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ABSTRACT

EXAMINATION AND MATHEMATICAL MODELLING OF
SHRINKAGE RATE OF UNIFORM DROPLETS IN A MICROFLUIDIC
SYSTEM DESIGNED FOR BIOPRESERVATION

Ufuk OKUMUS
Master of Science, Department of Chemical Engineering
Supervisor: Asst. Prof. Selis ONEL
June 2015

Preserving biomaterials at low temperatures requires the use of carbohydrates as cryo-
protective agents (CPAs) at high concentrations to increase the glass transition temperature,
thus preventing the formation of extra- and intra-cellular ice formation at the cost of toxicity.
In this thesis, we developed a mathematical model to investigate a microfluidic method
proposed by Dr. Mehmet Toner for pre-concentration of cells with CPAs in continuous flow
under fewer mechanical and osmotic stresses than traditional methods. New method is based
on trapping cells into aqueous droplets and controlling the CPA concentration in the droplet
by adjusting the temperature of the system. A water immiscible organic phase, which can
solve small amounts of water, is utilized to remove water from the cell containing aqueous
droplets. We solved the mathematical model based on two-phase flow and mass transfer
through a moving boundary layer using Finite Element Analysis calculations on Comsol
software together with external functions from MATLAB and Excel. The model showed that
it is possible to pre-concentrate mammalian cells with CPAs to 10 times the initial
concentration below 4 minutes via the BIoMEMS based microfluidic method. We determined

the critical droplet sizes for specific channel widths for optimum removal of water from the



agueous droplets. Since membrane is the limiting media for diffusion, the CPA concentration
should always be increased in a matched rate of diffusion through the cell membrane to avoid
large concentration differences over the cell membrane. For a channel with a cross-section of
150 pm x 200 um, the ideal initial aqueous droplet size to yield a maximum rate of increase in
CPA concentration would be 90 microns. Finally, it is emphasized that, there is significant
need for a mathematical model to include the volumetric response of the cell to concentration
gradients ahead of the cell wall through an advanced model for diffusion through the cell

membrane.

Keywords: Cryopreservation, BioMEMS, Cryo-Protective Agents, Transport Phenomena,

Finite Element Analysis.



OZET

BiYOSAKLAMA AMACIYLA TASARLANAN MiKROAKISKAN
DUZENEKTE ESBOYUTLU SULU DAMLACIKLARIN KUCULME
HIZININ INCELENMESI VE MATEMATIKSEL MODELLENMESI

Ufuk OKUMUS
Yiiksek Lisans, Kimya Miihendisligi Boliimii
Tez Damismant: Yrd. Doc. Dr. Selis ONEL

Haziran 2015

Biyo-saklama giiniimiizde klinik tip, doku miihendisligi, as1, gida, tarim ve kozmetik gibi
alanlarda Onemi giderek artan bir alandir. Biyo-saklama igin ¢ok ¢esitli yontemler
uygulanmaktadir. Bunlar arasinda canli-dis1 besi ortaminda (in-vitro culture) saklama, diisiik
sicaklikta (hypothermic) saklama, dondurarak (cryopreservation) saklama ve kurutarak (dry-
preservation) saklama siralanabilir. Bu yontemlerin kullanilmasindaki oncelikli amag saklama
oncesinde ve saklama suresince hiicrede kalici bir hasar yaratmadan koruma saglanmasidir.
Glnumuzde dondurarak ve kurutarak saklama, Ozellikle hassas memeli hicrelerinin uzun
sireli saklanmasi, tiizerinde yogunlukla c¢alisilmasi ve yeni yontem ve teknolojiler
gelistirilmesi gereken alanlardir. Bu yontemler gelistirilirken 6rneklerin saklanmasi veya bir
yerden bir yere tasinmasinin da kolay ve diisiik masrafli olmasi gozetilmek durumundadir.
Dondurarak ve kurutarak saklama yontemleri dogadaki drnekler izlenerek gelistirilmistir. Bazi
canlilar ortamdaki sicaklik degisimleri veya donma/kuruma etkilerinin yarattigi gerilimlerin
artmastyla birlikte viicutlarinda karbohidrat sentezler. Sentezlenen karbohidrat soguk/kuraklik

zamaninda hiicrenin zarar gérmeden korunmasina olanak saglar.



Memeli hicreleri evrimsel olarak kuru veya dondurarak saklamaya imkan verecek nitelikte
gelismemistir. Bu kosullarin yerine getirilmesi igin koruyucu maddelerin disaridan eklenmesi
gerekmektedir. Memeli hiicreleriyle ilgili yapilan c¢aligmalar sonucu gliserol, trehaloz gibi
karbohidratlarin diisiik oranda kullanildig: siirece uygun koruyucular oldugu tespit edilmistir.
Hiicre igine giren karbohidratlar yiiksek camsi gecis sicakligina sahip oldugundan diisiik

sicakliklarda veya oda kosullarinda vitrifiye ederek saklama imkani sunmaktadir.

Hiicrelerin vitrifiye edilmesinde en biiylik engellerden biri donmaya kars1 kullanilan ve camsi
gecis sicakligini yilikseltmeye yarayan koruyucu kimyasallara yiiksek derisimde ihtiyag
duyulmasidir. Bu kimyasallara hiicrenin uzun siire maruz kalmasi sonucu toksik etkilerinden
dolay1 hiicreler zarar gormektedir. Dolayisi ile sistemin, camsilasma Oncesinde koruyucu
madde etkilerine olabilecek en disiik siirede maruz kalmasi saglanmalidir. Bahsedilen etkiler

koruyucu kimyasallarin kontrollii bigimde hiicreye verilmesiyle asgari boyutlara cekilebilir.
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Sekil-1. Organik faz i¢erisinde sulu damlacigin ve hiicrenin konumu ile beraber siire¢
icerisinde beklenen su ve koruyucu madde derigim egrileri.



Calisma kapsaminda gliserol koruyucu madde olarak segilmistir. Ancak kurulan model hicre
zarindan gegebilen her madde i¢in uygulanabilecek sekilde gelistirilmistir. Calismada, sulu
ortamda huicrelerin mikro-boyutlu kiiresel damlaciklar iginde hapsedilmesi saglandiktan sonra
sicakliga bagl olarak organik fazin su ¢oziiniirliigiiniin artmasi ile damlaciklarin vitrifiye
edilmesi icin gerekli konsantrasyon degerine ulagsma kosullari incelenmistir. Sekil-1’de
kurulan sistemde tek bir damlacigin goriiniimii verilmistir. Calismada suyun diger faza

yayimnim hizi ve buna etki eden faktorler en 6nemli parametreler olarak 6ne ¢ikmaktadir.

Sekil-2. Suyun organik faza salinimi sonucu tek bir damlacigin zaman igerisinde kiigiiliisii ve
damlacik igerisindeki koruyucu madde derigiminin artisi.

Bu uygulamada diger onemli husus genellikle yaglardan olusan organik fazdir. Kutlece %0.3
miktarda suyu ¢Ozebilmesi, maliyeti diisiik olmasi ve toksik etki yaratmamasi soya yagini
damlacik igindeki su miktarini sicakliga bagl kontrol etmede ideal bir organik faz olarak 6ne

cikmaktadir.

Bu calismada bir mikro-akigkan sistemde olusturulan esboyutlu damlaciklarin sicakliga ve
dolayisi ile suyun organik faz icine yaymim hizina bagli olarak kii¢iilme hizi incelenirken,
sulu damlaciklarin igerdigi kimyasal derisiminin artis1 incelenmek istenmektedir. Geleneksel
dondurarak hiicre saklama yontemlerinde hiicrelere koruyucu madde yiikleme isi kademeli
olarak yapilmaktadir. Kademeli olarak koruyucu madde yiliklemek tek seferde koruyucu

madde yiiklemekten daha az zararli olsa da, halen gelistirilmeye ihtiyaci vardir.



Calismada, Dr. Mehmet Toner’in arastirma grubu tarafindan hiicrelere CPA yiiklenmesi amact
ile gelistirilen ve hiicreleri diisiik ozmotik basinca maruz birakmayi1 amaglayan bir mikro-
akiskan diizenek incelenmistir. Incelenen cihaz iki tane mikro kanalin birbiri ile dik olarak
kesismesinden olugmaktadir. Akis saglanirken ayni dogrultudaki iki kanaldan birbirine ters
yonde yag gonderilmektedir. Yagin gonderildigi kanallara dik olan {igiincii kanaldan ise daha
diisiik akis hiz1 ile su gonderilir. Su damlalar halinde doygun yag fazina karigmadan gecer.
Yag akisinin i¢inde olusan su damlalar1 suyun akig yoniinde itilerek dordiincii kanala dogru
akar ve duzenli bi¢imde yag icerisinde akan su damlalar1 elde edilir. Damlalarin boyutu
kanallarin boyutlarina bagli olarak degisirken, birim zamanda olusan su damlacig1 sayis1 yag
ve suyun akig hizlari ile baglantilidir. Diizenegin yapiminda ozellikle yapismayr onlemek
amaci ile hidrofobik bir yiizey saglayan poli-dimetil-siloksan (PDMS) tercih edilmistir.
PDMS’in bir baska 6zelligi olan seffaflik 151k ve floresan mikroskoplar1 ile analizlerinin

yapilabilmesi ac¢isindan 6nem teskil etmektedir.
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Sekil-3. Damlaciklarin mikro-kanallarda olusturulmasi ve PDMS’den yapilmis cihazin
goruntusa.
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Incelenen sistem igin matematiksel bir model gelistirilmis damlaciklarin kiiciilme hiz1 diger
parametrelere bagli olarak gosterilmistir. Calismada madde yayilimini matematiksel olarak
tanimlamak i¢in Fick madde daginim yasasi ve devamlilik denkleminden tiiretilmis olan y18in
tasinim ve diflizyon denkligi (convection-diffusion equation) kullanilmistir. Akis
dinamiklerini tanimlamak i¢in Navier-Stokes denkliklerinin siireklilik versiyonlarindan
yararlanilmistir. Akis profilini elde etmek i¢in hareket denkleminden yararlanilmis, Reynold
Sayist 1’den kii¢iik oldugu durumlarda gecerli olan laminar akis dinamikleri uygulanmstir.
Hiicre zarindan ge¢isin matematiksel aciklamasi i¢in bugilin yaygin olarak kullanilan, ilk
olarak 1932’de Jacobs M.H. tarafindan ortaya atilan 2-parameter formalism (2 parametreli

formalizm) modeli kullanilmistir.

Bahsedilen matematiksel c¢oziimlemeler Comsol Multiphysics yazilimi kullanilarak
yapilmistir. Buna ek olarak Comsol ile entegre veya uyumlu calisabilmesinden dolay1
MATLAB ve MS Excel yazilimlari, basit kontrol hesaplar1 ve degiskenlerin grafikler
tizerinden iliskilendirilmesi amaci ile kullanilmistir. Matematiksel model Sekil-6’da verilen

algoritma takip edilerek adim adim ¢oziilmiistiir.
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Sekil-4. Yag icinde sulu faz akisinin baslangi¢ kosullarinda Comsol hesaplamasi sonucu.

