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Considering that software usage rates have increased, it is inevitable for end-users to 

prefer high-quality software products. Undoubtedly, one of the most important quality 

indicators of a software product is its defect rate. With the widespread use of methods 

and tools that support estimation tasks in software engineering, the interest in software 

defect prediction is increasing. Currently, most defect prediction models are built using 

the metrics from the coding phase. This situation leads to the inability to process the 

information belonging to the early stages of the software development life cycle such as 

requirements analysis or design, thus not being able to benefit from preventive actions 

such as cost reduction and effective resource planning in the early stages. Eventually, it 

becomes important for stakeholders to build the desired defect prediction model as early 

as possible and to use it throughout the software development life cycle. When the 

proliferation of methods of data science in software engineering is combined with the 

shortage of knowledge to use them in industry, an important need arises to guide 
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practitioners in selecting the best-fit methods by considering their specific needs. This 

thesis presents research aimed at addressing the method selection problem in software 

defect prediction during the early phases of the life cycle by using a formal decision 

analysis process. A two-phase decision analysis approach was proposed that is structured 

using a decision tree and multi-criteria decision analysis (MCDA) methodologies. In 

doing so, an extensive literature review was conducted to obtain a general view of the 

characteristics and usefulness of Early Software Defect Prediction (ESDP) models 

reported in scientific literature. As a result, the most preferred prediction methods, 

metrics, datasets, and performance evaluation methods, as well as the addressed SDLC 

phases were highlighted. Accordingly, the alternatives to be evaluated in the decision 

analysis and the criteria that may have an impact on the decision of method selection were 

systematically determined. To strengthen the knowledge, two different expert opinion 

surveys were conducted. Besides, to manage the operation of the decision analysis 

process, a questionnaire is proposed to reveal stakeholder needs and dataset 

characteristics. After, several case studies were performed to investigate the 

trustworthiness of the proposed approach with selected SDP methods using public 

datasets. The most convenient methods proposed by the decision analysis are Naïve 

Bayes (NB), Decision Tree (DT), and Fuzzy Logic-based methods for the case studies. It 

is concluded that the results of the decision analysis are consistent with both the results 

of the empirical evidence of the experiments conducted in the thesis and the results 

reported in the scientific literature. Overall, the presented approach could be useful in 

helping software practitioners decide which SDP method is advantageous by revealing 

their specific requirements for the software projects and associated defect data. While the 

results of this thesis provide guidance for future research on the context of ESDP, further 

studies on different software projects are necessary in order to expand knowledge prior 

to having decisions that are more reliable. 

 

 

Keywords: Defect Prediction, Early Phases, Early Software Defect Prediction, Method 

Selection, Decision Analysis, Multi Criteria Decision Analysis, Fuzzy TOPSIS 

 



 

vii 
 

ÖZET 

 

ERKEN AŞAMALARDA YAZILIM HATA TAHMİN YÖNTEMİ SEÇİMİ İÇİN 

BİR KARAR ANALİZİ YAKLAŞIMI 

 

 

Rana ÖZAKINCI 

 

 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Ayça KOLUKISA TARHAN 

Haziran 2022, 216 sayfa 

 

Dünyada yazılım kullanım oranlarının günden güne arttığı göz önüne alındığında, son 

kullanıcıların kaliteli yazılım ürünlerini tercih etmek istemesi yadsınamaz bir gerçektir. 

Bir yazılım ürününün en önemli kalite göstergelerinden biri de hata oranıdır. Yazılım 

mühendisliğinde tahmin görevlerini destekleyen yöntem ve araçların yaygınlaşmasıyla 

birlikte yazılım hata tahminine olan ilginin arttığı bilinmektedir. Güncel durumda, çoğu 

hata tahmin modeli, kodlama aşamasından elde edilen metrikler kullanılarak 

oluşturulmaktadır. Bu durum, yazılım geliştirme yaşam döngüsünün gereksinim analizi 

veya tasarımı gibi erken aşamalarına ait bilgilerin işlenememesine, dolayısıyla erken 

aşamalarda maliyet düşürme ve etkin kaynak planlaması gibi önleyici faaliyetlerden 

yararlanılamamasına yol açmaktadır. Paydaşlar için, hata tahmin modelini mümkün 

olduğunca erken oluşturmaları ve yazılım geliştirme yaşam döngüsü boyunca 

kullanmaları önemli hale gelir. Yazılım mühendisliğinde veri bilimi yöntemlerinin 

çoğalması, fakat bunları sektörde kullanmak için bilgi ve uzmanlığın yeterli olmadığı göz 

önünde bulundurulduğunda, paydaşların proje özelindeki ihtiyaçlarını göz önünde 

bulundurarak en uygun hata tahmin yöntemini seçme konusunda rehberlik etmek için bir 

ihtiyacın ortaya çıktığı görülmüştür. Bu tez, bir karar analizi süreci kullanarak yaşam 

döngüsünün ilk aşamalarında yazılım hata tahmininde yöntem seçimi problemini ele 
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almayı amaçlayan bir araştırma sunmaktadır. Bu doğrultuda, karar ağacı ve çok kriterli 

karar analizi (İng. MCDA) metodolojileri kullanılarak yapılandırılmış iki aşamalı bir 

karar analizi yaklaşımı önerilmiştir. Öncelikli olarak, literatürde bildirilen Erken Aşama 

Yazılım Hata Tahmini (İng. ESDP) modellerinin özellikleri ve kullanışlılığı hakkında 

genel bir görüş elde etmek için kapsamlı bir literatür taraması yapılmıştır. Bu çalışma ile 

literatürde erken aşamada hata tahmini konusunda en çok tercih edilen tahmin yöntemleri, 

metrikler, veri setleri ve performans değerlendirme kriterleri analiz edilmiştir. Buna göre 

karar analizinde değerlendirilecek alternatifler ve yöntem seçimi kararına etki edebilecek 

kriterler sistematik olarak belirlenmiştir. Literatürde elde edilen bilgileri güçlendirmek 

için iki farklı uzman görüşü anketi yapılmıştır. Ayrıca, karar analizi sürecinin işleyişini 

yönetmek için paydaş ihtiyaçlarını ve veri seti özelliklerini ortaya çıkarmaya yarayan bir 

anket önerilmiştir. Daha sonra, karar analizi yaklaşımı tarafından önerilen tahmin 

yöntemlerinin doğruluğunu ve güvenilirliğini araştırmak için erişime açık veri kümeleri 

üzerinde birkaç vaka çalışması yapılmıştır. Karar analizi yaklaşımı tarafından önerilen en 

uygun yöntemler, üç farklı durum çalışması için sırasıyla Naive Bayes, Karar Ağacı ve 

Bulanık Mantık tabanlı yöntemlerdir. Karar analizi sonuçlarının hem tezde yapılan 

deneylerin ampirik kanıtlarının sonuçlarıyla hem de bilimsel literatürde raporlanmış 

sonuçlarla tutarlı olduğu gözlenmiştir. Genel olarak, sunulan karar analizi yaklaşımının, 

yazılım projeleri ve ilgili hata verileri için özel gereksinimleri ortaya çıkararak, yazılım 

uygulayıcılarına hangi hata tahmin yönteminin avantajlı olacağına dair ipucu vermesi 

açısından faydalı olacağı görülmüştür. Bu tezin sonuçları, erken aşamalarda yazılım hata 

tahmin kapsamında yapılacak gelecek araştırmalar için rehberlik sağlarken, karar analizi 

yaklaşımın sonuçlarının doğruluğunu arttırmak adına sektörden yazılım projeleri 

üzerinde daha fazla çalışma yapılması gerektiği düşünülmektedir. 

 

 

Anahtar Kelimeler: Yazılım Hata Tahmini, Erken Aşama, Yöntem Seçimi, Karar 

Analizi, Çoklu Kriterli Karar Analizi, Bulanık TOPSIS 
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1 

1. INTRODUCTION 

By nature, software systems are structures that are constantly growing and becoming 

increasingly complex. Research and development of techniques to facilitate and 

accelerate the successful completion of software projects have been ongoing since the 

1970s. Ensuring software quality during and after software development is an 

indispensable task for those involved in software projects. Developing reliable software 

within limited time, budget and resources makes this task even more difficult. Still, 

project teams often spend at least 50% of development effort fixing defects, that could 

have been avoided or fixed at less cost [1]. In the complexity of the software development 

world, it is almost impossible to develop a software that is free of defects, but detecting 

existing defects in a timely manner and minimizing them are very important requirements 

for the product to be launched as reliable. It can be said that one of the most critical tasks 

of project management is to eliminate existing defects in the software, and even ensure 

that these errors do not occur, if possible. 

 

Unfortunately, finding and fixing software defects are among the most expensive 

software development activities [2]. Often, detecting and fixing software defects after 

production are much costlier than detecting and fixing them early in the life cycle, such 

as requirements and design phases. According to Boehm, one of the first researchers to 

concretely exemplify this; if the cost of fixing a defect found at the requirement phase is 

expressed as 1 unit, the cost at the design phase is 3 - 6 units; 10 at the coding phase; 

increases to 15 - 70 units at the test phase; and 40 - 1000 units at the operation phase [3]. 

According to a NASA report that investigated cost escalation studies throughout the 

project life cycle in the literature [4], those ratios were determined as in Figure 1.1. 
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Figure 1.1. Relative Cost Ratio for Fixing Software Defects per Life Cycle Phase [3] 

 

Obviously, as software evolves and grows, the cost of fixing existing or emerging defects 

increases dramatically. At the same time, it is crystal clear that the scope of these defects 

will also expand. Considering that defects that were not found on time and have moved 

on to later phases in the life cycle, especially during the coding phase, will spread to other 

modules of the project, much more changes and effort will be necessary to fix these 

defects. In addition, it is possible to say that the changes necessary to fix the common 

defects may also cause new ones in the software. 

 

All these reasons show the importance of detecting and fixing defects as early as possible 

during the software life cycle, with the least cost and effort. Especially after the coding 

phase of the software, various test activities (unit testing, integration testing, automatic 

tests, etc.) can be carried out to detect defects related to the code. In addition, during the 

coding phase, code review activities carried out before the new developed code are 

merged to the version control system ensure that possible defects are noticed, and action 

can be taken. However, all these activities mentioned can be performed when the software 

moves to the coding phase, and there will be scenarios where the defects that emerged 

during the requirements analysis or design phases will be transferred to the code without 

being noticed.  
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At this point, a mechanism that systematically foresee the possible outcomes of the next 

phases of the software by making use of several existing metrics before the coding 

activities begin can be quite useful. As a matter of fact, predictive models are frequently 

used to evaluate development risks and improve quality throughout the life cycle of 

software development projects [5,6]. Such supportive models are the most important 

auxiliary mechanisms to predict problem areas early and make necessary corrections  [7]. 

In order to form an idea about the quality of the software with software defect prediction 

throughout the software development life cycle (SDLC); it is intended for development, 

testing and management teams to anticipate defect-prone and/or defective parts of the 

software. Defect prediction models allow software developers to focus on defect-prone 

pieces of code, thus helping to reduce the potential for future defects [8]. Considering that 

software development companies can spend 50%-80% of their software development 

effort on testing practices [9], it is seen that research on defect prediction models is very 

critical in terms of cost savings in testing phases. Besides, it is reported that the analysis 

and prediction of software defects are also needed within the scope of project 

management [10,11]. In this context, it is recommended to use defect prediction models 

to evaluate project progress, plan project management activities, improve product quality 

and process management activities [12]. 

 

1.1. Software Defect Prediction (SDP) at Early Phases 

Numerous defect prediction models have been presented in the literature over 40 years 

[13,14]. These studies mostly use various data processing methods and software metrics 

belonging to the late phases of the SDLC, such as testing or operational use. It is thought 

that the application of the prediction models during and after the coding phase of the 

software development will not be beneficial since it will be late to plan and control the 

cost-effectiveness activities [12].  

 

On account of this, it can be appropriate to build and use software defect prediction (SDP) 

models earlier in software development life cycle, in terms of planning many corrective 

and preventive activities such as quality estimation, and effective resource, calendar and 
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cost planning [12]. Besides, it has been reported that the application of defect prediction 

models in the early phases of the SDLC, such as requirements analysis, design and/or 

early coding phase, will be more beneficial in many ways [15]. It plays a critical role in 

determining software quality, cost overrun, optimal development and testing strategy at 

an early stage. A useful approach for early evaluation in projects using Waterfall or V 

development model is to identify the number of defects in the requirements, design, or 

coding phases by verification and validation activities [16], and use this information to 

predict the number of defects in coding or testing phases [17]. In projects employing 

incremental or agile development, early evaluation includes identifying defects in early 

releases to predict defectiveness in later ones [18]. Cross-project defect prediction may 

also enable early evaluation if its underlying requirements regarding defect data across 

the projects are met [19]. In any case, foreseeing the defective parts of the software may 

provide preventive actions such as additional inspections and more comprehensive 

testing, therefore it helps to improve software process control and to ensuree higher 

software quality [12]. In addition, early SDP models will be able to help an effective 

decision-making process in the context of activities such as process improvement or 

trade-off analysis from the early stages of development [20,21]. 

 

Despite the aforementioned benefits, software defect prediction can be seen difficult to 

implement for a variety of reasons, such as context differences of software projects under 

development, software metrics that are needed to collect, behavioral dynamics of 

software team members, and different preferences of various software stakeholders. 

However, as data science is becoming widespread, there is a proliferation in methods and 

tools supporting prediction and estimation in software engineering, which makes 

selecting the best-fit methods important for early and effective use of such facilities. In 

addition, it is observed that the authors of SDP studies in literature are mostly academic, 

which means that the expertise to use and select prediction methods and supporting tools 

reside in academy rather than in industry. When the proliferation of methods of data 

science in software engineering is combined with the shortage of knowledge to use them 

in industry, an important need arises to guide practitioners in selecting and using the best-

fit methods. Therefore, it might be a good solution to address method selection problem 

in software defect prediction by using a formal decision analysis process. 



 

 

 
5 

1.2. Goal and Research Questions 

In this study, it is aimed to propose a decision analysis approach that can guide the 

determination of the most appropriate defect prediction method that can be used in 

software projects where defect prediction is desired from the early phases of the SDLC. 

To address the main purpose of the thesis study, the following research questions (RQs) 

were determined under five main headings. 

 

RQ 1: What are the characteristics of early software defect prediction (ESDP) models? 

• RQ1.1  Which types of datasets are used for performing the prediction? Identify 

the datasets that are used in the prediction models. 

• RQ1.2 What are the development phases that originate metrics for the prediction 

models? Identify the phases that originate metrics as input to the prediction. 

• RQ1.3 What are the entities that originate metrics for the prediction models? 

Characterize the software entities that are used in the models. 

• RQ1.4  What are the attributes of each entity, which originate metrics for the 

prediction models? Categorize the attributes that are used in the models. 

• RQ1.5 What are the software metrics that are used in the prediction models? 

Identify and categorize the software metrics related to each attribute of each entity 

used in the models. 

• RQ1.6  What types of methods are used to build the prediction models? Identify 

and categorize the methods used in prediction models in the studies. Example 

methods include machine learning, fuzzy rule-based etc. 

• RQ1.7  What are the contextual parameters reported in the prediction models? 

Gather the contextual information about the metric data included in the models 

for better revealing the factors that may affect the model construction. 
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RQ 2. Are models of ESDP successful and beneficial? 

• RQ2.1 Which methods and measures are used for evaluating the performance of 

the models? Categorize the performance evaluation methods and metrics that are 

used for validating the models. 

• RQ2.2 What are the performance values of the models based on the included 

SDLC phases that originate metrics for prediction? Gather the performance results 

of the studies with regard to SLDC phases in order to see the effects of the phase 

information to the prediction performance. 

• RQ2.3  What are the benefits of early defect prediction as reported in the studies? 

Indicate the benefits or losses of using ESDP models if reported.   

 

RQ 3. What is the current status of defect prediction applications in software companies 

in Turkey? 

• RQ3.1. If software defect prediction is applied, how does the company operate it? 

• RQ3.2. If the company is applying SDP, what are the advantages or disadvantages 

of applying it?  

• RQ3.3. If the company is not applying SDP, what would be the benefits and/or 

challenges in applying SDP in your company? 

• RQ3.4. Is there a need for guidance on software defect prediction from the early 

phases of SDLC? 

  

RQ 4. How to select a method for early prediction of software defects? 

• RQ4.1. What are the alternative methods for building ESDP models? 

• RQ4.2. What are the criteria to consider when selecting a method for ESDP? 

• RQ4.3. How should the most appropriate method be selected by evaluating the 

defined criteria? 

• RQ4.4. How should we gather the characteristics of the project data and the needs 

of the users systematically? 
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RQ 5. How should we investigate the trustworthiness of the proposed SDP method 

selection approach through case studies? 

• RQ5.1: Which SDP methods are primarily suggested by decision analysis 

approach? 

• RQ5.2: Which SDP methods do perform better in execution?  

• RQ5.3: Are there any difference between the results of RQ5.1 and RQ5.2? 

 

1.3. Research Methods 

Research methods describe the systematic processes that are carried out from the 

beginning to the end within the scope of the thesis studies and are necessary to reach the 

result. The research methods used in the thesis are explained below. 

 

1.3.1. Literature Review 

Systematic mapping (SM) studies are used to provide an overview of the research area 

[22]. Within the scope of systematic mapping, the relevant evidence is examined at a 

superficial level of detail, thus providing basic evidence that will contribute to possible 

systematic literature review studies and identifying areas that should be focused more in 

the field [23,24]. 

 

Systematic literature review (SLR) is a literature analysis method used for the purpose of 

determination, evaluation and interpretation of the available research on a specific topic. 

While individual studies contributing to the SLR are referred to as "primary studies"; 

systematic review itself is referred to as a “secondary study” [23,25]. SLR studies can be 

used to guide possible new studies by identifying gaps in the relevant field and presenting 

various suggestions [22,23,25]. 
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1.3.2. Case Study 

Case studies are empirical investigations of various contemporary phenomena in a real-

life context [26]. The focus of case studies on making sense of context information is 

important in terms of evaluating the methods and tools used in software engineering in 

the industrial field [27].  

 

1.3.3. Data Analysis 

The data analysis method is used for both quantitative and qualitative research types. 

Within the scope of quantitative data analysis techniques, descriptive statistical analysis 

is generally performed. Mean value and standard deviation calculations and various visual 

graphics are frequently used to help understand the collected data [28]. 

 

1.3.4. Survey 

Surveys are generally conducted with the participation of various distributed individuals, 

aiming to generalize from a sample to a population [29]. They often contain static 

questions that provide quantitative answers that are easy to analyze [30]. In addition, 

expert opinion surveys can be preferred for the evaluation of important factors and 

gathering the recommendations of the experts on the subject. 

 

1.4. Contributions 

The contributions made as a result of the studies conducted within the scope of the thesis 

can be summarized as follows: 

• The first systematic mapping study in the literature that investigates process 

properties for early phase defect prediction was presented [31]. Studies using 

process-based metrics for reliability and defect prediction in the early phases of 

the SDLC are discussed. Thus, the current picture of the literature is 

systematically summarized, emphasizing the distinctive features of process 

knowledge in the field of ESDP. 
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• Studies included information about the early phases of the SDLC, such as 

requirements and design, into the defect prediction model were systematically 

investigated. The performance changes in the studies that structured the prediction 

model by using the early phase information with the coding phase information 

were examined and thus, a unique contribution was made to the literature [32]. 

• A total of 52 scientific publications published between 2000 and 2016 was 

examined in depth by systematic mapping and literature review method and 

analyzed over a total of 16 research questions [15]. The trend and demographic 

information of the primary studies, the maturity of the research situation, the 

characteristics of the structuring of the prediction models, the methods used, the 

metrics, datasets, the performances of the ESDP models and the benefits of using 

these models were reported. 

• Multi-criteria decision analysis methods were used for the first time in the 

literature to determine the most appropriate early phase defect prediction method 

for the project context. For this purpose, the criteria to be considered in the 

selection and alternative SDP methods were determined according to the literature 

analysis, and a decision matrix that evaluates these methods and recommends the 

most appropriate one for the context was proposed [33]. 

• As a new contribution to the literature, a decision analysis approach has been 

proposed for the selection of an SDP method for early phases [34]. In order to 

enable software stakeholders to apply defect prediction from the beginning of the 

life cycle of the relevant software project, the proposed approach aims to 

systematically select the most appropriate defect prediction method in line with 

the needs of the stakeholders and the characteristics of the related software project 

data. 

• A web application for the decision analysis has been developed using Angular, 

Java and Spring framework. The source code has been made available and shared 

on GitHub1 to enable researchers or practitioners to perform the decision analysis 

using the determined criteria, weights, and the list of selected alternatives. 

                                            
1 https://github.com/rozakinci/phd_thesis_app 



 

 

 
10 

1.5. Overall Design of Thesis Study with Mappings to RQs and Chapters 

In Figure 1.2, the overall design of the thesis study is demonstrated with the connection 

of the related RQs and consequent chapters. 

 

 

Figure 1.2. The design of the thesis with mapping to the RQs and chapters 

 

1.6. Thesis Organization 

Chapter 2 presents the background of this thesis by summarizing the general context of 

the software defect prediction. Chapter 3 examines the related work in the literature and 

determines the studies on the research area systematically and reports the analysis results 

within the scope of the research questions in detail. In addition, the survey conducted on 

the application of software defect prediction in companies in Turkey is also included in 

this chapter. Chapter 4 presents the necessary preparations for the selection of the early 

phase defect prediction method, how the emerging know-how as a result of the extensive 

work is systematically gathered and reported as a knowledge base, as well as the modeling 

of the decision analysis approach. In Chapter 5, the case studies that have been structured 

as an embedded multi-case design and experimental results related to the implementation 

and validation of the proposed decision analysis approach are described. Next, Chapter 6 
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summarizes a few critical points and recommendations that have emerged as a result of 

the thesis work. Finally, Chapter 7 summarizes the results obtained from the thesis and 

the contributions to the literature. In addition, the limitations of the thesis and plans for 

future studies are mentioned in this conclusion section.  

 

 

  



 

  

12 

2. BACKGROUND  

2.1. What is “Defect”? 

In the IEEE Standard Classification for Software Anomalies [35], a common dictionary 

has been created for the terms related to the errors that may be encountered throughout 

SDLC in the context of software engineering. According to the standard, the definition of 

defect is as follows: 

• Imperfections or deficiencies that can be found in work products in the early 

phases of the SDLC, causing the work product to fail to meet requirements and 

needs to be fixed or replaced. 

 

The definitions of other terms used in the same sense as the “defect” term are as follows: 

• Error: Human action that can cause inaccurate results. 

• Fault: Fundamental inaccuracies within the software program that can cause a 

malfunction. 

• Failure: Deviation of program behavior from user expectations, failure to fulfill 

the expected function from the product under specified requirements and limits. 

• Problem: Difficulty faced by the person while using a system, negative situation 

that needs to be solved. 

 

Based on these definitions; malfunctions, disorders and anomalies that may be 

encountered in the early phases of the life cycle are discussed by using the term "defect" 

throughout the thesis [36]. 

 

2.2. Software Defect Prediction  

Software defect prediction activities can be explained as using the models that are built 

via certain methods using different product, process, and/or resource-based metrics in 

order to prevent or minimize defects during software development life cycle. Its main 

purpose is to guide development, test and management teams to have an opinion on the 

software quality and therefore make decisions that provide to focus more deeply in 
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defective code, plan test activities in an effective way and make better use of resources 

[8]. 

 

2.2.1. Defect Prediction Approaches 

In the field of data mining, the two most important types of prediction problems are 

defined as "classification" and "numerical prediction" [37]. Software defect prediction 

approaches are also divided into two as "classification as defective or non-defective" and 

"prediction of number of defects" based on the dependent variable. The most used defect 

prediction approaches can be grouped as follows according to their purpose of use: 

• Classification2: Prediction of the category to which the data depends. The methods 

used for classification include: Expert judgement-based models (Fuzzy Inference 

Systems), Causal models (Bayesian Belief Network), Machine learning based 

models (Naïve Bayes, Artificial Neural Network, Decision Trees, Logistic 

Regression, Support Vector Machine).  

• Numerical Prediction: Prediction of the number of defects. The methods used for 

numerical prediction include: Expert judgement-based models (Fuzzy Inference 

Systems), Machine learning based models (Artificial Neural Network, Decision 

Tree, Linear Regression, Support Vector Machine).  

 

In addition, it is possible to categorize the SDP methods based on the approach to 

construct the model. In the context of ESDP, the most preferred approaches to construct 

the model can be said as machine learning (ML) based methods because of their ability 

to solve classification and prediction problems. Statistical methods are also preferred like 

ML based methods. In addition, it is possible to construct SDP models by considering the 

                                            

2 The term “classification” can be used to categorize a defect as belonging to certain 

classes, as in defect classification schemes, or to refer to a software defect prediction 

approach that involves classifying parts of software as defect-prone and defect-free. 

Throughout the thesis, the term "classification" is used for the defectiveness classification 

of a software part. 
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expert judgement-based approaches or causal methods. Therefore, we also present the 

below categorization of SDP methods: 

• Machine Learning based methods: Supervised learning-based methods can be 

used in both classification and regression problems. Some implementations of this 

type include Artificial Neural Networks (ANN), Bayesian Networks (BN), 

Decision Trees (DT), Naïve Bayes (NB), and Support Vector Machines (SVM) 

[38]. 

• Statistical methods: These methods can also be preferred when applying SDP 

since they can be used in prediction models to be configured for both classification 

and regression [10]. Linear Regression (LinR) and Logistic Regression (LogR) 

methods can be categorized as statistical methods. 

• Expert judgement-based methods: Fuzzy Inference System (FIS) based models 

can be constructed through a set of rules created according to expert judgment. 

The most important feature of the FIS methods is that they are independent from 

data and can handle imprecise data [39]. BN based models can also be built by 

expert judgement when there is sparse data and are known to be successful to 

address dependencies between attributes and handle uncertainty [21,40]. 

 

2.2.1.1. Statistical methods 

Linear Regression (LinR) 

It is one of the most known and best understood algorithms in statistics. When the class 

variable to be estimated and all attributes are numeric, the linear regression method is one 

of the simplest techniques to consider. A linear regression aims to find the line that best 

fits the relationship between the input variables (x) and the output variable (y). It can be 

defined as an equation (y = C0 + C1 * x) that detects and defines certain weights for input 

variables called coefficients (C) [41]. 

 

The purpose of the linear regression equation is to find the coefficient values when 

predicting the output (y) according to the input (x), namely C0 and C1. Some 

recommended good practices for linear regression are to exclude similar (related) 

variables from the dataset and, if possible, to remove noisy data. As a result, it is highly 
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preferred for numerical defect prediction in the field of SDP as it is a fast and simple 

technique. 

 

Logistic Regression (LogR) 

It is used to classify a categorical class variable based on the relationship between one or 

more numerical or categorical independent variables. It is similar to the linear regression 

method in that it aims to find the values of the coefficients that give weight to each input 

variable. Unlike LinR, a nonlinear function called logistic function is used to predict the 

output class. The logistic function has a structure similar to the letter “S” and converts 

any value into the range from 0 to 1 [37].  

 

Thanks to the learning nature of the model, the predictions made by logistic regression 

can also determine the probability for the class to which the output belongs. This can 

provide a more meaningful result for the prediction problem. Logistic regression function, 

like LinR, performs better in the scenarios where attributes are related to the output and 

dependency between attributes does not exist. As a result, it is preferred for software 

defect classification problems since it is fast and effective. 

 

2.2.1.2. Machine learning-based methods 

Artificial Neural Network 

The artificial neural network model is inspired by the human brain's ability to derive new 

information through learning. It consists of many small neuron-like elements called units 

and the directional and weighted relationships between these units. The layers are 

typically called the input layer, hidden layer, and output layer. There may be more than 

one hidden layer between the input and output layers. It is known to be more effective 

than other methods in modeling nonlinear functional relationships. It is generally used to 

predict the number of defects per class with object-oriented metrics [42]. However, 

artificial neural networks can be easily applied to very large datasets and can give results 

with higher accuracy than other methods [43]. They are suitable for problems where the 

number of feature-value pairs is high, the training set contains outliers / missing data, and 

the long training time is acceptable. The multiplicity of the number of connections, layers 
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and nodes determines the complexity of the system they can represent, the more nodes 

there are, the more complex (advanced) systems can be modeled. With these features, 

artificial neural networks solve problems that cannot be solved by classical algorithmic 

methods, similar to the system of the human brain [44]. 

 

Bayesian Classifiers 

Bayesian classifiers are statistical classifiers based on Bayes theorem that aims to find the 

probability that a sample belongs to a class under given conditions. The most important 

feature is that they are incremental. That is, old knowledge can be used for observed data. 

