

A DECISION ANALYSIS APPROACH FOR SELECTING

SOFTWARE DEFECT PREDICTION METHOD IN THE

EARLY PHASES

ERKEN AŞAMALARDA YAZILIM HATA TAHMİN

YÖNTEMİ SEÇİMİ İÇİN BİR KARAR ANALİZİ

YAKLAŞIMI

RANA ÖZAKINCI

ASSOC. PROF. DR. AYÇA KOLUKISA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering.

2022

i

ii

To my family

iii

iv

v

ABSTRACT

A DECISION ANALYSIS APPROACH FOR SELECTING SOFTWARE

DEFECT PREDICTION METHOD IN THE EARLY PHASES

Rana ÖZAKINCI

Doctor of Philosophy, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ayça KOLUKISA TARHAN

June 2022, 216 pages

Considering that software usage rates have increased, it is inevitable for end-users to

prefer high-quality software products. Undoubtedly, one of the most important quality

indicators of a software product is its defect rate. With the widespread use of methods

and tools that support estimation tasks in software engineering, the interest in software

defect prediction is increasing. Currently, most defect prediction models are built using

the metrics from the coding phase. This situation leads to the inability to process the

information belonging to the early stages of the software development life cycle such as

requirements analysis or design, thus not being able to benefit from preventive actions

such as cost reduction and effective resource planning in the early stages. Eventually, it

becomes important for stakeholders to build the desired defect prediction model as early

as possible and to use it throughout the software development life cycle. When the

proliferation of methods of data science in software engineering is combined with the

shortage of knowledge to use them in industry, an important need arises to guide

vi

practitioners in selecting the best-fit methods by considering their specific needs. This

thesis presents research aimed at addressing the method selection problem in software

defect prediction during the early phases of the life cycle by using a formal decision

analysis process. A two-phase decision analysis approach was proposed that is structured

using a decision tree and multi-criteria decision analysis (MCDA) methodologies. In

doing so, an extensive literature review was conducted to obtain a general view of the

characteristics and usefulness of Early Software Defect Prediction (ESDP) models

reported in scientific literature. As a result, the most preferred prediction methods,

metrics, datasets, and performance evaluation methods, as well as the addressed SDLC

phases were highlighted. Accordingly, the alternatives to be evaluated in the decision

analysis and the criteria that may have an impact on the decision of method selection were

systematically determined. To strengthen the knowledge, two different expert opinion

surveys were conducted. Besides, to manage the operation of the decision analysis

process, a questionnaire is proposed to reveal stakeholder needs and dataset

characteristics. After, several case studies were performed to investigate the

trustworthiness of the proposed approach with selected SDP methods using public

datasets. The most convenient methods proposed by the decision analysis are Naïve

Bayes (NB), Decision Tree (DT), and Fuzzy Logic-based methods for the case studies. It

is concluded that the results of the decision analysis are consistent with both the results

of the empirical evidence of the experiments conducted in the thesis and the results

reported in the scientific literature. Overall, the presented approach could be useful in

helping software practitioners decide which SDP method is advantageous by revealing

their specific requirements for the software projects and associated defect data. While the

results of this thesis provide guidance for future research on the context of ESDP, further

studies on different software projects are necessary in order to expand knowledge prior

to having decisions that are more reliable.

Keywords: Defect Prediction, Early Phases, Early Software Defect Prediction, Method

Selection, Decision Analysis, Multi Criteria Decision Analysis, Fuzzy TOPSIS

vii

ÖZET

ERKEN AŞAMALARDA YAZILIM HATA TAHMİN YÖNTEMİ SEÇİMİ İÇİN

BİR KARAR ANALİZİ YAKLAŞIMI

Rana ÖZAKINCI

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ayça KOLUKISA TARHAN

Haziran 2022, 216 sayfa

Dünyada yazılım kullanım oranlarının günden güne arttığı göz önüne alındığında, son

kullanıcıların kaliteli yazılım ürünlerini tercih etmek istemesi yadsınamaz bir gerçektir.

Bir yazılım ürününün en önemli kalite göstergelerinden biri de hata oranıdır. Yazılım

mühendisliğinde tahmin görevlerini destekleyen yöntem ve araçların yaygınlaşmasıyla

birlikte yazılım hata tahminine olan ilginin arttığı bilinmektedir. Güncel durumda, çoğu

hata tahmin modeli, kodlama aşamasından elde edilen metrikler kullanılarak

oluşturulmaktadır. Bu durum, yazılım geliştirme yaşam döngüsünün gereksinim analizi

veya tasarımı gibi erken aşamalarına ait bilgilerin işlenememesine, dolayısıyla erken

aşamalarda maliyet düşürme ve etkin kaynak planlaması gibi önleyici faaliyetlerden

yararlanılamamasına yol açmaktadır. Paydaşlar için, hata tahmin modelini mümkün

olduğunca erken oluşturmaları ve yazılım geliştirme yaşam döngüsü boyunca

kullanmaları önemli hale gelir. Yazılım mühendisliğinde veri bilimi yöntemlerinin

çoğalması, fakat bunları sektörde kullanmak için bilgi ve uzmanlığın yeterli olmadığı göz

önünde bulundurulduğunda, paydaşların proje özelindeki ihtiyaçlarını göz önünde

bulundurarak en uygun hata tahmin yöntemini seçme konusunda rehberlik etmek için bir

ihtiyacın ortaya çıktığı görülmüştür. Bu tez, bir karar analizi süreci kullanarak yaşam

döngüsünün ilk aşamalarında yazılım hata tahmininde yöntem seçimi problemini ele

viii

almayı amaçlayan bir araştırma sunmaktadır. Bu doğrultuda, karar ağacı ve çok kriterli

karar analizi (İng. MCDA) metodolojileri kullanılarak yapılandırılmış iki aşamalı bir

karar analizi yaklaşımı önerilmiştir. Öncelikli olarak, literatürde bildirilen Erken Aşama

Yazılım Hata Tahmini (İng. ESDP) modellerinin özellikleri ve kullanışlılığı hakkında

genel bir görüş elde etmek için kapsamlı bir literatür taraması yapılmıştır. Bu çalışma ile

literatürde erken aşamada hata tahmini konusunda en çok tercih edilen tahmin yöntemleri,

metrikler, veri setleri ve performans değerlendirme kriterleri analiz edilmiştir. Buna göre

karar analizinde değerlendirilecek alternatifler ve yöntem seçimi kararına etki edebilecek

kriterler sistematik olarak belirlenmiştir. Literatürde elde edilen bilgileri güçlendirmek

için iki farklı uzman görüşü anketi yapılmıştır. Ayrıca, karar analizi sürecinin işleyişini

yönetmek için paydaş ihtiyaçlarını ve veri seti özelliklerini ortaya çıkarmaya yarayan bir

anket önerilmiştir. Daha sonra, karar analizi yaklaşımı tarafından önerilen tahmin

yöntemlerinin doğruluğunu ve güvenilirliğini araştırmak için erişime açık veri kümeleri

üzerinde birkaç vaka çalışması yapılmıştır. Karar analizi yaklaşımı tarafından önerilen en

uygun yöntemler, üç farklı durum çalışması için sırasıyla Naive Bayes, Karar Ağacı ve

Bulanık Mantık tabanlı yöntemlerdir. Karar analizi sonuçlarının hem tezde yapılan

deneylerin ampirik kanıtlarının sonuçlarıyla hem de bilimsel literatürde raporlanmış

sonuçlarla tutarlı olduğu gözlenmiştir. Genel olarak, sunulan karar analizi yaklaşımının,

yazılım projeleri ve ilgili hata verileri için özel gereksinimleri ortaya çıkararak, yazılım

uygulayıcılarına hangi hata tahmin yönteminin avantajlı olacağına dair ipucu vermesi

açısından faydalı olacağı görülmüştür. Bu tezin sonuçları, erken aşamalarda yazılım hata

tahmin kapsamında yapılacak gelecek araştırmalar için rehberlik sağlarken, karar analizi

yaklaşımın sonuçlarının doğruluğunu arttırmak adına sektörden yazılım projeleri

üzerinde daha fazla çalışma yapılması gerektiği düşünülmektedir.

Anahtar Kelimeler: Yazılım Hata Tahmini, Erken Aşama, Yöntem Seçimi, Karar

Analizi, Çoklu Kriterli Karar Analizi, Bulanık TOPSIS

ix

ACKNOWLEDGEMENTS

Looking back on my long journey, I would like to express my endless thanks to my

advisor, Assoc. Prof. Dr. Ayça Kolukısa Tarhan, who has always been by my side as a

great supporter. I want to thank her for her guidance, encouragement and feedback which

has helped me tremendously in pursuing my PhD study.

I would like to express my gratitude to Assoc. Prof. Dr. Oumout Chouseinoglou and

Assoc. Prof. Dr. Aysu Betin Can for their valuable feedback, contributions, and patience.

I am also grateful to Prof. Dr. Pınar Karagöz and Assoc. Prof. Dr. Ebru Gökalp for their

suggestions during my thesis defense presentation. I express my gratitude to the

anonymous experts from both the academia and the industry, who contributed to the

expert opinion studies and surveys.

I would like to thank TUBITAK BILGEM Software Technologies Research Institute

(YTE) for supporting my academic studies. I also thank my colleagues who contributed

to my work with their valuable suggestions and their participations when necessary. I am

grateful to my dear friends for their endless support and motivation.

I would like to express my sincere thanks and love to my parents and sister, who have

always supported me in my entire life and made the greatest contribution to my success.

I will be forever grateful to my dear husband, Mehmet, for helping me intellectually and

emotionally from day one. This work would not have been possible without his patience

and endless support. I have the deepest feelings for my lovely son, Özgün, who joined

our family in the last years of my doctoral studies and gave me endless happiness.

Finally, I appreciate myself for continuing my devoted work with patience and pleasure

during this long journey, seeing that I have taken a step towards knowing and

understanding myself, and not losing my faith.

