

INTEGRATION TESTING MATURITY ASSESSMENT FOR
SAFETY CRITICAL AVIONICS SOFTWARE

GUVENLIK KRITIK AVIiYONIK YAZILIMLAR iCIN
TUMLESTIRME TEST OLGUNLUGUNU
DEGERLENDIRME

GULSUM GUNGOR

DOC. DR. AYCA KOLUKISA TARHAN

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for he Award of the Degree of Master of Science

in Computer Engineering

2023
[

ABSTRACT

INTEGRATION TESTING MATURITY ASSESSMENT FOR SAFETY
CRITICAL AVIONICS SOFTWARE

Gulsim GUNGOR

Master’s Degree, Department of Computer Engineering
Supervisor: Dog. Dr. Ayca KOLUKISA TARHAN

September 2023, 111 pages

Safety-critical software failures lead to serious results such as loss of live or damage to the
environment; therefore, safety-critical software verification requires special attention.
Avionics system software is one type of safety-critical software. “DO-178C: Software
Considerations in Airborne Systems and Equipment Certification” was released in 2011 by
RTCA, Inc., (Radio Technical Commission for Aeronautics) which defines processes for
aircraft systems software verification and development. On the other hand, there are well-
defined guidelines to improve validation and verification processes of software system
development, specifically for software testing. TMMI (Test Maturity Model Integration) was
produced by TMMI Foundation as a guide for organizations to improve their test processes

and product quality. However, avionics system software has own safety-related software

characteristics, and TMMI does not specifically address software testing practices of these
characteristics. To fill this gap, in this thesis study, first, avionics software characteristics as
the base for software testing are identified. Then, processes and practices in DO-178C and
TMMI (Release 1.3) documents are compared with each other bi-directionally. Finally,
based on the avionics software characteristics and the results of the comparison, a guidance
document approach for integration testing maturity is developed. Considering the critical
role of integration testing in preventing safety-critical software defects, it is thought that this
approach will be useful for evaluating the integration testing processes of avionics software.
A case study was implemented to understand the effectiveness and applicability of this
approach. Two groups of test engineers from same team tried to assess test processes applied.
The first group applied TMMI model and the second group applied TMMI with guidance
approach to assess their processes. At the end, it was observed that the guidance approach
provided more improvement actions for avionics integration test processes by referring to

domain specific needs of avionics software testing.

Keywords: Safety-critical, avionics software, integration testing, DO-178C, TMMI, test
maturity

OZET

GUVENLIK KRITIiK AVIYONIK YAZILIMLAR iCIN
TUMLESTIRME TEST OLGUNLUGUNU DEGERLENDIRME

Gulsuim GUNGOR

Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Damismani: Do¢. Dr. Ay¢ca KOLUKISA TARHAN

Eylal 2023, 111 sayfa

Giivenlik kritik yazilim hatalari, can kayb1 ve ¢evresel zararlar gibi bir¢ok ciddi soruna yol
acabilmektedir; bu nedenle, giivenlik kritik yazilimlarin dogrulanmasi 6zel bir caba
gerektirmektedir. Giivenlik kritik yazilimlarin bir tiirti de aviyonik sistem yazilimlaridir.
2011 yilinda, RTCA (Radio Technical Commission for Aeronautics) tarafindan yayinlanmis
olan “DO-178C: Software Considerations in Airborne Systems and Equipment
Certification” dokiimani, havacilikta yazilim gelistirme ve dogrulama faaliyetlerine ait
siireclere deginmektedir. Diger yandan, yazilim gelistirme ve yazilim test faaliyetlerini
iyilestirmek i¢in tanimlanmis ve kabul gérmiis kilavuzlar bulunmaktadir. Bunlar biri olan
TMMI (Test Olgunluk Model Entegrasyon), TMMI Foundation tarafindan gelistirilmistir ve

\Y

kurumlarda test siire¢lerinin ve iirlin kalitesinin iyilestirmesi i¢in kilavuz niteligindedir. Ne
var ki aviyonik sistem yazilimlar1 giivenlik kritik yazilim karakteristiklerine sahiptir ve
TMMI modeli, 6zel olarak bu karakteristiklere deginmemektedir. Bu boslugu doldurmak
amaciyla, bu tez ¢alismasinda, ilk olarak test aktivitelerine temel olarak aviyonik yazilim
karakteristikleri belirlenmistir. Ardindan, DO-178C ve TMMI (Siiriim 1.3) dokiimanlarinin
surecleri ve pratikleri, birbiriyle ¢ift-yonlii karsilagtirilmistir. Son olarak aviyonik yazilim
karakteristiklerine ve karsilastirma sonuglarina dayanarak entegrasyon test olgunlugu i¢in
bir kilavuz dokiiman hazirlama yaklasimi gelistirilmistir. Entegrasyon testlerinin giivenlik
kritik yazilim hatalarmi 6nlemedeki kritik rolii gozetildiginde bu yaklasimin aviyonik
yazilimlarin entegrasyon test siireclerini degerlendirmek icin fayda saglayacagi
distiniilmektedir. Bu yaklagimin etkisinin ve uygulanabilirliginin 6l¢iimii i¢in bir durum
caligmas1 gerceklestirilmistir. Ayn1 ekipte yer alan test miihendisleri uyguladiklar: test
siireclerini degerlendirmeye ¢alistilar. Degerlendirmede birinci grup TMMI modelini, ikinci
grup ise TMMI modeline ek olarak kilavuz dokiiman yaklasimini kullandilar. Sonug olarak,
kilavuz yaklasimi aviyonik entegre test siirecleri i¢in daha fazla sayida iyilestirme Gnerisi

sundu ve bu Oneriler aviyonik yazilimlara ait alana 6zel ihtiyaglara deginmektedir.

Anahtar Kelimeler: Giivenlik kritik, aviyonik yazilim, entegre test, DO-178C, TMMI, test

olgunlugu

Vi

ACKNOWLEDGEMENTS

vii

TABLE OF CONTENTS

AB ST RACT ..ttt ettt et e e e e e bt e e e e bbb e e e e e s b b e e e e e anbr e e e e e e bt re e e e e anareeas iii
(@ 4 = LR v
ACKNOWLEDGEMENTS ...ooiiiiiiee ittt st e e et e e e e e snnnneee s %
TABLE OF CONTENTS ...ooiiii ittt ettt e et a e e e e e e e s estae e e e e ennnee s Vi
LIST OF FIGUREScoii oottt ettt e e e e e e e s e e e e e s X
LIST OF TABLESottt e e a e et e e e e e e e e e nnes Xi
LIST OF ABBREVIATIONScoiiiiiiiiie ettt ettt e e e e e s nnraeeeeaane Xii
1. INTRODUCTION ...ttt ittt ettt e s et e e e e e e e e et e e e e e snsaeeeeeannneeeeeennens 1
2. BACKGROUNDttt ettt e et e e e s st e e e s s sba e e e e enrbeeeeeans 3
3. RELATED WORKttt ettt ettt e e sttt e e e st e e e e st e e e e s nnsnneaeeennsaeeeeaaans 5
Y 1 I o [] 5 PSPPI 7
4.1. Comparison between DO-178C and TMMIcoooiiiiiiiiiiiiieeeeee e 8
4.2. Guidance Approach with TMMI model for Avionics Software Integration
JLIC=ES3 o PRSPPI 10
5. METHOD IMPLEMENTATION ...ttt 11
5.1. Comparison between DO-178C and TMMI........ccccoiiiiiiiiiieiiiieee e 11
5.1.1. TMMI versus DO-178C Software Planning Processccccccvveveeennnn. 11
5.1.2. TMMI versus DO-178C Software Development Process..........ccccoe...... 16
5.1.3. TMMI versus DO-178C Software Verification Process...........ccccccceeueeee. 18
5.1.4. TMMI versus DO-178C Software Configuration Management Process
24
5.1.5. TMMI versus DO-178C Software Quality Assurance Process.............. 27
5.1.6. TMMI versus DO-178C Certification LiaisSon Process............cccceeeevunuee. 28
5.2. Guidance Document for TMMI Applications on Avionics Software
INtEGration TESTNG ... veieie it e e e 30
5.3, CASE StUAY ..o e e aaaae s 40
5.3.1 RESEAICh DESIQN ...ccoiiiiiiii ettt 40

5.3.2 Research Context (Investigated Company and Project)cccccvvvvvnees 41

5.3.3 Data Collection and ANAIYSES.........ccuueiieiiiiiiiieeiiieeee e 43
5.3.4 Case StUdY RESUILSccoeeeiiiieeeee e 56

6. CONCLUSION. ...t e ettt e e s e e e e st e e e e e saae e e e e snnsneeaesannsreeeaeans 61
7. REFERENCESottt e e e s enrbeee e e e 63
APPEND DX e et a e et aae 66
Appendix-1. TMMI Practices and DO-178C Activities Mapping.............ccccvvveeee. 66
Appendix-2. DO-178C Annex-A Tables [2] ... 75
Appendix-3. Summary of Assesment (Achievement Rates by Practices) 82
APPENdiX-4 QUESTIONNAUIEcceiiiiiiie ettt e e s re e e e s eeeeaas 85

LIST OF FIGURES

Figure 1. Single Embedded Case Study Design

LIST OF TABLES

Table 4.1. Example Comparison: TMMI Practices & DO-178C “Software Planning Process”

... 9
Table 5.1. Mapping of TMMI Practices with DO-178C 4.2.c aCtiVitycccccovevveiiveennen. 13
Table 5.2. Comparison of DO-178C Section 4 activities vs. TMMI practices 15
Table 5.3 Mapping of TMMI practices with DO-178C activity 5.1.2.aand 5.1.2.b........... 17
Table 5.4. Comparison of DO-178C Section 5 activities vs. TMMI practices 18
Table 5.5. Mapping of TMMI Practices with DO-178C Section 6.3ccccovevveivernenne. 19
Table 5.6. Mapping of TMMI Practices with DO-178C Section 6.4cceevevvevereeenne. 23
Table 5.7. Comparison of DO-178C Section 6 activities vs. TMMI practices 24
Table 5.8. Mapping of TMMI Practices with DO-178C Section 7.2ccccccevveevvevenseenne. 26
Table 5.9. Comparison of DO-178C Section 7 activities vs. TMMI practices 27
Table 5.10. Comparison of DO-178C Section 8 activities vs. TMMI practices 28
Table 5.11. Comparison of DO-178C Section 9 activities vs. TMMI practices 28
Table 5.12. TMMI practice list with DO-178C section references (Iinks)........ccccccevvvrunnee. 32
Table 5.13. Assessment of test processes with respect to TMMI practicesc.cceeveee.. 43
Table 5.14 Comparison of improvement suggestions by two sub-studies..............c.cccue..... 53
Table 5.15 Number of improvement actions identified in two sub-studies..............cc.c....... 57
Table 5.16 Applicability Evaluation of Improvement ACtiONnScccccevviieiieneiie s, 60

Xi

Abbreviations

CMMI

ISTQB

PTMM

RTCA

SG

SP

TIM

TMMI

TPI

UTMM

LIST OF ABBREVIATIONS

Capability Maturity Model Integration
International Software Qualifications Board
Personal Test Maturity Matrix

Radio Technical Commission for Aeronautics
Specific Goal

Specific Practice

Test Improvement Model

Test Maturity Model Integration

Test Process Improvement

Unit Test Maturity Model

Xii

1. INTRODUCTION

Safety-critical system failures lead to serious results such as loss of lives or damage to the
environment. The software used in avionics systems is classified as safety-critical software
in which emerging errors can cause serious consequences. Verification of avionics software
is crucial to prevent these undesired results. The first guide to standardize avionics software
development was published in 1981 with the name “DO-178: Software Considerations in
Airborne Systems and Equipment Certification” [1]. In 2011, DO-178C [2] was released,
which addresses software verification processes with different levels of testing (i.e.,

requirement-based testing, integration testing, hardware and software integration testing).

DO-178C defines integration testing as it aims to guarantee that software components
interact correctly and behave as expected, also software requirements are satisfied by
components [2]. Defects that can be detected only at the level of integration testing are
critical to avoid serious consequences in avionics software. Since DO-178C document
heavily focuses on requirement-based integration testing and there is no test maturity
approach, obeying to DO-178C alone is not sufficient to evaluate and improve integration

testing processes.

On the purpose of testing process and software quality improvements, various models have
been developed. Test maturity models such as Test Improvement Model (TIM) [3], Test
Process Improvement Model (TPI) [4], Test Maturity Model Integration (TMMI) [5], Unit
Test Maturity Model [6] and Personal Test Maturity Matrix (PTMM) [7] are among these
models. The presented maturity models can be classified in several groups according to their
characteristics. The first group can be defined as tester (or person) skills centered maturity
models such as PTMM [7]. This type of models focuses on tester skills to improve testing
maturity. The second group includes maturity level-based models that each level has its own
goals to be achieved to reach a defined maturity level [5]. The third group of maturity models
are testing level-based models that specifically focus on one testing level (such as unit
testing) and offer activities for the concerned level [6]. Another group of test maturity models
include continuous models that define key performance areas to determine maturity levels

[4]. Also, there are some models applicable on automated testing activities [8]. None of the

1

maturity models expressed above focuses on integration testing level or avionics software
(in safety-critical) testing domain. Similarly, the well-recognized software testing standard
ISO/IEC 29119 [9] does not focus on software testing maturity or avionics software testing
in particular. In order to fill this gap, in this study, it is aimed to offer a maturity model

guidance for avionics software considering domain-based requirements.

The content of this thesis is organized as follows: In the first section, general information is
provided about the problem defined in this thesis. The second section defines background
information about DO-178C and previously defined maturity models and approaches. The
third section describes previous works that are related with this thesis. The fourth section
explains the method applied in this study in two steps. The first one is comparison of DO-
178C and TMMI model, and the second step defines the guidance approach for avionics
software testing maturity. Section 5 explains the implementation of the method in detail
following these two steps. Guidance approach is applied in a case study and specifically
Section 5.3 refers to the details of the case study. And lastly, Section 6 summarizes the

conclusions of this thesis study with related discussions.

2. BACKGROUND

Safety systems are classified as critical systems in the event of serious injury, damage to the
environment and undesired results. The software used in these systems is considered as
safety-critical. The software used in avionics systems, that is aviation electronics system of
air vehicles, spacecraft, missiles, satellites etc., is classified as safety-critical software, as its
failure can cause undesired results. Some standards have been developed to define specific
constraints and structures on software development processes to prevent errors of these
systems. The first guide document DO-178, “Software Considerations in Airborne Systems
and Equipment Certification” was published in 1982 [1]. The current version, DO-178C
handbook, was released by RTCA, Inc., about a decade ago [2]. Verification and testing
activities are defined in this guide for defect prevention, revealing errors and ensuring

structural coverage [2].

Testing is one of the important issues of safety-critical systems to avoid serious results. Some
of the defects can only be discovered within integration testing phase. The quality of safety-
critical systems should be continuously assessed and improved. Defined software
development standards are not sufficient to guarantee testing quality nor focus on maturity.
The ISO/IEC 29119 “Software and systems engineering - Software testing” is a standard

9% ¢ 29 <6

that contains “test definitions”, “test processes”,

bR T3

test documentation”, “test techniques” and
“keyword-driven testing” concepts [9]. However, ISO/IEC 29119 guidance focuses on

implementation of testing itself, and not specifically on test process improvement goals.

Various approaches and test maturity models focusing on improvement of test processes
have been described. Each maturity approach focuses on different aspects of test process
improvement. Test Improvement Model (TIM) was described in 1997 by Ericson, which
introduces a test improvement approach by focusing on risk management and cost-
effectiveness [3]. Test Process Improvement (TPI) model was described in 2004 by Andersin
[4], which contains key areas such as test specification techniques and defines test maturity
matrix. Test Maturity Model Integration (TMMI) [5] was described by TMMI Foundation,
and its structure is similar to CMMI (Capability Maturity Model Integration) [10]. However,
CMMI focuses on development processes of software, while TMMI focuses on testing

3

processes.

Since ISO/IEC 29119 and TMMI are both guidance documents for testing, they are
compared in study [11] and it is remarked that ISO/IEC 29119 is not enough to cover all
TMMI levels and practices. TMMI offers five maturity levels (Level 1 to 5 respectively;
Initial, Managed, Defined, Measured and finally, Optimization) and each of them has own
specific goals [5]. Each specific goal has specific practices that are defined to achieve the

defined goal [5]. TMMI model and its practices can be applied at all testing levels [5].

On the other hand, testing level-based maturity models are defined, e.g., Unit Test Maturity
Model (UTMM) [6]. UTMM defines maturity levels from Level-0: Ignorance to Level-8:

Automated Builds and Tasks, and is only applicable within unit testing level.

3. RELATED WORK

This section shares summaries of the related work within the literature. Papers related to test
maturity models for integration testing, and test process improvement approaches for safety-
critical software are remarked in this section. Studies for safety-critical software process

improvement are also involved in this section.

In the study [12] by Duncan et al., test maturity model matrix is defined and the authors
focus on safety-critical software in different domains such as medical devices and military.
Proposed model has five maturity levels similar to TMMI [5]. The model does not focus on

a specific testing level (such as integration testing level).

In the paper “Test Process Improvement with Documentation Driven Integration Testing”
by Héser [13] et al., integration testing challenges are determined. The authors present

bottom-up testing approach for improving test process maturity at integration testing level.

In the study called “Testing Practices of Software in Safety Critical Systems: Industrial
Survey” by Kassab et al. [14], testing methods and techniques as well as testing metrics and
defects management and reporting are determined. Non-safety critical and safety-critical

system testing activities are compared.

There are several examples of test maturity model applications and TMMI is the most
common one as the underlying model. In a paper by Veenendaal et al. [15], researchers
present a report for status about TMMI. Also, they define benefits and motivations of using

TMMI, and demonstrate its trending results among industries [15].

In the study by Farid et al. [16], improving test processes by comparing TMMI Level-2
process areas and Scrum practices is aimed. The authors reveal that specific practices of
TMMI Level-2 are generally covered, and that the organizations using the TMMI model can

improve their test processes with the help of Scrum practices [16].

In the study by Garousi et al. [17], a multi-vocal literature review is conducted. A multi-

vocal literature review is a type of a Systematic Literature Review which contains both white
5

papers or blog posts aside from the scientific studies in formal literature. In their study, the
researchers introduce 58 different maturity models with various characteristics such as agile
models, automated test process-based models and level-based models; however, there is no

maturity model reported for integration testing [17].

In the paper by Jang et al. [18], TMMI model is used for automobile control software testing

processes by referring to process areas of TMMI and the evaluation of results.

The study called “Defense Software Test Procedure Improvement Measure Reflecting the
TMMI” by Park et al. [19] is written in Korean, and the English version of the study cannot
not be reached. The abstract of the study in English mentions about TMMI application on

defense software, but the results are not involved in the abstract.

4. METHOD

None of the maturity models introduced above focuses on integration testing level in
avionics software domain. Similarly, the well-recognized software testing standard ISO/IEC
29119 [9] does not focus on software testing maturity or avionics software testing in
particular. In order to fill this gap, this study aims to develop an approach for improving
integration testing level test processes of avionics software considering its domain-based

requirements.

