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ABSTRACT

AN END-TO-END CONVOLUTIONAL NEURAL NETWORK
FRAMEWORK FOR LOW-RESOLUTION ATTRIBUTE

RECOGNITION

Ramin ABBASZADI

Doctor of Philosophy, Computer Engineering
Supervisor: Assoc. Prof. Dr. Nazlı İKİZLER CİNBİŞ

December 2022, 82 pages

In video surveillance, visual person attributes such as gender, backpack, and type of clothing

are crucial for searching and re-identification. For detecting and retrieving these attributes

with high accuracy, the availability of high-quality videos is a necessity in general. The

details in an image are described by image resolution; the higher the resolution, the more

image details. However, in real-world video surveillance systems, videos are usually cap-

tured from a far distance, resulting in low-resolution person regions. The technique used

for solving this obstacle is super-resolution, which constructs high-resolution images from

several observed Low-Resolution images or one single Low-Resolution image. This thesis

examines this problem and proposes an end-to-end Convolutional Neural Network that com-

bines a Super Resolution network and Multi-Attribute detection network for more effective

Multi-Attribute detection.
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Our framework consists of joint training of two main parts, the Super-Resolution and at-

tributes learning. We use different Super-Resolution algorithms in the first part of the pro-

posed method. For this purpose, some well-known and high-quality Super-Resolution algo-

rithms were tested, and finally, two methods entitled EDSR and DBPN were selected. We

evaluate the proposed method on two benchmark datasets, Market-1051 and DukeMTMC-

reID, labeled with some important labels (attributes) and predict every image label. Experi-

mental results on these two benchmark datasets demonstrate the effectiveness of the proposed

approach for the Low-Resolution multiple attribute learning task. Furthermore, we also pro-

pose a higher-level linear combination scheme of the two network types (with and without

super-resolution), yielding superior results in person attribute recognition.

Keywords: super resolution, multi attribute learning, convolutional neural networks, person

attribute recognition, low-resolution recognition.
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ÖZET

DÜŞÜK ÇÖZÜNÜRLÜKLÜ ÖZELLİK TANIMA İÇİN UÇTAN UCA
EVRİŞİMLİ SİNİR AĞI ÇERÇEVESİ

Ramin ABBASZADI

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Nazlı İKİZLER CİNBİŞ

December 2022, 82 sayfa

Video izlemede cinsiyet, sırt çantası, kıyafet türü gibi kişisel görsel özellikler, kişi arama ve /

veya yeniden kimlik tespiti için çok önemlidir. Bu öznitelikleri yüksek doğruluk oranıyla

tespit etmek ve geri almak için, yüksek kaliteli videoların mevcudiyeti genel olarak bir

gerekliliktir. Görüntüdeki detaylar görüntü çözünürlüğüyle tanımlanır, çözünürlük arttıkça

detaylar da artar yani doğru orantılılardır. Ancak, gerçek dünyadaki video gözetim sis-

temlerinde, videolar genellikle uzak mesafelerden yakalanır ve bu da kişilerin bulunduğu

bölgelerin düşük çözünürlüklü olmasına neden olur. Bu sorunu çözmek için kullanılan

teknik, gözlemlenen bir veya birkaç düşük çözünürlüklü görüntüden yüksek çözünürlüklü

görüntüler oluşturan Süper-Çözünürlüktür. Bu tezde, bu soruna bakıyoruz ve daha etk-

ili Çok-Özellikli algılama için Süper-Çözünürlük ağını ve Çok-Özellikli algılama ağını bir

araya getiren uçtan uca Evrişimli Sinir Ağları kullanmayı öneriyoruz. Çerçevemiz, iki ana

kısmın, Süper-Çözünürlük ve öznitelik öğrenme kısımlarının ortak eğitiminden oluşur.Önerilen

yöntemin ilk bölümünde farklı Süper Çözünürlük algoritmaları kullanıyoruz. Bu amaçla,

bazı iyi bilinen ve kaliteli Süper Çözünürlük algoritmaları test edilmiş ve son olarak EDSR ve

DBPN adlı iki yöntem seçilmiştir. Bu tez, önerilen metodu önemli özniteliklerle etiketlenmiş

ver her görüntü etiketini tahmin edebilmeyi sağlayan Market-1051 ve DukeMTMC-reID
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veri setleriyle değerlendiriyor. Bu iki kıyaslamalı veri setlerindeki deneysel sonuçlara göre

veri setleri, düşük çözünürlüklü Çok-özellikli öğrenme metodu için önerilen yaklaşımın etk-

ililiğini açıklıyor. Ayrıca, kişi öznitelik tanımada üstün sonuçlara ulaşılmasını sağlayan daha

yüksek seviyeli iki ağ tipinin (Süper-Çözünürlüklü ya da Süper-Çözünürlüksüz) lineer kom-

binasyon taslaklarını da bu tezde inceleyip sunuyoruz.

Anahtar Kelimeler: Süper-Çözünürlük, Çok-Öznitelikli öğrenme, evrişimli sinir ağları, kişi

öznitelik tanıma, düşük çözünürlüklü tanıma.

iv



ACKNOWLEDGEMENTS

First and foremost, I would like to thank to my supervisor Assos. Prof. Dr. Nazlı İKİZLER
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1. INTRODUCTION

1.1. Motivation

Vision technology, both in hardware and software, has improved dramatically in recent

decades, and it will take the place of other sensors in various applications. Nowadays,

micro-controllers can run vision algorithms and process vision data. As a result, creating

a vision-based system has now become much more accessible than a decade ago, allowing

us to develop applications, devices, and robots based on vision systems much cheaper. The

question ”Why is visual sensing prevalent?” can be answered by describing its applicability

in the industry of any type, in research, Etc. Visualizing visual data is better for humans to

understand and interpret what is going on in the environment. Fortunately, visual processing

systems are working very well in many areas, and the applications are growing yearly.

Starting from automation in industries, we can easily understand its importance in the au-

tomation of repeating processes and tasks to complex ones, including navigation, all depend

on vision-based systems. One of the areas in that vision and visual sensing has an essential

role in the development and automation is the surveillance and security sector. Due to the

importance of automation in this sector, considering the cost of labor, dangers that human

operators are facing, and many other reasons, considerable research has been conducted in

this area, and still, the number is growing. Therefore, vision-based automation in surveil-

lance systems is the core technology to address many challenges.

One of the critical challenges in surveillance systems is scene understanding, recognizing

possible dangerous activities, recognizing humans in the scene, objects, Etc. (see Figure 1.1.

as an example). The recognition task is based on the data from the camera as a base vision

data streamer. The term data is very general; at the end of the day, the algorithms are working

on only a tiny percent of all data collected. Data come with noises, and a large part of the

data is useless, and all should be processed in real-time, especially in surveillance systems.

Re-identifying humans based on images and videos is a fundamental and significant problem

that is very important in designing surveillance systems. Currently, there is much research
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Figure 1.1. Prevention of crime and terrorist incidents and threats is one of the goals of visual
surveillance systems. This image shows a hypothetical visual surveillance system used
with a human system that can recognize and control faces from a given blacklist and
raise an alert when a match is found. [3].

on the subjects, and recently is improved significantly, and it was expected to surpass human

performance in the next couple of years.

To re-identify a person, parsing a human from a 2D image, relies only on the visual appear-

ance of the human. One approach is quantifying the appearance of being able to annotate

data to taking the advantage of machine learning algorithms as well as being able to study

the improvements in the area by assigning attributes to humans in the scene.

Person Attribute Recognition (PAR) is a recently evolving task in computer vision that is

of particular interest, especially for visual surveillance systems. The PAR task consists of

recognizing personal characteristics such as gender, age, clothing style, hair, and many other

attributes. Several challenges are associated with this task, including varying illumination

conditions, different viewpoints, and low resolution due to far distances. Furthermore, this

task requires analysis of finer details; when the details are lacking due to Low-Resolution

(LR), the PAR becomes very difficult. Therefore, the best technique for solving LR images

and videos is Super-Resolution (SR). SR is a set of algorithms or methods of up-scaling

videos or pictures. The SR methods and techniques principles are similar: creating one
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up-sized image from several different images or estimating a high-resolution (HR) image

from its LR image. However, the image resolution is limited by the hardware and capturing

systems, such as image sensors (for example, CCD) and optics. Constructing optical com-

ponents and imaging chips to capture HR images is expensive and not practical in most real

cases. With breakthroughs in computer vision research, SR received substantial attention

with more practical aspects.

In traditional machine vision approaches, handcrafted features (e.g., Color Histograms, Lo-

cal Binary Patterns, Histogram of Oriented Gradient, Bag of Visual Words, and so on) are the

methods used for features or attributes representation that is followed by classification with

a standard classifier such as the trendy Support Vector Machine (SVM) [21]. Recently, in

contrast to handcraft features, the learned features with deep learning structures like Convo-

lutional Neural Networks (CNNs) have shown great potential for different vision tasks. For

example, multi-attribute networks show great potential in understanding the involved human

scene, which can be a forward step for human activity recognition. This area has been active

in recent years due to its potential tremendous application opportunities [6, 22–24].

According to our experience, Multi-Attribute (MA) model performance on LR images does

not improve even when training on LR data because of information deficiency in such im-

ages. Considering that the network is training with a classification loss function, it may

not solve the LR issue independently. Our idea is to improve the images by applying SR

networks that improve image resolution. For this purpose, we first use the SR network sep-

arately on LR images and produce HR images. Then, using these HR images as input to

the MA network led us to better accuracy results. Therefore after getting these results, we

combine the SR and MA networks as an end-to-end network to get exact results. Finally, our

results show that the accuracy of a combined SR network with an MA network dramatically

improves, supporting our hypothesis. In this thesis, we try to solve the problem of Multi-

Attribute Recognition (MAR) and Multi-Class Recognition (MCR) for LR 2D images. In

this dissertation, we propose an end-to-end learning model by merging the power of SR and

MAR models to get more accurate recognition. Because the higher image resolution makes

better accuracy in the MAR system, we propose a merged model of the SR network with a
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multi-attribute learning network. We establish experiments on two benchmarks, the Market-

1501 [1], and the DukeMMTC-reID dataset [2]. As a result, we prove from experimental

results that the accuracy of the MAR network increases by merging it with SR networks.