Kiitle aktarim1 Comsol Multiphysics yazilimi i¢erisinde bulunan Transport of Diluted Species
modiilii, akig dinamikleri Laminar Flow modiilii, damlaciklarin kiicilmesi Moving Mesh

modiilii ile tanimlanmustir. Ulasilan akis ve derisim profilleri Sekil-4 ve Sekil-5’de verilmistir.
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Sekil-5. Kurulan Comsol modelinin zaman igerisinde farkli akis hizlarinda goriintiisii.

Sistemdeki degiskenlerden damlacik yarigapi, damlaciklar ve organik fazin ortalama hizi
arasindaki iliskiyi anlatan bagil hiz1 etkilemektedir. Bagil hiz, suyun organik faza gegis akisini
etkilemektedir. Aki ise, damlacik yarigapin degisimini etkilemektedir. Bu dongiisel baglanti
ancak dongiisel bir hesaplama ile ¢oziilebilmistir. Buradan elde edilen sonuglar damlacik
icerisindeki derisimi bulmak i¢in kullanilmis, daha sonra hiicre zarindan gegis hesaplariyla
beraber hicre i¢i koruyucu madde derisimini veren Cingaceiular degiskeni bulunmustur. Bu

algoritma ve icerdigi denklikler sekil-6’da verilmistir.
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Sekil-6. Sistemin ¢6ziimiinde izlenilen algoritma. Birinci adimda suyun organik faza gecisi ile
ilgili degiskenler, ikinci adimda ise sulu damlacik igerisindeki derisim degiskenleri
¢cOzllmiistiir.
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Sonug olarak, 150x200um kesitli kanallar ile ¢alisilirken, 90 mikrondan kii¢iik boyutlardaki

sulu damlaciklar ile calisilmasinin en yiiksek verimliligi saglayacagi bulunmustur. En iyi

damlacik boyutu ¢aligma aralig1 olarak 85 — 40 mikron aralig1 bulunmustur.
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Sekil-7. Sulu damlaciktan organik faza madde aktarim hizi. Kesikli ¢izgiler en iyi araligi
goOstermektedir.
85 mikron ile siirece baslandiginda, teorik olarak, 300 saniyeden kisa siirede koruyucu madde
baslangi¢ derisiminin 10 katina ¢ikarilabilecegi goriilmiistiir. Akis hizinin daha yuksek
degerlere ¢ekilmesinin kiitle transfer hizini arttiracagi sonucuna varilmistir. Ancak, butiin bu
kiitle transfer sisteminde sinirlayict yer hiicre zaridir. Damlacik icerisindeki derisim miktari
hizli bir bigimde arttirilsa da, hiicre zarindan gecis hizi derisimin artis hizin1 dengeleyecek
bicimde artmayacaktir. Bu durum hiicre zarmin disinda madde birikimne yol agabilir ve
hiicrenin yiiksek derisim farkina maruz kalmasi sonucu kullanilan cihazin amaglarindan biri
olan hiicreye diisiik osmotik basin¢ uygulama s6z konusu olmaktan ¢ikabilir. Sulu damlacik
icerisindeki derisim artis1 hiicre zarindan madde gecis hizi ile uyumlu olacak seviyede

tutulmalidir. Sekil-8 de incelenen sistemde derisimi arttirmak igin teorik olarak gegmesi

gereken sure verilmistir.
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Sekil-8. 150 x 200um kesitli kanalda, ¢esitli hizlarda akan, 85 pm (42.5 um yarigap)
boyutundaki damlaciklar i¢in baslangi¢ derisiminin katlarina ulasmak icin gerekli siire.

Yazinda hiicre zarindan madde gecisini tanimlayan teorik modeler bulunmaktadir.
Calismamiz sonucunda gorilmiistiir ki, hiicrelerin ortamdaki derigim farkliliklarina verecegi
tepkileri stirekli bir sistemde eksiksiz agiklayan bir model bulunmamaktadir. Yazindaki
modeler ya hiicre hacmini sabit kabul etmekte ya da degisen hiicre hacminin hiicre i¢i derigsimi
etkilemedigini kabul etmektedir. Deneysel verilerden bagimsiz olarak hiicrenin derisim
farkina anlik olarak verecegi tepkiyi agiklayan bir modelin eksikligi farkedilmis ve gelecekte

arastirmaya deger bir konu olarak goriilmiistiir.

Anahtar Kelimeler: Biyosaklama, BioMEMS, Donmada Koruyucu Madde, Tasimmim

Olaylari, Sonlu eleman analizi.
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1. INTRODUCTION

Preservation and long term storage of cells is an essential need for many emerging cell based
research, technologies and medical applications. There are different techniques to preserve a
cell but they are referred to as ‘biopreservation’ for general speaking (Acker 2007).
Biopreservation can be expressed as reversibly interrupting and suspending the vital activity
of a living organism to hold stored in its non-native environment and vitalize it back later
when organism is wanted to be biologically active again (M. Toner 2005). It is a naturally
developed process by some microorganisms, however not naturally occurring in mammalian
cells. Since mammalian cells are the most convenient tools to investigate mammalian organs
and systems, they are in great importance for reparative medicine, cell biology of multicellular
organisms and biochemistry related research. For instance, tissue engineering applications are
mostly dependent on the cells and cell behaviors (Acker 2007). Without preserved and
cultured mammalian cells, the only option is holding experiments on animals, which are
expensive and very limited due to ethical reasons and cost of experiments. Hence, in vitro

mammalian cell lines have served as widely used practical solution to this problem today.

There are several techniques to perform biopreservation. Some of them are hypothermic or
cold preservation at relatively high (~4'C) temperatures, cryopreservation at very low (cryo)
temperatures and desiccation (drying) at room temperature (Hammerstedt, Graham et al. 1990,
Rubinsky 2003). All these techniques are focused on disabling chemical activity within the
cell. The preferred preservation method is chosen by the criteria: How long the preservation
will last, what kind of cell is going to be preserved or what the purpose of the preservation is.
Cryopreservation comes to the forefront as the most reliable and favorable technique for

biopreservation of mammalian cells.

A mammalian cell consists of organelles, a core with genetic material, cytoplasm and a
membrane keeping everything inside. Cytoplasm content is ~50-70% water (Jerry W. King
1996, HlImer P 1999) allowing all the molecules within the cell to move freely for necessary
chemical interactions to maintain vital activities. In a broad sense, ‘water’ or the ‘cytoplasm’

is the connection material between the organelles, core and outer environment of the cell.



From this point of view, if water is immobilized or completely removed from the cell, all the
chemical activities, hence the vitality of the cell would be suspended. The immobilization
process is possible only if certain conditions are provided (Michael J. Taylor 2004). One
important condition is rapid cooling, which is based on removing heat so quick that molecules
cannot move to form crystals. However, vitrification by rapid cooling is only possible if very
high and costly rate of cooling (~10° ‘C/s) is applied. Such cooling rates are currently not
possible for biological materials. But, there is a way around this restriction by use of
cryoprotectant agents (CPAs). CPAs are biocompatible substances, which penetrate between
water molecules and limit the mobility of the water molecules. As a result, water can be
immobilized at cooling rates lower than 10°C/s. However, use CPAs cause lethal damages on
the cell due to toxicity of CPAs at high concentrations. Conventional cryopreservation
protocols utilize stepwise loading of CPAs into cells to expose cells to high concentrations as
short time as possible. Yet, increasing concentration up to 6M, where slow cooling rates are
practicable due to diffusion limitations, is resulting in low viability of cells due to toxicity.

A new method by which, the time scale of the process can be reduced and a continuous CPA
loading process can be utilized to expose cells to lower osmotic stress by trapping cells into
droplets was first developed at the BioMEMS Resource Center (Bajpayee, Edd et al. 2010).
Involving microfluidic technology into this method to create a more stable and repeatable

process as well as decreasing mechanical stress exerted on cells was the next step.

Bio Micro Electro Mechanical Systems (BioMEMS) technology is better than just an
emerging technology now. It is being widely used in medicine, biotechnology, tissue
engineering, electronics, qualitative analysis and many other researches related to health
science or not (Ho, Lin et al. 2006, Chiu 2007, Jeffries, Kuo et al. 2007, Song, Moon et al.
2009, Sgro and Chiu 2010, Prot, Bunescu et al. 2012, Swain, Lai et al. 2013). Micro-channels
and micro-wells in which reactions and physical changes take place are easy to monitor and
control. They are continuous systems that allow for practical engineering solutions for
production of chemicals, detection of trace amounts and examination of small droplets and
reaction containers (Chiu 2007, Chiu, Lorenz et al. 2009).

Small micro-channels are capable of carrying cell containing aqueous droplets in an organic
phase (He, Edgar et al. 2005, Chiu 2007, Chiu and Lorenz 2009, Sjostrom, Bai et al. 2014),
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where, organic phase is a phase immiscible with water, yet has a capacity to solve water in
small amounts. Changes in the temperature promote the solubility of water in organic phase,
hence, allow us to control mass transfer of water between aqueous droplet and organic phase
by controlling heat transfer (Bajpayee, Edd et al. 2010, Kuo and Chiu 2011). Here we make
use of water loss of the aqueous droplets simply because decreasing water amount in a closed
system increases the concentration of the remaining molecules. The important advantage of
using continuous flow in a micro-device is that the increase in the concentration is a
continuous and controlled change rather than a step change, and prevents the formation of
harmful osmotic effects on mammalian cells (Song, Moon et al. 2009, Heo, Lee et al. 2011).
This method is proposed to increase the viability of the cells after cryopreservation (Bajpayee,
Edd et al. 2010, Heo, Lee et al. 2011).

Mathematical modeling and simulation of multi-physical systems allow for the testing of
design and operational parameters of a system prior to manufacturing. Testing parameters
during the design of the device provide the opportunity to prevent production of deficient
designs, and to check experimental data with the mathematical calculations, creating more
controlled and methodical work. In this thesis, we constructed a detailed multi-physics model
of a microfluidic device originally created at the BioMEMS Resource Center for pre-
concentration of cells. The device consists of two transparent rectangular micro-channels
which are arranged to intersect and create a T-junction where the droplets are formed and
directed into a wider channel as seen on figure.3.2 and figure 3.4. We investigated the mass
transfer in micro-droplets containing and not containing a cell and flowing in micro-channels,
where convective and diffusive mass transfer mechanisms are taking place simultaneously
between two phases. Also investigated outcomes of two phase fluid flow and mass transfer
relation within the channel, where the aqueous droplets are flowing suspended within the
organic phase. COMSOL Multiphysics software is used to create multi-physic models and
MATLAB® and Excel functions are used to support and add extra mathematical expressions
needed for the model. These software programs are processed simultaneously at certain stages
of creating the eventual model. AutoCAD Engineering Design software is used to create the
geometry of the system. We created an optimized model for understanding pre-concentration
issues faced in cryopreservation of mammalian cells, in addition to creating a point of

reference for future micro droplet applications made use in microfluidic devices.
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2. THEORY

Microfluidics is a multidisciplinary research field including disciplines varying from
fundamental physics to biology, electronics to chemistry. Design, shape and material of the
microfluidic device may completely change depending on the purpose of use. In recent years,
microfluidic devices are involved in many researches in wide variety of areas such as
pharmaceutical industries or mammalian fertilization (Stone and Kim 2001, Swain, Lai et al.
2013). Here in this thesis BioMEMS and Bio-preservation oriented devices will be

emphasized with an analyzed application of single cell droplet microfluidics.