The DO-178C handbook defines software development life-cycle processes starting from
software planning [2]. In the study [20] entitled “Evaluation of accomplishment of DO-178C
objectives by CMMI-DEV 1.3”, intersection of CMMI-DEV (Capability Maturity Model
Integration for Development) practices and DO-178C activities are defined. Some of the
CMMI-DEV practices are matched with the DO-178C activities in this study, however, some
of them are irrelevant [20]. It is concluded in the study that CMMI-DEV is not sufficient to
cover all the software development activities referred in DO-178C and most of the DO-178C
verification activities are out of CMMI-DEV’s scope [20]. On the other hand, verification
and testing activities are in the scope of TMMI since the terminology used in TMMI refers
to ISTQB (International Software Qualifications Board) Standard Glossary of Terms used
in Software Testing [5]. However, TMMI is a generic testing maturity model and not specific

to avionics domain.

In this study, a guidance document approach is developed for improving avionics software
verification process, specifically integration testing process. The DO-178C handbook and
the TMMI model are analyzed to understand the necessity for a guidance approach that is
specific to safety-critical software integration testing. The TMMI model, which can be used
complementary to CMMI [10], is found to be convenient to match its processes and practices
with the verification activities defined in the DO-178C handbook. Also, TMMI is one of the
level-based models that is applicable for all software testing levels, including integration

testing, and it covers both manual regression tests and automated tests [5].

In this context, as the first step, processes in DO-178C are inspected and the activities

defined in DO-178C processes are mapped with the TMMI (Release 1.3) practices, in order
7

to understand the similarity between the two as specific to verification and software testing.
After this, DO-178C avionics software characteristics that are not specifically indicated in
the TMMI model are identified. Since the TMMI model is defined as applicable for all
testing levels, some of the TMMI practices are either organizational level practices or more
convenient for higher levels of testing (e.g., acceptance testing) [5]. Based on the findings
of the mapping, a guidance approach is developed. In this approach, each TMMI practice is
reviewed and references to relevant DO-178C handbook sections are provided for practices
to implement them considering domain specific characteristics. A reference from a TMMI
practice to DO-178C section is called a link. To apply a TMMI practice, links would be
helpful to describe and implement given practices within safety-critical avionics software

characteristics.

4.1. Comparison between DO-178C and TMMI

Software development life-cycle processes are covered in subtitles of the DO-178C

handbook as listed below:

¢ Software planning process,

¢ Software development process,

¢ Software verification process,

¢ Software configuration management process,
¢ Software quality assurance process,

¢ (ertification liaison process. [2]

The DO-178C handbook summarizes these software development life-cycle processes
within tables in Annex-A [2]. Each process involves objectives and related activities to reach
the defined objectives. That is, the tables in Annex-A map activities and objectives for each

process [2].

The TMMI model, on the other hand, offers process areas together with their goals and
practices to achieve these goals, for each TMMI level [5]. The TMMI model contains five
maturity levels, and each level has its own specific practices [5]. Besides, TMMI defines

generic practices that are common for all process areas [5].
8

In the first step of this study, DO-178C process areas are analyzed and each activity defined
in DO-178C sections are compared with TMMI (Release 1.3) practices, in order to
understand the relation between DO-178C verification activities and TMMI test process
maturity practices. Each DO-178C activity is compared with the TMMI’s specific practices
at all maturity levels and with the generic practices. The analyzed DO-178C activities are
grouped as “Covered”, “Partially Covered” and “Not Covered” according to the comparison
results with the TMMI practices. DO-178 activity that is common for at least one TMMI
practice is classified as “Covered”. DO-178C activity having scope that is partially matched
with any TMMI practice is classified as “Partially Covered”. If there is no relevant TMMI

practice for the analyzed DO-178C activity, that activity is classified as “Not Covered”.

DO-178C activities are analyzed respectively, starting from the first process defined in DO-
178C Section-4: Software Planning Process. Table 4.1 shows a snapshot from the
comparison between the activities of software planning process of DO-178C and the TMMI

process area practices.

Table 4.1. Example Comparison: TMMI Practices & DO-178C “Software Planning Process”

SPECIFIC Related DO-178C
PROCESS AREA SPECIFIC GOAL | PRACTICES activi DO-178C Activi TMMI Practice Coverage

2.1 Test Pelicy and Establish a Test Define test
Strategy Policy goals NfA 42.a NOT COVERED
2.1 Test Policy and Establish a Test Define test
Strategy Palicy policy 4.2.b 4.2.b COVERED
Distribute the
2.1 Test Policy and Establish a Test test policy to
Strategy Paolicy stakeholders N/A 4.2.c COVERED
4.2.d NOT COVERED
4.2.b
44.2.c
2.1 Test Policy and Establish a Test Define test 6.4.3
Strategy Strategy strategy 6.4.4.2.a = =
4.2 NOT COVERED
Establish a Test Define the test
2.2 Test Planning \pp h app h 44.2.c 4.2.k NOT COVERED
Establish a Test Define entry
2.2 Test Planning Approach criteria N/A
e s s 44.2a PARTIALLY COVERED
Develop a Test Establish the 4.2.b
2.2 Test Planning Plan test plan 44.2.c 4.4.2b PARTIALLY COVERED
- = 4.4.2.c COVERED
Monitor Product Conduct
Quality against product quality
2.3 Test Monitoring Plan and milestone
and Control Expectations reviews 4.2.b = =
- = 4.5.d PARTIALLY COVERED
Perform Test Perform test
Environment environment
2.5 Test Environment Implementation intake test 4.2.b = =
Report and
Manage and manage test
Control Test environment
2.5 Test Environment Environments incidents N/A 4.6.d NOT COVERED

Since TMMI focuses on testing and test planning process areas, they are related only with
test planning activities within Software Planning Process of DO-178C. Accordingly, the DO-
178C software planning activities are classified as “Covered”, “Partially Covered” and “Not
Covered” as shown in Table 4.1. The DO-178C software planning activities, which are in
the scope of “Test Planning” process area of TMMI, are classified as “Covered”, and it has
been observed that the number of activities in “Covered” and “Partially Covered” groups

corresponds to only half of the practices in related process area.

For each software development life-cycle process defined in DO-178C sections, a new table
(similar to the one in Table 4.1) is created per section (or subsection) considering the
structure of Annex-A. It should be reminded that the tables in Annex-A summarize the
activities of the processes covered in DO-178C [2]. The handbook’s sections of processes
from Section-4 to Section-9 include “Software Planning Process”, “Software Development
Process”, “Software Verification Process”, “Software Configuration Management Process”,

“Software Quality Assurance Process” and “Certification Liaison Process”, respectively [2].

4.2. Guidance Approach with TMMI model for Avionics Software Integration Testing

In the previous subsection it is stated that the contents of the TMMI model and the DO-178C
handbook are compared to understand the requirements of avionics software testing maturity
concept. Avionics software characteristics need more specific testing practices to comprise
avionics software item verification activities. In this step, DO-178C activities and sections
are provided along with relevant TMMI practices. References are defined from TMMI
practices to DO-178C activities and sections. It is intended to apply TMMI by considering

relevant (referred) DO-178C sections in order to assess avionics software test processes.

10

5.METHOD IMPLEMENTATION

In the following subsections, firstly, we explain the implementation details of comparison
between the TMMI practices and DO-178C activities in order to reveal common threads of
them. Also, safety-critical avionics software characteristics are determined during this
implementation. Secondly, we explain the details of guidance approach on integration testing
level-based maturity for avionics software, by considering findings of the first step.
Accordingly, in subsection 5.1, comparison of TMMI and DO-178C documents are
described; and in subsection 5.2, guidance approach is explained. Lastly, subsection 5.3
determines the case study method which was implemented to understand the effectiveness

and applicability of guidance approach.

5.1. Comparison between DO-178C and TMMI

Each process in DO-178C software development life-cycle has objectives and activities that
are defined to achieve related objectives [2]. Activities in subsections are itemized with
letters “a”, “b” etc. in the DO-178C handbook. On the other hand, TMMI model has process
areas, goals of these process areas, and practices to achieve defined goals [5]. Similarity of
structures of these guidance documents helped to compare and determine the needs for
avionics software maturity concept. In study [20], a similar structure-based comparison is
applied. When comparing TMMI practices and DO-178C activities, all levels of TMMI
practices are inspected per related DO-178C activity, so a DO-178C activity can match up
with a practice of any TMMI maturity level. Therefore, there is no comparison constraint for

TMMI maturity levels of practices.

Mappings of DO-178C processes are discussed in the following separate subsections, and
comparison results are summarized in tables for the DO-178C processes. The full version of
mapping table of TMMI practices is shared in Appendix-1.

5.1.1. TMMI versus DO-178C Software Planning Process

Software Planning Process is defined in DO-178C section 4. This section includes

subsections starting from 4.1 “Software Planning Process Objectives” to 4.6 “Review of the

11

Software Planning Process”. Activities in subsections are itemized with letters, e.g., “4.2.a”.
The first DO-178C activity related to software planning objectives is about directive plan
development of processes for stakeholders [2]. TMMI practices focus on testing and test
planning process areas, therefore, its practices are related only with test planning part of DO-

178C software planning objectives and activities.

DO-178C activity 4.2.b describes software development standard usage necessity [2].
TMMI refers to various standards in its process areas. In TMMI Level-2 “Test Policy and

Strategy” process area, two of its practices called “Define test policy” and “Define test

strategy” refer to ISO/IEC 29119-3 standard [9] which is “Software and systems engineering
— Software testing — Part 3: Test documentation” [5]. In this practice, test model, risks of
the products, test levels and objectives are defined within ISO/IEC 29119-3 standard [5].
TMMI Level-2 “Establish the test plan” practice also explains test plan inputs and outputs
with respect to ISO/IEC 29119-3 standard [5]. “Conduct product quality milestone reviews”,
“Identify and prioritize test conditions, “Identify and prioritize test cases”, “Report test
incidents” are other TMMI Level-2 practices referring to ISO/IEC 29119-3 standard [5].
Test Environment activities are considered under ISO/IEC 29119-3 standard [5].
Furthermore, master test plan characteristics are defined with respect to this standard in
TMMI [5]. Other TMMI levels also refers to various standards. For instance, ISO/IEC 25010
(Systems and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality models) standard is represented in the
scope of TMMI Level-3 “Analyze non-functional product risks” activity as risk categories
[5,21]. TMMI Level-3 refers to ISO/IEC 20246 (ISO/IEC 20246:2017 Software and systems
engineering - Work product reviews) standard in the definition of peer review types [5,22].
In TMMI Level-4, product quality characteristics are defined addressing ISO/IEC 25010
standard [5]. One of the generic practices called “Training People” offers topics for different
areas and ISO/IEC 25010 standard is addressed for quality characteristics topic [5,21].

DO-178C activity 4.2.c specifies error prevention method or tool selection necessity [2].
TMMI has a major process area for Defect Prevention in Level-5 [5]. This process area
contains specific goals such as “Determine Common Causes of Defects and Prioritize” and

“Define Actions to Systematically Eliminate Root Causes of Defects” [5]. Firstly, it offers

12

some practices for defect classification. Defects are analyzed in detail afterward [5]. Pareto

Analysis and Histograms methods are offered for defect type analysis [5].

Furthermore, various root cause analysis methods are referred, such as Fault Tree Analysis,
FMEA (Failure Mode Effects Analysis), cause and effect diagrams, Ishikawa fishbone
diagrams, use of defect classifications, Hardware Software Interaction Analysis and process
analysis, which are important methods for complicated safety-critical software systems [5].
Table 5.1 shows mapping of DO-178C activity 4.2.c on TMMI practice list. The complete
mapping between the TMMI process area practices and the DO-178C process activities can
be reached from [23].

Table 5.1. Mapping of TMMI Practices with DO-178C 4.2.c activity

PROCESS AREA SPECIFIC GOAL SPECIFIC PRACTICES LEVEL Related DO-178C activity

Adjust the Test Approach

Based on Review Results Revise the test approach
4.3 Advanced Reviews Early in the Lifecycle appropriate LEVEL-4 N/A
Define defect selection
Determine Common parameters and defect
5.1 Defect Prevention Causes of Defects classification scheme LEVEL-5 4.2.c defect detection
Determine Common
5.1 Defect Prevention Causes of Defects Select defects for analysis LEVEL-5 4.2.c Pareto Analysis and Histograms
Determine Common Analyze causes of selected
5.1 Defect Prevention Causes of Defects defects LEVEL-5 4.2.c
Prioritize and Define Propose solutions to eliminate
5.1 Defect Prevention Actions to Systematically common causes LEVEL-5 4.2.c defect detection

Prioritize and Define
Actions to Systematically
Eliminate Root Causes of Define action proposals and
‘5.1 Defect Prevention Defects submit improvement proposals LEVEL-5 4.2.c

TMMI Level-2 “Test Monitoring and Control” process area offers monitoring test progress
against plan and also it is indicated that, when test progress diverges from plan corrective
actions can be implemented [5]. These TMMI goals and practices can be considered within
DO-178C activity 4.2.e that refers to relation of plan and progress of project [2], however,

the scope of DO-178C activity is not limited to test planning.

DO-178C activity 4.2.1 specifies that “If software development activities will be performed
by a supplier, planning should address supplier oversight” [2]. A generic practice from
TMMI Level-2 offers that in test planning process, relevant stakeholders that can be
maintainers, developers, testers, customers, end users, suppliers, producers, service
personnel, marketers etc. must be determined as planned [5].

13

DO-178C section 4.3 defines software plans and TMMI can be considered within DO-178C
software verification plan (in section 11.3) [2]. Software plan activities are assumed as
software verification plan activities and evaluated. TMMI Level-2 test planning indicates

that plans need to be updated regarding to changes.

DO-178C section 4.4 describes software lifecycle environment planning [2]. Activity 4.4.1.c
of DO-178C handbook indicates that software verification or development standards can be
used to reduce related errors rooted in software development environment [2]. Whereas,

TMMI focuses on test environment and product risk categories for test planning [5].

DO-178C sub-section 4.4.2 refers to programming language and compiler of software [2].
Changes in compiler may cause to make previous verification process invalid according to
4.4.2.c activity of DO-178C [2]. Some of the TMMI Level-2 practices offers “regression
testing” and “re-testing activities” [5] which may be used for handling proposed problem in
DO-178C activity. TMMI Level-3 master test plan also offers re-resting and regression
testing approaches [5]. However, DO-178C section 4.4.2 defines language and compiler
effects on previous verification processes, TMMI does not refer to it as a main reason for re-

testing activities [5].

DO-178C section 4.4.3 specifies test environment topic [2]. Test environment specification
is proposed in TMMI Level-2 “Test Environment” process area [5]. It is reviewed to ensure
its suitability, correctness, feasibility and precise representation of a real-life operational
environment [5]. DO-178C defines test environment that could be an emulator, a simulator
or target computer [2]. TMMI refers to a practice called “Analyze the test environment
requirements” which aims to determine that test environment sufficiently represents the
‘real-life’ situation [5]. Also, it takes risks related to the test environment requirements into

consideration [5].

In TMMI Level-2, the generic practices “Establish an Organizational Policy” and “Monitor
and Control the Process” remark that test environment policy refers to a test environment
close to real-life environment [5]. This issue is critical for reliability of safety-critical

software tests. Since safety critical software failure can cause serious results, testing
14

activities of safety-critical systems need more attention compared to non-safety critical

software systems.

Table 5.2 summarizes comparison results of DO-178C Section 4 activities versus TMMI
practices. First column of table shows DO-178C activity number. The analyzed DO-178C
activities are grouped as “Covered”, “Partially Covered” and “Not Covered” according to
the comparison results with the TMMI practices in the second column. Annex-A summarizes

DO-178C activities in tables, and tables are placed in Appendix-2.

DO-178 activity that is common for at least one TMMI practice is classified as “Covered”.
DO-178C activity having scope that is partially matched with any TMMI practice is
classified as “Partially Covered”. If there is no relevant TMMI practice for the analyzed DO-
178C activity, that activity is classified as “Not Covered”.

Table 5.2. Comparison of DO-178C Section 4 activities vs. TMMI practices

I

4.2.a NOT COVERED

4.2.b COVERED

4.2.c COVERED

4.2.d NOT COVERED

4.2.e PARTIALLY COVERED
4.2.f PARTIALLY COVERED
4.2 PARTIALLY COVERED
4.2.h NOT COVERED

4.2.i NOT COVERED

4.2, NOT COVERED

4.2.k NOT COVERED

4.2.1 COVERED

4.3.a NOT COVERED

4.3.b NOT COVERED

4.3.c PARTIALLY COVERED
4.4.1.a NOT COVERED
4.4.1b NOT COVERED
4.4.1.c NOT COVERED
4.4.1d NOT COVERED
44.1.e NOT COVERED
4.4.1.f NOT COVERED
4.4.2.a PARTIALLY COVERED

15

4.4.2.b PARTIALLY COVERED

4.4.2.c COVERED

4.4.3.a PARTIALLY COVERED
4.43.b PARTIALLY COVERED
4.5.a PARTIALLY COVERED
4.5.b PARTIALLY COVERED
4.5.c PARTIALLY COVERED
4.5.d PARTIALLY COVERED
4.6.a NOT COVERED

4.6.b NOT COVERED

4.6.c NOT COVERED

4.6.d NOT COVERED

5.1.2. TMMI versus DO-178C Software Development Process

Software Development Process is defined in DO-178C section 5. This section includes
subsections starting from 5.1 “Software Requirements Process” to 5.5 “Software

Development Process Traceability”. Activities in subsections are itemized with letters, e.g.,

“5.4.1.a".

DO-178C activity 5.1.2.a defines requirements analysis necessity to avoid ambiguities,
inconsistencies and undefined conditions [2]. In the scope of TMMI Level-3 “Peer Reviews”
process area, it is noticed that it refers to the practices for performing peer reviews on work
products, e.g., reviews implemented by testers [5]. Also, “Establish Peer Review Approach”
goal refers to “Identify work products to be reviewed” practice that includes determining

work product and peer review type by taking product risks into consideration [5].

Also, TMMI “Peer Review” process area involves “Perform Peer Reviews” specific goal
[5]. As the practice of this goal, test basis documents are reviewed by testers for testability,
e.g., whether test design techniques which was chosen is applicable. One of the generic
practices that relates with this process area proposes peer review policy that refers to peer
review attributes in organization [5]. It includes work product to be reviewed, reviewer

training issue and role of testers.

16

DO-178C activity 5.1.2.b defines feedback reporting of software requirements inputs for
clarification or correction [2]. In TMMI “Performing Peer Review” process area, two

practices propose that peer review results are logged and defects found are reported [5].

Table 5.3 Mapping of TMMI practices with DO-178C activity 5.1.2.a and 5.1.2.b

PROCESS AREA SPECIFIC GOAL SPECIFIC PRACTICES LEVEL Related DO-178C activity

Perform Non-functional

3.4 Non-functional Testing Test Execution Write test log LEVEL-3 N/A
Establish a Peer Review Identify work products to be 4.2.b [I1SO 20246]

3.5 Peer Reviews Approach reviewed LEVEL-3 5.1.2.a
Establish a Peer Review

3.5 Peer Reviews Approach Define peer review criteria LEVEL-3 5.1.2.a

3.5 Peer Reviews Perform Peer Reviews Conduct peer reviews LEVEL-3 5.1.2.b

Testers review test basis 5.1.2.a

3.5 Peer Reviews Perform Peer Reviews documents LEVEL-3 5.1.2b

3.5 Peer Reviews Perform Peer Reviews Analyze peer review data LEVEL-3 6.4.4.1.c
Align Test Measurement Establish test measurement

4.1 Test Measurement and Analysis Activities objectives LEVEL-4 N/A

DO-178C section 5.2.2 describes “Software Design Process” activities including low-level
requirements and high-level requirements [2]. However, TMMI does not offer specific
practices for high-level and low-level requirements. Therefore, section 5.2.2 does not match

TMMI practices directly.