Thus, we prepare an end-to-end neural network model that starts with an SR network and

ends with a MA network, we call this end-to-end CNN architecture as the super-resolution

multi-attribute recognition (SRMAR) model. To the best of our knowledge, this research is

the first end-to-end learning model for person MAR, which proposes using extra information

(HR images) to heal the information loss LR images. We further propose a linear combina-

tion of the SRMAR network and the MAR network to boost recognition performance. Our

experiments verify that combining models is better for the LR person to attribute recognition.

1.2. Contributions of the Thesis

In summary, our main contributions in this thesis are:

• It is shown that using the SR as a prepossessing in LR images increases the accuracy

of multi-attribute multi-class classification recognition.

• In this thesis, we make a combined CNN architecture called SRMAR that uses an SR

network trained to reconstruct LR images and a MAR network.

• The linear combination scheme combines the SRMAR model with the MAR model to

get a better mean accuracy of attributes proposed in this thesis.

• We improve the state-of-the-art in PAR even on LR images.

• We extensively tested the proposed models on two benchmark datasets widely used for

PAR, and there is a reproducible state-of-the-art result.

1.3. Organization of the Thesis

This dissertation shows how a super-resolution algorithm can increase multi-attribution ac-

curacy in low-resolution images. The structure and rest of this thesis are as follows:
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• Chapter 2 summarizes the background of the methods and techniques used in this the-

sis. Convolution Neural networks (CNNs) and some of the most famous and common

CNN architectures are summarized in this chapter.

• In chapter 3, a review of the literature on Multi-Attribute Recognition and Super-

Resolution methods is given, and some new articles about them are reviewed.

• Chapter 4 gives the details of our proposed methodology. In addition, details of using

our combination model and linear combination model are given in this chapter.

• Chapter 5 presents the implementation details and the experiments based on the pro-

posed methods, and this chapter also describes using two famous and standard datasets.

Finally, a comprehensive evaluation of the methods and a comparison of results are

presented.

• Finally, in Chapter 6, we discuss the conclusion of this work and possible future re-

search directions.
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2. BACKGROUND

This thesis focuses on increasing the multi-attribute recognition accuracy of low-resolution

person images using super-resolution algorithms. More specifically, it aims to increase

the multi-attribute recognition accuracy of low-resolution images by combining the super-

resolution network with the multi-attribute network as the end-to-end network. This chapter

summarizes some general definitions, methods, and techniques used in this dissertation.

2.1. Visual Attributes

As discussed in the introduction chapter, vision-based automation of surveillance is taking

2D videos, and all processes and decisions are based on the person’s visual appearance in

the image. Related semantics, auxiliaries, or higher level features can be applied to under-

standably pars this visual data. Defining attributes based on the appearance of the human

is essential in collecting and annotating data for the supervision of algorithms and making

the problem interpretable. For example, a car has a type, color, size, Etc., which is visually

recognizable. For humans, clothes, wearing style (e.g., a spotted skirt, rather than just any

skirt), hair (color, size), carrying something, and even the clothes’ color could be considered

recognizable attributes. These visually recognizable attributes are what we will refer them as

visual attributes throughout the thesis. The visual attributes are selected based on available

authentic datasets.

2.2. Human Visual Attributes

Human vision attributes are those semantics that a human can recognize different humans

from each other or a single human in different scenes. Based on this definition, we may be

able to list many attributes, but in computer vision, only recognizable attributes (or partially

recognizable) based on their occurrence in the data (i.e., 2D video) are listed. For example, it
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Figure 2.1. Sample of face verification with visual attributes [4]. The first and second row pictures
show attribute values of the same and different persons.

immediately can be understood that the human head/face 1, clothing (wearing a hat, skirt, the

t-shirt is visually recognizable), clothing colors (both upper body and lower body), hairstyle

( having hair (or not), hair color, long or short, smooth or curly, Etc.), the status of carrying

something that a person commonly does (backpack, hand back, Etc.). Due to the importance

of the definition of human visual attributes, the subject is studied extensively, and based on

that, some valuable datasets were created [1, 2, 22]. There are common attributes in different

datasets and differences that come from the applications for which a particular dataset is

prepared. Generally, datasets consider 5 to 15 different human visual attributes. The number

of attributes is not as crucial as their descriptiveness of them. However, a particular attribute

must become informative enough to contribute to the recognition task. Using these attributes

is so effective in visual tasks. For example, as shown in Figure 2.2., based on the human

visual attribute as a search query [5] to retrieve a face.

1Face recognition is another crucial topic in computer vision where the only human face is taken into
account (as shown in Figure 2.1.)

7



Figure 2.2. Sample of image retrieval and searching with Multi-Attribute [5], in addition to consid-
ering given multi-attribute keywords inside the given query, this research also considers
the remaining attribute that is not part of the given query. For example, in this Figure
target is retrieving Asian women with sunglasses. In their algorithm, not only are multi-
attributes of the given query considered, but also some other attributes related to given
multi-attributes are controlled; for example, in this sample query, finding results should
not have a mustache, blond hair, or beard.

2.3. Person Attribute Recognition

Person attribute recognition (PAR) recognizes whether a person poses a certain attribute from

the given image. As already discussed, based on the status of the attributes, a person can be

recognized by others in one or multiple scenes based on the human visual attributes defined

in the previous section. As it is clear, PAR is a sub-task relative to person recognition, a

high-level semantic recognition of a person’s image. Figure 2.3. includes an example of

person multi attributes.

2.4. Resolution

The resolution, as it is clear from the meaning in our case, is the number of pixels that

represent a visual scene. In 2D images, like the data that is considered in the thesis, w × h

pixels color per channel representing the whole scene w for width and h for height. It is
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Figure 2.3. Example of person multi attribute prediction [6].

not needed to mention that the number of pixels is very important in computer vision and

in general in any visual process. Imagine a scene that is represented with 4 pixels and the

same scene by 4000 pixels. The more pixels, the more details can be stored in the 2D image.

However, the problem is not straightforward as that, for example storing and computation

load can become exponentially costly for the higher number of pixels, as a result, based

on the specific task, the number of pixels should be determined so that helps us to reduce

computation and storage cost in one side and do not affect the recognition performance from

the other side. Image resolution is a core keyword in this thesis. We will work on data with

the resolutions 8 × 16, 16 × 32, 21 × 42, and 32 × 64. With these resolutions, attribute

recognition is very challenging even for humans.

2.5. Super-Resolution

Super-Resolution (SR) is a set of algorithms or neural network models that upscale the size

of the input image. In classic computer vision, for upsampling an image, the information

for the new pixel is taken from the neighbor pixels; however, in super-resolution, the neural

network learns information about the new pixels from all the pixels, from the context, shape,

or even from other images. In theory, this makes the SR neural network very powerful in

the upsampling task (Figure 2.4.). SR neural networks’ power and capability can help us

address very challenging upsampling tasks. In this thesis, we tried to understand how helpful
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SR models are in multi-attribute recognition datasets. For example, the SR model can take

a very low-resolution image of a person, upsample it, and the output can be fed to another

neural network to recognize, for example, a person’s attribute. A comparative study reveals

that SR models are capable of generalizing on unseen data.

Figure 2.4. Creating one up-sized image from several different images or pictures [7].

2.6. Neural Networks

Neural networks are essential in deep learning algorithms and are a subset of machine learn-

ing. The structure and name of neural networks inspire the human brain. The neural net-

works, also known as artificial neural networks (ANNs), are included in node layers. These

layers have an input, one or more hidden, and output layers. Each node is connected to

another node and correlated with weight and threshold. With controlling entries like thresh-

olds, activating the node for sending or not sending data to other nodes becomes obvious.

Because of access to many different input types, such as images, videos, sounds, and files,

many problems are solved with neural networks. For instance, we can refer to some of these

applications as pattern recognition, self-driving, face recognition and detection, image clas-

sification, data mining, medical diagnosis, spam filtering, and more. There are many types
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of Neural Networks. Some important are Feed Forward Neural Networks (FNNs), Convo-

lutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and LSTM Neural

Network. In this dissertation, generally, we use Convolutional Neural Network.

2.7. Convolutional Neural Networks (CNNs)

One of the famous types of artificial neural networks is Convolution Neural Networks (CNNs)

which have incredible results in subjects like computer vision, natural language processing,

and other purposes [25–29]. The CNN was initially introduced by [30] and became favored

and popular with the release of AlexNet architecture [8]. Using CNN with AlexNet archi-

tecture points to achieving enormous success on the ImageNet dataset. The structure of their

network is shown in Figure 2.5. A CNN architecture, like an ANN, is a sequence of layers.

Each layer takes the input, performs a transformation, and passes it to the next layer through

various functions and methods. The following subsections summarize some essential parts

of this type of neural network.

Figure 2.5. AlexNet network structure [8]
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2.7.1. Convolutional Layers

One of the base parts of CNN architecture is the convolutional layers which the extraction

features from the input are the duty of these layers. For this purpose, some linear and none

linear functions or combining of both of them are used by convolutional layers. As a math-

ematical aspect, convolution act like a linear function (element-wise product) on a tensor

(input) that is the array of numbers and a small array of numbers called a kernel.

2.7.2. Pooling Layers

Another layer of CNN is pooling layers, also known as the down-sampling function; it re-

duces the number of parameters in the input. As an operation, it is similar to the convolution

layer that sweeps a filter across the entire input but, unlike the convolution layer, does not

have any weights. While much information is lost in the pooling layer, it also benefits. They

help improve efficiency, reduce complexity, and limit the risk of over-fitting. Max pooling

and Average pooling are the two main types of pooling.

2.7.3. ReLU Correction Activation Function

Rectified Linear Units known as RelU refer to the real non-linear function defined by

ReLU(x) = max(0, x). This layer output must be positive. Therefore it replaces all inputs

with negative values by zeros and acts as an activation function.