Accordingly, the calculated probability increases or decreases incrementally [45]. Bayes 

rule states that "Based on the arguments we observe, what is the probability that the output 

belongs to class C?" and answers the question. Suppose Y is the class variable and X is 

the collection of independent classes. In this case, the formulation of the question "Given 

X, what is the probability that the result is of class C?" is given in Equation 2.1 [41]: 

 Pr [Y =  C | X] =
Pr[Y ]Pr[X|Y = C]

𝑃𝑟[𝑋]
 (Eq 2.1) 

Naive Bayes 

Naive Bayes, one of the Bayesian classifiers, has the advantage of handling various and 

independent features, missing values and noisy data. It also achieves results very quickly. 

The most obvious disadvantage of Naive Bayes is that it assumes that classes are 

conditionally independent. This assumption may cause a loss of accuracy [46]. 

 

Bayesian Networks (BNs) 

Bayesian networks are represented by directed acyclic graphs, where each node defines 

a separate variable. Relations between these variables can be shown with Bayesian 

networks (such as the order of transition from one node to another). Bayesian networks 

generally consist of two parts [47]: 

• Directed acyclic graph (DAG): The nodes in the graph can be defined as model 

variables and the connections between the nodes represent the causal effects 

among the variables. 
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• Conditional probability distributions (CPT): Unconditional probability 

distribution is applied for nodes with no ancestors. For nodes with ancestors, 

conditional probability distributions are made depending on the status of their 

ancestors. 

 

Bayesian networks has many advantages. It has the ability to handle missing data, where 

each variable is assigned a preliminary probability, thus, if no input is provided for a 

variable, the default value of the probability is used in the computations. The BN models 

are generally easy to interpret, as the causal relationships between the variables are clearly 

visible in the graph. It can combine different types of data (e.g., quantitative and 

qualitative) where they can be used as inputs in model designs. Inputs and outputs do not 

have to be defined statically; a variable is an input if the user can observe it; if no 

observation can be made about the variable, it becomes an output. 

 

Decision Trees 

The structure of a decision tree is simple. The starting node in the tree is the root node. 

Each internal node represents the decision point that contains questions or criteria to be 

answered. The branches that connect nodes reflect the flow from question to answer. 

Lastly, leaf nodes give a result or result-set, which applies to all nodes that reach the leaf 

[38]. Decision tree algorithms have many implementations. The most common ones are 

ID3, C4.5, CART (Classification and Regression Trees). Classification trees are suitable 

for classifying the defectiveness of software components. Regression trees, on the other 

hand, can predict the number of defects [48]. Decision trees can use multidimensional 

data. The learning and classification process of the decision trees is often fast. Besides, 

they yield high performance prediction results generally. However, their performance can 

be affected from the nature of the data [37,38,41]. 

 

Support Vector Machines 

It uses a non-linear mapping to convert the original training data to a higher dimension. 

Within this new dimension, the linear searches for the best parsing hyperplane (i.e., a 

"decision boundary") separates the threads of one class from another. With a suitable 
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nonlinear mapping in a sufficiently high dimension, data from the two classes can always 

be separated by a hyperplane, which can be found with the help of support vectors and 

margins [38]. SVM can be applied on both linear and nonlinear data. The learning phase 

can be slow; however, it has a high accuracy rate generally thanks to its ability to model 

complicated and nonlinear decision boundaries. They are prone to over-learning 

compared to other methods. 

 

Genetic Algorithms  

Genetic algorithms produce a set of solutions instead of producing a single solution to 

problems. Many points are evaluated at the same time in the search space, and as a result, 

the probability of reaching a holistic solution increase. It has been stated that it is suitable 

for use in scenarios where assumptions are excluded and the model focuses only on defect 

data [49]. The reasons for this are that genetic algorithms do not make any assumptions 

about data distribution, are not a parametric method, and do not form the model in a 

specific structure [49]. 

 

Ensemble Learning 

It is a machine learning approach that is generally used for improving the prediction 

accuracy of classifiers. More than one classifier is trained to solve the same problem and 

these classifiers are combined to obtain stronger generalization ability [37]. As it will be 

explained in the following sections, ensemble learning methods are not included within 

the scope of the thesis, since it is desired to compare machine learning methods with their 

simplest forms. 

 

2.2.1.3. Expert judgement-based methods 

Fuzzy Inference Systems (FIS) 

The fuzzy classification technique describes the dataset with approximate (partial 

membership) values without having precise and defined boundaries. For a software 

segment to be classified as defective, it must be defined with a membership value between 

0 and 1. Using the data classified by the model based on fuzzy inferences, the “module-

ordering model” predicts whether that module is defect-prone [50,51]. The most 
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important advantages of fuzzy logic-based methods can be listed as follows [52]. Data 

independence is the most important advantage of the FIS method. FIS models perform 

the modeling of the desired environment with the help of experts on research field, not 

by learning from data. Since it does not need historical data, it can be used from the 

beginning of the software project, providing faster results and usage repeatedly for the 

same research field. FIS models are said to be more suitable for defect prediction than 

data-driven methods. Models created can also be used for other software projects 

regardless of the domain, as they are data independent. Verbal, qualitative and non-

numerical data are also well suited to use in fuzzy inference models. 

 

The steps to be followed while building fuzzy models can be listed as follows: 

 

1. Determination of membership functions of inputs and outputs 

Membership Functions (5 Scales) for linear scale: 

• VL (0; 0; 0.25), 

• L (0; 0.25; 0.50), 

• M (0.25; 0.50; 0.75), 

• H (0.50; 0.75; 1.00), 

• VH (0.75; 1.00; 1.00) 

Membership Functions for logarithmic scale (3 Scales): 

• L (0; 0; 0.37), 

• M (0; 0.37; 1), 

• H (0.37; 1; 1) 

 

2. Determination of fuzzy logic rules: Various rules are determined by the field expert 

according to fuzzy sets and verbal variables. For a successful model design, all verbal 

variables in the fuzzy rule set and combinations of all verbal values of these verbal 

variables should be included. The number of rules is calculated by multiplying the 

number of verbal values of each verbal variable with each other. For example, the 
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number of rules required for an FIS consisting of 3 verbal variables and where each 

variable has 4 verbal values is 4 * 4 * 4 = 64. 

 

3. Fuzzy inference: The fuzzy inference process can be explained as follows, in order: 

• Fuzzification of the determined inputs using membership functions 

• Performing the execution of fuzzy logic rules 

• Generating the fuzzy outputs of rules 

 

4. Defuzzification step: After producing the fuzzy outputs, the defuzzification step is 

applied, where the fuzzy output is converted to crisp output. Although the fuzzy 

output helps to interpret the crisp values given as input, it does not tell the final 

decision, so the fuzzy output needs to be converted to crisp output. This conversion 

is called defuzzification. There are several types of models that vary in the technique 

they use for the crisp output generation step. The most used types are Mamdani, 

Sugeno and Tsukamoto.  

 

2.2.2. Software Metrics 

Software metrics enable us to understand and evaluate many aspects of software, thus to 

plan and track critical aspects throughout the project life cycle. The healthier we can 

perform the software measurement process, the more accurately we can control the 

software quality. 

• Measurement: It is the process of assigning a value to an attribute. It can be a 

figure, size or quantity obtained as a result of the measurement process [53]. 

Measurement is also defined as the process of assigning numbers or symbols to 

the properties of real-world entities, according to strictly defined rules [54]. 

• Metric: Indicates the level at which a product, system, component or process 

possesses a certain attribute [50]. 
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According to Fenton and Bieman [54], it is important to define the entities and attributes 

of the measurements as the first rule of thumb for performing software measurement 

activity. Based on Fenton and Bieman's classification, entities within the scope of 

software measurement activities are divided into three: 

• Process: Refers to activities related to the software. 

• Product: Outputs or documents obtained from a process activity. 

• Resource: Refers to the entities required to perform the process activities. 

 

Product metrics allow to measure structural and physical properties such as size (source 

code, requirement specification document size, size of design documents, etc.), 

complexity, length, dependency, and interactivity. The metrics defined in the Chidamber 

& Kemerer metric set [55] are the most widely used design and coding phase metrics for 

SDP in object-oriented software [56]. Process metrics measure the efficiency and 

effectiveness of software development processes, the duration of process activities, the 

effort spent, and the number of errors seen throughout the process. Since defects can be 

encountered from the earliest stages of software development processes, process metrics 

will be useful in SDP [57]. Resource metrics enable to measure the characteristics of the 

personnel (developer, designer, test staff, etc.) working in software development projects, 

such as experience, motivation, the characteristics of resources such as software and 

hardware needed in the project, and the structure of the working environment [54]. 

 

For each metric class (process, product, resource) it is divided into internal and external 

characteristics: 

• Internal properties: can be measured by the product, process or resource itself. 

• External properties: can be measured by how the product, process or resource 

relates to its environment, i.e., taking into account its behavior. 
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2.2.3. Public Datasets 

2.2.3.1. PROMISE Repository – NASA Dataset 

PROMISE data repository contains open datasets published to support the creation of 

prediction and/or decision support models in the field of software engineering on various 

topics (defect prediction, cost estimation, effort estimation, subsequent release 

monitoring etc.). It is aimed that the relevant prediction models can be applied by different 

researchers in the field or experts in the industry. The most used dataset in the software 

defect prediction field in this data repository has been published under MDP (Metric Data 

Program), a metric program created by NASA. In this context, there is data on 12 projects 

published. The PROMISE repository is currently not accessible [58], but a backup for the 

data is available fortunately and stored in GitHub [59]. The most used ones are given in 

Table 2.1. 

 

Table 2.1. The characteristics of the projects from public NASA dataset 

Project 

Name 

Programming 

Language 

Total 

Sample 

Number 

Samples 

Marked as 

Defective 

Defectiveness 

Rate (%) 

Number of 

Attributes 

Dataset 

Size 

CM1 C 327 42 12.8 38 Small 

JM1 C 7,720 1,612 20.9 22 Large 

KC1 C++ 1,162 294 25.3 22 Large 

KC3 Java 194 36 18.6 40 Small 

MC1 C++ 1,952 36 1.8 39 Large 

MC2 C 124 44 35.5 40 Small 

MW1 C 250 25 10.0 38 Small 

PC1 C 679 55 8.1 38 Medium 

PC2 C 722 16 2.2 37 Medium 

PC3 C 1,053 130 12.3 38 Large 

PC4 C 1,270 176 13.9 38 Large 

PC5 C++ 1,694 458 27.0 39 Large 
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2.2.3.2. NASA-93 Dataset 

It is an open dataset containing data from 93 projects prepared by NASA for use in the 

COCOMO model in the 90s, and later defect number data was added [60]. The attributes 

were demonstrated in Table 2.2, with their related software entity categorization. There 

are a total of 25 attributes in the version with defect data, which consists of: 

• 15 standard COCOMO-I discrete attributes in the range from “Very Low” to 

“Extra High” 

• 7 attributes describe the features of the project  

• one of them describes the number of lines of code 

• one of them is the actual effort in person months 

• the dependent attribute is the number of defects 

 

Further detailed descriptions can be found in the COCOMO II model manual [61]. 

 

2.2.3.3.Fenton Dataset 

Fenton et al. proposed a causal defect prediction model using several quantitative and 

qualitative process factors [20,21]. The design of the model and the specified qualitative 

factors were first described in [20]. After that, they extended this work to describe the 

prediction model in more detail and validate it [21]. The most critical output of this study 

is the open dataset they provide to the literature3. Their main motivation for presenting 

their raw data is the possibility of enabling different SDP methods to be implemented by 

other researchers, and that the results are useful for software project managers to use 

practically.  

 

 

 

 

                                            
3 Throughout the thesis, the Fenton dataset is referred from their extended work [21].   
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Table 2.2. Attributes of NASA-93 dataset 

Entity Attribute  Abbreviation Type 

Product Precedentedness prec {h} Nominal 

Product Development Flexibility flex {h} Nominal 

Process Architecture and Risk Resolution resl {h} Nominal 

Resource Team Cohesion team {vh} Nominal 

Process Process Maturity pmat {l,n,h} Nominal 

Product Required software reliability rely {l,n,h,vh} Nominal 

Product Database size data {l,n,h,vh} Nominal 

Product Product Complexity cplx {l,n,h,vh,xh} Nominal 

Product Developed for Reusability ruse {n} Nominal 

Product Documentation match to life-cycle needs docu {n} Nominal 

Product Execution Time Constraint time {n,h,vh,xh} Nominal 

Product Main Storage Constraint stor {n,h,vh,xh} Nominal 

Product Platform Volatility pvol {l,n,h} Nominal 

Resource Analysts capability acap {n,h,vh} Nominal 

Resource Programmers capability pcap {n,h,vh} Nominal 

Resource Personnel continuity pcon {n} Nominal 

Resource Application experience apex {l,n,h,vh} Nominal 

Resource Platform experience plex {vl,l,n,h} Nominal 

Resource Language and Tool Experience ltex {vl,l,n,h} Nominal 

Resource Use of Software Tools tool {n,h} Nominal 

Resource Multisite development site {n} Nominal 

Resource Required Development Schedule sced {n,l,h} Nominal 

Product Equivalent physical 1000 lines of source code kloc Numeric 

Process Development effort in months effort Numeric 

Process Number of defects defects Numeric 

 

The dataset contains data on 31 software projects developed in the consumer electronics 

industry. The scope of the projects is the development of embedded software in consumer 

electronics products, and it is aimed to develop several functions provided by a product 

in each project. The developed software are not independent systems, and they are 

developed as subsystems of other software in the electronic product. Waterfall approach 

is followed as the SDLC. In the software engineering part of the life cycle, requirements 

documentation review, design, design review, coding and unit testing activities are carried 
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out. Later, the software is put into independent testing at many stages, from integration 

testing to system testing. Requirements analysis and independent testing processes are 

usually performed in a different location than the coding. 

 

Data are collected through questionnaires conducted with project managers, quality 

managers and/or expert project personnel of the relevant projects. Qualitative data from 

surveys have 5 scales and can take the following values in order: Very High, High, 

Medium, Low, Very Low. There are areas such as explanations and detailed sub-

questions regarding the questions. For example, if there are 10 sub-questions for a 

question, if all sub-questions are answered yes, the score of the question will be VH, if 7-

9 of them are yes, the score will be H, and so on. For example, for gathering the answers 

on factor “S1 - Relevant Experience of Spec and Doc Staff”, the main question and 

additional questions were defined as follows: 

 

Question: How would you evaluate the experience and skill level of your team members 

who took part in the requirement phase of this project? 

• Sub-question1: Did the requirements team have sufficient experience? 

• Sub-question2: Did the requirements team have sufficient domain expertise? 

 

Sample Answers: 

• Very High: Software engineers with more than 3 years of requirements 

management experience and extensive domain knowledge. 

• High: Software engineers with more than 3 years of requirements management 

experience but limited domain knowledge. 

• Intermediate: Software engineers with 1 to 3 years of experience in requirements 

management. 

• Low: Software engineers with 1 to 3 years of experience but no experience in 

requirements management. 

• Very Low: Software engineers with less than 1 year of experience and no previous 

field experience. 
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The identified factor groups and related factor names were demonstrated in Figure 2.1. 

 

Figure 2.1. Factors in Fenton Dataset [21] 

 

2.2.4. Performance Evaluation Measures 

In order to choose an approach for the performance evaluation of defect prediction 

models, first of all, the type of the predicted dependent variable should be considered. In 

this context, it is possible to divide the models into two [8]: 

Factor group Factor ID and Name 

Specification and 

documentation process 

S1 Relevant Experience of Spec and Doc Staff 

S2 Quality of Documentation Inspected 

S3 Regularity of Spec and Doc Reviews 

S4 Standard Procedures Followed 

S5 Review process effectiveness 

S6 Spec Defects Discovered in Review 

S7 Requirements Stability 

New functionality F1 Complexity of New Functionality 

F2 Scale of New Functionality Implemented 

F3 Total Number of Inputs and Outputs 

Design and development 

process 

D1 Relevant Development Staff Experience 

D2 Programmer Capability 

D3 Defined Processes Followed 

D4 Development Staff Motivation 

Testing and rework Factor T1 Testing Process Well Defined 

T2 Testing Staff Experience - unit 

T3 Testing Staff Experience - integrated 

T4 Quality of Documented Test Cases 

Project management P1 Development Staff Training Quality 

P2 Requirements Management 

P3 Project Planning 

P4 Scale of Distributed Communication 

P5 Stakeholder Involvement 

P6 Customer Involvement 

P7 Vendor Management 

P8 Internal Communication/Interaction 

P9 Process Maturity 

Quantitative Data E Total Effort 

K KLOC 

L Language 

TD Total Defects 
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• Categorical Models: use categorical variables (defective or non-defective) as 

dependent variable. Models created with classification methods fall into this 

group. 

• Continuous Models: use numerical variables (number of defects) as dependent 

variables. Models created with numerical prediction methods fall into this group. 

 

2.2.4.1. Measures Used in Performance Evaluation of Categorical Models 

In categorical models, the evaluation of the prediction performance of the model is 

basically made by confusion matrix analysis given in Figure 2.2 [62]. This matrix uses 

various calculations where the model considers actual class labels to measure how it 

classifies different categories. In other words, the class label predicted by the model is 

compared with the class label to which the dependent variable actually belongs. 

• True Positive (TP): The class label (“defective”) was predicted correctly. 

• False Positive (FP): The class label (“non-defective”) was guessed incorrectly 

(“defective”). Also known as Type I Error. 

• False Negative (FN): The class label (“defective”) was guessed incorrectly (“non-

defective”). Also known as Type II Error. 

• True Negative (TN): The class label (“non-defective”) was predicted correctly. 

 

 

Figure 2.2. The confusion matrix 

 

Based on this matrix, many performance evaluation measures can be derived [63] as listed 

below. The sysnonims and formulations of these measures are presented in Figure 2.3. 
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Figure 2.3. Performance evaluation measures 

 

• True positive rate (TPR): It is synonymous with Recall, probability of detection 

(pd) and Sensitivity. It refers to the rate at which the class that is actually labeled 

as “defective” is predicted as “defective” in the prediction result. 

• False positive rate (FPR): It is synonymous with probability of false alarm (pf) 

and Type-I Error. It refers to the rate at which the class labeled as “defect-free” is 

predicted as “defective” in the prediction result. 

• True negative rate (TNR): It has the same meaning as Specificity. It refers to the 

rate at which the class labeled as “defect-free” is also predicted as “defect-free” 

in the prediction result. 

Measure Synonyms Formulation 

True positive rate (TPR) 
Recall 

Probability of detection / pd 

Sensitivity 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False positive rate (FPR) 
Probability of false alarm / pf 

Type-I Error 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

True negative rate 

(TNR) 

Specificity 

 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

False Negative rate 

(FNR) 

Type-II Error 𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

Precision 
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

f-measure 
 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Accuracy 
 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Misclassification rate 
Error-rate 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Balance 
 1

−  
 (𝑃𝐹2 + (1− 𝑃𝐷)2

√2
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• False negative rate (FNR): It has the same meaning as Type-II Error. It refers to 

the rate at which the class that is actually labeled as “defective” is predicted as 

“defect-free” as a result of the prediction. 

• Precision: refers to the rate at which “defective” predictions are made correctly. 

• f-measure: It is expressed as the harmonic mean of the precision and recall values. 

• Accuracy: The ratio of correctly classified units. 

• Misclassification rate: It has the same meaning as Error-rate. It is the proportion 

of incorrectly classified units. 

• Balance: It expresses the distance to the most perfect point, defined as PD=1 and 

PF=0, in terms of PD and PF calculated as a result of the estimation. 

 

ROC Curve and AUC Value 

ROC Curve (Receiver Operating Characteristic curve) is a method applied to interpret 

classification performance graphically. As shown in Figure 2.4, the ROC curve graph has 

two dimensions: PD (true positive rate) on the y-axis and PF (false positive rate) on the 

x-axis. The most successful classifiers have high PD and low PF. 

 

Figure 2.4. ROC curve 
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AUC (Area Under the Curve) refers to the area under the ROC curve. When PD is equal 

to PF, the area under the ROC line is an isosceles triangle with sides of length 1; thus the 

AUC value is 0.5. If the AUC value is calculated over 0.5 in the performance evaluation 

of a model, it can be said that the model gives acceptable prediction results, and the results 

get better as it gets closer to 1. 

 

2.2.4.2. Measures Used in Performance Evaluation of Continuous Models 

Co-efficient of determination (R2): It is a statistical measure of goodness-of-fit, which 

measures how good the predicted regression equation is. It has the range of values 

between 0 and 1, where higher R2 represents more confidence in the equation. Suppose 

we have existing values yi and predicted values y’i (for i = 1, 2, 3, ... , n; n ∈ N), where 

y̅I is a mean value of y′i, 

R2 = 1 −
∑ (𝑦𝑖−𝑦′𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�′𝑖)2𝑛
𝑖=1

    (Eq 2.2) 

 

Root mean square error (RMSE): Relative squared error takes the total squared error and 

normalizes it by dividing by the total squared error of the predictor. Then taking the 

square root of the relative squared error, reduced error being predicted is calculated. 

 RMSE = √
1

n
∑ (yi − y′i)2n

i=1  (Eq 2.3) 

 

Normalized root mean square error (NRMSE): It shows the ratio between RMSE and 

existing values. The NRMSE value can be used to compare single model performance. 

 NRMSE = 
RMSE

ymax − ymin
 (Eq 2.4) 

 

Mean Magnitude of Relative Error (MMRE): It is the arithmetic mean of absolute relative 

error. The lower it is, the better the prediction. 

MMRE = 
1

n
∑

|yi−y′i|

yi

n
i=1    (Eq 2.5) 
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Balanced Mean Magnitude of Relative Error (BMMRE): It is a balanced version of the 

MMRE that deals more with underestimation than overestimation. 

BMMRE = 
1

n
∑

|yi−y′i|

min (yi,y′i)

n
i=1  (Eq 2.6) 

 

2.2.5. SDP During Early Phases 

Most SDP models are generated using metrics from the coding and testing phases of the 

SDLC. However, when it comes to those phases, it may be too late to plan corrective and 

preventive actions effectively. As a solution to this problem, it can be appropriate to build 

and use SDP models in the early phases of the SDLC, which can be defined as 

requirement analysis or design phases, in terms of many activities such as quality 

estimation, effective resource, calendar and cost planning in the software life cycle 

[12,64].  

 

In the earlier phases of SDLC, project teams do not have any metrics related to source 

code or testing, or reported defect data from the product environment that could be used 

to predict future defects of the software. Therefore, the data and metrics that can be used 

early in the SDLC can be summarized as follows: 

• Sub-product data that can be collected from early-phase sub-products (such as 

requirement specification document and design documents). 

• Process-based data that can be collected from early-stage processes (requirements 

analysis, design, early stages of coding). 

• Resource-based data on the experience of the software development team and the 

availability of other resources. 

• Qualitative data based on expert opinions that can be obtained in the early stages 

from the opinions of experts who can evaluate the software according to the 

software context parameters. 

• Historical project data similar in context to the related software. 
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2.3. Decision Analysis 

In complex situations that require in-depth knowledge of the subject to be decided, a 

decision analysis process should be performed using systematic methods among the 

alternatives. The definition of decision making is expressed as choosing the most 

appropriate one among the alternatives to be considered in terms of goals, objectives, 

values and criteria [65]. According to Fulop [66], a general decision-making process can 

be divided into the following steps: 

1. Define the problem, 

2. Determine requirements, 

3. Establish goals, 

4. Identify alternatives, 

5. Define criteria, 

6. Select a decision-making tool, 

7. Evaluate alternatives against criteria,  

8. Validate solutions against problem statement. 

 

Especially for the decision-making problems involving high risk and uncertain scenarios, 

it is a possible approach to first use a decision tree to see the potential results, and then 

apply the multi criteria decision anaylsis (MCDA) on these potential results to reach the 

final result over the total preference score [67]. These two analysis methods used in the 

decision analysis approach within the scope of the thesis are summarized below. 

 

2.3.1. Decision Tree 

In decision-making systems, decision tree is one of the best-known techniques. They 

allow to make decisions through a “top-down, divide-and-conquer” approach to the 

problem by addressing a set of decisions available in the tree nodes. 

 

In decision analysis context, there are a couple of advantages of decision trees [68]. A 

rule set emerges as a result of structuring decision trees, thus providing clarity and 
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conciseness for decision makers by making it easier to explain the decisions taken, which 

can be presented in an interpretable format. Not all decision attributes may be helpful in 

the same way for different decision-making contexts. For those types of problems, 

decision trees ensure that the suitability of different attributes depends on the results of 

the previous tests, thus they have a high context sensitivity. Besides, they can successfully 

handle both continuous and discrete attributes. They can be combined with other decision 

techniques. No domain knowledge is required for the construction of decision trees, so it 

is suitable for knowledge discovery. 

 

2.3.2. MCDA 

Multi-criteria decision analysis is a set of formal approaches to address complex decision 

problems in a scientific and analytical framework, aimed at assessing multiple criteria for 

a decision maker to reach the most appropriate solution [69]. There are different MCDA 

methods in the literature, each with its own characteristics and categorized in many 

different ways [70]. The best known methods can be listed as AHP (Analytic Hierarchical 

Process) [71], ELECTRE (Elimination and Choice Expressing the Reality) [72], TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution) [73] and PROMETHEE 

(The Preference Ranking Organization METHod for Enrichment of Evaluations) [74].  

 

Fuzzy set theory can be applied to address uncertainty issues that may arise in a few 

situations where the criteria are vague or decision makers are unsure how to evaluate the 

relevant criteria [75]. Fuzzy TOPSIS introduced by Chen and Hwang [76] by extending 

the TOPSIS method using linguistic variables represented by triangular fuzzy numbers. 

Later, studies that utilizes fuzzy logic theory with TOPSIS method continued in the 

literature [77–79]. The basic logic of the Fuzzy TOPSIS method is that the selected 

alternative should have the shortest distance to the Fuzzy Positive Ideal Solution (FPIS) 

that maximizes the benefit criteria and minimizes cost criteria, and the farthest distance 

to Fuzzy Negative Ideal Solution (FNIS) that maximizes the cost criteria and minimizes 

the benefit criteria [78,79]. The general steps of Fuzzy TOPSIS method can be 

summarized as follows [78,80]: 
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1. Determine the appropriate linguistic variables for ranking alternatives with respect to 

each criterion. 

2. Assign weights to the criteria and ratings to the alternatives. 

3. Calculate the aggregated weight of alternatives with respect to each criterion. 

4. Compute the normalized fuzzy decision matrix. 

5. Compute the weighted normalized fuzzy decision matrix. 

6. Calculate the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution 

(FNIS). 

7. Determine the distance of each alternative from FPIS and FNIS. 

8. Calculate the closeness coefficient (CCi) for each alternative. 

9. Rank the alternatives. 

 

The most important advantage of Fuzzy TOPSIS method is that when the decision makers 

evaluate the alternatives, they benefit from using a natural language to describe their 

subjective judgement in a quantitative manner [80]. 
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3. RELATED WORK 

3.1. Secondary Studies on SDP  

Numerous software defect prediction papers have been published in the literature. 

Therefore, there are many literature review and analysis studies about these papers. These 

secondary studies have surveyed the literature according to several aspects of the defect 

prediction models, such as methods, metrics and performance evaluation methods. We 

have analyzed these studies in software defect prediction literature by grouping them 

based on their research method (Systematic Literature Review (SLR), Systematic 

Mapping (SM), and Literature Review). We should note that research methods of the 

secondary studies were classified based on the guidelines provided by Petersen et al. [22] 

and Kitchenham and Charters [23]. If any guidelines were not followed in secondary 

studies, we classified them as literature review.  

 

3.1.1. Systematic Literature Review Studies 

Çatal and Diri [10] reviewed software defect prediction papers by examining their types 

of metrics, methods and datasets. The results show that the usage of the public datasets 

and machine learning approaches increased significantly after 2005 when PROMISE 

repository was created. 

 

Hall et al. [8] investigated the performance values of SDP models in their systematic 

review study in 2012, included 208 experimental studies published between 2000 and 

2010, and examined a subset of 36 out of 208 studies. The main objective was to evaluate 

the context information, input variables and modeling techniques and their effects to the 

performance of the models. The main findings showed that models based on simple 

approaches such as Naïve Bayes or Logistic Regression performed well. Besides, the 

combination of different input variables, and usage of feature selection techniques 

resulted in better performance. 

 

Radjenovic et al. [81] reviewed software metrics and their usability in SDP over 106 

studies. They reported that object-oriented (OO) metrics were used nearly twice as often 
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compared to traditional source code or process metrics. They also stated that OO and 

process-based metrics are more successful than size and complexity metrics in predicting 

defects. 

 

Malhotra [82] analyzed the performance of the machine learning techniques for SDP 

models through 64 studies in 2015, and summarized the characteristics based on metrics 

reduction techniques, metrics, datasets and performance measures. It was concluded that 

the machine learning techniques had acceptable defect prediction capability and could be 

used by software practitioners and researchers. 