x

TABLE OF CONTENTS

ABSTRACT .. v

ÖZET ... vii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ... x

LIST OF FIGURES ... xiv

LIST OF TABLES ... xvi

ABBREVIATIONS ... xviii

1. INTRODUCTION .. 1

1.1. Software Defect Prediction (SDP) at Early Phases 3

1.2. Goal and Research Questions ... 5

1.3. Research Methods ... 7

1.3.1. Literature Review ... 7

1.3.2. Case Study .. 8

1.3.3. Data Analysis ... 8

1.3.4. Survey ... 8

1.4. Contributions .. 8

1.5. Overall Design of Thesis Study with Mappings to RQs and Chapters ... 10

1.6. Thesis Organization ... 10

2. BACKGROUND .. 12

2.1. What is “Defect”? ... 12

2.2. Software Defect Prediction ... 12

2.2.1. Defect Prediction Approaches ... 13

2.2.2. Software Metrics .. 20

2.2.3. Public Datasets .. 22

2.2.4. Performance Evaluation Measures .. 26

2.2.5. SDP During Early Phases.. 31

2.3. Decision Analysis ... 32

2.3.1. Decision Tree .. 32

2.3.2. MCDA .. 33

xi

3. RELATED WORK ... 35

3.1. Secondary Studies on SDP .. 35

3.1.1. Systematic Literature Review Studies .. 35

3.1.2. Systematic Mapping Studies .. 36

3.1.3. Other Literature Reviews ... 37

3.2. Studies Focus on SDP Frameworks ... 37

3.3. SDP Studies Using MCDA .. 39

3.4. Defect Prediction in Early Phases – State of the Art and Benefits of

ESDP .. 40

3.4.1. RQ 1: What are the characteristics of ESDP models? 43

3.4.2. RQ 2. Are models of ESDP successful and beneficial? 54

3.5. Software Defect Prediction in Turkey – A Survey Study from Industry

(RQ3) .. 65

3.5.1. Survey Design .. 65

3.5.2. Results ... 67

4. DECISION ANALYSIS APPROACH.. 70

4.1. Design of Decision Analysis Approach ... 70

4.2. What are the alternative methods for building ESDP models? (RQ4.1) . 71

4.3. What are the criteria to consider when selecting a method for ESDP?

(RQ4.2) ... 72

4.3.1. Initially Defined Criteria .. 72

4.3.2. Expert Opinion Study on Identifying and Ranking the Criteria 75

4.3.3. Ranking and Weighting the Criteria.. 79

4.4. How should the most appropriate method be selected by evaluating the

defined criteria? (RQ4.3) .. 80

4.4.1. Expert Opinion Study for the Evaluation of Alternatives against

Criteria ... 81

4.4.2. Base Matrix .. 82

4.5. How should we gather the characteristics of the project data and the

needs of the users systematically? (RQ4.4) ... 84

4.6. Modeling the Decision Analysis Approach .. 86

4.6.1. Phase - 1: Decision Tree Analysis ... 86

4.6.2. Phase - 2: MCDA (Fuzzy TOPSIS) .. 86

xii

4.6.3. Decision Analysis Tool: MCDA for ESDP .. 90

5. CASE STUDY ... 92

5.1. Design of the Multiple Case Study ... 92

5.2. Research Questions... 93

5.3. Case Study 1 - Classification Based on Design Phase Data 94

5.3.1. Case Study Design .. 94

5.3.2. Decision Analysis (RQ5.1) ... 96

5.3.3. Experimental Study (RQ5.2) .. 98

5.3.4. Results Comparison (RQ5.3) ... 100

5.3.5. Observations ... 105

5.3.6. Investigating Evidence from Literature .. 107

5.4. Case Study 2 - Prediction Based on Product, Process and Resource . 110

5.4.1. Case Study Design .. 110

5.4.2. Decision Analysis (RQ5.1) ... 111

5.4.3. Experimental Study (RQ5.2) .. 113

5.4.4. Results Comparison (RQ5.3) ... 115

5.5. Case Study 3 - Lack of Data: Prediction Based on Expert Opinion 116

5.5.1. Case Study Design .. 116

5.5.2. Decision Analysis (RQ5.1) ... 117

5.5.3. Experimental Study (RQ5.2) .. 119

5.5.4. Results Comparison (RQ5.3) ... 125

5.5.5. Investigating Evidence from Literature .. 125

6. RECOMMENDATIONS .. 131

7. CONCLUSION .. 136

7.1. Summary of Thesis .. 136

7.2. Contributions .. 139

7.3. Threads to Validity ... 140

7.3.1. Internal Validity .. 140

7.3.2. Construct validity ... 142

7.3.3. Conclusion validity ... 143

7.3.4. External validity ... 144

7.4. Future Work ... 144

xiii

8. BIBLIOGRAPHY ... 146

APPENDIX .. 164

APPENDIX 1 – Mapping references to ids of primary studies in [15] 164

APPENDIX 2 – Results of “Survey Study on SDP from Industry in Turkey” 168

APPENDIX 3 – Results of “Expert Opinion Study on Identifying and Ranking

the Criteria” ... 181

APPENDIX 4 – Results of “Expert Opinion Study for the Evaluation of

Alternatives against Criteria” ... 184

APPENDIX 5 – Related Publications – Journal Articles 189

APPENDIX 6 – Related Publications – Conference Papers 190

APPENDIX 7 – Dissertation Originality Report .. 191

RESUME ... Error! Bookmark not defined.

xiv

LIST OF FIGURES

Figure 1.1. Relative Cost Ratio for Fixing Software Defects per Life Cycle Phase [3] ... 2

Figure 1.2. The design of the thesis with mapping to the RQs and chapters 10

Figure 2.1. Factors in Fenton Dataset [21] .. 26

Figure 2.2. The confusion matrix .. 27

Figure 2.3. Performance evaluation measures .. 28

Figure 2.4. ROC curve .. 29

Figure 3.1. Research protocol for systematic mapping and literature review 40

Figure 3.2. Distribution of dataset types ... 44

Figure 3.3. Cumulative number of dataset types per year ... 44

Figure 3.4. Individual distribution of SDLC phases ... 45

Figure 3.5. Cumulative distribution of the SDLC phases ... 46

Figure 3.6. Individual distribution of software entities ... 46

Figure 3.7. Cumulative distribution of software entities ... 47

Figure 3.8. Distribution of prediction methods ... 51

Figure 3.9. Categories of contextual parameters reported in 18 primary studies 53

Figure 3.10. Distribution of the prediction performance methods 55

Figure 3.11. Performance evaluation measures in categorical models 56

Figure 3.12. Performance evaluation measures in continuous models 56

Figure 3.13. Performance results (AUC) regarding phase in categorical studies 58

Figure 3.14. Performance results (f-measure, precision and recall) regarding phase in

categorical studies ... 59

Figure 3.15. Performance results (MMRE) regarding phase in continuous studies 60

Figure 3.16. Goodness-of-fit (R2) values reported in continuous studies 61

Figure 4.1. Design of the decision analysis approach ... 70

Figure 4.2. Responses of the experts (E) regarding the criteria 77

Figure 4.3. Decision tree for the phase–1 of the decision analysis process 86

Figure 4.4. Linguistic variables and their corresponding fuzzy values 87

Figure 4.5. Decision matrix for DM1 .. 88

Figure 4.6. Fuzzy matrix for DM1 .. 89

Figure 4.7. Screenshot of Phase-1: Decision Tree Analysis for case study 1A 91

Figure 4.8. Screenshot of Phase-2: Fuzzy TOPSIS Application for case study 1A 91

xv

Figure 5.1. Multiple case study design ... 92

Figure 5.2. Decision tree analysis for case study 1 ... 97

Figure 5.3. AUC values of the classifiers with regard to dataset sizes 100

Figure 5.4. Average training time of the classifiers with regard to dataset size 100

Figure 5.5.a Cluster Analysis of DA-Performance (left), b. Cluster Analysis of Prediction

Performance (right) ... 101

Figure 5.6. Friedman test results for prediction performance (based on AUC) 102

Figure 5.7.a Cluster Analysis of DA-Speed (left), b. Cluster Analysis for Training Time

of the Classifiers (right) .. 104

Figure 5.8. Friedman test results for speed criterion (based on time to train) 104

Figure 5.9. AUC values of the classifiers regarding dataset size in the literature 109

Figure 5.10. Selected metrics from NASA-93 dataset .. 111

Figure 5.11. Decision tree analysis for case study 2 ... 112

Figure 5.12. Execution of the decision tree for case study 3 .. 118

Figure 5.13. The design of the proposed FIS based model ... 121

Figure 5.14. Membership function of the input variable ‘RFD’ 122

Figure 5.15. Membership function of the output variable .. 122

Figure 5.16. A portion of the fuzzy rule set .. 123

Figure 5.17. The design of the proposed BBN based model .. 124

Figure 5.18. The structure of the proposed BBN based model 124

Figure 6.1. Recommended methods related to Waterfall phases with the most successful

metric suites .. 133

xvi

LIST OF TABLES

Table 2.1. The characteristics of the projects from public NASA dataset 22

Table 2.2. Attributes of NASA-93 dataset .. 24

Table 3.1. Classification scheme ... 41

Table 3.2. Software attributes and referencing studies ... 48

Table 3.3. Software metrics and referencing studies .. 49

Table 3.4. Context parameters of the public datasets .. 52

Table 3.5. Reported benefits of early software defect prediction 62

Table 4.1. Characteristics of software defect prediction methods 72

Table 4.2. The profile of the experts ... 76

Table 4.3. Frequency values of each criterion .. 78

Table 4.4. Numerical values of the expert opinions and mean / median values 80

Table 4.5. Base matrix for the decision tree analysis .. 83

Table 4.6. Base matrix (continued) for the Fuzzy TOPSIS evaluation 84

Table 4.7. Questionnaire for evaluation of SDP methods in the early phases 85

Table 4.8. Defined criteria and alternatives for Fuzzy TOPSIS application 87

Table 4.9. The aggregated fuzzy weights for the criteria under DQ and MCh 88

Table 5.1. Questionnaire filled for case study 1 .. 96

Table 5.2. The score and rankings of the methods recommended by Fuzzy TOPSIS 98

Table 5.3. Resulting AUC values of the classifiers ... 99

Table 5.4. Friedman with Nemenyi post-hoc test results for classifier performances .. 103

Table 5.5. Friedman with Nemenyi post-hoc test results for classifier performances .. 105

Table 5.6. Questionnaire filled for case study 2 .. 112

Table 5.7. The score and rankings of the methods recommended by Fuzzy TOPSIS .. 113

Table 5.8. Resulting performance values of the predictors ... 114

Table 5.9. Training times (millisecond) for each predictor regarding to iterations 114

Table 5.10. Decision Analysis and Empirical Results for Case Study 2A 115

Table 5.11. Basic information of Fenton dataset [21] ... 116

Table 5.12. Example data from public dataset [21] .. 117

Table 5.13. Questionnaire filled for case study 3 .. 118

Table 5.14. The score and rankings of the methods recommended by Fuzzy TOPSIS 119

Table 5.15: Performance results of the proposed models ... 125

xvii

Table 5.16. BBN based SDP models and reported performance values for Fenton’s dataset

presented in the literature .. 127

Table 5.17. FIS based SDP models and reported performance values for Fenton’s dataset

presented in the literature .. 129

xviii

ABBREVIATIONS

AUC Area Under the Curve

AHM Analytic Hierarchy Model

AHP Analytic Hierarchy Process

ANN Artificial Neural Network

ANOVA Analysis of Variance

ANP Analytic Network Process

BBN Bayesian Belief Network

BMMRE Balanced Mean Magnitude of Relative Error

BN Bayesian Network

CART Classification and Regression Trees

CC Closeness Coefficient

CMMI Capability Maturity Model Integration

COCOMO Constructive Cost Model

DA Decision Analysis

DAG Directed Acyclic Graph

DBMS Database Management System

DCh Data Characteristics

DQ Data Quality

DT Decision Tree

E Expert

ELECTRE Elimination and Choice Expressing the Reality

ERT Experience of requirement team

ESDP Early Software Defect Prediction

H High

IEEE Institute of Electrical and Electronics Engineers

xix

FIS Fuzzy Inference Systems

FNIS Fuzzy Negative Ideal Solution

FNR False Negative Rate

FPIS Fuzzy Positive Ideal Solution

FPR False Positive Rate

FRBC Fuzzy Rule Based Classifier

KLOC Thousands (Kilo) of Lines of Code

L Low

LinR Linear Regression

LOC Lines of Code

LogR Logistic Regression

M Medium

MAE Mean Absolute Error

MAPE Mean Absolute Percent Error

MC Model Construction

MCDA Multi Criteria Decision Analysis

MCh Method Characteristics

MDP Metrics Data Program

ML Machine Learning

MMRE Mean Magnitude of Relative Error

NASA The National Aeronautics and Space Administration

NB Naïve Bayes

NRMSE Normalized Root Mean Square Error

OO Object Oriented

PC Project Context

PD Probability of Detection

xx

PF Probability of False Alarm

PhD Doctor of Philosophy

PROMETHEE Preference Ranking Organization METHod for Enrichment of

Evaluations

QA Quality Assurance

RFD Requirement Fault Density

RIW Review, Inspection and Walkthrough

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

RQ Research Question

RS Requirements Stability

SDL Specification and Description Language

SDLC Software Development Life Cycle

SDP Software Defect Prediction

SLR Systematic Literature Review

SM Systematic Mapping

SVM Support Vector Machines

TNR True Negative Rate

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TPR True Positive Rate

UML Unified Modeling Language

VH Very High

VL Very Low

1

1. INTRODUCTION

By nature, software systems are structures that are constantly growing and becoming

increasingly complex. Research and development of techniques to facilitate and

accelerate the successful completion of software projects have been ongoing since the

1970s. Ensuring software quality during and after software development is an

indispensable task for those involved in software projects. Developing reliable software

within limited time, budget and resources makes this task even more difficult. Still,

project teams often spend at least 50% of development effort fixing defects, that could

have been avoided or fixed at less cost [1]. In the complexity of the software development

world, it is almost impossible to develop a software that is free of defects, but detecting

existing defects in a timely manner and minimizing them are very important requirements

for the product to be launched as reliable. It can be said that one of the most critical tasks

of project management is to eliminate existing defects in the software, and even ensure

that these errors do not occur, if possible.

Unfortunately, finding and fixing software defects are among the most expensive

software development activities [2]. Often, detecting and fixing software defects after

production are much costlier than detecting and fixing them early in the life cycle, such

as requirements and design phases. According to Boehm, one of the first researchers to

concretely exemplify this; if the cost of fixing a defect found at the requirement phase is

expressed as 1 unit, the cost at the design phase is 3 - 6 units; 10 at the coding phase;

increases to 15 - 70 units at the test phase; and 40 - 1000 units at the operation phase [3].