2.7.4. Fully-Connected Layers

The fully-Connected layer is used at the end of CNN to classify the inputs based on the

features extracted through the previous layers and filters. The name of the fully connected

describes itself and refers to every neuron from the output layer that connects to every neu-

ron’s previous layer. It takes their output and flattens and sends them to a one-dimensional

array or vector of numbers.
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2.8. CNN Architectures

The minimal architecture of a CNN includes a few Convolution layers (Conv) as initial layers

and activation functions such as Rectified Linear Unit function, followed by pool layers. This

pattern repeats until the input image gets spatially tiny enough. Finally, to classify the input,

a few Fully-Connected (FC) layers are used at the end of this architecture. Some of the most

common ones are LeNet[31], AlexNet [8], VGGNet [32], GoogleNet [33], ResNet [34], and

DenseNet[35].

2.8.1. LeNet

LeNet is one of the earliest CNN proposed by Yann et al. [31] in 1998. This network is used

for recognizing handwritten and machine-printed characters. The first architecture of LeNet

has five layers with learnable parameters. It has two fully connected layers after the three

sets of convolution layers and average pooling layers. The input image to this model is a

32× 32 grayscale.

2.8.2. AlexNet

The AlexNet is one of the famous CNN [8] that includes eight layers. The first five are

CNN layers, starting from an 11x11 kernel, and the last three layers are Fully-Connected.

This CNN in Visual Recognition Challenge (ILSVRC) is one of the winners of ImageNet

Large Scale [36] in 2012. The first architecture includes max-pooling layers, ReLu activation

functions, and dropout for the three enormous linear layers. The used architecture of AlexNet

[8] is shown in Figure 2.5.
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2.8.3. VGGNet

Another famous CNN that we talk about it is VGGNet. This CNN was proposed by Si-

monyan et al. [32]. Discussing the effect of CNN depth on its accuracy is the main contri-

bution of their research. Originally fixed-size RGB images (224x224) are passed through a

stack of convolutional layers. Then, three FC layers follow this stack of convolutional layers.

The first two FC layers have 4096 channels, and the third one contains 1000 channels equal

to the number of classes in ImageNet.

2.8.4. GoogleNet

GoogleNet or Inception V1 that proposed by a research at Google in 2014 [33]. This model

uses new techniques such as 1x1 convolutions in the middle of the architecture to decrease

parameters. By reducing the parameters, they also increase the depth of the architecture.

2.8.5. ResNet

After proving that CNNs are very successful in classification and solving other artificial tasks,

residual deep networks like ResNet [34] were introduced as one of the highest accuracies

in image classification problems. Furthermore, it shows that CNN can increase layers to

hundreds or thousands during training without adverse effects on performance, which is

possible because of the residual learning algorithm.

2.8.6. DenseNet

Another type of convolution neural network is DenseNet [35] which uses the layers entitled

with the dense connection for connection between layers. This connection layer uses a lin-

ear operation that connects every input to every output by weight which layer’s connection

happens during a feed-forward fashion.
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2.9. Fine Tuning and Transfer Learning

Every neural networks and CNNs have a task and a purpose; for example, in a face detection

and recognition system, the target is to find and identify the faces in videos or images. Al-

ternatively, in classification systems, the target of used CNN is the classifier of objects. Of

course, we can refer to many challenging problems that need more time and human resources,

but artificial systems, especially CNN’s and neural networks, can solve them quickly; the

question here is, how can CNN’s and neural networks do this? Training a CNN is critical

based on using the best parameters during training and using tremendous related data to its

task. Choosing the best parameters requires more experiments and studies, but gathering

suitable datasets and labeling those is challenging and consuming time. Sometimes, we have

to reproduce data to balance datasets and avoid network over-fitting because of a lack of

suitable datasets. This technique is known as data augmentation. Another choice is to use an

already trained model and train it some more rather than training from scratch. Fine Tuning

and Transfer Learning are the terms that increase CNN accuracy results. In fine-tuning, we

freeze some early layers instead of training in all layers and continue training only at the final

layers. In Transfer Learning techniques, the pre-trained model is used as a learned model and

utilized to train some new category or objects in an image that has not been trained before.

2.10. End-To-End Learning

There are essential concepts defined as non-end-to-end and end-to-end in deep learning sub-

jects. Both describe the learning approach at the highest level: end-to-end means mapping

the input directly to the final output. In this method, a function of weights is learned across

back propagation from a signal that traces back. The end-to-end method is the preferred

means of training nowadays, as the most exciting features for the target metrics are learned

via optimization. On the contrary, non-end-to-end does not learn a mapping from the input

space to the output but depends on intermediate steps that are often tuned by human design

and, hence, likely not optimal.
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3. RELATED WORK

This section briefly reviews multi-attribute recognition (MAR), and super-resolution (SR)

techniques.

3.1. Multi Attribute Recognition

The study of person attributes or visual recognition of pedestrian attributes, such as cloth-

ing color, clothing style, age, gender, and attributes like those, has recently been in high

demand at CV and AI systems. However, multi-attribute modeling for CV tasks is rela-

tively contemporary and became extensively employed in the following years, first proposed

by Ferrari and Zisserman [37]. The common point of all of these studies with attention to

human recognition concepts is combining an ensemble selected and more important visual

attributes to some ML detectors and classifiers. These attributes also have essential roles in

image searching and retrieving. Pioneering works primarily focus on finding feature vector

and classifier scores; for example, in work [4] related to face verification, the writers for

face retrieving try to combine binary attribute and classifiers outputs. For this purpose, they

define some labels to describe the visual appearance of an image or a face. These labels are

entitled ”describable visual attributes.”

In another work [38], which is the first surveillance system based on video input, related

researchers try to image retrieval by using attributes. In their algorithm, the person’s body

attributes are also considered besides controlling face and facial attributes. To learn these

attributes, they used a large training dataset and a standard ML algorithm, ”Adaboost Clas-

sifier with Haar features,” then. For extracting facial attributes, a detector ”Viola-Jons” was

trained. For an experiment, they took 9800 frontal face images from the Labeled Faces in the

Wild [39] dataset.

Research on methods that exploit objects’ semantic attributes has revived the attention of the

CV community. However, in more initial research about MA queries, the researchers try to

train and classify attributes independently and then combine scores of those they were trying
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to find the best searching or retrieving images based on that given query. Studying attributes

in an as independent manner is not the most efficient way always. For example, Seddiquie

et al. [5] exploited a wise pair relationship between facial attributes and up and down body

attributes. This relationship between different body parts increases and improve search based

on MA queries. In their proposed framework, for retrieving images from a given query, both

attributes are included in search sentences and attributes that make more information about

the given query are used. In evaluating performance, they chose two methods: Reverse Multi-

Labeling [40] and TagProp [41]. Regarding ranking, they compared their ranking model with

rankSVM [42], rankBoost [43], and DORM [44].

One initial research about re-identification with mid-level attributes was proposed with Layne

et al. [45]. In this work, firstly, the picture of the person is divided into six equal parts

horizontally for extracting these mid-level attributes. Then texture and color features of

these parts are extracted and trained with an SVM detector. For validating their model, two

challenging datasets (VIPeR [46], and i-LIDS [47]) are selected.

One of the obstacles in many real-world surveillance scenarios is that pictures are taken

from the person or pedestrian’s face or body, usually unclear or occluded or taken far from

a distance. This problem makes two fundamental challenges known as appearance diversity

and appearance ambiguity in attribute results at a far distance. Therefore some research to

solve these problems was published. Deng et al. [22] firstly, create a new dataset entitled

PETA that is taken from another ten famous person datasets for more variety in attributes.

For experimentation and preset benchmark results in PETA, they evaluate the performance

of their algorithm with SVM with intersection kernel [48] and Markov Random Field by

choosing two kernels(Gaussian and Random Forest). Then, they randomly split the dataset

images into 9500 for training, 7600 for testing, and 1900 for verification. In this study, the

35 most important attributes are chosen. For extraction features of images, low-level and

texture features are used.
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In multi-camera scenarios, exploiting and studying shared attributes and information is es-

sential for increasing re-identification accuracy in MA systems. In addition, finding a correla-

tion between attributes is very helpful for these scenarios because some attributes frequently

co-occur. For example, the attribute of baldness is likely to be highly correlated to males

rather than females. Chi et al. [49] proposed an algorithm that simulates the correlation

between attributes by using a features vector in the same person at the multi-camera. For uti-

lizing correlation between features, they use MTL[50] algorithm. For evaluation, they used 4

public and famous datasets iLIDS-VID [51], PRID [52] and VIPeR [46] and SAIVT-SoftBio

[53] which in all of them included different person pictures from multi-camera. They also

used color and texture features and SVM for feature extraction and detector, which were

routine in those days.

Recognizing the gender of an interested person is easy and primarily accurate for humans,

whether just part of the person is visible or in arbitrary pose positions. For example, if

we see a person’s lower body, with the clothing style, gender is distinguished by our brain.

Alternatively, if the target is to recognize persons that have an attribute like a hat, recognizing

this attribute in the top part of the person is more straightforward than recognizing it in the

total image of the complete body of the person; therefore, the ability of divided body parts

and recognizing exciting attributes in the related parts is an essential role in some research.

One of those works is Lubomir et al. research [54]. They use different keys related to the

viewpoints and pose to recognize different attributes. The challenge in their method is that

the system must be detected and align the parts well. Their algorithm included three parts.

Prediction of attributes based on pose let types are done in the first part, and a combined

result of these attributes values is obtained from the second part. Finally, the correlation

between different attributes is obtained in the third part.

All methods and researches discussed in previous sections for attribute recognition have two

essential weaknesses, primarily handcrafted features like a color histogram and local binary

patterns, and some ML algorithms are used for feature extraction. These features in real

video surveillance scenarios cannot handle all requests. Secondly, the correlation between

the person or pedestrian attributes is mainly missed in these researches. As a result, to solve
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these obstacles, the sense of using new methods and algorithms is more required. One of the

recent technologies that attracted more attention for researchers at that time was neural net-

works. The ability of NNs to solve some challenging problems was apparent to researchers.

However, research about MAR was not deprived of this new technology; therefore, prob-

lems with handcrafted features and correlation between multi attributes mainly were solved

with this new technology. One of the ancestor research about this is Dangwei et al. [23]

research. With attention to NNs’ abilities, they use two deep learning models to solve recent

drawbacks. One model is entitled DeepSAR for recognizing each attribute, and another is en-

titled DeepMAR for detecting relationships between attributes. DeepSAR model is finetuned

based on CaffeNet [55], which is the same as AlexNet [8], but the order of the normalizing

layer and pooling layer changed. They first evaluate their models on PETA [22] dataset.