2.1 Microfluidic Devices

Microfluidic devices were used to carry out molecular analysis methods; gas chromatography
(GPC), high pressure liquid chromatography (HPLC) and capillary electrophoresis (CE).
These micro-analytical methods have used microfluidic methods to make it possible to carry
out high sensitivity analysis with very small amounts of samples. Capillary channels are
utilized in these techniques. After achieving successful results researchers sought for
improvements and various new applications (Whitesides 2006). One of these applications was
developed in molecular biology. Sensitive microanalysis needed for genomics, DNA
sequencing, has been partly maintained by microfluidic approaches (Whitesides 2006).

In 1990s, US Department of Defense has supported various researches on microfluidic devices
to develop mobile detectors to protect their members in the field against chemical and
biological threats. Co-operations with academy resulted in significant improvements in

microfluidics technology (Whitesides 2006).

Another contribution came from silicon microelectronics. Some applications of
photolithography and MEMS had been successful when applied to microfluidics in early
periods (Czaplewski, Kameoka et al. 2003, Mijatovic, Eijkel et al. 2005). Later use of silicon
in microfluidics was found inappropriate and mostly replaced with plastics like PDMS except
for the use of silicon in rigid microfluidic device parts such as pumps or valves (Jessamine M.
K. Ng 2002, Whitesides 2006).



In recent years, with the evolving technology automated systems with integrated electronic
circuits have revolutionized our world from research labs to homes. As we get familiar with
these systems a reasonable approach have been developed that if we can automate biological
systems too? In fact, utilization of micro-channels is nothing new and microfluidic devices
have been growing in importance as we identify more about micro-systems. Underlying

physics in microfluidic systems are being widely studied to fulfill this purpose.

Today microfluidic devices are often referred to as micro electro mechanical systems
(MEMS). After first use of micro-channels on chromatography devices, microfluidic devices
have developed a lot and many other systems have integrated into micro devices. MEMS can
be considered as very complicated devices with micro valves, electromagnetic micro tools and
often with very complicated micro channel distributions and flow patterns. Of course all these
tools have brought a new use for these systems (Weibel and Whitesides 2006, Whitesides
2006).

Development of microfluidic devices are in close relation with lithographical applications.
Lithography is the main technique used to manufacture a micro device. Sensitivity level
needed for production of micro-channels and micro-tools used within channels can only be
achieved with a liable technique like lithography. During manufacture, patterns needed for
micro-channels are maintained by use of surface lithography on a silicon wafer, and then
molds for casting of structural polymer are produced with high sensitivity by using these
patterns (Xia and Whitesides 1998). Casting is followed by a vacuum chamber and oxygen
plasma on glass surface is used to fix the polymer on the glass slide. Usually several types of
poly-dimethyl siloxane (PDMS) are used as polymer material for biological applications.
Manufacturing of high pressure micro-devices also utilizes lithography but since more rigid

materials are used in those devices, no molding is applied.

Micro channels naturally have very large surface area to fluid volume ratio compared to
industrial macroscopic devices. This phenomenon gives microfluidic devices a characteristic
flow pattern severely affected by surface tension. In a micro-channel flow is driven by only
viscous forces and yielding flow regime is always perfectly laminar. This occasion causes

mixing issues to become a whole new topic to be focused on while bringing a lot of new use



for these systems (Stroock, Dertinger et al. 2002). Further information on flow characteristics

IS given in section 2.4 fluid dynamics in micro-channels.

Microfluidic devices are being used for very high velocity applications using silicon and glass
as the structural material. High pressure and velocity can be achieved in these systems. Hence,
applications towards micro-reactors are often utilized in such systems when pressure increases

the selectivity of the yielding reaction product (Elvira, Casadevall i Solvas et al. 2013).

MEMS that are developed for biological applications, referred to as BioMEMS, have been
used in fields ranging from cryopreservation to fertilization, proteins to genetic researches
(Squires and Quake 2005, Dittrich and Manz 2006, Chiu and Lorenz 2009, Song, Moon et al.
2009). Droplets generated in micro-channels are used as single reaction containers and many
other applications sensitive to concentration including protein nucleation, crystallization and
macromolecular crowding are under-research or on post-research phase for micro droplets
flowing in micro-channels (Beebe, Mensing et al. 2002, He, Sun et al. 2004, Chiu 2007,
Jeffries, Kuo et al. 2007, Chiu, Lorenz et al. 2009, Bajpayee, Edd et al. 2010, Lagus and Edd
2013).

Mainly, the greatest advantage brought by microfluidic devices is the existence of flow.
Biological applications are often conducted on petri dishes where no regular predictable flow
can be used. In micro-channels, biological organisms of couple of microns wide can be
monitored as accurate as they were in petri dishes with the addition of flow when needed.
Occurrence of flow can promote mass transfer greatly, separation can be done with the aid of
flow, and a closed environment can be maintained whenever necessary. Two phase flow can
be utilized to create precipitations or needed confined areas to perform detailed analysis
(Kenis 1999, He, Sun et al. 2004). The only disadvantage of microfluidic devices is their cost

as they usually must be specific to application with a unique pattern for each device.

Silicon and glass have been used in microfluidic devices in the early periods of development
as acts of the influences came from the microelectronics technology applications. Later,
polydimethylsiloxane (PDMS) and similar plastics have replaced the use of silicon in
microfluidics. Silicon parts are still in use for valves and pumps and other rigid components of

the microfluidic system but main structure consists of plastics and polymers today (Jessamine



M. K. Ng 2002). Silicon is more expensive and not transparent to ultra-violet or visible light.
This downside of silicon prevents use of optical methods of detection over microfluidic
devices (Whitesides 2006).

2.2 Cryopreservation

Cryopreservation, as the most successful preservation method to date, has been used widely as
part of cancer and root cell research to protect and store mammalian cells despite
complications. The cell cytoplasm that surrounds the organelles is mostly composed of water
causing undesired results during freezing, such as expansion, extracellular ice formation,
crystallization, and local increase in solute concentration due to crystallization (Toner,
Cravalho et al. 1990). Crystallization and other solute effects can be prevented by vitrification
of cell cytoplasm. Vitrification process depends on the molecular mobility, defined as the
temperature and concentration dependent behavior of the water molecules and other ions in
the cytoplasm. When cooling is under progress, if the mass transfer rate of water within the
cell is high, then the cell will most likely suffer dehydration. If mass transfer rate of water is
low enough, which is possible with ultra-fast cooling (10°-10" C/s), then the cell cytoplasm
can undergo vitrification suspending the mobility of any intracellular molecule (A. Aksan and
M. Toner (M. Toner 2005)). During vitrification, the rate of heat transfer must be high enough
to prevent any mass transfer that would form harmful crystals. With such high cooling rates
water can be vitrified at -135 C. Unfortunately, ultrafast cooling is currently not possible for
biological materials. Even so, reduction of rate of mass transfer within the cell cytoplasm is
possible. Aforementioned damage to the cell can be eliminated by increasing glass transition
temperature via introduction of cryo-protectant agent (CPA) carbohydrates such as glycerol
into the cell (Meryman 1971, Eroglu, Russo et al. 2000). With the aid of CPAs, ratio of heat
transfer rate to mass transfer rate can be held at reasonable levels (M. Toner 2005). This
mechanism is naturally being used by some multicellular organisms. ‘Tardigrade’, an
organism that can stand almost any condition, can replace its intracellular water with sugar
trehalose and survive freezing by preventing crystallization (Crowe and Crowe 2000).
However, mammalian cells do not possess such ability. Exposure to high concentrations of

CPAs induces toxic effects and causes damage to the cell due to osmotic stresses and
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shrinkage. To employ cryopreservation, special process must be implemented (Youm, Lee et
al. 2014).

Currently, cryopreservation protocols include exposing of cells to relatively sudden changes
of CPA concentrations to render them take CPA into cells (Youm, Lee et al. 2014). Cells
respond to these changes in a way they would damage their organelles causing lethal damage
to the whole cell in the end. To prevent lethal conditions, CPA concentration in cells is
increased step by step. For instance; in the first step, cells are immersed in a 0.5 M CPA
solution and kept there for couple of minutes and then taken into 1M CPA solution and kept
there for a while and this process goes on until desired CPA concentration is reached within
the cell. In addition to osmotic stress, all these steps put cells under a lot of mechanical stress
with use of volume pipettes. Although yet, mammalian cells can stand all these processes,
considering additional damage by the toxicity when cells are exposed to CPAs for too long,
viability of cells are reduced in considerable amounts during all the rush of the pre-
concentration process. A method that puts cells under less osmotic and mechanical stress in

optimized time scales would fairly increase viability of cells.

Figure 2.1 - Schematic representation of droplet shrinkage in microfluidic channel and water

diffusion into organic phase yielding gradual increase in CPA concentration.

The rate and amount of CPA loading to the cell can be adjusted by controlling the CPA
concentration through adjusting the amount of water around the cell. In this research, a CPA

loading protocol proposed by Dr. Mehmet Toner is mathematically modeled for a thermal



micro-channel fluidic system, where controlled continuous increase in CPA concentration
profile is enforced. Figure.2.1 is a schematic representation of proposed method for pre-
concentration of cells. The new system allows for encapsulation of cells in an aqueous droplet
at low CPA concentration and gradual increase of CPA concentration by removal of water
from the aqueous droplet into a continuously flowing immiscible organic phase. Soybean oil
is employed as the organic phase due to limited solubility of water (~0.3 % by volume (He,
Sun et al. 2004)) that is sufficient to achieve the desired aqueous droplet volume by diffusion

of water into the thermally controlled oil.

A comparison can be seen on figure.2.2 which summarizes application of traditional pre-
concentration method (stepwise) and proposed methods (progressive). A smooth transition of
CPA concentration will create less potential for damaging cells due to osmotic effects. The
distinction of work on figure.2.3A and figure.2.3B is the utilization of droplets to create
surrounding (buffer) environment for cells. This occasion decreases the potential of osmotic
damages on sensitive cells by starting with a low increase ratio of CPA concentration and

increase gradually with time.
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Figure.2.2 — (A) Distinction between stepwise loading/unloading and gradual (progressive)

loading/unloading of CPA into cell (Song, Moon et al. 2009). (B) Distinction between

stepwise loading and progressive loading in continuous flow of aqueous droplets.

2.3 Modeling and Simulation

The numerical solution of the mathematical model developed in this study is conducted by

finite element analysis (FEA) method. FEA is used for solving differential equations in

limited partitions with respect to given boundary conditions. In this method, a continuous

physical problem is divided into very small nodal discontinuous physical partitions (see

figure.2.3). Each partition is solved with respect to given boundary conditions and found
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results are chosen as new boundary condition for the neighboring partitions until all system is
solved. Step by step, each small sub system is solved by simple convergence functions (Hou
and Efendiev 2009). Size of the partitions, so called finite elements, determines the sensitivity
of the solution. Element size is distributed with respect to needed sensitivity within the
physical system. Higher number of element yields more accurate results while it creates a
larger work load on processors and takes longer time to work out. Hence, element size and
accuracy must be handled well to avoid bad results or long time analysis course up to several
days. In our study, finite element analysis calculations are carried on Comsol Multiphysics
software. Other calculations of intermediate parameters and curve fits are conducted on
MATLAB and MS Excel.