According to a NASA report that investigated cost escalation studies throughout the

project life cycle in the literature [4], those ratios were determined as in Figure 1.1.

2

Figure 1.1. Relative Cost Ratio for Fixing Software Defects per Life Cycle Phase [3]

Obviously, as software evolves and grows, the cost of fixing existing or emerging defects

increases dramatically. At the same time, it is crystal clear that the scope of these defects

will also expand. Considering that defects that were not found on time and have moved

on to later phases in the life cycle, especially during the coding phase, will spread to other

modules of the project, much more changes and effort will be necessary to fix these

defects. In addition, it is possible to say that the changes necessary to fix the common

defects may also cause new ones in the software.

All these reasons show the importance of detecting and fixing defects as early as possible

during the software life cycle, with the least cost and effort. Especially after the coding

phase of the software, various test activities (unit testing, integration testing, automatic

tests, etc.) can be carried out to detect defects related to the code. In addition, during the

coding phase, code review activities carried out before the new developed code are

merged to the version control system ensure that possible defects are noticed, and action

can be taken. However, all these activities mentioned can be performed when the software

moves to the coding phase, and there will be scenarios where the defects that emerged

during the requirements analysis or design phases will be transferred to the code without

being noticed.

0
200
400
600
800

1000
1200
1400
1600

1 3-8 7-16 21-78

29-1500

C
o

st
 R

at
io

Life cycle phase in which found

3

At this point, a mechanism that systematically foresee the possible outcomes of the next

phases of the software by making use of several existing metrics before the coding

activities begin can be quite useful. As a matter of fact, predictive models are frequently

used to evaluate development risks and improve quality throughout the life cycle of

software development projects [5,6]. Such supportive models are the most important

auxiliary mechanisms to predict problem areas early and make necessary corrections [7].

In order to form an idea about the quality of the software with software defect prediction

throughout the software development life cycle (SDLC); it is intended for development,

testing and management teams to anticipate defect-prone and/or defective parts of the

software. Defect prediction models allow software developers to focus on defect-prone

pieces of code, thus helping to reduce the potential for future defects [8]. Considering that

software development companies can spend 50%-80% of their software development

effort on testing practices [9], it is seen that research on defect prediction models is very

critical in terms of cost savings in testing phases. Besides, it is reported that the analysis

and prediction of software defects are also needed within the scope of project

management [10,11]. In this context, it is recommended to use defect prediction models

to evaluate project progress, plan project management activities, improve product quality

and process management activities [12].

1.1. Software Defect Prediction (SDP) at Early Phases

Numerous defect prediction models have been presented in the literature over 40 years

[13,14]. These studies mostly use various data processing methods and software metrics

belonging to the late phases of the SDLC, such as testing or operational use. It is thought

that the application of the prediction models during and after the coding phase of the

software development will not be beneficial since it will be late to plan and control the

cost-effectiveness activities [12].

On account of this, it can be appropriate to build and use software defect prediction (SDP)

models earlier in software development life cycle, in terms of planning many corrective

and preventive activities such as quality estimation, and effective resource, calendar and

4

cost planning [12]. Besides, it has been reported that the application of defect prediction

models in the early phases of the SDLC, such as requirements analysis, design and/or

early coding phase, will be more beneficial in many ways [15]. It plays a critical role in

determining software quality, cost overrun, optimal development and testing strategy at

an early stage. A useful approach for early evaluation in projects using Waterfall or V

development model is to identify the number of defects in the requirements, design, or

coding phases by verification and validation activities [16], and use this information to

predict the number of defects in coding or testing phases [17]. In projects employing

incremental or agile development, early evaluation includes identifying defects in early

releases to predict defectiveness in later ones [18]. Cross-project defect prediction may

also enable early evaluation if its underlying requirements regarding defect data across

the projects are met [19]. In any case, foreseeing the defective parts of the software may

provide preventive actions such as additional inspections and more comprehensive

testing, therefore it helps to improve software process control and to ensuree higher

software quality [12]. In addition, early SDP models will be able to help an effective

decision-making process in the context of activities such as process improvement or

trade-off analysis from the early stages of development [20,21].

Despite the aforementioned benefits, software defect prediction can be seen difficult to

implement for a variety of reasons, such as context differences of software projects under

development, software metrics that are needed to collect, behavioral dynamics of

software team members, and different preferences of various software stakeholders.

However, as data science is becoming widespread, there is a proliferation in methods and

tools supporting prediction and estimation in software engineering, which makes

selecting the best-fit methods important for early and effective use of such facilities. In

addition, it is observed that the authors of SDP studies in literature are mostly academic,

which means that the expertise to use and select prediction methods and supporting tools

reside in academy rather than in industry. When the proliferation of methods of data

science in software engineering is combined with the shortage of knowledge to use them

in industry, an important need arises to guide practitioners in selecting and using the best-

fit methods. Therefore, it might be a good solution to address method selection problem

in software defect prediction by using a formal decision analysis process.

5

1.2. Goal and Research Questions

In this study, it is aimed to propose a decision analysis approach that can guide the

determination of the most appropriate defect prediction method that can be used in

software projects where defect prediction is desired from the early phases of the SDLC.

To address the main purpose of the thesis study, the following research questions (RQs)

were determined under five main headings.

RQ 1: What are the characteristics of early software defect prediction (ESDP) models?

• RQ1.1 Which types of datasets are used for performing the prediction? Identify

the datasets that are used in the prediction models.

• RQ1.2 What are the development phases that originate metrics for the prediction

models? Identify the phases that originate metrics as input to the prediction.

• RQ1.3 What are the entities that originate metrics for the prediction models?

Characterize the software entities that are used in the models.

• RQ1.4 What are the attributes of each entity, which originate metrics for the

prediction models? Categorize the attributes that are used in the models.

• RQ1.5 What are the software metrics that are used in the prediction models?

Identify and categorize the software metrics related to each attribute of each entity

used in the models.

• RQ1.6 What types of methods are used to build the prediction models? Identify

and categorize the methods used in prediction models in the studies. Example

methods include machine learning, fuzzy rule-based etc.

• RQ1.7 What are the contextual parameters reported in the prediction models?

Gather the contextual information about the metric data included in the models

for better revealing the factors that may affect the model construction.

6

RQ 2. Are models of ESDP successful and beneficial?

• RQ2.1 Which methods and measures are used for evaluating the performance of

the models? Categorize the performance evaluation methods and metrics that are

used for validating the models.

• RQ2.2 What are the performance values of the models based on the included

SDLC phases that originate metrics for prediction? Gather the performance results

of the studies with regard to SLDC phases in order to see the effects of the phase

information to the prediction performance.

• RQ2.3 What are the benefits of early defect prediction as reported in the studies?

Indicate the benefits or losses of using ESDP models if reported.

RQ 3. What is the current status of defect prediction applications in software companies

in Turkey?

• RQ3.1. If software defect prediction is applied, how does the company operate it?

• RQ3.2. If the company is applying SDP, what are the advantages or disadvantages

of applying it?

• RQ3.3. If the company is not applying SDP, what would be the benefits and/or

challenges in applying SDP in your company?

• RQ3.4. Is there a need for guidance on software defect prediction from the early

phases of SDLC?

RQ 4. How to select a method for early prediction of software defects?

• RQ4.1. What are the alternative methods for building ESDP models?

• RQ4.2. What are the criteria to consider when selecting a method for ESDP?

• RQ4.3. How should the most appropriate method be selected by evaluating the

defined criteria?

• RQ4.4. How should we gather the characteristics of the project data and the needs

of the users systematically?

7

RQ 5. How should we investigate the trustworthiness of the proposed SDP method

selection approach through case studies?

• RQ5.1: Which SDP methods are primarily suggested by decision analysis

approach?

• RQ5.2: Which SDP methods do perform better in execution?

• RQ5.3: Are there any difference between the results of RQ5.1 and RQ5.2?

1.3. Research Methods

Research methods describe the systematic processes that are carried out from the

beginning to the end within the scope of the thesis studies and are necessary to reach the

result. The research methods used in the thesis are explained below.

1.3.1. Literature Review

Systematic mapping (SM) studies are used to provide an overview of the research area

[22]. Within the scope of systematic mapping, the relevant evidence is examined at a

superficial level of detail, thus providing basic evidence that will contribute to possible

systematic literature review studies and identifying areas that should be focused more in

the field [23,24].

Systematic literature review (SLR) is a literature analysis method used for the purpose of

determination, evaluation and interpretation of the available research on a specific topic.

While individual studies contributing to the SLR are referred to as "primary studies";

systematic review itself is referred to as a “secondary study” [23,25]. SLR studies can be

used to guide possible new studies by identifying gaps in the relevant field and presenting

various suggestions [22,23,25].

8

1.3.2. Case Study

Case studies are empirical investigations of various contemporary phenomena in a real-

life context [26]. The focus of case studies on making sense of context information is

important in terms of evaluating the methods and tools used in software engineering in

the industrial field [27].

1.3.3. Data Analysis

The data analysis method is used for both quantitative and qualitative research types.

Within the scope of quantitative data analysis techniques, descriptive statistical analysis

is generally performed. Mean value and standard deviation calculations and various visual

graphics are frequently used to help understand the collected data [28].

1.3.4. Survey

Surveys are generally conducted with the participation of various distributed individuals,

aiming to generalize from a sample to a population [29]. They often contain static

questions that provide quantitative answers that are easy to analyze [30]. In addition,

expert opinion surveys can be preferred for the evaluation of important factors and

gathering the recommendations of the experts on the subject.

1.4. Contributions

The contributions made as a result of the studies conducted within the scope of the thesis

can be summarized as follows:

• The first systematic mapping study in the literature that investigates process

properties for early phase defect prediction was presented [31]. Studies using

process-based metrics for reliability and defect prediction in the early phases of

the SDLC are discussed. Thus, the current picture of the literature is

systematically summarized, emphasizing the distinctive features of process

knowledge in the field of ESDP.

9

• Studies included information about the early phases of the SDLC, such as

requirements and design, into the defect prediction model were systematically

investigated. The performance changes in the studies that structured the prediction

model by using the early phase information with the coding phase information

were examined and thus, a unique contribution was made to the literature [32].

• A total of 52 scientific publications published between 2000 and 2016 was

examined in depth by systematic mapping and literature review method and

analyzed over a total of 16 research questions [15]. The trend and demographic

information of the primary studies, the maturity of the research situation, the

characteristics of the structuring of the prediction models, the methods used, the

metrics, datasets, the performances of the ESDP models and the benefits of using

these models were reported.

• Multi-criteria decision analysis methods were used for the first time in the

literature to determine the most appropriate early phase defect prediction method

for the project context. For this purpose, the criteria to be considered in the

selection and alternative SDP methods were determined according to the literature

analysis, and a decision matrix that evaluates these methods and recommends the

most appropriate one for the context was proposed [33].

• As a new contribution to the literature, a decision analysis approach has been

proposed for the selection of an SDP method for early phases [34]. In order to

enable software stakeholders to apply defect prediction from the beginning of the

life cycle of the relevant software project, the proposed approach aims to

systematically select the most appropriate defect prediction method in line with

the needs of the stakeholders and the characteristics of the related software project

data.

• A web application for the decision analysis has been developed using Angular,

Java and Spring framework. The source code has been made available and shared

on GitHub1 to enable researchers or practitioners to perform the decision analysis

using the determined criteria, weights, and the list of selected alternatives.

1 https://github.com/rozakinci/phd_thesis_app

10

1.5. Overall Design of Thesis Study with Mappings to RQs and Chapters

In Figure 1.2, the overall design of the thesis study is demonstrated with the connection

of the related RQs and consequent chapters.

Figure 1.2. The design of the thesis with mapping to the RQs and chapters

1.6. Thesis Organization

Chapter 2 presents the background of this thesis by summarizing the general context of

the software defect prediction. Chapter 3 examines the related work in the literature and

determines the studies on the research area systematically and reports the analysis results

within the scope of the research questions in detail. In addition, the survey conducted on

the application of software defect prediction in companies in Turkey is also included in

this chapter. Chapter 4 presents the necessary preparations for the selection of the early

phase defect prediction method, how the emerging know-how as a result of the extensive

work is systematically gathered and reported as a knowledge base, as well as the modeling

of the decision analysis approach. In Chapter 5, the case studies that have been structured

as an embedded multi-case design and experimental results related to the implementation

and validation of the proposed decision analysis approach are described. Next, Chapter 6

11

summarizes a few critical points and recommendations that have emerged as a result of

the thesis work. Finally, Chapter 7 summarizes the results obtained from the thesis and

the contributions to the literature. In addition, the limitations of the thesis and plans for

future studies are mentioned in this conclusion section.