DeepMAR has been evaluated on APIs [56] dataset to verify their method further.

Li et al. [23] proposed two models based on deep architectures to address hand-crafted

features’ drawbacks and ignore the relationship between attributes. Their single attribute

recognizing model (DeepSAR) is designed for recognizing each attribute individually. The

proposed second model [23] is the deep learning framework to exploit the relationship be-

tween attributes.

Using MLCNN for studying and predicting multiple attributes together had a special place

and importance in the years between 2015 and 2016. One research about this is Jianqing et

al. [24] research. They use body parts of a pedestrian image as inputs to MLCNN and filter

independently. For evaluation, they used VIPeR [46] and GRID [57] datasets.

Another work that considers dependencies between attributes is a work proposed by Patrick

et al. [58]. They train a CNN by considering all attributes together. The base of their CNN is

CaffeNet framework [59] that was pre-trained on ImageNet. Their network started with the

CaffeNet structure and ended with the proposed custom loss layers. For evaluation, they use

two datasets, HATDB, which was initially published by Sharma et al. [60] which is labeled

with nine binary attributes, and Berkeley - Attributes of People dataset [54]. In addition,
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using these public datasets, They made a new dataset entitled PARSE-27K that was taken

from cameras inside the city.

Correct recognition of human attributes remains challenging in some situations like view-

point variations or occlusion of part of a person or pedestrians, different poses, and illumi-

nation effects on images. To solve these problems, Yining et al. [61] proposed a model that

analyzes more variable parts of the target person as not only an individual but also the per-

sons near an interested person analyzed. They also have a scene-level analysis which helps

them get better attribute recognition of the target person with the above challenges. They

change Fast R-CNN [62] to help the study of deep hierarchical contexts of images. They

evaluate their method on the two datasets, Berkeley-Attributes of People [54] and HAT [60]

datasets. The WIDER dataset [60] was introduced with them in this research.

Yutian et al. [6] proposed a method and tried enhancing the performance of expansive pedes-

trian re-identification by using attribute labels. In this research, two subjects, person re-

identification and attribute recognition studied. As same to recent research about MAR, their

model is based on ResNet-50 [63] and CaffeNet [59] that pre-trained in ImageNet [36] but

fine-tuned with new annotated attributes of two datasets entitled The Market1501 dataset [1]

, and DukeMTMC-reID dataset [2]. Their model structure included two parts, identification

and attribute recognition. Firstly, the feature vector of input images via CNN was extracted.

Then, based on extracted feature, a classifier module predicts person attributes.

Shi et al.[64], proposed a network with two modules: coarse and fine alignment modules.

The first module uses a part detector to locate the body parts and form the candidate at-

tributes; then, in the second module, these attributes are aggregated together via a bilinear-

pooling layer. Wu et al. [65] propose a parallel model, which consists of intra-attention and

inter-attention parts to learn the relationships of images and/or attributes.

3.2. Super Resolution

Super-Resolution (SR) is a set of algorithms or methods of upscaling video or images. The

base idea of many SR methods and techniques is the same: creating one upsized image from
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several different images or estimating an HR image from its LR image. The image resolution

is limited by the hardware and capturing systems, like image sensors (for example, CCD) and

optics. Constructing optical components and imaging chips to capture high-resolution im-

ages is expensive and impractical in most real applications. With breakthroughs in computer

vision research, SR received substantial attention in this community and has many applica-

tions. This attention comes from two assumption application areas; helping representation

for automatic machine perception and visual information for human interpretation. SR arises

in many areas [66], such as:

• Surveillance video: freezing frames and region of interest (ROI) for human perception

and automatic target recognition (for example, looking at the license plate or trying to

recognize a criminal’s face).

• Remote sensing: improving resolution image with several images taken from the same

area.

• Medical imaging (CT, MRI, and Ultrasound): By using SR techniques and several

images limited in resolution quality, images with enhanced resolution are produced.

• Video standard conversion: for example, NTSC video signal to HDTV signal.

Pioneering work in SR was published in 1984 [67], and then the term super-resolution itself

appeared around 1990 [68]. One of the first approaches in single-image SR is Yang.et al. [69]

article. Their work is based on signal processing and mathematics and compares signals with

sparse signal representation. Based on research on image statistics, sparse representation for

each image patch of the LR input image searched, and then HR output using the coefficients

of this representation. After searching image patches on LR and HR and joint training two

dictionaries, they can enforce the similarity of sparse representations between LR and HR

image patch pairs concerning their dictionaries. Therefore, the sparse term of an LR image

patch is involved in the HR image patch dictionary for generating an HR image.

CNN-based super-resolution methods have yielded excellent results on previous handcrafted

models. For example, in Wang et al. [70], the authors use feed-forward network architecture
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and combine the conventional sparse coding model with ingredients of deep learning to get

better results.

Another work is Dong et al. [12, 71]. In this research, a CNN with three layers was trained,

and upscale images with an interpolation algorithm (bicubic) were used as input images.

The authors using single-image super-resolution (SISR), propose a deep learning method.

An end-to-end mapping between the low/high-resolution images is directly learned by this

method. Using a deep convolutional network (CNN) for the mapping method produces the

high-resolution from the low-resolution image as the output and input, respectively. Their

proposed model Super-Resolution Convolutional Neural Network is entitled SRCNN. This

model has several appealing properties like simplicity in design and superior accuracy com-

pared with the state-of-the-art example-based methods. Another property is the fast speed

for practical online usage even on a CPU because their model uses fully feed-forward and

does not need to solve an optimization problem on usage. Moreover, the last property is

with using a more extensive and deeper model, the resolution quality of the network can be

further improved. For desiring a high-resolution image, they first up-scaled a single low-

resolution image to the desired size using the interpolation method “bicubic,” which is the

only pre-processing they use. Then, the output of pre-processing is used as a low-resolution

image. From the low-resolution image, overlapping patches are extracted; each patch is rep-

resented as a high-dimensional vector. Each high-dimensional vector non-linearly maps onto

another high-dimensional vector. These mapped vectors represent a high-resolution patch.

The result of this operation is the final high-resolution image. For this purpose, all the above

high-resolution patch-wise representations are aggregated. The output of this operation is

expected to be similar to the ground truth image.

Generative Adversarial Networks (GAN) have been found to have an essential role in SR

researches [72–76]. Ledig et al. [20] focus on SISR and present a GAN for super image res-

olution. Despite previous researchers that for producing HR images from multiple images,

they will focus just on SISR. This work has focused primarily on minimizing reconstruction

error. They present a generative adversarial network (GAN) for SR entitled SRGAN. This

work produced SR images with four times upscaling factors for the first time. For reaching
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this upscaling, a particular loss function is proposed. Their research is the first intense ResNet

architecture that uses the concept of GANs. Their main target is to train a generative func-

tion that estimates it’s corresponding high-resolution for a given low-resolution input image.

For this purpose, the writers prepare a generative network as a feed-forward CNN. At the

main skeleton of their very deep generator network are some residual blocks which identical

layouts and two convolutional layers with small 3x3 kernels and 64 feature maps followed

by batch-normalization layers [77] and Parametric ReLU [78] as the activation function is

used. For improving the input image resolution, they use two trained sub-pixel convolution

layers as offered by Shi et al. [17]. They also prepare a discriminator network to discrimi-

nate authentic HR images from generated SR samples. In their experiment, They used three

benchmark datasets Set5 [79], Set14 [80], and BSD100, the testing set of BSD300 [81].

Yamanaka et al. [9] with using Deep CNN, proposed a SISR model that is faster and better

performance of ancestor’s SISR models. To improve performance, they used deeper CNN

layers. However, as we know, deep models get more computation resources. Therefore, those

models are not suitable for use on edge devices. Nevertheless, their proposed model achieves

at least ten times lower calculation costs. Furthermore, they proposed a lighter network by

optimizing its structure with the current eight deep-learning-based SISI methods, as shown

in Figure 3.1. This Figure shows that their network comprises two smaller networks: feature

extraction and reconstruction networks. In the first part, unlike previous DL-based models

where an up-sampled image was often used as an input, to understand the features efficiently,

they used an original image as an input in their model. In the second part, the part that details

of the image are reconstructed. Normally, more convolutional layers must be used to improve

reconstruction results, increasing computation processes. So they proposed a parallelized

CNN structure like [82], which normally has one or more one-layer CNNs. Moreover, this

CNN caused to reconstruction process to be more efficient and faster. For training, Berkeley

Segmentation [83] and Yang et al. [69] datasets were used. In the phase of performance

evaluation, SET5 [79] dataset was used.

Lim et al. [10] developed an Enhanced Deep SR network (EDSR). Due to optimization by re-

moving unnecessary parts in conventional residual networks, their model has a performance

23



Figure 3.1. The structure of the DCSCN SR network architecture [9]

Figure 3.2. The structure of the EDSR single scale architecture [10]

improvement. Their model was further improved by expanding the model size without nega-

tively affecting the training stage. They also proposed a new Multi-Scale Deep SR (MDSR).

In their proposed network, they remove batch normalization layers from the network. This

action saves around 40% of memory usage during the training procedure compared to the

SR algorithm that uses ordinary ResNet in its architecture [20]. They also used a particular
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Figure 3.3. Structure of an iterative up and down sampling approach in DBPN SR algorithm. This
structure tries to minimize the error between up and down sampling.[11]

strategy in training for factors x3 and x4; they fine-tuned these networks with a pre-trained

x2 network. This method accelerates the training and improves the final performance. The

structure of their model is displayed in Figure 3.2.. For experiments, the DIV2K dataset is

used [18].

Haris et al. [11] proposed Deep Back-Projection Networks (DBPN). In their network struc-

ture, a new way of reducing errors was proposed. In this mechanism, layers with up and

downsampling are used, and this process iteratively works across the network. This iterative

process is shown in Figure 3.3..

Finally, as shown in Figure 3.4., deep SR Networks can be primarily divided into four types:

• SR algorithms with predefined up-sampling The most important thing about this

method is the use of a medium resolution (MR) as a standard for the images. For this

purpose, some image processing algorithms and numerical analysis such as interpola-

tion (especially bicubic) are used to map the images in the first phase from MR to HR.

