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Control systems that help the driver avoid accidents, or limit the damage in case of an 

accident, have become ubiquitous in modern passenger cars. For example, new cars 

typically have an anti-lock braking system (ABS), which prevents the wheels from 

locking during hard braking, and they often have an electronic stability control system 

(ESC), which stabilizes the lateral motion of the vehicle to prevent skidding. Collision 

warning and avoidance, rollover prevention, crosswind stabilization, and preparation 

for an impending accident by adjusting seat positions and seat belts are additional 

examples of control systems for automotive safety. 

These systems rely on information about the state of the vehicle and its surroundings. 

To obtain this information, modern cars are equipped with various sensors. For a 

typical car with an ESC system, necessary measurements include the steering wheel 

angle, wheel angular velocities, lateral acceleration, and the rate of rotation around 

the vertical body-fixed axis, known as the yaw rate. These measurements alone 

contain a great deal of information about the state of the vehicle. The speed of the car 
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can be estimated using the wheel angular velocities, and a linear reference model 

taking the speed, steering wheel angle, and additional measurements as inputs can 

be used to predict the behavior of the car under normal driving conditions.  

Although some quantities are easily measured, others are difficult to measure 

because of high cost or impracticality. When some quantity cannot be measured 

directly, it is often necessary to estimate it using the measurements that are available. 

Observers combine the available measurements with dynamic models to estimate 

unknown dynamic states.  

Also, crucial parameters governing vehicle motion are the tire/road-surface coefficient 

of friction and tire model parameters. Vehicle stopping distance, safe following 

distance, safe speed, and lateral maneuverability all depend on this uncontrollable 

parameter. 

Road friction and tire model parameters govern the tire forces, or forces that cause 

deceleration and traction and that prevent a vehicle from “spinning” during a panic 

maneuver. While other important parameters governing vehicle motion can be 

measured using transducers, there is currently no method to measure or otherwise 

determine road friction. In the absence of a “road fiction sensor”, this project aims to 

estimate road friction and tire model parameters based on measured vehicle motion. 

The numerical procedures developed in this project are based on extended Kalman 

filtering, a nonlinear adaptive filtering method. The adaptive tire requires a dynamic 

model of the vehicle and data that is gathered continually from sensors on board the 

vehicle. Ground vehicle motion depends largely on the tire forces, or forces that 

cause deceleration and traction and that can prevent a vehicle from losing lateral 

stability or “spinning” during severe maneuvers. The tire forces are nonlinear, and 

they depend on uncontrollable factors, such as tire/road-surface coefficient of friction 

(µ), tire model parameters, tire pressure and wear, and vehicle loads. While the latter 

parameters can be measured using standard sensors, there is currently no way to 

measure or otherwise determine µ and tire model parameters. In this project, the tire 
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forces, vehicle sideslip angle, longitudinal vehicle velocity and wheel slip are 

determined using extended Kalman filtering. 

 

 

Keywords: Extended Kalman Filter; State and Parameter Estimation; Adaptive Tire; 

Wheel Slip Regulation; Sideslip Estimation; Non-linear Vehicle Dynamics. 
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Sürücü kazaları önlemek, veya bir kaza halinde hasar sınırlamak yardımcı Kontrol 

sistemleri, modern yolcu arabaları her yerde olmuştur. Kontrol sistemleri, modern 

araclarda kazalarin onlenmesine veya bir kaza halinde hasari sinirlamak icin surucuye 

yardimci olur. Örneğin, yeni bir araba genellikle sert frenleme sırasında tekerleklerin 

kilitlenmesini engelleyen bir anti-lock fren sistemi (ABS), var, ve genellikle önlemek 

için aracın yanal hareketini stabilize bir elektronik stabilite kontrol sistemi (ESC), var 

savrulma. Ornegin yeni araclarda sert frenleme esnasinda tekerleklerin kilitlenmesini 

onleyen antilock fren sistemi ve aracin yanal hareketi sirasinda savrulmayi engelleyen 

elektronik stabilite kontrol sistemleri mevcuttur.Çarpışma uyarı ve kaçınma, rollover 

önleme, rüzgar stabilizasyonuna ve koltuk konumları ve emniyet kemerleri 

ayarlayarak yaklaşan bir kaza için hazırlık otomotiv güvenliği için kontrol sistemleri ek 

örnekler vardır. Carpisma uyari sistemi, ruzgar stabilizasyonu, koltuk konumlari ve 

emniyet kemerlerini ayarlayarak olasi bir kaza oncesi hazirlik gibi arac guvenligine 

yardimci ek ornekler de mevcuttur. 

Bu sistemler aracın durumu ve çevresi hakkında bilgi güveniyor. Bu sistemler aracin 

http://ozetbeyan.net/
http://www.yukseklisans.com.tr/premium/index.php?sayfa=girisyap
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durumu ve etrafi hakkindaki bilgilere baglidir. Bu bilgileri almak için, modern 

otomobillerin çeşitli sensörler ile donatılmıştır.Modern otomobiller bu bilgileri elde 

edebilmek icin cesitli sensorlerle donatilmislardir. ESC sistemi ile tipik bir araç için 

gerekli ölçümleri yaw oranı olarak bilinen direksiyon açısı, tekerlek açısal hızlarda, 

yanal hızlanma ve dikey vücut sabit bir eksen etrafında dönme hızı, içerir. Tipik hir 

ESC li aracta gerekli olcumler "yaw" orani diye tabir edilen ve direksiyon acisi, 

tekerlek acsial hizlari, yanal ivmelenme ve dikey yonde sabit bir eksen etrafindaki 

donme hizindan olusmaktadir. Yalnız bu ölçümler aracın durumu hakkında bilgi büyük 

bir içerir. Sadece bu olcumler bile aracin durumu hakkinda cok onemli bilgiler icerir. 

Aracın hızı, tekerlek açısal hızlarının ve hız alarak doğrusal bir referans modeli 

kullanılarak simidi açısı, direksiyon ve girişleri gibi ek ölçümler normal sürüş 

koşullarında aracın davranışını tahmin etmek için kullanılabilecek tahmin 

edilebilir.Aracin hizi tekerleklerin acisal hziyla tahmin edilir ve dogrusal referans 

modeli aracin hizini direksiyon, simidi acisini ve bazi ek olcumleri alarak aracin normal 

surus sartlarindaki davranislarini tahmin eder. 

Bazı miktarlarda kolaylıkla ölçülebilir olmasına rağmen, diğerleri yüksek olması 

nedeniyle maliyet veya impracticality ve ölçmek zordur. Bazi degerlerin kolaylikla 

olculebilmesine ragmen, bazilari yuksek maliyet ve ve pratik olmayislari sebebiyle zor 

olculur. Bir miktar doğrudan ölçülemez zaman, o zaman mevcut olan ölçümleri 

kullanılarak tahmin etmek genellikle gereklidir. Bazi degerlerin dogrudan 

olculememesi sebebi ile diger olcumler kuallanilarak bu degerleri tahmin etmek 

gerekir. Gözlemciler bilinmeyen dinamik durumları tahmin etmek için dinamik 

modelleri ile kullanılabilir ölçümleri birleştirir.Gozlemciler dinamik modelleri kullanip 

olcumleri birlestirerek bilinmeyen dinamik durumlari tahmin edebilirler. 

Ayrıca, araç hareket yöneten önemli parametreler lastik / sürtünme ve lastik model 

parametrelerinin yol yüzey katsayısı vardır. Ayrica arac hareket yonetiminde lastik-yol 

surtunme katsayisi ve lastik modeli gibi onemli parametreler vardir. Araç, güvenli bir 

hızda güvenli takip mesafesi, durma mesafesi ve lateral manevra tüm bu kontrol 

edilemeyen parametre bağlıdır. Guvenli takip mesafesi, durma mesafesi ve yatay 

manevra kabiliyeti gibi degerler tum bu kontrol edilemeyen degerler baglidir. 
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Yol sürtünme ve lastik model parametreleri yavaşlama ve çekiş neden ve bir panik 

manevra sırasında "iplik" bir araç önleyecek lastik güçleri veya kuvvetleri yönetir. 