 

Wahono [83], identified and analyzed the research trends, datasets, methods and 

frameworks used in SDP studies published between 2000 and 2013. The results showed 

that about 77% of the studies were focused on classification methods, and 65% of the 

research studies used public datasets.  

 

3.1.2. Systematic Mapping Studies 

Murillo-Morera et al. [84] investigated the software metrics, prediction techniques based 

on data mining or machine learning and their performance over 70 studies. They found 

the frequently used combination of metrics and methods as follows: Halstead, McCabe 

and LOC metrics with Random Forest, Naive Bayes, Logistic Regression and Decision 

Tree methods. 

 

Özakinci and Tarhan [31], presented initial results from a systematic mapping of 41 early 

software defect prediction studies published between 2000 and 2015, and reviewed 18 

papers in detail and in a narrower scope, to elicit the process attributes and metrics used 

in the models. It was observed that 44% of the early defect prediction studies build the 

prediction model by using process-based data, such as effort of the review activities, or 

requirement stability metrics. 
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Özakinci and Tarhan [15], systematically mapped and reviewed 52 primary studies 

published between 2000 and 2016. They provided a general view about the 

characteristics, performances, and usefulness of ESDP models by elaborating on the 

prediction methods, software metrics, performance evaluation approaches used in the 

studies, as well as the reported benefits of using ESDP models. This study differs from 

the existing works in that it is the first study that focuses on the literature about early 

software defect prediction in a systematic and comprehensive manner. 

 

3.1.3. Other Literature Reviews 

Catal [85] investigated 90 software defect prediction papers published between 1990 and 

2009. This review provided a guide for researchers to investigate the studies on software 

metrics, methods, datasets, and performance evaluation metrics. 

 

Jureczko and Madeyski [86] presented a review and investigated process-based metrics 

in SDP. They focused on the most important results, recent advances and summary 

regarding the use of these metrics in prediction models. They reported that employing 

process metrics in the defect prediction could lead to better results than working only with 

the product metrics. 

 

Singh et al. [87] investigated various prediction methods used in the area over 20 studies. 

According to the results, researchers have mainly used multivariate regression analysis, 

genetic algorithms, neural networks, Bayesian network techniques for SDP. It is stated 

that NASA datasets are the most common data source and widely used in the area. 

 

3.2. Studies Focus on SDP Frameworks  

Several studies that propose different frameworks in the field of SDP research are 

discussed below. 

 

Wahyudin et al. [88] proposed an SDP framework to provide guidance on how defect 

prediction should be organized in a particular project and organizational context. The 



 

  

38 

framework includes a three-stage defect prediction model. First, the requirements are 

defined to align the expectations of the software stakeholders with what can be achieved 

in practice. Second, the model is constructed based on the identified variables and the 

selected defect prediction method. In the final stage, the prediction model is applied to 

the actual software project data and the accuracy of the model is tested. An initial 

empirical evaluation of the framework was conducted based on the findings of the 12 

studies in the literature, although no experiments were conducted for the implementation 

of the framework. 

 

Song et al. [14] proposed a framework that includes schema evaluation and defect 

prediction components. The first component examines prediction performances by 

applying learning schemes on historical datasets, and the second component constructs a 

prediction model that uses the high-performance schema and applies it to the actual 

dataset. The performances of the experiments performed on the simulation data and 

NASA dataset were compared according to the AUC values, the framework was reported 

to be efficient but different schemes may be required for different data types. 

 

Meta-learning is also used in the literature for algorithm selection and recommendation 

as an alternative approach, which aims to learn the behavior of the classifiers and 

determines the dataset features that contribute to better performance. According to the 

results of the experiments performed on the PROMISE datasets for the “meta-learning 

framework” [89], it was reported that algorithms with better defect prediction 

performance were recommended successfully. The findings of this study are important 

for the literature, as its authors reported that researchers should focus on improving 

algorithm recommendation rather than trying to build more robust SDP models for 

different contexts. In addition, Porto et al. [90] proposed a meta-learning approach to 

automatically select and recommend the most suitable cross project defect prediction 

method. They evaluated their meta-learning solution on 15 open-source software projects. 

According to the results, the proposed solution can learn from previous experiences and 

recommend suitable methods dynamically, however, there was a minor loss in the 

prediction performance compared to the base methods. 
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Another approach that has attracted a lot of attention in recent years is the transfer learning 

method [91]. When the target domain has a limited amount of data, transfer learning uses 

the source domain information for model learning in the target domain. Therefore, it is 

considered a useful approach for cross-company software defect prediction, and in cases 

when different distributions of the training and testing datasets exist [92,93]. 

 

Rathore and Kumar [94] presented a recommendation system that facilitates the selection 

of the appropriate technique(s) to build an SDP model, addressing the various 

characteristics of the defect data as well as the appropriateness of both machine learning-

based and statistical techniques. In this context, they made a review of the literature to 

reveal the features that should be evaluated, after that, they created various decision rules 

according to the evaluation of these features and presented a decision tree-based 

recommendation system. The system was evaluated with several case studies, and it is 

reported that it provided useful hints in choosing SDP techniques. 

 

3.3. SDP Studies Using MCDA 

In the field of SDP, there are a couple of MCDA studies in the literature. Balogun et al. 

[95] evaluated the performance of various machine learning approaches by using Analytic 

Network Process (ANP). Peng et al. [96] focused on comparing the performance of 

several ensemble methods through the application of (Analytic Hierarchy Process) AHP, 

where Wu [97] presented an Analytic Hierarchy Model (AHM) to select the best 

algorithm for high-efficiency clustering in SDP. In addition, Kou et al. [98] applied 

feature selection and classifier evaluation in the context of SDP by using different MCDA 

methods such as ELECTRE, PROMETHEE and TOPSIS.  

 

All of the studies above focus on the comparison of various machine learning based 

classification methods with performance measurements using data from NASA Metrics 

Data Program (MDP) published in PROMISE repository. Overall, these studies report a 

positive effect of applying MCDA methodologies in assessing the predictive performance 

of different classifiers. In addition, it is important to know that the experimental results 

using different performance measures over different project data on NASA MDP may be 
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different from each other. Therefore, these studies are very valuable to evaluate the 

performance of different classification methods to be used in other software projects with 

context information similar to a project in NASA MDP. 

 

3.4. Defect Prediction in Early Phases – State of the Art and Benefits of ESDP 

A systematic mapping and systematic literature review study [15] was conducted as a 

basis for this thesis. To ensure transparency, we have published the entire repository of 

the primary studies and results of the study online at [99]. We identified the primary 

studies with the prefix 'S' as an abbreviation for the ‘Source’ term. The mapping table for 

the source IDs of the primary studies and the corresponding reference is given in 

Appendix-1. 

 

While constructing the review process, the guidelines and protocols proposed by both 

Petersen et al. [22] and Kitchenham et al. [23] were followed. It is important to note that 

Petersen [100] and Idri et al. [101] also adopted the same methodology for conducting 

systematic mapping and review study. The protocol of our systematic study is shown in 

Figure 3.1. 

 

Figure 3.1. Research protocol for systematic mapping and literature review 

 

The objective for this study was to obtain a general view of the characteristics and 

usefulness of ESDP models reported in scientific literature. The authors searched for the 
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studies reported between 2000 and 2016. A total of 52 studies were reviewed and 

analyzed with regard to the trend and demographics, maturity of state-of-research, in-

depth characteristics (datasets used, SDLC phases, software metrics, prediction methods, 

contextual information), prediction performance evaluation and benefits of ESDP 

models. A more detailed classification scheme of the SLR is given in Table 3.1.  

 

Table 3.1. Classification scheme 

Research 

Question 

Property Possible Values (M)ultiple/ 

(S)ingle 

RQ1.1 Dataset Type Public, Private M 

RQ1.2 SDLC Phase Requirement, Design, Coding, Testing M 

RQ1.3 Software Entity Product, Process, Resource M 

RQ1.4 Attributes Associated 

with Product Entity 

Size, Structure M 

Attributes Associated 

with Process Entity 

Effort, Stability, Process Maturity, 

Number of Defects, Adequacy, Time 

M 

Attributes Associated 

with Resource Entity 

Project, Human M 

RQ1.5 Software Metrics Full list is given in Table 3.3. M 

RQ1.6 Prediction Method Bayesian Network, Fuzzy Logic, Machine 

Learning, Statistical 

M 

RQ1.7 Contextual 

Parameters 

Commercial, Criticality, Development 

Methodology, Domain, Programming 

Language, Quality Expectancy, Size, 

System Type 

M 

RQ2.1 Performance 

Evaluation Methods 

Categorical, Continuous S 

Performance 

Evaluation Measures 

ROC, AUC, PD (Recall), PF, Precision, 

Accuracy, F-measure, error measures, 

goodness-of-fit, ranking results, accuracy, 

difference between expected and observed 

M 

RQ2.2 Prediction 

Performance Values  

Performance values based on mostly 

reported measures such as AUC or MMRE 

M 

RQ2.3 Benefits Full list is given in Table 3.5. M 
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As seen in Table 3.1, the first column represents the research questions that are relevant 

to each property in the classification scheme listed in the second column. The set of all 

possible values for each property is given in the third column. The fourth column indicates 

if a property can have multiple values. For example, a study may have used more than 

one prediction method; therefore, multiple possible values regarding prediction method 

category will be marked in this case. The explanation for each property and related 

possible values are given below. 

• “Dataset type” refers to the access the data used in the study is whether public or 

private. Neither dataset, defect data nor source code is available for “private” 

datasets. It is therefore not definite if the study is reproducible. It is worth to note 

that if the study did not mention the availability of dataset, it was categorized as 

private.  On the other hand, in “Public” datasets, the metrics and the defect data 

are publicly available (e.g., PROMISE Data Repository), therefore, the study 

using public datasets is considered reproducible. 

• “SDLC phase” states the software development life cycle stage that originates the 

metrics for the prediction model. In other words, this property explains the phase 

in which the inputs needed for the prediction model are obtained. The phases were 

categorized as Requirement, Design, Coding, and Testing. Together with the 

phase information, it would be beneficial to report the software development 

method used in the studies; however, only a few papers [S1, S5, S13, S37] clearly 

expressed the development method used. 

• According to [54], as the first rule for performing software measurement activity, 

it is crucial to identify the entities and attributes of the measure. Therefore, based 

on definitions of Fenton and Bieman’s classifying software measures [54] and 

measurable product and process attributes of Florak et al. [102], we include 

“Software Entity” and “Attributes Associated with Each Entity” to describe the 

type of the entities and their related attributes, respectively. Some of these 

attributes are highly relevant with software metrics used as inputs to the ESDP 

models. During the review of the papers included in this systematic review, those 

attributes and metrics were progressively added to the classification scheme. 

• “Prediction Method” expresses the specific method used in the study regarding 

the building of the prediction model. Examples of prediction methods include 
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machine learning, fuzzy logic based, Bayesian Network based, statistical based 

etc.  

• “Contextual Parameters” are required to obtain more detail about the datasets used 

in prediction studies. We adopted some of the contextual characteristics from [19] 

and [103]. Examples of contextual parameters include domain, programming 

language, and size of the software, development methodology used in the project 

life cycle etc. 

• “Performance Evaluation Methods and Measures” are necessary for assessing the 

success of the prediction model. According to the classification of Hall et al. [8], 

defect prediction studies may report their results via categorical or continuous 

dependent variables.  

• “Benefits” were categorized with regard to the mostly reported qualitative benefits 

in the primary studies. They were gathered through the iterative cycles of the full-

text reading and categorized with regard to similar phrases which primary studies 

reported as a benefit or advantage. 

 

3.4.1. RQ 1: What are the characteristics of ESDP models? 

3.4.1.1. RQ1.1 Which types of datasets are used for performing the prediction? 

The distribution of the dataset types given in Figure 3.2. Public datasets (50%) were 

preferred since they are open to access. Public datasets includes: 1) NASA Metrics Data 

Program (MDP) which is located in PROMISE repository [58], 2) qualitative and 

quantitative data about 31 projects that were published in [20], and 3) raw data published 

in [S16]. Private datasets were also used (with 48%) in ESDP studies, which belonged to 

industrial companies or individuals. One study did not use any type of dataset as it is not 

a case study, it only proposes the defect prediction model [S17]. Moreover, in order to 

see the change of interest to public or private dataset types, the cumulative distribution 

over years is presented in Figure 3.3. It was obtained from the number of dataset types 

used in the studies by summing them over the years.  
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Figure 3.2. Distribution of dataset types 

 

 

Figure 3.3. Cumulative number of dataset types per year 

 

3.4.1.2. RQ1.2 What are the development phases that originate metrics for the 

prediction models? 

The individual numbers of SDLC phases included in prediction models are provided in 

Figure 3.4. While three studies used only requirement phase-based data, eleven studies 

preferred only design phase-based data. Six studies focused on requirement, design and 

coding phase-based data together; and, six studies included only design and coding phase-

based data for early defect prediction. 
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Figure 3.4. Individual distribution of SDLC phases 

 

The cumulative percentages of the SDLC phases associated with early prediction studies 

can be seen in Figure 3.5. Overall, 33 studies covered requirement phase-based data for 

the early prediction. Besides, 39 studies included design phase-based data in the 

prediction methods. Design phase-based data was mostly preferred (32%) while 

constructing early prediction models. In addition, it is important to note that there is a 

high adoption of requirement phase-based data (27%) in order to provide earlier 

prediction results. Since studies that used requirement and design phase-based data 

mostly covered coding phase-based data too; its percentage was about 29%.  
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Figure 3.5. Cumulative distribution of the SDLC phases 

 

3.4.1.3. RQ1.3 What are the entities that originate metrics for the prediction 

models? 

The software entities subject to prediction studies were elicited from the software metrics 

used in the studies. Twenty-seven studies used only product entity-based data, and three 

studies used metrics of process entity. Six studies used both product and process entity-

based data to gather metrics, where only two studies used metrics from process and 

resource entities together. Fourteen studies used metrics that were related to all entities. 

The individual distribution of the entities among all studies is shown in Figure 3.6. 

 

 

Figure 3.6. Individual distribution of software entities 
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Overall, 47 studies (53% of total) covered product entity related metrics to collect data 

for early defect prediction. Twenty-five studies (29%) included process entity-based data 

and 16 studies (18%) covered resource related data. The cumulative distribution of the 

software entities used in studies can be seen in Figure 3.7. It can be seen that product was 

the most common to measure since it is more concrete and there is a room for further 

studies that address process and resource entities in building ESDP models. 

 

 

Figure 3.7. Cumulative distribution of software entities 

 

3.4.1.4. RQ1.4 What are the attributes of each entity, which originate metrics for the 

prediction models? 

Software attributes associated with each software entity were classified based on [54,102] 

as shown in Table 3.2. Accordingly, product structure, size, process effort and human 

resource characteristics were the most included attributes in the prediction models. 

 

3.4.1.5. RQ1.5 What are the software metrics that are used in the prediction models?  

Software metrics associated with each software attribute have been classified based on 

[54,102] as shown in Table 3.3. According to the table, lines of code (LOC) or number 

of use cases, McCabe’s and Halstead’s complexity metrics, requirements stability and 

staff experience were the most used metrics in ESDP models. 
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Table 3.2. Software attributes and referencing studies 

Software 

entity 

Software 

attribute 

Explanation of the 

attribute 

References # of 

Refs 

Product Size Identifies the magnitude 

of the work products 

such as LOC or number 

of use cases. 

S1, S2, S50, S33, S29, S37, S15, S21, 

S28, S49, S32, S11, S12, S3, S9, S4, 

S47, S35, S27, S13, S42, S34, S20, 

S10, S25, S16, S19, S36, S41 

29 

Structure Covers the flow of the 

work products such as 

Complexity, Length, 

Coupling, Cohesion, 

Modularity or Reuse. 

S2, S51, S52, S50, S33, S29, S21, S17, 

S28, S8, S18, S38, S32, S11, S12, S3, 

S9, S4, S47, S14, S40, S35, S42, S24, 

S34, S43, S20, S44, S30, S6, S39, S22, 

S7, S48, S25, S16, S36, S19, S45 

39 

Process Effort Covers the measures 

related to the effort of a 

process activity. 

S1, S2, S5, S37, S23, S31, S26, S8, 

S32, S40, S35, S13, S46, S24, S34, 

S43, S30, S7, S10, S48 

20 

Time Covers the measures 

related to the time for a 

process activity. 

S15, S31, S41 3 

Stability States the changefulness 

of a process artifact. 

S2, S37, S17, S8, S49, S32, S35, S27, 

S24, S34, S43, S30, S7, S10, S48 

15 

Process 

Maturity 

States the maturity of 

the organization about 

the process activities. 

S2, S37, S8, S32, S40, S35, S24, S34, 

S30, S7 

10 

Number of 

Defects 

Specifies the number of 

defects found during a 

process activity. 

S1, S37, S15, S17, S8, S49, S35, S27, 

S13, S24, S30, S7, S10, S48 

14 

Adequacy Represents the quality 

or completeness of a 

process artifact. 

S2, S37, S49, S40, S35, S34, S43, S7, 

S41 

9 

Resource Project 

characteristics 

Covers the magnitude or 

quality of the input 

elements for software 

production, such as 

number of stakeholders, 

development language. 

S37, S15, S26, S49, S35, S46, S41 7 

Human 

characteristics 

Covers the personnel or 

team’s quality for the 

activities, such as 

experience, motivation. 

S2, S37, S15, S26, S49, S32, S40, S35, 

S27, S46, S34, S43, S30, S7, S10, S41 

16 
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Table 3.3. Software metrics and referencing studies 

Software 

entity 

Software 

attribute 

Software metrics References # of 

Refs 

Product Size LOC or number of use cases S2, S37, S15, S21, S49, S32, 

S47, S35, S27, S13, S42, S34, 

S10, S19, S41, S16, S36,  

17 

Size of artifact  S1, S13 2 

Size metrics from NASA projects 

(Halstead size metrics) 

S50, S33, S21, S28, S11, S12, 

S3, S9, S4, S25 

10 

Requirement metrics: action, 

conditional, continuance, 

imperative, incomplete, option, risk 

level, source, weak phrase 

S33, S28, S11, S12, S3, S9, S4, 

S20, S25 

9 

Structure McCabe Metrics (Complexity etc.) 

Halstead Metrics (total number of 

operators, operands etc.) 

S52, S21, S17, S47, S42, S44, 

S30, S39, S22, S7, S48, S19 

12 

Object-oriented Metrics 

(Complexity, Length, Coupling, 

Cohesion, Modularity, Reuse)  

Design metrics from UML [55] 

S51, S50, S29, S18, S14, S6, 

S16, S36, S19 

9 

Data flow complexity, cyclomatic 

complexity 

S8, S24, S43 3 

Requirements complexity, 

Complexity of new functionality 

S2, S37, S32, S35, S34, S48 6 

Program dependencies S38 1 

Design metrics: edge count, node 

count, branch count, decision count, 

multiple condition count and 

condition count, densities, 

complexities 

S20 1 

Architectural design metrics to 

quantify SDL (Specification and 

Description Language) blocks 

S45 1 

Process Effort Design, review or development 

effort measured in person hour 

S1, S5, S23, S37, S31, S40, S35, 

S13, S43 

9 

Creation effort, review effort  S26, S46 2 

Design review effectiveness S30, S7 2 

Review, inspection and walkthrough 

(RIW) 

S2, S8, S32, S24, S34, S30, S7, 

S10, S48 

9 

Time Total months of the project duration S15, S31, S41 3 
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Stability Requirements stability (RS), 

requirement change request 

S2, S37, S17, S8, S32, S35, S27, 

S24, S34, S43, S30, S7, S10, 

S48 

14 

Process 

Maturity 

Capability Maturity Model 

Integration (CMMI) Level 

S2, S37, S8, S32, S40, S35, S24, 

S34, S30, S7, 

10 

Number of 

Defects 

Number of defects from review S1, S37, S15, S35, S13 5 

Requirement fault density, design 

defect density, fault days number, 

code defect density  

S15, S17, S8, S27, S24, S10, 

S48,  

7 

Adequacy Analysis, design, review quality S37, S40, S35, S43 4 

Quality of documented test cases  S35, S7, S41 3 

Defined process followed S2, S32, S34, S35, S37 5 

Resource Project 

characteristics 

Number of stakeholders/members S15, S49, S41 3 

Development language S37, S15 2 

Configuration management S37, S35, S41 3 

Project planning S37, S35 2 

Scale of distributed communication S37, S35 2 

Vendor management S37, S35 2 

DBMS type, development solution, 

industry area 

S15, S41 2 

Techno complexity S26, S49, S46 3 

Urgency S46 1 

Novelty to developer S49 1 

Human 

characteristics 

Staff experience S2, S37, S32, S40, S35, S27, 

S34, S43, S7, S10 

10 

Staff motivation S37, S35 2 

Programmer capability S37, S35, S30, S7 4 

Staff training quality S37, S35 2 

Internal communication/interaction S37, S35 2 

Productivity S15 1 

Practitioners level S26, S46 2 

Stakeholder involvement S2, S32, S34 3 

People dependence S41 1 

 

3.4.1.6. RQ1.6 What types of methods are used to build the prediction models? 

Figure 3.8 shows the distribution of the prediction methods used for early defect 

prediction in the studies. It can be seen that machine learning-based methods were the 

most frequently used (with 39%). Machine learning methods included support vector 

machines, artificial neural networks, genetic algorithms, K-means clustering, decision 
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trees and so on. Fuzzy logic-based methods (28%) were widely preferred since fuzzy 

logic is appropriate for handling qualitative data gathered from early phases. In addition, 

Bayesian network-based methods were preferred (with 13%) thanks to its capability to 

measure abstract data, which exists in early phases. Statistical methods, which are mostly 

based on regression, were used for early prediction with the percentage of 20%. 

 

 

Figure 3.8. Distribution of prediction methods 

 

3.4.1.7. RQ1.7 What are the contextual parameters reported in the prediction 

models? 

The contextual parameters were gathered according to some references, such as [19] and 

[103]. It was investigated whether the studies reported the contextual parameters of the 

dataset explicitly or not. However, it was also possible for a study to address the 

contextual parameters in an implicit way. For example, if a study used NASA MDP data 

from PROMISE repository for early defect prediction, its contextual parameters can be 

inferred since the dataset is public to access. Besides, the contextual parameters about the 

NASA MDP dataset are known through the studies that reported this information 

explicitly, such as [S21, S44]. Overall, 14 studies [S3, S4, S9, S11, S12, S18, S20, S21, 

S22, S25, S28, S33, S42, S44] used NASA MDP dataset. In addition, some explicit 

contextual parameters were reported for public dataset published by Fenton et al. [S37], 

where 10 studies [S2, S7, S10, S27, S30, S32, S34, S35, S37, S43] used this dataset. 
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Lastly, a public raw data was published in [S16] and [S36] also used this dataset in their 

study.  

 

Reported contextual parameters of these public datasets are given in Table 3.4, which 

include business domain, product size (as KLOC), programming language, development 

methodology, and effort. 

 

Table 3.4. Context parameters of the public datasets 

Public Dataset 

# of 

Studies 

Use the 

Dataset 

Business 

Domain 

Size 

(KLOC) 

Programming 

Language 

Development 

Methodology 

Development 

Effort 

NASA MDP [58] 14 X X X   

Fenton dataset 

[20] 
10 X X X X X 

Data published in 

Cartwright and 

Shepperd [S16] 

2 X X X X  

 

Aside from these public datasets, the contextual parameters reported in 18 studies out of 

25 studies that used private dataset were extracted. Figure 3.9 shows those parameters 

and the distribution of numbers among the studies. It is seen from the figure that the most 

reported contextual parameter (with 25%) was domain information of the projects. Also, 

technical information of the software product was given by reporting programming 

language (19%), size of the product (16%), and the type of the system (14%). In addition 

to that, it was mentioned whether the software was commercial or not (14%). Some other 

information about the quality requirements or processes was reported, such as criticality 

or quality expectancy from the system, and development methodologies adopted during 

the life cycle of the software. Unfortunately, 10 studies (out of 52) did not address any 

information regarding the context of the data used. It is a disadvantage that studies 

reporting the context were relatively few, which makes it difficult to repeat the study and 

compare the model performances based on contextual similarity. 
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Figure 3.9. Categories of contextual parameters reported in 18 primary studies 

 

3.4.1.8. Observations on review by characteristics of models 

• Increased interest in public datasets is critical in terms of questioning the 

reproducibility of the studies. It is good to see that public datasets have gained 

interest through the years.  

• SDLC phase information is important on ESDP studies, since we define "early" 

studies as the ones that built the prediction models before coding phase has started, 

i.e. in requirement or design stages. Approximately 60% of the primary studies 

focus on requirement or design phases to construct their prediction models, which 

indicates the importance of these phases in ESDP.  

• It was observed that metric data based on product entity is mostly preferred in 

building ESDP models in the studies, while metric data based on process and 

resource entities follow that category.  

• Most interested attributes are product size and structure, process effort, and human 

resource characteristics.  

• Most commonly used metrics can be listed as follows: metrics that measure the 

length of the software product (i.e. LOC or number of use cases), complexity 
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related metrics (i.e. McCabe or Halstead metrics), effort for review activities, 

stability of requirements, maturity of the organization (i.e. CMMI level), and 

experience of the staff.  

• On the side of prediction methods used in the models, machine learning and fuzzy 

logic methods are the most frequently chosen ones. It is worth to note that, fuzzy 

rule-based models are relatively suitable to model the vague, incomplete, or 

qualitative data gathered from the early phases. That is why fuzzy logic-based 

approaches are preferred frequently in building ESDP models. 

• It can be said that contextual parameters have importance in the early phases of 

software development, since qualitative data is commonly used to construct the 

prediction models. Context information may undertake the task of guiding and 

can be helpful to build simple and effective models. 

 

3.4.2. RQ 2. Are models of ESDP successful and beneficial? 

3.4.2.1. RQ2.1 Which methods and measures are used for evaluating the 

performance of the models? 

Performance evaluation methods of the prediction results varied according to the 

dependent variable of the model, which in general were defectiveness and number of 

defects, corresponding to categorical and continuous performance evaluation, 

respectively. The distributions related to performance evaluation methods were given in 

Figure 3.10. It can be seen that more than half of the studies used continuous performance 

evaluation methods, while nearly one-quarter of them used categorical methods. 

Unfortunately, nine studies (17%) did not evaluate the performance of the prediction 

models. 
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Figure 3.10. Distribution of the prediction performance methods 

 

As mentioned above, categorical studies focused to predict whether the specific part of 

the software was defect-prone or not. Papers reported the prediction performance using 

ROC (Receiver Operating Characteristic), AUC (Area Under Curve), Probability of 

Detection (PD, Recall), Probability of False Alarms (PF), Precision, Accuracy, and F-

measure. Continuous studies, which predicted the number of the defects, reported the 

prediction performance using various measures. Most of the measures reported by 

continuous studies were related to error measures, goodness-of-fit, ranking results, 

accuracy, or difference between expected and observed results. The distributions related 

to performance evaluation measures for categorical and continuous models were given in 

Figure 3.11 and Figure 3.12, respectively. 
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Figure 3.11. Performance evaluation measures in categorical models 

 

 

Figure 3.12. Performance evaluation measures in continuous models 

 

3.4.2.2. RQ2.2 What are the performance values of the models based on the included 

SDLC phases that originate metrics for prediction? 

Performance data of the prediction was extracted for every individual ESDP model given 

in the papers. We collected the performance values for each model presented in the related 

paper and synthesized the values with regard to phase information of the model. Note that 

we used the notation “<phase> (n = <number of models>)” in the tables reported in this 

section, to be able to provide the number of models presented in the papers with regard 

to the phase information of the constructed model. It is important to say that there is a 

one-to-many relationship between a primary study and the number of models it presents, 
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and ‘n’ values belong to the sum of the individual models presented in each study with 

regard to a specific phase. 

 

Most of the categorical studies reported AUC or Precision, Recall, and F-measure, 

therefore we analyzed the results through these measures. Also, we provided f-measure 

where it was not reported by the paper directly, as it can be calculated from precision and 

recall. In order to interpret performance evaluation results, we used box-plots that are 

beneficial to show the differences between populations visually as they do not make 

assumptions about the distribution of the data [8]. Therefore, we provided the categorical 

performance results with regard to phase information by using two different box-plot 

graphics, in order to observe its likely effects on prediction performance. Figure 3.13 

shows the results based on AUC values; while Figure 3.14 shows the results based on 

precision, recall, and f-measure values that were provided. It is very important to see that 

models based on requirement and design phase metrics were very successful based on 

both AUC and f-measure values, which were pretty close to 1.0. 
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Figure 3.13. Performance results (AUC) regarding phase in categorical studies 
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Figure 3.14. Performance results (f-measure, precision and recall) regarding phase in 

categorical studies  

 

For the continuous studies, the prediction performance results were reported in a variety 

of measures, which makes it difficult to convert the results into a common measure. 