12

2. BACKGROUND

2.1. What is “Defect”?

In the IEEE Standard Classification for Software Anomalies [35], a common dictionary

has been created for the terms related to the errors that may be encountered throughout

SDLC in the context of software engineering. According to the standard, the definition of

defect is as follows:

• Imperfections or deficiencies that can be found in work products in the early

phases of the SDLC, causing the work product to fail to meet requirements and

needs to be fixed or replaced.

The definitions of other terms used in the same sense as the “defect” term are as follows:

• Error: Human action that can cause inaccurate results.

• Fault: Fundamental inaccuracies within the software program that can cause a

malfunction.

• Failure: Deviation of program behavior from user expectations, failure to fulfill

the expected function from the product under specified requirements and limits.

• Problem: Difficulty faced by the person while using a system, negative situation

that needs to be solved.

Based on these definitions; malfunctions, disorders and anomalies that may be

encountered in the early phases of the life cycle are discussed by using the term "defect"

throughout the thesis [36].

2.2. Software Defect Prediction

Software defect prediction activities can be explained as using the models that are built

via certain methods using different product, process, and/or resource-based metrics in

order to prevent or minimize defects during software development life cycle. Its main

purpose is to guide development, test and management teams to have an opinion on the

software quality and therefore make decisions that provide to focus more deeply in

13

defective code, plan test activities in an effective way and make better use of resources

[8].

2.2.1. Defect Prediction Approaches

In the field of data mining, the two most important types of prediction problems are

defined as "classification" and "numerical prediction" [37]. Software defect prediction

approaches are also divided into two as "classification as defective or non-defective" and

"prediction of number of defects" based on the dependent variable. The most used defect

prediction approaches can be grouped as follows according to their purpose of use:

• Classification2: Prediction of the category to which the data depends. The methods

used for classification include: Expert judgement-based models (Fuzzy Inference

Systems), Causal models (Bayesian Belief Network), Machine learning based

models (Naïve Bayes, Artificial Neural Network, Decision Trees, Logistic

Regression, Support Vector Machine).

• Numerical Prediction: Prediction of the number of defects. The methods used for

numerical prediction include: Expert judgement-based models (Fuzzy Inference

Systems), Machine learning based models (Artificial Neural Network, Decision

Tree, Linear Regression, Support Vector Machine).

In addition, it is possible to categorize the SDP methods based on the approach to

construct the model. In the context of ESDP, the most preferred approaches to construct

the model can be said as machine learning (ML) based methods because of their ability

to solve classification and prediction problems. Statistical methods are also preferred like

ML based methods. In addition, it is possible to construct SDP models by considering the

2 The term “classification” can be used to categorize a defect as belonging to certain

classes, as in defect classification schemes, or to refer to a software defect prediction

approach that involves classifying parts of software as defect-prone and defect-free.

Throughout the thesis, the term "classification" is used for the defectiveness classification

of a software part.

14

expert judgement-based approaches or causal methods. Therefore, we also present the

below categorization of SDP methods:

• Machine Learning based methods: Supervised learning-based methods can be

used in both classification and regression problems. Some implementations of this

type include Artificial Neural Networks (ANN), Bayesian Networks (BN),

Decision Trees (DT), Naïve Bayes (NB), and Support Vector Machines (SVM)

[38].

• Statistical methods: These methods can also be preferred when applying SDP

since they can be used in prediction models to be configured for both classification

and regression [10]. Linear Regression (LinR) and Logistic Regression (LogR)

methods can be categorized as statistical methods.

• Expert judgement-based methods: Fuzzy Inference System (FIS) based models

can be constructed through a set of rules created according to expert judgment.

The most important feature of the FIS methods is that they are independent from

data and can handle imprecise data [39]. BN based models can also be built by

expert judgement when there is sparse data and are known to be successful to

address dependencies between attributes and handle uncertainty [21,40].

2.2.1.1. Statistical methods

Linear Regression (LinR)

It is one of the most known and best understood algorithms in statistics. When the class

variable to be estimated and all attributes are numeric, the linear regression method is one

of the simplest techniques to consider. A linear regression aims to find the line that best

fits the relationship between the input variables (x) and the output variable (y). It can be

defined as an equation (y = C0 + C1 * x) that detects and defines certain weights for input

variables called coefficients (C) [41].

The purpose of the linear regression equation is to find the coefficient values when

predicting the output (y) according to the input (x), namely C0 and C1. Some

recommended good practices for linear regression are to exclude similar (related)

variables from the dataset and, if possible, to remove noisy data. As a result, it is highly

15

preferred for numerical defect prediction in the field of SDP as it is a fast and simple

technique.

Logistic Regression (LogR)

It is used to classify a categorical class variable based on the relationship between one or

more numerical or categorical independent variables. It is similar to the linear regression

method in that it aims to find the values of the coefficients that give weight to each input

variable. Unlike LinR, a nonlinear function called logistic function is used to predict the

output class. The logistic function has a structure similar to the letter “S” and converts

any value into the range from 0 to 1 [37].

Thanks to the learning nature of the model, the predictions made by logistic regression

can also determine the probability for the class to which the output belongs. This can

provide a more meaningful result for the prediction problem. Logistic regression function,

like LinR, performs better in the scenarios where attributes are related to the output and

dependency between attributes does not exist. As a result, it is preferred for software

defect classification problems since it is fast and effective.

2.2.1.2. Machine learning-based methods

Artificial Neural Network

The artificial neural network model is inspired by the human brain's ability to derive new

information through learning. It consists of many small neuron-like elements called units

and the directional and weighted relationships between these units. The layers are

typically called the input layer, hidden layer, and output layer. There may be more than

one hidden layer between the input and output layers. It is known to be more effective

than other methods in modeling nonlinear functional relationships. It is generally used to

predict the number of defects per class with object-oriented metrics [42]. However,

artificial neural networks can be easily applied to very large datasets and can give results

with higher accuracy than other methods [43]. They are suitable for problems where the

number of feature-value pairs is high, the training set contains outliers / missing data, and

the long training time is acceptable. The multiplicity of the number of connections, layers

16

and nodes determines the complexity of the system they can represent, the more nodes

there are, the more complex (advanced) systems can be modeled. With these features,

artificial neural networks solve problems that cannot be solved by classical algorithmic

methods, similar to the system of the human brain [44].

Bayesian Classifiers

Bayesian classifiers are statistical classifiers based on Bayes theorem that aims to find the

probability that a sample belongs to a class under given conditions. The most important

feature is that they are incremental. That is, old knowledge can be used for observed data.

Accordingly, the calculated probability increases or decreases incrementally [45]. Bayes

rule states that "Based on the arguments we observe, what is the probability that the output

belongs to class C?" and answers the question. Suppose Y is the class variable and X is

the collection of independent classes. In this case, the formulation of the question "Given

X, what is the probability that the result is of class C?" is given in Equation 2.1 [41]:

 Pr [Y = C | X] =
Pr[Y]Pr[X|Y = C]

𝑃𝑟[𝑋]
 (Eq 2.1)

Naive Bayes

Naive Bayes, one of the Bayesian classifiers, has the advantage of handling various and

independent features, missing values and noisy data. It also achieves results very quickly.

The most obvious disadvantage of Naive Bayes is that it assumes that classes are

conditionally independent. This assumption may cause a loss of accuracy [46].

Bayesian Networks (BNs)

Bayesian networks are represented by directed acyclic graphs, where each node defines

a separate variable. Relations between these variables can be shown with Bayesian

networks (such as the order of transition from one node to another). Bayesian networks

generally consist of two parts [47]:

• Directed acyclic graph (DAG): The nodes in the graph can be defined as model

variables and the connections between the nodes represent the causal effects

among the variables.

17

• Conditional probability distributions (CPT): Unconditional probability

distribution is applied for nodes with no ancestors. For nodes with ancestors,

conditional probability distributions are made depending on the status of their

ancestors.

Bayesian networks has many advantages. It has the ability to handle missing data, where

each variable is assigned a preliminary probability, thus, if no input is provided for a

variable, the default value of the probability is used in the computations. The BN models

are generally easy to interpret, as the causal relationships between the variables are clearly

visible in the graph. It can combine different types of data (e.g., quantitative and

qualitative) where they can be used as inputs in model designs. Inputs and outputs do not

have to be defined statically; a variable is an input if the user can observe it; if no

observation can be made about the variable, it becomes an output.

Decision Trees

The structure of a decision tree is simple. The starting node in the tree is the root node.

Each internal node represents the decision point that contains questions or criteria to be

answered. The branches that connect nodes reflect the flow from question to answer.

Lastly, leaf nodes give a result or result-set, which applies to all nodes that reach the leaf

[38]. Decision tree algorithms have many implementations. The most common ones are

ID3, C4.5, CART (Classification and Regression Trees). Classification trees are suitable

for classifying the defectiveness of software components. Regression trees, on the other

hand, can predict the number of defects [48]. Decision trees can use multidimensional

data. The learning and classification process of the decision trees is often fast. Besides,

they yield high performance prediction results generally. However, their performance can

be affected from the nature of the data [37,38,41].

Support Vector Machines

It uses a non-linear mapping to convert the original training data to a higher dimension.

Within this new dimension, the linear searches for the best parsing hyperplane (i.e., a

"decision boundary") separates the threads of one class from another. With a suitable

18

nonlinear mapping in a sufficiently high dimension, data from the two classes can always

be separated by a hyperplane, which can be found with the help of support vectors and

margins [38]. SVM can be applied on both linear and nonlinear data. The learning phase

can be slow; however, it has a high accuracy rate generally thanks to its ability to model

complicated and nonlinear decision boundaries. They are prone to over-learning

compared to other methods.

Genetic Algorithms

Genetic algorithms produce a set of solutions instead of producing a single solution to

problems. Many points are evaluated at the same time in the search space, and as a result,

the probability of reaching a holistic solution increase. It has been stated that it is suitable

for use in scenarios where assumptions are excluded and the model focuses only on defect

data [49]. The reasons for this are that genetic algorithms do not make any assumptions

about data distribution, are not a parametric method, and do not form the model in a

specific structure [49].

Ensemble Learning

It is a machine learning approach that is generally used for improving the prediction

accuracy of classifiers. More than one classifier is trained to solve the same problem and

these classifiers are combined to obtain stronger generalization ability [37]. As it will be

explained in the following sections, ensemble learning methods are not included within

the scope of the thesis, since it is desired to compare machine learning methods with their

simplest forms.

2.2.1.3. Expert judgement-based methods

Fuzzy Inference Systems (FIS)

The fuzzy classification technique describes the dataset with approximate (partial

membership) values without having precise and defined boundaries. For a software

segment to be classified as defective, it must be defined with a membership value between

0 and 1. Using the data classified by the model based on fuzzy inferences, the “module-

ordering model” predicts whether that module is defect-prone [50,51]. The most

19

important advantages of fuzzy logic-based methods can be listed as follows [52]. Data

independence is the most important advantage of the FIS method. FIS models perform

the modeling of the desired environment with the help of experts on research field, not

by learning from data. Since it does not need historical data, it can be used from the

beginning of the software project, providing faster results and usage repeatedly for the

same research field. FIS models are said to be more suitable for defect prediction than

data-driven methods. Models created can also be used for other software projects

regardless of the domain, as they are data independent. Verbal, qualitative and non-

numerical data are also well suited to use in fuzzy inference models.

The steps to be followed while building fuzzy models can be listed as follows:

1. Determination of membership functions of inputs and outputs

Membership Functions (5 Scales) for linear scale:

• VL (0; 0; 0.25),

• L (0; 0.25; 0.50),

• M (0.25; 0.50; 0.75),

• H (0.50; 0.75; 1.00),

• VH (0.75; 1.00; 1.00)

Membership Functions for logarithmic scale (3 Scales):

• L (0; 0; 0.37),

• M (0; 0.37; 1),

• H (0.37; 1; 1)

2. Determination of fuzzy logic rules: Various rules are determined by the field expert

according to fuzzy sets and verbal variables. For a successful model design, all verbal

variables in the fuzzy rule set and combinations of all verbal values of these verbal

variables should be included. The number of rules is calculated by multiplying the

number of verbal values of each verbal variable with each other. For example, the

20

number of rules required for an FIS consisting of 3 verbal variables and where each

variable has 4 verbal values is 4 * 4 * 4 = 64.