Panikle yapilmis bir manevra sirasinda aracin spin atmasini onleyecek olan lastik 

kuvvetleri veya yavaslama ve cekis kuvvetlerini kontrol eder. Aracın hareket 

düzenleyen diğer önemli parametreleri dönüştürücüler kullanılarak ölçülebilir iken, 

ölçmek veya başka yol sürtünmesini tespit etmek için bir yöntem henüz yoktur. aracin 

hareketine etki eden diger parametreler olculebilirken, henuz yol surtunmesini 

olcebilecek herhangi bir yontem yoktur. Bir "yol kurgu sensörü" yokluğunda, bu proje 

ölçülen aracın hareket dayalı yol sürtünme ve lastik model parametrelerini tahmin 

etmeyi amaçlamaktadır.bu proje bir yol kurgu sensoru olmadan harekete dayali yol 

surtunmesini ve lastik model parametrelerini tahmin etmeyi amaclamaktadir. 

Bu tezde geliştirilen sayısal işlemler genişletilmiş Kalman filtreleme, doğrusal olmayan 

adaptif filtreleme yöntemine dayanmaktadır. Uyarlamalı lastik tahta araç üzerinde 

sensörlerden gelen sürekli olarak toplanır ve taşıt verilerinin dinamik bir model 

gerektirir.adaptif lastik,aracin dinamik modeli ve arac uzerine yerlestirilmis olan 

sensorlerden alinan verilere ihtiyac duyar. Zemin Aracın hareket büyük ölçüde 

yavaşlama ve çekiş ve yanal kararlılık kaybetme veya şiddetli manevralar sırasında 

"iplik" bir araç önleyebilirsiniz neden lastik güçleri veya kuvvetleri bağlıdır. Aracin 

yuzeydeki hareketi lastik kuvvetleri veya yavaslamaya ve hizlanmaya sebep olan 

kuvvetlere baglidir ve ardarda manevralarda aracin yatay dengesini kaybetmesini 

engelleyecektir. Lastik kuvvetler doğrusal olmayan, ve onlar bu tür lastik / yol yüzeyi 

sürtünme katsayısı (μ), lastik model parametreleri, lastik basınç ve aşınma ve araç 

yükleri gibi kontrol edilemeyen faktörlere bağlıdır. Lastik kuvvetlerilineer degildir ve 

lastik-yol surtunmesi lastik model parametreleri lastik asinmasi, lastik basinci ve arac 

yukleri gibi parametrelere baglidir. Ikincilparametreleri standart sensörler kullanılarak 

ölçülebilir iken, ölçmek veya başka μ ve lastik model parametreleri belirlemek için bir 

yolu bulunmuyor. Ikincil parametreler standart sensorler kullanarak olculebiliyor iken μ 

ve lastik model parametrelerini belirlemek icin herhangi bir yol bulunmamaktadir. Bu 

projede, lastik güçleri, araç sideslip açısı, boyuna araç hızı ve tekerlek kayma oranı 

genişletilmiş Kalman filtresi kullanılarak belirlenmiştir. 
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1. INTRODUCTION 

1.1. Motivation 

Automobiles have become indispensable in our modern society. Consequently, 

vehicle safety has tremendous importance in our everyday lives. For some 

perspective, in the United States, motor vehicle crashes continue to be the leading 

cause of death for children, teens, and young adults. Worldwide, an estimated 1.2 

million people are killed in road crashes each year and as many as 50 million are 

injured. Projections indicate that this will increase by about 65% over the next 20 

years unless there is new commitment to prevention [1]. 

In order to prevent serious accidents, vehicle stability control such as ESC, EBD, 

ABS and DYC based on active safety technologies, has been widely applied to 

assist the driver to keep vehicle on the intended path. In order to design the ESC 

system, vehicle’s actual behavior must be measured or estimated to be compared 

with the nominal behavior which is calculated from deriver’s input [2]. The actual 

directional behavior of vehicle is calculated from motion variables, such as yaw 

rate, sideslip angle and road friction coefficient. Yaw rate is defined as the angular 

velocity of vehicle body around the vertical axis. Sideslip angle is defined as the 

angle between vehicle velocity vector at the center of gravity (CG) and the 

longitudinal axis. As seen in Figure 1.1, on a slippery road, yaw rate control can 

only maintain the vehicle in desired orientation, but the vehicle sideslip angle may 

increase significantly [3]. 

Experts estimate, for instance, that ESC prevents 27% of loss of control accidents 

and reduces single-vehicle crashes rates by 36% by intervening when emergency 

situations are detected [4], [5]. 

 



 

2 
 

 

Figure 1.1 Vehicle motion with/without sideslip angle control [6] 

 

While current vehicle safety systems such as ESC are unquestionably life-saving 

technologies, they are unfortunately limited by the lack of knowledge of the 

vehicle’s state and operating conditions. Knowledge of the vehicle’s sideslip angle 

is important information that is largely unavailable for current safety systems. The 

tire’s lateral handling limits, which are the maximum potential grip a tire has on the 

road during a turn, are also generally unknown. 

Overall, with improved knowledge of the vehicle’s state and operating conditions, 

and with a coordinated approach to prevent unsafe vehicle trajectories, safety 

systems have an even greater potential to prevent vehicle accidents and reduce 

crash fatalities. 

1.2. Background and Literature Review 

A critical component of many modern vehicle control systems, such as stability 

control and lateral control system, requires the accurate knowledge of vehicle 

sideslip angle and yaw rate. The main function of the stability control system is to 

limit values of the vehicles yaw dynamics and sideslip angle to values that are 
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manageable to the driver. The yaw rate can be measured directly with a low-cost 

gyroscope. However the measurement of sideslip requires an expensive speed 

over ground sensor. Recently, it has been shown that Kalman filtering method was 

used to estimate unmeasurable states and unknown parameters. 

Many methods have been proposed in the literature to estimate the latter states. A 

number of these methods have the basic limitation of using the classical 

automotive bicycle model which is only valid in the linear range of driving. Other 

proposed solutions do not incorporate adaptation schemes for the tire model, 

which is the major contribution of the present article. As a matter of fact, many 

different approaches for getting information about sideslip angle and road surface 

conditions have recently been analyzed. In order to estimate the slop of the friction 

force against the tire slip, a least-squares method in [7], is utilized on 

measurements of wheel angular velocity. Another least-square method for 

estimation of side slip angel and road friction was presented in [8]. A filtering 

scheme to estimate the maximum road-tire friction coefficient is consisted by an 

observer for lateral velocity in both  [9] and [10], based primarily on utilizing the 

lateral acceleration measurement while a good measurement of the coefficient is 

necessary. In [11], by analyzing the ratio between slip values of the driven wheels 

and the normalized friction force, acquired using wheel angular velocities and 

engine torque, a Kalman filtering method is used so as to sort out conditions of the 

road surface. In [12], combining of an extended Kalman filter (EKF) with statistical 

methods for estimating the maximum road-tire friction coefficient is based on 

measurements of not only the yaw and roll rates, wheel angular velocities, and 

longitudinal and lateral accelerations, but also knowledge of the steering angle and 

total brake line pressure. The same procedure of EKF has been applied in [13] and 

[14]. In [15], based on measurements of wheel angular velocity, longitudinal tire 

slip, and wheel torque, they are applied both to adapt a friction parameter and to 

estimate of the wheel angular velocity.  To estimate the longitudinal velocity, wheel 

angular velocity, and adaptation of a friction parameter, wheel angular velocity and 

torque is utilized in [16]. In both [15] and [16], convergence of the adapted friction 

parameters under conditions of nonzero longitudinal tire slip is analyzed. In [17] 

reduced-order observer is designed to estimate lateral velocity through applying a 

method for adaptation of the friction model to different road surface conditions. In 
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[18] and [19],  the extended Kalman filter (EKF) method is suggested to be used to 

define the tire lateral force on the basis of a theoretical model and the results of 

experimental tests accomplished on the representing real model. In [20] two 

extended kalman filter in parallel are used to estimate states and parameters of 

vehicle. 