TMMI does not specify either user-modifiable or deactivated code that are software
characteristics for airborne systems, therefore activities in DO-178C section 5.2.3 and 5.2.4

are unrelated with TMMI approach [2].

Low-level requirements, high-level requirements, their relations and verification processes
indicated in DO-178C [2] could be considered in separate activities in test maturity models
considering testing levels. Integration testing is the type of requirement-based testing and to
propose a test maturity guidance for integration testing level, high-level requirements and

their verification should be considered.

DO-178C section 5.3.2 “Software Coding Process Activities” [2] offers source code
implementation objectives that is out of TMMI scope, therefore, these DO-178C activities
do not match TMMI practices. DO-178C section 5.4.2 “Integration Process Activities” [2]
is not relevant to TMMI practices. DO-178C section 5.5 refers to traceability of requirements

[2]. Traceability between test conditions and requirements is issue of TMMI [5], however,

17

traceability of different levels of requirements are not in the scope of TMMI. TMMI also
proposes requirements / product risks traceability matrix in level-3. Table 5.4 shows the

comparison results of the mapping process for DO-178C section 5 activities.

Table 5.4. Comparison of DO-178C Section 5 activities vs. TMMI practices

5.12a PARTIALLY COVERED
5.1.2b PARTIALLY COVERED
5.1.2.c NOT COVERED
5.1.2.d NOT COVERED
512e NOT COVERED
5.1.2f NOT COVERED
51249 NOT COVERED
5.1.2.h NOT COVERED
5.1.2. NOT COVERED
51.2j NOT COVERED
522a NOT COVERED
5.2.2.b NOT COVERED
5.22c NOT COVERED
5.2.2.d NOT COVERED
522e NOT COVERED
5.2.2f NOT COVERED
52249 NOT COVERED
523 NOT COVERED
524 NOT COVERED
5.3.2 NOT COVERED
54 NOT COVERED
5.5 NOT COVERED

5.1.3. TMMI versus DO-178C Software Verification Process

“Software Verification Process” is defined in DO-178C section 6 [2]. This section includes
subsections starting from 6.1 “Purpose of Software” to 6.6 “Verification of Parameter Data
Items” [2]. The scope of this section is very large and DO-178C handbook considers sub-
sections of section 6 within five tables in Annex-A [2]. Also, some of the objectives are

18

itemized with letters similar to the activities and placed in the tables of Annex-A [2].
Therefore, in the subsections below, objectives are also discussed in addition to activities
considering the tables of Annex-A [2].

5.1.3.1. TMMI versus DO-178C Section 6.3

DO-178C handbook expresses “Review and analyses of high-level requirements” objectives
in section 6.3.1 [2], and these objectives are partially covered by TMMI practices. The
objectives related with software verification activities are inspected. Both TMMI Level-3
process area “Non-Functional Testing” and Level-4 process area “Product Quality
Evaluation” [5] define compatibility characteristics from ISO/IEC 25010 standard that is one
of the objectives of DO-178C [2]. Accuracy as a product quality attribute is referred in
TMMI [5] while in DO-178C handbook, accuracy and consistency of high-level
requirements are addressed [2]. Nevertheless, “Peer Review” [5] practices from TMMI
Level-3 are matched with high-level requirement analysis of DO-178C [2]. Traceability is
another objective of this section between system and high-level requirements [2] while
traceability between requirements and test conditions is issue of TMMI [5]. DO-178C
handbook refers to verifiability in section 6.3.1 [2], which is in the scope of TMMI Level-3
“Peer Review” process area as testability [5]. Table 5.5 shows mapped TMMI practices to
DO-178C section 6.3.

Table 5.5. Mapping of TMMI Practices with DO-178C Section 6.3

PROCESS AREA SPECIFIC GOAL SPECIFIC PRACTICES LEVEL Related DO-178C activity

Establish Measurable and

Prioritized Project Goals
4.2 Product Quality Evaluation for Product Quality Identify product quality needs LEVEL-4 N/A

Establish Measurable and Define the project’s

Prioritized Project Goals quantitative product quality 4.2.b [ISO/IEC 25010]
4.2 Product Quality Evaluation for Product Quality goals LEVEL-4 6.3.1-6.3.2

Establish Measurable and Define the approach for
Prioritized Project Goals = measuring progress toward the
4.2 Product Quality Evaluation for Product Quality project’s product quality goals LEVEL-4 N/A

DO-178C section 6.3.2 defines similar objectives with section 6.3.1, except it refers to low-

level requirements which are not considered separately in TMMI model [2].

19

DO-178C section 6.3.3 and 6.3.4 define objectives for software architecture analysis; review
and source code analysis and review objectives, respectively [2]. Scope of these objectives

are large and not covered by TMMI practices.

5.1.3.2. TMMI versus DO-178C Section 6.4

DO-178C section 6.4 refers to “Software Testing” [2]. Subsection 6.4.1 refers to “Test
Environment” and in activity 6.4.1.a it is expressed that there are some types of errors which
can only be detected in the tests of integrated environments, and also DO-178C defines
multiple test environment necessity [2]. In TMMI Level-2, the practice called “Define Test
Strategy” from “Test Policy and Strategy” process are refers to test environment issue firstly
referencing “ISO 29119-3” [5]. However, test environment characteristics are defined in
TMMI Level-2 “Test Environment” process area [5]. Test environment and its similarity
with target (or real-life environment) are considered in the scope of both DO-178C handbook
and TMMI [2] [5].

Emulators or simulators used in verification activities are also expressed in DO-178C [2].
Simulators are placed in one of the test environments needs under specific practice called
“Elicit test environment needs” that belongs to “Develop Test Environment Requirements”
goal of TMMI [5]. This TMMI practice definition is more detailed than test environment
activity defined in DO-178C handbook section 6.4.1 [2]. Test environment requirement
documentation and analysis are practices of test environment process area belonged to
TMMI [5]. TMMI also refers to “Manage and Control Test Environments” goal that offers
various practices and one of them is systems management practice which performs on the
test environment that aims efficiently and effectively improving the test execution process
[5]. Also, TMMI Level-2 “Report test incidents” practice indicates that incident reports
should include test environment information of executed test case [5]. TMMI model’s
generic practices also take test environment into consideration suggesting that the test

environment should be as close as possible to real life [5].

TMMI Level-3 generic goal called “Institutionalize a Defined Process” defines a generic
practice that uses number of defects that were not revealed in testing phase because of not
sufficient test environment and occurred in production as a measure for improvement of test

20

processes [5]. Since DO-178C classifies some errors that are only detected during tests
executed in integrated target environment [2], the referred TMMI practice becomes crucial

and supports safety critical software testing.

DO-178C section 6.4.2.1 defines “Normal Range Test Cases” issue as the subsection of
“Requirement-Based Test Selection” [2]. TMMI Level-2 “Test Design and Execution”
process area refers to a specific goal called “Perform Test Analysis and Design Using Test
Design Techniques” [5]. This goal’s first practice is “Identify and prioritize test conditions”
[5]. This practice involves sub-practice for selecting the most appropriate test design
techniques among the common ones [5]. “Equivalence Partitioning” and “Boundary Value
Analysis” are specified in DO-178C section 6.4.2.1.a as an activity [2] and they are in the
scope of this TMMI practice.

State transition testing is another test technique also proposed under “Identify and prioritize
test conditions” practice of TMMI [5], which is another activity described in 6.4.2.1.c [2].
White box test techniques, also represented in the previous TMMI practice called “ldentify

and prioritize test conditions”, can be used to verify Boolean operators and variable usage.

DO-178C section 6.4.3 defines requirement-based testing method with different types of

testing such as;

e Requirements-Based Low-Level Testing
e Requirements-Based Hardware/Software Integration Testing,

e Requirements-Based Software Integration Testing [2].

TMMI addresses all test levels, acceptance tests, integration tests and low-level tests [5].
Different test level activities are used to detect different error types and in DO-178C standard

they are addressed individually [2].
TMMI Level-2 “Test Policy and Strategy” process area refers to “Define test strategy”

practice to identify test levels and the objectives, main tasks, responsibilities and entry or

exit criteria are determined for each level [5].

21

Activities in DO-178C section 6.4.4.1 are related with test coverage analysis and they match
with TMMI practices in different maturity levels [2]. Activities expressed in 6.4.4.1.b are
not covered by TMMI practices because “Robustness test” defined in DO-178C are not
considered in TMMI document [2], [5].

TMMI Level-2 process area “Test Design and Execution” offers a practice for traceability
between requirements and test conditions [5]. Also, traceability is described in TMMI Level-
3 addressing ISO 29119-3 standard as test design specification [5]. Furthermore, both
functional and non-functional requirement traceability are defined in different TMMI levels
[5]. Therefore, DO-178C [2] activities related with requirement traceability 6.4.4.1.a and
6.4.4.1.d are covered by TMMI practices.

In TMMI Level-3 “Peer Review” process area, peer review data analysis is defined that
involves defect resolution impact analysis [5] and likewise, DO-178C activity 6.4.4.1.c

offers defect analysis [2].

Also, “Test Strategy Definition” practice of TMMI Level-2 indicates system requirement
coverage, code coverage and user requirement coverage actions for different software test
levels addressing ISO 29119-3 standard [5]. Traceability matrix for requirement coverage is
represented in the same TMMI level [5]. Coverage analysis tools are defined as generic
practices in TMMI Level-2 [5]. TMMI Level-4 “Test Measurement” process area describes

structural coverage as a measurement object [5].

In DO-178C section 6.4.4.2 activity “a”, structural coverage analysis for software levels is
considered [2]. In TMMI Level-2, coverage levels are defined for different test levels from
unit test to acceptance test according to “ISO 29119-3” [5]. Also, coverage analysis is used
to determine test exit criteria in the TMMI Level-2 practices [5]. Another TMMI Level-2
sub-practice offers that test coverage as test process exit criteria should be monitored against
test plan [5]. “Test Design and Execution” process area offers another generic practice for
coverage analysis tools for test processes. TMMI Level-4 “Specify test measures” practice

specifies test measures as peer review coverage, structural coverage and requirements

22

coverage [5]. Table 5.6 shows an example mapping of section 6.4.2 and 6.4.4 activities of
DO-178C.

As DO-178C considers requirement levels, requirement coverage and analysis are much
more detailed than TMMI practices, and DO-178C section 6.4.4.2 activities could not be
considered as fully covered by TMMI practices [2].

Table 5.6. Mapping of TMMI Practices with DO-178C Section 6.4

PROCESS AREA SPECIFIC GOWML SPECIFIC PRACTICES LEVEL Related DO-178C activity

4.2.b (15029119-3]
Perform Test Analysis and 6.4.4.1.a
Design using Test Design Identify and prioritize test 6.4.4.1.d
2.4 Test Design and Execution Technigues cases LEVEL-2 6.5
Perform Test Analysis and 6.4.4.1.a
Design using Test Design Maintain horizontal traceability 6.4.4.1.d
2.4 Test Design and Execution Techniques with requirements LEVEL-2 6.5
Perform Test
2.4 Test Design and Execution Implementation Create specific test data LEVEL-2 N/A

5.1.3.3. TMMI versus DO-178C Section 6.5

Relation of TMMI practices and DO-178C Section 6.4.4.1 activities is proposed previously.
Both functional and non-functional requirement traceability are expressed in different
TMMI levels as horizontal traceability [5]. Horizontal traceability is defined as traceability
of requirements between layers of test documentation and it is bi-directional [24]. DO-178C
introduces three bi-directional traceability activities in section 6.5 [2].

23

Other traceability types, except requirement traceability, introduced in DO-178C section 6.5
are traceability between test cases and test procedures and traceability between test results
and procedures [2]. TMMI Level-2 and Level-3 practices refer to traceability of test cases
[5]. Also, specific practice called “Develop and prioritize test procedures” defines
traceability between procedures and test cases in TMMI Level-2 [5].

5.1.3.4. TMMI versus DO-178C Section 6.6

DO-178C section 6.6 defines Parameter Data Item, which is a feature to enable changing
behavior of software without modifying its code, is a domain specific characteristic of
airborne software. Since TMMI is not a domain specific test maturity model, it does not offer
any verification or test maturity practice for parameter data items. Table 5.7 shows the

comparison between DO-178C activities in section 6 and TMMI practices.

Table 5.7. Comparison of DO-178C Section 6 activities vs. TMMI practices

6.3.1 PARTIALLY COVERED 6.3.2 PARTIALLY COVERED 6.4.1a PARTIALLY COVERED
6.4.2.1(4) COVERED
6.4.2.2(7) NOT COVERED
6.4.3(3) PARTIALLY COVERED
6.4.4.1a COVERED
6.4.4.1.b NOT COVERED
6.44.1.c COVERED
6.4.4.1.d COVERED
6.4.4.2(4) PARTIALLY COVERED
6.5(2) COVERED
6.5(1) PARTIALLY COVERED
6.6 NOT COVERED

5.1.4. TMMI versus DO-178C Software Configuration Management Process

TMMI considers “Configuration Management” in its general practices referring to CMMI
configuration management processes [5]. According to TMMI Level-2, configuration
management must be a part of determining test strategy [5]. Also, TMMI Level-2 process
areas define configuration management objects as test estimation data, test plan, test strategy,

product risk assessments, test policy, reports, logs, test case specification etc. [5].

DO-178C section activity 7.2.1.a offers establishing configuration identification [2] and
TMMI general practices are related with this activity. Change control is a sub-practice of
TMMI “Configuration Management” practice [5], which is also defined as an activity in DO-

24

178 as 7.2.1.c [2]. However, all of the activities in DO-178C subsection 7.2.1 are not fully
covered by TMMI practices [2].

Activities in DO-178C subsection 7.2.2 are related with CMMI [10] practices more than
TMMI practices, therefore activities of this subsection are not matched with TMMI

practices.

Problem reporting activities are defined in DO-178C that the problem can be software
anomalies or defects [2], and TMMI considers problem reporting and defect prevention
practices in its various levels of process areas [5]. Defects can occur after execution of test
cases. TMMI Level-2 offers reporting and analyzing test incidents [5]. Test incident reports
contain “description of the incident (environment, actual results, input, anomalies, expected
results, observations, attempts to repeat test procedure steps, and testers), time information,
status of test incident and risk” [5]. Test logs are created after test incident reporting phase

[5]. Test incident management is the next step to resolve incidents properly [5].

TMMI Level-2 practices define sequential practices for incident management [5].
Configuration (or change) control board (CCB) meetings are arranged to decide how to take
action to handle incidents [5]. After CCB decision, incident fixing activities are performed
in respective teams and confirmation tests are executed to close incident [5]. Finally, incident
status is reported to stakeholders and CBB meetings are arranged to analyze status reports
[5]. TMMI “test design and execution” practices cover DO-178C section 7.2.3 activities [5].
Along with functional test incidents, non-functional test incident reporting and analyzing is
in the scope of TMMI Level-3 practices [5]. In addition to software incidents, test
environment incidents are also reported by applying incident classification scheme in the
scope of TMMI-Level 2 test environment practices [5]. Defect prevention activities of
TMMI Level-5 are not considered in the scope of DO-178C section 7.2.3 [5] [2].

DO-178C section 7.2.4 and 7.2.5 define change control and change review activities in detail
[2]. These sections are partially covered by TMMI configuration management or CCB
(configuration control board) practices [5]. Activity “d” of DO-178C section 7.2.4 can be

considered in the scope of CCB activities [2]. In TMMI Level-2 itis remarked that, whenever

25

a requirement change occurs, it may affect test conditions; therefore, the test design

specifications and test conditions need to be revised [5].

Corrective action management goal is defined in TMMI Level-2 “Test monitoring and
control” process area [5]. Also, TMMI Level-2 “Execute test cases” practice offers that test
activities must be repeated by confirmation tests after changes [5]. These TMMI actions are
associated with DO-178C activities 7.2.4.d and 7.2.4.e [2].

TMMI Level-2 “Test Planning” process area includes product risk assessment practices [5].
Change related risk is one of the risk categories specified in risk category definition practice
of TMMI [5]. Also, requirement changes cause to revise the product risks again [5].
Furthermore, it is pointed that, documentation of the product risks needs to be revised when
there are requirement changes or additions that can affect product risks [5]. DO-178C
activities “7.2.5.a” and “7.2.5.b” propose requirement or software life-cycle data change
impact assessment and system safety assessment issues [2], whereas TMMI level-2 discusses
change-related risk assessment [5]. Table 5.8 shows some of the mapped activities from DO-
178C Section 7.2.3 on to TMMI practices.

Table 5.8. Mapping of TMMI Practices with DO-178C Section 7.2

PROCESS AREA SPECIFIC GOML SPECIFIC PRACTICES EVEL Related DO-178C activity

2.4 Test Design and Execution Perform Test Execution Execute test cases LEVEL-2 7.2.4d

4.2.b (15029119-3]
6.4.1.a
2.4 Test Design and Execution Perform Test Execution Report test incidents LEVEL-2 7.23
4.2.b (15029119-3]
2.4 Test Design and Execution Perform Test Execution Write test log LEVEL-2 7.23
Decide disposition of test
Manage Test Incidents to incidents in configuration 7.2.3.
2.4 Test Design and Execution Closure control board LEVEL-2 8.3.d
Manage Test Incidentsto Perform appropriate action to 7.2.3.
2.4 Test Design and Execution Closure fix the test incident LEVEL-2 8.3.d
Manage Test Incidents to Track the status of test 7.2.3.
2.4 Test Design and Execution Closure incidents LEVEL-2 8.3d

DO-178C subsections 7.2.6., 7.2.7, 7.4 and 7.5 are not relevant to TMMI practices, and
activities are considered as “Not Covered” in these sections. Table 5.9 shows mapping result
of DO-178C Section 7 activities.

26

Table 5.9. Comparison of DO-178C Section 7 activities vs. TMMI practices

7.2.1.a COVERED
7.2.1b NOT COVERED
7.21c COVERED
7.2.1.d NOT COVERED
7.2.1e NOT COVERED
7.2.2 NOT COVERED
7.2.3 COVERED
7.2.4.8 NOT COVERED
7.2.4.b NOT COVERED
7.2.4.c NOT COVERED
7.2.44d COVERED
7.2.4.e COVERED
7.2.5.a COVERED
7.2.5.b COVERED
7.25.¢c NOT COVERED
7.2.5.d NOT COVERED
7.2.6 NOT COVERED
1.2.7 NOT COVERED
7.4 NOT COVERED
I.5 NOT COVERED

5.1.5. TMMI versus DO-178C Software Quality Assurance Process

DO-178C section 8 defines “Software Quality Assurance Process” [2] and TMMI model
addresses in its all levels “CMMI Process and Product Quality Assurance” process area
practices for its generic practice called “Objectively evaluate adherence” [5]. Also, TMMI
Level-3 “Test Organization” process area offers to establish a team of testers that are
responsible for determining product quality goals and measuring quality characteristics [5].
This process area offers a practice called “Deploy standard test process and test process
assets” and quality assurance is involved in the deployment [5]. TMMI Level-4 “Product
Quality Evaluation” process area expresses that quality assurance group must define goals
for process and product quality assurance, and evaluate the performance of project or

progress in accomplishing these goals [5].
27

Quality assurance and its relation between testing activities are in the scope of TMMI [5],
however, objectives and activities described in DO-178C are not fulfilled by TMMI
practices. DO-178C activity 8.2.d.5 that refers to software configuration management plan

[2] can be considered as compliant to TMMI configuration management practices [5].