Mostly preferred performance measures reported in continuous studies were based on 

error measures, which are Mean Magnitude of Relative Error (MMRE), Root Mean 

Square Error (RMSE), Balanced Mean Magnitude of Relative Error (BMMRE), and 

Mean Absolute Error (MAE). MMRE results with regard to phase information were 

provided in Figure 3.15, which were reported in 10 studies [S7, S10, S15, S27, S30, S34, 

S37, S43, S48, and S49]. Except an outlier value reported in [S37], which belonged to a 

Bayesian network-based model built with data from all phases, it can be seen that most 

MMRE results were smaller than 0.5. In addition, it is very important to see that three 

models including only requirement phase-based data [S10, S15, S49] resulted in an 

MMRE value of approximately 0.28, which was smaller in comparison to the error value 
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of the models based on requirement and coding phase data in [S27]. Also, models based 

on requirement and design phase-based data in [S48] and design phase-based data in 

[S15] reported good performance values, which were MMRE = 0.098 and MMRE = 0.2, 

respectively. Besides, it is important to note that these models were based on different 

kinds of prediction methods (i.e. Bayesian networks, fuzzy rule-based and statistical 

techniques), which might have had an effect on the performance of the prediction apart 

from the phase information. Still, despite the differences in prediction methods, ESDP 

models demonstrated desired (high) performance. 

 

 

Figure 3.15. Performance results (MMRE) regarding phase in continuous studies 
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Moreover, R2 values were also preferred among continuous studies. We provide those 

results with regard to the phase information in Figure 3.16. It can be seen that the most 

successful model [S13] was built with integrating data from the requirement, design, 

coding, and testing phases together (with R2 = 0.989). Two studies [S10] and [S27] 

presented an ESDP model based on data only from the requirement phase with the 

performance values very close to 1.0, which were R2 = 0.971 and R2 = 0.951, respectively. 

These two distinctive studies demonstrate the power of requirements stage in the 

performance of ESDP models. 

 

 

* Retrieved from [S10] 

Figure 3.16. Goodness-of-fit (R2) values reported in continuous studies 

 

3.4.2.3. RQ2.3 What are the benefits of early defect prediction as reported in the 

studies? 

Only few of the studies, i.e. [S37] and [S49], both using Bayesian Network models, 

reported comprehensive benefits of the ESDP. In [S37], it was indicated that an obvious 

benefit of a Bayesian Network was its capability to organize a range of decision analysis 

and risk assessment modeling, which were conceivably important for software project 

managers. In addition, decision support capability was explained with example scenarios, 

in which the model parameters were changing regarding to the values of others, especially 

when the resource constraints made some of them impossible to increase. In [S49], the 

usability of the model was evaluated by using data (e.g. size of artifacts, number of 

defects) collected for five historical projects. Knowledge of seven domain experts was 

gathered by using questionnaires in order to build the prediction model, which required 

112 min per expert. The results indicated that the model was useful for quality assurance 
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(QA) planning by identifying high-risk projects. Moreover, this also applied for QA 

controlling by providing better prediction for the number of defects than models using 

only measurement data. Consequently, it was stated that the proposed hybrid prediction 

model would be used in the software requirements phase of the company to support QA 

activities.  

 

Aside from these two studies, most of the other studies concluded with a couple of general 

findings, which represented the benefits of early models verbally. We have categorized 

those benefits with regard to the mostly reported benefits in the primary studies. Table 

3.5 presents the benefits of early software defect prediction and highlight the main focuses 

that the ESDP models can be used advantageously. It is worth noting that; for better 

clarification of this RQ, we performed "reciprocal translational analysis" reported in 

Dixon-Woods et al. [104]. This technique is helpful in order to analyze and synthesize 

the qualitative data and translate the main benefits reported across primary studies to the 

headings to identify the similarities between them. 

 

Table 3.5. Reported benefits of early software defect prediction 

Benefit 

ID 

Benefits Focus Reported Benefits Primary Studies # of 

Studies 

B1 Useful for software 

practitioners in 

requirement phase 

ESDP models can be beneficial to software 

engineers, managers and researchers for defect 

prediction in the requirement phase of software 

development. 

[S10, S49] 2 

B2 Useful for software 

practitioners in 

design phase 

Experiments resulted in the fact that design 

metrics can be used accurately as software 

defect indicator in early phases of software 

development.    

[S16, S19, S22, 

S29, S36, S44, 

S51, S52] 

 

8 

B3 Supports making 

best design 

decisions with the 

help of design 

phase metrics 

Design phase-based metrics are good predictors 

of software defects, thus they support for 

selecting the suitable design among the 

available different design choices by avoiding 

defect-prone areas of the software. 

[S6, S14, S38] 3 

B4 Improved and 

effective resource 

planning 

ESDP provides a basis for effective resource 

planning and utilization by allocating the 

necessary resources (human, computer of 

infrastructure) optimally. 

[S2, S3, S4, S5, S7, 

S8, S9, S11, S15, 

S18, S20, S23, S24, 

S25, S28, S30, S32, 

S43, S46, S48] 

20 
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B5 Improved testing 

focus and effective 

testing effort 

planning 

ESDP models can be used for prioritizing 

software testing activities effectively with a 

specific focus on defective parts of the software 

in a comprehensive way, hence enable 

developers, testers or verification experts to 

concentrate their time and resources on the 

problematic areas. 

[S5, S9, S10, S11, 

S12, S13, S18, S19, 

S23, S25, S28, S31, 

S33, S35, S38, S41, 

S43, S46, S47] 

19 

 

B6 Developing cost 

effective software 

and providing cost 

reduction 

Identifying defective parts of the software early 

in the SDLC may lead to reduce cost by better 

planning and management of the project. Early 

identification of cost overruns and making 

corrective actions enable the software teams for 

developing cost effective software. 

[S2, S7, S8, S9, 

S10, S18, S24, S30, 

S32, S42, S45] 

11 

B7 Useful in 

optimizing 

software schedule 

Early prediction of defects supports software 

managers through improved scheduling and 

early identification of schedule mismatch. 

[S9, S10, S30, S32, 

S35] 

5 

B8 Helpful for 

developing more 

reliable software 

Predicting defects early in the SDLC can be 

used to achieve high software reliability by 

making effective strategies for improving the 

reliability of the whole system and deciding the 

necessary amount of corrective actions is 

achieved or not in order to achieve target 

software reliability. 

[S2, S6, S7, S8, 

S12, S14, S17, S24, 

S32, S35, S47]  

11 

B9 Effective project 

planning and 

management 

Early life cycle prediction can play an 

important role in project management by 

supporting software quality engineering 

through highlighting the quality needs earlier. 

Involving early phase risk mitigation and 

planning frequent review activities may also 

provide better software project management.  

[S5, S15, S23, S31, 

S33, S35, S40, 

S51] 

8 

B10 Effective decision-

support 

ESDP provides effective decision-support and 

enables to make correct decisions regarding 

rework, testing and release planning. Software 

developer may easily detect the defective 

artifacts and may make correct decisions 

accordingly. 

[S7, S20, S23, S30, 

S37, S40] 

6 

B11 Trade-off analysis ESDP models provide to make effective trade-

off analysis during early phases of software 

development. 

[S20, S37] 2 

B12 Improved software 

process control 

Early prediction is used to improve software 

process control by early identification of 

software development process issues, therefore 

will be helpful for taking corrective actions 

through process improvement. 

[S12, S30, S35] 3 
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3.4.2.4. Observations on review by performance of models 

Regarding performance evaluation methods, most studies choose to predict the number 

of defects that exist in the software (i.e. continuous studies); hence they prefer to report 

performances based on measures related to error-rate.  

 

We extracted performance values of continues studies with regard to MMRE and R2 

values. It is very important to see that studies include only requirement phase-based data, 

only design phase-based data, and requirement/design phase-based data together reported 

good performance values, in terms of MMRE values smaller than 0.28. We can also say 

that two studies [S10] and [S27] presented models based on data only from the 

requirement phase with R2 = 0.971 and R2 = 0.951, respectively, which may indicate the 

power of requirement phase-based data for ESDP. 

 

When we look at the phase-based performance values of the categorical models, we see 

that model types established from the early-stage knowledge are successful. One of the 

most important finding of this systematic review is that models based on requirement and 

design phase metrics are very successful based on both AUC and f-measure values, which 

are pretty close to 1.0. 

 

The main benefits of the ESDP as reported in the studies can be listed under several 

topics: 

• It can be beneficial to software project managers by supporting early planning and 

management of project with higher quality in requirement or design phases of 

software development. 

• It may provide a basis for effective resource planning by allocating the necessary 

resources optimally. 

• It can be useful for planning of testing activities effectively, reducing the testing 

effort, and focusing the defective parts of the software in a comprehensive way as 

defect-prone areas will be already known. 
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• It may be used as a decision analysis mechanism during early phases of software 

development by supporting design decisions and helping the developers to select 

the suitable design choice by avoiding defect-prone areas of the software. 

• The cost of the software development could be optimized and even may be 

reduced through early defect predictors. 

• Early software defect prediction helps software managers on planning schedule 

effectively. 

• High software reliability may be achieved and guaranteed early in the SDLC, by 

identifying the defective parts earlier. 

• Predicting defects early in the software life cycle may improve software process 

control with early identification of the issues in software development processes. 

 

Consequently, early phase data can help to build more accurate models when combined 

with metric data from the coding phase, and provide more benefits than software defect 

predictors based only on metric data from coding and testing stages.  

 

3.5. Software Defect Prediction in Turkey – A Survey Study from Industry (RQ3) 

A survey study was conducted to take a picture of the applications on SDP in software 

companies in Turkey. Mainly, we wanted to get the opinions of people working in 

different companies in the sector, and gather the needs and expectations of the industry. 

The relevant survey can be accessed via the Google forms4. 

 

3.5.1. Survey Design 

The questionnaire is structured in three parts. In the first part, the title information of the 

participant's company and some general information specific to the company are asked 

for statistical evaluation. In this context, there are questions such as quality certificates 

and activities carried out within the scope of quality management to determine the quality 

management approach of the company. Finally, it is asked whether software defect 

                                            
4  tinyurl.com/yc7ah7xt 
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prediction is applied in the company. The second part of the questionnaire is structured 

according to the answer to this question. 

 

If it is stated that software defect prediction is applied in the company; to understand in 

detail how the defect prediction process works, the following questions are asked: 

• How do you operate software defect prediction? 

• For what purpose do you apply software defect prediction? 

• At what phases of the software development life cycle do you predict defects? 

• Which metrics do you use for software defect prediction? 

• What approach(es) and/or tool(s) do you use to build the software defect 

prediction model? 

• What do you think are the benefits or advantages of software defect prediction 

applications in your company? 

• What do you think are the difficulties or disadvantages of software defect 

prediction applications in your company? 

 

If it is stated that there is no software defect prediction in the company; the following 

questions are asked to generate recommendations to motivate the useful application of 

defect prediction in software companies: 

• Why do you think software defect prediction is not applied in your company? 

• What do you think would be the benefits if software defect prediction was being 

applied in your company? 

• What kind of difficulties would you think if software defect prediction was being 

applied in your company? 

 

The final part of the questionnaire asks the following questions to understand the need 

for guidance for software defect prediction from the early phases of SDLC: 
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• Do you think it would be helpful if there was a guide on how to operate the 

software defect prediction process from the early phases of life cycle? 

• Is guidance needed for choosing the defect prediction method? 

• Is guidance needed to identify the inputs and outputs of the defect prediction 

model? 

• Is guidance needed for the creation of the defect prediction model? 

• Is guidance needed on how to predict defects? 

• Is guidance needed on how to evaluate defect prediction performance? 

• What do you think, in addition to the above issues, could be included in a guideline 

for software defect prediction from the early phases of software development? 

 

3.5.2. Results 

A total of 35 people participated in the survey. The data provided by the participants are 

shared in Appendix-2. The most important results grouped by the research questions can 

be listed as follows. 

 

RQ 3.1. If software defect prediction is applied, how does the company operate it? 

• 28.6% of the participants stated that software defect prediction was applied in 

their companies. 

• It was seen that 60% of the participants applied SDP to predict the number of 

defects, 50% for the prediction of defective components, and 50% for determining 

the severity of the defects. 

• It is seen that defect prediction is mostly applied in the requirement analysis phase 

of the software development life cycle (60%). This result is critical for addressing 

early-phase information while predicting the defects. In addition, it is seen that 

defect prediction is applied with a rate of 50% during the design phase. It is 

understood that the coding and testing phases are preferred by 50% and 40%, 

respectively. 
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• It is seen that process metrics are used with a rate of 90% in companies where 

defect prediction is made. Also, 80% of the participants stated that they used 

product metrics and 60% stated that they used resource metrics. 

• While it is seen that statistical methods / tools are mostly preferred as an approach 

to creating a prediction model (80%), it is seen that approaches based on expert 

opinion are used at a rate of 40% and machine learning approaches at a rate of 

20%. 

 

RQ 3.2. If the company is applying SDP, what are the advantages or disadvantages of 

applying it? 

• The benefits / advantages reported by those who stated that defect prediction was 

applied in their companies can be expressed as: predicting possible risks in 

projects, its contribution on time and quality management, and controlling the 

number of defects that will appear in future versions. 

• The difficulties / disadvantages of defect prediction were stated as: the lack of 

qualified human resources to apply prediction, the different dynamics of the 

projects and the inability to be used by the teams, while the possibility of incorrect 

prediction of the defects that may occur was reported as its disadvantage. 

 

RQ 3.3. If the company is not applying SDP, what would be the benefits and/or 

challenges in applying SDP in your company? 

• While 37.1% of the participants stated that no prediction was made, 34.3% of 

them stated that they did not know whether SDP was applied or not. 

• In companies that do not apply SDP, time, budget and cost constraints come to 

the fore, while the lack of experienced personnel and the lack of know-how on 

SDP are among the reasons for not using SDP models. 

• It was stated that if they would apply SDP in their companies, there would be an 

increase in efficiency and quality in the planning of development and testing 

processes, resource and time management could be made more efficiently, the 
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developed software could be produced with higher quality, thus increasing 

customer satisfaction, awareness, and reusability. 

• It was stated that in companies that do not apply SDP, if estimation were made, it 

would be the most important difficulty to collect the necessary data for applying 

SDP models, and there might be difficulties in building SDP models correctly. 

Besides, it is thought that SDP would bring an extra cost and workload. 

 

RQ 3.4. Is there a need for guidance on software defect prediction from the early phases 

of SDLC? 

• 89% of the participants stated that a guide would be helpful in choosing the SDP 

method and determining the inputs and outputs of the model. 

• 86% of the participants stated that there should be guidance on the building of the 

model, how to apply the prediction and how to evaluate its performance. 

 

In addition to these results, the survey contributors stated that issues such as which model 

will be selected in which type of projects and/or sectors among different models, usage 

and example scenarios of those models, and the benefits of the defect prediction process 

to the companies can be included in the defect prediction guide. 

 

In line with the information obtained from the literature review and the survey results, it 

was seen that a decision analysis method is required for the selection of the defect 

prediction method in the field of ESDP. In this direction, in the studies described in the 

next section, details are given for the steps of preparation, design and implementation of 

a decision analysis method that will provide a basis for the selection of the defect 

prediction method suitable for the early phases. 
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4. DECISION ANALYSIS APPROACH 

Up to this section, we have explored the feasibility of early phase defect prediction by 

addressing the most important aspects of SDP models. Thus, it was deemed appropriate 

to adopt a broad and comprehensive decision analysis approach to answer the crucial 

question of this thesis: “RQ4. How to select a method for early prediction of software 

defects?” 

 

In this section, the steps taken in order to systematically synthesize the information 

obtained as a result of the extensive literature review and to use it in the modeling of the 

decision analysis approach are explained by matching the related processes with the 

detailed RQs. 

 

4.1. Design of Decision Analysis Approach 

The design of the decision analysis approach can be seen in Figure 4.1. It consists of four 

components: the preparation for decision analysis approach, generating the knowledge 

base, modeling of the decision analysis approach and the application of the approach.  

 

 

Figure 4.1. Design of the decision analysis approach 

 

In the preparation stage for decision analysis, the literature was examined in detail as 

explained in Chapter 3.4, to reveal the current state of the early software defect prediction 

area. With this in mind, a list of alternatives to be compared during the decision analysis 

process was identified. After, several important characteristics that will be considered for 
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the selection of the alternative SDP methods, namely the criteria, were outlined. In doing 

so, an expert opinion study was prepared in order to gather opinions about the proposed 

criteria and to finalize them. The overall preparation process of decision analysis 

approach is given in Chapter 4.2-4.3. 

 

The knowledge base contains all the data in a format that was derived from the previous 

stage. At this stage, a base matrix is defined, which contains the values that the criteria 

can take for each alternative. A second expert opinion study is conducted in order to 

finalize the base matrix, as well as to evaluate the alternatives against criteria. Chapter 

4.4 covers the detailed steps executed to generate and develop the knowledge base.  

 

In Chapter 4.5, a questionnaire is presented to collect the preferences of the stakeholders 

to guide the selection in line with the criteria and alternatives. 

 

For modeling the decision analysis approach, all the information gathered in the 

knowledge base were synthesized. In this manner, a two-phase decision analysis approach 

that combines decision tree and MCDA methodologies is presented to form the decision 

analysis process for SDP method selection in the early SDLC phases. The decision 

analysis process is explained in detail in Chapter 4.6. 

 

For the application of the decision analysis, the characteristics of the example dataset and 

the stakeholders’ requirements are elicited through the proposed questionnaire. This 

allows the stakeholders to select the values of various attributes regarding their needs in 

the context of their software project and related defect dataset. In Chapter 5, the 

application of the decision analysis approach through several case studies were 

demonstrated. 

 

4.2. What are the alternative methods for building ESDP models? (RQ4.1) 

Based on our systematic literature review study on ESDP [15] and by considering other 

systematic reviews on SDP [8,10,82,83,105], several prediction methods were identified 
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to be considered as alternatives. In Table 4.1, these alternative methods and their basic 

characteristics were listed. The references to the primary studies were also provided in 

the rightmost column, which were helpful in retrieving the characteristics of the methods. 

 

Table 4.1. Characteristics of software defect prediction methods 

Method Approach to 

construct the 

SDP model 

Purpose of 

use 

Type of 

output  

Dataset size Primary Studies in 

[15] c 

ANN Data 

Dependent 

Classification, 

Regression 

Categorical, 

Numerical 

Medium / Large / 

Very Large 

S5, S23, S25, S29, 

S35, S36 

BBN Can Address 

Both 

Classification, 

Regressiona 

Categorical, 

Numericala 

No data requiredb, 

Small / Medium / 

Large 

S1, S14, S37, S40, 

S43, S46, S49 

DT Data 

Dependent 

Classification, 

Regressiona 

Categorical, 

Numericala 

Large S9, S33, S44, S52 

FIS Based on 

Human 

Judgement 

Classification, 

Regressiona 

Categorical, 

Numericala 

No data requiredb S7, S10, S12, S18, 

S27, S30, S32, S34, 

S48 

LinR Data 

Dependent 

Regression Numerical Small / Medium / 

Large 

S16, S47, S50 

LogR Data 

Dependent 

Classification Categorical Small / Medium / 

Large 

S19, S36, S51 

NB Data 

Dependent 

Classification Categorical Small / Medium S20, S21, S22, S42, 

S44 

SVM Data 

Dependent 

Classification, 

Regressiona 

Categorical, 

Numericala 

Medium / Large S38, S45 

a. May depend on the implementation of the algorithm 

b. Can be constructed independent from data 

c. Full references of primary studies can be obtained 

 

4.3. What are the criteria to consider when selecting a method for ESDP? (RQ4.2) 

4.3.1. Initially Defined Criteria 

The criteria that should be considered in the context of ESDP for the evaluation of the 

identified alternatives were determined and grouped under five main headings. The 

relevant criteria were defined roughly before the preparation stage of the decision 

analysis, which were first published as a conference paper [33], then matured and updated 

with various feedbacks received from the experts (e.g. in conference peer-reviews or 

expert opinion study described in the next sub-section).  



 

  

73 

To put it concretely, basic characteristics of the prediction methods have been considered 

for the determination and grouping of criteria, as well as the information required to build 

an SDP model in the early phases, such as data characteristics, data quality and the context 

information of the project. These criteria have also been mentioned in literature in various 

ways [8,37,38,41]. The grouping for the criteria is given as follows: 

• Model Construction (MC): The main purpose and model constructing approach 

are discussed under this group. 

• Data Characteristics (DCh): There are several characteristics which are crucial to 

address the constraints of the data that will be used for building the SDP model. 

• Data Quality (DQ): The quality characteristics of the data to be used to construct 

the SDP model are discussed under this group. 

• Method Characteristics (MCh): The characteristics of the methods to be used to 

construct the SDP model are discussed under this group. 

• Project Context (PC): The factors related to the context information of the project 

subject to SDP are discussed under this group. 

 

Next, the definitions of the criteria under each grouping are given below. 

 

Model Construction 

• Main purpose of use: The purpose of an SDP model can be predicting the number 

of defects or classifying the software as defective / defect-free (i.e. prediction 

versus classification) [106]. This information is said to be distinguishable for both 

the construction of the model and for the performance evaluation of the resulting 

model [8]. 

• Approach to construct the model: To construct the SDP model, we can use 

machine learning based methods that learn from historical data and make 

predictions on new data, or we can prepare a model that is independent from data 

with the help of expert judgement [106]. It is necessary to evaluate the modeling 

technique since different techniques may produce different results under varying 

conditions [8]. 
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Data Characteristics 

• Dataset size: Dataset size is the size of the dataset that will be used for training 

the model. Small (number of examples (n) ≤ 500), Medium (500 < n < 1000), 

Large (1000 ≤ n < 10000), Very Large (n ≥ 10000) [81,94,107]. 

• Type of input / output data: Type of data can be categorical or numerical [54]. 

 

Data Quality 

• Causality: Causality is the degree that attributes are dependent when the value of 

one attribute influences the other [21]. 

• Uncertainty: Uncertainty is the degree to which data is inaccurate, imprecise, 

untrusted or unknown [108]. 

• Missing data: Missing data is the values that are empty or left blank in the dataset 

[109]. 

• Outlier: Outlier is the degree to which the data do not meet with the general 

behavior of the dataset [110].  

 

Method Characteristics 

• Interpretability: Interpretability is the degree of which the user can understand the 

cause of any result (output) [37,111].  

• Complexity: Complexity is the degree to which the method is complicated or 

complex in design [37]. 

• Performance: Performance is the degree of which the method performs well in 

general [112]. 

• Speed: Speed is the degree of costs associated with generating and using the 

method [37]. 

• Maintainability: Maintainability is the degree of which the method is easy to 

manage in time [41]. 
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Project Context 

• Size of the artifact: Size metric of the artifact subject to SDP can be used as a 

coefficient (normalizer) if the case is predicting the number of defects [21]. It is 

important to note that, the size of the artifact is defined as an indicator of the 

project rather than an indicator of the dataset. 

• Development methodology: Development methodology is the approach used 

throughout the project's life cycle [15].  

• Development phase: Development phase information can be considered as the 

phase information (requirements analysis, design, coding etc.) when the SDP 

model is constructed [21]. 

• Domain: Domain information is about the business domain of the project [15]. 

 

4.3.2. Expert Opinion Study on Identifying and Ranking the Criteria 

To select the most suitable method for early software defect prediction, an expert opinion 

survey was prepared with a purpose of investigating the main factors (criteria) that were 

considered important for evaluating alternative SDP methods and weighting the 

determined criteria. 

 

The survey was prepared in Google Forms and it consisted of four sections5. In the first 

section, there was an introduction part to inform the experts about the research conditions, 

with the terms of agreement. In the second section, the participants were asked about 

some personal information to be processed for descriptive statistics anonymously. In the 

third section, each criterion was presented under the related criteria group given in the 

previous section. The experts were expected to evaluate each criterion based on a scale 

that consist of six values: “Not Important”, “Very Low”, “Low”, “Medium”, “High”, and 

“Very High”. In addition, the experts were expected to select which of the relevant criteria 

might be important in the context of the early phases. In the last section of the survey, 

experts could submit a new criterion proposal and rate its importance within a scale of 

                                            
5 https://tinyurl.com/2e6tvcd5 
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"Very Low" to "Very High". The results of the expert opinion survey were given in 

Appendix-3. 

 

The expert opinion survey was sent to twenty identified experts in the field via e-mail. At 

the end of the defined period, eight experts participated in the study. The descriptive 

information about the participant profiles is given in Table 4.2. 

 

Table 4.2. The profile of the experts 

Expert Organization 

Type 

Title Level of 

knowledge 

in SDP   

(out of 5) 

Experience 

on SDP  

(in years) 

h-

index 

# 

papers 

in 

SDP 

Years  

in 

Industry 

E1 Government Software 

Quality 

Manager 

3 3 - 5 years   15 

E2 University Assistant 

Professor 

5 6 - 10 years 24 21  

E3 University Professor 5 > 20 years 35 34  

E4 University Associate 

Professor 

5 11 - 20 

years 

25 19  

E5 Government Senior 

Software 

Engineer 

(PhD) 

5 6 - 10 years   13 

E6 Private 

Company 

Senior 

Software 

Engineer 

(PhD) 

5 6 - 10 years   12 

E7 University Associate 

Professor 

4 3 - 5 years 16 10  

E8 University Assistant 

Professor 

4 6 - 10 years 16 20  

 

Figure 4.2 shows the responses of the experts for all the criteria questions. Each response 

reflects the opinion of an expert about the importance degree of the related criteria in the 

context of software defect prediction. Verbal scales are defined as VH, H, M, L, VL, and 

NI that correspond to “Very High”, “High”, “Medium”, “Low”, “Very Low”, and “Not 

Important”, respectively.  
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Figure 4.2. Responses of the experts (E) regarding the criteria 

 

As mentioned before, the expert opinions were gathered about which of the relevant 

criteria may be important in the context of ESDP. Based on the answers, we determined 

that it would be more appropriate to address the criteria that were selected for ESDP 

context. According to the frequency values of each criterion shown in Table 4.3, “Domain 

information” criterion was eliminated since it has not been selected. 
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Table 4.3. Frequency values of each criterion 

Criteria # of selection for ESDP # of responses Frequency 

Main purpose of use 8 8 1 

Dataset size 7 8 0.875 

Approach to construct the model 6 8 0.75 

Performance 6 8 0.75 

Uncertainty 5 8 0.625 

Interpretability 5 8 0.625 

Maintainability 5 8 0.625 

Development phase information 5 8 0.625 

Type of the output 4 8 0.5 

Type of the input 4 8 0.5 

Missing values 4 8 0.5 

Outlier 4 8 0.5 

Complexity 4 8 0.5 

Causality 3 8 0.375 

Size of the artifact 2 8 0.25 

Development methodology 2 8 0.25 

Speed 2 8 0.25 

Domain information 0 8 0 

 

In addition, the elimination of the five initially defined criteria was decided in subsequent 

iterations. Below, the excluded criteria with their elimination reasons is presented. 

• “Type of the output”: This criterion was found to have values that are directly 

parallel to the values of the “Main purpose of use” criterion. Therefore, this 

criterion was eliminated to avoid addressing the same information. 

• “Type of the input”: It was found to be a neutral element, that is, it was not a 

criterion affecting the decision analysis during the evaluation of the alternatives. 

In other words, it was pruned from the decision tree according to the results of the 

second expert opinion study, because it had the same value for all alternatives. 

• “Development phase information”: This criterion would not be evaluated in a 

meaningful way in the decision-making process, since it was not clear enough 

which phase information could be handled by any of the alternatives. Besides, its 
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existence is good for any SDP method but does not affect selection, as it can be 

used only as an input element when building phase-based SDP models. 

• “Size of the artifact”: It was found to be useful as an input element (rather than a 

criterion) when building an SDP model in the early phases. 

• “Development methodology”: It is decided to address in future studies for two 

reasons: i) it may not be possible to know the development methodology in open 

datasets that are subject to the most empirical studies, ii) the projects included in 

the NASA dataset, which was also used in our case study, were developed long 

before the advent of agile methodologies. For this reason, it is assumed the 

development method as plan-driven in the relevant dataset and decided to consider 

the update of the knowledge base to address this criterion as a future work. 

 

4.3.3. Ranking and Weighting the Criteria 

The first two criteria groups (i.e. Model Construction and Data Characteristics) were used 

in the decision tree analysis, where the last two criteria groups (i.e. Data Quality and 

Method Characteristics) were used in the Fuzzy TOPSIS analysis, as described in more 

detail in the following sections. The main reason for this distinction is the data type 

considered when evaluating the alternatives for the first two criteria groups is nominal, 

while the data type considered for the last two criteria groups is interval. 