1.3. Purpose of Thesis 

The first purpose of this thesis is to estimate vehicle sideslip angle, road friction 

coefficient and tire model parameters in vehicle non-linear model. In this thesis, we 

set out to address three scenarios: estimation of sideslip angle, lateral velocity and 

front/rear axle cornering forces based on two measurements which are yaw rate 

and lateral acceleration where tire model parameters and road friction coefficient 

are unknown. Estimation of sideslip angle, lateral velocity and front/rear axle 

cornering forces based on two measurements which are yaw rate and lateral 

acceleration where tire model parameters and road friction coefficient are known. 

Estimation of sideslip angle, lateral velocity and tire forces based on measurement 

of yaw rate only where tire model parameters and road friction coefficient are 

known. 

The second purpose of this thesis is estimation of sideslip angle based on 

measurement of yaw rate in linear vehicle model where sideslip angle is not large 

value. 

The last purpose of the thesis is wheel slip regulation problem. Our aim is to 

estimate vehicle velocity, longitudinal tire slip, friction coefficient and tire model 

parameters in quarter car braking model. 

1.4. Outline of Thesis 

This dissertation is organized as follows: The explanation of various tire model, 

bicycle planer model, non-linear vehicle model and single wheel braking model in 

chapter 2. The theory of Kalman Filter and extended Kalman Filter is presented in 

chapter 3. Implementation of Kalman Filter and extended Kalman Filter algorithm 

to estimate vehicle sideslip angle, lateral velocity, tire cornering forces, rational tire 

model parameters and friction coefficient in chapter 4. Implementation of extended 

Kalman Filter algorithm to estimate wheel slip, vehicle velocity, friction coefficient 
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and Burckhardt tire model parameters in chapter 5. Finally, the conclusions are 

drawn in chapter 6. 
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2. VEHICLE DYNIMCS AND CONTROL 

2.1. Introduction 

This chapter covers the dynamics modeling of the vehicle, including various tire 

models, linear and non-linear planar vehicle model and quarter car braking model. 

Section 2.2 describes non-linear tire models (such as Pacejka magic formula, 

Burckhardt and rational tire models). Section 2.3 provides linear tire model. 

Section 2.4 shows the explanation of quarter car braking model. Section 2.5 

covers the basic mathematical modeling of the vehicle’s linear and non-linear 

vehicle dynamics. This non-linear vehicle model uses the non-linear tire model.  

2.2. Non-linear Tire Model 

Tire characteristics determine the dynamic behavior of the road vehicle. In this 

section, an introduction is given to the basic aspects of the force generating 

properties of the pneumatic tire. Pure slip characteristics of the tire are discussed 

and typical feature is presented. 

The tires of a vehicle produce lateral forces as they deform with slip angles as 

shown in Figure 2.1. The slip angle, α, represents the angle between the tire’s 

direction of travel and its contact patch and its longitudinal axis [21]. 

As the tire rolls, the tire contact patch over the ground deforms according to the 

direction of travel. This deformation and the elasticity of the tire produce lateral tire 

force [21]: 

        
  

  
  (2.1) 

  For a freely rolling wheel, forward velocity    and angular speed of revolution ω 

can be obtained from measurements [23]. When a braking/tractive torque is 

applied about wheel spin axis, longitudinal slip arises. Longitudinal slip, λ, is 

defined as: 

   
      

  
 

(2.2) 
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Figure 2.1. Rolling Tire Deformation and Lateral Force [22] 

 

2.2.1. Pacejka Magic Formula 

The Magic Formula [23] is an empirical tire modeling formulation widely used in 

vehicle dynamics studies. The Magic Formula empirically computes all tire force 

and moment components given tire sideslip angle, longitudinal slip, camber angle, 

normal load, and includes the effect of vehicle speed.  

In case of pure longitudinal slip, tire longitudinal force can be obtained according to 

[23]: 

                                                          (2.3) 

where   ,   ,   ,   ,     are coefficients which depend mainly on tire load    and 

tire camber angle which is neglected in this study. Their values are expressed as 

functions of a number of coefficients · κ and p which are characteristic of any 

specific tire. They are obtained from tire tests and do not have any direct meaning. 
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In case of pure sideslip,    can be obtained according to 

                                                          (2.4) 

where 
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2.2.2. Burckhardt Tire Model 

The friction behavior of the tires is shown in Figure 2.2. The friction co-efficient   is 

defined as the ratio of the frictional force acting in the wheel plane    and the 

wheel ground contact force   : 

   
  

  
 

(2.5) 

The calculation of friction forces can be carried out using the method of Burckhardt 

[24]: 

                  

 

(2.6) 

 

Longitudinal and lateral force was expressed as: 

                       

 

(2.7) 

 

                       

 

(2.8) 

 

The parameters        and    are given for various road surfaces in Table A.1 in 

Appendix. 

 

Figure 2.2.    predictions of Burckhardt tire model for various road adhesion 
coefficient, normal tire load of   =4kN and tire center speed v=20m/s 
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2.2.3. Rational Tire Model 

Rational tire models have been used in the literature to provide a simple modeling 

alternative incorporating tire force features such as the dependence on normal 

load and road adhesion coefficient, the peaking behavior at a given slip and 

saturation and the dependence on both components of slip and dependence on 

tire center velocity [25]. 

Longitudinal and lateral force are expressed as: 

      
  

   
 

        

            
  

(2.9) 

 

      
  

   
 

        

            
  

(2.10) 

 

where         has been introduced to cope with dependence of the peak locus of 

the cornering force on  ;    and    are constants [25]. In Figures 2.3, 2.4 and 2.5 

comparison of    predictions of rational tire model, Magic Formula and Burckhardt 

tire model are shown. 

 

Figure 2.3. Comparison of    predictions of rational tire model, Burckhardt tire 
model and Magic Formula for road adhesion coefficient μ=1, normal tire load of 

  =4kN and tire center speed v=20m/s. 
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Figure 2.4. Comparison of    predictions of rational tire model, Burckhardt tire 
model and Magic Formula for road adhesion coefficient μ=0.6, normal tire load of 

  =4kN and tire center speed v=20m/s. 

 

 

Figure 2.5. Comparison of    predictions of rational tire model, Burckhardt tire 
model and Magic Formula for road adhesion coefficient μ=0.3, normal tire load of 

  =4kN and tire center speed v=20m/s. 

 

In Figures 2.6, 2.7 and 2.8 comparisons of    predictions of rational tire model, 

Burckhardt tire model and Magic Formula are shown. 
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Figure 2.6. Comparison of    predictions of rational tire model, Burckhardt tire 

model and Magic Formula for road adhesion coefficient μ=1, normal tire load of 

  =4kN and tire center speed v=20m/s. 

 

Figure 2.7. Comparison of    predictions of rational tire model, Burckhardt tire 

model and Magic Formula for road adhesion coefficient μ=0.6, normal tire load of 

  =4kN and tire center speed v=20m/s. 
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Figure 2.8. Comparison of    predictions of rational tire model, Burckhardt tire 

model and Magic Formula for road adhesion coefficient μ=0.3, normal tire load of 

  =4kN and tire center speed v=20m/s. 

 

2.3. Linear Tire Model 

This section explains fundamental concepts of linear tire model. In the linear 

region of the tire curve (small slip angle), the lateral force of the tire can be 

modeled as [3]: 

        (2.11) 

where cornering stiffness,   , represents the slope of initial portion of the tire curve 

[3]. The sign of α is taken such that the side force    is positive at positive sideslip 

angle. Figure 2.2 shows experimental measurements of the lateral force supplied 

by a tire as a function of the slip angle. 
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Figure 2.9. Tire lateral force and sideslip angle 

 

The slopes of the pure slip curve at vanishing slip are defined as the 

longitudinal   . Linearized force characteristics (valid at small levels of slip) can be 

represented by 

        (2.12) 

 

Its sign is taken such that, for a positive λ, a positive longitudinal force    arises. 

2.4. single-Wheel Braking Model 

In Figure 2.10 a model for the single wheel braking is shown. It comprises a mass 

of quarter car m, polar moment of inertia  , and tire radius   . It moves 

longitudinally with a speed   and rotational rate  . Its weight mg is balanced by the 

reaction force Z, and the brake force     (sustained by the brake torque   > 0) 

decelerates the vehicle. The general equations for braking performance may be 

obtained from Newton’s second Law written for the x-direction. Equations are 

given by [3] 

            (2.13) 
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   (2.14) 

 

 

Figure 2.10. Schematic and free body diagram of the single-wheel braking model. 