The pioneering work about this method is [12]. In this work, the researcher tries to use

a simple CNN to map images from MR to HR. With the development of CNNs and
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their associated parameters, this kind of method also benefits from these developments

[13–15].

• SR algorithms with single up-sampling In this type of method, unlike the previous

method, there are no predefined processes on LR input images. For this purpose, some

CNNs have been used that try to transmit the LR image features and construct HR

images at the end of the network. The disadvantage of this method is the training time

because the CNNs used in this method have a large number of parameters and filters

[10, 16–18].

• SR algorithms with progressive up-sampling The CNNs show impressive effects in

creating HR images in the previous method. Therefore, in this kind of SR algorithm

for constructing HR images, a cascade of CNNs is used, which is named the Laplacian

Pyramid SR network. In each stage of the pyramid network, the images are gradually

up-sampled and finally, SR images are created [19].

• SR algorithms with iterative up and down-sampling In general, feed-forward ar-

chitectures that act as one-way mappings only map rich representations of the input

space to the output space. Such an approach is not successful in mapping LR images

due to the limited features available. To solve this problem, this method uses iterative

up-sampling and down-sampling to obtain the best HR features and minimize the error

between iterations [11].
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Figure 3.4. Comparison of SR deep networks (a) Predefined up-sampling [12–15], (b) Single up-
sampling [10, 16–18] , (c) Progressive up-sampling [19], and (d) Iterative up and down-
sampling [11].
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4. METHODOLOGY

Most real-world surveillance cases demand recognition of personal attributes from a distant,

which convinces the need to process these attributes in low resolution. Our target is to get

better person attribute recognition performance from LR images using the SR algorithm

besides the MAR network, as the overall idea is demonstrated in Figure 4.1. The proposed

architecture is based on SR and attributes recognition networks. The architecture and the

resources out there provide opportunities for us in the training process, including datasets,

existing high-performance models, and training methodologies to benefit. However, there

are caveats in competing with the state-of-the-art models; the resulting extensive network

increases the complexity of training and preparing the datasets trained end-to-end.

Our framework consists of joint training of two main parts: i) SR framework and ii) attribute

recognition framework. The overall pipeline of the proposed method’s end-to-end framework

is illustrated in Figure. 4.2.. In the following, the details of these two main components are

discussed.

Figure 4.1. Our proposed hybrid network combines the power of a SR network with MAR network
to provide better recognition for personal attributes in LR images.
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Figure 4.2. The proposed architecture of our SRMAR model.

4.1. Super Resolution Network

The first part of the proposed network is the SR component. Note that we aim to learn a

joint network, where the SR components help the recognition of attributes in low resolution.

Therefore, any end-to-end trainable SR model can be integrated into our proposed framework

in this context. To this end, we utilize two recent state-of-the-art SR models: Enhanced Deep

Super-Resolution network (EDSR) [10], and Deep Back-Projection Networks (DBPN) [11].

With the development of deep CNN, especially residual learning techniques [13] exhibit the

improved performance of recent SR models, the EDSR SR model [10] extends existing SR

networks like [20, 84] that use residual networks by removing additional modules/layers like

batch normalization and ReLU. The comparison of residual blocks is shown in Figure. 4.3.

With the elimination of batch normalization layers, this elimination increases the perfor-

mance considerably, and the required memory is reduced by 40% during training compared

to SRResNet [20]. This reduction helps improve the model by expanding the size; as a result,

EDSR yields better performance.

The simplest way to enhance the performance of the network model, especially CNN, is

to stack many layers or increase the number of filters. However, the training procedure is
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Figure 4.3. The structure of types of residual blocks that are used in (a) ResNet [13], (b) SRResNet
[20] , and (c) EDSR [10] .

Figure 4.4. Structure of EDSR architecture [10].

directly related to the number of feature maps; after increasing from a certain level, the

training process is unstable functionally. To solve this problem in the EDSR network, they

adopt residual scaling [85] with a factor equal to 0.1. As a CNN architecture, a residual block

is placed after every convolution layer. The structure of this model is shown in Fig. 4.4.
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The second SR model that we have used is the DBPN [11] model. DBPN [11] has two

stages, the reciprocally connected up and down-sampling stage and the error feedback stage.

Generally, feed-forward architectures that act as one-way mapping only map rich representa-

tions of the input to output space. Such an approach is not successful in mapping LR images

because of the limited features available. To solve this problem, DBPN [11] model generates

HR features during up-sampling and, during down-sampling, these features are projected

back to LR space. The second stage, the error feedback stage, has a mechanism from the

up to down-scaling steps that positively influences the training process to achieve a better

reconstruction. The corresponding architecture of the DBPN model [11] is given in Fig.4.5.

Figure 4.5. Structure of the DBPN model proposed in [11].

Both of these SR networks were trained following to the original papers advises [10, 11]

for EDSR and DBPN models respectively, using [86] loss function on the outputs of SR

network:

LSR(Î , I) =
1

hwc

∑
ijk

√
(Îijk − Iijk)2 + ε2 (1)
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where h,w, c denote height, width and channels respectively. Î is network output, I is super

resolution ground truth, and i, j, k ∈ {1, 2, 3, . . . ,M} represent the coordinates of the target

tensor with dimension. ε is a constant for numerical stability, which is usually taken as 0.001.

We combine the LSR with dice loss function:

DC(Î , I) = 1−
2
∑

ijk Îi,j,kIi,j,k∑
i,j,k Îi,j,k +

∑
Ii,j,k

and get the following loss function:

LCSR(Î , I) = DC(Î , I) + LSR(Î , I) (2)

which is then used to train the SRMAR model.

4.2. Attribute Network

The second part of the proposed model is a network for learning attributes. Low-resolution

images that are upscaled by the SR component are fed into the attribute recognition network

for predicting the corresponding attributes. For the MAR task, we adopt the recent network

proposed by Lin et al. [6]. This network aims for person re-identification and pedestrian

attribute recognition at the same time. We adopt the person attribute recognition part of their

model, which is trained just on the attribute data set using ResNet-50 [63] as the backbone

(Figure 4.6.). This backbone is followed by the attribute recognition, which includes M

(number of attributes) Fully Connected (FC) layers followed by a softmax layer [6]. The

binary cross-entropy:

LMA(Ŷ , Y ) = −
∑
i

Yi log(Ŷi) +
γ

2

∑
j

||wj||2 (3)

is used as the loss function in training where Ŷ is the predicted output and Y is the ground

truth label, γ is regularization factor set to 0.02, and wj represents the weights in the convo-

lution layer j.
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Figure 4.6. Structure of the multi attribute model proposed in [6].

4.3. SRMAR network

For the combined SRMAR neural network, the training process can be handled in different

ways. Designing loss functions and optimizers are essential. We have experimented with

different loss functions, data augmentation, and other hyper-parameter optimization tech-

niques. Our idea is to design weighted loss based on SR and MAR network loss functions.

This helped to reduce the overfitting effect during the training, however, it requires a subtle

selection of the regulation parameter β;

L = LMA + βLCSR (4)

Based on results during the training we decided to set β = 0.00005 which is a trade off

between the accuracy and over-fitting of the network. Merging SR and MAR networks leads

to a large network that should be trained with care.

4.4. Linear Combination of Models

We also investigate the effect of combining the SRMAR network with the MAR network.

The overall architecture for this combination scheme is demonstrated in Fig.4.7. The idea
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is to combine the predictive power of the SRMAR model and the MAR model, since our

preliminary experiments indicate that some attributes are predicted better by the SRMAR

network, whereas some others are predicted by MAR network.

The simplest approach to achieve this is defining equal weights (i.e. wk = 1/k, k = 2, 3, . . . )

for combining models, which is simple averaging. Here we are trying to use network output

statistics on the in-sample data to maximize the accuracy of the linear combination. Obvi-

ously one can put other accuracy measures in calculations, but that restricts the problem and

makes it difficult to handle with linear optimization techniques. Now the problem is reduced

to a linear programming problem. This type of modeling falls in the subject so called data en-

velopment analysis which appears in different areas of science addressing similar problems

[87].

More formally, let µi,p and µi,n for i = 1, 2 be the mean of the outputs of the SRMAR net-

work (i=1) and MAR network (i=2) on positive and negative ground truth data respectively.

σi,p, σi,n, i = 1, 2 represents the corresponding standard deviations for SRMAR and MA net-

works. Let ψ1 and ψ2 be the outputs of SRMAR and MAR networks respectively having

values [−1, 1], we want to get weighted average of the two as an output; such that

yLC = softmax(w1ψ1 + w2ψ2) (5)

The loss function for the new combined mode can be written as

lossLC = ‖yLC − ytg‖2, (6)

where ytg is the target output from annotated dataset. The linear combination of the two mod-

els is a meta model that takes the pre-softmax output of the sub-models and make decision

based on those. Instead of training the combined model, we can use linear optimization to

find the optimal weights. The optimization problem that we now should solve to get optimal
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weights is formulated as:

min
w1,w2

‖yLC − ytg‖2,

s.t yLC = softmax(w1ψ1 + w2ψ2),

Practically we can calculate w1 and w2 based on statistics of the outputs of the two networks

so that y > 0 for having the attribute and y < 0 otherwise. Specially we want w1 and w2 to

hold the following constraints creating feasible region. If we denote networks output by ψpi

and ψni to indicate that the input possesses the attribute and does not respectively, then the

direct reformulation of the last two inequalities will be:

ψp1w1 + ψp2w2 ≥ 0,

ψn1w1 + ψn2w2 < 0,

while maximizing the number of correct predictions. We can calculate the confidence interval

of the normalized coefficients as follows: ψp1 ∈ (µ1,p−ε1, µ1,p+ε1), ψ
p
2 ∈ (µ2,p−ε2, µ2,p+ε2),

ψn1 ∈ (µ1,n − ε1, µ1,n + ε1) and ψn2 ∈ (µ2,n − ε2, µ2,n + ε2). Here εi = Z i0,1 σ√
N

. Z i0,1 for

i = 1, 2 is the normalization of outputs and Z0,1 stands for normal distribution with mean 0

and variance 1 and N is number of samples (here number of in-sample data). σ stands for

the corresponding distribution standard deviation.