DO-178C section 8.3 “Software conformity review” is almost out of TMMI scope [2].
Nevertheless, DO-178C activity 8.3.d, defined as problem report evaluation and status
logging [2], can match up with CCB meeting reporting, test incidents fixing and incident
status tracking practices of TMMI Level-2 “Test Design and Execution” process area [5].

Table 5.10 shows comparison result for section 8 activities of DO-178C.

Table 5.10. Comparison of DO-178C Section 8 activities vs. TMMI practices

8.2. PARTIALLY COVERED

8.3 PARTIALLY COVERED

5.1.6. TMMI versus DO-178C Certification Liaison Process

There is no DO-178C Certification Liaison activity that is related with TMMI practices.
Therefore, all of the activities of this section are considered as “Not Covered” by TMMI

practices. Table 5.11 shows comparison result for section 9 activities of DO-178C.

Table 5.11. Comparison of DO-178C Section 9 activities vs. TMMI practices

9.2 NOT COVERED

9.3 NOT COVERED

As a result, it has been observed that TMMI practices are not sufficient alone to guide
accomplishing DO-178C verification activities. DO-178C has avionics software

development characteristics and definitions that are not in the scope of TMMI. DO-178C

28

defines avionics software specific items and concepts such as verification of parameter data
item, user modifiable software, deactivated code, multi-version dissimilar software
verification, option selectable software, COTS software and field-loadable software [2] that
are not discussed in TMMI. Therefore, some of the process activities in DO-178C (regarding
verification and testing of avionics software) do not match with the TMMI practices. For
example; low-level requirements, high-level requirements, and their relation to system
requirements are defined in detail within DO-178C objectives, but TMMI process area goals
do not match this structure which is specific to avionics domain. In addition, some of the
change related activities (software change, requirement change, new compiler usage,
different loader version, change of development environment or application, etc.) and re-
execution needs of tests are defined in DO-178C within safety-critical aspects [2]. Even
though TMMI offers change related practices [5], scope of the change should be revised by
considering DO-178C safety-critical avionics software development. Moreover, the DO-
178C handbook includes a subsection for “Robustness Test Cases” that shows software
behavior in abnormal conditions [2]. It is critical to avoid undesired results, but it is not

particularly discussed in TMMI practices.

The shortages defined previously should not be considered as weaknesses of the TMMI
model since it is a general maturity model that offers many practices to improve testing
processes and product quality. Rather, the shortages indicate the need for a testing maturity
guidance specific to avionics domain. Finally, on the opposite side of the mapping, some
TMMI process areas such as test training programs, incident management and advanced
reviews [5] are not discussed in DO-178C processes in detail. Integration testing is one of
the critical test levels in the scope of high-level requirements-based testing in DO-178C to
avoid undesired results of safety-critical avionics software. It is observed that TMMI process
area practices can enrich the activities for integration testing level defined in DO-178C.
Therefore, the results of bi-directional comparison between DO-178C activities and TMMI
practices have shown that the mutual consideration of these two resources for a maturity

guidance approach for integration testing of avionics software is prominent.

29

5.2. Guidance Document for TMMI Applications on Avionics Software Integration

Testing

In the previous section, the contents of the TMMI model and the DO-178C handbook are
compared to understand the requirements of avionics software testing maturity concept.
Avionics software characteristics need more specific testing practices to comprise avionics
software item verification activities. As the next step, a guidance document that employs
TMMI practices as complementary to DO-178C activities is developed to effectively
improve domain specific software testing processes, more specifically integration testing

activities, within avionics software development.

In this guidance approach, domain specific characteristics of safety critical avionics software
are defined considering DO-178C handbook sections. Then, each TMMI practice is
reviewed to implement it by applying these characteristics and to achieve this, some links
are defined between TMMI practices and relevant DO-178C sections by referencing DO-
178C sections from within the practices. Another point is that, there are some common terms
and concepts (e.g., test strategy, test policy and test goals) placed in multiple TMMI
practices. Therefore, when a link (reference from a practice to DO-178C sections) is defined
for a practice to implement its common term considering domain specific characteristics,
other practices containing the same term will also apply to DO-178C characteristics and all

relevant practices will apply to DO-178C characteristics within the links.

Safety critical airborne software has specific terms and definitions, which are gathered from
DO-178C handbook as:

1. Failure condition categorization, software level definitions considering failure
conditions (from Level-A catastrophic to Level-E no effect) (defined in DO-178C
sections 2.3, 2.3.2, 2.3.3)

2. Domain specific software considerations and their verification processes
(verification of parameter data items, field-loadable software, multi-version
dissimilar software etc.) (defined in DO-178C sections 6.6, 2.5)

3. Traceability definitions and scope (defined in DO-178C section 6.5)

30

4. Change related re-verification activities, change reviews, configuration management
(defined in DO-178C sections 4.4.2, 7.2, 7.2.5)

5. Test environment (defined in DO-178C section 6.4.1)
6. Purpose of software verification (defined in DO-178C section 6.1)
7. Software verification plan and result (defined in DO-178C section 11.3, 11.4)

8. Considerations about testing and scope of testing (defined in DO-178C sections 6.2,
6.4,6.4.2, 6.4.3)

9. Software quality assurance process (defined in DO-178C section 8.1)

10. Tool qualification (defined in DO-178C section 12.2)

After determining domain specific characteristics from DO-178C handbook, each TMMI
practice is reviewed and references to relevant DO-178C handbook sections are provided for
practices to implement them considering domain specific characteristics. The reference from
a TMMI practice to DO-178C section is called a link. To apply a TMMI practice, links would
be helpful to describe and implement given practices within safety-critical avionics software

characteristics.

In the document called “TMMIi Framework R1 3” [5], a practice can refer to another practice
(or a goal) from different process areas when their scopes are related with each other. For
example, Level-2 practice called “Perform a generic product risk assessment” refers to
“Perform a Product Risk Assessment” goal which is defined in another process area. On the
other hand, a TMMI practice can be related with a practice from another level without.
Instead of directly referring to the name of relevant practice, the practice can refer to a term
that is previously defined in the relevant practice. For example, Level-3 practice called
“Define the test organization” offers test organization establishment based on previously

described test policy and goals in Level-2.

Therefore, a term or concept can be expressed several times in different TMMI practices and
a definition specified in a practice can affect other relevant practices. Considering the whole

TMMI practices, the common terms placed in TMMI practices are listed as:

31

Business needs and objectives;
Test strategy, test policy and test goals;
Test environment;

Risk assessment & software level and categorization;

o w0 b

Test approach.

Common terms contain references (links) to relevant DO-178C sections and as a result, the
items “Business needs and objectives” and “Test strategy, test policy and test goals” appear
in 14 different practices. Also, the item “Test environment” is observed in 34 practices of
TMMI. “Test approach” is also expressed or revisited in further practices in TMMI. Lastly,
“Risk assessment & software level and categorization” is indicated 12 times in TMMI
practices. Therefore, links offered for a practice by this guidance approach can affect other
practices if it contains common terms or referred by other practices. Nevertheless, it must be
known that guidance document offers many links besides common terms containing
practices. Common terms are defined to pinpoint that, when a practice with a common term
has a link that is offered by guidance document approach, it can affect more than one practice
compared to other practices. The TMMI practice list with relevant DO-178C references is
provided in Table 5.12. The first column defines TMMI practices and the second columns
defines links. The last column called “Relevant Practice(s) Defined in TMMI” refers to

practices that are related with previously defined practices or process areas.

Table 5.12. TMMI practice list with DO-178C section references (links)

Relevant Practice(s) Defined

TMMI PRACTICE Reference To Relevant DO-178C Section .
in TMMI

1) Section 6.1- Purpose of Software
Verification

2) Section 6.4.3.b- Requirement Based
Software Integration Testing

3) Section 2.3- System Safety Assessment
Process And Software Level

Define test goals

1) Section 6.4- Software Testing for
Definition Of Testing

2) Section 6.2- Overview Of Software
Verification Process Activities

Define test policy

Distribute the test policy to

stakeholders N/A

1) Section 2.3.2- Failure Condition
Categorization
2) Section 2.3.3- Software Level Definition

Perform a generic product
risk assessment

32

Define test strategy

1} Section 6.4- Software Testing for Test
Twpes

2y Bection 6.4 2- Reguirement Based Test
Selection for Test Case Design Tech.

1y Section 6.4.3.B - Reguirement Based
Software Integration Testing for
Integration Testing

4y Section 6.4 1- Test Environment

5) Section 11.14- Software Verification
Results For Test Documentation And

Test Goals & Test Policy
Practices

Reporting
Dnstribute the test strategy N/A
to stakeholders)
Define test performance N/A Test Goals and Test Policy

indicators

Practices

Deplow test performance
indicators

1} Section 6.4.4 Test Coverage Analysis
(6.4.4.1 Test Coverage Analysis And
6.4.4.2 Structural Coverage Analysis)

Define product risk

categories and parameters

1} Seection 2.3.2 - Failure Condition
Cateporization

2y Secton 2.3 3-Software Level Definition

3} Section 7.2.5 Change Reviews For

Change Related Risks

[dentify product risks

1} Seection 2.3.2 - Failure Condition
Cateporization

2y Secton 2.3 3-Software Level Definition

Analyze product risks

1} Seection 2.3.2 - Failure Condition
Categorization
2y Section 2.3 3-Software Level Definition

[dentify items and features
to be tested

13 Note from Section 6.4

2} Section &.6- Verfication of Parameter
Data [tems

1) Section 2.5- Software Considerations

Diefine the test approach

13 Section 6.4.2.1- Normal Range Test Cases

2} Section 6.4.2.2- Robustness Test Cases

3} Section 6.4.3- Reguirement Based Testing
Methods

4y Section 6.4.1- Test Environment and

Limitations
%Y Section 4.4.2 ¢ (for retesting)
Diefine entry criteria MN/A
Define extt criteria MN/A
Define suspension and N/A

resumpiion criteria

Establish a top-level work
breakdown structure

1y Section 7.2-Configuration Management
Process Activities

Define test lifeeyele

MN/A

Determine estimates for
test effort and cost

1y Section &.4.1- Test Environment
2y Section 2.3.2- Software Level Definition

(for Priority Level Of Related Product

Risk)
Establish the test schedule | N/A
Plan for test staffing MN/A
_F‘Ia.n stakeholder N/A
involvement
Identify test project nsks MN/A

33

5% Section 11.3 - Software Yenfication Plan
6y Section 4.4.2.C (Revenfication After
Change) .
. . i 7Y Section 12.1.3 (Change of Application Or I_\::nn.r_' Yoot Approach
Establish the test plan . S . Practice
Development Environment Can Reguire
Reverification)
B} Section 11.14- Software Verification
Results (for Test Reporting)
L 1} Section 11.3 - Software Yenfication Plan
Review test plan e .
(In Level of Integration Testing Activities)
Recoarils wark and 1} Section 2.5- Software Constderations
resource levels
Dl:-tam. test plan N/A
commitments
Monttor test planning N/A
parameters
hMonttor test environment
resources provided and MIA
used
Monitor test commitments | N/A
Monitor test project risks MIA
_r'r’.lcnn'_t-:ur stakeholder N/A
involvement
E:DI.'ldLl.{:l test progress N/A
TCVIEWS
Conduct fest progress N/A
milestone reviews)
E1:~:k against entry N/A
criteria
Monttor defects MIA
Monttor product nsks
Monitor exit criteria MIA
Monitor suspension and N/A
resumption criteria
EDI.'ldLl-:l product quality N/A
rCviEws
Conduct product quality N/A
milestone reviews)
Analyze lssucs MIA
Take corrective action MIA
hManage corrective action MIA
1} Section 6.3.1 - Reviews And Analysis OF
High-Level Requirement (For Integration
Testing}y
2} Bection 6.4.2- Reguirement Based Test
Selection (6.4.2.1 Normal Range Test
[dentify and prioritize test Case &
conditions 6.4.2.2 Robustness Test Cases)
1} Section 6.4.3- Requirement Based
intepration Testing
4} Section 6.5-Traceability
5% Section 6.2.b- Overview of Software
Vernfication Process Activitics
[dentify and prioritize test 1} Section 6.4.4.1 & 64428 6443
Cascs 2% Section 6.4.1 Test Environment

34

[dentify necessary specific
test data

WA

hiaintain horizontal
traceability with

1} Section 6.5- Traceability
2} Section 6.4.4.1- Requirements-Based Test

requirements Coverage Analysis
Develap and prioritize test 1} Note From Scction 6.4
procedures
Create specific test data MN/A
Specify intake test N/A
procedure
Develop test exccution N/A
schedule
Perform intake test MN/A
1y Section 4.4 .2 c- Reverification After
Change-

Exccute test cases

2y Section 12.1.3 -Change of Application or
Development Environment Can Reguire
Reverification

1y Section 6.2.d For Reverification

4} Section 6.6- Verfication OF Parameter

Data items & Change)
5) Section 11.14- Software Vernfication

Results (for Test Reporting)

Report test incidents

1y Section 7.2.3- Problem Reporting,
Tracking and Corrective Action

2y Section 11.14- Software Verfication
Results (for Test Documentation and
Reporting)

1y Seetion 11.17- Problem Reports

Write test log

MN/A

Decide disposition of test
incidents in confipuration
control board

1y Section 7.1.e
2y Section 7.2.5 Change Review

Perform appropriate action
to fix the test incident

1y Section 7.2.3- Problem Reporting,
Tracking And Corrective Action

Track the status of test
incidents

1y Section 7.2.3- Problem Reporting,
Tracking And Corrective Action

Elieit test environment

needs

1} Section 4.4.3- Test Environment
(Planning for Specific Meeds)

2y Section £.4.1 -Test Environment

1y Section 12.3.2- Multi-Version Dissimilar
Software Verification Can Require
Scparate Test Environments

4y Section 6.2 b- Overview of Software
Verification Process Activities (for not
Testable Requirements)

Develop the test
environment requirements

1y Section 4.4.- Test Environment
(Planning) For Specific Needs

2y Section 6.4.1- Test Environment

1% Section 12.3.2 (Multi-Version Dissimilar
Software Verification Can Require
Scparate Teat Environments)

Analyze the test
environment requirements

1% Section 4.4.3- Test Environment
(Planning) For Specific Needs
2y Section 6.4.1- Test Environment

35

3} Section 12.3.2- {Multi-Version Dissimilar
Software Verification Can Reguire
Separate Teat Environments)
Implement the test .
cnvironment o
Create generic test data MiA
?’:pf:n:l:y test environment NiA
intake test procedure
F'::inrn'. test environment NiA
intake test
Perform systems NiA
management
Perform test data NiA
managem ot
Coordinate the availability
and usage of the test MNiA
covironments
Rn:p.m'. and m.anagc test NiA
covironment incidents
Define the test 1} Section 6.2.e- Overview of Software Test Goals and Policy,
oreanization Merification Process Activities Test Strateey Practices
Obtain commitments for NiA
the test organization 0
[mp_r:!n:n.t the test NiA
organization
. - . r Test Goals and Policy,
[dentify test funcrions MNiA ! ey
Test Strategy Practices
Develop job descriptions MNIA
Aﬁsl.gn staff members to N/A
test functions
Establish test career paths <A
Develop personal test A
carcer development plans -
1} Apply To Previous Test Goal’ Policy And
Assess the organization’s Strategy Practices (Referring to DO-
test process I7T8C) - Section 6.4 Software Testing
1} Section 6.1- Purpose Of Software . .
. . R : Test (Goals and Policy,
Identify the organization’s Verification) .
. . . Test Strategy Practices
test process improvements | 21 6.4.3.8- Requirement Based Software -
Integration Testing
.P]azl test process NiA
improvements
Fmp.f:m:nt test process N/A
improvements
Deploy standard vest
process and test process NA
assets
Monitor implementation WA
Incorporate lessons learned
. rp L . Test GGoals and Policy,
into the orpanizational test | BN/A) .
Test Strategy Practices
pProcess 3
[dentify the strategic test . Test (Goals and Policy,
. . /A) .
training needs Test Stratepy Practices
Align the organizational
and project test training NiA

needs

36

Estaiblish an organizational
test training plan

Estabrlish test training
capability

Dieliver test iraining

Establish test training
records

Assess test fraining
effectiveness

Establish standard test
PTOCESSCS

Section (6.4 To 7.0) Software Testing

Establish test lifecycle
model descriptions
addressing all test levels

1}
2}

Section (6.4 To 7.0) Software Testing
Section 1.3 Software Verification Plan

Establish tailoring criteria
and guidelines

Establish the
organization's test process
database

Establish the
organization's test process
assct library

N/A

Test Goals and Policy.
Test Strategy Practices

Establish work
cnvironment standards

N

A

Establish integrated
lifecycle models

Section 6, Figure 6-1 {Refers To
Lifecyele and Processes), (Section 6.4.4.2
& 6.4.4.3)

Section 5.1.2 Software Requircment
Process Activities

Review integrated
lifecycle models

(btain commitments on
the role of testing within
the integrated lifecycle
models

Perform a product risk
ASSERSMCNL

Perform A Product Risk
Asseasment

Establish the test approach

N/A

Establish A Test Approach

Establish test estimates

N/A

Establish Test Estimates

Define the organization for
testing

MY

A

Dievelop the master test
plan

Section 6.2 For Software Verification
Conziderations

Dievelop A Test Plan
Test Environment
Establish A Test Approach

Obtain commitment w the
master test plan

[dentify non-functional
product risks

Perform A Product Risk
Asseasment

Analyze non-functional
product risks

Define Product Risk
Categories And Parameters

[dentify non-functional
features to be tested

Diefine the non-functional
test approach

37

Define non-functional exit
Criteria

NfA

Identify and prioritize non-
functional test conditions

1} Section 6.3.3- Review And Analyses of
Software Architcctures

Identify and prioritize non-

WA
functional test cases
[dentify necessary specific NiA
test data
Maintain horizontal
traceability with non- NiA
functional requirements
Develop and prioritize
non-functional test MiA
procedures
Create specific test data N
Execute non-functional NiA
1251 Cases
.R.ETI!IIIIT'. non-functional test NiA
incidenis
Write test log MNIA

[dentify work products to
be reviewed

1} Section 6.3.1 to 6.3.5- Software Reviews
An Analyses { for Integration Testing
Level High-Level Reg. Review is
Applicd)

Define peer review criteria

1} Section 6.3.1 To 6.3.5-5oftware Reviews
An Analyses { for Integration Testing
Lewvel Section: 6.3.] High-Level Reg.
Review is Applied)

Conduct peer reviews

1} Section 6.3.1 To 6.3.5-5oftware Reviews
An Analyses { for Integration Testing
Lewvel Section: 6.1.] High-Level Reg.
Review Is Applied)

Testers review test basis
documents

1} Section 6.3.1.10 - Vertfiability Activity Of
Reviews And Analyses Of High-Level
Requirements | For Integration Test}

Analyze peer review data

NiA

Establish test measurement
objectives

WA

Specify test measures

1} Section 644 (6.4.4.1, 6,442 for
Intcgration Testing}

Specify data collection and

WA
storage procedures
Specify analysis NiA
procedures
{Tnllttt LSt Measurem ent NiA
data
.'?.:1 alyze test measurement NiA
data
Communicate results MNIA
Store data and resulis WA

Identify product quality
nceds

1} Section 8.1- Software Quality Assurance
Process Objectives (for Review The
Organization’s Objectives For Product
Quality}

38

Define the praject’s
quantitative product
quality goals

1} Section .2 Software Quality Assurance
Process Activities

Define the approach for
MeASUTing progress toward
the project’s product
gquality goals

Measure product quality
quantitatively throughout
the lifecyele

MiA

Analyze product quality
measurements and
compare them to the
product’s guantitative
roals

Relate work products to
items and features to be

1C51Cd

1 Section 6.5- Software Verification
Process Traceability

Perform A Product Risk
Assessment

Diefine a coordinated test

MiA
approach
Define peer review NiA
measurement puidelines
Define peer review criteria
based on product quality WA
goals
M easure work product NiA
guality using peer reviews
Analyze peer review NiA
resulis
Revise the products risks NiA
A5 appropriate
Revise I:.h: test approach as NiA
appropriate
Diefine defect selection
parameters and defect WA
classification scheme
Select defects for analysis MiA
Analyze causes of selected NiA

defects

Propose solutions to
climinate cOMMan causcs

1} Section 6.4.3 {for Typical Errors of
Integration Tests For Common Cause)

Define action proposals
and submit improvement
proposals

-

1} Seection 7.2.5 Change Reviews

Estaiblish test process

Test (oals and Policy,

o N/A :
performance objectives Test Btrategy Practices
Estaiblish test process NiA
performance measures
Establish test process .