 

Ranking the criteria under MC and DCh 

A data transformation was performed to rank the criteria in the first two groups. Following 

transformation is used to convert verbally collected responses to the numerical weights 

within a scale from 1 to 5: 

• Very High (VH) corresponds to “5” 

• High (H) corresponds to “4” 

• Medium (M) corresponds to “3” 

• Low (L) corresponds to “2” 

• Very Low (VL) corresponds to “1” 
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To determine the criteria group order, the sub-criteria weights in the group were 

aggregated and a calculation was made by considering their average weights. After 

weighting a criteria group, each criterion was ranked in the group based on their 

median/mean values. Based on these values, criteria were reordered within the criteria 

group. In Table 4.4, the criteria group and criterion ranking with their resulted values 

(mean and median) determined from the results of this initial expert opinion study are 

demonstrated. These criteria would later be used in Phase - 1 of the decision analysis 

process, which is explained in Chapter 4.6.1. 

 

Table 4.4. Numerical values of the expert opinions and mean / median values 

Criteria 

Group 
Criteria E#1 E#2 E#3 E#4 E#5 E#6 E#7 E#8 

Group 

Mean 

Group 

Median 

Criteria 

Mean 

Criteria 

Median 

MC 

Main purpose 

of use 
5 5 5 5 5 5 5 4 

4.56 4.50 

4.88 5.00 

Approach to 

construct the 

model 

4 4 3 4 5 5 4 5 4.25 4.00 

DCh Dataset size 5 5 4 4 4 5 4 5 4.50 4.50 4.50 4.50 

 

 

Weighting the criteria under DQ and MCh 

As we used linguistic variables to gather the opinions of the experts, we needed to 

transform their values into the fuzzy numbers [113]. In fuzzy set theory, conversion scales 

are applied to transform the linguistic terms into fuzzy numbers. As for the last two 

criteria groups, aggregated fuzzy importance weights were calculated with regard to 

expert opinion study results given in Figure 4.2, since they would be used for the Fuzzy 

TOPSIS evaluation, which is explained in Chapter 4.6.2. 

 

4.4.  How should the most appropriate method be selected by evaluating the defined 

criteria? (RQ4.3) 

In order to develop the decision analysis approach, it is important to reveal the knowledge 

base that would provide the necessary inputs to the decision analysis process. In doing 

so, first the results were collected from literature review [15].  
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To execute the decision analysis process, alternative SDP methods should be evaluated 

on the basis of the final set of criteria. The information in the literature was gathered and 

synthesized, which is necessary for the evaluation of alternatives against criteria. Even 

though our knowledge could allow us to make the evaluation on the basis of criteria for 

alternatives, there would be a possible validity threat of reflecting only the views of the 

authors. To eliminate this threat, the opinions of experts in the field were reflected to the 

evaluation, so that a more reliable and robust decision analysis process could be operated. 

At this point, the knowledge base was not only an input for the preparation of the second 

expert opinion study, but also the outputs of the expert opinion study enabled us to update 

and finalize the knowledge base. When the second expert opinion study was conducted, 

its results revealed the "base (decision) matrix”, which should provide the basis for 

decision analysis.   

 

4.4.1. Expert Opinion Study for the Evaluation of Alternatives against Criteria 

This expert opinion survey was prepared to be helpful for creating the base matrix and 

selecting the most appropriate method for early software defect prediction. Therefore, the 

aim was to gather the expert opinions for evaluating the alternatives regarding each 

criterion in the context of ESDP. The experts were asked to complete the survey by rating 

the related criteria on each SDP method.  

 

This survey was also prepared in Google Forms and it consisted of eight sections6. As in 

the previous survey, the first section was an introduction form to inform the experts about 

the research conditions, with the terms of agreement. In the second section, the 

participants were asked about some personal information as well as with their degree of 

knowledge and experience years both in SDP and in building / using of the prediction 

methods. In addition, the experts were expected to choose their expertise level on the 

alternative methods, since this information would be used as a basis for scoring the 

alternatives. In the following sections, the criteria groups were presented with included 

criteria and their explanations to be evaluated by the experts. In the last section of the 

survey, experts could note any additional comments that should be considered when 

                                            
6 https://tinyurl.com/mryyx5hx 
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selecting the SDP method in the early phases. The results of the expert opinion study on 

the evaluation of alternatives against criteria were given in Appendix-4. 

 

The expert opinion survey was sent to fifteen identified experts in the field via e-mail. At 

the end of the defined period, four experts participated in the study. The descriptive 

information related to the participant profile were as follows: Two university staff with 

the title of assistant professor, one private sector staff with the title of senior software 

engineer (PhD), and one government staff with the title of senior software engineer (PhD). 

Two of the participants reported the degree of knowledge as 4 out of 5 while the other 

two reported it as 5. Two participants reported their years of expertise in the field of SDP 

as 3-5 years, and the other two participants as 6-10 years. Three participants reported the 

degree of knowledge in prediction methods as 4 out of 5, while the other participant 

reported it as 5. Lastly, one participant stated the years of experience on building / using 

of the prediction models as 3 - 5 years, where two participants stated it as 6 - 10 years and 

the other one stated it as 11 - 20 years. 

 

The values reflected to the base matrix from the expert opinion study results are 

summarized in Table 4.5 for the first two criteria groups (“model construction” and “data 

characteristics”), and in Table 4.6 for the last two criteria groups (“data quality” and 

“method characteristics”).  

 

4.4.2. Base Matrix 

In base matrix, possible values of the criteria were extracted for each alternative. For the 

first two criteria groups (“model construction” and “data characteristics”), base matrix 

was easier to fill in, since the values that the criteria could take on the basis of alternatives 

were more precise. However, for the other criteria groups (“data quality” and “method 

characteristics”) it was not that easy to distinguish the values of the criteria and evaluate 

them clearly, since they contained uncertainty for decision makers. For example, to assess 

the “Interpretability” criterion, it was harder to answer the question “Do you think the 

following methods are interpretable?” than “To what extent do you think the following 

methods are interpretable?”. The main reason for this was the first question is a “yes / no” 
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question, while the second question contains a scale that supports a linguistic rating. For 

this reason, the results of the second expert opinion study is used to finalize the base 

matrix, especially for those vague criteria groups. Table 4.5 demonstrates the final base 

matrix generated based on both the literature review and the expert opinions for the first 

two criteria groups. This table was then used as a basis for “Phase - 1: Decision Tree 

Analysis”, as we explain in Chapter 4.6.1. 

 

Table 4.5. Base matrix for the decision tree analysis 

Method Main Purpose of use 
Approach to 

construct the model 
Dataset Size 

ANN Classification, Prediction Data Dependent Medium / Large / Very Large 

BBN Classification, Predictiona Can Address Both No datab, Small / Medium / Large 

DT Classification, Predictiona Data Dependent Large 

FIS Classification, Predictiona Human Judgement No datab 

LinR Prediction Data Dependent Small / Medium / Large 

LogR Classification Data Dependent Small / Medium / Large 

NB Classification Data Dependent Small / Medium 

SVM Classification, Predictiona Data Dependent Small / Medium 

a. May depend on the implementation of the algorithm  

b. Can be constructed independent from data 

 

Table 4.6 demonstrates the final base matrix generated based on the expert opinions for 

the last two criteria groups. Here, the formula used for weighting the criteria (Eq. 4.1) 

was used similarly to evaluate the alternatives against criteria based on the responses of 

four experts participated in the second expert study. In other words, the aggregated fuzzy 

values of the alternatives with regard to the criteria were reflected in this base matrix. 

This table was then used as a basis for “Phase - 2: MCDA (Fuzzy TOPSIS)”, as explained 

in Chapter 4.6.2. 
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Table 4.6. Base matrix (continued) for the Fuzzy TOPSIS evaluation 

  ANN BBN DT FIS LinR LogR NB SVM 

Causality 

1 3 1 1 1 1 1 1 

4 7.67 3.67 5.5 2.33 3 2.33 3 

7 9 7 9 5 7 7 7 

Uncertainty 

1 3 1 1 1 1 5 1 

5 7.67 4.33 4 3.67 3.67 7.67 4.33 

9 9 7 7 7 7 9 7 

Missing Data 

3 3 1 1 1 1 5 1 

5.5 7 5 5 4.33 4.33 7.67 5 

9 9 9 9 9 9 9 9 

Outlier 

5 3 1 1 1 1 1 1 

7 5.67 4.33 4.33 4.33 5 5 4.33 

9 9 9 7 7 9 9 9 

Interpretability 

1 3 5 3 5 5 3 1 

1 6.33 8.5 7.67 7.67 7.67 7 3 

3 9 9 9 9 9 9 7 

Complexity 

5 3 1 1 1 1 1 1 

8 6.33 2.33 3.67 1 1 2.5 5.5 

9 9 5 9 3 3 7 9 

Performance 

3 3 5 1 3 5 5 3 

7.5 6.33 7 4.5 6.33 7 7 5.5 

9 9 9 9 9 9 9 9 

Maintainability 

1 3 1 1 3 3 3 1 

4 6.33 3.67 5 6.33 6.33 6 3 

9 9 9 9 9 9 9 7 

Speed 

1 3 5 1 3 3 5 3 

3.5 5.67 8.33 4.5 7.67 7.67 8.5 5.67 

9 9 9 9 9 9 9 9 

 

4.5. How should we gather the characteristics of the project data and the needs of 

the users systematically? (RQ4.4) 

It should be re-emphasized that the choice of the method to be used to build the SDP 

model depends mostly on the data to be used, as well as the needs of the stakeholders to 

apply the model in the early phases [94,114]. For this purpose, a questionnaire was 

proposed to reveal the values of the criteria in a comprehensible manner in terms of being 

the basis of decision analysis.  This questionnaire needs to be filled before the application 

of the decision analysis, each time, prior to the ESDP effort. 
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Questionnaire to address the needs of stakeholders in a systematic manner is given in 

Table 4.7 along with the criteria that each question is related to. The questions should be 

answered by “yes” or “no”. In order to facilitate the answering process, te selection type 

is also specified for each criteria group. If the criteria will be evaluated by answering 

multiple questions, the user is expected to answer more than one question. 

 

Table 4.7. Questionnaire for evaluation of SDP methods in the early phases 

Criteria 

group 
Criteria Selection type Questions 

Model 

Construction 

Approach to 

construct the model 
Select multiple 

Do you want your method be dependent on data? 

Do you want to address human judgement? 

Main purpose of use Select one 
Do you want to perform classification? 

Do you want to make a numeric prediction? 

Data 

Characteristics 
Dataset size Select one 

Do you have a large sized dataset to train an SDP 

model? 

Do you have a medium sized dataset to train an 

SDP model? 

Do you have a small sized dataset to train an SDP 

model? 

Data quality 

Causality 

Select multiple 

Is there any dependency between data attributes? If 

yes, do you want to address these dependencies? 

Uncertainty 
Is there any uncertainty in the data? If yes, do you 

want to address the uncertainty? 

Missing data 
Is there any missing point in the data? If yes, do 

you want to handle the missing data? 

Outlier 
Is there any outlier in the data? If yes, do you want 

to handle these outliers? 

Method 

Characteristics 

Interpretability 

Select multiple 

Is it important that SDP method has high 

interpretability? 

Complexity 
Is it important that SDP method has low 

complexity? 

Performance 
Is it important that SDP method has high 

performance? 

Maintainability 
Is it important that SDP method has high 

maintainability? 

Speed Is it important that SDP method has high speed? 
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4.6. Modeling the Decision Analysis Approach 

4.6.1. Phase - 1: Decision Tree Analysis 

According to the ranking of identified criteria groups presented in Table 4.4 and the base 

matrix given in Table 4.5, the first phase of the decision analysis process was designed 

based on the decision tree concept. The first two criteria groups (“Model Construction” 

and “Data Characteristics”) were included in the decision tree construction. In fact, the 

tree was structured based on the rules extracted from the base matrix. Proposed decision 

tree is intended to recommend a subset of alternative methods in line with the needs and 

requirements of the practitioner. In Figure 4.3, proposed decision tree for the first phase 

of the decision analysis process was presented. 

 

 

Figure 4.3. Decision tree for the phase–1 of the decision analysis process  

 

4.6.2. Phase - 2: MCDA (Fuzzy TOPSIS) 

According to the weights of all criteria presented in Table 4.5 and the base matrix given 

in Table 4.6, the second phase of the decision analysis process was designed based on the 

MCDA concept. The last two criteria groups (“data quality” and “method 

characteristics”) were included in the construction of MCDA model. Proposed MCDA 

was intended to rank the subset of alternatives in line with the needs and requirements of 

the practitioner. 
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Fuzzy TOPSIS method was adopted for MCDA application due to its success in 

addressing the incomplete or vague information into the decision analysis process of an 

uncertain context like SDP method selection [115]. For ranking the alternatives, the 

implementation of the Fuzzy TOPSIS method was applied by following the steps 

proposed by Chen [78]. As given in the previous sections, the criteria and alternatives 

were identified and are summarized in Table 4.8. Below, the steps for the implementation 

of the Fuzzy TOPSIS algorithm is explained.  

 

Table 4.8. Defined criteria and alternatives for Fuzzy TOPSIS application 

Criteria ID Criteria Name Alternative ID Alternative Name 

C1 Causality A1 ANN 

C2 Uncertainty A2 BBN 

C3 Missing Data A3 DT 

C4 Outlier A4 FIS 

C5 Interpretability A5 LinR 

C6 Complexity A6 LogR 

C7 Performance A7 NB 

C8 Maintainability A8 SVM 

C9 Speed 

 

Step 1. Define the linguistic variables and their corresponding fuzzy values 

The linguistic values used in the expert opinion study and their corresponding fuzzy 

values were determined as given in Figure 4.4.  

 

 

Figure 4.4. Linguistic variables and their corresponding fuzzy values 

Linguistic Values  Corresponding Fuzzy Values 

Very Low (VL) (1,1,3) 

Low (L) (1,3,5) 

Medium (M) (3,5,7) 

High (H) (5,7,9) 

Very High (VH) (7,9,9) 
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Here, we chose using triangular fuzzy numbers for the five linguistic variables as 

presented in [116] and applied a scale of 1 to 9 for weighting the identified criteria. In 

Table 4.9, we introduced the aggregated fuzzy weights for each criterion that we 

calculated based on the formula presented in [80]. Where, K is the total number of 

decision makers (in our case there are eight experts), and W is the weight of a criterion, 

the aggregated fuzzy weight w˜j = (wj1, wj2, wj3) for a criterion Cj is calculated as follows: 

                    𝑊𝑗1 =  min
𝑘

{𝑤𝑗1
𝑘 } , 𝑊𝑗2 =

1

𝐾
 ∑ 𝑤𝑗2

𝑘𝐾
𝑘=1 , 𝑊𝑗3 =  max

𝑘
{𝑤𝑗3

𝑘 }                (Eq. 4.1)

   

Table 4.9. The aggregated fuzzy weights for the criteria under DQ and MCh 

Criteria Group Criteria Aggregated Fuzzy Weights 

Data Quality (DQ) 

Causality 1.00 5.75 9.00 

Uncertainty 1.00 7.50 9.00 

Missing Data 1.00 6.25 9.00 

Outlier 3.00 6.50 9.00 

Method Characteristics (MCh) 

Interpretability 1.00 6.75 9.00 

Complexity 1.00 6.25 9.00 

Performance 5.00 8.00 9.00 

Maintainability 1.00 7.00 9.00 

 Speed 1.00 5.00 9.00 

 

Step2. The decision makers (DMs) evaluate the ratings for each alternative with respect 

to each criterion by using the determined linguistic variables as shown in Figure 4.5. 

 

 

Figure 4.5. Decision matrix for DM1 
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Step 3: The ratings of the DMs is converted into the fuzzy decision matrix (Figure 4.6) by 

using triangular fuzzy numbers given in Figure 4.4. 

 

 

Figure 4.6. Fuzzy matrix for DM1  

 

Step 4. The fuzzy decision matrix of each DM is merged and calculated as a combined 

(aggregated) fuzzy decision matrix. 

The aggregated fuzzy decision matrix is given in Table 4.6. Where, N is the total number 

of decision makers (in our case there are four experts), the aggregated fuzzy rating x˜ij = 

(aij, bij, cij) of ith alternative with regard to jth is calculated as follows: 

                          𝑎𝑖𝑗 =  min
𝑛

{𝑎𝑖𝑗
𝑛 } , 𝑏𝑖𝑗 =

1

𝑁
 ∑ 𝑏𝑖𝑗

𝑛𝑁
𝑛=1 , 𝑐𝑖𝑗 =  max

𝑛
{𝑐𝑖𝑗

𝑛 }             (Eq. 4.2) 

 

Step 5. The combined decision matrix is converted into normalized by using cost / benefit 

criteria. 

Since our aim is maximizing benefit and minimizing cost for the criteria, we convert our 

fuzzy decision matrix into normalized fuzzy decision matrix denoted by R by using: 

𝑟𝑖�̃� =  (
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗ ,

𝑐𝑖𝑗

𝑐𝑗
∗  )  𝑎𝑛𝑑  𝑐𝑗

∗ =  max
𝑖

{𝑐𝑖𝑗} (𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 

(Eq. 4.3) 

𝑟𝑖�̃� =  (
𝑎𝑗

−

𝑐𝑖𝑗
,
𝑎𝑗

−

𝑏𝑖𝑗
,
𝑎𝑗

−

𝑎𝑖𝑗
 )  𝑎𝑛𝑑  𝑐𝑗

− =  min
𝑖

{𝑎𝑖𝑗} (𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 

 

In our scenario, Compexity (C6) is the cost criterion while the rest is benefit criteria. 
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Step 6. Compute the weighted normalized fuzzy decision matrix.  

The weighted normalized fuzzy decision matrix is  

 �̃� = (�̃�𝑖𝑗), where �̃�𝑖𝑗 =  �̃�𝑖𝑗  ×  𝑤𝑗 (Eq. 4.4) 

 

Step 7. Compute the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal 

Solution (FNIS).  

Since the best alternative is calculated by selecting the one that is that is nearest to the 

FPIS and farthest from the FNIS. 

𝐴∗ =  ( �̃�1
∗ , �̃�2

∗, … , �̃�𝑛
∗), where �̃�𝑗

∗ =  max
𝑖

{𝑣𝑖𝑗3} 

(Eq. 4.5) 

𝐴− =  ( �̃�1
− , �̃�2

−, … , �̃�𝑛
−), where �̃�𝑗

− =  min
𝑖

{𝑣𝑖𝑗1} 

 

Step 8. Compute the distance from each alternative to the FPIS and to the FNIS by using 

Euclidian distance. 

𝑑𝑖
∗ = ∑ 𝑑(�̃�𝑖𝑗,�̃�𝑗

∗)𝑛
𝑗=1 , 𝑑𝑖

− = ∑ 𝑑(�̃�𝑖𝑗,�̃�𝑗
−)𝑛

𝑗=1          (Eq. 4.6) 

 

Step 9. Compute the closeness coefficient (CC) for each alternative. 

𝐶𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
−+ 𝑑𝑖

∗     (Eq. 4.7) 

 

Step 10. Rank the alternatives based on their CC. 

The best alternative with highest closeness coefficient is selected. 

 

4.6.3. Decision Analysis Tool: MCDA for ESDP 

A web-based tool was implemented using Java, Angular and Spring Boot Framework for 

utilizing the application of the two-phase decision analysis. In Figure 4.7 and Figure 4.8, 

screenshots of the Phase-1 and Phase-2 application are given for the scenario of Case 

Study 1A, respectively.  
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Figure 4.7. Screenshot of Phase-1: Decision Tree Analysis for case study 1A 

 

 

Figure 4.8. Screenshot of Phase-2: Fuzzy TOPSIS Application for case study 1A 
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5. CASE STUDY 

“RQ 5. How should we investigate the trustworthiness of the proposed SDP method 

selection approach through case studies?”. In order to answer this RQ, five case studies 

in three different contexts were conducted.  

 

5.1. Design of the Multiple Case Study 

An embedded multi-case design proposed by Yin [26] was applied for defining the 

context, case and units of analysis. For Case-1A, 2A and 3, it was aimed to observe that 

if the ranking recommended by the decision analysis considering the performance criteria 

was compatible with the ranking obtained from the performance values of the 

experimental results. For Case-1B and 2B, the aim was to observe that if the ranking 

recommended by the decision analysis considering the speediness criteria was compatible 

with the ranking obtained using the time measures of the experimental results. The rest 

of the cases were also constructed regarding performance or speed criteria. Figure 5.1 

demonstrates our multiple case study design, which includes NASA dataset [117], 

NASA-93 [60] dataset and Fenton dataset [20] as the contexts. 

 

 

Figure 5.1. Multiple case study design 
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The rest of this chapter is structed as follows. In Chapter 5.2, research questions of the 

case study are given. The RQs are answered for NASA, NASA-93, and Fenton datasets 

in Chapter 5.3, 5.4, and 5.5, respectively. For those sections, first, case study design is 

given for the related context. Second, the application of the decision analysis process 

based on the questionnaire and results are given. The questionnaire filled based on the 

specifications of each dataset and its context information, where “1” denotes “Yes” and 

“0” indicates “No” for each case study. Third, the details on the experimental study and 

the prediction results are covered. Next, based on the results of decision analysis and 

experiments, we analyze whether there is any similarity between the ranking 

recommended by the decision analysis and the ranking obtained from the actual 

prediction results. Lastly, we share our observations on the related case study results. 

 

5.2. Research Questions 

The primary goal of the case study was to investigate the trustworthiness of the decision 

analysis approach by answering the following research questions: 

• RQ5.1: Which SDP methods are primarily suggested by decision analysis 

approach? 

• RQ5.2: Which SDP methods do perform better in execution?  

• RQ5.3: Are there any difference between the results of RQ5.1 and RQ5.2? 

 

Generally speaking, the main goal is to see the similarities between the ranking of the 

SDP methods recommended by the decision analysis approach and the ranking of the 

methods with regard to the performance and time measurements obtained from the cases 

after predictions on the datasets. Below, the motivation for defining the research questions 

for each case study are discussed. 

 

Motivation for Case Study 1A & Case Study 2A & Case Study 3. In order to verify 

the effect of "performance" criterion on the ranking of the alternative methods in decision 

analysis, it is necessary to understand how the classifiers and predictors are ranked 

according to their actual performance values on the dataset.  
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Motivation for Case Study 1B & Case Study 2B. In order to verify the effect of "speed" 

criterion on the ranking of the alternative methods in decision analysis, it is necessary to 

observe the actual execution times of the classifiers and predictors, and how they are 

ranked according to those durations. 

 

RQ5.1 is answered by applying the decision analysis process on datasets, while RQ5.2 is 

answered by executing the classifications and predictions. Afterwards, the results for each 

case are evaluated by comparing the decision analysis results and prediction results for 

RQ5.3. Cluster analysis methodology [118] and Friedman analysis with Nemenyi post-

hoc test [119] were applied where applicable. To ensure transparency, we have made the 

resulted values for the experiments available online at [120]. 

 

5.3. Case Study 1 - Classification Based on Design Phase Data 

5.3.1. Case Study Design 

Case study 1A and 1B were performed in the context of the most known public repository 

for SDP, NASA Metrics Data Program (MDP). We preferred the cleaned version of the 

dataset [117], which excludes duplicated and inconsistent samples. 

 

As given in Table 2.1, NASA projects are useful for making a classification of the 

defective classes as it contains ‘defectiveness’ as the dependent variable. Each project has 

various features ranging from 22 to 40. The independent variables that are used as inputs 

are all numeric values. Each dataset has different number of samples, which causes a 

variation in the size of the datasets. As shown in Table 2.1, CM1 project falls into the 

“Small” category for the dataset size, where PC1 is defined as “Medium”, and JM1 is 

defined as “Large” dataset [81,94,107]. As for data quality criteria, it can be said that 

there is not any dependency between attributes, nor uncertainty in the data. Besides, there 

are no missing values. However, there are outliers in the dataset. 

 

Four features were selected to use within the scope of the case study. These metrics are 

suitable for the early-phase defect prediction problem because they can be gathered 
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during the design phase. McCabe metrics are method level metrics and also the most used 

metrics in SDP area [85]. The most important feature that separates design metrics from 

code metrics is the opportunity to extract them from design phase diagrams such as UML 

[121]. These metrics are summarized below [122]: 

• Cyclomatic Complexity (v (G)) measures the complexity of the decision structure 

of a module. It is expressed as the number of linearly independent paths which is 

actually the minimum number of paths to be tested. “v(G)” is calculated by "v(G) 

= e - n + 2", where "G" is a program's flowgraph, "e" is the number of arcs in the 

flowgraph, and "n" is the number of nodes in the flowgraph. 

• Module Design Complexity (iv (G)) measures the complexity of the module with 

reduced design and immediately reflects the complexity of the module's calling 

patterns to its submodules. Thus, it distinguishes between modules that would 

seriously complicate the design of any program to which they belong, and 

modules with complex computational logic. 

• Essential Complexity (ev (G)) is a measure that expresses the degree of 

structuredness and the quality of the code by measuring the degree to which a 

module contains unstructured code pieces. "ev(G)" is calculated using "ev(G) = 

v(G) - m" where “m” is the number of subflowgraphs (of "G") that are D-

structured primes, in other words “proper one-entry one-exit subflowgraphs”. 

• Lines of code (LOC) is measured according to McCabe’s line counting 

conventions. This metric can be estimated in the early phase of projects by various 

methods. 

 

It is stated that there is no need to find the best software metrics group for SDP because 

the performance variation of models using different metrics is not significant [123]. 

Therefore, to benchmark the performance of the different classifiers, this metric group 

from design-phase would be sufficient enough. 

 



 

  

96 

5.3.2. Decision Analysis (RQ5.1) 

5.3.2.1. Gathering case study requirements through questionnaire 

The questionnaire was filled based on the specifictions of this dataset and its context 

information as seen in Table 5.1. We can perform classification since the independent 

variable is categorical. As there is enough sample point for this dataset, the different 

dataset sizes would be evaluated in the decision analysis. The performance and speed 

criteria matter for building an SDP model in this context to compare them.  

 

Table 5.1. Questionnaire filled for case study 1 

Question Case #1A Case#1B 

Do you want your method to be dependent on data? 1 1 

Do you want to address human judgement?  0 0 

Do you want to perform classification?  1 1 

Do you want to make a numeric prediction?  0 0 

Do you have a large sized dataset to train an SDP model? 1a 1a 

Do you have a medium sized dataset to train an SDP model? 1b 1b 

Do you have a small sized dataset to train an SDP model? 1c 1c 

Is there any dependency between data attributes? If yes, do you want to 

address it? 0 0 

Is there any uncertainty in the data? If yes, do you want to address the 

uncertainty? 0 0 

Is there any missing point in the data? If yes, do you want to handle the 

missing data? 0 0 

Is there any outlier in the data? If yes, do you want to handle these outliers? 1 1 

Is it important that SDP method has high interpretability? 0 0 

Is it important that SDP method has low complexity? 0 0 

Is it important that SDP method has high performance? 1 0 

Is it important that SDP method has high maintainability? 0 0 

Is it important that SDP method has high speed? 0 1 

a. Sample size >= 1000 has been considered as Large-sized dataset 

b. Sample size >= 500 and < 1000 has been considered as Medium-sized dataset 

c. Sample size < 500 has been considered as Small-sized dataset 

 

5.3.2.2. Phase-1: Decision Tree Analysis 

In the first phase of the decision analysis process, the subset of alternatives recommended 

by the decision tree applied according to the answers of questionnaire can be seen in 
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Figure 5.2. The execution of the decision tree traversal can be summarized with the node 

numbers: #1, #2 and #3. 

 

 

Figure 5.2. Decision tree analysis for case study 1 

 

5.3.2.3. Phase-2: Fuzzy TOPSIS Analysis 

The results related to the execution of the Fuzzy TOPSIS application for both cases are 

given in Table 5.2. It is important to note that, size of the dataset information was not 

after the decision tree phase, as we aim to make a comparison for all methods that are 

suitable for classification, regardless of dataset size. In other words, all the methods 

proposed by decision tree in node #3 (see Figure 5.2) were evaluated within this scope 

and considered for Fuzzy TOPSIS application. 

 

As seen in the table, the decision analysis process was resulted with the selection of Naive 

Bayes (NB) method as the best SDP method for both Case Study 1A and Case Study 1B, 

with a score of 0.693 and 0.702, respectively. On the other hand, Fuzzy Rule Based 

Classifier (FRBC) was ranked last for both cases, with a score of 0.243 and 0.289, 

respectively. 
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Table 5.2. The score and rankings of the methods recommended by Fuzzy TOPSIS 

 Case Study 1A Case Study 1B 

Rank Method Score Method  Score 

1 NB 0.693 NB 0.702 

2 LogR 0.644 BBN 0.636 

3 BBN 0.641 LogR 0.627 

4 DT 0.595 DT 0.613 

5 ANN 0.543 SVM 0.393 

6 SVM 0.392 ANN 0.377 

7 FRBC 0.243 FRBC 0.289 

 

5.3.3. Experimental Study (RQ5.2) 

Within the scope of the case study, different ML-based models were constructed and 

applied on NASA dataset by using WEKA tool with the version of 3.8.5 [124]. 