 

2.5. Planar Bicycle Model 

The lateral dynamics of a vehicle in the horizontal plane are represented here by 

the single track, or bicycle model with states of lateral velocity,   , and yaw rate,  . 

In Figure 2.11,    is the steering angle,    and    are the longitudinal and lateral 

components of the vehicle velocity,      and      are the lateral tire forces, and 

   and    are the tire slip angles.  

Derivation of the equations of motion for the bicycle model then follows from the 

following force and moment balances: 

                     (2.15) 

 

                        (2.16) 

 

where    is the moment of inertia of the vehicle about its yaw axis,    is the vehicle 

mass,    and    are distance of the front and rear axles from the   . The front and 
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rear tire forces,      and     .The assumption that both the slip angle and the 

cornering stiffness are approximately the same for the inner and outer tires on 

each axle is inherent in this equation [26]. 

Linearized with the small angles, the tire slip angles,    and   , can be written in 

terms of   ,   ,  , and   [26]: 

       
      

  
 

(2.17) 

 

      
      

  
 

(2.18) 

 

The state equation for the bicycle model can be then written as [26]: 

  
 

  
   

 
 
 
 
 
        

    

           

    
 

  

           

  

      
       

 

     
 
 
 
 

 
 
 
  

 
 
 
 
 
   

    

     

   
 
 
 
 

  
(2.19) 

 

Note that given the longitudinal and lateral velocities,    and    at any point onthe 

vehicle body, the sideslip angle can be defined by: 

        
  

  
    

  

  
 

(2.20) 
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Figure 2.11. Bicycle Model [22] 

 

2.6 Non-linear Planar Vehicle Modeling 

The vehicle schematic shown in Figure 2.12 is a simple diagram of a four wheel 

vehicle in the lateral and longitudinal planes. In order to simplify the lateral 

dynamics, the longitudinal dynamics, including drive force and rolling resistance, 

were neglected. Additionally, the front and rear track widths ( ) are assumed to be 

equal. As seen in Figure 2.12, the sideslip ( ) of the vehicle is the difference 

between the velocity heading and the true heading of the vehicle. The yaw rate ( ) 

is the angular velocity of the vehicle about the center of gravity. The lateral forces 

(  ) are shown for both the inner and outer tires as well as the front and rear tires 

of the vehicle. 

In Figure 2.12, the lateral dynamics of the vehicle are derived by summing the 

forces and the moments about the center of gravity of the vehicle as shown below 

[26]. 

                                   (2.21) 

 

                                          

  
                    

(2.22) 
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Where 

                                    (2.23) 

 

By solving the above equations for β and    , the equations of motion for 

thevehicles lateral dynamics can be found [26] 

   
                          

          
   

          

 
 

(2.24) 

 

   
                                 

 

 
                 

  
 

(2.25) 

 

 

Figure 2.12. Four Wheel Vehicle Schematic Showing the Full Lateral Dynamics of 
a Vehicle [27] 
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The tire slip angle (α), as seen in Figure 2.12, is the difference between the tire’s 

longitudinal axis and the tire’s velocity vector. The tire velocity vector can be found 

by knowing the vehicle’s velocity (at the center of gravity) and yaw rate. The 

direction or heading of the rear tire is the same as the vehicle heading, while the 

heading of the front tires must include the steer angle. The equation of the tire slip 

angles for all four tires is given as follows: 

           
           

         
 

 
 
  (2.26) 

 

           
           

         
 

 
 
  (2.27) 

 

         
           

         
 

 
 
  (2.28) 

 

         
           

         
 

 
 
  (2.29) 

 

The vertical forces can be calculated as follows: 

      

  
  

       
      

       

        
 

(2.30) 

 

      

  
 

 

       
      

       

        
 

(2.31) 
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Where,    and    are the distances to the front axle and the rear axle;     is the 

height of center of gravity. 
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3. KALMAN FILTER AND EXTENDED KALMAN FILTER 

The Kalman Filter (KF) is a mathematical method used to use observed values 

containing noise and other disturbances and produce values closer to true value 

and calculate value. This filter has many applications basically in the vehicle, 

space and military technology. 

The basic operation done by the KF is to estimate the true and calculated values, 

first by predicting a value, then calculating the uncertainty of the above value and 

finding an weighted average of both the predicted and measured values. Most 

weight is given to the value with least uncertainty. The result obtained the method 

gives estimates more closer to true values. 

In order to use the KF the following should be provided: (1) knowledge of the 

system and measurement device dynamics, (2) the statistical description of the 

system noises, measurement errors and uncertainty in the dynamics models and 

(3) any available information about initial conditions of the variables of interest. 

The great advantage of KF from an implementation point of view is that it does not 

require all previous data to be kept in storage and reprocessed every time a new 

measurement is taken. 

Although the KF assumes the system under consideration to be linear but this is 

not quite restricted. Its concept can be extended to some nonlinear applications as 

well. This will be discussed in later sections. 

3.1. Discrete Time Kalman Filter 

3.1.1 The process of estimation 

The KF addresses the basic problem of estimation of the state of a discrete-time 

controlled process that is governed by the linear stochastic difference equation. 

                    (3.1) 

With a measurement: 

          (3.2) 

The random variables in Eqs. 3.1 and 3.2 represent the process and measurement 

noise respectively. They are assumed to be independent of each other or in other 
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words they are uncorrelated. The noise is assumed to be white and with normal 

probability distributions. The process noise covariance matrix Q or measurement 

noise covariance matrix R may change with each time step or measurement, 

however we assume here they are constant matrices and in the difference 

equation which relates the states at previous time step to the state at current step 

[28]. 

3.1.2 The Computational Origins of the filter: 

The    
      is defined as the a priori state estimate at time step k when the 

process prior to step k is known, and the a posteriori state estimate at step k when 

the measurement is known. 

The a priori and a posteriori estimates errors can be defined as: 

          (3.4) 

The a priori estimate error covariance is then, 

  
      

   
    (3.5) 

The a posteriori estimate error covariance is, 

         
   (3.6) 

The next step involves finding an equation that computes an a posteriori state 

estimate as a linear combination of an a priori estimate and a weighted difference 

between an actual measurement and a measurement prediction. 

       
           

   (3.7) 

The kalman gain calculated from the equation: 

     
       

         (3.8) 

 

The difference          
   is the measurement innovation or residual. We see that 

as the R, measurement error covariance approaches zero, the gain    weights the 

residual more heavily [28]. 



 

23 
 

3.1.3 Kalman Filtering Algorithm: 

The Kalman Filter estimates a process by using a feedback control like form. The 

operation can be described as the process is estimated by the filter at some point 

of time and the feedback is obtained in the form of noisy measurements. The 

Kalman filter equations can be divided into two categories: time update equations 

and measurement update equations. To obtain the a priori estimates for the next 

time step the time update equations project forward (in time) the current state and 

error covariance estimates. The measurement update equations get the feedback 

to obtain an improved a posteriori estimate incorporating a new measurement into 

the a priori estimate. 

3.1.4 Underlying Dynamic System Model: 

KF is based on linear and non-linear dynamical systems discretized in the time 

domain. A vector of real numbers represents the state of the system. At each 

discrete time increment, a new state is generated applying a linear operator, with 

some noise added. Then, the observed states are generated using another linear 

operator with some added noise usually called as the measurement noise. 

To use the KF to get estimations of the internal states of a process where only a 

sequence of noisy observations are known as inputs, the process is modeled in 

accordance with the state space representation of the Kalman filter. It means 

specifying the following matrices: the state transition model, the observation 

model, the covariance of the process noise, the covariance of the observation 

noise; and sometimes the control-input model for each time-step, 

                , respectively as described further. 

The KF model assumes the state at (k − 1) helps in measuring the true state at 

time k. 