S MNiA
performance baselines
Apply statistical methods NiA
to understand variations)
Monitor performance of .
B NiA
the selected test processes
Develop operational .
pop MiA

profiles

39

Generate and execute
statistically selected test N/A
CASES

Apply statistical test data

. N/A
to make stop-test decisions
Collect and analyze test
process improvement N/A
proposals
Pilot test process N/A

improvement proposals

Select test process
improvement proposals for | N/A
deployment

Identify and analyze new

testing technologies 1) Section 12.2- Tool Qualification

Pilgt new teuting 1) Section 12.2- Tool Qualification

technologies

Select new testing

technologies for N/A

deployment

Plan the deplovment 1) Section 6.4.1 Test Environment

Manage the deployment N/A

Measure improvement

effects N
Identify re-usable test N/A
assets

Select test assets to be N/A
added to the re-use library !
Deploy re-usable test N/A
assets

Apply re-usable test assets N/A

in projects

5.3. Case Study

The effectiveness and validity of the proposed maturity guidance approach for integration
testing processes in avionics domain are investigated by applying case study research
method [26]. In the following subsections 5.3.1 through 5.3.4; details about research design,

research context, data collection and analysis, and research results are presented.

5.3.1 Research Design

This section presents the design of a single embedded case study to address the following

the research questions:

40

e RQ-1: What is the difference between assessment outcomes obtained by guidance

approach and TMMI model?
e RQ-2: What are maturity levels assessed by guidance approach and TMMI model?

e RQ-3: What are the challenges and advantages of maturity assessment with guidance

approach?

e RQ-4: What is the applicability of improvement actions offered by guidance

approach?

The single embedded case study consists of two different assessments of avionics integration
testing on the same processes and same projects, as shown in Figure 1. The first one
(embedded unit of analysis-1) is the assessment process considering TMMI model. The
second one (embedded unit of analysis-2) is the assessment process considering guidance
approach. It is chosen to perform an embedded case study, because such a study is helpful
to understand the assessment outcomes of guidance approach as different from the ones of
TMMI model.

Context: Test Process Assessment Outcomes

Case: Avionics Integration Test

Unit of Analysis-1: Unit of Analysis-2;

TMMI assessment Guidance Approach

and outcomes assessment and
outcomes

Figure 1. Single Embedded Case Study Design

5.3.2 Research Context (Investigated Company and Project)

The context information of the investigated company, projects and people is given below.

41

Company: The case study is carried out within the Turkish Aerospace Industries (TAI)
which operates in the aviation and space industry in Turkey. TAI has various projects such
as design, development and production of utility helicopters, Unmanned Aircraft Vehicles
(UAVs), target aircrafts, and air fighters. Also, it offers integration, modernization and
modification programs. There are more than 10 thousand employees in TAI working on

these projects.

Projects: In the case study, Unmanned Aircraft Vehicle (UAV) projects are considered.
There are five major projects in UAV Systems and there is one department which is
responsible for integration testing of UAV projects. Since test processes are performed by a
same team by using same procedures, all projects are involved in assessment process of this

case study.

People: Avionics integration test team members (test engineers) are involved in the case
study. The team is divided into two assessment groups to implement two sub-studies
simultaneously. Overall, 8 people are involved in this study. Each team consists of 4 test
engineers and it is intended to establish balanced groups considering their experiences in
testing. Test engineers who have had more than 2.5 years of working experience in
integration testing of avionics software are involved in assessment groups. Also, test

engineers who are familiar with DO-178C are involved in the second assessment group.

Process: Each assessment group tries to assess test processes of the same projects. In the
first sub-study, the first group applies TMMI model for informal (internal) assessment to
detect strong and weak points of integration testing processes. On the other hand, the second
group applies TMMI model but now also considering guidance approach (with DO-178C
references called links proposed in Table 5.12) and implements informal assessment on the
same test processes. It should be highlighted that the assessments of the two sub-groups are
held simultaneously and the groups are not knowledgeable about findings of each other until
the assessments are complete. The obtained results are compared to understand the effect of

domain-specific maturity guidance approach.

42

5.3.3 Data Collection and Analyses

In the case study, since upper levels are not meaningful for integration testing level internal
assessment, only level-2 and level-3 practices of TMMI are considered. These practices are
used as a checklist to find out strengths and weaknesses of integration test processes. Then,
improvement actions are gathered as outcomes. In the first sub-study, strengths and
weaknesses are detected and improvement actions from TMMI based assessment are
gathered about avionics integration test processes by the first group. In the second sub-study,
same TMMI practices with links (defined in guidance approach) are used as a checklist to
detect strengths and weaknesses of same test processes and this time more improvement
actions are detected by the second group. As a result, improvement actions and outcomes of
two sub-studies provided by the two groups are compared and results are reported in this
study.

Table 5.13 shows internal assessment results of test processes according to TMMI practices.
Since two groups work on the same projects in the same team and try to assess same test
processes, strengths and weaknesses of their test processes are the same, as it is shown in
Table 5.13. Columns of this table refers to TMMI practices, achievement rate of relative
practice, strengths and weaknesses of test processes, respectively. Internal assessment is also
called as informal assessment as defined in TMMi Assessment Method Application
Requirements (TAMAR) R1.1 [25].

Table 5.13. Assessment of test processes with respect to TMMI practices

Practice Achievement Rate Strengths Weaknesses
F: Fully Achieved
P: Partially
Achieved

N: Not Achieved
N/A: Neot Applicable

Identify items and | L Sub-practices are largely Documentation is needed for
features to be achieved items to be tested and not to
tested be tested.

43

Define the test L There is a document defines | Scope of document need to
approach test approach and test case. be revised. Documents are
not up-to-date.
Diefine entry L Sub-practices are largely
criteria achieved,
Release af software,
Change request, incident
closures ete. are used as
COLry criteria
Diefine exit L Sub-practices arc largely
criteria achieved,
Test reports and process
diagrams are used
Diefine suspension | L Sub-practices are largely
and resumption achieved,
criteria There are some unwritten
laws
Establish & top- F Sub-practices are fully
level work achieved
breakdown
structure
Define test F Sub-practices are fully
lifecycle achieved
Dietermine L Sub-practices arc fully
cstimates for test achieved.
cffort and cost Test effor estimated by test
CXECULErS.
Test cffor and test
covironment relation is
known.
Establish the test F Sub-practices arc fully
schedule achieved
Plan for test F Sub-practices are fully
staffing achieved
Plan stakeholder b Sub-practices are not
invalvement achieved
[dentify test M Sub-practices are not
project risks achieved
Establish the test L Sub-practices are fully

plan

achieved

44

Review test plan

Sub-practices are largely
achieved

Reconcile work L Sub-practices arc largely
and resource achieved

levels

(ibtain test plan MiA Mot applicable

commitments

Monitor test Mot achieved Mot achieved Measure test performance
planning mentioned in TMMI sub-
parameters practices

Monitor test Not achieved Mot achieved Analyze test environment
cnvironment usage and planned
TESOUrCES {expocted).

provided and used

Monitor test
commitments

Mot Applicable

Monitor test
project risks

Mot achieved

Mot achicved

Test risk asscssment and
monitoring is needed.

Monitor
stakeholder
involvement

Mot applicable

Conduct test
Progress revicws

Mot applicable

Conduct test
progress milestone

TCVICWS

Mot applicable

Check against
cniry criteria

Mot applicable

Monitor defects

Mot achieved

Mot achieved

Mo monitoring process for
not-critical defects

Monitor product
risks

MNiA

Mot applicable

45

Monitor exit F Sub-practices arc fully

criteria achieved.
Exit eriteria is defined.
YWerification of change
requests, incident closure
processes arc used as exit
criteria.

Monitor F Sub-practices are fully

suspension and achieved.

Tesumption

criteria

Conduct product MiA Mot applicable

quality reviews

Conduct product A Mot applicable

guality milestone

TCVICWS

Analyze issues

Mot achieved

Mot achieved

Differences form plan must
be analyzed

Take corrective
action

Mot achicved

Mot achieved

Manage corrective
action

Mot achieved

Mot achieved

[dentify and L Sub-practices arc largely
prioritize test achieved.

caonditions

[dentify and L Sub-practices arc largely
prioritize test achicved.

CARCS

[dentify necessary | MN/A Mot applicable

specific west data

Maintain F Sub-practices are fully
horizontal achieved.

traccability with
requirements

46

Develop and
prioritize test
procedurss

Sub-practices are largely
achieved.

Create specific
test data

Sub-practices are fully
achieved. Specific test
spenarios and layouts were
penerated and applied in the
excoution of tests.

Specify intake test
procedure

Sub-practices are fully
achieved. Intake test
excouied at the end of
PrOCEsses.

Develop test
cxccution
schedule

Sub-practices are fully
achicved. Test excoution
schedule is managed with
Excel tables with defining
resources and testers.

Perform intake
test

Sub-practices are fully
achicved. Intake test
executed at the end of
detailed tests processes.

Execute test cases

Sub-practices are fully
achieved. Parameter data
item tests are executed
{thiz is not mentioned in
THIMI}Y

Report test
incidents

Sub-practices are fully
achicved. Incident reporting
iz managed by atools.

Write test log

Sub-practices are fully
achieved.

Decide disposition
of test incidents in
configuration
control board

Sub-practices are largely
achieved. Assessment of test
incidents and change effects
are discussed in different
mectings

Perform
appropriate action
to fix the test
incident

Sub-practices are fully
achieved.

Track the status of

test incidents

Sub-practices are largely
achicved.

Incident report status is not
tracked periodically for no
corrective actions taken
incidents.

47

Elicit test F Sub-practices are partially Determine expectations and

cnvironment achieved. caonstraints of test

needs cnvironment.

Develop the test F Sub-practices are partially Test environment documents

cnvironment achieved. should be revised and there

requircments must be documents for other
projects.

Analyze the test F Sub-practices are partially Test environment

cnvironment achieved. requirements are

requirements documented in 2014 for only
first project.

Implement the test | P Sub-practices are partially Test environment

cnvironment achieved. requirements are
documented in 2014 just for
first project. Documents are
not up-to-date. Test
cnvironment is implemented
firstly within this document
but there are no
documentsrequirements for
ather projects. Test
cnvironment implementation
is managed by cxpertize.

Create gencric test | W Not achieved

data

Specify test N Not achieved

environment

intake test

procedure

Perform test M Mot achieved

cnvironment

intake test

Perform systems F Sub-practices are fully

management achieved. An organizational

test is established for system
management.
Perform test data F Sub-practices arc fully

management

achieved. Test procedures
and test scripts are stored.

48

Coordinate the L Sub-practices are largely Test environment usage
availability and achieved. procedure 1s needed.
usage of the best
cnvironments
Report and L Sub-practices arc largely Environment incident and its
manage test achieved. Reporting system | solution can be documented.
environment can be used for environment
incidents incidents.
Define the test F Sub-practices are fully
organization achieved. Integration test
organization was
cstablished.
Oibtain F Sub-practices are fully
commitments for achieved. Integration test
the tost organization was
organization cstablished.
Implement the test | F Sub-practices are fully
organization achieved. Integration test
organization was
cstablished.
[dentify test F Sub-practices arc fully
functions achieved. Integration test
organization was
cstablished. Intcgration
Test, Test Team Leader &
team members: Test
cngincers arc the roles.
Develop job F Sub-practices are fully
descriptions achieved.
Aszign staff F Sub-practices are fully
membBers o test achieved.
functions
Establish test MNiA Mot applicable - Mo specific test career path

carcer paths

organizational level

is defined for test enginecrs.

49

Develop personal
test carcer
development plans

Mot applicable -
organizational level

MAsspss the
organization’s test
Process

Mot achicved

Mot achieved

Mo test process asscssment
procedurs was implemented
before.

[dentify the
organization's test
Process
improvements

Mot achieved

Mot achieved

Mo test process assessment

procedure was implemented
before.

Plan test process
improvements

Mot achieved

Mot achieved

Mo tost process asscssment
procedure was implemented
before.

Implement test
Process
improvements

Mot achieved

Mot achieved

Mo test process assessment

procedure was implemented
before.

Deploy standard L Sub-practices arc largely Diacuments are not up-to-
test process and achieved. date.
tost process asscls Diocumentation is done
before. Tools are used
actively for tost process
mManagement.
Monitor L Sub-practices are largely
implem entation achieved.
Incorporate F Sub-practices are partially Test process improvement is
lessons learned achieved. Reports are not aimed recently.
into the published at the end of test
organizational test PrOCESsEs.
Process
[dentify the L Sub-practices are largely Domain based frainings not

strategic test
training needs

achieved. There arc some
trainings {mandatory or
voluntarily) aiming
cngineers o gain several
COMLPCIENCES.

determined specifically.

50

Align the L Sub-practices are largely Diomain based trainings not
organizational and achieved. There arc some determined specifically
praoject test trainings {mandatory or
training needs wvoluntarily) aiming people
to gain several competences.
Establish an N Not achieved Test training plan is not
organizational test cstablished.
training plan
Establish test hul Mot achieved Test training plan is not
training capability cstablished
Deliver test MiA Mot applicable- Test training plan is not
training organizational level cstablished
Establish test NiA Not applicable-
tratning records organizational level
Asspss est MiA Mot applicable-
training organizational level
effectiveness
Establish standard | L Sub-practices are largely Documents are not up-to-
tost processes achieved. Documentation is | date.
done before for test
processes, pecr review
processes cte. Tools are
used actively for test
Process Management.
(DOORS, JIRA)
Establish test L Sub-practices are largely
lifecycle model achieved.
descriptions
addressing all test
levels
Establish tailoring | N/A Mot applicable
criteria and
puidelines
Establish the N Not achieved No database for test

organization’s test
process database

ProcCssCs.

51

Establish the L Sub-practices are largely Documents are not up-to-

organization’s test achieved. Documents are date.
process asset placed in a library system.

library

Establish work N/A Not applicable-

environment organizational level

standards

Establish N/A Not applicable-

integrated organizational level

lifecycle models

Review integrated | N/A Not applicable-
lifecycle models organizational level
Obtain N/A Not applicable-
commitments on organizational level
the role of testing

within the

integrated

lifecycle models

Perform a product | N/A Not applicable-
risk assessment organizational level

Firstly, the assessment process has shown that there are some documentation needs. Some
of the documents were not up-to-date and they need update. In assessment it is shown that,
practices at the top of Table 5.13, which belong to maturity level-2, are largely or fully
achieved by test processes. However, some of the level-3 practices are partially achieved.
Since it is an informal type assessment, the aim is detecting strengths and weaknesses of

own test processes, and there are some practices labeled as not-applicable.

The result of assessment processes is summarized in Appendix-3. Achievement rates of
practices are noted. The achievement rate of a process area is determined by the lowest
achievement rated practice of it and the level of maturity is defined considering the
achievement rate of process areas. Some of the process areas contain practices that are “not

achieved” because of the outdated documents and stakeholder involvement practices. Since

52

this study is an informal assessment and it aims to detect the strong and weak points of the

processes, it does not strictly apply ratings and the maturity level can be defined as Level-2.

In the first sub-study, assessment process is managed only by considering TMMI practices.

In the second sub-study, on the other hand, assessment process is implemented considering

the same practices with their DO-178C links defined for these practices. These studies

provided improvement actions. Table 5.14 shows improvement actions for these two sub-

studies with relevant TMMI practices.

Table 5.14 Comparison of improvement suggestions by two sub-studies

THWMI Practice

[mprovement Actions offered by 1

Sub-study

Improvement Actions offered by 279

Sub-study

[dentify items and
features to be tested

1. Define a rule set and provide
decumentation for items to be teste
and not to be tested.

1.

. Refer levels of requirements that

Define a rule set and provide
documentation for items to be teste
and not to be tested.

Determine levels of requirements
and refer to this level on
documents.

are not to be tested to remove
duplications on tests.

Parameter data items to be tested
could be documenied.

Define the test
approach

1. High level requirement verification
is implemented in test processes.
Integration tests are generated
considering Level-2 requirements.
Test approach document should
refer the levels and structures.

Robustness test should be
mentioned in the test approach
documents as a test case sclection
part.

Error that can be revealed by
integration can be added into test
approach documents as a part of
crror situations. They can be
helpful as a checklist for test design
phase.

Document can refer test case
duplication removal constdering
levels of tests and requirements.
High level requirement verification
15 implemented in test processes.
Integration tests arc generated
considering Level-2 requirements.
Test approach document should
refer the levels and structures to
determine test approach.
Parameter data item verification
depends on personal knowledge
documents should refer them to
define standards for.

53

Estailish the test plan

High level reguirement verification
is implemented in test processes.
Integration tests are gencrated
considering Level-2 requirements.
Test approach document should
refer the levels and structures.

Test environment limitations
should be defined and documented.
Some of the tests must be executed
on specific st environments.
Diifferences of these environments
should be determined and
documented.

=~

Robusiness test should be
mentioned in the test approach
documents as a test case selection
part.

Error that can be revealed by
integration can be added into test
approach documents as a part of
crror sitwations. They can be
helpful as a checklist for test design
phase.

Diocument can refer test case
duplication removal considering
levels of tests and requirements.
High level requirement verification
is implemented in test processcs.
Integration tests are generated
considering Level-2 requirements.
Test approach document should
refier the levels and structures.
Parameter data item verification
depends on personal knowledge,
documents should refer them to
define standards for.

Test environment limitations
should be defined and documented.
Reverification conditions should be
defined and documented. For
cxample; development
cnvironment change effect on
previcus verification process
should be analyzed and the scope
of retest needs must be defined.
Some of the tests must be executed
on specific test environments.
Differences of these environments
should be determined and
documented.