Figure.2.3- A part of the system showing finite elements generated on Comsol Multiphysics

software.

Another important factor is the element size quality, also referred to as the mesh quality. It is a
geometrical measure to define the capability of an element to perform desired calculations
(Pryor 2011). It is scaled between 0 and 1, from bad to good, respectively. Element quality
can be considered as a measure of how good an element fits into a circle. An element with
high quality would fill larger portion of the circle than a lower quality element (Pryor 2011).
This explains the element quality histograms shown on figure.2.4. The microfluidic system
we modeled has triangular or quadrilateral elements with quality close to 1. Near the
boundaries one must use thin quadrilateral elements, which characteristically have low

element quality. This is the reason why there are low quality elements on the element quality
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histogram on the left side of figure.2.4. Use of thin boundary layers was a necessity in this

study to obtain a robust stretching element for the moving boundary on droplet walls.

Statistics
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Triangular elements: 752850

Statistics

Complete mesh

Elernent type: | Triangular elements

Triangular elements: 7528390
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Element statistics
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Average element quality: 0.8881
Element area ratio: 0.002271
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Average element quality:  0.805

Daomain element statistics
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Maximurmn growth rate: 12.63

Average growth rate: 1.397

Element Quality Histogram Element Quality Histogram

Figure.2.4 - Mesh statistics for the calculations.

2.4 Transport Phenomena in Microfluidic Systems with Two Phase Flow

Flow characteristics of fluids running through a rectangular channel may vary depending on
the dimensions of the channel. Fundamentals of fluid dynamics in large channels are pretty
much realized now. In micro scale, fundamental physics may act different than that in large
scale observations (Squires and Quake 2005, Janasek, Franzke et al. 2006). The effect, thus,
the importance of inertial forces is much higher than viscous forces in large scale systems.
This phenomenon allows fluid to mix easily with eddies and turbulence. In microsystems,
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fluids do not mix convectively. Viscous forces override in significance. Chaotic mixing within
the fluid flow is not at stake. For such liquids like water, laminar flow forms and maintains
itself within the micro-channel. Occurrence of continuous laminar flow requires specific
equipment to perform mixing within the micro-channel. Nevertheless, laminar flow has many

advantages in various applications of microfluidic systems (Santiago 2001, Whitesides 2006).

Flow characteristics of a Newtonian fluid can be described by the Navier-Stokes equation
given by:

d
p (a—? +u- Vu) = —Vp + uV2u +f (eq.1)

which is basically the continuum version of Newton’s law of motion, F = m.a, on a per unit
volume basis. In eq.1, u represents the velocity field, t time, o fluid stresses, f body forces
equal to p - g (g: gravitational acceleration), p viscosity, p density and p pressure (R. Byron
Bird 2006). For microfluidic devices where Nge<1, inertial forces, thus, nonlinear terms, are
negligible and viscous forces dominate fluid characteristics (Squires and Quake 2005). Hence,

Stokes Equation can be written as;

2
p (a—:f) = —Vp+ uVu +f (eq.2)

A
For both of the cases mass conservation requiresA—'lt)+V (pu) =0,

Noting that, for incompressible Newtonian fluids with constant density V-u = 0.

Reynolds Number, Ngg, a generalized dimensionless mathematical expression to describe

fluid flow characteristics is given by:

V- F .
NRE — l p — linertial (q.3)

38 Fyiscous

where | is the characteristic length, v is linear velocity, p is density and p is viscosity.

Together in this form they represent the ratio of inertial forces over viscous forces.
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When Reynolds Number is very low (<1), the flow is very predictable. The role of inertial
forces in this phenomenon is explained by E.M. Purcell excellently in his speech in 1976
(Purcell January 1977) where he compares a human and a bacteria moving in water and the
distance they move after removing the forces acting on the two bodies. The bacterium moves
only 0.1A due to the lack of inertial forces that would drag it, where human body establishes a
decelerated motion for a longer while. Same analogy is valid for molecules flowing in a fluid.
When no other forces are exerted, no significant inertial forces means no flow. When small
forces are applied on the fluid and laminar flow is formed, fluid flows under the control of
these forces and undisturbed by the inertial forces. Hence a very predictable, linear and neat
laminar flow is formed (Beebe, Mensing et al. 2002).

Regularity of laminar flow is often utilized for some applications like microfabrication (Kenis
1999). When two immiscible fluids introduced into a microchannel without immersion or
suspension, the interface between fluids creates a perfect line which is adjustable with flow
velocity. This line created by means of laminar flow is a key point to produce a nano-wire
created by precipitation reaction between two fluids. Another flow can be introduced into the
channel again to remove the unnecessary parts by solving the precipitate or add another layer
of the wire. High predictability of laminar flow is utilized in such applications for creating
micro electrical circuits, sensors, separation of particles and even for fertilization purposes
(Squires and Quake 2005, Swain, Lai et al. 2013).

Mixing or turbulent flow can often be very desirable. Especially in reaction systems, mixing is
in paramount importance. Microfluidic devices are often used as micro-reactors for drug
industries and for many fine chemical and biological processes (Dittrich and Manz 2006, Chiu
2007, Teh, Lin et al. 2008, Kuo and Chiu 2011). Special equipment or specially designed
micro-channels are used to provide mixing for such operations (Beebe, Mensing et al. 2002,
Jessamine M. K. Ng 2002, Stroock, Dertinger et al. 2002, Kuo and Chiu 2011). Another
important aspect to be considered before wildly mixing substances is, separation of the
substances to be sorted or analyzed later. Products of the reactions often needed to be
separated and sadly, more you mix harder you separate (Squires and Quake 2005). Then, one
should realize that mixing and dispersion issues are in great importance for microfluidic

devices.

14



Mass transport mechanisms are explained by Fick’s Law, which is in analogy of driving force
over the resistance relation (Cui, Dykhuizen et al. 2002, Li 2006). When fluid flow is
introduced into a diffusive system, continuity equation is often used to adapt the mathematical
definitions into mass transfer system with fluid flow. The continuity equation and the steady

and unsteady state forms of Fick’s law are given by:

Continuity equation: % + V- (pu)=0 (eq.4)
6C

Fick’s 1% law: J]=-D — (eq.5)
Ox

Fides 2 law: = = D 8 6

ick’s aw: St Sx? (eq.6)

where, C is the concentration, u is the relative velocity, D is the diffusion coefficient, t is the

time, J is the Flux and x is the distance.

Convective transport is the mass transport mechanism that is maintained by a bulk flow.
Existence of velocity difference between fluid flow and a point which emits particles leads to
formation of convective mass transport. Diffusive flux is the less dominant component of the
mass transport and is maintained by the molecular motions. Diffusive flux always occurs no
matter what material is the media or what physical state the media is in. Physical conditions
only affect the rate of the diffusion. Convective mass transport only exists when a fluid flow is
presented into the system. Fluid flow can be naturally occurring or may be a forced flow
maintained by fans or other equipment (Geankoplis 2003).

A global method used to compare convective and diffusive mass transport is validation of
Sherwood Number, a dimensionless number named in honor of Thomas Kilgore Sherwood. It
is an important measure for comparison. It indicates the ratio of convective diffusion over

molecular diffusion and is expressed as:

k.L
Nsh = F (eq-7)
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where, k is the convective diffusion coefficient, L is the characteristic length in here ‘radius of

droplet’ and D is the molecular diffusion coefficient.

The most important part of intracellular mass transport occurs at the cell membrane. Cell
membrane is permeable to water molecules but it creates a resistive wall for CPA to diffuse.
Cell membrane is not permeable to most CPA molecules like trehalose. However, glycerol is
permeable to mammalian cell membrane (Palasz and Mapletoft 1996). In addition to mass

transfer laws, mass transport through an organic membrane is defined by:

dNs

=P A(CS — cH) (eq.8a)
Y = —Lp. A.R.T(w® — 7!) (eq.8b)

Eq.8a and eq.8b are proposed by Jacobs M.H. in 1932-1933. Later another formalism
including solute and solvent interactions (degree of interaction between solute and the solvent

molecules defined by o reflection coefficient) is proposed by Kedem-Katchalsky (Kedem and

Katchalsky 1958) given by:

Hess = 1, ART{(CS — C1) + o(CE — 1)} (€%

= -0 (3) (e +ch) e 1 pa(ce - cl) (eq.9b)
0<o<1-— Psvs 9

=0= RTL, (eq.9¢)

Equation.8a stands for solute transport across cell membrane and equation.8b represents
water transport through cell membrane. In the above formalism definitions, Ns is solute
amount, Ps is solute permeability (a coefficient specific to membrane), A is area, C is
concentration, L is hydraulic conductivity (a coefficient specific to membrane), V, is water
volume, R is universal gas constant, T is temperature, o is reflection coefficient and =« is

osmolarity. Superscripts e and i indicate extracellular and intracellular, respectively.
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3. MATERIALS AND METHODS

3.1 Computing Platform

Hardware

All the computations were run on Hewlett Packard Z420 Workstation with Intel Xeon CPU at
3.20 GHz 8 cores 16 threads processor and 32 GB of random access memory (RAM).
NVIDIA Quadro K2000 graphics card was integrated to workstation.

Software

64-Bit Microsoft Windows 7 operating system was used in the workstation. Comsol
Multiphysics (Version 4.3) Finite Element Modeling software was used to create two and
three dimensional models of the microfluidic system. Mathworks MATLAB (Version 2012b)
and Microsoft Excel 2010 was used to support the calculations.

The main calculation software was Comsol Multiphysics. Transport of Diluted Species
Module of Comsol is employed for the calculation of mass transfer. Laminar Flow module is
employed for the calculations of fluid flow. Moving Mesh module is used to create the effect
of shrinkage of aqueous droplets. MATLAB functions which compatibly work with Comsol
are created for the detailed determination of fluid flow parameters such as relative velocity.
Both MATLAB and Microsoft Excel software were used to create data fit curves from the
resulting data which is imported from Comsol. Desired data is correlated by curve fits and
definition function of the curve is exported back to Comsol for the sake of controllable and
less sophisticated calculation sequence. Thin Diffusion Barrier node under Transport of

Diluted Species Module is used to create the impact of cell membrane.

Our ultimate model we created was an 8000 micron long channel with fifteen droplets of 100
micron diameter carrying total three cells, and each droplet separated by 400 micron interval
from droplet center to droplet center. Channel cross section was 150x200 microns and cells

were 25 micron in diameter (see figure-3.1).
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Figure.3.1- Appearance of the system at t=0.

Time dependent solver has used up to 300 seconds. Steps taken by solver were set to free
mode, where backwards differentiation formula (BDF) method with maximum and minimum

BDF order of 2 and 1 was employed.

Fully Coupled solver type is chosen for the sake of coupling of used physics in the model.
Direct linear solver was used as the solver. To be able to conduct Multithreaded Solving
(using 8 cores and 16 threads of the processor at the same time for different tasks when
possible) Parallel Sparse Direct Solver (PARDISO) was chosen out of three types of Direct
Solver. Nested Dissection Multithreaded algorithm is chosen for preordering. Two level
scheduling method is chosen, which is a faster method when used with many processor cores.
Multithreaded forward and backward solve option is used to improve performance by taking

advantage of the processor cores.