                  (3.9) 

where   is the state transition state space model and it is applied to the previous 

state     ;   is the control-input state space model and it is applied to the control 

vector   ;   being the process noise and is drawn from a multivariate normal 

distribution with zero mean and covariance   . 
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            (3.10) 

An observation    of the true state    time k is made according to 

          (3.11) 

Here    is the observation state space model which helps in mapping the 

observed space from true space and    is the observation or measurement noise 

(Gaussian white noise) with zero mean and covariance   . 

            (3.12) 

Starting from the initial states to the noise vectors at each step are mutually 

independent. 

A lot of real dynamical systems do not exactly fit this model as the KF mainly deals 

with linear systems and almost all real systems are non-linear. In fact, unmodelled 

dynamics can reduce the filter performance, though it is supposed to work finely 

with inputs which are unknown stochastic signals. The estimation algorithm can 

become unstable because the effect of unmodelled dynamics is dependent on the 

inputs. But the use of white Gaussian noise will not make the algorithm diverge 

and so in the thesis the noise used as input noise and measurement noise are 

Gaussian white noise [28]. 

3.1.5 Mathematical Formulation in steps: 

The KF is a recursive estimator. Only the estimated state from the previous time 

step and the current measurement are required to compute the estimate for the 

current state. 

The notation       shows the estimate x of at time n, when observations till time m 

is obtained. 

The two variables that can represent the filter: 

      , the a posteriori state estimate at time k 

     , the a posteriori error covariance matrix (a measure of the estimated 

accuracy of the state estimate). 

Predict 
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Predicted (a priori) state                  

                          (3.13) 

Predicted (a priori) estimate covariance  

                   
     (3.14) 

Update 

Innovation or measurement residual 

                 (3.15) 

Innovation (or residual) covariance 

             
     (3.16) 

Optimal Kalman gain                           

           
   

   (3.17) 

Updated (a posteriori) state estimate 

                    (3.18) 

Updated (a posteriori) estimate covariance 

                    (3.19) 

 

3.2. Continuous Time Kalman Filter 

Kalman and Bucy presented continuous-time version of the Kalman filter [29] one 

year after Kalman’s work on the optimal filtering. For this reason, the continuous 

time filter is sometimes called the Kalman-Bucy filter. The Kalman filter 

applications are implemented in digital computers, therefore, the continuous time 

Kalman filter has been used more for theory than practice. Consider a linear 

system in which the state x(t) and measurements y(t) satisfy 



 

26 
 

                         (3.20) 

 

                (3.21) 

      denotes the derivative of the state      and   is the process noise to state 

matices. We assume that process noise      and measurement noise      are 

uncorrelated Gaussian stationary white noise with zero mean, namely 

          (3.22) 

 

          (3.23) 

and 

                      (3.24) 

 

                     (3.25) 

       is the delta dirac function, which has a value of   at       , a value of 0 

everywhere else. We note that, discrete-time white noise with covariance   in a 

system with a sample period of   , is equivalent to continuous-time white noise 

with covariance        , [30]. The continuous-time Kalman filter has the form: 

                                       (3.26) 

where the Kalman gain k(t) is 

               (3.27) 

and the state error covariance matrix      satisfies 

                   
                     

  (3.28) 
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which is called a differential algebraic Riccati equation. By letting        such that 

       , a steady state solution for P(t), which we denote as P, is obtained from 

                   
  (3.29) 

The expressions given in Eqs. 3.26, 3.27 and 3.28 constitute the continuous-time 

Kalman filter. The distinction between the prediction and update steps of discrete-

time Kalman filtering does not exist in continuous time and the covariance of the 

innovation process (                ) is equal to the covariance of 

measurement noise  , namely 

                     (3.30) 

3.3. Extended Kalman Filter: 

It is known that the real systems that are inspiration for all these estimators like 

Kalman Filter are governed by non-linear functions. So we always need the 

advanced version of the Filters that are basically designed for linear filters. 

Similarly it is said that in estimation theory, the extended Kalman filter (EKF) is the 

nonlinear version of the Kalman filter. This non-linear filter linearizes about the 

current mean and covariance [28]. 

3.3.1. Formulation: 

In the EKF, the state transition and observation state space models may not be 

linear functions of the state but might be many non-linear functions. 

                     (3.31) 

 

            (3.32) 

Where    and    are the process and observation noises which are both assumed 

to be zero mean multivariate Gaussian noise with covariance   and    

respectively. 

The functions   and   use the previous estimate and help in computing the 

predicted state and again the predicted state is used to calculate the predicted 
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measurement. However,   and   cannot be used to the covariance directly. So a 

matrix of partial derivatives (the Jacobian) computation is required.  

At each time step with the help of current predicted states the Jacobian is 

calculated. These matrices are used in the KF equations. This process actually 

linearizes the non-linear function around the present estimate. 

3.3.2. Predict and Update Equations: 

Predict 

Predicted state                           

                          (3.33) 

Predicted estimate covariance 

                       
       (3.34) 

Update 

Innovation or measurement residual 

                  (3.35) 

Innovation (or residual) covariance 

             
     (3.36) 

Optimal Kalman gain                       

           
   

   (3.37) 

Updated state estimate 

                    (3.38) 

Updated estimate covariance 

                    (3.39) 
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where the state transition and observation matrices are defined to be the following 

Jacobians: 

     
  

  
               

 
(2.40) 

 

   
  

  
        

 
(2.41) 

Another important point to be noted is that the performance of all the estimators 

given above may not be optimized since covariances,   ,   ,    are tuned by trial 

and error. Nevertheless it is evident that the algorithms should give reasonable 

results when the system is well tuned. 

3.3.3 Limitations of EKF: 

Even though the EKF is most commonly used to approximate a solution for 

nonlinear estimation and filtering, it suffers some serious limitations [28]. 

1. Linearized transformations are only reliable if the error propagation can be well 

approximated by a linear function. In the situation where the condition does not 

hold, the linearization can be extremely poor. This might have the slight effect of 

degrading the filter performance or as a serious effect as causing the filter to 

divert. 

2. Linearization can be applied only if the jacobian matrix exists. Unfortunately, this 

is not always the case. For example if the system possesses discontinuities, in 

which the parameters can change abruptly, or have singularities, the Jacobian 

matrix does not exist and linearization can not be done. 

3. Calculating the Jacobian matrices can be a very difficult and error-prone 

process. For a higher order system this involves a dense algebraic effort and 

possibly leads to errors. 

4. By using a simple "first order Taylor series linearization", the algorithm neglects 

the fact that the prior and predicted state variables, i.e.          and        are in 

fact the random variables. This can seriously affect the accuracy of the posterior 

predictions and hence the final state estimates generated by the filter. Since it fails 
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to generate consistent estimates of the estimation error covariance it causes the 

filter to "trust" its own estimates more than is warranted by the true underlying 

state-space evolution and observation sequences. 

3.4 Dual Extended Kalman Filter 

One important application of the Extended Kamlan Filter (EKF) is parameter or 

coefficient identification in linear or nonlinear systems. Here it should be noted that 

no matter whether the system is linear or nonlinear, only the EKF can be applied 

for parameter identification. In many applications, it is necessary to estimate 

parameters and coefficients which are impossible to measure or to be known. The 

EKF provides an effective approach in estimating such parameters.  

This approach has also been developed for joint state/parameter estimation under 

the name Dual Extended Kalman Filter (DEKF) as first proposed by Wan and 

Nelson [28]. In this method, two EKFs are used in parallel for combined state and 

parameter estimation. 

In the dual filtering approach, a separate state-space representation is used for the 

states and the parameters. Thus two estimators are run simultaneously for state 

and parameter estimation as shown in Figure 3.1. 