Monitor test planning
parameters

Measure test performance as
mentioned in TMMI sub-practices.

Measure test performance as
mentioned in TMM] sub-practices.

Monitor test
cnvironment
respurces provided
and used

Analyze and compare test
cnvironment usage (observed) and
planned (expected).

Analvze and compare test
cnvironment usage {observed) and
planned {expected).

Monitor test project
risks

Dretermine test project risks
considering test environment and
limitations and document.

Dietermine test project risks
considering test environment and
limitations.

Diocument risks considering
certification for
simulator/emulators.

Monitor Defects

Monitor defects both critical and
not-critical, follow their actions.
Mlecting arrangements should be
done to handle no corrective action
taken defects.

Monitor defects both eritical and
not-critical, follow their actions.
Mecting arrangements should be
done to handle no corrective action
taken defects.

[dentify and prioritize
test conditions

High level reguirement verification
is implemented in test processes.
Integration tests are gencrated
considering Level-2 requirements.

High-level reguirement analysis is
done in PR [Peer Review) process
as test basis analysis. Updates for

documentations should be

54

Test approach document should
refer the levels and structures,

Test environment limitations
should be defined and documented.

|

considered.

Robusiness test can be added to
documents.

Test cases generation part of
documents refers o comMmMon errors
and erroneous situations. DO-178C
document deseribes errors that can
be revealed by integration test
Dacument updates should be done
considening both definitions and
also expert opinions.

Diocuments can define test case
duplication conditions te reduce
test effor.

High level requirement verification
is implemented in test processes.
Integration tests are generated
considenng Level-2 requirements.
Test approach document should
refer the levels and structures.
Parameter data item verification
depends on personal knowledge,
documents should refer them to
define standards for.

Test environment limitations should
be defined and documented.
Reverification conditions should be
defined and documented. For
cxample; development
cnvironment change effect on
previouws verification process
should be analyzed and the scope
of retest needs must be defined.
Traceability definitions (as
mentioned in DHO-178C) can be
documented and it should be
managed by tools.

[dentify and prioritize
test cases

Pricrity between tests cases can be
defined as the part of test process
document

Test environment needs should be
considered before test execution

Traceability definitions (as
mentioned in DHO-178C) can be
documented and it should be
managed by tools.

Priority between tests cases can be
defined as the part of test process
document.

Test environment needs should be
considered before test execution.
Dr-1TEC test cases can be used as
a checklist and it can be helpful to
prioritize test cases (robusiness
test, normal range test, integration
test, levels of tests).

Develop and
prioritize test
procedurss

Integration test procedure
automation should be considered
(with tools or scripis}, test
procedure standard document may
be updated

Take actions to remove duplication
of test procedures.

Integration test procedure
autormation should be considered
{with tools or scripts], test
procedure standard document may
be updated.

55

Track the status of
test incidents

Incident status tracking mectings
can ¢ arranged for unhandled {no
corrective actions taken) incidents

Incident status racking meetings
can be arranged for unhandled (no
corrective actions taken) incidents.

Eligit test
environment needs

Dietermine cxpectations &
constraints of test environment
considering closely resemble of
rarget environment.

Detecrmine expectations &
consrainis of test environment
considenng closely resemble of
target environment.

Refer if any emulator’ simulator
certification.

Develop the test
cnvironment
TCgUITEMmEents

Test environment requircments arc
documented in 2014 for only first
project. Document should be
umdated and there must be
documents for other projects.

Test environment reguirements are
documented in 2014 for only first
project. Document should be
updaied and there must be
documents for other projects.
Diocuments (reguirement) doesn't
mention simulators in detail.
Dietails should be provided.
Muliiple test environment can be
defined as a part of documentation.

Coordinate the
availability and usage
of the test
environments

Test environment usage procedurs
is needed. Scheduling with Excel is
manually managed by people.

Test environment wsage procedure
is needed.

Scheduling with Excel is manually
managed by people.

Repaort and manage
test environmens
incidents

Test environment incident
repariing meetings, tools or sysicm
can e used.

Test environment incident
reparting meetings, tools or sysiem
can be used.

Assess the
organization”’s test
prOcess

Test process assessment document
can be prepared as a checklist

Test process assessment document
can be prepared as a checklist.
Document can refer normal range
test case, robustness test cases and
integration test scope

Deploy standard test
process and test
prOcess asscts

Document updates can be done.
Test process tools could be
implemented.

Document updates can be done.
Test process tools conld be
implemented.

Incorporate lessons
lzarned into the
organizational test
prOcess

Test process cnhancement topic
and related actions should be
considerzd.

Test process enhancement topic
and related actions should be
considered.

Estailish an
organizational test
training plan

Trainings related with test should
be determined and planned for test
staff. (Trainings about DO-1TRC
and avionics system tesis ¢ic.)

Trainings related with test should
be determined and planned for test
staff. {Trainings abowt DO-178C
and avionics system tesis eic.)

Establish standard
test processes

Document updates can be done.
Test process tools could be
implemented.

Document updates can be done.
Test process toals could be
implemented.

Establish the
organization’s test
process database

Drarabase for test procedures, test
ropeorts, test results assessment
should be established.

Drarabase for test procedures, test
roports, test results assessment
should be established.

5.3.4 Case Study Results

In this subsection, assessment findings are reported and discussed in relation to the research

questions raised for the case study.

56

RQ-1: What is the difference between assessment outcomes obtained by guidance

approach and TMMI model?

It is shown that the number and the depth of improvement actions offered by sub-study 2 is
more that the first one. Also, since the sub-study 2 takes domain specific characteristics into
account, improvement actions offered by it are more related with avionics test processes.
Since some of the TMM I practices contains common terms and are related with each other,
some of the improvement actions are proposed more than once for different practices. For
example, practices related with business needs and objectives have similar improvement
actions. Furthermore, some of the practices like test approach, test plan etc. are referenced
by further practices so the improvement actions that will be implemented to enhance test

processes will affect further assessments.

Table 5.15 summarizes the number of improvement actions provided by the sub-studies of
the 1t and the 2" assessment groups. The first column represents TMMI process areas which
are applied by groups to assess their test processes. The second and the third columns
represent the numbers of improvement actions provided as a result of the 1% and the 2" sub-

studies, respectively.

Table 5.15 Number of improvement actions identified in two sub-studies

TMMI Process Area # of Improvement Actions | # of Improvement Actions
(1* group) — TMMI only (2™ group) — Guidance Apr.
2.2 Test Planning 5 17
2.3 Test Monitoring and Control 6 6
2.4 Test Design and Execution 9 19
2.5 Test Environment 6 10
3.1. Test Organization 14 25
3.2 Test Training Program 4 4
3.3 Test Lifecycle and Integration 4 13
TOTAL 48 94

As a result, it is seen that the number of improvement actions, which are obtained by the 2
group by following the approach of defining DO-178C links, is 0.95 times more than the

number of improvement actions offered by the 1% group by with respect to included TMMI

57

process areas. Within these, practices that belong to process areas called “2.3 Test
Monitoring and Control” and “3.2 Test Training Program” have the same number of
identified improvement actions. It should also be noticed that, since TMMI practices contain
some of the common terms previously defined, the number of improvement actions are
affected by this recurring structure of TMMI and a group of improvement actions are

repeated for further practices.

RQ-2: What are maturity levels assessed by guidance approach and TMMI model?

In the sub-studies, the two groups try to assess their test processes which are the same for
both groups because their members work in the same department on the same projects. The
results of assessment processes are summarized in Appendix-3, and achievement rates of
practices are indicated. In the case study, whole TMMI practices are not considered but since
this study is an informal assessment and it aims to detect the strengths and weaknesses of

the test processes, the maturity level assessed by both groups can be defined as Level-2.

RQ-3: What are the challenges and advantages of maturity assessment with guidance

approach?

TMMI model has some organizational level practices and practices relevant to other test
levels. They are not included in the case study. Subset of the practices are applied
considering the existing test processes and activities of the department. The test team had
never implemented any test process assessment methods before. The members of the test
team were not familiar with TMMI or test maturity model applications. On the other hand,
after the case study assessment, the 2" group shared that guidance approach helped them to

understand expectations of TMMI practices and see where their internal processes are.

Most of the weaknesses was caused because of incompleteness of documents or outdated
documents. TMMI assessment application showed the weaknesses or drawbacks in these
documents but still, it was not adequately informing about the domain specific needs or
characteristics that should be involved in these documents. Guidance approach helped the

test team to understand it.

58

RQ-4: What is the applicability of improvement actions offered by guidance approach?

Most of the improvement actions were about documentation issues and test training plans.
Since the documentation updates or test training plans are internal activities for the test team,
the most of the improvement actions offered by the guidance approach were remarked
applicable by the test team without organizational execution. Some of the improvement
actions that needs participation of other teams such as software development teams and
system design teams are more comprehensive to execute compared to internal actions but
still, other teams were interested in the guidance approach and willing to be the part of the

improvement actions.

Improvement actions offered by guidance approach were listed and shared with four
members of the integration test team. Two of these members were previously involved in
the 1%t sub-study group and the other two members were involved in the 2" sub-study group.
These test team members evaluated the improvement actions in Likert Scale [1-5] to
understand applicability of these improvement actions. The applicability evaluation scale
was as follows: 1: Strongly disagree (not applicable at all), 2: Disagree, 3: Neutral, 4: Agree,
and 5: Strongly agree (very applicable). Four people participated in the evaluation process,
therefore the median values of their responses were calculated and reported in Table 5.16.
Most of the improvement actions (29 of 33, %87) were responded as 5 (very applicable) by
the members. Three improvement actions of 33 (%9.09) were evaluated as 4 (mostly
applicable). Since the emulator/simulator certification is not easily achievable, team

members labeled this improvement action as 3 (neutral).

It should be added that in the early stages of the assessment process, some of the weaknesses
were detected such as unpublished documents and the improvement action as sharing these
documents with stakeholders, and these were executed immediately. However, the test team

stated that satisfaction of the improvement actions needs more time and execution plans.

59

Table 5.16 Applicability Evaluation of Improvement Actions

Improvement Actions

Median of Scores
(in scale 1-5)

Define a rule set and provide documentation for items to be tested and not to be tested.

5

Determine levels of requirements and refer to this level on documents.

5

Refer levels of requirements that are not to be tested to remove duplications on tests.
High-level requirements, low level requirements etc.)

5

Parameter data items to be tested could be documented. Parameter data item verification
depends on personal knowledge, documents should refer to them to define standards for.

Robustness test should be mentioned in the test approach documents as a test case
selection part.

Error that can be revealed by integration can be added into test approach documents as a
part of error situations. They can be helpful as a checklist for test design phase.

Test environment limitations should be defined and documented.

Reverification conditions should be defined and documented. For example; development
environment change effect on previous verification process should be analyzed and the
scope of retest needs must be defined.

Some of the tests must be executed on specific test environments. Differences of these
environments should be determined and documented.

Measure test performance as mentioned in TMMI sub-practices.

Analyze and compare test environment usage (observed) and planned (expected).

Determine test project risks considering test environment and limitations.

Document risks considering certification for simulator/emulators.

Monitor defects both critical and not-critical, follow their actions.

Incident status tracking is needed. Meeting arrangements should be done to handle no
corrective action taken defects

glofo|o| o1 o1

Traceability (requirement<->test process, test procedures<->test cases, test result<->test
cases) managed by tools.

Priority between tests cases can be defined as the part of test process document.

Test environment needs should be considered before test execution

DO-178C test cases can be used as a checklist and it can be helpful to prioritize test cases
(robustness test, normal range test, integration test, levels of tests).

Take actions to remove duplication of test procedures (if any).

Integration test procedure automation should be considered (with tools or scripts), test
procedure standard document can be updated.

Determine expectations & constraints of test environment considering closely resemble of
target environment.

Refer if any emulator/ simulator certification.

Test environment requirements are documented in 2014 for only first project. Document
should be updated and there must be documents for other projects.

(3]

Peer review documentation updates can be done.

Multiple test environment can be defined as a part of documentation.

Test environment usage procedure can be defined.

Test planning (scheduling) with Excel should be automated.

Test environment incident reporting meetings, tools or system can be used actively.

Test process enhancement topic and related actions should be considered.

Trainings related with test should be determined and planned for test staff. (Trainings
about DO-178C , avionics system, test etc.)

oalojfojfofofor|o

Test process tools could be implemented.

Database for test procedures, test reports, test results assessment should be established.

60

6. CONCLUSION

This study explains the preliminary steps taken to propose an avionics software testing
maturity guidance approach in order to improve integration testing processes of projects
obeying to DO-178C requirements. In this context, DO-178C is analyzed to understand
avionics software verification activities and needs. TMMI is taken as the base maturity
model since its “process area & practice” structure is similar to the process structure in DO-
78C. In the first step, TMMI practices and DO-178C activities are analyzed for bi-directional

mapping with respect to the needs of avionics software testing.

A guidance approach is proposed by considering avionics software testing characteristics
detected previously. In this approach, DO-178C sections called “links” are provided along
with relevant TMMI practices. Then, domain specific maturity assessment is aimed. A case
study is implemented to understand the effectiveness and usability of guidance approach on
avionics integration test processes. Internal assessment is performed in the case study. Case
study consisted of two sub-studies and in the first one, an informal TMMI assessment was
applied only by considering a subset of TMMI level-2 and level-3 practices by a group of
test engineers that have at least 2.5 years of work experience on testing. In the second sub-
study, again an assessment process was implemented with the same practices but this time
considering DO-178C links defined for these practices by another group of testers. These
studies provided improvement actions and action results were compared. Each group
consisted of 4 avionics integration test engineers and the total years of experience of groups
were similar to each other. Each group tried to assess their test processes and since they work
on the same projects in the same team, they tried to assess the same test processes. In the
case study, it is aimed to see the difference between the findings obtained by TMMI model

and the guidance approach for TMMI model introduced in this thesis.

In the case study it was observed that the second group who used DO-178C links to assess
test processes more easily understood assessment and detected their weaknesses. Most of the
weaknesses was caused because of incompleteness of documents or outdated documents.
TMMI model showed the weaknesses or drawbacks of these documents but still, it was not
adequately informing about the domain specific needs or characteristics that should be
involved in these documents. At that point, guidance approach and provided links were
helpful to improve existing documents considering domain specific needs. Document based
61

actions were the main test process improvement need detected by TMMI model and are open
for enhancement considering the guidance approach. It is also achievable by test teams itself
and does not require organizational applicability limitations. Also, test trainings were not
planned and implemented in the case study environment as it is defined in TMMI model.

Improvement actions related with test trainings are also applicable by the test team.

As a result, it was shown that the second sub-study (guidance approach) provided more
improvement actions for avionics test processes. Since, the main problem was deficiency of
avionics software domain specific maturity or test process improvement, the improvement
actions offered by the second sub-study were domain specific. Therefore, guidance approach

is observed as effective to provide improvement actions for avionics integration test teams.

As a future work, improvement actions provided by the guidance approach can be applied
to reach higher maturity levels and improve avionics integration testing processes. The
maturity assessment can be repeated after implementation of improvement actions. The
guidance approach comprises also the upper levels (Level-4 and Level-5) and to reach the
highest maturity level, whole guidance document can be applied. Also, the guidance
approach points to some “common terms” that are gathered considering the structure of
TMMI model, so maturity model studies for another domain can establish a domain based

guidance approach with the help of the common terms.

62

7. REFERENCES

1. DO-178: Software Considerations in Airborne Systems and Equipment Certification,
Washington, DC: RTCA Inc., 1981.

2. DO-178C: Software Considerations in Airborne Systems and Equipment Certification,
Washington, DC: RTCA Inc., 2011.

3. Ericson, T., Subotic, A. and Ursing, S. (1997), TIM—a test improvement model. Softw.
Test. Verif. Reliab., 7: 229-246.

4. J. Andersin, “TPI -a model for Test Process Improvement,” 2004. Accessed: Jun. 01,

2023. [Online]. Available: https://www.cs.helsinki.fi/u/paakki/Andersin.pdf

5. TMMi Foundation, “Test Maturity Model integration (TMMi®) Guidelines for Test
Process Improvement Release 1.3 Produced by the TMMi Foundation.” Accessed: Jun. 01,
2023. [Online]. Available: https://www.tmmi.org/tmmi-documents/

6. D. M. Karr, “The Unit Test Maturity Model” Accessed: Jun. 01, 2023. [Online].
Available:http://davidmichaelkarr.blogspot.com/2013/01/the-unit-test-maturity-model.html

7. S. Reid, “Personal Test Maturity Matrix”, Accessed: Jun. 01, 2023. [Online]. Available:
https://www.stureid.info/stuart-reid-software-testing/software-testing-white-

papers/personal-test-maturity-matrix/

8. V. Garousi, M. Felderer and T. Hacaloglu, "What We Know about Software Test Maturity
and Test Process Improvement,” in IEEE Software, vol. 35, no. 1, pp. 84-92,
January/February 2018, doi: 10.1109/MS.2017.4541043.

9. ISO/IEC/IEEE 29119-3:2021 Software and systems engineering — Software testing —
Part 3: Test documentation, ISO/IEC/IEEE 29119-3:2021, 2021. [Online]. Available:
https://www.iso.org/standard/79429.html

10. CMMI Institute, Capability ~ Maturity ~ Model Integration.[Online].

Available:https://cmmiinstitute.com/resource-files/public/cmmi-v2-0-development-model”

11. Veenendaal, Erik. (2016). TMMi and 1SO 29119: Friends or Foes? ,White paper TMMi

Foundation.

63

12. Duncan, F.l. & Smeaton, A.G.. (2012). “Assessing and improving software quality in
safety critical systems by the application of a SOFTWARE TEST MATURITY MODEL”.
1-4.10.1049/cp.2012.1509.,

13. Haser, Florian & Felderer, Michael & Breu, Ruth. (2014). Test Process Improvement
with Documentation Driven Integration Testing. Proceedings - 2014 9th International
Conference on the Quality of Information and Communications Technology, QUATIC
2014. 156-161. 10.1109/QUATIC.2014.29.

14. Kassab, Mohamad. (2018). Testing Practices of Software in Safety Critical Systems:
Industrial Survey. 359-367. 10.5220/0006797003590367.

15. Garousi, Vahid & Veenendaal, Erik. (2021). Test Maturity Model integration (TMMi):
Trends of worldwide test maturity and certifications. IEEE Software. PP.
10.1109/MS.2021.3061930.

16. Bahaa Farid, Ahmed & Fathy, Enas & Abd, Mahmoud. (2015). Towards Agile
Implementation of Test Maturity Model Integration (TMMI) Level 2 using Scrum Practices.
International Journal of Advanced Computer Science and Applications. 6.
10.14569/1JACSA.2015.060931.

17. Garousi, Vahid & Felderer, Michael & Hacaloglu, Tuna. (2017). Software test maturity
assessment and test process improvement: A multivocal literature review. Information and
Software Technology. 85. 10.1016/j.infsof.2017.01.001.

18. Jang, J.-W. (2018). Improvement of the automobile control software testing process
using a Test Maturity Model. Journal of Information Processing Systems. 14. 607-620.
10.3745/J1PS.04.0072.

