreçleri ve pratikleri, birbiriyle çift-yönlü karşılaştırılmıştır. Son olarak aviyonik yazılım

karakteristiklerine ve karşılaştırma sonuçlarına dayanarak entegrasyon test olgunluğu için

bir kılavuz doküman hazırlama yaklaşımı geliştirilmiştir. Entegrasyon testlerinin güvenlik

kritik yazılım hatalarını önlemedeki kritik rolü gözetildiğinde bu yaklaşımın aviyonik

yazılımların entegrasyon test süreçlerini değerlendirmek için fayda sağlayacağı

düşünülmektedir. Bu yaklaşımın etkisinin ve uygulanabilirliğinin ölçümü için bir durum

çalışması gerçekleştirilmiştir. Aynı ekipte yer alan test mühendisleri uyguladıkları test

süreçlerini değerlendirmeye çalıştılar. Değerlendirmede birinci grup TMMI modelini, ikinci

grup ise TMMI modeline ek olarak kılavuz doküman yaklaşımını kullandılar. Sonuç olarak,

kılavuz yaklaşımı aviyonik entegre test süreçleri için daha fazla sayıda iyileştirme önerisi

sundu ve bu öneriler aviyonik yazılımlara ait alana özel ihtiyaçlara değinmektedir.

Anahtar Kelimeler: Güvenlik kritik, aviyonik yazılım, entegre test, DO-178C, TMMI, test

olgunluğu

vii

ACKNOWLEDGEMENTS

viii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZET... v

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... x

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

3. RELATED WORK ... 5

4. METHOD .. 7

4.1. Comparison between DO-178C and TMMI .. 8

4.2. Guidance Approach with TMMI model for Avionics Software Integration

Testing ... 10

5. METHOD IMPLEMENTATION .. 11

5.1. Comparison between DO-178C and TMMI ... 11

5.1.1. TMMI versus DO-178C Software Planning Process 11

5.1.2. TMMI versus DO-178C Software Development Process 16

5.1.3. TMMI versus DO-178C Software Verification Process.......................... 18

5.1.4. TMMI versus DO-178C Software Configuration Management Process

 24

5.1.5. TMMI versus DO-178C Software Quality Assurance Process 27

5.1.6. TMMI versus DO-178C Certification Liaison Process 28

5.2. Guidance Document for TMMI Applications on Avionics Software

Integration Testing ... 30

5.3. Case Study .. 40

5.3.1 Research Design ... 40

ix

5.3.2 Research Context (Investigated Company and Project) 41

5.3.3 Data Collection and Analyses.. 43

5.3.4 Case Study Results ... 56

6. CONCLUSION .. 61

7. REFERENCES ... 63

APPENDIX .. 66

Appendix-1. TMMI Practices and DO-178C Activities Mapping 66

Appendix-2. DO-178C Annex-A Tables [2] .. 75

Appendix-3. Summary of Assesment (Achievement Rates by Practices) 82

Appendix-4 Questionnaire .. 85

x

LIST OF FIGURES

Figure 1. Single Embedded Case Study Design……………………………………………41

xi

LIST OF TABLES

Table 4.1. Example Comparison: TMMI Practices & DO-178C “Software Planning Process”

 ... 9

Table 5.1. Mapping of TMMI Practices with DO-178C 4.2.c activity 13

Table 5.2. Comparison of DO-178C Section 4 activities vs. TMMI practices 15

Table 5.3 Mapping of TMMI practices with DO-178C activity 5.1.2.a and 5.1.2.b 17

Table 5.4. Comparison of DO-178C Section 5 activities vs. TMMI practices 18

Table 5.5. Mapping of TMMI Practices with DO-178C Section 6.3 19

Table 5.6. Mapping of TMMI Practices with DO-178C Section 6.4 23

Table 5.7. Comparison of DO-178C Section 6 activities vs. TMMI practices 24

Table 5.8. Mapping of TMMI Practices with DO-178C Section 7.2 26

Table 5.9. Comparison of DO-178C Section 7 activities vs. TMMI practices 27

Table 5.10. Comparison of DO-178C Section 8 activities vs. TMMI practices 28

Table 5.11. Comparison of DO-178C Section 9 activities vs. TMMI practices 28

Table 5.12. TMMI practice list with DO-178C section references (links) 32

Table 5.13. Assessment of test processes with respect to TMMI practices 43

Table 5.14 Comparison of improvement suggestions by two sub-studies 53

Table 5.15 Number of improvement actions identified in two sub-studies 57

Table 5.16 Applicability Evaluation of Improvement Actions ... 60

xii

LIST OF ABBREVIATIONS

Abbreviations

CMMI Capability Maturity Model Integration

ISTQB International Software Qualifications Board

PTMM Personal Test Maturity Matrix

RTCA Radio Technical Commission for Aeronautics

SG Specific Goal

SP Specific Practice

TIM Test Improvement Model

TMMI Test Maturity Model Integration

TPI Test Process Improvement

UTMM Unit Test Maturity Model

1

1. INTRODUCTION

Safety-critical system failures lead to serious results such as loss of lives or damage to the

environment. The software used in avionics systems is classified as safety-critical software

in which emerging errors can cause serious consequences. Verification of avionics software

is crucial to prevent these undesired results. The first guide to standardize avionics software

development was published in 1981 with the name “DO-178: Software Considerations in

Airborne Systems and Equipment Certification” [1]. In 2011, DO-178C [2] was released,

which addresses software verification processes with different levels of testing (i.e.,

requirement-based testing, integration testing, hardware and software integration testing).

DO-178C defines integration testing as it aims to guarantee that software components

interact correctly and behave as expected, also software requirements are satisfied by

components [2]. Defects that can be detected only at the level of integration testing are

critical to avoid serious consequences in avionics software. Since DO-178C document

heavily focuses on requirement-based integration testing and there is no test maturity

approach, obeying to DO-178C alone is not sufficient to evaluate and improve integration

testing processes.

On the purpose of testing process and software quality improvements, various models have

been developed. Test maturity models such as Test Improvement Model (TIM) [3], Test

Process Improvement Model (TPI) [4], Test Maturity Model Integration (TMMI) [5], Unit

Test Maturity Model [6] and Personal Test Maturity Matrix (PTMM) [7] are among these

models. The presented maturity models can be classified in several groups according to their

characteristics. The first group can be defined as tester (or person) skills centered maturity

models such as PTMM [7]. This type of models focuses on tester skills to improve testing

maturity. The second group includes maturity level-based models that each level has its own

goals to be achieved to reach a defined maturity level [5]. The third group of maturity models

are testing level-based models that specifically focus on one testing level (such as unit

testing) and offer activities for the concerned level [6]. Another group of test maturity models

include continuous models that define key performance areas to determine maturity levels

[4]. Also, there are some models applicable on automated testing activities [8]. None of the

2

maturity models expressed above focuses on integration testing level or avionics software

(in safety-critical) testing domain. Similarly, the well-recognized software testing standard

ISO/IEC 29119 [9] does not focus on software testing maturity or avionics software testing

in particular. In order to fill this gap, in this study, it is aimed to offer a maturity model

guidance for avionics software considering domain-based requirements.

The content of this thesis is organized as follows: In the first section, general information is

provided about the problem defined in this thesis. The second section defines background

information about DO-178C and previously defined maturity models and approaches. The

third section describes previous works that are related with this thesis. The fourth section

explains the method applied in this study in two steps. The first one is comparison of DO-

178C and TMMI model, and the second step defines the guidance approach for avionics

software testing maturity. Section 5 explains the implementation of the method in detail

following these two steps. Guidance approach is applied in a case study and specifically

Section 5.3 refers to the details of the case study. And lastly, Section 6 summarizes the

conclusions of this thesis study with related discussions.

3

2. BACKGROUND

Safety systems are classified as critical systems in the event of serious injury, damage to the

environment and undesired results. The software used in these systems is considered as

safety-critical. The software used in avionics systems, that is aviation electronics system of

air vehicles, spacecraft, missiles, satellites etc., is classified as safety-critical software, as its

failure can cause undesired results. Some standards have been developed to define specific

constraints and structures on software development processes to prevent errors of these

systems. The first guide document DO-178, “Software Considerations in Airborne Systems

and Equipment Certification” was published in 1982 [1]. The current version, DO-178C

handbook, was released by RTCA, Inc., about a decade ago [2]. Verification and testing

activities are defined in this guide for defect prevention, revealing errors and ensuring

structural coverage [2].

Testing is one of the important issues of safety-critical systems to avoid serious results. Some

of the defects can only be discovered within integration testing phase. The quality of safety-

critical systems should be continuously assessed and improved. Defined software

development standards are not sufficient to guarantee testing quality nor focus on maturity.

The ISO/IEC 29119 “Software and systems engineering - Software testing” is a standard

that contains “test definitions”, “test processes”, “test documentation”, “test techniques” and

“keyword-driven testing” concepts [9]. However, ISO/IEC 29119 guidance focuses on

implementation of testing itself, and not specifically on test process improvement goals.

Various approaches and test maturity models focusing on improvement of test processes

have been described. Each maturity approach focuses on different aspects of test process

improvement. Test Improvement Model (TIM) was described in 1997 by Ericson, which

introduces a test improvement approach by focusing on risk management and cost-

effectiveness [3]. Test Process Improvement (TPI) model was described in 2004 by Andersin

[4], which contains key areas such as test specification techniques and defines test maturity

matrix. Test Maturity Model Integration (TMMI) [5] was described by TMMI Foundation,

and its structure is similar to CMMI (Capability Maturity Model Integration) [10]. However,

CMMI focuses on development processes of software, while TMMI focuses on testing

4

processes.

Since ISO/IEC 29119 and TMMI are both guidance documents for testing, they are

compared in study [11] and it is remarked that ISO/IEC 29119 is not enough to cover all

TMMI levels and practices. TMMI offers five maturity levels (Level 1 to 5 respectively;

Initial, Managed, Defined, Measured and finally, Optimization) and each of them has own

specific goals [5]. Each specific goal has specific practices that are defined to achieve the

defined goal [5]. TMMI model and its practices can be applied at all testing levels [5].

On the other hand, testing level-based maturity models are defined, e.g., Unit Test Maturity

Model (UTMM) [6]. UTMM defines maturity levels from Level-0: Ignorance to Level-8:

Automated Builds and Tasks, and is only applicable within unit testing level.

5

3. RELATED WORK

This section shares summaries of the related work within the literature. Papers related to test

maturity models for integration testing, and test process improvement approaches for safety-

critical software are remarked in this section. Studies for safety-critical software process

improvement are also involved in this section.

In the study [12] by Duncan et al., test maturity model matrix is defined and the authors

focus on safety-critical software in different domains such as medical devices and military.

Proposed model has five maturity levels similar to TMMI [5]. The model does not focus on

a specific testing level (such as integration testing level).

In the paper “Test Process Improvement with Documentation Driven Integration Testing”

by Häser [13] et al., integration testing challenges are determined. The authors present

bottom-up testing approach for improving test process maturity at integration testing level.

In the study called “Testing Practices of Software in Safety Critical Systems: Industrial

Survey” by Kassab et al. [14], testing methods and techniques as well as testing metrics and

defects management and reporting are determined. Non-safety critical and safety-critical

system testing activities are compared.

There are several examples of test maturity model applications and TMMI is the most

common one as the underlying model. In a paper by Veenendaal et al. [15], researchers

present a report for status about TMMI. Also, they define benefits and motivations of using

TMMI, and demonstrate its trending results among industries [15].

In the study by Farid et al. [16], improving test processes by comparing TMMI Level-2

process areas and Scrum practices is aimed. The authors reveal that specific practices of

TMMI Level-2 are generally covered, and that the organizations using the TMMI model can

improve their test processes with the help of Scrum practices [16].

In the study by Garousi et al. [17], a multi-vocal literature review is conducted. A multi-

vocal literature review is a type of a Systematic Literature Review which contains both white

6

papers or blog posts aside from the scientific studies in formal literature. In their study, the

researchers introduce 58 different maturity models with various characteristics such as agile

models, automated test process-based models and level-based models; however, there is no

maturity model reported for integration testing [17].

In the paper by Jang et al. [18], TMMI model is used for automobile control software testing

processes by referring to process areas of TMMI and the evaluation of results.