In general a non-linear system can be formulated as: 

                                 (3.42) 

 

                         (3.43) 

 

where    is the state vector,    is the parameter vector, u is the input vector, y is 

the output vector, with w and v being the process noise and output noise vectors 

respectively. 
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Figure 3.1. Scheme of the DEKF 

 

The basic equations for the DEKF for such a non-linear system they are stated 

here as follows [31]: 

Parameter prediction: 

   
              (3.44) 

 

  
               (3.45) 

State prediction: 

   
          

               
      (3.46) 

 

  
           

               (3.47) 
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State correction: 

        
      

      
      

     (3.48) 

 

          
                     

      (3.49) 

 

                   
     (3.50) 

Parameter correction: 

               
           

     (3.51) 

 

                             
                   (3.52) 

 

                                  
    

 

     
                         

                       
    

    

(3.53) 

where 

                            (3.54) 

 

                          (3.55) 

 

                          (3.56) 

with 
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                  (3.57) 

 

                   (3.58) 

Except for suitable nominal initial conditions for   ,    and   , two tuning 

parameters are now demanded, α and σ. For the instruction of a suitable memory 

of the error history into the covariance,   utilizes an exponentially weighted moving 

average to the propagation of the noise matrices. It can be better understood by 

means of the filtering time constant,   it introduces, using 

        
    (3.59) 

Set in the range       , the identification is stabilized through decreasing the 

error expectation in the change of parameters. The filter causes parameter 

adaptation, which induces (a desirable) non-zero     . However, these changes 

are errors according to the zero model of Eq. 3.46, and if their total magnitude is 

interpreted as error,     becomes relatively large compared with    , which results 

in an increase in the feedback gain     to provide greater correction to the u. 

Subsequent parameter corrections are then larger, and this induces 

instability.   provides a means of balancing the filter such that the changes in     

are, correctly, not interpreted entirely as error [31].  

Here,    and    are user-specified process noise covariance matrices for the state 

and parameter estimators, respectively, and,   and    are the covariance matrices 

of the estimation errors, respectively. 

After defining the system dynamic equations f (・) and h(・),the Jacobian matrices 

  and    for the state and output equations are then given, respectively, by 

  

 
 
 
 
 
   
   

 
   
   

   
   
   

 
   
    

 
 
 
 

 (3.60) 
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 (3.61) 

The input vector   and the output vector   consist of the available measurable 

vehicle states: 

       (3.62) 

  equation is as follow: 

 

     

           

    
 

(3.63) 
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4. HANDLING RELATED STATE AND PARAMETER ESTIMATION 

The Kalman filter and extended Kalman filter algorithm presented in this 

dissertation are used to estimate vehicle slip angle. The vehicle sideslip angle 

must be estimated as described below since it cannot be measured directly. The 

estimation of sideslip angle is therefore a critical part of the many active safety 

systems in vehicles. The vehicle sensor values are used in the estimation of 

sideslip angles as described below in this chapter. The axle slip angles may be 

calculated from the vehicle forward velocity, lateral velocity, yaw rate and front 

road wheel steer angle. Yaw rate and steering angle and forward velocity are 

measured directly, however sideslip angle must be estimated. 

Kalman filter and extended Kalman filter algorithm approaches to estimate lateral 

velocity are presented in this chapter. Additionally the estimation of slip angle 

along with estimation of road friction coefficient and tire model parameters are 

presented. 

4.1 Estimation of Linear Planar Vehicle states 

The measured yaw rate sensor value may be considered output of the bicycle 

model described in chapter 2. The linear bicycle model may be reformulated as a 

stochastic model with zero-mean process random noise      and the 

measurement random noise     . 

               (4.1) 

 

             (4.2) 

where 

   
 
 
  (4.3) 
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    (4.4) 

 

   

 
 
 
 
 
        

    
   

           

    
 

           

  

      
       

 

     
 
 
 
 

 (4.5) 

 

  

 
 
 
 
 
   

    

     

   
 
 
 
 

 

(4.6) 

 

       (4.7) 

 

    (4.8) 

In this case the Kalman filter can be used to implement an optimal observer with 

respect to the noise characteristics of w(t) and v(t). To implement the Kalman filter, 

the auto-covariance matrices of w(t) and v(t) must be specified: 

          (4.9) 

 

          (4.10) 

In theory the process noise and measurement noise would be measured and the 

auto-covariances computed directly. In practice this is very difficult to do, 

especially for the process noise      as this often cannot be measured directly. As 

a result the Q and R matrices may be considered to be tuning parameters for the 

Kalman filter. Q and R matrices were specified as diagonal matrices with equal 

values along the diagonal of each. 
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     (4.11) 

 

     (4.12) 

This simplistic approach was used to “tune” the Kalman filter by the relative 

weighting of the scalar values Q and R. 

In these simulations, vehicle is designed at small steering angle (sinusoid wave 

and step function). Other parameters are shown in Table A.2 in Appendix. 

Weighting of scalar values of   and   are 0.001 and 0.005, respectively.  

 

 

Figure 4.1. Estimation of sideslip angle and yaw rate, steering input sinusoid wave, 
amplitude 10 deg, velocity 30 m/s 
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Figure 4.2. Estimation of sideslip angle and yaw rate, steering input sinusoid wave, 
amplitude 15 deg, velocity 20 m/s 

 

Figure 4.3. Estimation of sideslip angle and yaw rate, steering input step function, 
amplitude 12 deg, velocity 25 m/s 

 

As a result the estimated sideslip angle in bicycle model is close to the actual one 

where the vehicle sideslip angle is not large value. Also, simulation results show 
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that Kalman filter method could reduce noise in measurement and estimation 

signals truly.  

4.2. Estimation of Non-linear vehicle states  

It has been shown in the chapter 3 that extended Kalman filter can be used to 

estimate the states of a system of interest from the noisy observation signals. It 

should be noted that if the noise free signals are available, the algorithms can also 

be used to obtain the system's parameters. The latter is sometimes referred to as 

a parameter estimation or system identification.  

The state matrix presented here is based on four-wheel non-linear vehicle model. 

The state matrix consists of yaw rate  , lateral velocity     and lateral acceleration 

    based on measurements of lateral acceleration   , steer angle  , vehicle 

speed   , and yaw rate  . 

In this dissertation, the following simplifying assumptions was taken into account:  

the concentration on lateral force generation of tires; ignorance of dependence on 

longitudinal slip and setting up of the Magic Formula tire model as an exact model 

of tire force generation to which will be tried to fit a sufficient Rational tire model. 

If the extended Kalman filtering method is used for the data estimation then it is 

necessary to formulate the system model in discrete state-space form. The 

differential equation discrete time of lateral acceleration is as follow: 

        
 

  
           δ            δ                 (4.13) 

Discrete time Yaw rate can be obtained from: 

               
 

  
              δ +           δ             

         
 

 
           δ            δ  ] 

(4.14) 

Discrete time lateral velocity can be obtained from: 

                                  (4.15) 
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In the above,  ,   and    denotes track width, number of iteration and represents 

sample time which is 0.005, respectively 

The lateral velocity, the steer angle of the front wheels and the yaw rate are then 

utilized as a basis for the calculation of the tire slip angles    as well as the vehicle 

body slip angle  : 

α       δ  
     

     
   

      

     
  (4.16) 

 

α         
     

     
   

      

     
  (4.17) 

 

β            
     

     
  (4.18) 

the vertical forces can be calculated as follows: 

         

  
  

       
      

          

        
 

(4.19) 

 

         

  
  

       
      

          

        
 

(4.20) 

where    and    are the distances to the front axle and the rear axle;     is the 

height of center of mass [19]. 

In this chapter DEKF is used to estimate unmeasurable states and unknown 

parameters. This observer is designed and tested against data from a source 

model which employs Magic Formula tire model. For this work, we use rational tire 

model to generate lateral tire forces. Rational tire model depends on two 

parameters and road friction coefficient which vary with the different road surfaces. 
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To estimate states accurately such as sideslip angle and lateral tire forces, which 

have strong correlation with tire model, it is crucial to estimate these parameters 

and road friction coefficient precisely in any road surfaces. Hence dual extended 

Kalman filter (DEKF) which two EKF are used in parallel to estimate states and 

parameters which is shown in Figure 4.4. The study also presents the effect of 

number of measurements in this application and it concludes with a discussion in 

this chapter. 

In this section three different simulations have been modified, one of which consist 

of using DEKF to estimate states alongside rational tire model parameters and 

friction coefficient based on measurement of yaw rate and lateral acceleration. The 

other one is using EKF for estimation of states without parameter estimation based 

on two which are yaw rate and lateral acceleration. And the last one is using EKF 

to estimate states without parameter estimation based on only measurement of 

yaw rate.  