19. Park (2021), Defense software test procedure improvement measure reflecting the

TMMI. Journal of the Korea Academia-Industrial cooperation Societyi Volume 22 Issue 6

20. A. Ferreirésand L. A. V. Dias, "Evaluation of Accomplishment of DO-178C Objectives
by CMMI-DEV 1.3," 2015 12th International Conference on Information Technology - New
Generations, Las Vegas, NV, USA, 2015, pp. 759-760, doi: 10.1109/ITNG.2015.132.

64

21. ISO/IEC 25010:2011, “Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models”,
[Online]. Available:https://www.iso.org/standard/35733.html

22. ISO/IEC 20246:2017 “Software and systems engineering — Work product reviews”,
[Online]. Available:https://www.iso.org/standard/67407.html

23. G. Glngor, TMMI&DO-178C Mapping, Accessed: June 2023.[Online]. Available:
https://doi.org/10.5281/zenod0.8002215

24. ISTQB Glossary, [Online]. Available: https://glossary.istgb.org/

25. TMMi Assessment Method Application Requirements (TAMAR) R1.1 [Online].

Available: https://www.tmmi.org/tmmi-documents/

26. Yin, Robert K. "Case study methods." (2012)

65

https://www.iso.org/standard/67407.html
https://www.tmmi.org/tmmi-documents/

APPENDIX

Appendix-1. TMMI Practices and DO-178C Activities Mapping

Define test policy LEVEL-2

Perform a generic product risk LEVEL-2 N/A
assessment

Distribute the test strategy to LEVEL-2 N/A
stakeholders

!)ei?loy test performance LEVEL-2 N/A
indicators

Identify product risks LEVEL-2 N/A

LEVEL-2 N/A

Identify items and features to
be tested

Define entry criteria LEVEL-2 N/A

Define Sl:lspen-SIOI‘.l and LEVEL-2 N/A
resumption criteria

Define test lifecycle LEVEL-2 N/A

Establish the test schedule LEVEL-2 N/A

66

Plan stakeholder involvement LEVEL-2 N/A

. 4.2.b (1ISO/IEC 29119-3]
Establish the test plan LEVEL-2 4.4.2.c Regression test & re-test

Reconcile work and resource LEVEL-2 N/A
levels

Monitor test planning LEVEL-2 N/A
parameters

Monitor test commitments LEVEL-2 N/A

LEVEL-2 N/A

Monitor stakeholder
involvement

anduct test E:rogress LEVEL-2 N/A
milestone reviews

Monitor defects LEVEL-2 N/A
Monitor exit criteria LEVEL-2 6.4.4.2.a

Cor!duct product quality LEVEL-2 N/A
reviews

Analyze issues LEVEL-2
Manage corrective action LEVEL-2 4.2.e

67

4.2.b (ISO/IEC 29119-3]

Identify and prioritize test 6.4.4.1.a
cases e 6.4.4.1.d
6.5
.. . 6.4.4.1.a
Maintain horizontal LEVEL-2 6.4.4.1.d
traceability with requirements 6.5
Create specific test data LEVEL-2 N/A

Develop test execution LEVEL-2 N/A
schedule

Execute test cases LEVEL-2 7.2.4.d

4.2.b (ISO/IEC 29119-3]

Write test log LEVEL-2 723

Perform appropriate action to 7.2.3.
fix the test incident LEVEL-2 8.3.d

4.2.b (1SO/IEC 29119-3]
6.4.1.a

Elicit test environment needs LEVEL-2

68

4.4.3.a real-life test environment

Analyze the test environment LEVEL-2 4.4.3.b analyze environment req. Risks
requirements 6.4.1a

Create generic test data LEVEL-2 4.2.b (ISO/IEC 29119-3]

Perform test environment LEVEL-2 4.2.b (ISO/IEC 29119-3]
intake test

Perform test data LEVEL-2 N/A
management

Rep?n and m.an?ge test LEVEL-2 N/A
environment incidents

test organization LEVEL-3 N/A

Identify test functions LEVEL-3 N/A

Assugf\ staff members to test LEVEL-3 N/A
functions

Develop personal test career LEVEL-3 N/A
development plans

Identify .the organization’s test LEVEL-3 N/A
process improvements

Impl t test
.mp ement test process LEVEL-3 N/A
improvements

Obtain commitments for the

69

Monitor implementation LEVEL-3 N/A

Ide.nt‘lfy the strategic test LEVEL-3 N/A
training needs

Establish an organizational test

. . LEVEL-3 N/A
training plan
Deliver test training LEVEL-3 N/A

Asses§ test training LEVEL-3 N/A
effectiveness

Establish test lifecycle model
descriptions addressing all test LEVEL-3 N/A
levels

Establish the organization’s
LEVEL- N/A
test process database 2 /

Establish work environment LEVEL-3 N/A
standards

Review integrated lifecycle LEVEL-3 N/A
models

70

Perform a product risk

LEVEL-3 N/A
assessment
Establish test estimates LEVEL-3 N/A

Develop the master test plan LEVEL-3 4.2.b (1ISO/IEC 29119-3]

Identify n.on-functlonal LEVEL-3 N/A
product risks

Identify non-functional
LEVEL- N/A
features to be tested MELS /

D?fm-e non-functional exit LEVEL-3 N/A
criteria

4.2.b 1SO 29119-3

Identify and prioritize non- 6.4.4.1.a
functional test cases LEVEL-3 6.4.4.1.d
6.5
Maintain horizontal 6.4.4.1.a
traceability with non- LEVEL-3 6.4.4.1d
functional requirements 6.5
Create specific test data LEVEL-3 N/A

SO TG e (e LEVEL-3 4.2.b ISO 29119-3
incidents

71

Identify work products to be 4.2.b [ISO 20246]

reviewed LEVEL-3 5.1.2.a
Conduct peer reviews LEVEL-3 5.1.2.b

Analyze peer review data LEVEL-3 6.4.4.1.c

Specify test measures LEVEL-4 6.4.4.2.a

Specify analysis procedures LEVEL-4 N/A

Analyze test measurement LEVEL-4 N/A
data
Store data and results LEVEL-4 N/A

Define the project’s
quantitative product quality LEVEL-4
goals

Measure product quality
quantitatively throughout the LEVEL-4 N/A
lifecycle

4.2.b [ISO/IEC 25010]
6.3.1-6.3.2

Relate work products to items
and features to be tested

72

LEVEL-4 N/A

Define peer review
measurement guidelines

LEVEL-4 N/A

M.easure worlf product quality .. . , N/A
using peer reviews

Revise tl'1e products risks as LEVEL-4 N/A
appropriate

Define defect selection
parameters and defect LEVEL-5 4.2.c defect detection
classification scheme

Analyze causes of selected LEVEL-5 4.2.c
defects

Define action proposals and
submit improvement LEVEL-5 4.2.c
proposals

Establish test process LEVEL-5 N/A
performance measures

Apply statlstlca! m-ethods to LEVEL-5 N/A
understand variations

73

Develop operational profiles LEVEL-5 N/A

Apply statistical test data to

make stop-test decisions LEVEL-5 ~ N/A

Pilot test process

. LEVEL-5 N/A
improvement proposals

Identify and analyze new

. . LEVEL- N/A
testing technologies > /

Plan the deployment LEVEL-5 N/A

Measure improvement effects LEVEL-5 N/A

Select test ass.ets to be added LEVEL-5 N/A
to the re-use library

Aprfly re-usable test assets in LEVEL-5 N/A
projects

74

Appendix-2. DO-178C Annex-A Tables [2]

Table A-1 Software Planning Process

& R
R > Applicability by Contrel Category
Objective E Software Level Output by Software Level
Description Ref Ref A | B | € [D | Dataltem Ref A | B|C|D
j.g.a PSAC AN ORRONNORRO]
20
The activities of the j—g-g SoP 12 (0|0 @ |2
1 | software life cycle 418 4'2'9 0|10 |0 | 0| 5w 13 @ D[(@ @
processes are defined. 491 SCM Plan 114 olole o
421
R SQA Plan 15 | D| @@
The software life PSAC 11.1 @ @ {D
cycle(s), including the B
inter-relationships SOP 12 (ORRONN]
between the processes, 4.2
C their seguencing, 41b 430 0|0 |0 Sl na olo|@
feedback mechanisms, SCM Plan 11.4 (OR RN
and transition critena, is
defined. SQA Plan 1mns | @O @@
241 et m | o|e|d@
Software life cycle 4423 sDP n2 @ Q| e
3 | environment isselected | 41c | 442b | QO[O | O SVP 13 | @ @@
and defined. 4420 SCM Plan 11.4 @ @ @
443
SQA Plan 1ns @ 0| @
a2t PSAC m | Q@0
Additional idara 42h S0P 12 Q|| @ | @
4 | oo addreseed o |41d [42i | O| OO | O sw i |o|o|e|e
j-g-lk SCM Plan M4 | Q| D|@|@
. SQA Plan s || 0@ @
SW Reguirements
495 Standards 1186 ©lo|le
Software development = f
5 | Siandards are definod. 41e j_g.g |0 | O SW Design Standards 1.7 oD@
SW Code Standards 118 O|T|@
Software plans comply 43a Software Verification
8 | with this document, L1 | 48 olo |0 Results 1 @@
Development and . .
T | revision of scftware 410 :gg Q0|0 goﬂware Mt 1114 | @ | @ | @
3 | esults
plans are coordinated.

75

Table A=2 Software Development Processes

il
5 Applicability by Contral Category
Liguctive i Software Leval Ctpat by Software Level
Description Rel Rel A [B | C [D | Dataltem Rel | A |B|[C [D
5.1Zs
5128 Sofbware
512 Reguiramens 118 Mmoo
High-level 51.2.4 Dala
requremeants | 51148 | 512 [I
are deveicped. 5.1.24
g:jﬂ Trace Cata N2 DT D
A2
5.5a
Dervad high-
laval
ragLiramanls
are defined
1am:| prm'ﬂad 5420 |:| |:| G o E-Eﬂ'ﬂ:ETB
e system | BLLE | 345 Reguiremernis ne (D@ @O
Erocesgas, Dala
incuding the
=ysiem salaty
assesamanl
Srocesg.
Sofwera .-
! . 5228 Design
architeciwre is | 218 | 25 0|00 |O P (D@D @D
demelonad, 5224 Description
5iis
51ie
o Design
iy Diescription e (o0 @
Low-level 5229
, 5218
requrements | 5214 | 25, O|l0(C
R EEERIpI 5248
5.2.4.D Trace Cata n (D@ | @
5248
5.5.0
Derivad low-
layal
raguiremernls
are defingd
and prowided o o
tothe systam | 52108 gjj: olo|lo gg::fﬁ“ﬁm 10 | D | @ | @
Eroiaggas P
indudirg the
syslerm salaty
assasamant
EFOCESS.
51Z8
. 533 h Source Code 1111 1 | @
Sourse Code F & A
s deveiopes, | Dla | 53Ze O|lolo
) 5424 Traze Data " (Do @
5.5
Executable
Object Uoda ; Executabie Objecl .
and FParameater g':'j': Cosa g Az | D@ | @D
Date Item
Files.ifany, [543 2935 (O |0 |C|O
are producad
' 542
and logded in . Ferameler Cala e
the larget 5424 Itern File nz | oo @ o
SOMpULEr,

76

Table A-3 Verification of Outputs of Software Requirements Process

2z
5 Applicability b Control Cate
Qbjactiva ":6' Software Lt:vef oo L by Software l?:vr;
Description Ref Ref A | B | C D | Data Item Ref AlB | C D
High-level requirements Software
comply with system 631a (631 |® | ® | O| O | verfication M4 | @@ | @ @
requirements. Resulis
; . Software
High-evel requirements are | 6310 | 6.31 | @ | @ | O | O | Verification 14| @@ el e
Results
High-level requirements are Software
compalible with target 631c | 631 |0 | O Verification 1114 | @ | @
compuler. Resulis
] . Software
High-level requirements are | 5344 | g31 | O | O | © Verification 114 | @@ | @
verifiable.
Results
) . Software
FRof-owe) Faquiremants 631e |631|0 | 0|0 Verfication 1ne|@|@|e
esulis
High-level requirements are Software
traceable to system 6340 | 631 | Q| O | O | O | Verification N4 | @& @
requirements. Results
Software
Algorithms are accurate. 6319|631 | @ | @& | O Verification M4 |
Results

Table A-4 Verification of Outputs of Software Design Process

£
= Applicability by Control Category

Objsctive 2 Software Level Output by Software Level
Description Ref Ref A | B | C | D | Dataltem Ref A | B|C|D
Low-level requirements S
comply with high-level | 63.2a |632 | @ | ® | O pofwere Veificaton | 1114 | @ | @ | @
regquirements.
Low-level requirements) .
are accurate and 632b 632 |@ | @|O poftware Verification | 1114 | @ | @ | @
consistent.
Low-level requirements ’ .
are compatible with 632c 632 |O|O Software Verlicalion | 1114 | @ | @
target computer.
Low-level requirements Software Verification
are verifiable. G32d (632 1 0|0 Resulls 11410 @
Low-level requirements Software Verification
conform to standards, | 0:32€ | 632 1 O 1 O | O Resulls 114102
Low-level requirements -
are traceable to high- 6.32f 632 |Q| Q| 0O g::mi’s'e peHiCata 114 |® &0
level requirements.
Algorithms are accurate. | 6329 (632 |@ | @ | Q g:gm?sre bl 114 | @ | @ | @
Saoftware architecture is) .
compatible with high- | 6.3.3.3 | 633 | @ | O | O Software Verficalon | 1114 | @ | @ | @
level requirements.
Software architecturs is Software Verification
consistent, G33p (633 @0 |0 Resulls 11410 |@ |
Software architecture is S
compatible with target | 6.3.3.c | 633 | Q | O 3223?3” Eenoation 114 | @ | @
computer.
Software architecture is Software Verification
verifiable. 0.5.0.dy k.50 © |0 Results 14| @
Saoftware architecture Software Verification
conforms to standards. | e cjoc|o Results 11| Q||
Software partitioning Software Verification
integrity is confirmed. .31 | 6.3.3 ® 0|00 Results 14|10 @0 |0

77

Table A-5 Verification of Qutputs of Software Coding & Integration Processes

o
5 Applicability by Control Category
Objective 3 Software Level Output by Software Level
Description Ref Ref A | B | C | D | Dataltem Ref AlB | C D:
Source Code
complies with Software
low=level £i43 | 634 e @& O Werification Results i | @@ @
requirements.
Source Code
complies with Software
software 634b | 634 ® 0|0 Werification Results i | @@ @
architecture.
Source Code Software
is verifiable. fidc | 6.34 Werification Results nis | @@
Source Code
conformsto | B.34.d | 6.3.4 o) ﬁ“”.;*a? resuts | 111 | @@ | @
standards. erification Results
Source Code
is traceable to Software
low=lesvel fidp | 6.34 clo|o Werification Results 1| @| @@
requirements.
Source Code
is accurate Software
and 634f | 634 ® 0|0 Werification Results i | @@ @
consistent.
Qutput of
software
integration Software
process is £353 | 635 clo|o Werification Results i1 @@ @
complete and
cofrect.
= " Software
D?i;:rﬂ:rﬁ'ﬂle Verffication Cases | 1113 | @ | D | @ | @
is cormectand | 62 | 6.6 ® | ® | C | O | andProcedures
Software
complete Werification Results 114 1@ | @ | @@
Verification of
Parameter Software
Drata Item File B.ED i ¢ @& O Werification Results i1 @@ @
is achieved.

78

Table A-6 Testing of Outputs of Integration Process

-
— > Applicability by Control Category
Olijactiva E Software Level Ortpsst by Software Level
Description Ref Ref A | B | C | D | Dataltem Ref A|B|C|D
Software Verification
Exe;cutable 6.4.2 Cases and Procedures 13| @ @
Object Code 6.4.2.1 Software Verification
complies with Bda|.,o |O]O|0O0| 0O 114 | @ | @|@| @
; 6.4.3 Results
high-level 65
reguirements. : Trace Data M2 | Q| Q|| @
Software Verification
Exgculable . 5.4.2 Cases and Procedures 13 0 9 @
Object Code is 6.422 g Verificati
robust with 64b | 8422 | o | 0 | O | O | Software Verification 12 | @@ |@| @
. 65.4.3 Results
high-level 6.5
requirements. : Trace Data 121 | Q| D@ | @
Software Verification
Exe;culable 6.4.2 Cases and Procedures 13 | 00| @
o 6.4.2.1 Software Verification
complies with Bdc | 7 | @ | @ | O 1114 | @ | @ | @
6.4.3 Results
low-level 6.5
requirements. : Trace Data M2 | DD @
Software Verification
gﬁ?:;l%b;ede is 6.4.2 Cases and Procedures ALRER RO NO§ e
robust with 6.4.d 6.4.2.2 elolo Software Verification 1mis | @ oo
= | 64.3 Results I
low-level 6.5
requirements. ’ Trace Data 121 | @ O©| @
Executable Software Verification
Object Code i 6.41.a Cases and Procedures n3 | 0|0
compatible B.4.e 6439 0|0 |0 . VT
with targel i oftware Verification 11.14 @ @ @ @
computer. Results

79

Table A-7 Verification of Verification Process Results

£
= Applicability by Control Category
Objective E Software Level Output by Software Level
Description Ref Ref A | B [+ D | Data ltem Ref A | B|C D
Test procedures are Software
correﬁl 6450 6.4.5 ® O O Verification "4 | @ | @ | @
' Results
= ; 64.5.c 6.4.5 ® | OO Verification 4 | @@ | @
iscrepancies Results
explained.
gh- . 64.4.a 6.4.4.1 ® | O | O O | Verification M4 | @ | @@ | @
requirements is Results E—
achieved.
;Le"\:‘:_tlgevlerage e Software
requirements Is 6.4.4.b 6.4.4.1 ® | QO |0 \éﬁgﬂﬁzhon M4 | @ | @ | @
achieved.
Test coverage of
software structure 6.4.42a
: Software
(modified 6.4.42b . .
condiionfdecision | 8448 | 54424 ¢ yermoation | 1114 @
coverage) is 6443
achieved.
Test coverage of 64422
Software
software structure 64420 e
(decision coverage) f44.0 6442d L ggggﬁghon 4 1@ | @
is achieved. 6.4.4.3
Test coverage of
software structure gi:g: Software
(statement B4.4.c 6.442d ® @ | O Werification "4 | @ | @ | @
coverage) is 6. 4' 4'3' Results
achieved. o
Test coverage of
software structure 6.4.42¢c Software
(data coupling and G444 6.4.4.24d ® | @ | O Werification n4 @@ | @
contral coupling) is 6.4.43 Results
achieved.
Verification of
additional code, that Scftware
cannot be traced to G4.4.c 6.442b [Werification 114 | @
Source Code, is Results
achieved.
Table A-8 Software Configuration Management Process
Objective 'E Applicability by Outout Control Category
2 Software Level pu by Software Level
Description Ref Ref A | B | C D | Dataltem Ref Al B|C | D
Config.ration ftems are 712|721 |0 | O] O | O | scMRecords 1E8|@|Q@|® | @
Software
Baselines and traceability are sipl722l 0OlO| 00O Configuration Index LA JUNRORRURRO
established. — .
SCM Records e | @@ |@|@
Prablem reporting, change 7iec | 7.23 Problem Repaorts M7 | @ @@ | @
control, change review, and 71d | 724 clololo
configuration status accounting | 7.1.e | 7.25 SCM Records HiE | @O | @@
are established. 710 | 7.26
Archive, retrieval, and release
are established, 719|727 | Q| Q| O | O | SCM Records nEe | @ @ @@
Software load control is
established. 71h | 74 C | 0| 0| O | SCMRecords MNEe| @ @ @@
Software Life Cycle
Environment N | @D DD
Software life cycle environment . Configuration Index
control is established. 7ai175 10101010
SCM Records Mme | @@ |@|@

80

Table A-9 Software Quality Assurance Process

£ Control Category
- Applicability by
Objective g Software Level Qutput by Software
by Level
Description Ref Ref A | B | C | D | Dataltem Ref A|B | C| D
Assurance is
obtained that
software plans and
standards are B.2b
developed and Blia |B2h | @ | @ | @ SQA Records 1119 | @ | & | @&
reviewed for B.2i
compliance with this
document and for
consistency.
Assurance is B2a
obtained that B2c
software life cycle 8.2d
processes comply BAb | g5 ® | ® @ | ® | SQARecords 1119 |1@ 1 @ | @ | @
with approved B.2h
software plans. B.2i
Assurance is B2a
obtained that B2c
software life cycle 8.2d
processes comply 81b |ghs @ | @ |® SQA Records 119 (@ @@
with approved B.2h
software standards. B.2i
Assurance is
obtained that
transition criteria for 8.1 ggﬁ o eole SOA Records e | @ @le
the: software life 5'2'.
cycle processes are —
satisfied.
Assurance is B2
obtained that o
software conformity B.1.d g.g.h ® ® | ® | ® | SQARecords 1119 [@@ @@
review is conducted. '
Table A-10 Certification Liaison Process
?:‘ Applicability by Control Category
2
Objectve E Software Level Output by Software Level
Description Ref Ref A B |C D | Data ltem Ref A B cClD
Communication and
understanding between
- 91b Plan for Software
the applicant and the 98 | g4, | Q10|00 Aspects of Certification 11 ||| ©

cerification authority is
established.