The study called “Defense Software Test Procedure Improvement Measure Reflecting the

TMMI” by Park et al. [19] is written in Korean, and the English version of the study cannot

not be reached. The abstract of the study in English mentions about TMMI application on

defense software, but the results are not involved in the abstract.

7

4. METHOD

None of the maturity models introduced above focuses on integration testing level in

avionics software domain. Similarly, the well-recognized software testing standard ISO/IEC

29119 [9] does not focus on software testing maturity or avionics software testing in

particular. In order to fill this gap, this study aims to develop an approach for improving

integration testing level test processes of avionics software considering its domain-based

requirements.

The DO-178C handbook defines software development life-cycle processes starting from

software planning [2]. In the study [20] entitled “Evaluation of accomplishment of DO-178C

objectives by CMMI-DEV 1.3”, intersection of CMMI-DEV (Capability Maturity Model

Integration for Development) practices and DO-178C activities are defined. Some of the

CMMI-DEV practices are matched with the DO-178C activities in this study, however, some

of them are irrelevant [20]. It is concluded in the study that CMMI-DEV is not sufficient to

cover all the software development activities referred in DO-178C and most of the DO-178C

verification activities are out of CMMI-DEV’s scope [20]. On the other hand, verification

and testing activities are in the scope of TMMI since the terminology used in TMMI refers

to ISTQB (International Software Qualifications Board) Standard Glossary of Terms used

in Software Testing [5]. However, TMMI is a generic testing maturity model and not specific

to avionics domain.

In this study, a guidance document approach is developed for improving avionics software

verification process, specifically integration testing process. The DO-178C handbook and

the TMMI model are analyzed to understand the necessity for a guidance approach that is

specific to safety-critical software integration testing. The TMMI model, which can be used

complementary to CMMI [10], is found to be convenient to match its processes and practices

with the verification activities defined in the DO-178C handbook. Also, TMMI is one of the

level-based models that is applicable for all software testing levels, including integration

testing, and it covers both manual regression tests and automated tests [5].

In this context, as the first step, processes in DO-178C are inspected and the activities

defined in DO-178C processes are mapped with the TMMI (Release 1.3) practices, in order

8

to understand the similarity between the two as specific to verification and software testing.

After this, DO-178C avionics software characteristics that are not specifically indicated in

the TMMI model are identified. Since the TMMI model is defined as applicable for all

testing levels, some of the TMMI practices are either organizational level practices or more

convenient for higher levels of testing (e.g., acceptance testing) [5]. Based on the findings

of the mapping, a guidance approach is developed. In this approach, each TMMI practice is

reviewed and references to relevant DO-178C handbook sections are provided for practices

to implement them considering domain specific characteristics. A reference from a TMMI

practice to DO-178C section is called a link. To apply a TMMI practice, links would be

helpful to describe and implement given practices within safety-critical avionics software

characteristics.

4.1. Comparison between DO-178C and TMMI

Software development life-cycle processes are covered in subtitles of the DO-178C

handbook as listed below:

The DO-178C handbook summarizes these software development life-cycle processes

within tables in Annex-A [2]. Each process involves objectives and related activities to reach

the defined objectives. That is, the tables in Annex-A map activities and objectives for each

process [2].

The TMMI model, on the other hand, offers process areas together with their goals and

practices to achieve these goals, for each TMMI level [5]. The TMMI model contains five

maturity levels, and each level has its own specific practices [5]. Besides, TMMI defines

generic practices that are common for all process areas [5].

9

In the first step of this study, DO-178C process areas are analyzed and each activity defined

in DO-178C sections are compared with TMMI (Release 1.3) practices, in order to

understand the relation between DO-178C verification activities and TMMI test process

maturity practices. Each DO-178C activity is compared with the TMMI’s specific practices

at all maturity levels and with the generic practices. The analyzed DO-178C activities are

grouped as “Covered”, “Partially Covered” and “Not Covered” according to the comparison

results with the TMMI practices. DO-178 activity that is common for at least one TMMI

practice is classified as “Covered”. DO-178C activity having scope that is partially matched

with any TMMI practice is classified as “Partially Covered”. If there is no relevant TMMI

practice for the analyzed DO-178C activity, that activity is classified as “Not Covered”.

DO-178C activities are analyzed respectively, starting from the first process defined in DO-

178C Section-4: Software Planning Process. Table 4.1 shows a snapshot from the

comparison between the activities of software planning process of DO-178C and the TMMI

process area practices.

Table 4.1. Example Comparison: TMMI Practices & DO-178C “Software Planning Process”

10

Since TMMI focuses on testing and test planning process areas, they are related only with

test planning activities within Software Planning Process of DO-178C. Accordingly, the DO-

178C software planning activities are classified as “Covered”, “Partially Covered” and “Not

Covered” as shown in Table 4.1. The DO-178C software planning activities, which are in

the scope of “Test Planning” process area of TMMI, are classified as “Covered”, and it has

been observed that the number of activities in “Covered” and “Partially Covered” groups

corresponds to only half of the practices in related process area.

For each software development life-cycle process defined in DO-178C sections, a new table

(similar to the one in Table 4.1) is created per section (or subsection) considering the

structure of Annex-A. It should be reminded that the tables in Annex-A summarize the

activities of the processes covered in DO-178C [2]. The handbook’s sections of processes

from Section-4 to Section-9 include “Software Planning Process”, “Software Development

Process”, “Software Verification Process”, “Software Configuration Management Process”,

“Software Quality Assurance Process” and “Certification Liaison Process”, respectively [2].

4.2. Guidance Approach with TMMI model for Avionics Software Integration Testing

In the previous subsection it is stated that the contents of the TMMI model and the DO-178C

handbook are compared to understand the requirements of avionics software testing maturity

concept. Avionics software characteristics need more specific testing practices to comprise

avionics software item verification activities. In this step, DO-178C activities and sections

are provided along with relevant TMMI practices. References are defined from TMMI

practices to DO-178C activities and sections. It is intended to apply TMMI by considering

relevant (referred) DO-178C sections in order to assess avionics software test processes.

11

5. METHOD IMPLEMENTATION

In the following subsections, firstly, we explain the implementation details of comparison

between the TMMI practices and DO-178C activities in order to reveal common threads of

them. Also, safety-critical avionics software characteristics are determined during this

implementation. Secondly, we explain the details of guidance approach on integration testing

level-based maturity for avionics software, by considering findings of the first step.

Accordingly, in subsection 5.1, comparison of TMMI and DO-178C documents are

described; and in subsection 5.2, guidance approach is explained. Lastly, subsection 5.3

determines the case study method which was implemented to understand the effectiveness

and applicability of guidance approach.

5.1. Comparison between DO-178C and TMMI

Each process in DO-178C software development life-cycle has objectives and activities that

are defined to achieve related objectives [2]. Activities in subsections are itemized with

letters “a”, “b” etc. in the DO-178C handbook. On the other hand, TMMI model has process

areas, goals of these process areas, and practices to achieve defined goals [5]. Similarity of

structures of these guidance documents helped to compare and determine the needs for

avionics software maturity concept. In study [20], a similar structure-based comparison is

applied. When comparing TMMI practices and DO-178C activities, all levels of TMMI

practices are inspected per related DO-178C activity, so a DO-178C activity can match up

with a practice of any TMMI maturity level. Therefore, there is no comparison constraint for

TMMI maturity levels of practices.

Mappings of DO-178C processes are discussed in the following separate subsections, and

comparison results are summarized in tables for the DO-178C processes. The full version of

mapping table of TMMI practices is shared in Appendix-1.

5.1.1. TMMI versus DO-178C Software Planning Process

Software Planning Process is defined in DO-178C section 4. This section includes

subsections starting from 4.1 “Software Planning Process Objectives” to 4.6 “Review of the

12

Software Planning Process”. Activities in subsections are itemized with letters, e.g., “4.2.a”.

The first DO-178C activity related to software planning objectives is about directive plan

development of processes for stakeholders [2]. TMMI practices focus on testing and test

planning process areas, therefore, its practices are related only with test planning part of DO-

178C software planning objectives and activities.

DO-178C activity 4.2.b describes software development standard usage necessity [2].

TMMI refers to various standards in its process areas. In TMMI Level-2 “Test Policy and

Strategy” process area, two of its practices called “Define test policy” and “Define test

strategy” refer to ISO/IEC 29119-3 standard [9] which is “Software and systems engineering

— Software testing — Part 3: Test documentation” [5]. In this practice, test model, risks of

the products, test levels and objectives are defined within ISO/IEC 29119-3 standard [5].

TMMI Level-2 “Establish the test plan” practice also explains test plan inputs and outputs

with respect to ISO/IEC 29119-3 standard [5]. “Conduct product quality milestone reviews”,

“Identify and prioritize test conditions, “Identify and prioritize test cases”, “Report test

incidents” are other TMMI Level-2 practices referring to ISO/IEC 29119-3 standard [5].

Test Environment activities are considered under ISO/IEC 29119-3 standard [5].

Furthermore, master test plan characteristics are defined with respect to this standard in

TMMI [5]. Other TMMI levels also refers to various standards. For instance, ISO/IEC 25010

(Systems and software engineering - Systems and software Quality Requirements and

Evaluation (SQuaRE) - System and software quality models) standard is represented in the

scope of TMMI Level-3 “Analyze non-functional product risks” activity as risk categories

[5,21]. TMMI Level-3 refers to ISO/IEC 20246 (ISO/IEC 20246:2017 Software and systems

engineering - Work product reviews) standard in the definition of peer review types [5,22].

In TMMI Level-4, product quality characteristics are defined addressing ISO/IEC 25010

standard [5]. One of the generic practices called “Training People” offers topics for different

areas and ISO/IEC 25010 standard is addressed for quality characteristics topic [5,21].

DO-178C activity 4.2.c specifies error prevention method or tool selection necessity [2].

TMMI has a major process area for Defect Prevention in Level-5 [5]. This process area

contains specific goals such as “Determine Common Causes of Defects and Prioritize” and

“Define Actions to Systematically Eliminate Root Causes of Defects” [5]. Firstly, it offers

13

some practices for defect classification. Defects are analyzed in detail afterward [5]. Pareto

Analysis and Histograms methods are offered for defect type analysis [5].

Furthermore, various root cause analysis methods are referred, such as Fault Tree Analysis,

FMEA (Failure Mode Effects Analysis), cause and effect diagrams, Ishikawa fishbone

diagrams, use of defect classifications, Hardware Software Interaction Analysis and process

analysis, which are important methods for complicated safety-critical software systems [5].

Table 5.1 shows mapping of DO-178C activity 4.2.c on TMMI practice list. The complete

mapping between the TMMI process area practices and the DO-178C process activities can

be reached from [23].

Table 5.1. Mapping of TMMI Practices with DO-178C 4.2.c activity

TMMI Level-2 “Test Monitoring and Control” process area offers monitoring test progress

against plan and also it is indicated that, when test progress diverges from plan corrective

actions can be implemented [5]. These TMMI goals and practices can be considered within

DO-178C activity 4.2.e that refers to relation of plan and progress of project [2], however,

the scope of DO-178C activity is not limited to test planning.

DO-178C activity 4.2.l specifies that “If software development activities will be performed

by a supplier, planning should address supplier oversight” [2]. A generic practice from

TMMI Level-2 offers that in test planning process, relevant stakeholders that can be

maintainers, developers, testers, customers, end users, suppliers, producers, service

personnel, marketers etc. must be determined as planned [5].

14

DO-178C section 4.3 defines software plans and TMMI can be considered within DO-178C

software verification plan (in section 11.3) [2]. Software plan activities are assumed as

software verification plan activities and evaluated. TMMI Level-2 test planning indicates

that plans need to be updated regarding to changes.

DO-178C section 4.4 describes software lifecycle environment planning [2]. Activity 4.4.1.c

of DO-178C handbook indicates that software verification or development standards can be

used to reduce related errors rooted in software development environment [2]. Whereas,

TMMI focuses on test environment and product risk categories for test planning [5].

DO-178C sub-section 4.4.2 refers to programming language and compiler of software [2].