In our case we set Wi = { 0.01 × j, j = 1, 2, . . . , 100 } for i = 1, 2 and therefore get

finite feasible region W1×W2 by which we calculate the target function by selecting the pair

(w1, w2) that lead to the highest accuracy. As the size of training set is large, to solve the

resulted integer programming we use the python wrapper of the integer programming solver

SCIP [88]. The proposed architecture of this linear combination strategy is demonstrated in

Figure.4.7.

Note that the proposed method will perform at least as better as simple average method

because the solution w1 = 1/2, w2 = 1/2 is already inside the feasible region of the linear

programming model. As demonstrated in the experiments section, this combination strategy
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Figure 4.7. Architecture of the proposed linear combination strategy.

have led to better results compared to using a single model. In Appendix B plots of all

weights of both models are given.
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5. EXPERIMENTS

5.1. Datasets

We carry out our experimental evaluation on two widely used benchmark datasets Market-

1501 [1], and DukeMTMC-reID [2].

5.2. Market-1501

Market-1501 [1] is one of the biggest datasets prepared for person re-ID research, containing

32,668 and 3,368 query images, as shown in Figure 5.1. 751 identities (19,732) are used

for training and 750 identities (13,328 images) are for testing [6]. There are 27 attributes

as shown in Table 5.1. Following [6], we work over 11 attributes: gender (man, woman),

hair status (hair.l), sleeve status (slv.l), wearing hat (w.hat), carrying backpack (b.pack) or

handbag (h.bag), upper-body cloth color2 -8 colors- (co.up), lower-body clothing color3 -

9 colors-(co.low), age, lower-body clothing length status (ll.clth) and lower-body clothing

type (tl.clth) In this dataset, background and junk images are not considered during training

or testing since they do not have the corresponding attribute labels.

5.3. DukeMTMC-reID

The second dataset is DukeMTMC-reID dataset [2] as shown in Figure 5.2.. It contains

702 identities (16,522 images) for training and 702 identities (19,889 images) for testing. 10

attributes are covered in this dataset: gender (man, woman), type of shoe (boots), wearing hat

(w.hat), carrying backpack (b.pack), handbag(h.bag), or bag (bag), color of shoes(co.shoes),

upper-body clothing length (l.up), upper-body clothing color -8 colors- (co.up) and lower-

body clothing color -7 colors-(co.low). The color selections are the same for both up and

down clothing colors4. All attributes are shown in Table 5.2.

2black, white, red, purple, yellow, gray, blue, green
3black,pink, white, yellow, purple, gray,green,blue, brown
4black, white, red, gray, blue, green, brown
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Figure 5.1. Some samples of Market-1501 [1] dataset.

Figure 5.2. Some samples of DukeMTMC-reID [2] dataset.

5.4. Implementation

In the case of multi-attribute recognition, the feature extraction part follows M small sub-

nets, each constructed by a convolutional layer, a pooling layer followed by a fully-connected
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Table 5.1. Attribute of Market-1501 dataset [1]

attribute representation in results label

gender gender man(1), woman(2)

hair status hair.l short(1),long(2)

sleeve status slv.l long(1), short(2)

lower-body clothing length status ll.clth long(1), short(2)

lower-body clothing type tl,clth dress(1), pants(2)

hat w.hat false(1), true(2)

having backpack b.pack false(1), true(2)

having bag bag false(1), true(2)

having handbag h.bag false(1), true(2)

age age young(1), teenager(2), adult(3), old(4)

upper-body clothing color co.up false(1), true(2)

lower-body clothing color co.low false(1), true(2)

Table 5.2. Attribute of DukeMMTC-erID dataset [2]

attribute representation in results label

gender gender man(1), woman(2)

upper-body clothing length l.up short(1), long(2)

wearing boots boots false(1), true(2)

wearing hat w.hat false(1), true(2)

having backpack b.pack false(1), true(2)

having bag bag false(1), true(2)

having handbag h.bag false(1), true(2)

shoes color c.shoes dark(1), light(2)

upper-body clothing colors co.up false(1), true(2)

lower-body clothing colors co.low false(1), true(2)

(FC) layer, and finally, the softmax function. We use the original backbone network (ResNet-

50)[63], which was pre-trained on ImageNet. In the training stage of the MAR network, we

use the loss function as defined in Eq. 3. SR network which has a kind of encode-decoder

architecture, Eq.1 is considered as loss function. In training SR and MAR, Adam optimizer

is used. When training the SRMAR network which is based on SR and MAR networks

subsequently, we fix the SR module except for the last 15 layers. The plots of our model’s
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loss and accuracy on both train and validation sets are given in Appendix A as can be seen in

the Figures, there are three phases in the results; first a rapid improvement (sharp accuracy

increase) at the second phase there is a slow improvement in the accuracy on test data and

in the third phase, we see improvement in the train set accuracy and slow decrease in test

accuracy. Model checkpoints are taken at the end of phase two.

Our preliminary experiments indicate that freezing more layers leads to poor results while

freezing fewer layers causes over-fitting. During training SRMAR network, DiffGrad opti-

mizer [89] with a cyclic learning schedule is used to optimize the combined loss function

(Equation 4). The maximum size of images in selected datasets is 64×128; therefore, we

consider this as the reference size. Paying attention to the input image sizes of SR models

EDSR (2x, 3x, and 4x) and DBPN (2x, 4x, and 8x), we downsize images with bi-cubic in-

terpolation into four sizes: 32×64, 21×42, 16×32, and 8 × 16 respect to SR model input

sizes. For training, we set the batch size to 32 in all experiments, with an initial learning rate

set to 0.001 with a learning scheduler multiplying the learning rate by 0.1 every five epochs.

Moreover, the networks are trained for 40-60 epochs. Sample input images are shown in

Figure 5.3. and predictions for the sample inputs are presented in Table 5.3.

Figure 5.3. Sample image from DukeMMTC-reID: from left to right; base image size 8x16, 16x32,
21x42, 32x64 and original image. For visualization, all images is visualized in a fixed
resolution so that small images were interpolated and larger images were down-sampled.
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Table 5.3. Ground truth and inference results for the input images of Figure 5.3.

attribute ground truth SRMAR-E prediction
16x32 21x32 32x64

gender 1 1 1 1

w.hat 0 0 0 0

boots 0 0 0 0

l.up 1 1 1 1

b.pack 1 0 1 1

h.bag 0 1 0 0

bag 0 0 0 0

co.shoes 1 1 1 1

co.up 7 7 7 7

co.low 4 4 4 4

5.5. Experimental Results

We evaluate our SRMAR model via extensive experiments over the two benchmark datasets.

There are two versions, SRMAR-E is uses EDSR [10] SR model within the joint network,

whereas SRMAR-D uses DBPN [11] SR model. We compare the proposed SRMAR model

with the MAR[6] model that is applied to the same resolution images. We test several reso-

lutions such as (32× 64), (21× 42) and (16× 32 or 8× 16). The number of total attributes is

30 and 23 for the Market-1501 and the DukeMTMC-reID datasets, respectively. For the sake

of representation, we summarized them into 11 (Market-1501) and 10 (DukeMTMC-reID)

attributes by averaging similar attributes that belong to one category (such as upper body

colors or lower body colors). The rightmost column represents the average accuracy for each

method processing over the presented image resolution.

In Table 5.4., the results of the SRMAR-E method over the DukeMTMC-reID dataset is

shown. According to Table 5.4., for all the resolutions, the SRMAR-E model improves the

recognition performance of the MAR model significantly. For 16× 32 resolution input size,

the original model without any SR component achieves an accuracy of 68.78%, whereas the
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Table 5.4. Accuracy results on Market-1501 dataset using EDSR SR model

model img size gender age hair.l slv.l ll.clth tl.clth b.pack h.bag bag co.up co.low mean

16× 32 56.12 74.27 63.11 80,34 62.23 53.51 64.05 86.27 65.57 77.63 73.62 68.78
MAR [6] 21× 42 54.91 75.00 63.12 93.5 67 87.17 72.22 87.17 65.91 78.87 80.05 74.98

32× 64 56.12 75.54 63.93 93.52 67.52 88.00 74.91 90.57 71.54 85.12 82.57 77.21

16× 32 69.41 93.83 74.65 93.53 78.65 88.41 76.12 90.40 70.93 90.81 88.71 83.22
SRMAR-E 21× 42 72.12 92.1 74.94 93.43 77.48 87.81 75.32 90.26 62.23 89.61 88.31 82.14

32× 64 60.91 94.1 62.01 93.51 78.76 87.14 75.39 90.51 69.51 90.71 87.52 80.91

16× 32 69.44 94.37 76.00 93.35 80.00 88.41 79.42 90.14 76.32 90.91 89.72 84.37
Combined-E 21× 42 79.43 94.22 83.61 93.42 80.57 89.31 75.22 90.24 74.21 89.77 91.43 85.58

32× 64 71.32 93.61 71.93 93.51 71.64 88.51 73.77 90.51 73.76 91.74 91.44 82.89

Table 5.5. Accuracy results on Market-1501 dataset using DBPN SR network.

model img size gender age hair.l slv.l ll.clth tl.clth b.pack h.bag bag co.up co.low mean

8× 16 54.20 71.2 62.52 75.91 62.12 53.01 47.80 73.7 64.06 76.31 78.61 65.45
MAR[6] 16× 32 56.12 74.27 63.11 80,34 62.23 53.51 64.05 86.27 65.57 77.63 73.62 68.78

32× 64 56.12 75.54 63.93 93.52 67.52 88.00 74.91 90.57 71.54 85.12 82.57 77.21

8× 16 54.50 94.12 63.45 93.61 70.91 89.11 74.44 90.21 75.57 88.36 87.51 80.16
SRMAR-D 16× 32 55.32 93.60 63.90 93.50 68.24 88.10 74.90 90.50 75.70 88.60 86.70 79.91

32× 64 55.91 93.7 62.92 93.73 66.91 88.37 74.96 90.54 75.76 88.63 85.41 79.71

8× 16 55.05 93.61 63.92 93.84 71.01 88.12 74.87 90.52 75.71 88.63 88.47 80.34
Combined-D 16× 32 55.91 93.22 63.94 93.51 68.85 87.92 75.00 90.23 75.32 88.92 88.21 80.09

32× 64 58.44 93.71 64.15 93.37 67.12 87.91 77.35 90.32 75.41 90.54 90.72 80.82

proposed SRMAR-E model achieves 83.22% accuracy. The accuracy is even more improved

to 84.37% when the MAR network is combined with the SRMAR network using the pro-

posed linear combination strategy (Combined-E). Similarly, for the input size 21 × 42, the

proposed SRMAR-E model improves the accuracy of the MAR [6] model from 74.98% to

82.14%, and the linear combination of the two models (Combined-D) achieve an accuracy

of 85.58%. For the 32x64 input size, even though the improvements are not that drastic, still

the accuracies improve from 77.21 % to 82.89%.