The means of
compliance is proposed

and agreement with the o Plan for Software

=
S
boh
o)
o
o)
E
S
<
S
S

Plan for Software Aspects of Certification
Aspects of Certification is
abtained.
Software
Compliance 92a gm%nghshmenl LI RO NURRORRO)
substantiation is 9¢c |92b | OO |0O|0Q v
provided. 9.2c ﬁ‘zfé\:are Configuration 1 Olol oo

81

Appendix-3. Summary of Assesment (Achievement Rates by Practices)

PRACTICE

ACHIEVEMENT RATE
F: Fully Achieved

P: Partally Achieved
Mot Achieved

M/A:Not Applicable

Identify items and features to be tested

Define the test approach

Define entry criteria

Define exit criteria

Define suspension and resumption criteria

Establish a top-level work breakdown structure

Define test lifecvcle

Determine estimates for test effort and cost

Estahlish the test schedule

Plan for test staffing

] Bl Wl B B ol I ol W] I ol W

Plan stakeholder involvement

Mot achieved

[dentify test project risks

Mot achieved

Establish the test plan L
Review test plan L
Reconcile work and resource levels L
(btain test plan commitments MN/A

Monitor test planning parameters

Mot achieved

Monitor test environment resources provided and
used

Mot achieved

Monitor test commitments MiA

Monitor test project risks Mot achieved
Monitor stakeholder involvement MiA
Conduct test progress reviews MiA
Conduct test progress milestone reviews MiA

Check against entry criteria MN/A

Monitor defects Mot achieved
Monitor product risks MNiA

Monitor exit criteria F

Monitor suspension and resumption criteria F

Conduct product quality reviews MNIA
Conduct product quality milestone reviews MNiA

Analyze issues

Mot achieved

Take corrective action

Mot achieved

Manage corrective action

Mot achieved

82

[dentify and prioritize test conditions L
[dentify and prioritize test cases

[dentify necessary specific test data M/A
Maintain horizontal traceability with | F
requircments

Develop and prioritize test procedures L
Create specific test data F
Spectfy intake test procedure F
Develop test execution schedule F
Perform intake test F
Exccute tost cascs F
Report test incidents F
Write test log F
Decide disposition of test incidents in | L
configuration control board

Perform appropriate action to fix the test incident | F
Track the status of test incidents L
Elicit test environment needs P
Develop the test covironment requirements p
Analyze the test environment requircments P
Implement the test environment P
Create generic test data M
Specify test environment intake test procedure M
Perform test environment intake test M
Perform systems management F
Perform test data management F
Coordinate the availability and usage of the test | L
cnvironments

Report and manage fest environment incidents L
Define the test organization F
(Obtain commitments for the test organization F
Implement the test organization F
[dentify test functions F
Develop job descriptions F
Assign staff members to test functions F
Establish test carcer paths M/A
Develop personal test career development plans M/A

Assess the organization’s test process

Mot achteved

[dentify the organization's test process
improvements

Mot achteved

Plan test process improvements

Mot achieved

83

[mplement test process improvements

Mot achieved

Deploy standard test process and test process
asscts

L

Monitor implementation

[ncorporate lessons learncd into the | P
organizational test process

[dentify the strategic test training needs

Align the organizational and project test training | L

necds

Establish an organizational test training plan

Mot achicved

Establish test training capability

Mot achieved

Deliver test training MN/A
Establish test training records M/A
Assess test training effectiveness MN/A
Establish standard test processes L
Establish test lifecvele model descriptions | L
addressing all test levels

Establish taitloring criteria and guidelines M/A

Establish the organization’s test process database

Mot achicved

Establish the organization's test process asset
library

L

Establish work environment standards MN/A
Establish integrated lifecycle models MN/A
Review integrated lifecycle models M/A
Obfain commitments on the role of testing within | N/A
the integrated lifecyele models

Perform a product risk assessment M/A

Summary of Assessment (Achievement Rates by Process Areas)

THMMI Process Arca

arca)

Achicvement Result
(Lowest achievement rate of
a practice in the process

2.2 Test Planning

Largely Achieved

2.3 Test Monitoring and Control

Mot achieved

2.4 Test Design and Exccution

Largely Achieved

2.5 Test Environment

Partially Achieved

A.1. Test Organization Mot achieved

1.2 Test Training Program Mot achieved

84

Appendix-4 Questionnaire

TMMI | GOAL PRACT | REFERE | ACHIEVE | STRENG | WEAKNE
PROCE ICE NCE TO | MENT HTS SSES
SS RELEVA | RATE
AREA NT DO- |F: Fully
178C Achieved
SECTIO | P: Partially
N Achieved
L: Largely
Achieved
N: Not
Achieved
N/A:Not
Applicable
2.1 Test | Establish a | Define 1) Refer
Policy Test testgoals | To
and Policy Section
Strategy 6.1-
2) Refer
To
6.4.3.B-
3) Refer
To
Section
2.3
2.1 Test | Establish a | Define 1) Refer
Policy Test test To
and Policy policy Section
Strategy 6.4.
2) Refer
To6.2
2.1 Test | Establish a | Distribut | N/A
Policy Test e the test
and Policy policy to
Strategy stakehol
ders
2.1 Test | Establish a | Perform
Policy Test a generic | 1) Refer
and Strategy product | To 2.3.2
Strategy risk
assessme | 2) Refer
nt To023.3

85

2.1 Test | Establish a | Define Refer To
Policy Test test Test Goals
and Strategy strategy | & Policy
Strategy Practices
1)Refer
To Do-
178c
Section
6.4
2)Refer
To
Section
6.4.2-
3) Refer
To
Section
6.4.3.B
4) Refer
To 641
5) Refer
To
Section
11.14
2.1 Test | Establish a | Distribut | N/A
Policy Test e the test
and Strategy strategy
Strategy to
stakehol
ders
2.1 Test | Establish | Define 1) Refer
Policy Test test To Test
and Performan | performa | Goals &
Strategy | ce nce Policy
Indicators | indicator | Practices
S
2.1 Test | Establish | Deploy | 1) Refer
Policy Test test To
and Performan | performa | Section
Strategy | ce nce 644 &
Indicators | indicator | 6.4.4.1 &
S 6.4.4.2

86

2.2 Test | Perform a | Define
Planning | Product product | 1) Refer
Risk risk To 232
Assessme | categorie
nt S and | 2) Refer
paramete | To 2.3.3
rs
3) Refer
To
Section
7.2.5
2.2 Test | Perform a | Identify | 1) Refer
Planning | Product product | To 2.3.2
Risk risks
Assessme 2) Refer
nt To02.3.3
2.2 Test | Perform a | Analyze | 1) Refer
Planning | Product product | To 2.3.2
Risk risks
Assessme 2) Refer
nt T02.3.3
2.2 Test | Establish a | Identify | 1) Refer
Planning | Test items To Note
Approach | and From
features | Section
to be | 6.4
tested 2) Refer
To
Section
6.6.
3) Refer
To
Section
2.5
2.2 Test | Establish a | Define 1) Refer
Planning | Test the test | To 6.4.2.1
Approach | approach | 2) Refer
To 6.4.2.2
3) Refer
To 6.4.3
& 6.4.3.B
4) Refer
To 641
5) Refer
T04.4.2.C
2.2 Test | Establish a | Define N/A
Planning | Test entry
Approach | criteria

87

2.2 Test | Establish a | Define N/A
Planning | Test exit
Approach | criteria
2.2 Test | Establish a | Define N/A
Planning | Test suspensi
Approach | on and
resumpti
on
criteria
2.2 Test | Establish | Establish
Planning | Test a top- | Refer To
Estimates | level Section
work 7.2
breakdo
wn
structure
2.2 Test | Establish | Define N/A
Planning | Test test
Estimates | lifecycle
2.2 Test | Establish | Determi | 1)Refer
Planning | Test ne To 6.4.1
Estimates | estimates | 2) Refer
for test| To
effort Section
and cost | 2.3.2
2.2 Test | Develop a | Establish | N/A
Planning | TestPlan | the test
schedule
2.2 Test | Develop a | Plan for | N/A
Planning | Test Plan | test
staffing
2.2 Test | Develop a | Plan N/A
Planning | Test Plan | stakehol
der
involve
ment
2.2 Test | Develop a | Identify | N/A
Planning | Test Plan | test
project
risks

88

2.2 Test
Planning

Develop a
Test Plan

Establish
the test
plan

Refer
Define
Test
Approach
Practice

+

1)Refer
To
Section
11.3 -
2)Refer
To
Activity
4.4.2.C
(Reverific
ation
After
Change)
Also
Refer
12.1.3
Change
Of
Applicatio
n Or
Developm
ent
Environm
ent Can
Require
Reverifica
tion)

3) Refer
To

Section
11.14

To

To

2.2 Test
Planning

Obtain
Commitm
ent to the
Test Plan

Review
test plan

1) Refer
To
Section
11.3

2.2 Test
Planning

Obtain
Commitm
ent to the
Test Plan

Reconcil
e work
and
resource
levels

1) Refer
To
Section
2.5

2.2 Test
Planning

Obtain
Commitm
ent to the
Test Plan

Obtain
test plan
commit
ments

N/A

89

2.3 Test | Monitor Monitor | N/A
Monitori | Test test
ng and | Progress planning
Control | against paramete
Plan rs
2.3 Test | Monitor Monitor | Test
Monitori | Test test Environm
ng and | Progress environ | ent
Control | against ment
Plan resource
S
provided
and used
2.3 Test | Monitor Monitor | N/A
Monitori | Test test
ng and | Progress commit
Control | against ments
Plan
2.3 Test | Monitor Monitor | Test
Monitori | Test test Environm
ng and | Progress project ent
Control | against risks
Plan
2.3 Test | Monitor Monitor | N/A
Monitori | Test stakehol
ng and | Progress der
Control | against involve
Plan ment
2.3 Test | Monitor Conduct | N/A
Monitori | Test test
ng and | Progress progress
Control | against reviews
Plan
2.3 Test | Monitor Conduct | N/A
Monitori | Test test
ng and | Progress progress
Control | against mileston
Plan e reviews
2.3 Test | Monitor Check N/A
Monitori | Product against
ng and | Quality entry
Control | against criteria
Plan and
Expectatio
ns
2.3 Test | Monitor Monitor | N/A
Monitori | Product defects
ng and | Quality
Control | against
Plan and

90

Expectatio
ns

2.3 Test | Monitor Monitor | N/A
Monitori | Product product
ng and | Quality risks
Control | against

Plan and

Expectatio

ns
2.3 Test | Monitor Monitor | N/A
Monitori | Product exit
ng and | Quality criteria
Control | against

Plan and

Expectatio

ns
2.3 Test | Monitor Monitor | N/A
Monitori | Product suspensi
ng and | Quality on and
Control | against resumpti

Plan and | on

Expectatio | criteria

ns
2.3 Test | Monitor Conduct | N/A
Monitori | Product product
ng and | Quality quality
Control | against reviews

Plan and

Expectatio

ns
2.3 Test | Monitor Conduct | N/A
Monitori | Product product
ng and | Quality quality
Control | against mileston

Plan and | e reviews

Expectatio

ns
2.3 Test | Manage Analyze | N/A
Monitori | Corrective | issues
ng and | Actions to
Control | Closure
2.3 Test | Manage Take N/A
Monitori | Corrective | correctiv
ng and | Actions to | e action
Control | Closure
2.3 Test | Manage Manage | N/A
Monitori | Corrective | correctiv

e action

91

ng and | Actions to
Control | Closure
2.4 Test | Perform Identify | 1) Refer
Design | Test and To
and Analysis prioritize | Section
Executio | and test 6.3.1
n Design conditio
using Test | ns 2) Refer
Design To 6.4.2
Technique 6.4.2.1 &
S 6.4.2.2
3) Refer
To 6.4.3
4) Refer
To
Section
6.5
5) Refer
To
Activity
6.2.B
2.4 Test | Perform Identify | 1) Refer
Design | Test and To
and Analysis | prioritize | Section
Executio | and test cases | 6.4.4.1 -
n Design 6.4.4.2-
using Test 6.4.4.3
Design 2) Refer
Technique To
S Section
6.4.1
2.4 Test | Perform Identify | N/A
Design | Test necessar
and Analysis |y
Executio | and specific
n Design test data
using Test
Design
Technique
S
2.4 Test | Perform Maintain | 1) Refer
Design | Test horizont | To
and Analysis | al Section
Executio | and traceabili | 6.5
n Design ty with | 2) Refer
using Test | requirem | To
Design ents Section
Technique 6.4.4.1
S

92

2.4 Test | Perform Develop | 1) Refer

Design | Test and To Note

and Implement | prioritize | From

Executio | ation test Section

n procedur | 6.4

es

2.4 Test | Perform Create N/A

Design | Test specific

and Implement | test data

Executio | ation

n

2.4 Test | Perform Specify | N/A

Design | Test intake

and Implement | test

Executio | ation procedur

n e

2.4 Test | Perform Develop | N/A

Design | Test test

and Implement | executio

Executio | ation n

n schedule

2.4 Test | Perform Perform | N/A

Design | Test intake

and Execution | test

Executio

n

2.4 Test | Perform Execute | 1) Refer

Design | Test test cases | To

and Execution Activity

Executio 442.C

n (Reverific
ation
After
Change)
Also
Refer To
12.1.3
2) Refer
To
Section
6.2.D
3) Refer
To
Section
6.6
4) Refer
To
Section
11.14

93

2.4 Test | Perform Report 1) Refer
Design | Test test To
and Execution | incidents | Section
Executio 7.2.3
n 2) Refer
To
Section
11.14
3.Refer
To
Section
11.17
2.4 Test | Perform Write N/A
Design | Test test log
and Execution
Executio
n
2.4 Test | Manage Decide 1) Refer
Design | Test dispositi | To
and Incidents | on of test | Section
Executio | to Closure | incidents | 7.1.e
n in 2) Refer
configur | To
ation Section
control 7.25
board
2.4 Test | Manage Perform | 1)Refer
Design | Test appropri | To
and Incidents | ate Section
Executio | to Closure | action to | 7.2.3
n fix the|2) Refer
test To
incident | Section
2.4 Test | Manage Trackthe | 1) Refer
Design | Test status of | To
and Incidents | test Section
Executio | to Closure | incidents | 7.2.3
n
2.5 Test | Develop Elicittest | 1) Refer
Environ | Test environ | To
ment Environm | ment Section
ent needs 4.4.3
Requirem 2)Refer
ents To
Section
6.4.1
3) Refer
To
Section
12.3.2

94

4) Refer
To

Section
6.2.B
2.5 Test | Develop Develop | 1)Refer
Environ | Test the test | To
ment Environm | environ | Section
ent ment 4.4.3
Requirem | requirem | 2)Refer
ents ents To
Section
6.4.1
3) Refer
To
Section
12.3.2
2.5 Test | Develop Analyze | 1)Refer
Environ | Test the test | To
ment Environm | environ | Section
ent ment 4.4.3
Requirem | requirem | 2)Refer
ents ents To
Section
6.4.1
3) Refer
To
Section
12.3.2
2.5 Test | Perform Impleme | N/A
Environ | Test nt the
ment Environm | test
ent environ
Implement | ment
ation
2.5 Test | Perform Create N/A
Environ | Test generic
ment Environm | test data
ent
Implement
ation
2.5 Test | Perform Specify | N/A
Environ | Test test
ment Environm | environ
ent ment
Implement | intake
ation test

95

procedur
e

2.5 Test | Perform Perform | N/A
Environ | Test test
ment Environm | environ
ent ment
Implement | intake
ation test
2.5 Test | Manage Perform | N/A
Environ | and systems
ment Control manage
Test ment
Environm
ents
2.5 Test | Manage Perform | N/A
Environ | and test data
ment Control manage
Test ment
Environm
ents
2.5 Test | Manage Coordina | N/A
Environ | and te the
ment Control availabili
Test ty and
Environm | usage of
ents the test
environ
ments
2.5 Test | Manage Report N/A
Environ | and and
ment Control manage
Test test
Environm | environ
ents ment
incidents

96

97

98

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. METHOD
	4.1. Comparison between DO-178C and TMMI
	4.2. Guidance Approach with TMMI model for Avionics Software Integration Testing

	5. METHOD IMPLEMENTATION
	5.1. Comparison between DO-178C and TMMI
	5.1.1. TMMI versus DO-178C Software Planning Process
	5.1.2. TMMI versus DO-178C Software Development Process
	5.1.3. TMMI versus DO-178C Software Verification Process
	5.1.3.1. TMMI versus DO-178C Section 6.3
	5.1.3.2. TMMI versus DO-178C Section 6.4
	5.1.3.3. TMMI versus DO-178C Section 6.5
	5.1.3.4. TMMI versus DO-178C Section 6.6

	5.1.4. TMMI versus DO-178C Software Configuration Management Process
	5.1.5. TMMI versus DO-178C Software Quality Assurance Process
	5.1.6. TMMI versus DO-178C Certification Liaison Process
	5.2. Guidance Document for TMMI Applications on Avionics Software Integration Testing
	5.3. Case Study
	5.3.1 Research Design
	5.3.2 Research Context (Investigated Company and Project)
	5.3.3 Data Collection and Analyses
	5.3.4 Case Study Results

	6. CONCLUSION
	7. REFERENCES
	APPENDIX
	Appendix-1. TMMI Practices and DO-178C Activities Mapping
	Appendix-2. DO-178C Annex-A Tables [2]
	Appendix-3. Summary of Assesment (Achievement Rates by Practices)
	Appendix-4 Questionnaire