Solving method was Newtonian Automatic Highly Nonlinear to achieve high convergence.
Smallest allowed damping factor was 1x10® considering the micrometer dimensions of the
system solved with metric system. Newtown lterations were terminated by tolerance factor

which was set to 0.01 with relative tolerance of 0.01.
3.2 Microfluidic System

Liquid organic phase was soybean oil, which is quasi-immiscible with water and has
capability of solving water in small amounts (~0.4%) (He, Sun et al. 2004, Bajpayee, Edd et
al. 2010). There are several suitable fatty alcohols that are capable of solving higher amounts
of water. Soybean oil is chosen as the organic phase due to availability and low cost.
Investigated favorable organic phases other than soybean oil were given in appendix-7.1. In
experiments, surfactant was added to water droplets to render them form droplets easily in

organic phase.
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PDMS is an optically transparent soft elastomer with properties completely different than
silicon. It supports use of pneumatic valves and provides ease of creation of the structure of
microfluidic system. One disadvantage of PDMS is the mechanical or thermal reliability of
the material. When necessary, glass, steel or silicon are useful materials to form rigid,
thermally and chemically stable components. These materials are also useful in Nano-fluidics
technology where channels need to be rigid (Mijatovic, Eijkel et al. 2005). On biological
applications usually polymeric structure is preferred for manufacturing of microfluidic
devices. They are easy to build by molding and transparent enough to allow use of optical
methods of detection. Also PDMS is hydrophobic on surface, which is often advantageous for
biological applications. The devices we studied are made of PDMS channel patterns bonded
on glass slide, which creates three consecutive PDMS side and a glass side for rectangular

micro-channels.

The manufacturing process for the polymeric micro-channels starts with visualization of 2-
dimensional channel pattern drawn in computer aided design software (AutoCAD). This
allows sensitivity through manufacturing process. In order to achieve the nanometer scale
sensitivity, surface lithography is employed at the beginning of the process. The pattern drawn
on CAD software is transferred on a silicon wafer by surface lithography. After this step, it is
possible to produce a mold with the same height as the channel height. Mold is used as the
negative replica of the channel pattern and 3-dimensional microchannel production can be
started with casting the PDMS solution over the mold. Polymer solution is left to desiccation
in a vacuum chamber to remove bubbles formed in the viscous polymer solution. Dried and
bubble-free polymer is removed from the surface and the mold is taken out. At this step, three-
sided rectangular micro-channel on the surface of PDMS is obtained. Finally, a glass slide and
the PDMS are taken and put into oxygen plasma to make surface available to bond for PDMS.
Polymer is put on the slide to bond in the way micro-channel will be left between the glass
and the polymer. Result is a micro-channel with rectangular cross section available to monitor

through glass side (see Figure.3.2).
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Figure.3.2- Microfluidic channel and the T-junction where droplets are generated.
3.3 Syringe Pump

In order to feed a microfluidic system one must have a very sensitive pumping system like
peristaltic pumps or syringe pumps. Syringe pumps are systems that simply press a syringe
very gently. The Nemesys syringe pump system with the microfluidic system was controlled
with a software interface through pc. It was capable of pumping three syringes simultaneously
and each flow rate can be adjusted separately from nanoliter to milliliter precision. Ends of the
syringes were connected to microfluidic device as feeds. Connection tubings were polymeric

tygon tubes with inner diameter of around 100 um (see figure-3.3).

20



Figure.3.3- Syringe pump and a microfluidic setup developed by S. Onel at the Center for
Engineering in Medicine and BioMEMS Resource Center. Numbers indicating order of flow
from microfluidic devices to petri dish in the end.

3.4 Inverted microscope

We used an Axio Observer model fluorescent inverted microscope made by Carl Zeiss. It was
an inverted microscope allowing us to monitor micro-channels from the underside through
glass, free of the view disturbances caused by the fluid feed and PDMS on the upside of the
microfluidic device. Microscope also had a user interface allowing us to observe through
computer screen and save or analyze results (see figure.3.4). We were able to change flow
rate using the syringe pump interface and see the resulting effects through the microscope

interface on the same screen.
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Figure.3.4 — A microscope image of pre-generated droplets. Droplets were generated by a T-

junction.
3.5 ITO-Heaters

We used transparent heaters coated with Indium Tin Oxide (ITO) on one side. ITO cover over
glass surface allows heating of glass rapidly when an external excitation is applied by DC
voltage signals with certain wavelength absorbed by ITO layer. These heaters work with an
analog controller system and a thermistor probe, which can maintain temperatures between 0-
50 'C. Heater is placed under the microfluidic device to heat through very thin glass without
preventing any optical detection.

22



3.6 Calculations

3.6.1 System Definition

Figure-3.5 illustrates the system sections where we carried out calculations. We assumed that
water diffuses freely through cell membrane with low resistance to diffusion, and that the
water amount in the droplets is the sum of water present within the cell and water present out

of the cell within the droplet.

Gradually increasing CPA concentration is the main purpose of the method which is tested in
this thesis. Continuous increase needed in the CPA concentration is maintained by removal of
water from the droplet. All calculations are performed for micro-channel with 150x200um

cross-section and flow regime was always laminar.

Channel Wall

Regions
N | §

Concentration

@0 === Distance ——-

Channel Wall

Figure-3.5. A representative figure of the regions that are modeled. Region-I- diffusion of
water into organic phase, Region-11- Diffusion of CPA within droplet, Region-I11- Diffusion
of CPA through cell membrane and inner cell.
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Organic phase which is saturated with water at initial operating temperature (20 C) is
introduced into the channel. Hence no net mass transport of water takes place at 20 ‘C. After
producing desired droplet formation heat is supplied to system with an electronically
controlled heater which can keep system at any temperature between 20 ‘C — 50 'C. As system
is heated, solubility of water within the organic phase is enhanced, creating a concentration
gap, a driving force, for water to diffuse into organic phase. Hence, a system is created where

diffusion of water into organic phase is controlled by temperature.

Heat transfer resistance created by the microfluidic channel walls is neglected. Instant heat up
from 20 C' to 45 C’ assumption is made considering very small heat capacity of the fluids
flowing in 150 pum x 200 um cross section channel. Nevertheless, all the initial conditions and
unsteady state mass and momentum transfer calculations are chosen or performed considering
the temperature effects at 20 C’ (lowest) and 45 C’ (highest).

3.6.2 Mathematical Model

Calculation process was conducted in two steps, starting with the solving for concentration

and water flux parameters in step-1. This very first stage of calculation is conducted using:

% =V-(D-VC)—u-VC; + Rxn (6q.10)

]i =—-D- VCL +u- Ci (eq.ll)

which are used with time dependent, direct solving sequence on Comsol software. C is
concentration, u is relative velocity, D is diffusion coefficient, t is time, J is Flux, x is distance
and Rxn is the rate of creation or destruction of chemical species. Eg.10 and eq.11 are derived
from Fick’s Law of Diffusion and Continuity Equation (eq.4, eq.5 and eq.6) of conserved

quantities to express convection and diffusion together.

It is shown on eq.10 that flux value is directly proportional to relative velocity which is in fact
the dominant factor that affects the flux. Increase in the relative velocity is the main reason for

increase in water flux. One should not confuse volumetric flow rate with average linear
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velocity. Total volumetric flow rate in the channel was 205 pul/s, which is equivalent of 683
pum/s linear velocity defined as Uayg.

In eq.10 and 11, terms including ‘u’ represent contribution of convective mass transport,
terms including ‘D’ represent contribution of molecular transport and the term ‘Rxn’
represents reaction rate. There is no reaction in the system investigated. Hence, equation.10 is
used in the simplified form of convection-diffusion equation where Rxn=0. Relation between
relative velocity and water flux is given in eq.11.

Relation between aqueous droplet radius and relative velocity is introduced separately via:

_ (pz _ W2, 2P
U;, = (Ri " ) L2 (eq.12a)
u=U; — Ugyg (eq.12b)

where, U; is aqueous droplet velocity, r is radius or y-coordinate, w is width, P is pressure, L
is channel length and p is viscosity, Uayg is average organic phase velocity, u is relative
velocity. EQ.12 set is calculated for U; and u in separate software (Excel) and ‘u’ relative

velocity is expressed as a function of ‘R’ droplet radius using curve fit tool of MATLAB.

Water flux and relative velocity can be defined as a function of droplet radius, leaving only
time dependency of these parameters unknown. Time dependency of relative velocity can be

expressed as a function of water flux given by:

R R
fRiO Vi = fRiOJi CAi (eq.13)

where, Vi is volume of droplet, J; is water flux into the organic phase, A; is area and t; is time.

Noting that subscript i denotes time dependency.

Step-1 is completed by derivation of time and position dependent flux, aqueous droplet radius
and relative velocity parameters. Results are used to start step-2, where calculations defining
the inner part of the aqueous droplet are carried out (Region Il and I11 on figure-3.5).

On the second step, change of CPA concentration within the droplet is calculated as a function

of time and distance on Comsol. The first parameters used in step-2 are the time dependent
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droplet volume and shrinkage rate of aqueous droplets which are leading to increase in

concentration and are given by:

Ci cpa = Co cpa” (Z—t) (eq.14)
dRi
—— = Ushrink
dt (eq.15)

where, Ci cpa is CPA concentration at any time, Cq cpa is initial CPA concentration and Vg

and V; are initial and time dependent aqueous droplet volumes, respectively.

Ci cea Vvalue is used as the concentration value C; and time dependent diffusion equation is

given by:
dCi
—=V-(D-VCj) (eq.16)
dt
Ji=—D-VCi (eq.17)

Comsol Multiphysics software uses equations 16 and 17 when only diffusive flux is
employed. These equations are simplified forms of eq.10 and eq.11 by the removal of

convective terms and they depend on ‘D’ diffusion coefficient.

After solving for concentration of CPA in the droplet, eq.8a and eq.8b were introduced to
system for calculation of mass transfer through cell membrane, which was necessary to
determine ultimate result parameter Cintracenuiar, the concentration of CPA in the cell. Eg.8a
and eq.8b are known as the Modern 2-Parameter Formalism in the literature, first proposed by
Jacobs M.H. and D.R Stewart in 1932-1933 (Jacobs M. H. 1932, Jacobs 1933). (see end of

section 2.4).

The mass transfer module in Comsol needs to be modified to model the diffusion through cell
membrane described by eq.8a, which employs permeability coefficient ‘Ps’. P needs to be
converted to D using eq.18 derived from eq.11 and eq.8a;

—D = P,. Ax (eq.18)
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where, Ax represents the cell membrane thickness, Ps represents membrane permeability and

D represents equivalent diffusion coefficient of the cell membrane.

COMSOL Moving Mesh module is used to represent the movement of the droplet walls
during shrinking. There were also structural matters that should be considered while building
the model. PDMS and glass channel surfaces have very smooth surfaces allowing fluids to
flow without forming considerably thick immobile films over the walls. Average velocity
value is used to define a slip velocity with ~10 percent of the average velocity and slip length
of couple of microns for flow of the organic phase over channel surface.