Table 5.5. presents the similar experiments using the SRMAR-D (that utilizes DBPN model

as the SR component). We observe that the SRMAR model improves over MAR [6] from

77.21% to 79.71% for large input, from 74.98% to 79.91% for medium input, and from

65.45% to 80,16% for small input. Like the SRMAR-E, we observe that the relative im-

provement in accuracies for small size input (8× 16) is more than the other two input sizes.
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Table 5.6. Accuracy results on DukeMTMC-reID dataset using EDSR SR model

model img size gender w.hat boots l.up b.pack h.bag bag co.shoes co.up co.low mean

16× 32 53.33 57.57 76.24 84.32 51.90 75.78 82.91 78.21 80.14 76.75 71.71
MAR [6] 21× 42 55.15 68.17 66.40 87.84 54.3 93.62 82.37 87.90 90.8 83.02 77.05

32× 64 58.81 75.01 77.41 87.74 54.86 92.84 83.53 88.00 90.51 82.27 79.09

16× 32 69.22 77.37 77.21 84.67 67.22 92.67 81.54 86.51 92.30 87.03 81.57
SRMAR-E 21× 42 63.24 78.02 78.81 87.93 67.94 93.66 82.73 87.84 92.13 87.14 81.94

32× 64 74.42 79.51 80.92 86.34 72.21 92.15 80.64 85.63 91.17 87.52 83.05

16× 32 73.5 76.94 81.12 86.23 69.44 93.30 81.64 86.23 92.61 88.94 82.99
Combined-E 21× 42 69.61 78.45 78.94 88.12 69.57 93.88 83.64 88.91 93.22 87.41 83.17

32× 64 77.93 79.81 82.87 88.43 71.01 93.66 82.83 88.07 92.85 87.74 84.52

Table 5.7. Accuracy results on DukeMTMC-reID dataset using DBPN SR model

model img size gender w.hat boots l.up b.pack h.bag bag co.shoes co.up co.low mean

8× 16 42.37 55.31 76.14 75.90 54.91 73.48 79.21 66.27 80.07 76.54 68.02
MAR [6] 16× 32 53.33 57.57 76.24 84.32 51.90 75.78 82.91 78.21 80.14 76.75 71.71

32× 64 58.81 75.01 77.41 87.74 54.86 92.84 83.53 88.00 90.51 82.27 79.09

8× 16 58.62 74.73 77.41 87.88 54.63 93.66 83.62 88.14 87.72 83.39 78.98
SRMAR-D 16× 32 61.44 74.91 77.52 87.73 54.74 93.71 83.54 88.47 87.82 84.14 79.40

32× 64 61.72 75.15 77.91 87.54 53.66 93.87 83.91 87.82 87.43 84.44 79.34

8× 16 58.75 75.22 77.82 87.87 74.65 93.68 83.62 88.11 90.46 84.31 81.44
Combined-D 16× 32 62.85 75.53 78.84 88.00 71.62 93.76 83.75 88.49 92.81 89.61 82.52

32× 64 63.31 75.73 77.71 87.87 54.83 93.80 83.91 87.81 91.58 85.92 80.24

Also, we observe that the linear combination of two models is again effective in increasing

the overall accuracies even further.

For the DukeMTMC-reID dataset, we observe similar trend in our experiments. Table 5.6.

and Table 5.7. presents the corresponding results. In Table 5.6., the results of the SRMAR-E

model is presented. The overall accuracies are increased from 79.09% to 83.05% for 32×64

sized input, from 77.05% to 81.94% for 21× 42 sized input, and from 71.71% to 81.57% for

input sizes 16×32. Again, the improvements are quite significant, especially when used with

lower resolution images. As shown in Table 5.6., the proposed linear combination of MAR

[6] and SRMAR-E models are also effective, offering a performance improvement more than

1% over SRMAR-E model.

Table 5.7. shows the performance of the proposed SRMAR-D model, and the following
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improvements are achieved over the reference MAR model[6]: for 32 × 64 size input, the

overall accuracy has increased from 79.09% to 79.34%, for 16×32 sized input, the accuracy

has increased from 77.05% to 79.40%, and for the 8× 16 input from 68.02% to 78.98%. We

observe the same pattern in the value of improvements w.r.t sizes; the smaller size, the better

improvement.

From the results in Table 5.4.-5.7., we can further evaluate the performance of individual

attributes. In the case of the Market-1501 dataset, from Table 5.4., the attribute that has

the lowest recognition rate is the gender attribute, whereas the long sleeve (l.slv) attribute

seems to be the attribute with the highest recognition accuracy for the MAR model[6] in dif-

ferent resolutions. SRMAR-E model improves the recognition accuracy of gender attribute

significantly. The performance improvement is also remarkable for the age, style of cloth-

ing (s.clth), color of up clothing (c.up) and color of down clothing (c.down) attributes. For

some of the resolutions, especially for 21× 42 and 32× 64 input sizes, for ”bag” and ”hair”

attributes, there is a reduction in accuracy in Table 5.4.. In such cases, using the linear com-

bination of these models as proposed helps. As can be seen, the linear combination strategy

resolves accuracy reduction of the SRMAR-E for ”bag” attribute from 69.51% to 73.76% for

32 × 64 sized input, from 62.23% to 74.21% for 21 × 42 sized input, and from 70.93% to

76.32% for 16× 32 sized input.

Table 5.8. Comparison of overall accuracy of models using images of 16× 32 size as input.

Model Market1501 DukeMTMC

MAR [6] 68.78 71.71
SRMAR-D 79.91 79.40
SRMAR-E 83.22 81.57
Combined-D 80.09 82.52
Combined-E 84.37 82.99

Table 5.8. summaries the experimental results for 16 × 32 resolution input size over both

datasets. As can be seen from this table, SRMAR-E model that uses the EDSR [10] SR

model performs better than the SRMAR-D model that uses DBPN [11] SR model on both of

the benchmark datasets. Moreover, the proposed linear combination or SRMAR and MAR
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models offer a notable increase in the accuracy of both SRMAR-(E, D). We can say that

combining both SRMAR and MAR models in the proposed way offers the best recognition

performances for the recognition of person attributes in low resolution images.

In the following we will calculate relative improvement with the following formula:

relative improvement =
CombinedMA −ReferenceMA

ReferenceMA

(7)

where, CombinedMA stands for Combined model and ReferenceMA for reference attribute

model mean average accuracy on test dataset.

According to Table 5.4., for all the resolutions, we observe 0.0479 for 32 × 64 sized input,

0.0955 for 21 × 42 sized input, and 0.210 for 16 × 32 sized input improvement in average

accuracies. According to Table 5.5., for all the resolution, we observe 0.0323, 0.0617, and

0.224 improvements in average accuracies concerning 32 × 64, 21 × 42, and 8 × 16 input

sizes. Like these two tables, with pay attention to Table 5.6. and Table 5.7., we observer

0.050 for 32 × 64, 0.0635 for 21 × 42 and 0.1375 for 16 × 32 input sizes improvement and

see 0.0032 for 32× 64, 0.0305 for 21× 42 , and 0.1610 for 8× 16 input sizes improvement

in average accuracies respectively to Tables.

The advantage of the linear combination model will be clear if we consider mean average

improvement with respect to the SR and reference models; results are shown in Figures 5.4.

to 5.7.. For the Market-1501 dataset and in the case of the SRMAR-E model; For large input,

we see 0.0245 improvement relative to the SRMAR-E and 0.0736 improvement relative to

reference model. In medium input, there is a 0.0419 improvement relative to the SRMAR-E

and 0.1414 improvements relative to the reference model. For small input, we get 0.0138 im-

provements relative to the SRMAR-E and 0.2267 improvements relative to reference model.

The highest average improvement is obtained for small sizes and with respect to the refer-

ence model. The full comparison of improvements obtained by linear combination for the

Market-1501 and the DukeMTMC-reID datasets are represented in Figures 5.4. to 5.7.
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Figure 5.4. Linear combination model improvement relative to SRMAR-E, and MAR model results
in Market-1501 in three input sizes large (32 × 64), medium (21 × 42), and small (16 ×
32).

Figure 5.5. Linear combination model improvement relative to SRMAR-E, and MAR model results
in DukeMTMC-reID in three input sizes large (32 × 64), medium (21 × 42), and small
(8× 16).
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Figure 5.6. Linear combination model improvement relative to SRMAR-D, and MAR model results
in Market-1501 in three input sizes large (32 × 64), medium (21 × 42), and small (16 ×
32).

Figure 5.7. Linear combination model improvement relative to SRMAR-D, and MAR model results
in DukeMTMC-reID in three input sizes large (32 × 64), medium (21 × 42), and small
(8× 16).
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The optimal weights (w∗1, w∗2) are calculated using the linear optimization model of section

4.4. per datasets, resolutions, and SR models. As shown in Figure 5.8. and 5.9. which are

chosen from the minimum size (input sizes 8 × 16) of two datasets , the blue part of the

columns is the coefficient of the merged models and the orange part is for the multi-attribute

model (without SR). As it is visually clear, merged model weights dominated the multi-

attribute model weights, meaning that for the optimal linear combination model merged

model results are more important than a multi-attribute model, which is another sign of the

role of SR in improving model performance. All result’s Figures are shown in Appendices

B.