Changes in compiler may cause to make previous verification process invalid according to

4.4.2.c activity of DO-178C [2]. Some of the TMMI Level-2 practices offers “regression

testing” and “re-testing activities” [5] which may be used for handling proposed problem in

DO-178C activity. TMMI Level-3 master test plan also offers re-resting and regression

testing approaches [5]. However, DO-178C section 4.4.2 defines language and compiler

effects on previous verification processes, TMMI does not refer to it as a main reason for re-

testing activities [5].

DO-178C section 4.4.3 specifies test environment topic [2]. Test environment specification

is proposed in TMMI Level-2 “Test Environment” process area [5]. It is reviewed to ensure

its suitability, correctness, feasibility and precise representation of a real-life operational

environment [5]. DO-178C defines test environment that could be an emulator, a simulator

or target computer [2]. TMMI refers to a practice called “Analyze the test environment

requirements” which aims to determine that test environment sufficiently represents the

‘real-life’ situation [5]. Also, it takes risks related to the test environment requirements into

consideration [5].

In TMMI Level-2, the generic practices “Establish an Organizational Policy” and “Monitor

and Control the Process” remark that test environment policy refers to a test environment

close to real-life environment [5]. This issue is critical for reliability of safety-critical

software tests. Since safety critical software failure can cause serious results, testing

15

activities of safety-critical systems need more attention compared to non-safety critical

software systems.

Table 5.2 summarizes comparison results of DO-178C Section 4 activities versus TMMI

practices. First column of table shows DO-178C activity number. The analyzed DO-178C

activities are grouped as “Covered”, “Partially Covered” and “Not Covered” according to

the comparison results with the TMMI practices in the second column. Annex-A summarizes

DO-178C activities in tables, and tables are placed in Appendix-2.

DO-178 activity that is common for at least one TMMI practice is classified as “Covered”.

DO-178C activity having scope that is partially matched with any TMMI practice is

classified as “Partially Covered”. If there is no relevant TMMI practice for the analyzed DO-

178C activity, that activity is classified as “Not Covered”.

Table 5.2. Comparison of DO-178C Section 4 activities vs. TMMI practices

16

5.1.2. TMMI versus DO-178C Software Development Process

Software Development Process is defined in DO-178C section 5. This section includes

subsections starting from 5.1 “Software Requirements Process” to 5.5 “Software

Development Process Traceability”. Activities in subsections are itemized with letters, e.g.,

“5.4.1.a”.

DO-178C activity 5.1.2.a defines requirements analysis necessity to avoid ambiguities,

inconsistencies and undefined conditions [2]. In the scope of TMMI Level-3 “Peer Reviews”

process area, it is noticed that it refers to the practices for performing peer reviews on work

products, e.g., reviews implemented by testers [5]. Also, “Establish Peer Review Approach”

goal refers to “Identify work products to be reviewed” practice that includes determining

work product and peer review type by taking product risks into consideration [5].

Also, TMMI “Peer Review” process area involves “Perform Peer Reviews” specific goal

[5]. As the practice of this goal, test basis documents are reviewed by testers for testability,

e.g., whether test design techniques which was chosen is applicable. One of the generic

practices that relates with this process area proposes peer review policy that refers to peer

review attributes in organization [5]. It includes work product to be reviewed, reviewer

training issue and role of testers.

17

DO-178C activity 5.1.2.b defines feedback reporting of software requirements inputs for

clarification or correction [2]. In TMMI “Performing Peer Review” process area, two

practices propose that peer review results are logged and defects found are reported [5].

Table 5.3 Mapping of TMMI practices with DO-178C activity 5.1.2.a and 5.1.2.b

DO-178C section 5.2.2 describes “Software Design Process” activities including low-level

requirements and high-level requirements [2]. However, TMMI does not offer specific

practices for high-level and low-level requirements. Therefore, section 5.2.2 does not match

TMMI practices directly.

TMMI does not specify either user-modifiable or deactivated code that are software

characteristics for airborne systems, therefore activities in DO-178C section 5.2.3 and 5.2.4

are unrelated with TMMI approach [2].

Low-level requirements, high-level requirements, their relations and verification processes

indicated in DO-178C [2] could be considered in separate activities in test maturity models

considering testing levels. Integration testing is the type of requirement-based testing and to

propose a test maturity guidance for integration testing level, high-level requirements and

their verification should be considered.

DO-178C section 5.3.2 “Software Coding Process Activities” [2] offers source code

implementation objectives that is out of TMMI scope, therefore, these DO-178C activities

do not match TMMI practices. DO-178C section 5.4.2 “Integration Process Activities” [2]

is not relevant to TMMI practices. DO-178C section 5.5 refers to traceability of requirements

[2]. Traceability between test conditions and requirements is issue of TMMI [5], however,

18

traceability of different levels of requirements are not in the scope of TMMI. TMMI also

proposes requirements / product risks traceability matrix in level-3. Table 5.4 shows the

comparison results of the mapping process for DO-178C section 5 activities.

Table 5.4. Comparison of DO-178C Section 5 activities vs. TMMI practices

DO-178C

Activity TMMI Practice Coverage

5.1.2.a PARTIALLY COVERED

5.1.2.b PARTIALLY COVERED

5.1.2.c NOT COVERED

5.1.2.d NOT COVERED

5.1.2.e NOT COVERED

5.1.2.f NOT COVERED

5.1.2.g NOT COVERED

5.1.2.h NOT COVERED

5.1.2.i NOT COVERED

5.1.2.j NOT COVERED

5.2.2.a NOT COVERED

5.2.2.b NOT COVERED

5.2.2.c NOT COVERED

5.2.2.d NOT COVERED

5.2.2.e NOT COVERED

5.2.2.f NOT COVERED

5.2.2.g NOT COVERED

5.2.3 NOT COVERED

5.2.4 NOT COVERED

5.3.2 NOT COVERED

5.4 NOT COVERED

5.5 NOT COVERED

5.1.3. TMMI versus DO-178C Software Verification Process

“Software Verification Process” is defined in DO-178C section 6 [2]. This section includes

subsections starting from 6.1 “Purpose of Software” to 6.6 “Verification of Parameter Data

Items” [2]. The scope of this section is very large and DO-178C handbook considers sub-

sections of section 6 within five tables in Annex-A [2]. Also, some of the objectives are

19

itemized with letters similar to the activities and placed in the tables of Annex-A [2].

Therefore, in the subsections below, objectives are also discussed in addition to activities

considering the tables of Annex-A [2].

5.1.3.1. TMMI versus DO-178C Section 6.3

DO-178C handbook expresses “Review and analyses of high-level requirements” objectives

in section 6.3.1 [2], and these objectives are partially covered by TMMI practices. The

objectives related with software verification activities are inspected. Both TMMI Level-3

process area “Non-Functional Testing” and Level-4 process area “Product Quality

Evaluation” [5] define compatibility characteristics from ISO/IEC 25010 standard that is one

of the objectives of DO-178C [2]. Accuracy as a product quality attribute is referred in

TMMI [5] while in DO-178C handbook, accuracy and consistency of high-level

requirements are addressed [2]. Nevertheless, “Peer Review” [5] practices from TMMI

Level-3 are matched with high-level requirement analysis of DO-178C [2]. Traceability is

another objective of this section between system and high-level requirements [2] while

traceability between requirements and test conditions is issue of TMMI [5]. DO-178C

handbook refers to verifiability in section 6.3.1 [2], which is in the scope of TMMI Level-3

“Peer Review” process area as testability [5]. Table 5.5 shows mapped TMMI practices to

DO-178C section 6.3.

Table 5.5. Mapping of TMMI Practices with DO-178C Section 6.3

DO-178C section 6.3.2 defines similar objectives with section 6.3.1, except it refers to low-

level requirements which are not considered separately in TMMI model [2].

20

DO-178C section 6.3.3 and 6.3.4 define objectives for software architecture analysis; review

and source code analysis and review objectives, respectively [2]. Scope of these objectives

are large and not covered by TMMI practices.

5.1.3.2. TMMI versus DO-178C Section 6.4

DO-178C section 6.4 refers to “Software Testing” [2]. Subsection 6.4.1 refers to “Test

Environment” and in activity 6.4.1.a it is expressed that there are some types of errors which

can only be detected in the tests of integrated environments, and also DO-178C defines

multiple test environment necessity [2]. In TMMI Level-2, the practice called “Define Test

Strategy” from “Test Policy and Strategy” process are refers to test environment issue firstly

referencing “ISO 29119-3” [5]. However, test environment characteristics are defined in

TMMI Level-2 “Test Environment” process area [5]. Test environment and its similarity

with target (or real-life environment) are considered in the scope of both DO-178C handbook

and TMMI [2] [5].

Emulators or simulators used in verification activities are also expressed in DO-178C [2].

Simulators are placed in one of the test environments needs under specific practice called

“Elicit test environment needs” that belongs to “Develop Test Environment Requirements”

goal of TMMI [5]. This TMMI practice definition is more detailed than test environment

activity defined in DO-178C handbook section 6.4.1 [2]. Test environment requirement

documentation and analysis are practices of test environment process area belonged to

TMMI [5]. TMMI also refers to “Manage and Control Test Environments” goal that offers

various practices and one of them is systems management practice which performs on the

test environment that aims efficiently and effectively improving the test execution process

[5]. Also, TMMI Level-2 “Report test incidents” practice indicates that incident reports

should include test environment information of executed test case [5]. TMMI model’s

generic practices also take test environment into consideration suggesting that the test

environment should be as close as possible to real life [5].

TMMI Level-3 generic goal called “Institutionalize a Defined Process” defines a generic

practice that uses number of defects that were not revealed in testing phase because of not

sufficient test environment and occurred in production as a measure for improvement of test

21

processes [5]. Since DO-178C classifies some errors that are only detected during tests

executed in integrated target environment [2], the referred TMMI practice becomes crucial

and supports safety critical software testing.

DO-178C section 6.4.2.1 defines “Normal Range Test Cases” issue as the subsection of

“Requirement-Based Test Selection” [2]. TMMI Level-2 “Test Design and Execution”

process area refers to a specific goal called “Perform Test Analysis and Design Using Test

Design Techniques” [5]. This goal’s first practice is “Identify and prioritize test conditions”

[5]. This practice involves sub-practice for selecting the most appropriate test design

techniques among the common ones [5]. “Equivalence Partitioning” and “Boundary Value

Analysis” are specified in DO-178C section 6.4.2.1.a as an activity [2] and they are in the

scope of this TMMI practice.

State transition testing is another test technique also proposed under “Identify and prioritize

test conditions” practice of TMMI [5], which is another activity described in 6.4.2.1.c [2].

White box test techniques, also represented in the previous TMMI practice called “Identify

and prioritize test conditions”, can be used to verify Boolean operators and variable usage.

DO-178C section 6.4.3 defines requirement-based testing method with different types of

testing such as;

• Requirements-Based Low-Level Testing

• Requirements-Based Hardware/Software Integration Testing,

• Requirements-Based Software Integration Testing [2].

TMMI addresses all test levels, acceptance tests, integration tests and low-level tests [5].

Different test level activities are used to detect different error types and in DO-178C standard

they are addressed individually [2].

TMMI Level-2 “Test Policy and Strategy” process area refers to “Define test strategy”

practice to identify test levels and the objectives, main tasks, responsibilities and entry or

exit criteria are determined for each level [5].

22

Activities in DO-178C section 6.4.4.1 are related with test coverage analysis and they match

with TMMI practices in different maturity levels [2]. Activities expressed in 6.4.4.1.b are

not covered by TMMI practices because “Robustness test” defined in DO-178C are not

considered in TMMI document [2], [5].

TMMI Level-2 process area “Test Design and Execution” offers a practice for traceability

between requirements and test conditions [5]. Also, traceability is described in TMMI Level-

3 addressing ISO 29119-3 standard as test design specification [5]. Furthermore, both

functional and non-functional requirement traceability are defined in different TMMI levels

[5]. Therefore, DO-178C [2] activities related with requirement traceability 6.4.4.1.a and

6.4.4.1.d are covered by TMMI practices.

In TMMI Level-3 “Peer Review” process area, peer review data analysis is defined that

involves defect resolution impact analysis [5] and likewise, DO-178C activity 6.4.4.1.c

offers defect analysis [2].