On the final step all the data is gathered to find an optimum time, droplet size and average
velocity to achieve the desired intracellular CPA concentration within mammalian cells via

microfluidic devices. A flow chart of the aforementioned algorithm is given on figure 3.6.

Values of the constant parameters used in the calculations are given in table-3.1. Tables of

parameters and variables used in Comsol simulations are given in appendix 7.2.

Table-3.1 — Constant parameters.

Parameter Value Reference
Water diffusion (He, Sun et al. 2004, Bajpayee, Edd et al.
coefficient in Soybean oil | 0.5*10%° m%s 2010)
(Duwtr) _

Glycgrpl D!ffu5|on 0.825%10°° m%/s (Ternstrém, Sjéstrand et al. 1996)

coefficient in water

(*) Cell b (‘Yamaji, Valdez et al. 2006, Heo, Lee et al.

ell memorane 8*10° m/s 2011, Vian and Higgins 2014)

solute permeability (Ps)
Cell membrane thickness 8*10° m (Bruce Alberts 2008)
Viscosity o{us)oybean Oil 0.058 kg/m.s (Tong Wang 2005)

(*)Value may vary depending on type of the cell.
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Figure.3.6 — Algorithm generated to solve the system. C; and Cs are saturated soybean oil
concentrations at 20 C and 45 C respectively. Rq is the initial droplet radius, Uayg is the
average flow velocity of the organic phase, AP is the pressure difference exerted to maintain
flow, L is the channel length, w is the channel width, p is the oil viscosity, Dy is the
diffusion coefficient of water in soybean oil, Xmembrane iS the thickness of the cell membrane,
Vo-Ap are the initial volume and area of the droplet, Cq cpa is the initial CPA concentration in
the droplet, Dgyceror 1S the diffusivity of glycerol in water and P is the solute permeability of
cell membrane. u is the relative velocity between oil and droplet, U; is the velocity of the
aqueous droplets, R is the droplet radius, C is concentration, J is flux, N is mass, t is time, X is
distance. Calculations of step-1 with the Loop represents calculations for outer droplet,
calculations of step-2 represent the inner droplet. Subscript ‘i’ denotes time dependent
(anytime), ‘0’ denotes initial, ‘s’ denotes solute, “shrink’ denotes shrinkage. Superscript ‘e’
denotes extracellular, ‘i’ denotes intracellular. Cingacenutar 1S the ultimate result of the
calculations which represents CPA concentration within the cell at any time.
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4. RESULTS AND DISCUSSIONS

4.1  Two Phase Flow in Micro-channel / Design Matters

Mass transfer and momentum transfer in this system cannot be considered separately because,
fluid velocity enhances convective mass transport and as the mass transport takes place,
droplets shrink and accelerate. Hence, mass transport instantaneously enhances droplet flow
velocity. Diffusion is wanted to be hold at its maximum value, while temperature is employed
to control the diffusion rate. However, in a microchannel, the absolute flow character is
laminar flow, which does not allow mass transport to be kept in its maximum possible value.
Higher mass transport rate can be achieved by utilizing convective mass transport which is

only possible with creation of velocity difference between substances.

The important aspect to be focused on regarding convective mass transfer is the fluid-fluid
interface region, which is the region where two fluids flow side by side with a velocity
difference and create a potential for convective transport of the species. The originality of this
research is owing to the outcomes of velocity difference between the droplets and average
organic phase flow velocity. That is a required condition to apply convection-diffusion
equation for mass transport on a system. Also, according to continuity equation, average
velocity of the bulk fluid should be taken into account in order to calculate amount of mass

transferred. Average velocity of the organic phase (bulk flow) does not change in the process.

Flow velocity profiles and the position of droplet in the profile were given on figure-4.1. That
is a conventional laminar flow profile appearance for any Newtonian fluid forced to flow by
pressure and flowing up to Nge value of 2000. No matter what velocity the fluid is flowing at,
the position on y-coordinate where the fluid hits the average velocity is the same (position of
the orange line in y-direction on figure-4.1). The y-coordinate value, where the fluid flows at
the speed equal to the average velocity does not change. This average velocity region, so
entitled Reriticat region, is only a factor of channel width, not flow rate. The relative velocity
value of our system hits to zero at that critical point, resulting a lower peak of flux magnitude
of water into organic phase (see figure.4.2).
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Figure.4.1 — A 100 micron droplet position shown on the velocity profile of the organic phase
at 683um/s flow rate. As the aqueous droplet shrinks, it is dragged into faster regions of the
velocity profile. Dashed lines are visionary droplets at mentioned times. Orange line
represents average velocity.

One can observe in figure-4.1 that as the droplet size decreases, droplets are dragged into the
faster regions of the fluid flow profile. Thus, the velocity difference between the droplets and
the average organic phase flow velocity changes through time. A large droplet with R>Ritical
at the beginning, flows slower than the average organic phase velocity. As water diffuses into
the organic phase and the droplet shrinks, it enhances its pace. First it reaches the flow speed
of the average organic phase at R=Ritica;, Where only diffusive mass transfer takes place, and
then keeps accelerating until water diffusion is ceased at an equilibrium state of concentration
where R<Riticai. Mass transport rate of water drops dramatically in the R=Ritica State, until
droplet velocity passed average organic phase flow speed. In this thesis, this retarded mass
transfer state is entitled Critical Radius State and the Radius in that interval is entitled as
Reritical. FOr Nge is less than 1, with laminar flow in the channel, the droplet will always be
positioned in the center of the channel width (y-axis). The flow profile seen on figure.4.1 is

based on eqg.12a derived from equation of motion (R. Byron Bird 2006).

Change in the radius causes change in relative aqueous droplet velocity which affects flux

magnitude as seen in figure-4.2. Flux value is lowest at R~=45 and is valid for all flow rates
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since the Rgiiicar Value is only proportional to channel width. The proportionality value can be

found on slope of figure-4.3.
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Figure-4.2. Change of flux magnitude with respect to droplet radius for various average
organic phase flow rates.

Below Rgiticar Value, as the droplet radius decreases, flux continues to increase due to increase
in relative velocity of aqueous droplets. This increment is proportional to the flow velocity

magnitude of the organic phase.

At Rcritical, where relative droplet flow velocity is close to or equal to zero, no convective
flow is utilized and a decreased droplet shrinkage rate is achieved. Flux magnitude hits the

minimum value which roughly is equal to diffusive flux magnitude.

Figure-4.3 shows the Rcritical values that should be avoided at various channel width values.
For example; if droplet size is 150 micron (R =75 micron), one should choose channel width

of 250 microns or higher to avoid R critical region.
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Figure-4.3. Critical Radius value for various channel width values. Equation of the line is
y=0.3028x. Dashed line represents the Riticar Value for 150x200 microns cross sectioned
channel in our work.

4.2  Transport of Species

Mass transport, is the most important agent in this research. All the other means of transport
of matter and energy is used to enhance or keep the mass transport of the species under control
within the channels. The concentration has always been the weightiest parameter in all the

calculations and considerations.

Mass transport within the droplet and out of the droplet was handled separately, since they
have distinct divergences. On Figure-3.5, our system is separated into three regions for ease
of understanding. Also mobile and immobile phase assumption is exerted to reduce the
complexity of the calculations. Considering the relative positions of the phases with respect to
time, water can be addressed as the mobile substance in organic phase surrounding the
droplet, which is presented as region-1- on Figure-3.5. Within the droplet (region-11- and -I11-
on figure.3.5), CPA can be addressed as the mobile substance diffusing through water and cell
membrane, but not diffusing into organic phase. The mutual effect of two mass transport

actions on each other in two different regions (inner and outer droplet) is constructed through
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amount of water present in the droplet. By migration of water from the aqueous droplet
surface into the organic phase, water amount in the aqueous droplet decreases continuously.
Since definition of concentration is the ratio of mass content to volume of solution, decrease
in the solution volume leads to an increase in the concentration. Computer aided iterative

calculations are performed to solve aforementioned relations numerically.

4.2.1  Transport of Water from Aqueous Droplet to Organic Phase

At zero flow rate only diffusive mass transport takes place. In any magnitude of flow rate
larger than O, convective and diffusive mass transport takes place simultaneously. Increasing
average flow velocity increases relative velocity magnitude, which creates a bigger convective

mass transport potential. Droplets shrink the fastest at the highest flow rate (see figure.4-4).
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Figure-4.4. Radius of aqueous droplet with respect to time at various flow rates.

Aqueous droplet velocity relative to average organic phase flow velocity is defined as relative
velocity. When relative velocity value is zero, droplets are flowing at average bulk phase
velocity. This state develops at the instant, when droplets reach the critical radius at R=45um.

When relative velocity is zero, convective mass transport is at the minimum value (see. Eqg.10
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and eq.11). The relative velocity is analyzed since it

convective diffusion (see figure.4-5).
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Figure-4.5. Difference between the velocity of aqueous droplets and average organic phase
velocity with respect to time.

Total flux magnitude is the sum of convective flux magnitude and diffusive flux magnitude.

At the instant droplet velocity catches average bulk flow velocity (zero relative velocity), flux

values hit a lower peak point, where the flux value is nearly equal to the diffusive flux

magnitude or nearly equal to the flux magnitude of No Flow case. Increasing the flow rate

leads to achieving higher water mass flux from water to organic phase. Figure-4.6 shows the

total flux magnitude of water transport from droplet to organic phase.
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Figure-4.6. Total flux magnitude with respect to time at various flow rates.

Flux magnitude is always increasing after Rriticat region. Surface area of the droplet, where the
mass transfer takes place, decreases in time. Hence a decrease in the mass transfer rate occurs
when decrease in the area become dominant. Figure-4.7 shows a combination of the results
shown in figure-4.4 and figure-4.6, where the flux magnitude value is represented in
moles/second basis instead of moles/area-second basis. A decrease in total mass transfer
develops due to reduction of area of the shrinking droplets. According to Figure-4.7, 1366
um/s flow rate line is already at its maximum rate, while 341.5 um/s flow rate is at the lowest.
This indicates the importance of the flow rate for avoiding inhibiting effects of Reriticar region

and for increasing convective mass transfer.
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Figure-4.7. Transfer rate of water into organic phase with respect to time.

Higher flow rates provide better diffusion of water into the oil compared to the ‘No flow’
condition, where the flux value is the lowest. At low flow rates, concentration profiles within
the channel wall stay close to those of the No Flow condition up to several minutes. That is a
result of low relative droplet velocity values around the Rcritical region. Change in the
direction of relative velocity retards the removal of water from the aqueous droplet. Droplets
flowing in low bulk flow velocity reach R critical region the latest and, they stay in that region
longer than higher flow rates due to the low shrinkage rate of the droplets. At low flow rates
convective diffusion is not sufficient for droplets to shrink quickly and get off the R critical
region. In figure-4.8D, only after t=120s, droplets in 341um/s flow rate manage to set a less
complicated flow regime and more predictable concentration profile (see figure-4.9). This
reduced flux occasion is valid for all flow rates (1366um/s flow line on figure-4.8A and

683um/s line on figure-4.8B) but faster the flow rate shorter the time spent in the retarded
flow region.
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Figure-4.8. Concentration profiles of water in the organic phase for various flow rates with respect to
position between droplet and channel wall at (a) t=30s, (b) t=60s, (c) t=90s, (d) t=120s.
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In figure-4.8D, all the profiles of water concentration represent region-I- area on figure-3.5
and, water concentration values stay same within the droplet equal to saturated water

concentration in oil at 45°C.