Figure 5.8. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in DukeMTMC-reID. (input sizes 8× 16)

5.6. Performance Evaluation of Super Resolution Network

Together with designing an architecture to improve the performance of the multi-attribute

model, as already mentioned, as a regulator, the loss function of the SR (Equation (1)) is

added to the merged model loss with the coefficient of 0.00005. During these experiments,

we also track the behaviour of the re-trained SR model to see whether or not the SR model

performance improves by means of joint training.
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Figure 5.9. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in Market-1501. (input sizes 8× 16)

As it is shown in the example SR images in the Figure 5.10., we observe that this way of

training does not improve the performance of the SR model. In this experiment, since the

output image size by the SR model is larger that the input image, in our case twice as large as

the input image, to make loss function work, we resize the SR output using nearest neighbour

to the size of the input image.

In this experiment that is conducted to check the SR performance using pre-trained DBPN

super-resolution model, Mean Average Error (MAE) on test data is measured. For pre-trained

SR model, MAE is measured as 250.17 and for the partially trained (only 15 last layers

are trained) SR model we get 5712.67 which shows a dramatic performance loss for SR

model. As seen in the Figure 5.10. the performance loss is also visually apparent, since

the reconstructed images are of poor quality. In this Figure, the (a) and (c) columns are the

outputs of the pre-trained SR model and the (b) and (d) columns are the trained SR model

outputs on the corresponding images. Red and blue channel dominance in the pixels reveals

weak reconstruction of the given image by the model.

This could be as a result of the effect of the small coefficient that is used in joining the

loss functions during training. Since the SR network is trained with a small coefficient, it is

likely that the most of the network’s effort is put towards optimizing the attribute recognition
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Figure 5.10. Some samples of input images (a, c) and SR output (b, d) of related images.

performance, which harms the SR performance. We think that as there are lots of possibilities

to train SR and MA networks at the same time, different weighting, or loss functions can

cause improvements on the result of the SR model as well. Although the reconstruction

results are not good at all, there is sign of reconstruction in the input images, this means we

can improve the results by different hyper-parameters or different training styles which is out

of the scope of the current thesis.
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6. CONCLUSION AND DISCUSSIONS

Identifying personal attributes in low-resolution images is crucial for surveillance applica-

tions; however, the literature rarely addresses this task. Therefore, to fill this gap, in the the-

sis, we suggested a different approach to utilize the other capacities of the neural networks.

We are designing a meta-model in which we take advantage of the different state-of-the-art

networks and the meta concept itself.

According to extensive research on the application of neural networks in vision tasks, there

is a clear relationship between the quality of input images and the accuracy of the vision task

performed by the neural network. This is the primary motivation for the design of the pro-

posed meta-model. However, there is a trade-off between increasing the input image quality

and computational cost. Running hundreds of CNNs on many pixels per frame could be

highly costly. This means it is not a one-way approach to increase the quality of the images

to increase the accuracy of the neural network prediction in multi-attribute recognition. Be-

sides that, there could be technical difficulties in streaming high-quality images, processing

them, and storing them. All of those steps could be costly.

In the current thesis, the representation capacity of the neural networks is applied to address

the problem mentioned above; the main idea is; that instead, we can store part of the in-

formation inside neural networks. The super-resolution network is a feature representation

network that we used to interpolate low-quality images and feed them to the multi-attribute

recognition network.

This context evaluates the effects of super-resolution CNN architectures on improving multi-

attribute recognition performance in low-resolution images. For this purpose, we first control

the effects of using some super-resolution network inference on low-resolution images and

make new images with the high-resolution dataset. Then, we compare the result of the mean

accuracy of initial low-resolution images as input dataset for a multi-attribute network with

the result of the mean accuracy of produced high-resolution images used as input dataset to
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the same network. The results suggest using high-resolution images improves mean accuracy

in the multi-attribute recognition tasks.

After noticing that the accuracy of low-resolution images with using super-resolution in-

creased in separate networks, we plan to make a combined network that started from a super-

resolution network and ended with the multi-attribute network as an end-to-end structure. To

this end, we adopt one of the state-of-the-art models proposed for multi-attribute recognition

and two different super-resolution network architectures and then construct a combined ar-

chitecture entitled SRMAR-(E, D). To the best of our knowledge, the proposed model of our

thesis is the first combined learning model for multi-attribute recognition in low-resolution

images. We also propose a linear combination scheme to combine the proposed SRMAR

network with the base multi-attribute recognition network. The experiments are carried out

in two benchmark datasets and confirm the thesis’s claims. Referring to the experimental

results presented in Tables 5.4.-5.7., significant improvements are observed in the results as

a result of using the super-resolution network. For example, SRMAR-D in the resolution

8× 16, mean average precision 68.02 is significantly improved the prediction to 78.98 in the

DukeMTMC-reID dataset and 80.16 in the Market-1501 dataset. The same improvement can

be seen in the SRMAR-E model too. These processes are repeated multiple times to confirm

that they are not by chance. The highest improvement is achieved for the smallest input size.

This is proof of the thesis claim. A lot of information is stored inside the super-resolution

network, as the theory expected.

The experimental results demonstrate that, for the input images in low resolution, the pro-

posed end-to-end convolutional architecture successfully improves the recognition perfor-

mance of the base model for person attribute recognition. The second subject that we exper-

iment is combining the features of the models with and without a super-resolution network.

These features are 2 × 1 vector per-attribute for each model. Although the feature space is

very small, it led to an improvement in the mean average precision of attribute recognition.

This improvement is achieved by designing a kind of meta-model and training is performed

by modelling a linear programming problem to make it very fast. There are lots of different
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designs for such a meta-model, however, we select a linear and convex one. This simple meta

design gave us an enough improvement to consider it an effective approach. Improvements

are significant with respect to MAR (without super-resolution) model, and still is performs

better that SRMAR-D/E alone.

6.1. POSSIBLE DIRECTIONS FOR FUTURE WORK

We examined the possibility of improving multi-attribute classification using a super-resolution

network during the research. A super-resolution network essentially does to store some in-

formation in the network memory so that we can make inferences faster. This is the first

point; we can expand this idea to store part of the information inside the network. This idea

is already applied in storing a 3D model of an object as a network so it can be generalized to

the other areas such as super resolution, image restoration and etc.

The second opinion of the research is the modular design of artificial intelligence agents. For

example, we may take a big problem and reduce it to some minor problems and then solve

a big problem by putting them together. This helps us to take advantage of state-of-the-art

architectures. Moreover, this approach can be generalized to other problems.

Ensambling is a powerful tool in machine learning, but we can create meta-models using

the small models to tackle challenging problems. As discussed earlier, meta-model design

can be created in a several different ways. The feature spaces can be much bigger that what

we used in this paper. Figuring an optimal feature space for the meta-model requires an

extensive experiments on the datasets which could be the subject of future researches.

We apply linear combination of two different models that gave us significantly better results.

However, the nonlinear combination is also another way to go. There are many problems

in which it is required to detect a tiny object in the scene; this approach could be very effi-

cient for these problems, e.g., small magnifying images then feeding to the detector. Scene

prediction is the other topic that can be studied in this context. The core idea is to make a

network that can understand scene from partially observable information i.e. low resolution

images/signals.
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As mentioned in 5.6. the possibility of improving the result of SR model, while training

merged model, is observed during the experiments. Although, using SR loss as a regularizor

does not improved the performance of the SR model, results revealed that visually, the model

somehow reconstructed the input image. Starting from here and using different loss functions

and hyper-parameters to improve the SR performance at the same time could be a subject for

the future work. As a future work, it can be considered to train SR model at the same time

with MA model. The merged model loss function can be designed in a different way, with

different weights or functions based on the results of the experiments. The core idea is

to give SR model a feedback from MA model in a controlled way to improve MA output

performance while keeping SR model performing very well as a independent network.
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Appendix A

Loss and accuracy plots of training and

validation sets

Figure 0.1. The SRMAR-D model training performance plot for the DukeMMTC-reID dataset (in-
put image size is 8x16).
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Figure 0.2. The SRMAR-D model training performance plot for the Market-1501 dataset (input
image size is 8x16).

Figure 0.3. The SRMAR-D model training performance plot for the DukeMMTC-reID dataset (in-
put image size is 16x32).

56



Figure 0.4. The SRMAR-E model training performance plot for the DukeMMTC-reID dataset (input
image size is 16x32).

Figure 0.5. The SRMAR-D model training performance plot for the Market-1501 dataset (input
image size is 16x32).
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Figure 0.6. The SRMAR-E model training performance plot for the Market-1501 dataset (input
image size is 16x32).

Figure 0.7. The SRMAR-E model training performance plot for the DukeMMTC-reID dataset (input
image size is 21x42).
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Figure 0.8. The SRMAR-E model training performance plot for the Market-1501 dataset (input
image size is 21x42).

Figure 0.9. Thef SRMAR-D model training performance plot for the DukeMMTC-reID dataset (in-
put image size is 32x64).
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Figure 0.10. The SRMAR-E model training performance plot for the DukeMMTC-reID dataset
(input image size is 32x64).

Figure 0.11. The SRMAR-D model training performance plot for the Market-1501 dataset (input
image size is 32x64).
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Figure 0.12. The SRMAR-E model training performance plot for the Market-1501 dataset (input
image size is 32x64).
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Appendix B

Plots of weights from linear combination

model

Figure 0.1. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in DukeMTMC-reID. (input sizes 8× 16)
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Figure 0.2. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in DukeMTMC-reID. (input sizes 16× 32)

Figure 0.3. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in DukeMTMC-reID. (input sizes 32× 64)
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Figure 0.4. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in Market-1501. (input sizes 8× 16)

Figure 0.5. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in Market-1501. (input sizes 16× 32)
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Figure 0.6. The plot of Linear combination model weights concerning SRMAR-D and MAR model
getting weights in Market-1501. (input sizes 32× 64)

Figure 0.7. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in DukeMTMC-reID. (input sizes 16× 32)

65



Figure 0.8. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in DukeMTMC-reID. (input sizes 21× 42)

Figure 0.9. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in DukeMTMC-reID. (input sizes 32× 64)
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Figure 0.10. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in Market-1501. (input sizes 16× 32)

Figure 0.11. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in Market-1501. (input sizes 21× 42)
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Figure 0.12. The plot of Linear combination model weights concerning SRMAR-E and MAR model
getting weights in Market-1501. (input sizes 32× 64)
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