3. Fuzzy inference: The fuzzy inference process can be explained as follows, in order:

• Fuzzification of the determined inputs using membership functions

• Performing the execution of fuzzy logic rules

• Generating the fuzzy outputs of rules

4. Defuzzification step: After producing the fuzzy outputs, the defuzzification step is

applied, where the fuzzy output is converted to crisp output. Although the fuzzy

output helps to interpret the crisp values given as input, it does not tell the final

decision, so the fuzzy output needs to be converted to crisp output. This conversion

is called defuzzification. There are several types of models that vary in the technique

they use for the crisp output generation step. The most used types are Mamdani,

Sugeno and Tsukamoto.

2.2.2. Software Metrics

Software metrics enable us to understand and evaluate many aspects of software, thus to

plan and track critical aspects throughout the project life cycle. The healthier we can

perform the software measurement process, the more accurately we can control the

software quality.

• Measurement: It is the process of assigning a value to an attribute. It can be a

figure, size or quantity obtained as a result of the measurement process [53].

Measurement is also defined as the process of assigning numbers or symbols to

the properties of real-world entities, according to strictly defined rules [54].

• Metric: Indicates the level at which a product, system, component or process

possesses a certain attribute [50].

21

According to Fenton and Bieman [54], it is important to define the entities and attributes

of the measurements as the first rule of thumb for performing software measurement

activity. Based on Fenton and Bieman's classification, entities within the scope of

software measurement activities are divided into three:

• Process: Refers to activities related to the software.

• Product: Outputs or documents obtained from a process activity.

• Resource: Refers to the entities required to perform the process activities.

Product metrics allow to measure structural and physical properties such as size (source

code, requirement specification document size, size of design documents, etc.),

complexity, length, dependency, and interactivity. The metrics defined in the Chidamber

& Kemerer metric set [55] are the most widely used design and coding phase metrics for

SDP in object-oriented software [56]. Process metrics measure the efficiency and

effectiveness of software development processes, the duration of process activities, the

effort spent, and the number of errors seen throughout the process. Since defects can be

encountered from the earliest stages of software development processes, process metrics

will be useful in SDP [57]. Resource metrics enable to measure the characteristics of the

personnel (developer, designer, test staff, etc.) working in software development projects,

such as experience, motivation, the characteristics of resources such as software and

hardware needed in the project, and the structure of the working environment [54].

For each metric class (process, product, resource) it is divided into internal and external

characteristics:

• Internal properties: can be measured by the product, process or resource itself.

• External properties: can be measured by how the product, process or resource

relates to its environment, i.e., taking into account its behavior.

22

2.2.3. Public Datasets

2.2.3.1. PROMISE Repository – NASA Dataset

PROMISE data repository contains open datasets published to support the creation of

prediction and/or decision support models in the field of software engineering on various

topics (defect prediction, cost estimation, effort estimation, subsequent release

monitoring etc.). It is aimed that the relevant prediction models can be applied by different

researchers in the field or experts in the industry. The most used dataset in the software

defect prediction field in this data repository has been published under MDP (Metric Data

Program), a metric program created by NASA. In this context, there is data on 12 projects

published. The PROMISE repository is currently not accessible [58], but a backup for the

data is available fortunately and stored in GitHub [59]. The most used ones are given in

Table 2.1.

Table 2.1. The characteristics of the projects from public NASA dataset

Project

Name

Programming

Language

Total

Sample

Number

Samples

Marked as

Defective

Defectiveness

Rate (%)

Number of

Attributes

Dataset

Size

CM1 C 327 42 12.8 38 Small

JM1 C 7,720 1,612 20.9 22 Large

KC1 C++ 1,162 294 25.3 22 Large

KC3 Java 194 36 18.6 40 Small

MC1 C++ 1,952 36 1.8 39 Large

MC2 C 124 44 35.5 40 Small

MW1 C 250 25 10.0 38 Small

PC1 C 679 55 8.1 38 Medium

PC2 C 722 16 2.2 37 Medium

PC3 C 1,053 130 12.3 38 Large

PC4 C 1,270 176 13.9 38 Large

PC5 C++ 1,694 458 27.0 39 Large

23

2.2.3.2. NASA-93 Dataset

It is an open dataset containing data from 93 projects prepared by NASA for use in the

COCOMO model in the 90s, and later defect number data was added [60]. The attributes

were demonstrated in Table 2.2, with their related software entity categorization. There

are a total of 25 attributes in the version with defect data, which consists of:

• 15 standard COCOMO-I discrete attributes in the range from “Very Low” to

“Extra High”

• 7 attributes describe the features of the project

• one of them describes the number of lines of code

• one of them is the actual effort in person months

• the dependent attribute is the number of defects

Further detailed descriptions can be found in the COCOMO II model manual [61].

2.2.3.3.Fenton Dataset

Fenton et al. proposed a causal defect prediction model using several quantitative and

qualitative process factors [20,21]. The design of the model and the specified qualitative

factors were first described in [20]. After that, they extended this work to describe the

prediction model in more detail and validate it [21]. The most critical output of this study

is the open dataset they provide to the literature3. Their main motivation for presenting

their raw data is the possibility of enabling different SDP methods to be implemented by

other researchers, and that the results are useful for software project managers to use

practically.

3 Throughout the thesis, the Fenton dataset is referred from their extended work [21].

24

Table 2.2. Attributes of NASA-93 dataset

Entity Attribute Abbreviation Type

Product Precedentedness prec {h} Nominal

Product Development Flexibility flex {h} Nominal

Process Architecture and Risk Resolution resl {h} Nominal

Resource Team Cohesion team {vh} Nominal

Process Process Maturity pmat {l,n,h} Nominal

Product Required software reliability rely {l,n,h,vh} Nominal

Product Database size data {l,n,h,vh} Nominal

Product Product Complexity cplx {l,n,h,vh,xh} Nominal

Product Developed for Reusability ruse {n} Nominal

Product Documentation match to life-cycle needs docu {n} Nominal

Product Execution Time Constraint time {n,h,vh,xh} Nominal

Product Main Storage Constraint stor {n,h,vh,xh} Nominal

Product Platform Volatility pvol {l,n,h} Nominal

Resource Analysts capability acap {n,h,vh} Nominal

Resource Programmers capability pcap {n,h,vh} Nominal

Resource Personnel continuity pcon {n} Nominal

Resource Application experience apex {l,n,h,vh} Nominal

Resource Platform experience plex {vl,l,n,h} Nominal

Resource Language and Tool Experience ltex {vl,l,n,h} Nominal

Resource Use of Software Tools tool {n,h} Nominal

Resource Multisite development site {n} Nominal

Resource Required Development Schedule sced {n,l,h} Nominal

Product Equivalent physical 1000 lines of source code kloc Numeric

Process Development effort in months effort Numeric

Process Number of defects defects Numeric

The dataset contains data on 31 software projects developed in the consumer electronics

industry. The scope of the projects is the development of embedded software in consumer

electronics products, and it is aimed to develop several functions provided by a product

in each project. The developed software are not independent systems, and they are

developed as subsystems of other software in the electronic product. Waterfall approach

is followed as the SDLC. In the software engineering part of the life cycle, requirements

documentation review, design, design review, coding and unit testing activities are carried

25

out. Later, the software is put into independent testing at many stages, from integration

testing to system testing. Requirements analysis and independent testing processes are

usually performed in a different location than the coding.

Data are collected through questionnaires conducted with project managers, quality

managers and/or expert project personnel of the relevant projects. Qualitative data from

surveys have 5 scales and can take the following values in order: Very High, High,

Medium, Low, Very Low. There are areas such as explanations and detailed sub-

questions regarding the questions. For example, if there are 10 sub-questions for a

question, if all sub-questions are answered yes, the score of the question will be VH, if 7-

9 of them are yes, the score will be H, and so on. For example, for gathering the answers

on factor “S1 - Relevant Experience of Spec and Doc Staff”, the main question and

additional questions were defined as follows:

Question: How would you evaluate the experience and skill level of your team members

who took part in the requirement phase of this project?

• Sub-question1: Did the requirements team have sufficient experience?

• Sub-question2: Did the requirements team have sufficient domain expertise?

Sample Answers:

• Very High: Software engineers with more than 3 years of requirements

management experience and extensive domain knowledge.

• High: Software engineers with more than 3 years of requirements management

experience but limited domain knowledge.

• Intermediate: Software engineers with 1 to 3 years of experience in requirements

management.

• Low: Software engineers with 1 to 3 years of experience but no experience in

requirements management.

• Very Low: Software engineers with less than 1 year of experience and no previous

field experience.

26

The identified factor groups and related factor names were demonstrated in Figure 2.1.

Figure 2.1. Factors in Fenton Dataset [21]

2.2.4. Performance Evaluation Measures

In order to choose an approach for the performance evaluation of defect prediction

models, first of all, the type of the predicted dependent variable should be considered. In

this context, it is possible to divide the models into two [8]:

Factor group Factor ID and Name

Specification and

documentation process

S1 Relevant Experience of Spec and Doc Staff

S2 Quality of Documentation Inspected

S3 Regularity of Spec and Doc Reviews

S4 Standard Procedures Followed

S5 Review process effectiveness

S6 Spec Defects Discovered in Review

S7 Requirements Stability

New functionality F1 Complexity of New Functionality

F2 Scale of New Functionality Implemented

F3 Total Number of Inputs and Outputs

Design and development

process

D1 Relevant Development Staff Experience

D2 Programmer Capability

D3 Defined Processes Followed

D4 Development Staff Motivation

Testing and rework Factor T1 Testing Process Well Defined

T2 Testing Staff Experience - unit

T3 Testing Staff Experience - integrated

T4 Quality of Documented Test Cases

Project management P1 Development Staff Training Quality

P2 Requirements Management

P3 Project Planning

P4 Scale of Distributed Communication

P5 Stakeholder Involvement

P6 Customer Involvement

P7 Vendor Management

P8 Internal Communication/Interaction

P9 Process Maturity

Quantitative Data E Total Effort

K KLOC

L Language

TD Total Defects

27

• Categorical Models: use categorical variables (defective or non-defective) as

dependent variable. Models created with classification methods fall into this

group.

• Continuous Models: use numerical variables (number of defects) as dependent

variables. Models created with numerical prediction methods fall into this group.

2.2.4.1. Measures Used in Performance Evaluation of Categorical Models

In categorical models, the evaluation of the prediction performance of the model is

basically made by confusion matrix analysis given in Figure 2.2 [62]. This matrix uses

various calculations where the model considers actual class labels to measure how it

classifies different categories. In other words, the class label predicted by the model is

compared with the class label to which the dependent variable actually belongs.

• True Positive (TP): The class label (“defective”) was predicted correctly.

• False Positive (FP): The class label (“non-defective”) was guessed incorrectly

(“defective”). Also known as Type I Error.

• False Negative (FN): The class label (“defective”) was guessed incorrectly (“non-

defective”). Also known as Type II Error.

• True Negative (TN): The class label (“non-defective”) was predicted correctly.

Figure 2.2. The confusion matrix

Based on this matrix, many performance evaluation measures can be derived [63] as listed

below. The sysnonims and formulations of these measures are presented in Figure 2.3.

28

Figure 2.3. Performance evaluation measures

• True positive rate (TPR): It is synonymous with Recall, probability of detection

(pd) and Sensitivity. It refers to the rate at which the class that is actually labeled

as “defective” is predicted as “defective” in the prediction result.

• False positive rate (FPR): It is synonymous with probability of false alarm (pf)

and Type-I Error. It refers to the rate at which the class labeled as “defect-free” is

predicted as “defective” in the prediction result.

• True negative rate (TNR): It has the same meaning as Specificity. It refers to the

rate at which the class labeled as “defect-free” is also predicted as “defect-free”

in the prediction result.

Measure Synonyms Formulation

True positive rate (TPR)
Recall

Probability of detection / pd

Sensitivity

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

False positive rate (FPR)
Probability of false alarm / pf

Type-I Error

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

True negative rate

(TNR)

Specificity

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

False Negative rate

(FNR)

Type-II Error 𝐹𝑁

𝑇𝑃 + 𝐹𝑁

Precision
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

f-measure
 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Accuracy
 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Misclassification rate
Error-rate 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

Balance
 1

−
 (𝑃𝐹2 + (1− 𝑃𝐷)2

√2

29

• False negative rate (FNR): It has the same meaning as Type-II Error. It refers to

the rate at which the class that is actually labeled as “defective” is predicted as

“defect-free” as a result of the prediction.