Concentration profiles at high flow rates are more steady than lower flow rates. During the
shrinkage of the droplets, when they pass through Rcritica Fegion, practically a mixing occurs
in the channel. During the process, flow direction does not change, but relative flow direction
does change. At 341um/s flow rate and at t=30, average organic phase velocity is faster than
that of the droplet velocity. At t~=50 s, droplet radius value is equal to Reriticar Value and the
flow rate of droplet and average organic phase is equal. At t=60 s, droplets are shrunk and
flow faster than average organic phase flow velocity. Water molecules dragged away from
one droplet are now dragging back to the same droplet causing an affect similar to mixing
instead of dragging away. As a result of low concentration gradient the water mass transport
to organic phase slows down. At t=120 s, all the water molecules are dragged far away and a
concentration profile of a conventional two phase flow is formed and continued steadily. At
683 and 1366 um/s flow rates, droplets have already shrunk enough to flow faster than
average organic phase velocity at t=30 s. The main advantage of faster flow rates is that the
droplets come into contact with higher amounts of fresh organic phase that is less
concentrated with water and has better capability of carrying away water molecules. Higher
droplet velocity relative to average organic phase yields better mass flux. An image matrix
describing water concentration in organic phase for different flow rates is given in figure-4.9.
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Figure-4.9. Concentration of water (mol/m°®) in organic phase for various flow rates at various
times. Initial droplet diameter is 100 microns and channel width is 200 microns.
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Local convective transport of water into the organic phase is effective, but diffusion of water
from aqueous droplet to channel walls, perpendicular to flow direction, through the organic
phase, will be as slow as molecular diffusion due to laminar flow (see eq.10 and eq.11).
Convective effects will not be perceivable for transport of water through the organic phase
where net bulk flow velocity of water molecules in the organic phase is zero. That is why one
should be sure that sufficient amount of organic phase is presented into the micro-channel to
keep diffusion of water through organic phase at a reasonable level by keeping concentration
gradient high and remove water from the aqueous droplets efficiently. Mentioned less active
mass transport is sometimes helpful because if it was too fast, the concentration would be
increased so fast and the cell might get damaged due to sudden osmotic pressure increase. For
droplets larger than 0.5um and glycerol concentration up to 6M, diffusion rate of water within
the aqueous droplet is much higher than the diffusion rate of water through the organic phase
(Bajpayee, Edd et al. 2010). This indicates that the transport of water through the organic
phase is the limiting factor in our system and our operating range. Even if the temperature is
increased suddenly, response of the organic phase to temperature adjustments would be slow

which prevents osmotic pressure injury on cells.

4.2.2  Transport of CPA within Droplet

Mass transport mechanism within the droplet is considered to be molecular diffusion only.
Circular flow motions within the cells caused by interfacial frictions at the droplet surface are
not considered, since their effect on the total CPA concentration is insignificant. Also, water
diffusion within the droplet is always faster than it is in organic phase (Bajpayee, Edd et al.
2010).

Degree of interaction in the membrane channels between permeating solute molecules and
water molecules is defined as Reflection coefficient defined by Kedem-Katchalsky (Kedem
and Katchalsky 1958, Kedem 1961) (see eq.9), from the previous work of Staverman in 1952
(Staverman 1952), where he defined reflection coefficient as the solute selectivity of the cell
membrane. For dilute solutions, it is tested by Kleinhans (Kleinhans 1998) that the reflection

coefficient is yielding same results with two-parameter formalism which does not include
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reflection coefficient. For non-dilute solutions, reflection coefficient presenting a minor (~%5
volume change of cells at 10M) deviation and it is indicated that 2-parameter formalism is still
a good approximation (see figure-4.10). Since we are testing concentrations up to 6M and
inclusion of reflection coefficient is increasing the complexness of the model, we chose to
carry on our calculations using modern two-parameter formalism which is commonly used
today to describe cellular osmotic response of the cells to concentration changes (ElImoazzen,
Elliott et al. 2009).

1.5

1.3 -

1.1 -

Vn

0.9 1

0.7 -

2P

0.5 - . . . T
0 2 4 4] 8

t (min)

Figure-4.10. Comparison of cell response with Kedem-Katchalsky method and 2-Parameter
formalism by Kleinhans (Kleinhans 1998) for different glycerol concentrations indicated by
molarity (M).
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Figure-4.11 represents region-11- and -11I- shown on figure-3.5. Concentration within the
droplet is highest at droplet walls since the loss of water takes place at droplet walls in contact
with the organic phase. Sudden decrease in CPA concentration is due to resistance of cell

membrane against diffusion. Permeability of the cell membrane is used as Ps=8*10° m/s.
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Figure-4.12. Change of CPA concentration within aqueous droplet due to shrinkage at various
flow rates with respect to time. Initial CPA concentration is 0.5M.

As higher amounts of water is transported to organic phase with time, less amount of water is
remained within the aqueous droplet increasing the concentration of CPA in the droplet as
shown in figure-4.12. Faster shrinkage rate is achieved at higher flow rates yielding higher
CPA concentration values.
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4.3 Comparison of Convective and Conductive Water Transport in the Channel

Convective diffusion is in great importance compared to molecular diffusion, and it is the
dominant component of overall mass transport. We take advantage of convective mass
transport to promote overall diffusion of water into the organic phase. Local convective mass
transport takes place over the droplet surface within the liquid-liquid interface. Although
organic phase flow is laminar, the liquid-liquid interface, where two liquids are flowing with

different velocities, provides satisfactory flow condition that is required for convective mass
transport to be formed.

Figure-4.13 indicates the dominance of convective diffusion over molecular diffusion at
341.5um/s, 683um/s and 1366um/s flow rate. At R critical, where velocity difference between

droplet and average oil velocity is zero Sherwood number peaks to lowest point. Sherwood
number is given by eq.7.
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Figure-4.13. Sherwood Number for comparison of convective and diffusive flux at various

flow rates.
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4.4 Optimization of the Results

Values of droplet radius between R=42.5um and R=20um found as optimum rate interval. In
this interval, the rate of transfer of water into the organic phase is at maximum. If pre-
concentration process is operated with 85 micron droplets, a faster increase in the CPA

concentration can be achieved. Also Rcritical region will be avoided (see figure-4.14).
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Figure-4.14. The rate of water transfer to organic phase with respect to droplet radius. Dashed
light gray lines represent optimum intervals.

It is shown on Figure-4.4 that it only takes 140 seconds to reduce droplet radius from 42.5um
to 20 um at 1366um/s flow rate. That is enough reduction to achieve 9.5 times the initial CPA
concentration. If 683um/s flow rate is applied, it would take 240 seconds to achieve the same

pre-concentration rate. Figure-4.15 summarizes the time needed to achieve certain CPA
concentration if starting droplet radius is chosen as 42.5.
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Figure-4.15. Time required to reach multiplies of initial CPA concentration for 85 micron
initial droplet size (R=42.5 pum).
According to the results, theoretically, at 683 pum/s and 1366 pum/s flow rates, it is possible to
pre-concentrate cells with CPA in less than 300 seconds (see figure-4.15). If possible, the
flow rate can be increased as needed to achieve faster pre-concentration. Higher flow rate of
organic phase is always yielding higher CPA concentrations within droplets while decreasing
process time. If working with highly sensitive cells is needed, lower initial concentration of
CPA can be chose to prevent CPA toxicity on the cell while increasing the flow rate as much
as possible. Nevertheless, membrane permeability (Ps) stands as a limiting value for mass
transfer into the cell, if the CPA concentration is increased in 1:10 ratio under 300 seconds,
there may be an accumulation of CPA molecules over the cell membrane surface causing

osmotic injury to the cell.
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5. CONCLUSIONS

Increasing the average organic phase flow rate enhances the mass transfer rate from droplet
to organic phase.

Theoretically, it is possible to achieve 10 times the initial concentration by reducing droplet
size in a microchannel in less than 150 seconds. However, membrane permeability (Ps)
stands as a limiting value for mass transfer into the cell. If the CPA concentration is
increased in such rate, there may be an accumulation of CPA molecules over the cell
membrane surface. Special care might be needed especially for membranes with low Ps
value. Concentration should always be increased in a matched rate of diffusion through cell
membrane, a rate that would not cause the cells to give responses as they would to high
concentration differences around the cell. Effectiveness of the method can be lost due to
response of the cell to high CPA concentration difference in and out of the cell. If
accumulation is at stake, mild temperature increase rate can be preferred over sudden
temperature increase on microfluidic system for controlling the mass transfer rate.

Apart from the discussions on the vagueness of the reflection coefficient, there is a certain
need for a model, which fully describes the biological responses of the cells. There is not
any adequate model, independent of the experimental data, describing cell response
(shrinking or swelling of cells) to concentration changes. Without using any experimental
data, currently available models are only good for approximate predictions using the
‘constant cell volume” assumption or ‘the intracellular CPA concentration independent of
cell volume’ assumption for cells. By doing the mentioned assumptions, we calculated the
cell response to our CPA concentration values and we found mild cell responses as cell
shrink to %85 its volume in 240 seconds, if Ps=8x10™ and cell shrink to 98% its volume in
240 seconds, if Ps=8x10°.

In order to achieve maximized pre-concentration with droplets, Critical Radius value
should be avoided by choosing appropriate channel width. Ideally, for a channel with

150x200um cross section, droplets smaller than 90 micron should be generated.

Soybean oil is a non-toxic and low cost organic phase, but water solubility of soybean oil is

very limited. Fatty alcohols having 8 carbons to 12 carbons in their chains are capable of
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solving water up to 5% w/w. Those substances should be examined for use in pre-
concentration of cells via aqueous droplets.

Flow characteristics, the dragging of the droplets, and thus the droplet position can be
examined more precisely by accounting for drag force acting on the droplets.

In our research we created an insight to understand the flow dynamics and mass transfer in
microfluidic devices better for droplets generated in micro-channels. There are many
applications available with multiple phase flows, electromagnetically driven flows and
concentration control with optical vertex (Squires and Bazant 2004, Jeffries, Kuo et al.
2007). We highly encourage any reader to search for MEMS and BioMEMS through
literature to understand the possible uses and impacts of these devices in the future.
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7. APPENDIX

7.1 Possible Organic Phase Substances

1-United States Library of Medicine — Toxicology Data Network.
2- Sigma Aldrich MSDS forms.