 

Figure 4.4. Simple representation of the simulation model incorporating non-linear 
vehicle models with Magic Formula/rational tire models and DEKF 

 

The input vector u and the output vector y consist of the available measurable 

states: 
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  (4.21) 

 

   
 
  

       (4.22) 

The state and parameter vectors form the internal states required by the dynamics 

safety control systems and the unknown tire model parameters, respectively: 

    

 
  

  

  (4.23) 

 

    

  
  

 
  (4.24) 

where    and    are the Rational tire model constant parameters and   is road 

friction coefficient. 

Note that the matrix    is required, which can be simplified as follows: 

     

           

    
 

 
 
 
 
 
  

   

  

   

  

  
   

   

   

   

   

   
 
 
 
 

 
 

(4.25) 

 

4.2.1 Simulations 

In these simulations, the vehicle was assumed that it experienced a maneuver 

subject to Fishhook and sinusoid wave steering input, which is shown in Figure 4.5 

and 4.6, respectively, on the road with various friction coefficients and other 

parameters in vehicle is shown in Table A.3 in Appendix. 
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Figure 4.5. Fish-hook steering angle input used in simulations 

 

 

Figure 4.6. Sinusoid wave steering angle input used in simulations 
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In the first simulation, a DEKF algorithm is used to estimate states alongside 

rational tire model parameters and friction coefficient based on measurement of 

yaw rate and lateral acceleration. 

 In the second simulation, an EKF is used for the estimation of states without 

parameter estimation based on yaw rate and lateral acceleration measurements.  

In the third, simulation an EKF algorithm is used to estimate states without any 

parameter estimation based on measurement of yaw rate only. 

Estimation of states of three different conditions, which is explained above, for 

various road surfaces and different steering angle inputs are shown in figures 

below. 

Note that all figures of rational tire model    ,    parameters and road friction 

coefficient are related to DEKF algorithm. 
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Figure 4.7. Simulations and estimations corresponding to road friction coefficient µ=0.5 at fishhook steering angle 
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Figure 4.8. Simulations and estimations corresponding to road friction coefficient µ=0.4 at fishhook steering angle 
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Figure 4.9. Simulations and estimations corresponding to road friction coefficient µ=0.3 at fishhook steering angle 
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Figure 4.10. Simulations and estimations corresponding to road friction coefficient µ=0.2 at fishhook steering angle 
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Figure 4.11. Simulations and estimations corresponding to road friction coefficient µ=0.1 at fishhook steering angle 
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Figure 4.12. Simulations and estimations corresponding to road friction coefficient µ=0.5 at sinusoid wave steering angle 

 

 



 

51 
 

 

 

Figure 4.13. Simulations and estimations corresponding to road friction coefficient µ=0.4 at sinusoid wave steering angle 
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Figure 4.14. Simulations and estimations corresponding to road friction coefficient µ=0.3 at sinusoid wave steering angle 
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Figure 4.15. Simulations and estimations corresponding to road friction coefficient µ=0.2 at sinusoid wave steering angle 
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Figure 4.16. Simulations and estimations corresponding to road friction coefficient µ=0.1 at sinusoid wave steering angle 
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It can be seen from the simulation results that all the estimators give the reasonable 

results for vehicle sideslip angle. However, DEKF algorithms seem to give better 

results. 

The estimation of the front/rear axle cornering forces of three simulations has the 

sufficient accuracy to acquire sideslip angle and lateral velocity with high precision.  

4.3 Conclusions 

This chapter has provided application of Kalman filter and extended Kalman filter for 

estimation in linear and non-linear planer vehicle model. Results of estimation are 

shown in this chapter. 

Moreover, this chapter introduced effective algorithms to estimates friction coefficient 

and tire model parameters which cause tire model is adaptive for any road surfaces.  

The Kalman filtering method for sideslip angle of the vehicle is proposed in this 

chapter which is based on the non-linear vehicle model and the modified Rational tire 

model. It has realized the observing the vehicle sideslip angle and friction coefficient 

on-line via the signal from source model. The simulation results indicate that this 

algorithm can be calculated in real-time on various road surfaces. 

Therefore, the extended kalman filter observer in this chapter is proposing a low-cost 

and more practical idea for estimating the vehicle sideslip angle, friction coefficient 

and tire model parameters on-line estimation.
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5. WHEEL SLIP REGULATION RELATED STATE AND PARAMETER 

ESTIMATION 

5.1 Introduction 

Wheel slip, which is defined in Eq. 2.2, is a dimensionless measure of the difference 

between the vehicle speed   and the circumferential speed     of the wheel relative 

to its center. We take as convention that  > 0 and         for braking, where 

       only at the onset of braking [21]. In the steady-state, there are two possible 

cases: (1) Finite rotation of the wheel (      ) while the vehicle decelerates with 

        and (2) deceleration under lockup conditions         with    . 

The wheel slip must be very accurately calculated. Due to the extremely high gradient 

of the cohesion coefficient characteristics, errors in the per-thousands range can 

result in force reactions of considerable dimensions. 

The primary objective of the slip controller is to bring a car traveling with an initial 

speed    down to stop in a shortest possible distance or time while using admissible 

control (          
). In doing so the slip value should rise to its optimum value    

as fast as possible and track this value through the deceleration process with minimal 

deviation from the set reference value    until the car stops. The braking system 

should also use admissible braking torques, i.e. have limited control input through the 

braking process including initial transient response, steady state control and the final 

stage of the braking process as the car comes to rest [32]. 

The second aim of wheel slip regulation is to adapt tire on various road surfaces. 

Therefore, tire model updating for road surfaces plays a crucial role to generate true 

value of tire forces. 

5.2. Close Loop Control Systems 

Control system engineers are concerned with controlling a part of an environment 

known as a plant or system in order to produce desired products for society. A prior 

knowledge of the plant to be controlled is often critical in designing effective control 

systems. The application of different engineering principles like that of electrical, 
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mechanical, and/or chemical in order to achieve the desired output make control 

engineering a multi-faceted engineering domain [33]. 

In closed-loop control systems the difference between the actual output and the 

desired output is fed back to the controller to meet desired system output. Often this 

difference, known as the error signal is amplified and fed into the controller. Figure 2 

shows the general structure of a closed-loop feedback control system. A few 

examples of feedback control systems are elevators, thermostats, and the cruise 

control in automobiles [33]. 

 

 

Figure 5.1. Closed loop control system [33]. 

 

5.2.1 PI Controller 

In control engineering, a PI Controller (proportional-integral controller) is a feedback 

controller which drives the plant to be controlled by a weighted sum of the error 

(difference between the output and desired set-point) and the integral of that value. It 

is a special case of the PID controller in which the derivative (D) part of the error is 

not used [33]. 

The PI controller is mathematically denoted as: 

      
  

 
      

 

   
  (5.1) 
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Figure 5.2.  PI controller scheme [34] 

 

Integral control action added to the proportional controller converts the original system 

into high order. Hence the control system may become unstable for a large value of 

   since roots of the characteristic equation may have positive real part. In this 

control, proportional control action tends to stabilize the system, while the integral 

control action tends to eliminate or reduce steady-state error in response to various 

inputs. As the value of Ti is increased,  

 

d of the response tends to be slower.  

5.3. Wheel Slip Regulation Using DEKF 

This chapter describes a PI controller and Extended Kalman filtering technique which 

employs an additional angular velocity sensor to complement the wheel-based speed 

sensor, and produce an accurate estimation of the true speed of a vehicle. We use 

the Extended Kalman filters to deal with the noise and uncertainties in the speed, and 

to tune the covariance and reset the initialization of the filter according to slip 

conditions detected and measurement-estimation condition. Magic Formula is 

employed in quarter car braking model as a source model to verify the proposed 

strategy. Also, estimation of the tire model parameters is significant since tire must be 

adaptive for any tire road surfaces. Here, Burckhardt tire model is chosen. Therefore, 

using DEKF for estimation states alongside parameters as shown in Figure 5.2. 

A model for single wheel braking is described in chapter 2. There may be other forces 

that act on a braked vehicle that influence its deceleration, including driveline drag, 
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grade, rolling resistance, and aerodynamic drag [3], but these are not considered here 

[3]. 