• Precision: refers to the rate at which “defective” predictions are made correctly.

• f-measure: It is expressed as the harmonic mean of the precision and recall values.

• Accuracy: The ratio of correctly classified units.

• Misclassification rate: It has the same meaning as Error-rate. It is the proportion

of incorrectly classified units.

• Balance: It expresses the distance to the most perfect point, defined as PD=1 and

PF=0, in terms of PD and PF calculated as a result of the estimation.

ROC Curve and AUC Value

ROC Curve (Receiver Operating Characteristic curve) is a method applied to interpret

classification performance graphically. As shown in Figure 2.4, the ROC curve graph has

two dimensions: PD (true positive rate) on the y-axis and PF (false positive rate) on the

x-axis. The most successful classifiers have high PD and low PF.

Figure 2.4. ROC curve

30

AUC (Area Under the Curve) refers to the area under the ROC curve. When PD is equal

to PF, the area under the ROC line is an isosceles triangle with sides of length 1; thus the

AUC value is 0.5. If the AUC value is calculated over 0.5 in the performance evaluation

of a model, it can be said that the model gives acceptable prediction results, and the results

get better as it gets closer to 1.

2.2.4.2. Measures Used in Performance Evaluation of Continuous Models

Co-efficient of determination (R2): It is a statistical measure of goodness-of-fit, which

measures how good the predicted regression equation is. It has the range of values

between 0 and 1, where higher R2 represents more confidence in the equation. Suppose

we have existing values yi and predicted values y’i (for i = 1, 2, 3, ... , n; n ∈ N), where

y̅I is a mean value of y′i,

R2 = 1 −
∑ (𝑦𝑖−𝑦′𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�′𝑖)2𝑛
𝑖=1

 (Eq 2.2)

Root mean square error (RMSE): Relative squared error takes the total squared error and

normalizes it by dividing by the total squared error of the predictor. Then taking the

square root of the relative squared error, reduced error being predicted is calculated.

 RMSE = √
1

n
∑ (yi − y′i)2n

i=1 (Eq 2.3)

Normalized root mean square error (NRMSE): It shows the ratio between RMSE and

existing values. The NRMSE value can be used to compare single model performance.

 NRMSE =
RMSE

ymax − ymin
 (Eq 2.4)

Mean Magnitude of Relative Error (MMRE): It is the arithmetic mean of absolute relative

error. The lower it is, the better the prediction.

MMRE =
1

n
∑

|yi−y′i|

yi

n
i=1 (Eq 2.5)

31

Balanced Mean Magnitude of Relative Error (BMMRE): It is a balanced version of the

MMRE that deals more with underestimation than overestimation.

BMMRE =
1

n
∑

|yi−y′i|

min (yi,y′i)

n
i=1 (Eq 2.6)

2.2.5. SDP During Early Phases

Most SDP models are generated using metrics from the coding and testing phases of the

SDLC. However, when it comes to those phases, it may be too late to plan corrective and

preventive actions effectively. As a solution to this problem, it can be appropriate to build

and use SDP models in the early phases of the SDLC, which can be defined as

requirement analysis or design phases, in terms of many activities such as quality

estimation, effective resource, calendar and cost planning in the software life cycle

[12,64].

In the earlier phases of SDLC, project teams do not have any metrics related to source

code or testing, or reported defect data from the product environment that could be used

to predict future defects of the software. Therefore, the data and metrics that can be used

early in the SDLC can be summarized as follows:

• Sub-product data that can be collected from early-phase sub-products (such as

requirement specification document and design documents).

• Process-based data that can be collected from early-stage processes (requirements

analysis, design, early stages of coding).

• Resource-based data on the experience of the software development team and the

availability of other resources.

• Qualitative data based on expert opinions that can be obtained in the early stages

from the opinions of experts who can evaluate the software according to the

software context parameters.

• Historical project data similar in context to the related software.

32

2.3. Decision Analysis

In complex situations that require in-depth knowledge of the subject to be decided, a

decision analysis process should be performed using systematic methods among the

alternatives. The definition of decision making is expressed as choosing the most

appropriate one among the alternatives to be considered in terms of goals, objectives,

values and criteria [65]. According to Fulop [66], a general decision-making process can

be divided into the following steps:

1. Define the problem,

2. Determine requirements,

3. Establish goals,

4. Identify alternatives,

5. Define criteria,

6. Select a decision-making tool,

7. Evaluate alternatives against criteria,

8. Validate solutions against problem statement.

Especially for the decision-making problems involving high risk and uncertain scenarios,

it is a possible approach to first use a decision tree to see the potential results, and then

apply the multi criteria decision anaylsis (MCDA) on these potential results to reach the

final result over the total preference score [67]. These two analysis methods used in the

decision analysis approach within the scope of the thesis are summarized below.

2.3.1. Decision Tree

In decision-making systems, decision tree is one of the best-known techniques. They

allow to make decisions through a “top-down, divide-and-conquer” approach to the

problem by addressing a set of decisions available in the tree nodes.

In decision analysis context, there are a couple of advantages of decision trees [68]. A

rule set emerges as a result of structuring decision trees, thus providing clarity and

33

conciseness for decision makers by making it easier to explain the decisions taken, which

can be presented in an interpretable format. Not all decision attributes may be helpful in

the same way for different decision-making contexts. For those types of problems,

decision trees ensure that the suitability of different attributes depends on the results of

the previous tests, thus they have a high context sensitivity. Besides, they can successfully

handle both continuous and discrete attributes. They can be combined with other decision

techniques. No domain knowledge is required for the construction of decision trees, so it

is suitable for knowledge discovery.

2.3.2. MCDA

Multi-criteria decision analysis is a set of formal approaches to address complex decision

problems in a scientific and analytical framework, aimed at assessing multiple criteria for

a decision maker to reach the most appropriate solution [69]. There are different MCDA

methods in the literature, each with its own characteristics and categorized in many

different ways [70]. The best known methods can be listed as AHP (Analytic Hierarchical

Process) [71], ELECTRE (Elimination and Choice Expressing the Reality) [72], TOPSIS

(Technique for Order Preference by Similarity to Ideal Solution) [73] and PROMETHEE

(The Preference Ranking Organization METHod for Enrichment of Evaluations) [74].

Fuzzy set theory can be applied to address uncertainty issues that may arise in a few

situations where the criteria are vague or decision makers are unsure how to evaluate the

relevant criteria [75]. Fuzzy TOPSIS introduced by Chen and Hwang [76] by extending

the TOPSIS method using linguistic variables represented by triangular fuzzy numbers.

Later, studies that utilizes fuzzy logic theory with TOPSIS method continued in the

literature [77–79]. The basic logic of the Fuzzy TOPSIS method is that the selected

alternative should have the shortest distance to the Fuzzy Positive Ideal Solution (FPIS)

that maximizes the benefit criteria and minimizes cost criteria, and the farthest distance

to Fuzzy Negative Ideal Solution (FNIS) that maximizes the cost criteria and minimizes

the benefit criteria [78,79]. The general steps of Fuzzy TOPSIS method can be

summarized as follows [78,80]:

34

1. Determine the appropriate linguistic variables for ranking alternatives with respect to

each criterion.

2. Assign weights to the criteria and ratings to the alternatives.

3. Calculate the aggregated weight of alternatives with respect to each criterion.

4. Compute the normalized fuzzy decision matrix.

5. Compute the weighted normalized fuzzy decision matrix.

6. Calculate the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution

(FNIS).

7. Determine the distance of each alternative from FPIS and FNIS.

8. Calculate the closeness coefficient (CCi) for each alternative.

9. Rank the alternatives.

The most important advantage of Fuzzy TOPSIS method is that when the decision makers

evaluate the alternatives, they benefit from using a natural language to describe their

subjective judgement in a quantitative manner [80].

35

3. RELATED WORK

3.1. Secondary Studies on SDP

Numerous software defect prediction papers have been published in the literature.

Therefore, there are many literature review and analysis studies about these papers. These

secondary studies have surveyed the literature according to several aspects of the defect

prediction models, such as methods, metrics and performance evaluation methods. We

have analyzed these studies in software defect prediction literature by grouping them

based on their research method (Systematic Literature Review (SLR), Systematic

Mapping (SM), and Literature Review). We should note that research methods of the

secondary studies were classified based on the guidelines provided by Petersen et al. [22]

and Kitchenham and Charters [23]. If any guidelines were not followed in secondary

studies, we classified them as literature review.

3.1.1. Systematic Literature Review Studies

Çatal and Diri [10] reviewed software defect prediction papers by examining their types

of metrics, methods and datasets. The results show that the usage of the public datasets

and machine learning approaches increased significantly after 2005 when PROMISE

repository was created.

Hall et al. [8] investigated the performance values of SDP models in their systematic

review study in 2012, included 208 experimental studies published between 2000 and

2010, and examined a subset of 36 out of 208 studies. The main objective was to evaluate

the context information, input variables and modeling techniques and their effects to the

performance of the models. The main findings showed that models based on simple

approaches such as Naïve Bayes or Logistic Regression performed well. Besides, the

combination of different input variables, and usage of feature selection techniques

resulted in better performance.

Radjenovic et al. [81] reviewed software metrics and their usability in SDP over 106

studies. They reported that object-oriented (OO) metrics were used nearly twice as often

36

compared to traditional source code or process metrics. They also stated that OO and

process-based metrics are more successful than size and complexity metrics in predicting

defects.

Malhotra [82] analyzed the performance of the machine learning techniques for SDP

models through 64 studies in 2015, and summarized the characteristics based on metrics

reduction techniques, metrics, datasets and performance measures. It was concluded that

the machine learning techniques had acceptable defect prediction capability and could be

used by software practitioners and researchers.

Wahono [83], identified and analyzed the research trends, datasets, methods and

frameworks used in SDP studies published between 2000 and 2013. The results showed

that about 77% of the studies were focused on classification methods, and 65% of the

research studies used public datasets.

3.1.2. Systematic Mapping Studies

Murillo-Morera et al. [84] investigated the software metrics, prediction techniques based

on data mining or machine learning and their performance over 70 studies. They found

the frequently used combination of metrics and methods as follows: Halstead, McCabe

and LOC metrics with Random Forest, Naive Bayes, Logistic Regression and Decision

Tree methods.

Özakinci and Tarhan [31], presented initial results from a systematic mapping of 41 early

software defect prediction studies published between 2000 and 2015, and reviewed 18

papers in detail and in a narrower scope, to elicit the process attributes and metrics used

in the models. It was observed that 44% of the early defect prediction studies build the

prediction model by using process-based data, such as effort of the review activities, or

requirement stability metrics.

37

Özakinci and Tarhan [15], systematically mapped and reviewed 52 primary studies

published between 2000 and 2016. They provided a general view about the

characteristics, performances, and usefulness of ESDP models by elaborating on the

prediction methods, software metrics, performance evaluation approaches used in the

studies, as well as the reported benefits of using ESDP models. This study differs from

the existing works in that it is the first study that focuses on the literature about early

software defect prediction in a systematic and comprehensive manner.

3.1.3. Other Literature Reviews

Catal [85] investigated 90 software defect prediction papers published between 1990 and

2009. This review provided a guide for researchers to investigate the studies on software

metrics, methods, datasets, and performance evaluation metrics.

Jureczko and Madeyski [86] presented a review and investigated process-based metrics

in SDP. They focused on the most important results, recent advances and summary

regarding the use of these metrics in prediction models. They reported that employing

process metrics in the defect prediction could lead to better results than working only with

the product metrics.

Singh et al. [87] investigated various prediction methods used in the area over 20 studies.

According to the results, researchers have mainly used multivariate regression analysis,

genetic algorithms, neural networks, Bayesian network techniques for SDP. It is stated

that NASA datasets are the most common data source and widely used in the area.

3.2. Studies Focus on SDP Frameworks

Several studies that propose different frameworks in the field of SDP research are

discussed below.