Also, “Test Strategy Definition” practice of TMMI Level-2 indicates system requirement

coverage, code coverage and user requirement coverage actions for different software test

levels addressing ISO 29119-3 standard [5]. Traceability matrix for requirement coverage is

represented in the same TMMI level [5]. Coverage analysis tools are defined as generic

practices in TMMI Level-2 [5]. TMMI Level-4 “Test Measurement” process area describes

structural coverage as a measurement object [5].

In DO-178C section 6.4.4.2 activity “a”, structural coverage analysis for software levels is

considered [2]. In TMMI Level-2, coverage levels are defined for different test levels from

unit test to acceptance test according to “ISO 29119-3” [5]. Also, coverage analysis is used

to determine test exit criteria in the TMMI Level-2 practices [5]. Another TMMI Level-2

sub-practice offers that test coverage as test process exit criteria should be monitored against

test plan [5]. “Test Design and Execution” process area offers another generic practice for

coverage analysis tools for test processes. TMMI Level-4 “Specify test measures” practice

specifies test measures as peer review coverage, structural coverage and requirements

23

coverage [5]. Table 5.6 shows an example mapping of section 6.4.2 and 6.4.4 activities of

DO-178C.

As DO-178C considers requirement levels, requirement coverage and analysis are much

more detailed than TMMI practices, and DO-178C section 6.4.4.2 activities could not be

considered as fully covered by TMMI practices [2].

Table 5.6. Mapping of TMMI Practices with DO-178C Section 6.4

5.1.3.3. TMMI versus DO-178C Section 6.5

Relation of TMMI practices and DO-178C Section 6.4.4.1 activities is proposed previously.

Both functional and non-functional requirement traceability are expressed in different

TMMI levels as horizontal traceability [5]. Horizontal traceability is defined as traceability

of requirements between layers of test documentation and it is bi-directional [24]. DO-178C

introduces three bi-directional traceability activities in section 6.5 [2].

24

Other traceability types, except requirement traceability, introduced in DO-178C section 6.5

are traceability between test cases and test procedures and traceability between test results

and procedures [2]. TMMI Level-2 and Level-3 practices refer to traceability of test cases

[5]. Also, specific practice called “Develop and prioritize test procedures” defines

traceability between procedures and test cases in TMMI Level-2 [5].

5.1.3.4. TMMI versus DO-178C Section 6.6

DO-178C section 6.6 defines Parameter Data Item, which is a feature to enable changing

behavior of software without modifying its code, is a domain specific characteristic of

airborne software. Since TMMI is not a domain specific test maturity model, it does not offer

any verification or test maturity practice for parameter data items. Table 5.7 shows the

comparison between DO-178C activities in section 6 and TMMI practices.

Table 5.7. Comparison of DO-178C Section 6 activities vs. TMMI practices

5.1.4. TMMI versus DO-178C Software Configuration Management Process

TMMI considers “Configuration Management” in its general practices referring to CMMI

configuration management processes [5]. According to TMMI Level-2, configuration

management must be a part of determining test strategy [5]. Also, TMMI Level-2 process

areas define configuration management objects as test estimation data, test plan, test strategy,

product risk assessments, test policy, reports, logs, test case specification etc. [5].

DO-178C section activity 7.2.1.a offers establishing configuration identification [2] and

TMMI general practices are related with this activity. Change control is a sub-practice of

TMMI “Configuration Management” practice [5], which is also defined as an activity in DO-

25

178 as 7.2.1.c [2]. However, all of the activities in DO-178C subsection 7.2.1 are not fully

covered by TMMI practices [2].

Activities in DO-178C subsection 7.2.2 are related with CMMI [10] practices more than

TMMI practices, therefore activities of this subsection are not matched with TMMI

practices.

Problem reporting activities are defined in DO-178C that the problem can be software

anomalies or defects [2], and TMMI considers problem reporting and defect prevention

practices in its various levels of process areas [5]. Defects can occur after execution of test

cases. TMMI Level-2 offers reporting and analyzing test incidents [5]. Test incident reports

contain “description of the incident (environment, actual results, input, anomalies, expected

results, observations, attempts to repeat test procedure steps, and testers), time information,

status of test incident and risk” [5]. Test logs are created after test incident reporting phase

[5]. Test incident management is the next step to resolve incidents properly [5].

TMMI Level-2 practices define sequential practices for incident management [5].

Configuration (or change) control board (CCB) meetings are arranged to decide how to take

action to handle incidents [5]. After CCB decision, incident fixing activities are performed

in respective teams and confirmation tests are executed to close incident [5]. Finally, incident

status is reported to stakeholders and CBB meetings are arranged to analyze status reports

[5]. TMMI “test design and execution” practices cover DO-178C section 7.2.3 activities [5].

Along with functional test incidents, non-functional test incident reporting and analyzing is

in the scope of TMMI Level-3 practices [5]. In addition to software incidents, test

environment incidents are also reported by applying incident classification scheme in the

scope of TMMI-Level 2 test environment practices [5]. Defect prevention activities of

TMMI Level-5 are not considered in the scope of DO-178C section 7.2.3 [5] [2].

DO-178C section 7.2.4 and 7.2.5 define change control and change review activities in detail

[2]. These sections are partially covered by TMMI configuration management or CCB

(configuration control board) practices [5]. Activity “d” of DO-178C section 7.2.4 can be

considered in the scope of CCB activities [2]. In TMMI Level-2 it is remarked that, whenever

26

a requirement change occurs, it may affect test conditions; therefore, the test design

specifications and test conditions need to be revised [5].

Corrective action management goal is defined in TMMI Level-2 “Test monitoring and

control” process area [5]. Also, TMMI Level-2 “Execute test cases” practice offers that test

activities must be repeated by confirmation tests after changes [5]. These TMMI actions are

associated with DO-178C activities 7.2.4.d and 7.2.4.e [2].

TMMI Level-2 “Test Planning” process area includes product risk assessment practices [5].

Change related risk is one of the risk categories specified in risk category definition practice

of TMMI [5]. Also, requirement changes cause to revise the product risks again [5].

Furthermore, it is pointed that, documentation of the product risks needs to be revised when

there are requirement changes or additions that can affect product risks [5]. DO-178C

activities “7.2.5.a” and “7.2.5.b” propose requirement or software life-cycle data change

impact assessment and system safety assessment issues [2], whereas TMMI level-2 discusses

change-related risk assessment [5]. Table 5.8 shows some of the mapped activities from DO-

178C Section 7.2.3 on to TMMI practices.

Table 5.8. Mapping of TMMI Practices with DO-178C Section 7.2

DO-178C subsections 7.2.6., 7.2.7, 7.4 and 7.5 are not relevant to TMMI practices, and

activities are considered as “Not Covered” in these sections. Table 5.9 shows mapping result

of DO-178C Section 7 activities.

27

Table 5.9. Comparison of DO-178C Section 7 activities vs. TMMI practices

5.1.5. TMMI versus DO-178C Software Quality Assurance Process

DO-178C section 8 defines “Software Quality Assurance Process” [2] and TMMI model

addresses in its all levels “CMMI Process and Product Quality Assurance” process area

practices for its generic practice called “Objectively evaluate adherence” [5]. Also, TMMI

Level-3 “Test Organization” process area offers to establish a team of testers that are

responsible for determining product quality goals and measuring quality characteristics [5].

This process area offers a practice called “Deploy standard test process and test process

assets” and quality assurance is involved in the deployment [5]. TMMI Level-4 “Product

Quality Evaluation” process area expresses that quality assurance group must define goals

for process and product quality assurance, and evaluate the performance of project or

progress in accomplishing these goals [5].

28

Quality assurance and its relation between testing activities are in the scope of TMMI [5],

however, objectives and activities described in DO-178C are not fulfilled by TMMI

practices. DO-178C activity 8.2.d.5 that refers to software configuration management plan

[2] can be considered as compliant to TMMI configuration management practices [5].

DO-178C section 8.3 “Software conformity review” is almost out of TMMI scope [2].

Nevertheless, DO-178C activity 8.3.d, defined as problem report evaluation and status

logging [2], can match up with CCB meeting reporting, test incidents fixing and incident

status tracking practices of TMMI Level-2 “Test Design and Execution” process area [5].

Table 5.10 shows comparison result for section 8 activities of DO-178C.

Table 5.10. Comparison of DO-178C Section 8 activities vs. TMMI practices

DO-178C Activity TMMI Practice Coverage

8.2. PARTIALLY COVERED

8.3 PARTIALLY COVERED

5.1.6. TMMI versus DO-178C Certification Liaison Process

There is no DO-178C Certification Liaison activity that is related with TMMI practices.

Therefore, all of the activities of this section are considered as “Not Covered” by TMMI

practices. Table 5.11 shows comparison result for section 9 activities of DO-178C.

Table 5.11. Comparison of DO-178C Section 9 activities vs. TMMI practices

DO-178C Activity TMMI Practice Coverage

9.2 NOT COVERED

9.3 NOT COVERED

As a result, it has been observed that TMMI practices are not sufficient alone to guide

accomplishing DO-178C verification activities. DO-178C has avionics software

development characteristics and definitions that are not in the scope of TMMI. DO-178C

29

defines avionics software specific items and concepts such as verification of parameter data

item, user modifiable software, deactivated code, multi-version dissimilar software

verification, option selectable software, COTS software and field-loadable software [2] that

are not discussed in TMMI. Therefore, some of the process activities in DO-178C (regarding

verification and testing of avionics software) do not match with the TMMI practices. For

example; low-level requirements, high-level requirements, and their relation to system

requirements are defined in detail within DO-178C objectives, but TMMI process area goals

do not match this structure which is specific to avionics domain. In addition, some of the

change related activities (software change, requirement change, new compiler usage,

different loader version, change of development environment or application, etc.) and re-

execution needs of tests are defined in DO-178C within safety-critical aspects [2]. Even

though TMMI offers change related practices [5], scope of the change should be revised by

considering DO-178C safety-critical avionics software development. Moreover, the DO-

178C handbook includes a subsection for “Robustness Test Cases” that shows software

behavior in abnormal conditions [2]. It is critical to avoid undesired results, but it is not

particularly discussed in TMMI practices.

The shortages defined previously should not be considered as weaknesses of the TMMI

model since it is a general maturity model that offers many practices to improve testing

processes and product quality. Rather, the shortages indicate the need for a testing maturity

guidance specific to avionics domain. Finally, on the opposite side of the mapping, some

TMMI process areas such as test training programs, incident management and advanced

reviews [5] are not discussed in DO-178C processes in detail. Integration testing is one of

the critical test levels in the scope of high-level requirements-based testing in DO-178C to

avoid undesired results of safety-critical avionics software. It is observed that TMMI process

area practices can enrich the activities for integration testing level defined in DO-178C.

Therefore, the results of bi-directional comparison between DO-178C activities and TMMI

practices have shown that the mutual consideration of these two resources for a maturity

guidance approach for integration testing of avionics software is prominent.

30

5.2. Guidance Document for TMMI Applications on Avionics Software Integration

Testing

In the previous section, the contents of the TMMI model and the DO-178C handbook are

compared to understand the requirements of avionics software testing maturity concept.

Avionics software characteristics need more specific testing practices to comprise avionics

software item verification activities. As the next step, a guidance document that employs

TMMI practices as complementary to DO-178C activities is developed to effectively

improve domain specific software testing processes, more specifically integration testing

activities, within avionics software development.

In this guidance approach, domain specific characteristics of safety critical avionics software

are defined considering DO-178C handbook sections. Then, each TMMI practice is

reviewed to implement it by applying these characteristics and to achieve this, some links

are defined between TMMI practices and relevant DO-178C sections by referencing DO-

178C sections from within the practices. Another point is that, there are some common terms

and concepts (e.g., test strategy, test policy and test goals) placed in multiple TMMI

practices. Therefore, when a link (reference from a practice to DO-178C sections) is defined

for a practice to implement its common term considering domain specific characteristics,

other practices containing the same term will also apply to DO-178C characteristics and all

relevant practices will apply to DO-178C characteristics within the links.