 

Each classifier in Weka tool was used with their default values, in other words, no 

optimization has been made for any of the classifiers. The main reason for that is to be 

able to compare the performances of the classifiers as they are. Besides, no preprocess or 

cleaning operation has been performed on the data for the sake of consistency among 

datasets. The classifiers used for the experiments are summarized below: 

• Artificial Neural Network (ANN): 

weka.classifiers.functions.MultilayerPerceptron 

• Bayesian Belief Network (BBN): weka.classifiers.bayes.BayesNet 

• Decision Tree (DT): weka.classifiers.trees.REPTree 

• Fuzzy Rule Based (FRBC): 

weka.classifiers.rules.MultiObjectiveEvolutionaryFuzzyClassifier 

• Logistic Regressin (LogR): weka.classifiers.functions.SimpleLogistic 

• Naïve Bayes (NB): weka.classifiers.bayes.NaiveBayes 

• Support Vector Machines (SVM): weka.classifiers. functions.LibLINEAR 

 



 

  

99 

A 10-fold cross-validation approach was adopted in the training and testing stages of the 

classifiers. Cross-validation operations were run 10 times for different random segments, 

resulting in a total of 100 iterations.  

 

The resulted performance values of the classifiers are reported in terms of AUC in Table 

5.3, where the best AUC value of the classifiers is given in bold for each dataset. It can 

be said that the most successful method was Logistic Regression (LogR) for all types of 

datasets, where Fuzzy Rule-Based Classifier was the worst in terms of AUC.  

 

Table 5.3. Resulting AUC values of the classifiers 

 
LogR ANN NB BBN DT SVM FRBC 

CM1  0.699 0.671 0.646 0.563 0.513 0.540 0.494 

JM1  0.692 0.691 0.602 0.675 0.658 0.546 0.516 

KC1  0.671 0.674 0.658 0.652 0.637 0.534 0.541 

KC3  0.639 0.550 0.651 0.489 0.517 0.510 0.547 

MC1  0.731 0.727 0.699 0.663 0.532 0.511 0.500 

MC2  0.664 0.631 0.677 0.622 0.601 0.561 0.587 

MW1  0.780 0.768 0.747 0.734 0.522 0.537 0.533 

PC1  0.815 0.808 0.601 0.720 0.599 0.548 0.523 

PC2  0.773 0.778 0.676 0.478 0.510 0.519 0.502 

PC3  0.728 0.726 0.652 0.714 0.635 0.529 0.500 

PC4  0.758 0.794 0.702 0.671 0.651 0.551 0.513 

PC5  0.720 0.719 0.684 0.738 0.704 0.589 0.594 

Avg 0.723 0.711 0.666 0.643 0.590 0.540 0.529 

Rank 1 2 3 4 5 6 7 

 

Below the performance values in terms of AUC and the training time of the classifiers 

are given with regard to the size of the datasets, in Figure 5.3 and Figure 5.4, respectively.  
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Figure 5.3. AUC values of the classifiers with regard to dataset sizes 

 

 

Figure 5.4. Average training time of the classifiers with regard to dataset size 

 

5.3.4. Results Comparison (RQ5.3) 

5.3.4.1. Case Study 1A 

Cluster Analysis 

Approach. Firstly, the decision analysis process was executed by setting only the 

"performance" criterion in order to evaluate the performance of each method. To do that, 

NB BBN DT LogR SVM ANN FRBC

Small 0,08 0,47 0,43 13,28 16,29 83,87 1076,76

Medium 0,39 0,86 0,78 39,92 44,30 260,94 2516,80

Large 1,12 3,44 7,94 145,81 222,53 986,93 7420,31

All 0,65 2,02 4,25 83,98 124,08 564,91 4488,54
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the default values were used for the criteria other than "performance", and the decision 

analysis was executed five times for each fuzzy weight for the "performance" criterion, 

which are VL, L, M, H and VH, respectively. Based on the resulted rankings, a statistical 

clustering on Minitab was performed for all the methods. Secondly, AUC values from 

our experiment results were gathered for all projects in NASA dataset and a statistical 

clustering on Minitab was performed for all the methods. Lastly, the two rankings were 

analyzed if they show any similarity. 

 

Results. According to the cluster analysis on Minitab, resulted clusters for decision 

analysis ranking and experimental performance results (with respect to AUC values) are 

given in Figure 5.5.a and Figure 5.5.b, respectively. It can be seen that, the decision 

analysis approach recommended a ranking grouped as follows: (1) BBN, LogR, NB, (2) 

ANN, DT, and (3) FRBC, SVM; where the performance values of the experiments 

resulted in a grouping like: (1) ANN, LogR, NB, (2) BBN, DT, and (3) FRBC, SVM. 

When we look at the clusters, it is seen that the recommendation presented by the decision 

analysis approach in consideration of the “performance” criterion is in line with the 

ranking of the AUC values, except for BBN and ANN. Hence, it can be concluded that 

the decision analysis approach presented a reasonable recommendation based on the 

characteristics of the NASA dataset. 

 

    

Figure 5.5.a Cluster Analysis of DA-Performance (left), b. Cluster Analysis of Prediction 

Performance (right) 
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Friedman analysis with Nemenyi post-hoc test 

Approach. In order to see if there were statistically significant differences in prediction 

performances of the classifiers, a non-parametric Friedman test was carried out  [125]. It 

is used to test for differences between groups when the dependent variable is ordinal or 

continuous, and samples do not need to be normally distributed. It is recommended for 

the evaluation of multiple classifiers’ prediction performance or computation times [126]. 

It is also known as the best alternative to the one-way ANOVA with repeated measures. 

It is important to note that the Friedman test shows whether there are overall differences 

among the groups but does not specify which groups differ from each other. To do this, 

we need to run post hoc tests, such as Nemenyi, Wilcoxon signed rank and Dunn test 

[127]. Nemenyi test is a post-hoc test intended to find the groups of data that differ after 

Friedman test has rejected the null hypothesis that the performance of the comparisons 

on the groups of data is similar. The test makes pairwise comparisons using Nemenyi-

Wilcoxon-Wilcox all-pairs test for a two-way balanced complete block design. We 

applied the Nemenyi post-hoc test on RStudio by using PMCMRplus package [119]. 

 

Results. We can see that there is an overall statistically significant difference in prediction 

performance based on the AUC values of the classifiers in Figure 5.6 (χ2(6) = 54.607, p 

< 0.05).  

 

Figure 5.6. Friedman test results for prediction performance (based on AUC) 

 

Based on the Nemenyi test results, there is statistically significant difference in several 

methods’ prediction performances as given in Table 5.4. As we already know the rankings 
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of the classifiers based on their prediction performance results from Figure 5.6, we can 

say that ANN performs better than DT, FRBC and SVM, LogR performs better than DT, 

FRBC and SVM, and NB performs better than FRBC and SVM (p < 0.05). Among these 

results, only the comparison between ANN and DT is different from our decision analysis 

results. 

 

Table 5.4. Friedman with Nemenyi post-hoc test results for classifier performances 

 
ANN BBN DT FRBC LogR NB 

BBN 0.25975 - - - - - 

DT 0.00856 0.8833 - - - - 

FRBC 1.80E-05 0.11252 0.79266 - - - 

LogR 0.99769 0.06877 0.00095 8.90E-07 - - 

NB 0.84145 0.9652 0.31007 0.00609 0.48706 - 

SVM 0.00018 0.31007 0.9652 0.99918 1.10E-05 0.0301 

 

5.3.4.2. Case Study 1B 

Cluster Analysis 

Approach. Firstly, the decision analysis process was performed by setting only the 

"speed" criterion to evaluate the speediness of each method. To do this, the default values 

for the criteria other than "speed" were used. The decision analysis was executed five 

times for each fuzzy weight (i.e. VL, L, M, H and VH). Based on the rankings obtained, 

a statistical clustering on Minitab was performed for all the methods. Secondly, 

"UserCPU_Time_millis_training" values were collected from WEKA for all projects in 

NASA dataset and a statistical clustering was performed on Minitab for all the methods. 

Finally, the two rankings were analyzed whether they show any similarity. 

 

Results. Based on the cluster analysis on Minitab, result sets for both decision analysis 

ranking and experimental time to train the model are given in Figure 5.7.a and Figure 

5.7.b, respectively. It can be seen that, the decision analysis approach recommended a 

ranking grouped as follows: (1) BBN, LogR, DT, NB, (2) ANN, SVM and (3) FRBC; 

where the training time values of the experiments resulted in a grouping like: (1) NB, 
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BBN, DT, LogR, SVM, (2) ANN, and (3) FRBC. It can be seen that the recommendation 

presented by the decision analysis approach, taking into account the “speed” criterion, is 

somewhat compatible with the ranking of the time values, except for SVM. Hence, it can 

be concluded that the decision analysis approach presented a reasonable recommendation. 

 

    

Figure 5.7.a Cluster Analysis of DA-Speed (left), b. Cluster Analysis for Training Time 

of the Classifiers (right) 

 

Friedman analysis with Nemenyi post-hoc test 

We applied the same statistical analysis that is given for Case Study 1A in Section 5.3.4.1. 

According to the results of the Friedman test given in Figure 5.8, it can be seen that there 

is an overall statistically significant difference in speediness of the classifiers based on 

the training time values (χ2(6) = 70.388, p < 0.05). It is important to note that while the 

training time of a classifier increases, its rank is expected to decrease as there is a opposite 

relationship between training time and ranking based on speediness.  

 

Figure 5.8. Friedman test results for speed criterion (based on time to train) 
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Based on the Nemenyi test results, there is statistically significant difference in several 

methods’ training times. According to Table 5.5, it can be said that NB performs faster 

than LogR, SVM, ANN and FRBC, BBN performs faster than SVM, ANN and FRBC, 

DT performs faster than ANN and FRBC, and LogR performs faster than FRBC (p < 

0.05). These results are fully consistent with the rankings suggested by the decision 

analysis. 

 

Table 5.5. Friedman with Nemenyi post-hoc test results for classifier performances 

 
NB BBN DT LogR SVM ANN 

BBN 0.79266 - - - - - 

DT 0.61549 0.99996 - - - - 

LogR 0.01641 0.48706 0.67827 - - - 

SVM 0. 00018 0.04010 0.08849 0.91777 - - 

ANN 5.2e-07 0.00064 0. 00206 0. 25975 0. 91777 - 

FRBC 4.1e-10 2.5e-06 1.1e-05 0.01192 0.25975 0. 91777 

 

 

5.3.5. Observations  

Observations for the classifiers used in the case study are summarized below: 

• Classifiers generally have given higher performance results as the size of the 

dataset has increased. 

• LogR method has had the best results for most of the datasets. 

o It is the most successful classifier in all datasets except PC3 and PC4 

(large-sized datasets), while it ranks second on decision analysis. 

o The difference in the AUC values is statistically significant for more than 

one dataset (for JM1, PC1, PC2; with p = 0.05) 

o It also has an average speed among other methods as seen in decision 

analysis, and its training time is increasing excessively when dataset size 

increases. 
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• NB classifiers have performed better on small datasets.  

o It ranks second in small size datasets, while decision analysis suggested it 

to be ranked first. 

o As the size of the dataset increases, the performance of the NB decreases. 

o It has been found to train very fast, as suggested by decision analysis. 

• BBN method has generally yielded good results as expected by decision analysis. 

o It performs better than SVM and DT, worse than LogR and NB, as 

recommended by decision analysis. 

o It is also very fast like NB, especially for small- and medium-sized 

datasets, as suggested by decision analysis. 

• ANN method has the best AUC values for three datasets (mostly large ones) and 

ranks second in average, while it ranked in 5th place in the decision analysis. 

o For JM1, the largest dataset, it has performed better than all the methods 

except LogR (and it is statistically significant). 

o For the large datasets, unlike the recommendation of the decision analysis, 

it can be said that ANN might be preferred in scenarios where other criteria 

are not important since it shows high performance. 

o On the other hand, the training time has been much longer for ANN than 

other classifiers. This situation may cause that although the performance 

of the ANN is high, it might not be preferred for use in practice. 

• DT method has been ranked in fourth place according to the decision analysis, it 

has not shown the expected performance in the prediction results and has been 

ranked the 5th. 

o It may be due to the selected implementation of DT. 

o Random Forests may result in higher performances than DTs (since it is 

an ensemble method, we have not included Random Forests in our 

decision analysis and predictions). 

o It is also very fast like NB and BBN as it is recommended by decision 

analysis, however, its training time increases for large-sized datasets. 
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• When looking at the SVM classifier results, decision analysis and experiment 

results have been in parallel. 

o According to the AUC values, SVM has been the second to the last as 

recommended in decision analysis.  

o SVM ranks the third from the last in terms of training time, as well as in 

the decision analysis. 

o Although there are different SVM implementations on Weka, it might give 

better results if the model is optimized. 

• Looking at the FRBC results, it has the worst AUC and time to train values as 

expected. 

o It is known that the performance of Fuzzy models increases with the 

preparation of the expert opinion, so when the parameter adjustment is 

made, higher performance of the FRBC might be obtained. 

o Besides, the training time of FRBC is much longer than other classifiers, 

and therefore, it might not be preferred in practical use as suggested by 

decision analysis. 

 

5.3.6. Investigating Evidence from Literature  

In the context of our case study on NASA dataset, it would be helpful to investigate the 

literature in addition to the experiments we conducted, so that we will further solidify the 

evidence we have. 

One of the most important and valuable studies published in the field of SDP is a 

systematic review study examining 208 experimental studies published between 2000-

2010 [8]. The main purpose of the study is to evaluate the effects of software context, 

SDP techniques and independent variables on the performance of SDP models. The main 

findings they obtained based on the performance of the models can be summarized as 

follows: 

• Naive Bayes based models generally have the best performance values. In 

addition, the main reason why Naive Bayes is widely used is that it is a well-

understood and simple technique. 
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• Models using Logistic Regression are also found to perform well in general. 

• SVM method does not have good performance values as expected. The reason 

may be the default Weka settings, which are not optimal for SVM. 

• The performance of the models using C4.5 technique (its equivalent in Weka is 

J48 classifier) is quite average. 

 

In another systematic literature review with important findings [82], 64 studies were 

examined, the performance of machine learning techniques for SDP was analyzed. In 

terms of AUC, Random Forest (RF) gave the best performance (AUC = 0.83), ANN, NB 

and BN models ranked second (AUC = 0.78). Then DT method (C4.5) took place with 

an AUC value of 0.77, while SVM models showed the worst performance with 0.70 AUC. 

The accuracy values were found to be between 75% and 85%. This result shows that ML 

techniques have reasonable prediction ability. 

 

Aside from these secondary studies, there are several primary studies that utilized NASA 

dataset for SDP.  

 

Catal and Diri [11] investigated the effects of dataset size, metrics set, and feature 

selection techniques on SDP and conducted experiments on NASA datasets using 

different ML algorithms, such as Random Forest, Decision Tree, Naïve Bayes. They 

reported that Naive Bayes is the best prediction method for small sized datasets, while 

Random Forest classifiers provide better performance on large datasets. They also 

mentioned the most important selection in SDP is the algorithm and not the metrics suite. 

 

A similar performance comparison study was conducted on the cleaned version of NASA 

MDP datasets [128]. In this study, the authors concluded that the predictive performance 

of classifiers is significantly different, and the choice of classifier is important for defect 

prediction. The overall ranking of the simple classifiers was reported in ascending order 

as follows: Simple Logistic, Naïve Bayes, Decision Tree, and Support Vector Machines. 
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A more recent study was conducted on the cleaned NASA dataset [129]. In this study, the 

authors performed analysis with 10 different classifiers and reported the results with 

several performance measures. Based on the overall AUC values they reported, the 

performance of the classifiers can be ordered from best to worst as follows: Naïve Bayes, 

Artificial Neural Network, Decision Tree, and Support Vector Machines. 

 

In addition, we investigated the literature with a focus on early SDP and analyzed several 

studies that report comparison of the performance values of different classifiers on NASA 

dataset, especially by using the requirement or design phase metrics. The performances 

of several classifiers were synthesized based on reported AUC values. All the data was 

presented using a box-and-whisker chart demonstrated in Figure 5.9. Overall, the 

performance data from a total of four papers were extracted as the following: [121,130–

132]. The performance values of each classifier were collected and presented in the papers 

that intersect with the methods we chose (i.e., Decision Tree, Logistic Regression and 

Naïve Bayes) for all datasets. We grouped the datasets (12 NASA projects) based on their 

sizes. It is important to note that the notation "<classifier name> (n = <number of 

datasets>)" was used in the chart to provide the AUC values, where “n” denotes the total 

number of datasets that are reported in all four papers. 

 

 

Figure 5.9. AUC values of the classifiers regarding dataset size in the literature 

 

As we can see from the figure, both LogR and NB give good results in all datasets, where 

NB is slightly better than LogR. However, it is observed that DT is not as successful as 
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the others. Since performance results of other methods, such as ANN, BBN, SVM and 

FRBC, were not reported in the relevant publications, we cannot provide an AUC analysis 

of them. 

 

While LogR, ANN and NB are observed as the best performing methods in our 

experiments, there are also similar results in the literature accordingly. Likewise, SVM 

and FRBC were among the worst performing methods in our experiments. Although there 

are not many results about FRBC in the literature, findings about SVM indicate that it 

performs poorly. Based on this, we can conclude that the results in the literature are in the 

same axis with our experimental results. 

 

When we evaluate the validity of the ranking recommendations of decision analysis, we 

observed that 5 out of 7 methods (excluding ANN and BBN) for performance criteria, 

and 6 methods (excluding SVM) for speed criteria are compatible with our own 

experiments and the literature. Besides, the benchmarks in the literature usually examine 

only the prediction performance of the classifiers, but do not address the speed factor. By 

reporting the speed results of the classifiers in our second case study, we contributed with 

a discussion on the training time of the classifiers, which can be an important criterion 

for selection the suitable SDP method. 

Another point that should be emphasized is that we have executed the decision analysis 

application independent of the dataset size in order to demonstrate the rankings of all 

methods in the case study. If we had dealt with the dataset size in decision analysis, we 

would not be able to see the raking of some filtered methods due to the dataset size. 

Nevertheless, we included our observations on the size of the dataset in Chapter 5.3.5. 

 

5.4. Case Study 2 - Prediction Based on Product, Process and Resource 

5.4.1. Case Study Design 

Case study 2A and 2B were performed in the context of NASA-93 dataset [60]. After 

removing the attributes which have repeating values, we had a total of 17 attributes for 

our case study. The final set can be seen in Figure 5.10.  
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Figure 5.10. Selected metrics from NASA-93 dataset  

 

5.4.2. Decision Analysis (RQ5.1) 

5.4.2.1. Gathering case study requirements through questionnaire 

The questionnaire was filled based on the specifictions of NASA-93 dataset and its 

context information as seen in Table 5.6. We can perform numerical prediction since the 

independent variable is numerical. As there is only 93 sample points for this dataset, the 

dataset size can be considered as small. The performance and speed criteria matter for 

building our SDP model in this context.  
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Table 5.6. Questionnaire filled for case study 2 

Question 
Case 

#2A 

Case 

#2B 

Do you want your method to be dependent on data? 1 1 

Do you want to address human judgement?  0 0 

Do you want to perform classification?  0 0 

Do you want to make a numeric prediction?  1 1 

Do you have a large sized dataset to train an SDP model? 0 0 

Do you have a medium sized dataset to train an SDP model? 0 0 

Do you have a small sized dataset to train an SDP model? 1 1 

Is there any dependency between data attributes? If yes, do you want to address it? 0 0 

Is there any uncertainty in the data? If yes, do you want to address the uncertainty? 0 0 

Is there any missing point in the data? If yes, do you want to handle the missing data? 0 0 

Is there any outlier in the data? If yes, do you want to handle these outliers? 0 0 

Is it important that SDP method has high interpretability? 0 0 

Is it important that SDP method has low complexity? 0 0 

Is it important that SDP method has high performance? 1 0 

Is it important that SDP method has high maintainability? 0 0 

Is it important that SDP method has high speed? 0 1 

 

5.4.2.2. Phase-1: Decision Tree Analysis 

In the first phase of the decision analysis process, the subset of alternatives recommended 

by the decision tree applied according to the answers of questionnaire can be seen in 

Figure 5.11. The execution of the decision tree traversal can be summarized with the node 

numbers: #1, #2 and #6. 

 

 

Figure 5.11. Decision tree analysis for case study 2 
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5.4.2.3. Phase-2: Fuzzy TOPSIS Analysis 

For the decision analysis, Fuzzy TOPSIS process was applied according to the answers 

of the questionnaire in order to make a ranking-based selection among SDP methods. The 

results related to the execution of the Fuzzy TOPSIS application for both cases are given 

in Table 5.7. It is important to note that we only included ANN, DT, LinR and SVM 

methods, as we aim to make a comparison for the methods that are suitable for our 

empirical design as explained in Section 5.4.3. In other words, suitable methods proposed 

by decision tree in node #6 (see Figure 5.11) were evaluated within this scope and 

considered for Fuzzy TOPSIS application. 

 

Table 5.7. The score and rankings of the methods recommended by Fuzzy TOPSIS 

 Case Study 2A Case Study 2B 

Rank Method Score Method  Score 

1 DT 0.690 DT 0.763 

2 LinR 0.542 LinR 0.675 

3 ANN 0.423 SVM 0.371 

4 SVM 0.279 ANN 0.226 

 

As seen in the table, the decision analysis process was resulted with the selection of 

Decision Tree (DT) method as the best SDP method for both cases, with a score of 0.690 

and 0.763, respectively. On the other hand, SVM was ranked last for Case Study 2A, 

where ANN was the last selected method for Case Study 2B with a score of 0.279 and 

0.226, respectively. 

 

5.4.3. Experimental Study (RQ5.2) 

Each predictor in Weka tool was used with their default values, in other words, no 

optimization has been made. The predictors used for the experiments are given below: 

• Artificial Neural Network (ANN): weka.classifiers.functions.MultilayerPerceptron 

• Decision Tree (DT): weka.classifiers.trees.M5P 

• Linear Regression (LinR): weka.classifiers.functions.LinearRegression 

• Support Vector Machines (SVM): weka.classifiers.functions.SMOreg 
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A 10-fold cross-validation approach was adopted in the training and testing stages of the 

predictors. Cross-validation operations were run 10 times for different random segments, 

resulting in a total of 100 iterations. The resulted performance values of the predictors are 

reported in terms of R2, RAE and RRSE in Table 5.8. It can be said that the most 

successful method was DT, where SVM was the worst in terms of R2.  

 

Table 5.8. Resulting performance values of the predictors 

 
DT LinR ANN SVM 

R2 0.965a 0.893b 0.879 0.859 

RAE (%) 25.839a 35.048 40.771 40.392 

RRSE (%) 33.952a 44.491b 50.149 52.874 

Rank 1 2 3 4 
a DT performed significantly better than LinR, SVM and ANN (α=0.05) 

b LinR performed significantly better than SVM (α=0.05) 

 

The training time of the predictors are given in Table 5.9 in terms of 

“UserCPU_Time_millis_training”. Since the training times can be different for each 

iteration, we analyzed the results for each execution of training and calculated the average 

values. Based on the Paired T-Test results, there is no significant difference between LinR 

and DT models, however, they have performed significantly faster than SVM and ANN 

models (p < 0.05). Besides, SVM has performed significantly faster than ANN. 

 

Table 5.9. Training times (millisecond) for each predictor regarding to iterations 

#Iteration LinR DT SVM ANN 

1 3.13 4.69 153.13 978.13 

2 1.56 3.13 148.44 982.81 

3 1.56 4.69 153.13 992.19 

4 3.13 6.25 165.63 1001.56 

5 1.56 6.25 198.44 985.94 

6 3.13 3.13 196.88 1010.94 

7 0.00 6.25 190.63 1006.25 

8 1.56 6.25 178.13 1039.06 

9 0.00 6.25 185.94 1104.69 

10 3.13 4.69 153.13 1090.63 

Avg. 1.88a 5.16a 172.34b 1019.22 

Rank 1 2 3 4 
a LinR and DT results are significantly better than SVM and ANN results (α=0.05) 

b SVM is significantly better than ANN (α=0.05) 
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5.4.4. Results Comparison (RQ5.3) 

Due to the lack of enough sample data points, we could not perform cluster analysis or 

Friedman test for Case Study 2A and Case Study 2B. Instead, we reported the rankings 

of the predictors for both decision analysis process and experimental study results. 

According to the resulted rankings for decision analysis and experimental results given 

in Table 5.10, we can see that, the decision analysis approach recommended a ranking as 

follows: (1) DT, (2) LinR, (3) ANN and (4) SVM; where the performance values of the 

experiments resulted in the same ranking.  

 

When we evaluate the results in terms of performance criteria, it was seen that the ranking 

recommended by the decision analysis and the ranking based on the performance obtained 

from the experiments were the same (DT, LinR, ANN, SVM). 

 

Table 5.10. Decision Analysis and Empirical Results for Case Study 2A 

 
Case Study 2A Case Study 2B 

Rank Decision Analysis Empirical Result Decision Analysis Empirical Result 

1 DT DT DT LinR 

2 LinR LinR LinR DT 

3 ANN ANN SVM SVM 

4 SVM SVM ANN ANN 

 

It can be seen that DT method is quite successful for predicting the numerical dependent 

variable. It has been observed that this performance is also valid for small datasets (data 

point < 100) of tree-based learning methods. Therefore, the need arises for an 

arrangement in the first phase of the decision analysis process, which consists of the DT 

method as an alternative for small datasets. LinR method was also found to be the most 

successful method after DT. Although ANN and SVM methods performed above 

expectations, they were placed last in the ranking. This result confirms the assumption 

that the relevant methods are not successful enough for small datasets. 

 

When we evaluate in terms of the speed criterion, it was seen that the ranking 

recommended by the decision analysis (DT, LinR, SVM, ANN) and the ranking based on 
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the learning durations of the prediction models obtained from the experiments (LinR, DT, 

SVM, ANN) were not exactly the same, and there was a difference in the order between 

LinR and DT. 

 

In general, it has been observed that regression models are built faster, while tree models 

learn slower than regression models. In line with this information, it is thought that it may 

be necessary to make an adjustment in the structuring of the decision analysis process and 

increase the score of LinR method on speed criteria. 

 

5.5. Case Study 3 - Lack of Data: Prediction Based on Expert Opinion 

5.5.1. Case Study Design 

Case study 3 was performed by using Fenton dataset [21], which is suitable for early 

software defect prediction problem since it includes phase information of software 

metrics gathered. The context information reported about the public dataset is given in 

Table 5.11.  

 

Table 5.11. Basic information of Fenton dataset [21] 

Business Domain Consumer electronics Size (KLOC) Min: 0.9 – Max: 155.2 

Programming 

Language 

C, VC++, MFC Effort (Hour) Min: 1,308 – Max: 53,995 

SDLC 

Methodology 

Waterfall life cycle Defects 

(Number) 

Min: 5 – Max: 1,906 

Total Project 

Number 

31 Missing data 

values  

Yes (32 missing data points 

out of 930) 

Number of 

features 

30 Outlier values Yes 

 

As we can see from Table 5.11, Fenton dataset is useful for making a numerical prediction 

as it contains 'number of defects' as the dependent variable (output). The dataset has a 

total of 31 data points (samples).  
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As shown in Table 5.12, there are metrics with categorical data ranging from very low 

(VL) to very high (VH) that can be used as input metrics in the dataset. It also has the size 

information given in thousands of lines of code (KLOC) which can be used as a 

normalizer metric to predict the number of defects. In addition, since the qualitative data 

collection process of this dataset was conducted through a questionnaire [21], it is noted 

that there might be some data quality problems, such as dependency between attributes, 

uncertainty, which should be considered when evaluating the prediction methods. 

Besides, it is mentioned that there are missing values and outliers in the dataset, with a 

total of 32 missing data values and three projects with the number of defects more than 

1500, respectively. the first three data points are given as an example in Table 5.12. 