Wahyudin et al. [88] proposed an SDP framework to provide guidance on how defect

prediction should be organized in a particular project and organizational context. The

38

framework includes a three-stage defect prediction model. First, the requirements are

defined to align the expectations of the software stakeholders with what can be achieved

in practice. Second, the model is constructed based on the identified variables and the

selected defect prediction method. In the final stage, the prediction model is applied to

the actual software project data and the accuracy of the model is tested. An initial

empirical evaluation of the framework was conducted based on the findings of the 12

studies in the literature, although no experiments were conducted for the implementation

of the framework.

Song et al. [14] proposed a framework that includes schema evaluation and defect

prediction components. The first component examines prediction performances by

applying learning schemes on historical datasets, and the second component constructs a

prediction model that uses the high-performance schema and applies it to the actual

dataset. The performances of the experiments performed on the simulation data and

NASA dataset were compared according to the AUC values, the framework was reported

to be efficient but different schemes may be required for different data types.

Meta-learning is also used in the literature for algorithm selection and recommendation

as an alternative approach, which aims to learn the behavior of the classifiers and

determines the dataset features that contribute to better performance. According to the

results of the experiments performed on the PROMISE datasets for the “meta-learning

framework” [89], it was reported that algorithms with better defect prediction

performance were recommended successfully. The findings of this study are important

for the literature, as its authors reported that researchers should focus on improving

algorithm recommendation rather than trying to build more robust SDP models for

different contexts. In addition, Porto et al. [90] proposed a meta-learning approach to

automatically select and recommend the most suitable cross project defect prediction

method. They evaluated their meta-learning solution on 15 open-source software projects.

According to the results, the proposed solution can learn from previous experiences and

recommend suitable methods dynamically, however, there was a minor loss in the

prediction performance compared to the base methods.

39

Another approach that has attracted a lot of attention in recent years is the transfer learning

method [91]. When the target domain has a limited amount of data, transfer learning uses

the source domain information for model learning in the target domain. Therefore, it is

considered a useful approach for cross-company software defect prediction, and in cases

when different distributions of the training and testing datasets exist [92,93].

Rathore and Kumar [94] presented a recommendation system that facilitates the selection

of the appropriate technique(s) to build an SDP model, addressing the various

characteristics of the defect data as well as the appropriateness of both machine learning-

based and statistical techniques. In this context, they made a review of the literature to

reveal the features that should be evaluated, after that, they created various decision rules

according to the evaluation of these features and presented a decision tree-based

recommendation system. The system was evaluated with several case studies, and it is

reported that it provided useful hints in choosing SDP techniques.

3.3. SDP Studies Using MCDA

In the field of SDP, there are a couple of MCDA studies in the literature. Balogun et al.

[95] evaluated the performance of various machine learning approaches by using Analytic

Network Process (ANP). Peng et al. [96] focused on comparing the performance of

several ensemble methods through the application of (Analytic Hierarchy Process) AHP,

where Wu [97] presented an Analytic Hierarchy Model (AHM) to select the best

algorithm for high-efficiency clustering in SDP. In addition, Kou et al. [98] applied

feature selection and classifier evaluation in the context of SDP by using different MCDA

methods such as ELECTRE, PROMETHEE and TOPSIS.

All of the studies above focus on the comparison of various machine learning based

classification methods with performance measurements using data from NASA Metrics

Data Program (MDP) published in PROMISE repository. Overall, these studies report a

positive effect of applying MCDA methodologies in assessing the predictive performance

of different classifiers. In addition, it is important to know that the experimental results

using different performance measures over different project data on NASA MDP may be

40

different from each other. Therefore, these studies are very valuable to evaluate the

performance of different classification methods to be used in other software projects with

context information similar to a project in NASA MDP.

3.4. Defect Prediction in Early Phases – State of the Art and Benefits of ESDP

A systematic mapping and systematic literature review study [15] was conducted as a

basis for this thesis. To ensure transparency, we have published the entire repository of

the primary studies and results of the study online at [99]. We identified the primary

studies with the prefix 'S' as an abbreviation for the ‘Source’ term. The mapping table for

the source IDs of the primary studies and the corresponding reference is given in

Appendix-1.

While constructing the review process, the guidelines and protocols proposed by both

Petersen et al. [22] and Kitchenham et al. [23] were followed. It is important to note that

Petersen [100] and Idri et al. [101] also adopted the same methodology for conducting

systematic mapping and review study. The protocol of our systematic study is shown in

Figure 3.1.

Figure 3.1. Research protocol for systematic mapping and literature review

The objective for this study was to obtain a general view of the characteristics and

usefulness of ESDP models reported in scientific literature. The authors searched for the

41

studies reported between 2000 and 2016. A total of 52 studies were reviewed and

analyzed with regard to the trend and demographics, maturity of state-of-research, in-

depth characteristics (datasets used, SDLC phases, software metrics, prediction methods,

contextual information), prediction performance evaluation and benefits of ESDP

models. A more detailed classification scheme of the SLR is given in Table 3.1.

Table 3.1. Classification scheme

Research

Question

Property Possible Values (M)ultiple/

(S)ingle

RQ1.1 Dataset Type Public, Private M

RQ1.2 SDLC Phase Requirement, Design, Coding, Testing M

RQ1.3 Software Entity Product, Process, Resource M

RQ1.4 Attributes Associated

with Product Entity

Size, Structure M

Attributes Associated

with Process Entity

Effort, Stability, Process Maturity,

Number of Defects, Adequacy, Time

M

Attributes Associated

with Resource Entity

Project, Human M

RQ1.5 Software Metrics Full list is given in Table 3.3. M

RQ1.6 Prediction Method Bayesian Network, Fuzzy Logic, Machine

Learning, Statistical

M

RQ1.7 Contextual

Parameters

Commercial, Criticality, Development

Methodology, Domain, Programming

Language, Quality Expectancy, Size,

System Type

M

RQ2.1 Performance

Evaluation Methods

Categorical, Continuous S

Performance

Evaluation Measures

ROC, AUC, PD (Recall), PF, Precision,

Accuracy, F-measure, error measures,

goodness-of-fit, ranking results, accuracy,

difference between expected and observed

M

RQ2.2 Prediction

Performance Values

Performance values based on mostly

reported measures such as AUC or MMRE

M

RQ2.3 Benefits Full list is given in Table 3.5. M

42

As seen in Table 3.1, the first column represents the research questions that are relevant

to each property in the classification scheme listed in the second column. The set of all

possible values for each property is given in the third column. The fourth column indicates

if a property can have multiple values. For example, a study may have used more than

one prediction method; therefore, multiple possible values regarding prediction method

category will be marked in this case. The explanation for each property and related

possible values are given below.

• “Dataset type” refers to the access the data used in the study is whether public or

private. Neither dataset, defect data nor source code is available for “private”

datasets. It is therefore not definite if the study is reproducible. It is worth to note

that if the study did not mention the availability of dataset, it was categorized as

private. On the other hand, in “Public” datasets, the metrics and the defect data

are publicly available (e.g., PROMISE Data Repository), therefore, the study

using public datasets is considered reproducible.

• “SDLC phase” states the software development life cycle stage that originates the

metrics for the prediction model. In other words, this property explains the phase

in which the inputs needed for the prediction model are obtained. The phases were

categorized as Requirement, Design, Coding, and Testing. Together with the

phase information, it would be beneficial to report the software development

method used in the studies; however, only a few papers [S1, S5, S13, S37] clearly

expressed the development method used.

• According to [54], as the first rule for performing software measurement activity,

it is crucial to identify the entities and attributes of the measure. Therefore, based

on definitions of Fenton and Bieman’s classifying software measures [54] and

measurable product and process attributes of Florak et al. [102], we include

“Software Entity” and “Attributes Associated with Each Entity” to describe the

type of the entities and their related attributes, respectively. Some of these

attributes are highly relevant with software metrics used as inputs to the ESDP

models. During the review of the papers included in this systematic review, those

attributes and metrics were progressively added to the classification scheme.

• “Prediction Method” expresses the specific method used in the study regarding

the building of the prediction model. Examples of prediction methods include

43

machine learning, fuzzy logic based, Bayesian Network based, statistical based

etc.

• “Contextual Parameters” are required to obtain more detail about the datasets used

in prediction studies. We adopted some of the contextual characteristics from [19]

and [103]. Examples of contextual parameters include domain, programming

language, and size of the software, development methodology used in the project

life cycle etc.

• “Performance Evaluation Methods and Measures” are necessary for assessing the

success of the prediction model. According to the classification of Hall et al. [8],

defect prediction studies may report their results via categorical or continuous

dependent variables.

• “Benefits” were categorized with regard to the mostly reported qualitative benefits

in the primary studies. They were gathered through the iterative cycles of the full-

text reading and categorized with regard to similar phrases which primary studies

reported as a benefit or advantage.

3.4.1. RQ 1: What are the characteristics of ESDP models?

3.4.1.1. RQ1.1 Which types of datasets are used for performing the prediction?

The distribution of the dataset types given in Figure 3.2. Public datasets (50%) were

preferred since they are open to access. Public datasets includes: 1) NASA Metrics Data

Program (MDP) which is located in PROMISE repository [58], 2) qualitative and

quantitative data about 31 projects that were published in [20], and 3) raw data published

in [S16]. Private datasets were also used (with 48%) in ESDP studies, which belonged to

industrial companies or individuals. One study did not use any type of dataset as it is not

a case study, it only proposes the defect prediction model [S17]. Moreover, in order to

see the change of interest to public or private dataset types, the cumulative distribution

over years is presented in Figure 3.3. It was obtained from the number of dataset types

used in the studies by summing them over the years.

44

Figure 3.2. Distribution of dataset types

Figure 3.3. Cumulative number of dataset types per year

3.4.1.2. RQ1.2 What are the development phases that originate metrics for the

prediction models?

The individual numbers of SDLC phases included in prediction models are provided in

Figure 3.4. While three studies used only requirement phase-based data, eleven studies

preferred only design phase-based data. Six studies focused on requirement, design and

coding phase-based data together; and, six studies included only design and coding phase-

based data for early defect prediction.

45

Figure 3.4. Individual distribution of SDLC phases

The cumulative percentages of the SDLC phases associated with early prediction studies

can be seen in Figure 3.5. Overall, 33 studies covered requirement phase-based data for

the early prediction. Besides, 39 studies included design phase-based data in the

prediction methods. Design phase-based data was mostly preferred (32%) while

constructing early prediction models. In addition, it is important to note that there is a

high adoption of requirement phase-based data (27%) in order to provide earlier

prediction results. Since studies that used requirement and design phase-based data

mostly covered coding phase-based data too; its percentage was about 29%.

46

Figure 3.5. Cumulative distribution of the SDLC phases

3.4.1.3. RQ1.3 What are the entities that originate metrics for the prediction

models?

The software entities subject to prediction studies were elicited from the software metrics

used in the studies. Twenty-seven studies used only product entity-based data, and three

studies used metrics of process entity. Six studies used both product and process entity-

based data to gather metrics, where only two studies used metrics from process and

resource entities together. Fourteen studies used metrics that were related to all entities.

The individual distribution of the entities among all studies is shown in Figure 3.6.

Figure 3.6. Individual distribution of software entities

47

Overall, 47 studies (53% of total) covered product entity related metrics to collect data

for early defect prediction. Twenty-five studies (29%) included process entity-based data

and 16 studies (18%) covered resource related data. The cumulative distribution of the

software entities used in studies can be seen in Figure 3.7. It can be seen that product was

the most common to measure since it is more concrete and there is a room for further

studies that address process and resource entities in building ESDP models.

Figure 3.7. Cumulative distribution of software entities

3.4.1.4. RQ1.4 What are the attributes of each entity, which originate metrics for the

prediction models?

Software attributes associated with each software entity were classified based on [54,102]

as shown in Table 3.2. Accordingly, product structure, size, process effort and human

resource characteristics were the most included attributes in the prediction models.

3.4.1.5. RQ1.5 What are the software metrics that are used in the prediction models?

Software metrics associated with each software attribute have been classified based on

[54,102] as shown in Table 3.3. According to the table, lines of code (LOC) or number

of use cases, McCabe’s and Halstead’s complexity metrics, requirements stability and

staff experience were the most used metrics in ESDP models.

48

Table 3.2. Software attributes and referencing studies

Software

entity

Software

attribute

Explanation of the

attribute

References # of

Refs

Product Size Identifies the magnitude

of the work products

such as LOC or number

of use cases.