Safety critical airborne software has specific terms and definitions, which are gathered from

DO-178C handbook as:

1. Failure condition categorization, software level definitions considering failure

conditions (from Level-A catastrophic to Level-E no effect) (defined in DO-178C

sections 2.3, 2.3.2, 2.3.3)

2. Domain specific software considerations and their verification processes

(verification of parameter data items, field-loadable software, multi-version

dissimilar software etc.) (defined in DO-178C sections 6.6, 2.5)

3. Traceability definitions and scope (defined in DO-178C section 6.5)

31

4. Change related re-verification activities, change reviews, configuration management

(defined in DO-178C sections 4.4.2, 7.2, 7.2.5)

5. Test environment (defined in DO-178C section 6.4.1)

6. Purpose of software verification (defined in DO-178C section 6.1)

7. Software verification plan and result (defined in DO-178C section 11.3, 11.4)

8. Considerations about testing and scope of testing (defined in DO-178C sections 6.2,

6.4, 6.4.2, 6.4.3)

9. Software quality assurance process (defined in DO-178C section 8.1)

10. Tool qualification (defined in DO-178C section 12.2)

After determining domain specific characteristics from DO-178C handbook, each TMMI

practice is reviewed and references to relevant DO-178C handbook sections are provided for

practices to implement them considering domain specific characteristics. The reference from

a TMMI practice to DO-178C section is called a link. To apply a TMMI practice, links would

be helpful to describe and implement given practices within safety-critical avionics software

characteristics.

In the document called “TMMi Framework R1 3” [5], a practice can refer to another practice

(or a goal) from different process areas when their scopes are related with each other. For

example, Level-2 practice called “Perform a generic product risk assessment” refers to

“Perform a Product Risk Assessment” goal which is defined in another process area. On the

other hand, a TMMI practice can be related with a practice from another level without.

Instead of directly referring to the name of relevant practice, the practice can refer to a term

that is previously defined in the relevant practice. For example, Level-3 practice called

“Define the test organization” offers test organization establishment based on previously

described test policy and goals in Level-2.

Therefore, a term or concept can be expressed several times in different TMMI practices and

a definition specified in a practice can affect other relevant practices. Considering the whole

TMMI practices, the common terms placed in TMMI practices are listed as:

32

1. Business needs and objectives;

2. Test strategy, test policy and test goals;

3. Test environment;

4. Risk assessment & software level and categorization;

5. Test approach.

Common terms contain references (links) to relevant DO-178C sections and as a result, the

items “Business needs and objectives” and “Test strategy, test policy and test goals” appear

in 14 different practices. Also, the item “Test environment” is observed in 34 practices of

TMMI. “Test approach” is also expressed or revisited in further practices in TMMI. Lastly,

“Risk assessment & software level and categorization” is indicated 12 times in TMMI

practices. Therefore, links offered for a practice by this guidance approach can affect other

practices if it contains common terms or referred by other practices. Nevertheless, it must be

known that guidance document offers many links besides common terms containing

practices. Common terms are defined to pinpoint that, when a practice with a common term

has a link that is offered by guidance document approach, it can affect more than one practice

compared to other practices. The TMMI practice list with relevant DO-178C references is

provided in Table 5.12. The first column defines TMMI practices and the second columns

defines links. The last column called “Relevant Practice(s) Defined in TMMI” refers to

practices that are related with previously defined practices or process areas.

Table 5.12. TMMI practice list with DO-178C section references (links)

33

34

35

36

37

38

39

40

5.3. Case Study

The effectiveness and validity of the proposed maturity guidance approach for integration

testing processes in avionics domain are investigated by applying case study research

method [26]. In the following subsections 5.3.1 through 5.3.4; details about research design,

research context, data collection and analysis, and research results are presented.

5.3.1 Research Design

This section presents the design of a single embedded case study to address the following

the research questions:

41

• RQ-1: What is the difference between assessment outcomes obtained by guidance

approach and TMMI model?

• RQ-2: What are maturity levels assessed by guidance approach and TMMI model?

• RQ-3: What are the challenges and advantages of maturity assessment with guidance

approach?

• RQ-4: What is the applicability of improvement actions offered by guidance

approach?

The single embedded case study consists of two different assessments of avionics integration

testing on the same processes and same projects, as shown in Figure 1. The first one

(embedded unit of analysis-1) is the assessment process considering TMMI model. The

second one (embedded unit of analysis-2) is the assessment process considering guidance

approach. It is chosen to perform an embedded case study, because such a study is helpful

to understand the assessment outcomes of guidance approach as different from the ones of

TMMI model.

Figure 1. Single Embedded Case Study Design

5.3.2 Research Context (Investigated Company and Project)

The context information of the investigated company, projects and people is given below.

Context: Test Process Assessment Outcomes

Case: Avionics Integration Test

Processes

Unit of Analysis-1:

TMMI assessment

and outcomes

Unit of Analysis-2:

Guidance Approach

assessment and

outcomes

42

Company: The case study is carried out within the Turkish Aerospace Industries (TAI)

which operates in the aviation and space industry in Turkey. TAI has various projects such

as design, development and production of utility helicopters, Unmanned Aircraft Vehicles

(UAVs), target aircrafts, and air fighters. Also, it offers integration, modernization and

modification programs. There are more than 10 thousand employees in TAI working on

these projects.

Projects: In the case study, Unmanned Aircraft Vehicle (UAV) projects are considered.

There are five major projects in UAV Systems and there is one department which is

responsible for integration testing of UAV projects. Since test processes are performed by a

same team by using same procedures, all projects are involved in assessment process of this

case study.

People: Avionics integration test team members (test engineers) are involved in the case

study. The team is divided into two assessment groups to implement two sub-studies

simultaneously. Overall, 8 people are involved in this study. Each team consists of 4 test

engineers and it is intended to establish balanced groups considering their experiences in

testing. Test engineers who have had more than 2.5 years of working experience in

integration testing of avionics software are involved in assessment groups. Also, test

engineers who are familiar with DO-178C are involved in the second assessment group.

Process: Each assessment group tries to assess test processes of the same projects. In the

first sub-study, the first group applies TMMI model for informal (internal) assessment to

detect strong and weak points of integration testing processes. On the other hand, the second

group applies TMMI model but now also considering guidance approach (with DO-178C

references called links proposed in Table 5.12) and implements informal assessment on the

same test processes. It should be highlighted that the assessments of the two sub-groups are

held simultaneously and the groups are not knowledgeable about findings of each other until

the assessments are complete. The obtained results are compared to understand the effect of

domain-specific maturity guidance approach.

43

5.3.3 Data Collection and Analyses

In the case study, since upper levels are not meaningful for integration testing level internal

assessment, only level-2 and level-3 practices of TMMI are considered. These practices are

used as a checklist to find out strengths and weaknesses of integration test processes. Then,

improvement actions are gathered as outcomes. In the first sub-study, strengths and

weaknesses are detected and improvement actions from TMMI based assessment are

gathered about avionics integration test processes by the first group. In the second sub-study,

same TMMI practices with links (defined in guidance approach) are used as a checklist to

detect strengths and weaknesses of same test processes and this time more improvement

actions are detected by the second group. As a result, improvement actions and outcomes of

two sub-studies provided by the two groups are compared and results are reported in this

study.

Table 5.13 shows internal assessment results of test processes according to TMMI practices.

Since two groups work on the same projects in the same team and try to assess same test

processes, strengths and weaknesses of their test processes are the same, as it is shown in

Table 5.13. Columns of this table refers to TMMI practices, achievement rate of relative

practice, strengths and weaknesses of test processes, respectively. Internal assessment is also

called as informal assessment as defined in TMMi Assessment Method Application

Requirements (TAMAR) R1.1 [25].

Table 5.13. Assessment of test processes with respect to TMMI practices

44

45

46

47

48

49

50

51

52

Firstly, the assessment process has shown that there are some documentation needs. Some

of the documents were not up-to-date and they need update. In assessment it is shown that,

practices at the top of Table 5.13, which belong to maturity level-2, are largely or fully

achieved by test processes. However, some of the level-3 practices are partially achieved.

Since it is an informal type assessment, the aim is detecting strengths and weaknesses of

own test processes, and there are some practices labeled as not-applicable.

The result of assessment processes is summarized in Appendix-3. Achievement rates of

practices are noted. The achievement rate of a process area is determined by the lowest

achievement rated practice of it and the level of maturity is defined considering the

achievement rate of process areas. Some of the process areas contain practices that are “not

achieved” because of the outdated documents and stakeholder involvement practices. Since

53

this study is an informal assessment and it aims to detect the strong and weak points of the

processes, it does not strictly apply ratings and the maturity level can be defined as Level-2.

In the first sub-study, assessment process is managed only by considering TMMI practices.

In the second sub-study, on the other hand, assessment process is implemented considering

the same practices with their DO-178C links defined for these practices. These studies

provided improvement actions. Table 5.14 shows improvement actions for these two sub-

studies with relevant TMMI practices.

Table 5.14 Comparison of improvement suggestions by two sub-studies

54

55

56

5.3.4 Case Study Results

In this subsection, assessment findings are reported and discussed in relation to the research

questions raised for the case study.

57

RQ-1: What is the difference between assessment outcomes obtained by guidance

approach and TMMI model?

It is shown that the number and the depth of improvement actions offered by sub-study 2 is

more that the first one. Also, since the sub-study 2 takes domain specific characteristics into

account, improvement actions offered by it are more related with avionics test processes.

Since some of the TMMI practices contains common terms and are related with each other,

some of the improvement actions are proposed more than once for different practices. For

example, practices related with business needs and objectives have similar improvement

actions. Furthermore, some of the practices like test approach, test plan etc. are referenced

by further practices so the improvement actions that will be implemented to enhance test

processes will affect further assessments.

Table 5.15 summarizes the number of improvement actions provided by the sub-studies of

the 1st and the 2nd assessment groups. The first column represents TMMI process areas which

are applied by groups to assess their test processes. The second and the third columns

represent the numbers of improvement actions provided as a result of the 1st and the 2nd sub-

studies, respectively.

Table 5.15 Number of improvement actions identified in two sub-studies

As a result, it is seen that the number of improvement actions, which are obtained by the 2nd

group by following the approach of defining DO-178C links, is 0.95 times more than the

number of improvement actions offered by the 1st group by with respect to included TMMI

58

process areas. Within these, practices that belong to process areas called “2.3 Test

Monitoring and Control” and “3.2 Test Training Program” have the same number of

identified improvement actions. It should also be noticed that, since TMMI practices contain

some of the common terms previously defined, the number of improvement actions are

affected by this recurring structure of TMMI and a group of improvement actions are

repeated for further practices.

RQ-2: What are maturity levels assessed by guidance approach and TMMI model?

In the sub-studies, the two groups try to assess their test processes which are the same for

both groups because their members work in the same department on the same projects. The

results of assessment processes are summarized in Appendix-3, and achievement rates of

practices are indicated. In the case study, whole TMMI practices are not considered but since

this study is an informal assessment and it aims to detect the strengths and weaknesses of

the test processes, the maturity level assessed by both groups can be defined as Level-2.

RQ-3: What are the challenges and advantages of maturity assessment with guidance

approach?

TMMI model has some organizational level practices and practices relevant to other test

levels. They are not included in the case study. Subset of the practices are applied

considering the existing test processes and activities of the department. The test team had

never implemented any test process assessment methods before. The members of the test

team were not familiar with TMMI or test maturity model applications. On the other hand,

after the case study assessment, the 2nd group shared that guidance approach helped them to

understand expectations of TMMI practices and see where their internal processes are.

Most of the weaknesses was caused because of incompleteness of documents or outdated

documents. TMMI assessment application showed the weaknesses or drawbacks in these

documents but still, it was not adequately informing about the domain specific needs or

characteristics that should be involved in these documents. Guidance approach helped the

test team to understand it.

59

RQ-4: What is the applicability of improvement actions offered by guidance approach?

Most of the improvement actions were about documentation issues and test training plans.

Since the documentation updates or test training plans are internal activities for the test team,

the most of the improvement actions offered by the guidance approach were remarked

applicable by the test team without organizational execution. Some of the improvement

actions that needs participation of other teams such as software development teams and

system design teams are more comprehensive to execute compared to internal actions but

still, other teams were interested in the guidance approach and willing to be the part of the

improvement actions.

Improvement actions offered by guidance approach were listed and shared with four

members of the integration test team. Two of these members were previously involved in

the 1st sub-study group and the other two members were involved in the 2nd sub-study group.