 

Table 5.12. Example data from public dataset [21] 

Project ID KLOC RFD RS RIW ERT Number of Defects 

1 6 H L VH H 148 

2 0.9 H H VH H 31 

3 53.9 VH H VH H 209 

 

5.5.2. Decision Analysis (RQ5.1) 

5.5.2.1. Gathering case study requirements through questionnaire 

The questionnaire was filled based on the specifictions of this dataset and its context 

information. As there is not enough sample point for this dataset, it can be assumed that 

there is a lack of data, therefore expert opinion matters for building an SDP model in this 

context. Besides, the dependent variable is the number of defects, which leads us to 

generate a numerical prediction model. In terms of data quality of the dataset, as given in 

Table 5.13, there is uncertainty, missing points, and outliers in the data, as well as 

dependency between the attributes. Moreover, since it will be an expert opinion-based 

model, it would be beneficial for SDP model to have the specified method characteristics. 
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Table 5.13. Questionnaire filled for case study 3 

Question Case Study 3 

Do you want your method to be dependent on data? 0 

Do you want to address human judgement?  1 

Do you want to perform classification?  0 

Do you want to make a numeric prediction?  1 

Do you have a large sized dataset to train an SDP model? 0 

Do you have a medium sized dataset to train an SDP model? 0 

Do you have a small sized dataset to train an SDP model? 0 

Is there any dependency between data attributes? If yes, do you want to address it? 1 

Is there any uncertainty in the data? If yes, do you want to address the uncertainty? 1 

Is there any missing point in the data? If yes, do you want to handle the missing data? 1 

Is there any outlier in the data? If yes, do you want to handle these outliers? 1 

Is it important that SDP method has high interpretability? 1 

Is it important that SDP method has low complexity? 1 

Is it important that SDP method has high performance? 1 

Is it important that SDP method has high maintainability? 1 

Is it important that SDP method has high speed? 1 

 

5.5.2.2. Phase-1: Decision Tree Analysis 

In the first phase of the decision analysis process, the subset of alternatives recommended 

by the decision tree applied according to the answers of Questionnaire Phase-1 can be 

listed as follows: BBN and FIS. The execution of the decision tree traversal can be 

summarized with the node numbers: #1 and #4, as demonstrated in Figure 5.12.  

 

 

Figure 5.12. Execution of the decision tree for case study 3 
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Here, the decision tree can be executed with the answer of the first question of the 

questionnaire, and it was decided that human judgment methods (FIS and BBN) would 

be used. In other words, decision tree does not require further questions in the 

questionnaire since the subset of alternatives can be eliminated by the "MC - Approach 

to construct the model" criteria. 

 

5.5.2.3. Phase-2: Fuzzy TOPSIS Analysis 

As for the second phase, Fuzzy TOPSIS process was applied according to the answers of 

the questionnaire to make a ranking between the two selected methods. The results related 

to the execution of the Fuzzy TOPSIS application for Case Study 3 is given in Table 5.14. 

 

Table 5.14. The score and rankings of the methods recommended by Fuzzy TOPSIS 

Rank Method Score 

1 FIS 0.505 

2 BBN 0.495 

 

As seen in the table, the decision analysis process is resulted with the selection of FIS 

method as the best SDP method for this case, with a score of 0.505. The second 

convenient method is identified as BBN with a score of 0.495. 

 

5.5.3. Experimental Study (RQ5.2) 

5.5.3.1. Selected software metrics  

The most important motivation for choosing the selected input metrics for this case study 

is the extensive literature review that we performed in our previous work [31], which was 

mainly focused on the process based metrics used for early software defect prediction. 

According to the results of our literature review study, the most used process-based 

metrics are related to the effort of the review activities, stability of the requirements, and 

the number of defects found from the review activities. Therefore, we considered three 

process metrics that can be gathered at the requirement phase. We also select a resource 

related metric, experience of the requirement team, which we found as the most used 
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resource related metric in the literature [15]. The selected software metrics and their 

explanation is given below. 

 

Requirement fault density (RFD): This metric measures the ratio between the total number 

of defects obtained from the requirements analysis phase and the size of the software. The 

defects can be found during the review activities in the requirement phase. Also, the size 

of software can be estimated by function point (FP) at the beginning of a software project. 

Therefore, this metric can be collected during the requirement phase of SDLC. The 

number of defects to be predicted is assumed to be directly proportional to the value of 

the RFD. 

 

Requirement Stability (RS): Requirement changes can be at any time during the 

development of the software project. However, it is better to minimize the changes in 

requirements in order to reduce the impact of the defects occurred during the addition, 

deletion or modification of the requirements. This metric describes the stability of the 

software requirements. Hence, the number of defects to be predicted is assumed to be 

inversely proportional to the value of the RS. 

 

Review, inspection and walkthrough (RIW): This metric describes the consistency, 

feasibility and completeness of the artifacts produced during the requirement analysis 

phase. Software reviews are activities necessary to identify and correct defects during the 

development life cycle. In addition, it is aimed to produce reliable software on time and 

budget with regular review, inspection and walkthrough activities. For this reason, the 

indicator of reviews was included as a critical metric for the early stages and included in 

the model. As similar to RS, the number of defects to be predicted is assumed to be 

inversely proportional to the measure of RIW. 

 

Experience of requirement team (ERT): This metric gives the information about the 

experience, knowledge and skill of the requirement team members in analyzing and 

generating requirements. We can say that if requirement analysis team consists of 

experienced people, we can ensure that the artifacts related to the requirement phase are 
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of higher quality and therefore transfers less defects to the later phases. The number of 

defects to be predicted is assumed to be inversely proportional to the experience of 

requirement team. 

 

Aside from these input metrics, we also used the size of the software as a normalizer 

parameter for calculating the predicted number of defects as the last step of the model 

implementation. Although, it is not possible to measure the size of software exactly in the 

early phases of SDLC, there are many methods to estimate the size of the software, such 

as function points or feature points. In general, it is reported that larger and smaller 

software may include more errors than medium-sized software. For this reason, size is 

used in the model as a normalizer metric for predicting the number of defects. 

 

5.5.3.2. Empirical design of FIS based model 

FIS based SDP model was implemented by using the MATLAB Fuzzy Logic Toolbox 

[133]. The architectural design for the model is presented in Figure 5.13. Implementation 

steps for the proposed model are as follows: 

1. Selection of the software metrics that will be used as inputs for the fuzzy model. 

2. Determination of membership functions of input and output metrics. 

3. Designing fuzzy logic rules. 

4. Performing fuzzy inference. 

5. Defuzzification and calculation of the crisp values of number of defects. 

 

 

Figure 5.13. The design of the proposed FIS based model 
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As for the membership functions of input metrics RFD, RS and ERT, logarithmic scale 

was considered, while for input metric RIW, linear scale was used. As shown in Figure 

5.14, the linguistic values of all input metrics were considered as five scale values, which 

are Very High (VH), High (H), Medium (M), Low (L) and Very Low (VL). As for the 

output variable, we used seven-scale linear fuzzy profile as given in Figure 5.15, which 

are Very Very High (VVH), Very High (VH), High (H), Medium (M), Low (L), Very 

Low (VL) and Very Very Low (VVL). Figure 5.16 shows a portion of the fuzzy rule set 

which has 625 (54) rules in total. 

 

 

Figure 5.14. Membership function of the input variable ‘RFD’ 

 

 

Figure 5.15. Membership function of the output variable 
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Figure 5.16. A portion of the fuzzy rule set 

 

5.5.3.3. Empirical design of BBN based model 

BBN based SDP model was implemented by using the WEKA tool [124]. The 

architectural design for the model is presented in Figure 5.17. Implementation steps for 

the proposed model are as follows: 

1. Selection of the software metrics that will be used as inputs for the bayes network. 

2. Construction of causal relationships (network structure) between selected metrics 

3. Determining the probability tables of the nodes in the network 

4. Compilation of bayes network 

5. Finding the probabilistic values of the predicted number of defects 

a. Entering the qualitative values of the model's inputs (metrics) into the 

compiled BN 

b. Obtaining categorical (VL, L, M, H, VH) outputs and probabilistic values 

of the defects 

6. Calculation of the number of defects using categorical output, probability values 

and size information 
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Figure 5.17. The design of the proposed BBN based model 

 

In this context, six different model structures that reflect the expert opinion have been 

formed. The experiments conducted based on these six different model designs, however, 

in this paper, the design with the best prediction performance is reported. Figure 5.18 

shows the structure of the proposed BBN based model. In this design, ERT influences 

RIW and RFD metrics, RIW metric is affecting RFD and RS metric is affecting RFD. 

 

Figure 5.18. The structure of the proposed BBN based model 

 

5.5.3.4. Prediction Results 

In Table 5.15, the resulted performance evaluation measures are reported in terms of 

MMRE, BMMRE and R2. When we compare the prediction performance results of our 

proposed FIS based model with the existing models in the literature, we can say that our 

results are close to the fuzzy rule-based model results presented by D. K. Yadav et al. 

[114] (R2 = 0.951) and Chatterjee and Maji [134] (R2 = 0.971). When we compare the 

prediction performance results of our proposed BBN based model with the existing 

models in the literature, we can say that our results are better than the Bayesian Network 

based prediction model by [21] (R2 = 0.899). 
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Table 5.15: Performance results of the proposed models 

Model MMRE BMMRE R2 

FIS based model 0.430 0.685 0.926 

BBN based model 0.588 1.249 0.913 

 

It can be said that the prediction results are showing a good performance for early 

software defect prediction.  

 

5.5.4. Results Comparison (RQ5.3) 

The ranking based on the prediction results of the experimental study is in line with the 

ranking recommended by the decision analysis approach, in which fuzzy model was 

found to be the most convenient method for prediction of the potential software defects 

in the requirement phase with process and resource-based metrics. While the performance 

results of BBN based model are also satisfactory, FIS based model is slightly successful 

in terms of all the performance measures. Therefore, we can confirm that the decisions 

recommended by the decision analysis process is trustworthy in terms of the performance 

comparison of the first and second alternative methods in ESDP context. 

 

5.5.5. Investigating Evidence from Literature 

Decision analysis results are more significant when the evidence from other studies 

conducted on the same dataset in the literature were synthesized. Firstly, the primary 

studies presenting and using the same dataset were listed. After that, the subsequent 

studies that use this dataset to investigate the suitability of the SDP models built in the 

early phases of SDLC by using BBN and FIS methods were examined. 

 

BBN based models 

Fenton et al. [21] proposed an early life cycle defect prediction model based on the 

Bayesian network method to predict the number of defects that may be found during 

independent tests or operational use. The results showed that early prediction models 

could be used as an effective decision support mechanism in the early stages of 
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development. They performed performance evaluation with R2 and various error rates 

(MMRE, BMMRE etc.). Based on some example scenarios, they also showed how the 

model can be used for decision support in the operational environment. In addition, they 

conducted a sensitivity analysis to determine the most effective factors on the number of 

defects, and reported those factors as the size, complexity, and distributed communication 

level of the project. It is stated that the model can be used from the early stages of the life 

cycle since it does not require detailed domain knowledge in the context of the project. 

Moreover, they have made an important contribution to the literature with the dataset 

published publicly. 

 

Kumar and Yadav [135] proposed a BBN based defect prediction model constructed with 

six different metrics (software complexity, requirement stability, experience of teams, 

review effort, quality of outputs, and rate of new development) that can be obtained from 

requirements analysis, design and coding phases. The performance evaluation of the 

model applied on the Fenton dataset was performed with MMRE and BMMRE, and they 

reported better results than Fenton et al. [21]. 

 

Chatterjee and Maji [136] presented a BBN based model to predict the number of defects 

in the early phase of the software development process. In order to construct the belief 

network, six requirement and design phase-based metrics were selected. They chose a 

fault index (FI) as the target node of the BBN. They also used an ANN model to calibrate 

the final number of predicted defects, by using actual size of the software and FI values 

as input nodes for ANN. They randomly chose twenty projects to be used for network 

training, and the remaining six projects were used for simulation. For this reason, they 

reported the performance evaluation of the proposed model with regard to those selected 

six projects. According to the specific projects, they reported RMSE, NRMSE, MMRE, 

BMMRE, and R2 values better than Fenton et al. [21]. 

 

In Table 5.16, we summarized the number of metrics used by the models proposed in 

these studies, the phase information of the metrics belong to, and reported performance 

values with the number of projects included in performance evaluation. 
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Table 5.16. BBN based SDP models and reported performance values for Fenton’s dataset 

presented in the literature 

BBN model  Number 

of metrics 

Phase 

information a 

Number of projects 

included in 

performance 

evaluation (out of 31) 

MMRE BMMRE R2 

Fenton et al. 

[21] 

31 R,D,C,T 31 0.960 0.300 0.931 

Kumar and 

Yadav [135] 

11 R,D,C 10 0.069 0.075 - 

Chatterjee 

and Maji 

[136] 

6 R,D 6 0.400 0.410 0.930 

a. R=Requirement Analysis, D=Design, C=Coding, T=Testing phase 

 

FIS based models 

Pandey and Goyal [137] proposed a model based on FIS method that uses metrics for 

requirements analysis, design, coding, and test phases. The model is structured on a 

phase-based basis and the output of each phase (predicted number of defects) is used as 

input in the next phase, and the output from the test phase is constructed to yield the result 

of the model. In general, it is stated that the first phases of the software life cycle should 

be handled more carefully than the later phases. They confirmed these models with 

experiments using Fenton's dataset and reported their performance with MAPE (Mean 

Absolute Percent Error). 

 

Yadav et al [114] proposed a FIS based model, which was constructed by using three 

metrics related to software size and requirement analysis phase. Fenton’s dataset was used 

for validation. The predictive performance of the proposed approach was compared with 

the existing models over the values of MMRE and BMMRE and the model presented was 

reported to be better than Fenton et al. [21]. 

 

Yadav and Yadav [138] proposed a model based on FIS method that uses seven metrics 

from requirements analysis, design and coding phases. The model is structured similar to 
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the model proposed by Pandey and Goyal [137]. They reported the results via MMRE 

and BMMRE, which are better than Fenton et al. [21]. 

 

Yadav and Yadav [139] extended their previous work by adding two more metrics of test 

phase to the FIS based SDP model. They reported the results by MMRE and BMMRE, 

which are better than Fenton et al. [21]. They also performed a sensitivity analysis and 

reported that software metrics, which can detect the defects in the early phases of SDLC, 

need to be considered with more attention than the metrics that become available in the 

later phases. 

 

Chatterjee and Maji [134] presented a FIS based model that uses four metrics related to 

the requirement phase. In this study, unlike previous studies, a new algorithm is proposed 

instead of expert opinion to develop fuzzy rule-based system. It is stated that the weight 

of each metric as well as the target reliability are taken into consideration in order to 

develop the proposed fuzzy rule algorithm. As a result, the proposed model showed better 

performance results than other models. 

 

Kumar and Ranjan [140] proposed a phase based FIS model that uses five metrics from 

requirements to  testing phases. The model is structured similar to the model proposed by 

Pandey and Goyal [137]. They also reported the results via MMRE and BMMRE, which 

are better than Fenton et al. [21]. 

 

Chatterjee et al. [141] proposed an interval type-2 FIS based SDP model that can be used 

separately in the requirement analysis, design and coding phases of the software life cycle. 

In addition to the expert opinion and human reasoning, a new algorithm developed to 

form a generalized consistent fuzzy if-then rule base for FIS. One of the advantages of 

the proposed SDP model is that it predicts the number of defects three times during each 

of the SDLC phases, therefore it can be helpful during the early development process 

about potential software defects. They presented the performance evaluation of the 

proposed model by using nine software projects from Fenton’s dataset. Based on these 
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selected projects, they reported RMSE, NRMSE, MMRE, BMMRE, and R2 values better 

than Fenton et al. [21]. 

 

In Table 5.17, we summarized the number of metrics used by the models proposed in 

these studies, the phase information of the metrics belong to, and reported performance 

values with the number of projects included in performance evaluation. 

 

Table 5.17. FIS based SDP models and reported performance values for Fenton’s dataset 

presented in the literature 

FIS model # of 

metrics 

Phase 

information a 

# of projects 

included in 

performance 

evaluation 

(out of 31) 

# of 

FIS 

Rules 

MMRE BMMRE R2 

Pandey and 

Goyal [137] 

10 R,D,C,T 15 1350 0.226 b 0.231 b 0.953 

b 

D. K. Yadav et 

al [114] 

3 R 20 27 0.361 0.419 0.951 

b 

Yadav and 

Yadav [138] 

7 R,D,C 20 117 0.069 0.076 - 

Yadav and 

Yadav [139] 

9 R,D,C,T 20 162 0.047 0.048 - 

Chatterjee and 

Maji [134] 

4 R 20 625 0.286 - 0.971 

Kumar and 

Ranjan [140] 

5 R,D,C,T 20 130 0.181 0.188 0.992 

b 

Chatterjee et 

al. [141] 

9 R,D,C 9 125 0.473 0.621 0.936 

a. R=Requirement Analysis, D=Design, C=Coding, T=Testing phase 

b. Calculated manually by the author 

 

When we investigate the studies using Fenton’s dataset, FIS based models seem to be 

outnumbered. This may be interpreted as the relevant dataset is more suitable for ESDP 

using FIS based models. Furthermore, when the performance evaluation tables are 

examined, it can be seen that FIS based models performed slightly better than BBN based 
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ones, with the values of R2 > 0.93 for FIS based models and R2 = 0.93 for BBN based 

models. In this regard, it is clear that the results of the decision analysis approach that we 

propose correspond with the preferences of the studies in the literature. 

 

Given the nature of the Fenton’s dataset, machine learning based methods, in particular 

ANN and SVM, are not suitable for use due to learning constraints from a sufficient 

number of sample datasets. For example, a study suggesting neural network based 

prediction models implementing different ANN algorithms [142] reported the accuracy 

of experiments performed on the sample dataset between 0.41 and 0.77. These low 

performance values may be due to the fact that ANN approach does not work well with 

datasets that contain a small number of data points.  

 

In addition, other machine learning based methods such as Naïve Bayes or Regression 

are not preferred to apply to the example dataset since they remain very simple to explain 

the various and complex properties of the given data. Although, Decision Tree method 

may be considered as appropriate because of its various capabilities such as modeling 

uncertain data, ease of use with low complexity and high performance in most cases [37], 

it does not work well with small sized datasets. Therefore, it can be concluded that the 

evidence for the methods used in the literature is consistent with our decision analysis 

results. 
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6. RECOMMENDATIONS 

By considering the findings that were obtained during this thesis, we highly recommend 

that early software defect prediction models be constructed especially in requirements or 

design phases, using metrics that can be collected over early-stage artifacts as well as the 

metrics that focus on early-stage processes and resources. Most critical metrics would be 

based on the size or complexity of the early artifacts, effort of the review activities, 

stability of the requirements, maturity level of the organization, and experience of the 

project staff. Apart from the chosen metrics, the methods and techniques for building the 

prediction model are important for the nature of the data used. Most particularly, we 

recommend using fuzzy rule-based models in order to handle the qualitative and 

incomplete data of the early stages. Including contextual information is very important 

while designing the prediction models and reporting their results, which makes it possible 

to repeat the study and compare model performances. In addition, stronger empirical 

studies will increase the reliability of the ESDP models and build confidence in the 

predictive performance of these models. 

 

The recommendations are grouped on the basis of the factors that have been discussed 

throughout the thesis.  

 

SDLC phase and development methodology 

Once again, it is important to note that the "early" statement of the development phase 

can be evaluated differently according to the SDLC. While in developments based on 

waterfall model it corresponds directly to the early stage that coincides with the beginning 

of the project, in developments based on incremental model it may coincide with the early 

stage within each increment. Thus, it may be necessary to use a feedback supporting 

model (such as Recurrent Neural Network) for performing SDP early on the iterations, 

which is beyond the scope of this thesis. Nevertheless, several important factors can be 

mentioned as follows: Outputs such as the documents of review activities or user stories 

that emerge during the life cycle are crucial for agile development methodologies. The 

effort information of the review activities and the number of defects found on reviews are 

the most important indicators. As project teams progress through iterations, static code 

metrics become more important since the number of lines of code increases. 
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Consequently, the lessons learned and suggestions regarding Waterfall development 

methodology are summarized below. Figure 6.1 demonstrates suitable SDP methods 

grouped with the metrics that give the most successful result within the phases related to 

Waterfall development methodology. 

 

Waterfall 

• Begin with building ESDP models using expert-based methods at the earliest.  

o Consider designing FIS based model by using requirement phase-based 

process data for a fresh start. 

o No need to design complex fuzzy rules at first, usage of tools like MATLAB 

Fuzzy Logic Toolbox is recommended. 

o Prefer process and resource-based metrics (effort for review activities, 

stability of requirements, maturity of the organization (i.e. CMMI level), and 

experience of the staff etc.). 

o Need for experts who know the related process and resource factors, which 

will affect possible defects. 

o Context information may undertake the task of guiding and can be helpful to 

build simple and effective models. 

o Make use of Bayes Network based models when qualitative and dependent 

data proliferate. 

o Use publicly available Bayes Network design and adapt it based on project’s 

needs (AgenaRisk or Weka is recommended to start). 

• Consider statistically based methods when the outputs of the requirement and design 

phases are obtained. 

o Regression based models are easy and accurate for a rapid start. 

o Analyze requirement and design phase outputs in order to gather product-

based metrics (such as size of the requirement specifications or number of use 

cases). 
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o Benefit from process-based metrics to increase prediction performance. 

o Make use of data from past projects (historical data) similar to the context of 

the current project, where available.  

• Assess ML-based methods during coding phase. 

o Source code-based metrics are indispensable for building an ML-based model 

accurately. 

o Start with easy-to-use and high-performance methods like Naïve Bayes. 

When the dataset gains large number of data points, consider building ANN 

based models to increase accuracy, if practitioners are familiar with it. 

 

 

Figure 6.1. Recommended methods related to Waterfall phases with the most successful 

metric suites 

 

Data – originated metrics 

Different types of metrics can be evaluated at the requirements or design stages that 

originate metrics to build prediction models. According to Table 3.2, resulted metrics 

were mapped with the most suitable methods as follows: 

 

Product-based 

• Size metrics: number of uses cases, LOC. 

o Regression based methods should be preferred for accuracy. 

o FIS-based methods are also helpful at the earliest stages. 

• Halstead size metrics:  
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o ML based method primarily preferable, especially Naïve Bayes. 

• Structure: McCabe metrics. 

o Both regression and NB methods are applicable. 

o OO metrics: Regression based methods should be preferred primarily. 

 

Process-based 

• Number of defects: statistical. 

• Effort, time, stability, process maturity: FIS based. 

 

Resource-based 

• Human characteristics: FIS based, BBN based 

• Project characteristics: BBN based 

 

Data – type and quality aspect 

• Qualitative data 

o FIS-based or BN-based methods should be preferred. 

• Quantitative data 

o Give priority to ML-based, Regression-based or BN-based methods, 

respectively  

If data has:  

• Dependency between attributes (causality): 

o Use of BN based model is recommended. 

• Outliers: 

o ANN should be preferred first, however DT works well, too. 

• Missing data points: 

o Bayesian methods, i.e., Naïve Bayes and Bayes Network should be 

preferred. 
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• Uncertainty and incompleteness: 

o Bayesian methods, i.e., Naïve Bayes and Bayes Network should be 

preferred first, yet some of ML-based methods suit well (such as ANN, 

DT). 

• Vagueness, imprecision, and inconsistency: 

o FIS-based methods gain importance when experts are available. 
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7. CONCLUSION 

In this chapter, the summary of this thesis, the contributions to the literature and threats 

to validity of the study are summarized. In addition, planned future work is presented. 

 

7.1. Summary of Thesis 

Software quality is the main proof of compliance for software products that enable proper 

and correct implementation of customer needs. Software quality assurance is therefore 

important not only in the later phases and also in the earlier phases of the SDLC. Software 

prediction models can help in the early detection of software defect proneness. Although 

it is relatively hard to collect early-stage data for every kind of project, findings from 

software process assessments or process audits might be significant in gathering the 

information needed by the early prediction models. 

 

In this thesis, a decision analysis approach is proposed in order to select the best-fit SDP 

method according to the dataset characteristics and stakeholder needs that can be elicited 

via presented questionnaire in the early phases of the SDLC. 

  

The introduction to the subject and overall goal of this thesis is presented in Chapter 1, as 

well as the research methods used throught the thesis and the main contributions. In 

Chapter 2, the detail information on the background is introduced. Chapter 3 identifies 

the related work from different aspects. Most importantly, evidence on the trends and 

maturity of research as well as the success and usefulness of early software defect 

prediction are investigated systematically. Besides, the survey is presented to gain insight 

into the current situation on SDP in Turkey. In Chapter 4, the details on decision analysis 

approach are presented, which includes solution architecture of the approach, alternatives 

and criteria, knowledge base, and the methodology for decision analysis, as well as the 

questionnaire. Chapter 5 demonstrates the investigation of the decision analysis approach 

through case studies implementing SDP on early phases and provides discussion on the 

results with regard to related literature. Chapter 6 highlights the recommendations. Lastly, 

Chapter 7 concludes the thesis by presenting the overall summary and contributions, 
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explaines the validity threats with the actions taken to minimize them, and reveals the 

future work. 

 

According to our findings based on the systematic literature map and review; few studies 

reporting evaluation research indicate the need for conducting stronger empirical 

validation for future contributions in the context of ESDP. Product, process, and resource-

based software metrics play an important role in building ESDP models, and there is a 

constant increase in the studies published especially as journal papers. The performances 

of many categorical studies and few continuous studies demonstrate evidence on the 

success of the ESDP models. Although the included studies mostly report that early 

prediction models are beneficial and useful to make effective resource planning, there is 

a need for further quantitative evidence on the benefits of using the ESDP models in 

practice.  

 

According to the evidence obtained from the literature and our empirical studies, the 

prediction performance is satisfactory using early-stage data and supports the result of 

our decision analysis approach, in which Naïve Bayes and Logistic Regression based 

models are the most convenient methods for predicting the potential software defects in 

the early phases using NASA dataset. Similarly, the results obtained for NASA-93 dataset 

are quite consistent. The results comparison shows that the decision analysis recommends 

the same ranking with the experiments focused on performance criteria, in which 

Decision Tree based models are firstly chosen. Also, in terms of speed criteria, the 

rankings are very similar except DT and LinR. Finally, we perform an experiment based 

on the human judgement for Fenton’s dataset, which lacks sufficient data points for 

applying a learning algorithm. According to the case study results, the ranking between 

the FIS and BBN based models in terms of the performance criteria is the same as the 

experiment results.  

 

As a main conclusion of this thesis, when evaluating possible alternative SDP methods 

and choosing a suitable one to build an SDP model in the early phases of the SDLC, we 

can say that we need to consider different aspects to address stakeholders' needs and 

various factors related to the defect dataset. Evidence from the case studies and the related 
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literature confirm the results of the decision analysis approach, in which the resulted 

scores reflect both the constraints of the given dataset within its specific context, and the 

requirements arising from these constraints. Thus, given which phase of SDLC we are in, 

what kind of data is available and what needs of stakeholders appear primarily, certain 

defect prediction methods may be more appropriate than others and should be preferred. 

 

The decision analysis approach could be helpful and beneficial for software practitioners 

in deciding which prediction method they should use based on their specific needs. It 

might also serve as a guideline for stakeholders, especially for software project managers, 

in building their early SDP models that could support the management of the software 

development projects with effective resource, schedule and cost planning, thus ensuring 

higher quality software from the earliest phases of the projects. 

 

Moreover, the systematic literature review in the field of early phase SDP may structure 

a protocol that future researchers can model. For instance, it can be improved by focusing 

on the early stages for iterative incremental and agile methods, rather than the 

requirements and design stages focused on in this thesis. In addition, it is thought that 

innovations such as expert opinion surveys prepared for SDP method selection and 

decision analysis approach in which different methods are used together will benefit 

researchers in many fields of software engineering. 

 

It is also important to note that, the proposed decision analysis approach can be adapted 

not only in the context of software defect prediction, but also in different fields, such as 

software effort, cost, and reliability estimation. It can even be evaluated in areas that are 

outside the field of software engineering but require revising the questionnaire for that 

specific area, and also comparing many alternative classification of prediction methods 

and choosing the best. Having said that, it is also important to mention the possibility of 

the transformation of this proposed approach as a meta-learning model. It would be quite 

possible and useful to configure the proposed decision analysis approach as a meta-

learning framework. It should be emphasized that this transformation may be possible not 

only in the SDP domain, but also in software engineering area where machine learning 

methods will be benchmarked in a wider scope. 
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7.2. Contributions 

The contributions of this thesis to the literature can be highlighted in three main headings. 

 

Extensive literature review on Early Software Defect Prediction 

• Identifying the primary studies on ESDP and the main characteristics of their 

prediction models with regard to prediction methods, software metrics, datasets, 

contextual parameters, and performance evaluation approaches, as well as the 

addressed SDLC phases; 

• Providing a classification scheme and mapping; 

• Analysis of the prediction model design in the studies as well as their prediction 

performances, benefits or advantages of the early software defect prediction. 