Discretizing the equations of quarter car braking model for using DEKF can be 

obtained below. 

Discrete time wheel angular velocity and vehicle velocity and wheel slip can be 

obtained from: 

            
  

 
                       (5.2) 

 

              
  

 
      (5.3) 

 

     
            

     
 (5.4) 

The algorithm of DEKF is shown in Figure 5.3.    for this simulation is considered as 

0.005.  Parameters of quarter car model are shown in Table A.4 in Appendix. 

The input vector u and the output vector y consist of the available measurable states: 

       (5.5) 

 

           (5.6) 

 

The state and parameter vectors form the internal states required by the quarter car 

braking system and the unknown tire model parameters, respectively: 
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  (5.7) 

 

    
  
  

  (5.8) 

where    and    are Burckhardt tire model parameter which is described in section 

2.3.2. In this chapter we ssumed that the Burckhardt tire model    parameter is fixed 

(       . 

Note that the matrix    is required, which can be simplified as follows: 

     

           

    
  

  

   

  

   
  (5.9) 

 
 

 

 

Figure 5.3. Wheel slip Regulation with Burckhardt tire model 

 

In these simulations, five situations were studied for wheel slip regulation. 
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As seen in Figure 5.4, vehicle travels from wet road to dry road. The estimation of 

longitudinal velocity and dynamic friction coefficient are quite well. Longitudinal slip is 

tracking reference signal and parameters identification for    and    are acceptable. 

In Figure 5.5, snow-dry transitioning, the accuracy of estimation of longitudinal 

velocity, dynamic friction coefficient and parameter    are high but the estimation of 

parameter    is poor. The initial value for parameter    has not changed during 

traveling from snow road to dry road. 

As detailed in Figure 5.6 and Figure 5.7, estimation of longitudinal velocity and 

dynamic friction coefficient are precise. 

As depicted in Figure 5.8, all of the states are estimated well but parameter 

identifications for    and    are not precise. This problem happens because 

environment changes abruptly and linearization of jacobian matrics can not be done. 

Simulation results show in figures below:
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Figure 5.4. Wheel slip regulation simulation results during wet-dry road transitioning 
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Figure 5.5. Wheel slip regulation simulation results during snow-dry road transitioning 
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Figure 5.6. Wheel slip regulation simulation results during dry-snow road transitioning 
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Figure 5.7. Wheel slip regulation simulation results during dry-wet road transitioning 
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Figure 5.8. Wheel slip regulation simulation results during dry-snow-wet road transitioning 
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5.4. Wheel Slip Regulation by Using DEKF with calculating    

In this section, our aim is to design wheel slip regulator by using parameters, which 

are estimated by DEKF, to find peak value of   -λ figure(    . Then    is used as 

reference feedback to the system. The algorithm is shown in Figure 5.7. 

 

 

Figure 5.9. Block diagram for estimation of velocity and Burckhardt tire model 

parameters with calculating    

 

As seen in Figure 5.10, after solving 
   

  
  , we can obtain   , which selected as the 

   reached its maximum value, as shown in Eq. 5.9. 

    
 

  
   

  

    
 (5.9) 
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Figure 5.10. Ideal longitudinal slip for dry road 

 

5.4.1 Simulation Results 

As seen in figures below, estimation of longitudinal velocity and Burckhardt tire model 

parameters where ideal longitudinal tire slip is unknown are displayed. As evidenced 

by Figures 5.9, 5.10 and 5.11, longitudinal slip is tracking ideal longitudinal slip where 

both of which are estimated by EKF. 
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Figure 5.11. Wheel slip regulation simulation results during dry road transitioning 
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Figure 5.12. Wheel slip regulation simulation results during wet road transitioning 

 

 

 

 

 



 

71 
 

 

 

 

 

 

 

 

Figure 5.13. Wheel slip regulation simulation results during snow road transitioning 
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Results are compared with the source model. As seen in figures estimation accuracy 

for longitudinal velocity, tire angular velocity and dynamic friction coefficient are high. 

Wheel slip is compared with perfect slip reference. The settling times for slip control in 

various roads are less. Estimation of    and    parameters of Burckhardt tire model 

are acceptable. 

5.5. Conclusions 

This chapter provided application of extended Kalman filter of quarter car braking 

model during longitudinal braking. Application of the Extended Kalman filter shows 

that accurate estimation of the absolute speed can be achieved even under significant 

braking skid on various road surfaces. Also, results show high accuracy slip tracking. 

In addition, this chapter includes parameter of tire model identification by using EKF 

under various road conditions. 
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6. CONCLUSION AND FUTURE WORK 

In this dissertation, estimators based on Kalman filtering are discussed. our aim is to 

estimate relevant vehicle states and parameters. 

It starts with a discussion of a Kalman filter used for state estimation in a linear 

system. However, since the 'complete' vehicle system is nonlinear, the algorithm can 

not be applied directly and requires non-linear version of Kalman filter which is 

extended Kalman filter (EKF). The EKF can be viewed as an attempt to linearize a 

nonlinear system in some aspects such that a Kalman filter can be applied. 

EKF is the most commonly used nonlinear estimator for state estimation in nonlinear 

system found in the literature. The algorithm linearizes a nonlinear system by using a 

first-order truncation of a Taylor series. It works well in case of the nonlinearity is not 

severe and the approximation error is small. However, if the nonlinearity is severe or 

the approximation error is not negligible, the degradation in estimation performance or 

even a divergence might occur. 

The proposed system utilizes the measurements from source model. Extended 

Kalman filter observer was employed to aid in the estimation of vehicle body sideslip 

angle. The designed observer is adapted based on current vehicle state. As a result 

the observer uses the kinematic model-based estimate accurately during transient 

nonlinear maneuvers. The lateral force at each axle was estimated by observer based 

on measurements of yaw rate and lateral acceleration. Since lateral force generation 

may be reduced due to tire longitudinal forces from braking or drive traction, the 

lateral force potential of each axle was calculated in order to estimate the lateral force 

that would be generated in the absence of longitudinal forces.  

A method of adaptive estimation was presented using dual extended Kalman filter 

(DEKF). This algorithm is used to estimate road friction coefficient and tire model 

parameters. The parameter identification approach was shown to accurately identify 

changes in these parameters during severe maneuver driving conditions. 



 

74 
 

Furthermore, extended Kalman filter is used to estimate true vehicle speed in quarter 

car braking model. Our aim is that wheel slip is tracking to perfect wheel slip in less 

time. The results show that wheel slip is well tracked. 

In addition, the identification of friction coefficients and tire model parameters was 

shown to enable the control strategy to adapt to changes in various road transiting.  

   Results from the simulation demonstrated the ability of the method to predict the 

estimator accuracy. 

In future extensions of this dissertation, Adaptive-tire will be used for online tuning of 

vehicle dynamics controllers.  
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APPENDIX 

Table A.1. Burckhardt tire model constants in various road situations 

Condition          

Asphalt dry 1.28 23.99 0.52 

Concrete dry 1.1973 25.168 0.5373 

Asphalt wet 0.857 33.822 0.347 

Snowy 0.1946 94.129 0.0646 

 

Table A .2. Vehicle parameters for bicycle model 

Parameter Value (unit) Parameter Value (unit) 

Mass (m) 1500 (kg) 
Distance from front 

axle to CoG (    
1 (m) 

Front Tire Cornering 

Stiffness (   ) 
50000 (N/rad) 

Distance from CoG 

to rear axle (    
1 (m) 

Rear Tire Cornering 

Stiffness (   ) 
45000 (N/rad) Moment Inertia (  ) 2500 (kg  ) 

 

Table A.3. Vehicle parameters for non-linear planar model 

parameter Value (unit) 

Mass (  ) 1987.9 (kg) 

Distance from front to CoG (    1.1473 (m) 

Distance from Cog to rear (    1.4307 (m) 

Vehicle track (t) 1.48 (m) 

Moment Inertia (  ) 4510.25 (kg  ) 
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Table A.4. Quarter car model parameters 

Parameter Value (unit) 

Moment Inertia (   1 (kg  ) 

Wheel Radius (  ) 0.32 (m) 

Mass (m) 450 (Kg) 
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