These test team members evaluated the improvement actions in Likert Scale [1-5] to

understand applicability of these improvement actions. The applicability evaluation scale

was as follows: 1: Strongly disagree (not applicable at all), 2: Disagree, 3: Neutral, 4: Agree,

and 5: Strongly agree (very applicable). Four people participated in the evaluation process,

therefore the median values of their responses were calculated and reported in Table 5.16.

Most of the improvement actions (29 of 33, %87) were responded as 5 (very applicable) by

the members. Three improvement actions of 33 (%9.09) were evaluated as 4 (mostly

applicable). Since the emulator/simulator certification is not easily achievable, team

members labeled this improvement action as 3 (neutral).

It should be added that in the early stages of the assessment process, some of the weaknesses

were detected such as unpublished documents and the improvement action as sharing these

documents with stakeholders, and these were executed immediately. However, the test team

stated that satisfaction of the improvement actions needs more time and execution plans.

60

Table 5.16 Applicability Evaluation of Improvement Actions

Improvement Actions Median of Scores

(in scale 1-5)

Define a rule set and provide documentation for items to be tested and not to be tested. 5

Determine levels of requirements and refer to this level on documents. 5

Refer levels of requirements that are not to be tested to remove duplications on tests.

High-level requirements, low level requirements etc.)

5

Parameter data items to be tested could be documented. Parameter data item verification

depends on personal knowledge, documents should refer to them to define standards for.

5

Robustness test should be mentioned in the test approach documents as a test case

selection part.

5

Error that can be revealed by integration can be added into test approach documents as a

part of error situations. They can be helpful as a checklist for test design phase.

5

Test environment limitations should be defined and documented. 5

Reverification conditions should be defined and documented. For example; development

environment change effect on previous verification process should be analyzed and the

scope of retest needs must be defined.

5

Some of the tests must be executed on specific test environments. Differences of these

environments should be determined and documented.

5

Measure test performance as mentioned in TMMI sub-practices. 5

Analyze and compare test environment usage (observed) and planned (expected). 5

Determine test project risks considering test environment and limitations. 5

Document risks considering certification for simulator/emulators. 5

Monitor defects both critical and not-critical, follow their actions. 5

Incident status tracking is needed. Meeting arrangements should be done to handle no

corrective action taken defects

5

Traceability (requirement<->test process, test procedures<->test cases, test result<->test

cases) managed by tools.

5

Priority between tests cases can be defined as the part of test process document. 5

Test environment needs should be considered before test execution 5

DO-178C test cases can be used as a checklist and it can be helpful to prioritize test cases

(robustness test, normal range test, integration test, levels of tests).

5

Take actions to remove duplication of test procedures (if any). 5

Integration test procedure automation should be considered (with tools or scripts), test

procedure standard document can be updated.

4

Determine expectations & constraints of test environment considering closely resemble of

target environment.

4

Refer if any emulator/ simulator certification. 3

Test environment requirements are documented in 2014 for only first project. Document

should be updated and there must be documents for other projects.

5

Peer review documentation updates can be done. 5

Multiple test environment can be defined as a part of documentation. 5

Test environment usage procedure can be defined. 5

Test planning (scheduling) with Excel should be automated. 5

Test environment incident reporting meetings, tools or system can be used actively. 5

Test process enhancement topic and related actions should be considered. 5

Trainings related with test should be determined and planned for test staff. (Trainings

about DO-178C , avionics system, test etc.)

5

Test process tools could be implemented. 4

Database for test procedures, test reports, test results assessment should be established. 5

61

6. CONCLUSION

This study explains the preliminary steps taken to propose an avionics software testing

maturity guidance approach in order to improve integration testing processes of projects

obeying to DO-178C requirements. In this context, DO-178C is analyzed to understand

avionics software verification activities and needs. TMMI is taken as the base maturity

model since its “process area & practice” structure is similar to the process structure in DO-

78C. In the first step, TMMI practices and DO-178C activities are analyzed for bi-directional

mapping with respect to the needs of avionics software testing.

A guidance approach is proposed by considering avionics software testing characteristics

detected previously. In this approach, DO-178C sections called “links” are provided along

with relevant TMMI practices. Then, domain specific maturity assessment is aimed. A case

study is implemented to understand the effectiveness and usability of guidance approach on

avionics integration test processes. Internal assessment is performed in the case study. Case

study consisted of two sub-studies and in the first one, an informal TMMI assessment was

applied only by considering a subset of TMMI level-2 and level-3 practices by a group of

test engineers that have at least 2.5 years of work experience on testing. In the second sub-

study, again an assessment process was implemented with the same practices but this time

considering DO-178C links defined for these practices by another group of testers. These

studies provided improvement actions and action results were compared. Each group

consisted of 4 avionics integration test engineers and the total years of experience of groups

were similar to each other. Each group tried to assess their test processes and since they work

on the same projects in the same team, they tried to assess the same test processes. In the

case study, it is aimed to see the difference between the findings obtained by TMMI model

and the guidance approach for TMMI model introduced in this thesis.

In the case study it was observed that the second group who used DO-178C links to assess

test processes more easily understood assessment and detected their weaknesses. Most of the

weaknesses was caused because of incompleteness of documents or outdated documents.

TMMI model showed the weaknesses or drawbacks of these documents but still, it was not

adequately informing about the domain specific needs or characteristics that should be

involved in these documents. At that point, guidance approach and provided links were

helpful to improve existing documents considering domain specific needs. Document based

62

actions were the main test process improvement need detected by TMMI model and are open

for enhancement considering the guidance approach. It is also achievable by test teams itself

and does not require organizational applicability limitations. Also, test trainings were not

planned and implemented in the case study environment as it is defined in TMMI model.

Improvement actions related with test trainings are also applicable by the test team.

As a result, it was shown that the second sub-study (guidance approach) provided more

improvement actions for avionics test processes. Since, the main problem was deficiency of

avionics software domain specific maturity or test process improvement, the improvement

actions offered by the second sub-study were domain specific. Therefore, guidance approach

is observed as effective to provide improvement actions for avionics integration test teams.

As a future work, improvement actions provided by the guidance approach can be applied

to reach higher maturity levels and improve avionics integration testing processes. The

maturity assessment can be repeated after implementation of improvement actions. The

guidance approach comprises also the upper levels (Level-4 and Level-5) and to reach the

highest maturity level, whole guidance document can be applied. Also, the guidance

approach points to some “common terms” that are gathered considering the structure of

TMMI model, so maturity model studies for another domain can establish a domain based

guidance approach with the help of the common terms.

63

7. REFERENCES

1. DO-178: Software Considerations in Airborne Systems and Equipment Certification,

Washington, DC: RTCA Inc., 1981.

2. DO-178C: Software Considerations in Airborne Systems and Equipment Certification,

Washington, DC: RTCA Inc., 2011.  

3. Ericson, T., Subotic, A. and Ursing, S. (1997), TIM—a test improvement model. Softw.

Test. Verif. Reliab., 7: 229-246.

4. J. Andersin, “TPI -a model for Test Process Improvement,” 2004. Accessed: Jun. 01,

2023. [Online]. Available: https://www.cs.helsinki.fi/u/paakki/Andersin.pdf

5. TMMi Foundation, “Test Maturity Model integration (TMMi®) Guidelines for Test

Process Improvement Release 1.3 Produced by the TMMi Foundation.” Accessed: Jun. 01,

2023. [Online]. Available: https://www.tmmi.org/tmmi-documents/

6. D. M. Karr, “The Unit Test Maturity Model” Accessed: Jun. 01, 2023. [Online].

Available:http://davidmichaelkarr.blogspot.com/2013/01/the-unit-test-maturity-model.html

7. S. Reid, “Personal Test Maturity Matrix”, Accessed: Jun. 01, 2023. [Online]. Available:

https://www.stureid.info/stuart-reid-software-testing/software-testing-white-

papers/personal-test-maturity-matrix/

8. V. Garousi, M. Felderer and T. Hacaloğlu, "What We Know about Software Test Maturity

and Test Process Improvement," in IEEE Software, vol. 35, no. 1, pp. 84-92,

January/February 2018, doi: 10.1109/MS.2017.4541043.

9. ISO/IEC/IEEE 29119-3:2021 Software and systems engineering — Software testing —

Part 3: Test documentation, ISO/IEC/IEEE 29119-3:2021, 2021. [Online]. Available:

https://www.iso.org/standard/79429.html

10. CMMI Institute, Capability Maturity Model Integration.[Online].

Available:https://cmmiinstitute.com/resource-files/public/cmmi-v2-0-development-model”

11. Veenendaal, Erik. (2016). TMMi and ISO 29119: Friends or Foes? ,White paper TMMi

Foundation.

64

12. Duncan, F.I. & Smeaton, A.G.. (2012). “Assessing and improving software quality in

safety critical systems by the application of a SOFTWARE TEST MATURITY MODEL”.

1-4. 10.1049/cp.2012.1509.,

13. Häser, Florian & Felderer, Michael & Breu, Ruth. (2014). Test Process Improvement

with Documentation Driven Integration Testing. Proceedings - 2014 9th International

Conference on the Quality of Information and Communications Technology, QUATIC

2014. 156-161. 10.1109/QUATIC.2014.29.

14. Kassab, Mohamad. (2018). Testing Practices of Software in Safety Critical Systems:

Industrial Survey. 359-367. 10.5220/0006797003590367.

15. Garousi, Vahid & Veenendaal, Erik. (2021). Test Maturity Model integration (TMMi):

Trends of worldwide test maturity and certifications. IEEE Software. PP.

10.1109/MS.2021.3061930.

16. Bahaa Farid, Ahmed & Fathy, Enas & Abd, Mahmoud. (2015). Towards Agile

Implementation of Test Maturity Model Integration (TMMI) Level 2 using Scrum Practices.

International Journal of Advanced Computer Science and Applications. 6.

10.14569/IJACSA.2015.060931.

17. Garousi, Vahid & Felderer, Michael & Hacaloglu, Tuna. (2017). Software test maturity

assessment and test process improvement: A multivocal literature review. Information and

Software Technology. 85. 10.1016/j.infsof.2017.01.001.

18. Jang, J.-W. (2018). Improvement of the automobile control software testing process

using a Test Maturity Model. Journal of Information Processing Systems. 14. 607-620.

10.3745/JIPS.04.0072.

19. Park (2021), Defense software test procedure improvement measure reflecting the

TMMI. Journal of the Korea Academia-Industrial cooperation Societyi Volume 22 Issue 6

20. A. Ferreirós and L. A. V. Dias, "Evaluation of Accomplishment of DO-178C Objectives

by CMMI-DEV 1.3," 2015 12th International Conference on Information Technology - New

Generations, Las Vegas, NV, USA, 2015, pp. 759-760, doi: 10.1109/ITNG.2015.132.

65

21. ISO/IEC 25010:2011, “Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System and software quality models”,

[Online]. Available:https://www.iso.org/standard/35733.html

22. ISO/IEC 20246:2017 “Software and systems engineering — Work product reviews”,

[Online]. Available:https://www.iso.org/standard/67407.html

23. G. Güngör, TMMI&DO-178C Mapping, Accessed: June 2023.[Online]. Available:

https://doi.org/10.5281/zenodo.8002215

24. ISTQB Glossary, [Online]. Available: https://glossary.istqb.org/

25. TMMi Assessment Method Application Requirements (TAMAR) R1.1 [Online].

Available: https://www.tmmi.org/tmmi-documents/

26. Yin, Robert K. "Case study methods." (2012)

https://www.iso.org/standard/67407.html
https://www.tmmi.org/tmmi-documents/

66

APPENDIX

Appendix-1. TMMI Practices and DO-178C Activities Mapping

SPECIFIC PRACTICES LEVEL Related DO-178C activity

Define test goals LEVEL-2 N/A

Define test policy LEVEL-2 4.2.b

Distribute the test policy to
stakeholders

LEVEL-2 N/A

Perform a generic product risk
assessment

LEVEL-2 N/A

Define test strategy LEVEL-2

4.2.b
4.4.2.c
6.4.3
6.4.4.2.a

Distribute the test strategy to
stakeholders

LEVEL-2 N/A

Define test performance
indicators

LEVEL-2
4.2.c defect detection
6.4.4.2.a

Deploy test performance
indicators

LEVEL-2 N/A

Define product risk categories
and parameters

LEVEL-2
4.4.2.c Regression & change related
test
7.2.5.b

Identify product risks LEVEL-2 N/A

Analyze product risks LEVEL-2 7.2.5.a

Identify items and features to
be tested

LEVEL-2 N/A

Define the test approach LEVEL-2 4.4.2.c Regression test & re-test

Define entry criteria LEVEL-2 N/A

Define exit criteria LEVEL-2 6.4.4.2.a

Define suspension and
resumption criteria

LEVEL-2 N/A

Establish a top-level work
breakdown structure

LEVEL-2 N/A

Define test lifecycle LEVEL-2 N/A

Determine estimates for test
effort and cost

LEVEL-2 N/A

Establish the test schedule LEVEL-2 N/A

Plan for test staffing LEVEL-2 N/A

67

Plan stakeholder involvement LEVEL-2 N/A

Identify test project risks LEVEL-2 N/A

Establish the test plan LEVEL-2
4.2.b (ISO/IEC 29119-3]
4.4.2.c Regression test & re-test

Review test plan LEVEL-2 N/A

Reconcile work and resource
levels

LEVEL-2 N/A

Obtain test plan commitments LEVEL-2 N/A

Monitor test planning
parameters

LEVEL-2 N/A

Monitor test environment
resources provided and used

LEVEL-2 N/A

Monitor test commitments LEVEL-2 N/A

Monitor test project risks LEVEL-2 7.2.5.