 

Proposing a new approach for selecting the most suitable prediction method 

• Identifying the alternatives and criteria to be used in decision analysis process; 

• Creation of a knowledge base regarding the evaluation of the various SDP 

methods according to identified criteria; 

• Presenting a questionnaire that gathers the preferences of the stakeholders in the 

early phases of SDLC and the characteristics of the dataset subject to SDP; 

• Proposing a two-phase decision analysis approach that combines decision tree and 

MCDA methodologies; 

• Presenting case studies using public datasets and investigating the trustworthiness 

of the proposed decision analysis approach. 

 

Making the outputs from the research available 

• Providing the paper repository regarding a classification scheme; 

• Publishing the criteria, alternatives, and their evaluations in the context of ESDP 

within the knowledge base; 
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• Publishing the source code of the web-based application that includes the 

implementation of the Fuzzy TOPSIS evaluation and demonstrates its usage on 

ESDP.  

 

7.3. Threads to Validity 

The potential threats to validity of the thesis have been systematically identified and 

addressed by taking steps to minimize or mitigate them. Below, the main threats to the 

validity of this study are discussed based on the checklist adopted from Wohlin et al. [27]. 

 

7.3.1. Internal Validity 

Threats to internal validity are influences that can affect the independent variable with 

respect to causality, without the researcher’s knowledge. 

 

Perception of the term “early” 

The most important threat in this study may be the author’s consideration of the term 

“early” to refer to requirements and/or design phases. However, a pre-release phase could 

be thought as early in incremental or agile development projects. Although the initial 

searches showed that there were few primary studies on software defect prediction in 

agile or incremental development, we could not have the chance to retrieve all such 

studies by the selected search strategy. There may be a need for conducting further 

research that investigates studies on pre-release defect prediction in such contexts. 

Especially in recent years, the interest in agile development methods has increased a lot. 

Since the transition to agile methodologies is relatively recent compared to the use of 

plan-based methods such as waterfall, there is limited literature or data on the related 

topics, i.e., defect prediction at early stages of the development. Therefore, the phase 

information discussed in this thesis does not fully correspond to the agile environment. 

In this context, it is worth emphasizing once again that the term “early” should be 

interpreted as independent from the software development model employed, and as 

dependent to the phases of requirements or design that originate metrics for building 

prediction models where applicable. Consequently, in order not to perceive the term 
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“early” for different contexts, the requirement and design phases were frequently used 

throughout the thesis, to mitigate this validity. 

 

Researcher bias 

The researcher bias is one of the main internal validity threats for the literature analysis 

part of this thesis since the author conducted most of the search process for the literature 

review. To reduce this threat, some actions have been taken. Firstly, the review protocol 

of the research was prepared with thesis supervisor to ensure the clarity of the design of 

research methodology. To increase the reliability of our review protocol, we reviewed 

and considered the protocols of other secondary studies. Secondly, a detailed data 

extraction form was defined to make the extraction well-structured. The classification 

scheme and extracted data were peer-reviewed by the supervisor on a test-set of including 

papers with sampling, which shows a very high degree of agreement to involve the related 

papers. Few corrections required after the peer-review was reflected in the overall data 

extraction and analysis.  

 

Selecting the decision analysis methodology 

As reported in Chapter 2.3.2, there are different implementations of MCDA, such as AHP, 

PROMETHEE, ELECTRE etc. and the selection of an appropriate MCDA tool is not an 

easy task. At this point, we followed the guideline by [143] as a general framework for 

selecting a suitable MCDA methodology for the specified area of decision analysis. Thus, 

we considered using Fuzzy TOPSIS approach, since the hybrid usage of MCDA 

methodology and fuzzy set theory provides solutions for decision makers to handle 

incomplete, vague, and ambiguous knowledge.  

 

Identifying participants to the expert opinion studies 

Another threat might have occurred due to selection bias of the experts who volunteered 

to participate in the expert opinion surveys. Due to the extensive literature search in the 

field, the expert profiles from the academy were gathered systematically by considering 

their contributions to the SDP area and Google Scholar profiles. In addition, thanks to the 
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authors' 10+ years of experience in the industry, access has been provided to experts from 

the industry who are relevant to the subject. 

 

7.3.2. Construct validity 

Construct validity is concerned with the relation between the study structure and the 

actual reflection of the research. 

 

Suitability of literature review  

Threats related to this type of validity might be suitability of research questions and 

classification scheme used for data extraction through systematic literature review. 

Research questions were answered based on a classification scheme, which was designed 

based on the standards adapted from [24]. Also, we finalized the scheme through several 

iterations until we extracted all related information with the research questions. 

 

Defining criteria and evaluation in decision analysis 

Threats to construct validity could also occur while identifying the criteria and rating 

them for each alternative. To minimize this threat, we conducted two expert opinion 

studies, so that we could design the decision analysis approach in a more reliable and 

robust way. First, an expert opinion questionnaire was administered to finalize and rank 

the initially defined criteria. After, another expert opinion survey was applied to evaluate 

the alternatives on the basis of criteria, and the support of experts from both academia 

and the sector was received. Thus, the resulting knowledge base was supported and 

strengthened by expert opinions as well as basing it on the literature. Besides, we 

explained our mindset and reasoning by providing the comprehensive literature review 

results through the base decision matrix within a knowledge base and by grounding the 

definitions we mentioned throughout the decision analysis process.  

 

Method selection as alternatives to the decision analysis 

Another threat would be about selection of the prediction methods to evaluate in the 

decision analysis. We did not include any ensemble methods (e.g., Random Forest), since 
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the choice and implementation of the algorithm could have impacted the prediction 

results; so we only included basic algorithm implementations in our case studies. Besides, 

we did not have any knowledge base about ensemble algorithms, as they did not appear 

in the literature review at the first place, thus we did not include them in our surveys. 

Nevertheless, one may replicate the decision analysis study using today’s popular 

prediction methods, such as Random Forest and Deep Learning. 

 

Lack of parameter optimization 

Last and most important validity threat is related to the parameter setting. Although there 

are several studies that recommends parameter tuning [144,145], we used the default 

parameters for each classifier used in our study and did not apply any optimization on the 

parameters in order to minimize this threat. By doing so, we could compare the 

performances of the classifiers as they were. However, especially for some methods like 

ANN, DT or SVM, parameter optimization may affect the overall ranking of the 

classifiers, where the improment in the prediction performance after the optimization is 

non-negligible for some of the classification techniques in [145]. Conversely, the 

performance of the NB model built with default values is as stable as optimized models. 

Therefore, we believe that our comparison will be the base for possible future studies, 

which may perform deeper experiments by using parameter tuning. 

 

7.3.3. Conclusion validity 

This type of validity is mainly concerned with the reliability of the proposed study by 

examining its reproducibility. 

 

Reliability of the proposed approach 

It is concerned with the reliability of the decision analysis that if it is applied by other 

researchers, the outcome shall be the same. By defining details of the methodologies and 

processes followed, we ensure reliability to the extent that researchers who apply our 

approach with the same requirements would come up with the same results. Moreover, a 

web application of the decision analysis was developed using Angular, Java and Spring 

framework. The source code made available and shared on GitHub to enable researchers 
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or practitioners to perform the decision analysis using the determined criteria, weights, 

and the list of selected alternatives. When the application is executed according to the 

scenarios given in the case studies, SDP methods and their ranking recommended by the 

decision analysis can be validated.  

 

Replicability of literature review 

This type of validity also considers the relationship between the data collected from 

primary studies and the results/conclusions. We wanted to make sure that there was a high 

degree of traceability between data and conclusions. In order to ensure this, we publicly 

shared the spreadsheet of the data gathered from literature review [99].   

 

7.3.4. External validity 

The threat to external validity is related to the ability to generalize the results of the 

empirical studies in broader contexts. 

 

As only three contexts are used for validation of the proposed decision analysis approach, 

threat to external validity is a major threat to this thesis. Although we presented the 

process for selecting the most convenient SDP method to build a prediction model in the 

early phases within our proposed approach, it would be obviously misleading to argue 

that the decision analysis approach will give the correct result under all circumstances. It 

is important to say that as the number of experiments carried out by collecting metrics 

from software projects involving different context information increases, the base on 

which the decision analysis approach is depending on would be strengthened and the 

results could be more trustworthy. 

 

7.4. Future Work 

Today, most of the SDP studies in the literature focus on developing, improving, and 

evaluating prediction models empirically with the help of various software metrics. Such 

studies contribute significantly to the research on software engineering, but few studies 

create research-based tools for the practical application and advancement of SDP 
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research. In the future, we plan to focus on improving our proposed approach to create a 

tool that guides practitioners in building and incorporating SDP models from the 

beginning of their software projects. To do this, first the usability of our decision analysis 

application package should be investigated. Then, our package can also be integrated with 

widely used project management tools available in the industry to facilitate the usage. 

 

While the results of this thesis provide insight for future research on the context of ESDP, 

further evidence on different software projects are necessary in order to enhance decision 

analysis process and make stronger inferences. For future work, the validation of the 

proposed decision analysis approach will be investigated by conducting further empirical 

studies with data from different software projects. Besides, we plan to study on 

improvements of the knowledge base by including further experts and their opinions. 

There is also some space to the validation of the proposed decision analysis approach by 

conducting further empirical studies with data collected from industry in Turkey. 

Accordingly, we plan to include software development methodology information to the 

decision analysis process in our future studies. 
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APPENDIX 2 – Results of “Survey Study on SDP from Industry in Turkey” 
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Yazılım hata tahminini nasıl işletiyorsunuz?  

 

1 Statik Kod analizi yaparak, sürekli entegrasyon faaliyeti yapıp, çıkan hatalar analiz 

ediyor. Ayrıca hata takip sistemi ölçümleri alınıyor. 

2 Poje başlangıcında tamamlanmış benzer projelerden kestirimde bulunarak  

3 Her Sprint iterasyonunda ortaya çıkan geliştirme hataları ile iterasyon süresince 

sahadan gelen hatalar birleştirilerek kök nedenlerine göre sınıflandırılmaktadır. 

Geçmiş sprint içindeki özellik ekleme puan toplamı(velocity) ile iterasyon hataları 

koreledilerek yapılan sprint planlamasında sonraki sprintde beklenen hata oranı 

hesaplanmaktadır. Aynı zamanda bu velocity ve hata büyüklüğü toplamları bölünerek 

ekibin özellik ekleme hata oluşturma katsayısı hesaplanmakta ve bir kalite metriği 

olarak ekiplerin bu katsayıyı büyütmesi(daha fazla özellik puanı daha az hata) 

beklenmektedir. 

4 Benzer proje verileri toplanmakta ve geliştirilicek olan yeni yazılım projesinde 

potansiyel hataya açık kesimlerin tahmini istatistiksel yöntemlerle yapılmaktadır.  

5 Geçmiş verilere dayalı istatistiksel yöntemler kullanılarak oluşturulmuş hata tahmin 

modeli ile her sürümden önce ekiplerin ilgili sürümde kaç hata ortaya çıkacağını 

öngörebilmeleri sağlanıyor. 

6 Code coverage, coupling/cohesion, Automated test tools vb. araçlar ve yöntemler 

yardımı ile test fazından önce hata tahmini ve ürün olgunluğu kontrolü yapılmaktadır. 

7 Matematiksel bir model ile kontrol edilebilir değişkenlerden bir sonraki sürüm hata 

sayısı tahmini 

8 Yazılımların yeniden kullanımının fazlaca olduğu projelerde (ürün hattı gibi) ve 

regresyon testi işletilen projelerde yazılım güvenilirlik tahmin modelleri 

uygulamaktayız. 

9 Yalnızca öngörü tahmin ve sözlü, geçmiş deneyime binaen 

10 Geçmiş deneyime binaen 
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Sizce firmanızdaki yazılım hata tahmini uygulamalarının faydaları veya avantajları 

nelerdir? 

 

1 Kaliteli ürün oluşturmak için oldukça faydalıdır. 

2 Çıkabilecek hataların öngörülmesi projenin uzama riskini de ölçmeyi sağlıyor.  

3 Öncelikle bir performans metriğ oluşturarak ekiplerin giderek az hata yapması için 

motivasyon sağlanmaktadır(hata tahminin aşılması aşılmaması). Aynı zamanda release 

planlama ve sprint commitmentlarının belirlenmesinde olası hata metriği riski 

öngörülebilir kılmaktadır. 

4 Yeni başlanacak yazılım geliştirme projelerinde, gereksinimlerin belirlenmesi 

sürecinde ve ekiplerin oluşturulması aşamasında, önceki projelerden topladığımız 

metriklerle korelasyon yapıyoruz. Böylelikle olası hatalı bileşenleri önceden kestirip, 

bu noktalarda daha fazla kaynak ayırabiliyoruz. 

5 Sürüm bazlı hata tahmini yapılmaktadır. Bu sayede ekipler yeni sürüm almadan önce, 

geçmiş sürüm verilerine dayalı olarak bir sonraki sürümde çıkacak hata sayısını 

öngörebiliyor ve buna dayalı olarak test ve gözden geçirme gibi kalite faaliyetlerine 

ağırlık vererek hata sayısını indirgeyebiliyor. 

6 test / kabul fazından önce hata tahmini ve ürün olgunluğu kontrolü yapılması  

7 Bir sonraki sürümde çıkacak hata sayısını kontrol altına almak 

8 İterasyonlar bazında ortaya çıkabilecek hataların sayısına göre, sonraki iterasyonların 

ön kabulünden önce koşturulan testlerin sayısında ve kapsamında artış / azalışa 

gidebiliyoruz. 

9 Faydası olduğunu düşünmüyorum.  

10 Ürünün kalitesine doğrudan etkisi olmaktadır. Zamandan kazanım sağlamaktadır.  
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Sizce firmanızdaki yazılım hata tahmini uygulamalarının zorlukları veya dezavantajları 

nelerdir? 

1 Dinamik sürüm üretme ve takvim sıkışıklığının tahminlemenin etkin yapılmasını 

önlemesi 

2 Hata sayısı kestirimi her zaman sağlıklı yapılamıyor. 

3 Hata sayısı ölçülebilir olsada büyüklük değerlendirmesi uzman tahminine dayılı 

olmaktadır. Bu nedenle kestirimlerde hatalı değerlendirme sonucu beklentiyle oluşan 

sonuç arasında ciddi farklılaşma olabilmektedir. 

4 Her projenin dinamikleri birbirinden farklı olabiliyor, bu noktada benzerlikleri / 

farklılıkları çıkarmak kolay olmuyor. 

5 Modelin belirli aralıklarla yeni verilerle birlikte kalibre edilmesi ve güncel tutulması 

gerekiyor. Süreçler tarafından tahmin modelinin kullanımı zorunlu kılınmadığı için 

ekipler arasında kullanımının yaygınlaştırılması ve faydaları konusunda farkındalığın 

arttırılması zorlayıcı olabiliyor. 

6 Maliyet 

7 Ekipler tarafından kullanılmaması 

8 Daha fazla ölçüm içeren daha başarılı performans veren yöntemlere (makine öğrenmesi 

gibi) ihtiyacımız bulunmaktadır. Tasarımları konusunda know-how'ımız olmadığı için 

geliştiremiyoruz. Kullandığımız hata tahmin modelleri aslında yetersiz kalmaktadır, 

aşağıdaki bilgileri de ekleyerek daha geniş kapsamlı bir tahmin modeli ihtiyacımız 

vardır: iterasyon kapsamında eklenecek / silinecek kod satır sayısı yeni gereksinimlerin 

sayısı gereksinimlerim zorluk seviyesi gibi 

9 Yorumsuz 

10 Hata tahmini yapacak seviyede insan kaynağına sahip olmak zorlukları arasında yer 

almaktadır. Her projenin farklı dinamikleri olduğu için yapılan tahminlerde sapmalar 

olabilir. 
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Sizce firmanızda yazılım hata tahmini neden yapılmıyor? 

1 Çalıştığım firmada geliştirilen yazılımların ortak yönleri ile ilgili bir çalışma 

yapılmamış ve bir envanter oluşturulmamış. Projeler yazılım ve donanım içeren sistem 

entegrasyon projeleri olduğundan hata tahmininin öncelikli görülmediğini 

düşünüyorum. 

2 Bu durum firmanın ve ilgili süreçlerinin olgunluk seviyesiyle ilişkili. Olgunluk 

seviyesi arttıkça sadece düzeltici değil önleyici faaliyetler de artacaktır. Firmamızda 

şu an daha önce analistler tarafından yapılan test aktivitelerinin alanında uzman test 

mühendisleri tarafından yapılmasını önceliklendirmiş durumdayız. Bu çalışmanın 

olgunlaşmasıyla uzmanlığı test ve kalite olan ekipler önleyici tahminleme 

çalışmalarına odaklanabileceklerdir. Özetle, kaynak, önceliklendirme, sürece hazır 

olgunluk seviyesi sebepleri oluşturuyor. 

3 Projelerin başında çok hızlı bir şekilde kod geliştirme sürecine geçilmek isteniyor 

çıktıların hızlı olması açısından. Bu nedenle diğer işlere vakit ayrılmıyor / önem 

verilmiyor. 

4 Bilinmediğinden ve bunu destekleyecek ölçüm alt yapısının olmamasından  

5 Firmamızda projeler kısıtlı zamanda düşük maliyetle yapılmaya çalışılıyor. Yazılım 

hata tahmini yapmak için zaman ve bütçe ayrılmıyor. 

6 Uygulama şekli ve faydaları yeterince bilinmiyor, 

7 Kullanılması planlanıyordur ancak farklı teknolojiler ve yazılım dilleri 

kullanıldığından dolayı maliyeti göz önünde bulundurulduğundan 

önceliklendirilmemiştir. 

8 Yazılım hata tahmini yapmak için yetişmiş personel bulunmadığından yapılmıyor  

9 Zaman kısıtından dolayı 

10 İhtiyaç duyulmuyor 
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Firmanızda yazılım hata tahmini yapılıyor olsaydı sizce ne gibi faydaları olurdu? 

1 Çalışmanın başında projelerin sınıflandırılması ve büyüklüklerinin nasıl ölçülmesi 

gerektiği ortaya çıkardı. Farkındalık ve yeniden kullanılabilirlik artardı. Testler daha 

verimli geliştirilebilirdi. 

2 Test süreçlerinin kalitesi artar, kaynak ve zaman yönetimi daha verimli yapılırdır.  

3 Hızlı geliştirme aktiviteleri nedeniyle fazla sayıda bug çıkıyor. Sprintlerin 3'te 1'ini 

bug çözmek için ayırıyoruz ve bu süreç yeni bugların inject olmasına da neden 

olabiliyor. Kodlama öncesi aşamalarda hata tahmini yapılıyor olsaydı (tasarım 

dökümanlarındaki hatalar çoğunlukla yazılım hatası olarak doğuyor) daha az rework 

çıkardı diye düşünüyorum. 

4 Geliştirmeyi buna göre yönlendirirdik 

5 Üründen yapılan hatalı ya da eksik geri bildirimlerin azalması sağlanabilirdi 

6 Geliştirilen yazılım daha kaliteli üretilebilirdi. 

7 Ekibimde yer alan işgücünü yazılımın hatalı kısımları üzerinde yoğunlaştırır, o 

kısımlarda olan test aktivitelerini arttırırdım. 

8 Projenin hem yazılım hem de test evresindeki süre kesinlikle kolaylaşacaktır.  

9 Daha az hata oluşacağı için müşteri memnuniyeti ve ürün kalitesi artar, maliyet 

düşerdi. 

10 Gerçek bir metrik bulunsaydı, yazılım geliştirmede önlem alırdık, koku araştırır daha 

kaliteli yazılım cikarirdik. Bununla ilgili analizler sağlıklı yurutulurse kök nedeni 

bulup geliştirme gereksinim test süreçlerine girdi saglardik. 

11 Hataları daha erken tespit etme 
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Firmanızda yazılım hata tahmini yapılıyor olsaydı sizce ne gibi zorlukları olurdu? 

1 Tahmin modelini oluşturmak zor olurdu. Projelerin benzer nitelikte olduğunu 

belirleyen kriterlerin tanımlanması zor olabilirdi. Matris yapıda bir firmada çalıştığım 

için yazılım ve test mühendisliği ekiplerinin iş yükü artabilirdi. 

2 Yeterli verinin oluşması, personel sirkülasyonunun modele etkisi, değişen altyapı vb. 

3 Deadline'ları yakalamak için çok hızlı geliştirme yapılıyor, bu süreçte hata tahmini 

uygulamak bizi yavaşlatabilirdi. 

4 Tahminleme için gerekli veriyi toplama 

5 Projelere ekstra maliyet getirirdi. Bu durum özellikle Kamu projelerinde firmamıza 

dezavantaj oluştururdu. 

6 Bu zamana kadar herhangi bir tahmin yapılmadığı için (ilk kez yapılacağı için) 

bilinmezlikler olurdu. Gereken verileri toplamak için zaman ve kaynak gerekebilirdi.  

7 Kullanılan yönteme bağlı olarak yazılımcılar tek düze kod geliştirmeye yönlenmek 

zorunda kalabilirler. 

8 Hata tahmini yapmak için hangi metriklerinin kullanılacağı ve bunların nasıl doğru bir 

şekilde toplanacağı en zorlayıcı sorunlar olurdu 

9 Doğru bir tahminlere yapmak zor. Genelde insanlar bu modellerin başarısına 

inanıyorlar. İkna edilmeleri lazım. Hata tahmini için çok fazla değişken mevcut. Bir 

projenin kimi diğeriyle karşılaştırabilirsiniz, çünkü projelerin doğası farkli-kullanici 

sayısı, kullanım sıklığı vs. Eğer doğru tahminlere yapılırsa normalden sapma olmadığı 

sürece kullanılmaz. Hata tahmini normalden saparsa da alarm vermek yerine önce 

kalite olarak manuel doğruluğu değerlendirilmeli sonra ekiple çalışma yapılmalıdır. 

Belki o sürümde ekstra bir durum olmuştur. Acil durum sinyali vermektense doğruluğu 

inandırıcılığı oluşana kadar ölçülmelidir. 

10 Veri toplamak 
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Sizce yazılım geliştirme sürecinin ilk aşamalarından itibaren yazılım hata tahmini için 

önerilecek bir kılavuzda yukarıdaki hususlara ek hangi konular ele alınabilir? 

1 Farklı nitelikteki projeler için farklı modeller önerebilir. Ayrıca modelin yanısıra 

modelin içeriğinin de hangi roller tarafından işletileceğini de içerebilir.  

2 Sektörel bazdaki farklılıklar. Örneğin savunma sanayine özel yazılımlardaki yöntem 

ile bankacılık ve finans sektöründeki yazılım modellerinde farklılık var mı?  

3 Özellikle yazılım hata tahmini öncesinde kullanılabilecek verilerin ve yöntemlerin 

belirlenmesi amacıyla, o projenin dinamiklerine uygun bir yönlendirme işe 

yarayacaktır. Eski projelerden topladığımız verileri ortaklaştırabileceğimiz ve sonrası 

için kullanabileceğimiz bir yapı işimize yarayabilir. Kullandığımız istatistiksel 

yöntemler bazen yeterli olmuyor, ek olarak farklı metrikleri (ekip dinamiği, 

paydaşların öncelikleri, projelerdeki belirsizlikler vb) de işleyebileceğimiz bir yöntem 

seçimi işimize yarayacaktır. 

4 Yukarıdaki bilgilerin yeterli olduğunu düşünüyorum. 

5 Farklı modeller arasından hangi tür projelerde hangi modelin kullanılacağına dair bir 

model seçim kılavuzu faydalı olabilir. 

6 En basit uygulanabilecek ve en iyi sonucu verebilecek bir tahmin modelini en kısa 

sürede nasıl oluşturabilirim sorusunun cevabı çok faydalı olurdu  

7 Elimizde bulunan verilerle kullanabileceğimiz en ideal model hangisi, bizim için en 

kritik olan bu 

8 Hangi sektörlerde geliştirilen yazılımlarda bu süreç daha faydalı olmaktadır. 

Geliştirilmek istenener her uygulama için bu yöntem sürdürülebilir mi? Varsa yanlış 

uygulandığı takdir de ne tür sorunlara neden olmaktadır? 

9 Bu tarz tahmin süreçlerinin ilgili kuruma olan faydaları ve bu süreçlerin ek yük değil 

avantaj sağlayabileceğinin vurgulandığı konular ele alınabilir. 

10 Metrikler açıkça ifade edilmeli ve ekip lideri veya Pylere inandırıcılığı sağlanması için 

örnek senaryolar üretilmelidir. Ayrıca dinamikleri sürekli değişen küçük projelerde 

uygulanmamali. Daha kurumsal büyük projelerde uygulanabilir. 
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APPENDIX 3 – Results of “Expert Opinion Study on Identifying and Ranking the 

Criteria” 

  
 

  
 



 

  

182 

  
 

  
 

 

  
 



 

  

183 

  
 

  
  



 

  

184 

APPENDIX 4 – Results of “Expert Opinion Study for the Evaluation of Alternatives 

against Criteria” 
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Expert#1 

I am 

familiar 

with this 

method 

No 

experience 

I have 

expertise 

in this 

method 

No 

experience 

I have 

expertise 

in this 

method 

I have 

expertise 

in this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

 ANN BBN DT FIS LinR LogR NB SVM 

Dataset size Large Large Small Medium Medium Medium Small Large 

Causality Average Average Average Low Low Average Average Average 

Uncertainty Average Average Average Low Average Average High Average 

Missing Values High High High Average High High High High 

Outlier High Average Very Low Average Average High High High 

Interpretability Very Low Average Very High Average Very High Very High Very High Average 

Complexity High High Very Low High Very Low Very Low Very Low High 

Performance Average High High Average Average High High High 

Speed Low Average Very High Average Very High Very High Very High Average 

Maintainability Low Average High Low High High High Average 

Size No Yes Yes No No No Yes Yes 

Development 

methodology 
No No No Yes No No No No 

Development 

phase 
Yes Yes No No  No No No 

Domain Yes Yes Yes Yes No No No No 
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Expert#2 

I have 

expertise 

in this 

method 

No 

experience 

No 

experience 

I have 

expertise 

in this 

method 

No 

experience 

No 

experience 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

 ANN BBN DT FIS LinR LogR NB SVM 

Dataset size Large   No data 

required 
  Medium Medium 

Causality Average   Very High     

Uncertainty High   Low     

Missing Values Average   Low     

Outlier High   Low     

Interpretability Very Low  High Very High     

Complexity Very High   Very Low   Low Average 

Performance Very High   High   High Average 

Speed Low   High   High  

Maintainability Average   Very High   High  

Size Yes   No   Yes Yes 

Development 

methodology 
Yes   No   Yes Yes 

Development 

phase 
Yes   No   Yes Yes 

Domain No   No   No No 
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Expert#3 

I am 

familiar 

with this 

method 

I have 

expertise 

in this 

method 

I am 

familiar 

with this 

method 

No 

experience 

I have 

expertise 

in this 

method 

I have 

expertise 

in this 

method 

I have 

expertise 

in this 

method 

I am 

familiar 

with this 

method 

 ANN BBN DT FIS LinR LogR NB SVM 

Dataset size 
Very 

Large 

No data 

required 

No data 

required 
Medium Medium Medium Medium Large 

Causality Very Low Very High Very Low Very Low Very Low Very Low Very Low Very Low 

Uncertainty Low Very High Low Average Low Low Very High Low 

Missing Values Average Very High Average Average Low Low Very High Low 

Outlier High High High  Low Low Average Average 

Interpretability Very Low Very High Very High  High High High Very Low 

Complexity High Average Low  Very Low Very Low Very Low Low 

Performance High High High Very Low High High High Average 

Speed High Average Very High Average Very High Very High Very High High 

Maintainability Very Low Very High Very Low Very Low Average Average Average Very Low 

Size Yes Yes Yes Yes Yes Yes Yes Yes 

Development 

methodology 
Yes Yes Yes Yes Yes Yes Yes Yes 

Development 

phase 
Yes Yes Yes Yes Yes Yes Yes Yes 

Domain No Yes No Yes No No No No 
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Expert#4 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

I am 

familiar 

with this 

method 

 ANN BBN DT FIS LinR LogR NB SVM 

Dataset size Large 
No data 

required 
Medium 

No data 

required 
Small Small Small Large 

Causality Average Very High Average Very High Low Low Very Low Low 

Uncertainty Average Very High Average Average Low Low High Average 

Missing Values Average Average Low High Low Low High Average 

Outlier High High Low Average Average Average Low Low 

Interpretability Very Low High Very High Very High High High Average Low 

Complexity Very High High Low Low Very Low Very Low Average High 

Performance Very High Average High Average High High High Average 

Speed Very Low Very High Very High Very Low Average Average Very High Average 

Maintainability High Average Low High High High Average Low 

Size No Yes Yes Yes No No No Yes 

Development 

methodology 
No Yes Yes Yes No No No No 

Development 

phase 
No Yes No Yes Yes Yes No No 

Domain No Yes No Yes No No No No 
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