2-Ethyl Soybean
Dodecanol|Undecanol Decanol Nonanol Ocatanol |[Cyclooctanol .
Hexanol Oil
Temperature
°0) 30 (40|20 | 40 | 20 (30| 40 |20 30 | 40 | 20 |40 | 20 (30| 40 | 30 40 25
Water
Solubility |2.87(2.85(3.21|3.09(3.68|3.35/3.48 3.68(3.92(3.94| 2.4 |2.72|4.35(4.48(4.81| 5.18 | 5.49 0.4
w%
Solubility in
0.0410.05(0.03|0.09|0.021 0.026 0.031(0.034/0.125/0.11]0.049 0.065| 0.61 | 0.6 -
Water w%
Viscosity
15.91 17.2 11.05 11.7 9.8 10.6 136 58 - 62
(mPa.s)
Density
0.8309 0.8298 0.8297 0.8279 0.8344 0.827 0.97 0.917
(8/cm3)
Melting p.
- 24 19 6.4 -5 -76 -16 15 0.6
Boiling p.
(°C) 259 243 232 213 184 196 105 >260
Non - Non - .
Toxic by Non - Non -
Hazardous|Hazardous . Target
.. . ) Non - Inhalation Hazardous Hazardous Non-
Toxicity Toxicto | Toxicto ) . Organ . .
. . Hazardous [Toxic to aquatic Toxic to aquatic| or Not [Hazardous
aquatic | aquatic . Effects . ) .
. ) life life investigated
life life
Solubility: (Maczynski, Shaw et al. 2007)
Viscosity: (S. Matsuo 1989), (Tong Wang 2005)
Ref. Other references from (data vary depending on the purity and the manufacturer)
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7.2 Parameters and Variables Used in the Comsol Model

7.2.1 An Apparence of the Comsol Model Building Panel
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7.2.2 Comsol Parameters and Variables for No Flow condition

w Parameters

Mame Expression Value

RO 0000050 5.00000000000000E-5

Vi (42 pi*R0*3[m"3] 5.23508775508299E-13 m®

AD 4*pi*R0"2[m"2] 3.14159265358979E-8 m*

W 0.000150[m] 1.50000000000000E-4 m

Mu_oil 0.05[kg/Tm™=]] 0.0500000000000000 kg (m-s)

L 0.35[m] 0.350000000000000 m

Lin_U 0.000683[m/ =] 6.83000000000000E-4 m/s

Aovg_U_over_DeltaP 0.00000011238095238[m"2*s/(kg]] 1.13380952380000E-7 m*.s/kg

mol_CPA 0.5[rmol/liter] 500.000000000000 mol/m®

Slip_velocity Lin_U+0.1 6.83000000000000E-5 m/s

C_initial_wtr_in_oil 45.75[mol/m*3] 45.7500000000000 mol/m®

C_final_wtr_in_oil 7315[mol/m*3] 73.1500000000000 mel/m®

= Variables

Mame Expression Unit
Ri ((0.00000006%t"3[1/s"3] - 0.00008*t~2[1/s"2] + 0.0006%t[1/s]+50)"1e-6)[m] m
Vi (4/3)* pi*Ri"3 m’
Ai 4*pi*Ri™2 m’
DeltaP Lin_U/Avg_U_owver_DeltaP Pa
U_owver_DeltaP -((Ri™2- (WA 20/4) /(L Mu_oil*2)) m’.s/kg
L DeltaP*U_over_DeltaP mJs
Ui_with_slip Ui+Slip_velocity my/s
Deltal Ui_with_slip-Lin_U mJs
percnt_change V Vi/vo
c_CPA mol_CPA/percnt_change V mol/m®
MeshVelocity ((0.00000018*t~2[1,/="2]-0,00016%[1/<] + 0.0006)*1e-6)[m/<] my/s
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7.2.3 Comsol Parameters and Variables for 341,5 um/s average flow velocity

+ Parameters

Mame Expression Value

RO 0.000050 5.00000000000000E-5

] 437 pi*R0*3[m"3] 5.23598775598299E-13 m*

Al 4*pi*R0"2[m"2] 314159265358979E-8 m*

W 0.000150[m] 1.50000000000000E-4 m

Mu_gil 0.05[ kg, (m™*s]] 0.0500000000000000 kg (m-s)

L 0.35[m] 0.350000000000000 m

Lin_U 0.0003415[m/s] 3.41500000000000E-4 /s

HAovg_U_over DeltaP 0.00000011338095238[m " 2%s/(kg)] 1.13380952380000E-7 m*.s/kg

mel_CPA 0.5[mel/liter] 500.000000000000 mol/m®

Slip_velocity Lin_LU*0.1 3.41500000000000E-5 m/s

C_initial_wtr_in_gil 45.75[moel/m"3] 45.7500000000000 mol/m?

C_final_wtr_in_oil 73.15[mol/m"3] 73.1500000000000 mol/m*

= Variables

Mame Expression Unit
Ri Ril m
Ril ((0.0000001*"3[1/s"3] + 0.00008*t"2[1/52] - 0.1081*¢[1/ ]+ 507" 1 e-B)[m] rm
Ri2 ((-0.00000123*t"3[1/s"3]1+0.0009"t"2[1/s*2]-0.2685"[1,/5]+101.662)*0.5e-6)[m] rm
Vi 437 pi*Ri~3 m’
Ai 4*pi*Rin2 m’
DeltaP Lin_U/Avg_U_owver_DeltaP Pa
U_owver_DeltaP -((Ri"2- (W 2)/4)/ (L Mu_oil*2)) m®s/kg
L DeltaP*U_over_DeltaP myis
Ui_with_slip Ui+5lip_velocity m,'s
Deltall Ui_with_slip-Lin_U myis
percnt_change ¥V Vi/Vl
c CPA mal_CPA/percnt_change V mol/m®
MeshVelocity MeshVelocityl m,'s
MeshVelocityl (0.0000003*t"2[1/s"2] + 0.00016%t[1/s] - 0.1081)1e-6[m/s] m/s
MeshVelocity2 (-0.00000269*t2[1/5"2]+0.0018*t[1/5]-0.2685)*0.5e-6[m/s] m/s
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7.2.4 Comsol Parameters and Variables for 683 pum/s average flow velocity

+ Parameters

Mame
RO

W0

Ad

w
Mu_oil
L
Lin_U

mol_CP4

FPorg_U_owver_DeltaP

Expressicn

0.000050

437 pi*RD"3[m"3]

4*pi*R0~2[m 2]

0.000150[m]

0.05[kg/{m™*s]]

0.35[m]

0.000683[rn/s]
0.00000011338095238[m ~2%s/ (kg]]
0.5[mol/liter]

Value

5.00000000000000E-5
5.23508775598299E-13 m*
3.14159265358979E-8 m’®
1.50000000000000E-4 m
0.0500000000000000 kg, (m-=)
0.350000000000000 m
6.53000000000000E-4 m,s
1.13380952380000E-7 m*.s/kg
500.000000000000 mal/m®

Slip_velocity
C_initial_wtr_in_oil

Lin_U*01 6.83000000000000E-5 m/s
45.7500000000000 mol/m?

45.75[mol/m"3]

C_final_wtr_in_oil 7315[mol/m*3] 73.1500000000000 mel/m®

= Variables
Mame Expression Unit
Ri Ril*(t=71.306)+Ri2*(t> =71.306) m
Ril ((0.0000175*t~3[1/s"3] - 0.0018%t*2[1/s"2]- 0.1479%t[1/s]+50)*1e-6)[m] m
Ri2 ((-0.00000123%t~3[1/s"3]+0.0008%t " 2[1/s*2] - 0.2685"t[1/=]+51.692)" 1 e-6)[m] m
Vi 43y pi*Ri*3 m*
Aj 4*pi*Ri™2 m*
DeltaP Lin_U/Avg_U_owver_DeltaP Pa
U_over_DeltaP -((Ri*2- (W 2)/4)/ (L*Mu_oil*2)) m’.s/kg
L DeltaP*U_over_DeltaP mys
Ui_with_slip Ui+5lip_velocity s
Deltall Ui_with_slip-Lin_U my's
percnt_change V WiV
c CPA mol_CPA&/percnt_change V maol/m®
MeshVelocity MeshWelocityl *(t=<71.306)+ MeshVelocity2*(t= =71.306) mys
MeshVelocityl (0.000054%t"2[1/5"2]- 0.0036%t[1/5]- 0.1479)*1e-6[m,s] m/s
MeshVelocity2 (-0.00000369*t"2[1/5"2]+0.0018%t[1/5] - 0.2685)*1e-6[m/s] my's
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7.2.5 Comsol Parameters and Variables for 1366 um/s average flow velocity

+ Parameters

Mame

RO

Yo

AD

W

Mu_oil

L

Lin_U
Avg_U_over_DeltaP
mal_CPA
Slip_velocity
C_initial_witr_in_ail
C_final_wtr_in_oil

« Variables

Expression

0.000050
[4/3)7pi*RO"3[m"3]
4 pi*R0"2[m 2]
0.000150[rn]
0.05[kg/(m™*s)]
0.35[rm]
0.001366[m/s]
0.00000011338095238[m ™ 2*s/ (kg)]
0.5[mol/liter]
Lin_U0.1
45.75[mel/m"3]
7315[mol/m"3]

Value

5.00000000000000E-5
5.23598775598299E-13 m*
3.14159265358979E-8 m*
1.50000000000000E-4 m
0.0500000000000000 kg, (m-s)
0.350000000000000 m
0.00136600000000000 m/s
1.13380952380000E-7 m*.s/kg
500.000000000000 rmol/m?
1.36600000000000E-4 m/'s
45.7500000000000 rmol/m?
73.1500000000000 mol/m?

Mame Expression

Ri Ril*(t<73.48)+Ri2*({t==73.48)

Ril ((0.002%t"2[1/5"2]-0.4498%¢[1 5]+ 507" e-6)[m]

Ri2 ((-0.0000012%t"3[1/5"3]+0.0009*" " 2[1/s~2]-0.2496™[1/5]+41.704 )1 e-6){m]
Vi (43 pi*Ri"3

Ai 4*pi*Rin2

DeltaP Lin_U/Avg_U_over_DeltaP

U _over DeltaP

Ui

Ui_with_slip
Deltal
percnt_change_V
c_CPA
MeshVelocity
MeshVelocityl
MeshVelocity2

-((Ri"2- (W 23/4)/ (L Mu_gil*2])

DeltaP*U_owver_DeltaP

Ui+5lip_velocity

Ui_with_slip-Lin_UJ

Vi/vo

mol_CPA/percnt_change_V

MeshWelocityl *(t<73.48)+ MeshVelocity2*(t> =73 .48)
(0.004%t[1/5]-0.44987*1 e-6[m,s]

(-0.0000036%t~2[1/=~2]+ 0.0018%t[1/5]-0.2496)*1 e-6[m/<]
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7.4 A Matlab Function written to be called by Comsol

function vrble_iteration = A(RO,t,Total_ flux)

R0=0.00005;

t=0;

Total flux=0.005;

Ri = (1.73)-*((((3"(4.7/3))-*(27.*(R0O"6)-4 . *RON3.*((Total _Flux.*27_*1e-
6)7"3) . *t"6)N(0.5)+27 . *ROMN3-2.*((Total_Flux.*27.*1le-

6)73) . *t"6) ./2)N(1./3)+(((2™(1./3))*((Total_flux.*27.*1e-

6)N2)) - *t™M) ./ ((3N(4.7/3)) - *(27.*(ROMN6) -4 . *(RON3)*((Total _flux.*27 _*1le-
6)"3) . *t"6)N(0.5)+27 . *(ROMN3)-2.*((Total _Flux.*27 .*1e-6)"3) . *t"6)"(1./3))-
Total_flux_*27_*1e-6.*t"2)

end

where, ‘Ri’ is the variable to be read by Comsol.
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