Monitor stakeholder
involvement

LEVEL-2 N/A

Conduct test progress reviews LEVEL-2 N/A

Conduct test progress
milestone reviews

LEVEL-2 N/A

Check against entry criteria LEVEL-2 N/A

Monitor defects LEVEL-2 N/A

Monitor product risks LEVEL-2 7.2.5.a

Monitor exit criteria LEVEL-2 6.4.4.2.a

Monitor suspension and
resumption criteria

LEVEL-2 N/A

Conduct product quality
reviews

LEVEL-2 N/A

Conduct product quality
milestone reviews

LEVEL-2 4.2.b (ISO/IEC 29119-3]

Analyze issues LEVEL-2

Take corrective action LEVEL-2 4.2.e

Manage corrective action LEVEL-2 4.2.e

68

Identify and prioritize test
conditions

LEVEL-2

4.2.b (ISO/IEC 29119-3]
6.4.2.1.a
6.4.2.1.c
6.4.2.1.d
6.4.4.1.a
6.4.4.1.d
7.2.4.d/e

Identify and prioritize test
cases

LEVEL-2

4.2.b (ISO/IEC 29119-3]
6.4.4.1.a
6.4.4.1.d
6.5

Identify necessary specific test
data

LEVEL-2 N/A

Maintain horizontal
traceability with requirements

LEVEL-2
6.4.4.1.a
6.4.4.1.d
6.5

Develop and prioritize test
procedures

LEVEL-2
4.2.b (ISO/IEC 29119-3]
6.5

Create specific test data LEVEL-2 N/A

Specify intake test procedure LEVEL-2 N/A

Develop test execution
schedule

LEVEL-2 N/A

Perform intake test LEVEL-2 N/A

Execute test cases LEVEL-2 7.2.4.d

Report test incidents LEVEL-2
4.2.b (ISO/IEC 29119-3]
6.4.1.a
7.2.3

Write test log LEVEL-2
4.2.b (ISO/IEC 29119-3]
7.2.3

Decide disposition of test
incidents in configuration
control board

LEVEL-2
7.2.3.
8.3.d

Perform appropriate action to
fix the test incident

LEVEL-2
7.2.3.
8.3.d

Track the status of test
incidents

LEVEL-2
7.2.3.
8.3.d

Elicit test environment needs LEVEL-2
4.2.b (ISO/IEC 29119-3]
6.4.1.a

Develop the test environment
requirements

LEVEL-2 6.4.1.a

69

Analyze the test environment
requirements

LEVEL-2
4.4.3.a real-life test environment
4.4.3.b analyze environment req. Risks
6.4.1.a

Implement the test
environment

LEVEL-2 6.4.1.a

Create generic test data LEVEL-2 4.2.b (ISO/IEC 29119-3]

Specify test environment
intake test procedure

LEVEL-2 N/A

Perform test environment
intake test

LEVEL-2 4.2.b (ISO/IEC 29119-3]

Perform systems management LEVEL-2 N/A

Perform test data
management

LEVEL-2 N/A

Coordinate the availability and
usage of the test environments

LEVEL-2 N/A

Report and manage test
environment incidents

LEVEL-2 N/A

Define the test organization LEVEL-3 N/A

Obtain commitments for the
test organization

LEVEL-3 N/A

Implement the test
organization

LEVEL-3 N/A

Identify test functions LEVEL-3 N/A

Develop job descriptions LEVEL-3 N/A

Assign staff members to test
functions

LEVEL-3 N/A

Establish test career paths LEVEL-3 N/A

Develop personal test career
development plans

LEVEL-3 N/A

Assess the organization’s test
process

LEVEL-3 N/A

Identify the organization’s test
process improvements

LEVEL-3 N/A

 Plan test process
improvements

LEVEL-3 N/A

Implement test process
improvements

LEVEL-3 N/A

70

Deploy standard test process
and test process assets

LEVEL-3 N/A

Monitor implementation LEVEL-3 N/A

Incorporate lessons learned
into the organizational test
process

LEVEL-3 4.2.b (ISO/IEC 29119-3]

Identify the strategic test
training needs

LEVEL-3 N/A

Align the organizational and
project test training needs

LEVEL-3 N/A

Establish an organizational test
training plan

LEVEL-3 N/A

Establish test training
capability

LEVEL-3 N/A

Deliver test training LEVEL-3 N/A

Establish test training records LEVEL-3 N/A

Assess test training
effectiveness

LEVEL-3 N/A

Establish standard test
processes

LEVEL-3 N/A

Establish test lifecycle model
descriptions addressing all test
levels

LEVEL-3 N/A

Establish tailoring criteria and
guidelines

LEVEL-3 N/A

Establish the organization’s
test process database

LEVEL-3 N/A

Establish the organization’s
test process asset library

LEVEL-3 N/A

Establish work environment
standards

LEVEL-3 N/A

Establish integrated lifecycle
models

LEVEL-3 N/A

Review integrated lifecycle
models

LEVEL-3 N/A

Obtain commitments on the
role of testing within the
integrated lifecycle models

LEVEL-3 N/A

71

Perform a product risk
assessment

LEVEL-3 N/A

Establish the test approach LEVEL-3 N/A

Establish test estimates LEVEL-3 N/A

Define the organization for
testing

LEVEL-3 N/A

Develop the master test plan LEVEL-3 4.2.b (ISO/IEC 29119-3]

Obtain commitment to the
master test plan

LEVEL-3 N/A

Identify non-functional
product risks

LEVEL-3 N/A

Analyze non-functional
product risks

LEVEL-3
4.2.b (ISO/IEC 25010)
6.3.1-6.3.2(ISO/IEC 25010)

Identify non-functional
features to be tested

LEVEL-3 N/A

Define the non-functional test
approach

LEVEL-3 N/A

Define non-functional exit
criteria

LEVEL-3 N/A

Identify and prioritize non-
functional test conditions

LEVEL-3

4.2.b ISO 29119-3
6.4.4.1.a
6.4.4.1.d
6.5

Identify and prioritize non-
functional test cases

LEVEL-3

4.2.b ISO 29119-3
6.4.4.1.a
6.4.4.1.d
6.5

Identify necessary specific test
data

LEVEL-3 N/A

Maintain horizontal
traceability with non-
functional requirements

LEVEL-3
6.4.4.1.a
6.4.4.1.d
6.5

Develop and prioritize non-
functional test procedures

LEVEL-3
4.2.b ISO 29119-3
6.5

Create specific test data LEVEL-3 N/A

Execute non-functional test
cases

LEVEL-3 N/A

Report non-functional test
incidents

LEVEL-3 4.2.b ISO 29119-3

 Write test log LEVEL-3 N/A

72

Identify work products to be
reviewed

LEVEL-3
4.2.b [ISO 20246]
5.1.2.a

Define peer review criteria LEVEL-3 5.1.2.a

Conduct peer reviews LEVEL-3 5.1.2.b

Testers review test basis
documents

LEVEL-3
5.1.2.a
5.1.2.b

Analyze peer review data LEVEL-3 6.4.4.1.c

Establish test measurement
objectives

LEVEL-4 N/A

Specify test measures LEVEL-4 6.4.4.2.a

Specify data collection and
storage procedures

LEVEL-4 N/A

Specify analysis procedures LEVEL-4 N/A

Collect test measurement data LEVEL-4 N/A

Analyze test measurement
data

LEVEL-4 N/A

Communicate results LEVEL-4 N/A

Store data and results LEVEL-4 N/A

Identify product quality needs LEVEL-4 N/A

Define the project’s
quantitative product quality
goals

LEVEL-4
4.2.b [ISO/IEC 25010]
6.3.1- 6.3.2

Define the approach for
measuring progress toward
the project’s product quality
goals

LEVEL-4 N/A

Measure product quality
quantitatively throughout the
lifecycle

LEVEL-4 N/A

Analyze product quality
measurements and compare
them to the product’s
quantitative goals

LEVEL-4 N/A

Relate work products to items
and features to be tested

LEVEL-4 N/A

Define a coordinated test
approach

LEVEL-4 N/A

73

Define peer review
measurement guidelines

LEVEL-4 N/A

Define peer review criteria
based on product quality goals

LEVEL-4 N/A

 Measure work product quality
using peer reviews

LEVEL-4 N/A

Analyze peer review results LEVEL-4 N/A

Revise the products risks as
appropriate

LEVEL-4 N/A

Revise the test approach as
appropriate

LEVEL-4 N/A

Define defect selection
parameters and defect
classification scheme

LEVEL-5 4.2.c defect detection

Select defects for analysis LEVEL-5 4.2.c Pareto Analysis and Histograms

Analyze causes of selected
defects

LEVEL-5 4.2.c

Propose solutions to eliminate
common causes

LEVEL-5

4.2.c defect detection -
Potentially appropriate methods, tools
and techniques are selected as part of
the solutions. Methods, tools and
techniques can help the organization
define coherent solutions that prevent
the defects from occurring again.
Methods, tools and techniques can
deliver solutions that are not yet used
in or known by the organization.

Define action proposals and
submit improvement
proposals

LEVEL-5 4.2.c

Establish test process
performance objectives

LEVEL-5 N/A

Establish test process
performance measures

LEVEL-5 N/A

Establish test process
performance baselines

LEVEL-5 N/A

Apply statistical methods to
understand variations

LEVEL-5 N/A

74

Monitor performance of the
selected test processes

LEVEL-5 N/A

Develop operational profiles LEVEL-5 N/A

Generate and execute
statistically selected test cases

LEVEL-5 N/A

Apply statistical test data to
make stop-test decisions

LEVEL-5 N/A

Collect and analyze test
process improvement
proposals

LEVEL-5 N/A

Pilot test process
improvement proposals

LEVEL-5 N/A

Select test process
improvement proposals for
deployment

LEVEL-5 N/A

Identify and analyze new
testing technologies

LEVEL-5 N/A

Select new testing
technologies for deployment

LEVEL-5 N/A

Plan the deployment LEVEL-5 N/A

Manage the deployment LEVEL-5 N/A

Measure improvement effects LEVEL-5 N/A

Identify re-usable test assets LEVEL-5 N/A

Select test assets to be added
to the re-use library

LEVEL-5 N/A

Deploy re-usable test assets LEVEL-5 N/A

Apply re-usable test assets in
projects

LEVEL-5 N/A

75

Appendix-2. DO-178C Annex-A Tables [2]

76

77

78

79

80

81

82

Appendix-3. Summary of Assesment (Achievement Rates by Practices)

83

84

 85

Appendix-4 Questionnaire

TMMI

PROCE

SS

AREA

GOAL PRACT

ICE

REFERE

NCE TO

RELEVA

NT DO-

178C

SECTIO

N

ACHIEVE

MENT

RATE

F: Fully

Achieved

P: Partially

Achieved

L: Largely

Achieved

N: Not

Achieved

N/A:Not

Applicable

STRENG

HTS

WEAKNE

SSES

2.1 Test

Policy

and

Strategy

Establish a

Test

Policy

Define

test goals

1) Refer

To

Section

6.1-

2) Refer

To

6.4.3.B-

3) Refer

To

Section

2.3

2.1 Test

Policy

and

Strategy

Establish a

Test

Policy

Define

test

policy

1) Refer

To

Section

6.4.

2) Refer

To 6.2

2.1 Test

Policy

and

Strategy

Establish a

Test

Policy

Distribut

e the test

policy to

stakehol

ders

N/A

2.1 Test

Policy

and

Strategy

Establish a

Test

Strategy

Perform

a generic

product

risk

assessme

nt

1) Refer

To 2.3.2

2) Refer

To 2.3.3

 86

2.1 Test

Policy

and

Strategy

Establish a

Test

Strategy

Define

test

strategy

Refer To

Test Goals

& Policy

Practices

1)Refer

To Do-

178c

Section

6.4

2)Refer

To

Section

6.4.2-

3) Refer

To

Section

6.4.3.B

4) Refer

To 6.4.1

5) Refer

To

Section

11.14

2.1 Test

Policy

and

Strategy

Establish a

Test

Strategy

Distribut

e the test

strategy

to

stakehol

ders

N/A

2.1 Test

Policy

and

Strategy

Establish

Test

Performan

ce

Indicators

Define

test

performa

nce

indicator

s

1) Refer

To Test

Goals &

Policy

Practices

2.1 Test

Policy

and

Strategy

Establish

Test

Performan

ce

Indicators

Deploy

test

performa

nce

indicator

s

1) Refer

To

Section

6.4.4 &

6.4.4.1 &

6.4.4.2

 87

2.2 Test

Planning

Perform a

Product

Risk

Assessme

nt

Define

product

risk

categorie

s and

paramete

rs

1) Refer

To 2.3.2

2) Refer

To 2.3.3

3) Refer

To

Section

7.2.5

2.2 Test

Planning

Perform a

Product

Risk

Assessme

nt

Identify

product

risks

1) Refer

To 2.3.2

2) Refer

To 2.3.3

2.2 Test

Planning

Perform a

Product

Risk

Assessme

nt

Analyze

product

risks

1) Refer

To 2.3.2

2) Refer

To 2.3.3

2.2 Test

Planning

Establish a

Test

Approach

Identify

items

and

features

to be

tested

1) Refer

To Note

From

Section

6.4

2) Refer

To

Section

6.6.

3) Refer

To

Section

2.5

2.2 Test

Planning

Establish a

Test

Approach

Define

the test

approach

1) Refer

To 6.4.2.1

2) Refer

To 6.4.2.2

3) Refer

To 6.4.3

& 6.4.3.B

4) Refer

To 6.4.1

5) Refer

To 4.4.2.C

2.2 Test

Planning

Establish a

Test

Approach

Define

entry

criteria

N/A

 88

2.2 Test

Planning

Establish a

Test

Approach

Define

exit

criteria

N/A

2.2 Test

Planning

Establish a

Test

Approach

Define

suspensi

on and

resumpti

on

criteria

N/A

2.2 Test

Planning

Establish

Test

Estimates

Establish

a top-

level

work

breakdo

wn

structure

Refer To

Section

7.2

2.2 Test

Planning

Establish

Test

Estimates

Define

test

lifecycle

N/A

2.2 Test

Planning

Establish

Test

Estimates

Determi

ne

estimates

for test

effort

and cost

1)Refer

To 6.4.1

2) Refer

To

Section

2.3.2

2.2 Test

Planning

Develop a

Test Plan

Establish

the test

schedule

N/A

2.2 Test

Planning

Develop a

Test Plan

Plan for

test

staffing

N/A

2.2 Test

Planning

Develop a

Test Plan

Plan

stakehol

der

involve

ment

N/A

2.2 Test

Planning

Develop a

Test Plan

Identify

test

project

risks

N/A

 89

2.2 Test

Planning

Develop a

Test Plan

Establish

the test

plan

Refer To

Define

Test

Approach

Practice

+

1)Refer

To

Section

11.3 -

2)Refer

To

Activity

4.4.2.C

(Reverific

ation

After

Change)

Also

Refer To

12.1.3

Change

Of

Applicatio

n Or

Developm

ent

Environm

ent Can

Require

Reverifica

tion)

3) Refer

To

Section

11.14

2.2 Test

Planning

Obtain

Commitm

ent to the

Test Plan

Review

test plan

1) Refer

To

Section

11.3

2.2 Test

Planning

Obtain

Commitm

ent to the

Test Plan

Reconcil

e work

and

resource

levels

1) Refer

To

Section

2.5

2.2 Test

Planning

Obtain

Commitm

ent to the

Test Plan

Obtain

test plan

commit

ments

N/A

 90

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Monitor

test

planning

paramete

rs

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Monitor

test

environ

ment

resource

s

provided

and used

Test

Environm

ent

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Monitor

test

commit

ments

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Monitor

test

project

risks

Test

Environm

ent

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Monitor

stakehol

der

involve

ment

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Conduct

test

progress

reviews

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Test

Progress

against

Plan

Conduct

test

progress

mileston

e reviews

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Check

against

entry

criteria

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Monitor

defects

N/A

 91

Expectatio

ns

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Monitor

product

risks

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Monitor

exit

criteria

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Monitor

suspensi

on and

resumpti

on

criteria

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Conduct

product

quality

reviews

N/A

2.3 Test

Monitori

ng and

Control

Monitor

Product

Quality

against

Plan and

Expectatio

ns

Conduct

product

quality

mileston

e reviews

N/A

2.3 Test

Monitori

ng and

Control

Manage

Corrective

Actions to

Closure

Analyze

issues

N/A

2.3 Test

Monitori

ng and

Control

Manage

Corrective

Actions to

Closure

Take

correctiv

e action

N/A

2.3 Test

Monitori

Manage

Corrective

Manage

correctiv

e action

N/A

 92

ng and

Control

Actions to

Closure

2.4 Test

Design

and

Executio

n

Perform

Test

Analysis

and

Design

using Test

Design

Technique

s

Identify

and

prioritize

test

conditio

ns

1) Refer

To

Section

6.3.1

2) Refer

To 6.4.2

 6.4.2.1 &

 6.4.2.2

3) Refer

To 6.4.3

4) Refer

To

Section

6.5

5) Refer

To

Activity

6.2.B

2.4 Test

Design

and

Executio

n

Perform

Test

Analysis

and

Design

using Test

Design

Technique

s

Identify

and

prioritize

test cases

1) Refer

To

Section

6.4.4.1 -

6.4.4.2-

6.4.4.3

2) Refer

To

Section

6.4.1

2.4 Test

Design

and

Executio

n

Perform

Test

Analysis

and

Design

using Test

Design

Technique

s

Identify

necessar

y

specific

test data

N/A

2.4 Test

Design

and

Executio

n

Perform

Test

Analysis

and

Design

using Test

Design

Technique

s

Maintain

horizont

al

traceabili

ty with

requirem

ents

1) Refer

To

Section

6.5

2) Refer

To

Section

6.4.4.1

 93

2.4 Test

Design

and

Executio

n

Perform

Test

Implement

ation

Develop

and

prioritize

test

procedur

es

1) Refer

To Note

From

Section

6.4

2.4 Test

Design

and

Executio

n

Perform

Test

Implement

ation

Create

specific

test data

N/A

2.4 Test

Design

and

Executio

n

Perform

Test

Implement

ation

Specify

intake

test

procedur

e

N/A

2.4 Test

Design

and

Executio

n

Perform

Test

Implement

ation

Develop

test

executio

n

schedule

N/A

2.4 Test

Design

and

Executio

n

Perform

Test

Execution

Perform

intake

test

N/A

2.4 Test

Design

and

Executio

n

Perform

Test

Execution

Execute

test cases

1) Refer

To

Activity

4.4.2.C

(Reverific

ation

After

Change)

Also

Refer To

12.1.3

2) Refer

To

Section

6.2.D

3) Refer

To

Section

6.6

4) Refer

To

Section

11.14

 94

2.4 Test

Design

and

Executio

n

Perform

Test

Execution

Report

test

incidents

1) Refer

To

Section

7.2.3

2) Refer

To

Section

11.14

3.Refer

To

Section

11.17

2.4 Test

Design

and

Executio

n

Perform

Test

Execution

Write

test log

N/A

2.4 Test

Design

and

Executio

n

Manage

Test

Incidents

to Closure

Decide

dispositi

on of test

incidents

in

configur

ation

control

board

1) Refer

To

Section

7.1.e

2) Refer

To

Section

7.2.5

2.4 Test

Design

and

Executio

n

Manage

Test

Incidents

to Closure

Perform

appropri

ate

action to

fix the

test

incident

1)Refer

To

Section

7.2.3

2) Refer

To

Section

2.4 Test

Design

and

Executio

n

Manage

Test

Incidents

to Closure

Track the

status of

test

incidents

1) Refer

To

Section

7.2.3

2.5 Test

Environ

ment

Develop

Test

Environm

ent

Requirem

ents

Elicit test

environ

ment

needs

1) Refer

To

Section

4.4.3

2)Refer

To

Section

6.4.1

3) Refer

To

Section

12.3.2

 95

4) Refer

To

Section

6.2.B

2.5 Test

Environ

ment

Develop

Test

Environm

ent

Requirem

ents

Develop

the test

environ

ment

requirem

ents

1)Refer

To

Section

4.4.3

2)Refer

To

Section

6.4.1

3) Refer

To

Section

12.3.2

2.5 Test

Environ

ment

Develop

Test

Environm

ent

Requirem

ents

Analyze

the test

environ

ment

requirem

ents

1)Refer

To

Section

4.4.3

2)Refer

To

Section

6.4.1

3) Refer

To

Section

12.3.2

2.5 Test

Environ

ment

Perform

Test

Environm

ent

Implement

ation

Impleme

nt the

test

environ

ment

N/A

2.5 Test

Environ

ment

Perform

Test

Environm

ent

Implement

ation

Create

generic

test data

N/A

2.5 Test

Environ

ment

Perform

Test

Environm

ent

Implement

ation

Specify

test

environ

ment

intake

test

N/A

 96

procedur

e

2.5 Test

Environ

ment

Perform

Test

Environm

ent

Implement

ation

Perform

test

environ

ment

intake

test

N/A

2.5 Test

Environ

ment

Manage

and

Control

Test

Environm

ents

Perform

systems

manage

ment

N/A

2.5 Test

Environ

ment

Manage

and

Control

Test

Environm

ents

Perform

test data

manage

ment

N/A

2.5 Test

Environ

ment

Manage

and

Control

Test

Environm

ents

Coordina

te the

availabili

ty and

usage of

the test

environ

ments

N/A

2.5 Test

Environ

ment

Manage

and

Control

Test

Environm

ents

Report

and

manage

test

environ

ment

incidents

N/A

 97

 98

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. METHOD
	4.1. Comparison between DO-178C and TMMI
	4.2. Guidance Approach with TMMI model for Avionics Software Integration Testing

	5. METHOD IMPLEMENTATION
	5.1. Comparison between DO-178C and TMMI
	5.1.1. TMMI versus DO-178C Software Planning Process
	5.1.2. TMMI versus DO-178C Software Development Process
	5.1.3. TMMI versus DO-178C Software Verification Process
	5.1.3.1. TMMI versus DO-178C Section 6.3
	5.1.3.2. TMMI versus DO-178C Section 6.4
	5.1.3.3. TMMI versus DO-178C Section 6.5
	5.1.3.4. TMMI versus DO-178C Section 6.6

	5.1.4. TMMI versus DO-178C Software Configuration Management Process
	5.1.5. TMMI versus DO-178C Software Quality Assurance Process
	5.1.6. TMMI versus DO-178C Certification Liaison Process
	5.2. Guidance Document for TMMI Applications on Avionics Software Integration Testing
	5.3. Case Study
	5.3.1 Research Design
	5.3.2 Research Context (Investigated Company and Project)
	5.3.3 Data Collection and Analyses
	5.3.4 Case Study Results

	6. CONCLUSION
	7. REFERENCES
	APPENDIX
	Appendix-1. TMMI Practices and DO-178C Activities Mapping
	Appendix-2. DO-178C Annex-A Tables [2]
	Appendix-3. Summary of Assesment (Achievement Rates by Practices)
	Appendix-4 Questionnaire