S1, S2, S50, S33, S29, S37, S15, S21,

S28, S49, S32, S11, S12, S3, S9, S4,

S47, S35, S27, S13, S42, S34, S20,

S10, S25, S16, S19, S36, S41

29

Structure Covers the flow of the

work products such as

Complexity, Length,

Coupling, Cohesion,

Modularity or Reuse.

S2, S51, S52, S50, S33, S29, S21, S17,

S28, S8, S18, S38, S32, S11, S12, S3,

S9, S4, S47, S14, S40, S35, S42, S24,

S34, S43, S20, S44, S30, S6, S39, S22,

S7, S48, S25, S16, S36, S19, S45

39

Process Effort Covers the measures

related to the effort of a

process activity.

S1, S2, S5, S37, S23, S31, S26, S8,

S32, S40, S35, S13, S46, S24, S34,

S43, S30, S7, S10, S48

20

Time Covers the measures

related to the time for a

process activity.

S15, S31, S41 3

Stability States the changefulness

of a process artifact.

S2, S37, S17, S8, S49, S32, S35, S27,

S24, S34, S43, S30, S7, S10, S48

15

Process

Maturity

States the maturity of

the organization about

the process activities.

S2, S37, S8, S32, S40, S35, S24, S34,

S30, S7

10

Number of

Defects

Specifies the number of

defects found during a

process activity.

S1, S37, S15, S17, S8, S49, S35, S27,

S13, S24, S30, S7, S10, S48

14

Adequacy Represents the quality

or completeness of a

process artifact.

S2, S37, S49, S40, S35, S34, S43, S7,

S41

9

Resource Project

characteristics

Covers the magnitude or

quality of the input

elements for software

production, such as

number of stakeholders,

development language.

S37, S15, S26, S49, S35, S46, S41 7

Human

characteristics

Covers the personnel or

team’s quality for the

activities, such as

experience, motivation.

S2, S37, S15, S26, S49, S32, S40, S35,

S27, S46, S34, S43, S30, S7, S10, S41

16

49

Table 3.3. Software metrics and referencing studies

Software

entity

Software

attribute

Software metrics References # of

Refs

Product Size LOC or number of use cases S2, S37, S15, S21, S49, S32,

S47, S35, S27, S13, S42, S34,

S10, S19, S41, S16, S36,

17

Size of artifact S1, S13 2

Size metrics from NASA projects

(Halstead size metrics)

S50, S33, S21, S28, S11, S12,

S3, S9, S4, S25

10

Requirement metrics: action,

conditional, continuance,

imperative, incomplete, option, risk

level, source, weak phrase

S33, S28, S11, S12, S3, S9, S4,

S20, S25

9

Structure McCabe Metrics (Complexity etc.)

Halstead Metrics (total number of

operators, operands etc.)

S52, S21, S17, S47, S42, S44,

S30, S39, S22, S7, S48, S19

12

Object-oriented Metrics

(Complexity, Length, Coupling,

Cohesion, Modularity, Reuse)

Design metrics from UML [55]

S51, S50, S29, S18, S14, S6,

S16, S36, S19

9

Data flow complexity, cyclomatic

complexity

S8, S24, S43 3

Requirements complexity,

Complexity of new functionality

S2, S37, S32, S35, S34, S48 6

Program dependencies S38 1

Design metrics: edge count, node

count, branch count, decision count,

multiple condition count and

condition count, densities,

complexities

S20 1

Architectural design metrics to

quantify SDL (Specification and

Description Language) blocks

S45 1

Process Effort Design, review or development

effort measured in person hour

S1, S5, S23, S37, S31, S40, S35,

S13, S43

9

Creation effort, review effort S26, S46 2

Design review effectiveness S30, S7 2

Review, inspection and walkthrough

(RIW)

S2, S8, S32, S24, S34, S30, S7,

S10, S48

9

Time Total months of the project duration S15, S31, S41 3

50

Stability Requirements stability (RS),

requirement change request

S2, S37, S17, S8, S32, S35, S27,

S24, S34, S43, S30, S7, S10,

S48

14

Process

Maturity

Capability Maturity Model

Integration (CMMI) Level

S2, S37, S8, S32, S40, S35, S24,

S34, S30, S7,

10

Number of

Defects

Number of defects from review S1, S37, S15, S35, S13 5

Requirement fault density, design

defect density, fault days number,

code defect density

S15, S17, S8, S27, S24, S10,

S48,

7

Adequacy Analysis, design, review quality S37, S40, S35, S43 4

Quality of documented test cases S35, S7, S41 3

Defined process followed S2, S32, S34, S35, S37 5

Resource Project

characteristics

Number of stakeholders/members S15, S49, S41 3

Development language S37, S15 2

Configuration management S37, S35, S41 3

Project planning S37, S35 2

Scale of distributed communication S37, S35 2

Vendor management S37, S35 2

DBMS type, development solution,

industry area

S15, S41 2

Techno complexity S26, S49, S46 3

Urgency S46 1

Novelty to developer S49 1

Human

characteristics

Staff experience S2, S37, S32, S40, S35, S27,

S34, S43, S7, S10

10

Staff motivation S37, S35 2

Programmer capability S37, S35, S30, S7 4

Staff training quality S37, S35 2

Internal communication/interaction S37, S35 2

Productivity S15 1

Practitioners level S26, S46 2

Stakeholder involvement S2, S32, S34 3

People dependence S41 1

3.4.1.6. RQ1.6 What types of methods are used to build the prediction models?

Figure 3.8 shows the distribution of the prediction methods used for early defect

prediction in the studies. It can be seen that machine learning-based methods were the

most frequently used (with 39%). Machine learning methods included support vector

machines, artificial neural networks, genetic algorithms, K-means clustering, decision

51

trees and so on. Fuzzy logic-based methods (28%) were widely preferred since fuzzy

logic is appropriate for handling qualitative data gathered from early phases. In addition,

Bayesian network-based methods were preferred (with 13%) thanks to its capability to

measure abstract data, which exists in early phases. Statistical methods, which are mostly

based on regression, were used for early prediction with the percentage of 20%.

Figure 3.8. Distribution of prediction methods

3.4.1.7. RQ1.7 What are the contextual parameters reported in the prediction

models?

The contextual parameters were gathered according to some references, such as [19] and

[103]. It was investigated whether the studies reported the contextual parameters of the

dataset explicitly or not. However, it was also possible for a study to address the

contextual parameters in an implicit way. For example, if a study used NASA MDP data

from PROMISE repository for early defect prediction, its contextual parameters can be

inferred since the dataset is public to access. Besides, the contextual parameters about the

NASA MDP dataset are known through the studies that reported this information

explicitly, such as [S21, S44]. Overall, 14 studies [S3, S4, S9, S11, S12, S18, S20, S21,

S22, S25, S28, S33, S42, S44] used NASA MDP dataset. In addition, some explicit

contextual parameters were reported for public dataset published by Fenton et al. [S37],

where 10 studies [S2, S7, S10, S27, S30, S32, S34, S35, S37, S43] used this dataset.

52

Lastly, a public raw data was published in [S16] and [S36] also used this dataset in their

study.

Reported contextual parameters of these public datasets are given in Table 3.4, which

include business domain, product size (as KLOC), programming language, development

methodology, and effort.

Table 3.4. Context parameters of the public datasets

Public Dataset

of

Studies

Use the

Dataset

Business

Domain

Size

(KLOC)

Programming

Language

Development

Methodology

Development

Effort

NASA MDP [58] 14 X X X

Fenton dataset

[20]
10 X X X X X

Data published in

Cartwright and

Shepperd [S16]

2 X X X X

Aside from these public datasets, the contextual parameters reported in 18 studies out of

25 studies that used private dataset were extracted. Figure 3.9 shows those parameters

and the distribution of numbers among the studies. It is seen from the figure that the most

reported contextual parameter (with 25%) was domain information of the projects. Also,

technical information of the software product was given by reporting programming

language (19%), size of the product (16%), and the type of the system (14%). In addition

to that, it was mentioned whether the software was commercial or not (14%). Some other

information about the quality requirements or processes was reported, such as criticality

or quality expectancy from the system, and development methodologies adopted during

the life cycle of the software. Unfortunately, 10 studies (out of 52) did not address any

information regarding the context of the data used. It is a disadvantage that studies

reporting the context were relatively few, which makes it difficult to repeat the study and

compare the model performances based on contextual similarity.

53

Figure 3.9. Categories of contextual parameters reported in 18 primary studies

3.4.1.8. Observations on review by characteristics of models

• Increased interest in public datasets is critical in terms of questioning the

reproducibility of the studies. It is good to see that public datasets have gained

interest through the years.

• SDLC phase information is important on ESDP studies, since we define "early"

studies as the ones that built the prediction models before coding phase has started,

i.e. in requirement or design stages. Approximately 60% of the primary studies

focus on requirement or design phases to construct their prediction models, which

indicates the importance of these phases in ESDP.

• It was observed that metric data based on product entity is mostly preferred in

building ESDP models in the studies, while metric data based on process and

resource entities follow that category.

• Most interested attributes are product size and structure, process effort, and human

resource characteristics.

• Most commonly used metrics can be listed as follows: metrics that measure the

length of the software product (i.e. LOC or number of use cases), complexity

54

related metrics (i.e. McCabe or Halstead metrics), effort for review activities,

stability of requirements, maturity of the organization (i.e. CMMI level), and

experience of the staff.

• On the side of prediction methods used in the models, machine learning and fuzzy

logic methods are the most frequently chosen ones. It is worth to note that, fuzzy

rule-based models are relatively suitable to model the vague, incomplete, or

qualitative data gathered from the early phases. That is why fuzzy logic-based

approaches are preferred frequently in building ESDP models.

• It can be said that contextual parameters have importance in the early phases of

software development, since qualitative data is commonly used to construct the

prediction models. Context information may undertake the task of guiding and

can be helpful to build simple and effective models.

3.4.2. RQ 2. Are models of ESDP successful and beneficial?

3.4.2.1. RQ2.1 Which methods and measures are used for evaluating the

performance of the models?

Performance evaluation methods of the prediction results varied according to the

dependent variable of the model, which in general were defectiveness and number of

defects, corresponding to categorical and continuous performance evaluation,

respectively. The distributions related to performance evaluation methods were given in

Figure 3.10. It can be seen that more than half of the studies used continuous performance

evaluation methods, while nearly one-quarter of them used categorical methods.

Unfortunately, nine studies (17%) did not evaluate the performance of the prediction

models.

55

Figure 3.10. Distribution of the prediction performance methods

As mentioned above, categorical studies focused to predict whether the specific part of

the software was defect-prone or not. Papers reported the prediction performance using

ROC (Receiver Operating Characteristic), AUC (Area Under Curve), Probability of

Detection (PD, Recall), Probability of False Alarms (PF), Precision, Accuracy, and F-

measure. Continuous studies, which predicted the number of the defects, reported the

prediction performance using various measures. Most of the measures reported by

continuous studies were related to error measures, goodness-of-fit, ranking results,

accuracy, or difference between expected and observed results. The distributions related

to performance evaluation measures for categorical and continuous models were given in

Figure 3.11 and Figure 3.12, respectively.

56

Figure 3.11. Performance evaluation measures in categorical models

Figure 3.12. Performance evaluation measures in continuous models

3.4.2.2. RQ2.2 What are the performance values of the models based on the included

SDLC phases that originate metrics for prediction?

Performance data of the prediction was extracted for every individual ESDP model given

in the papers. We collected the performance values for each model presented in the related

paper and synthesized the values with regard to phase information of the model. Note that

we used the notation “<phase> (n = <number of models>)” in the tables reported in this

section, to be able to provide the number of models presented in the papers with regard

to the phase information of the constructed model. It is important to say that there is a

one-to-many relationship between a primary study and the number of models it presents,

57

and ‘n’ values belong to the sum of the individual models presented in each study with

regard to a specific phase.

Most of the categorical studies reported AUC or Precision, Recall, and F-measure,

therefore we analyzed the results through these measures. Also, we provided f-measure

where it was not reported by the paper directly, as it can be calculated from precision and

recall. In order to interpret performance evaluation results, we used box-plots that are

beneficial to show the differences between populations visually as they do not make

assumptions about the distribution of the data [8]. Therefore, we provided the categorical

performance results with regard to phase information by using two different box-plot

graphics, in order to observe its likely effects on prediction performance. Figure 3.13

shows the results based on AUC values; while Figure 3.14 shows the results based on

precision, recall, and f-measure values that were provided. It is very important to see that

models based on requirement and design phase metrics were very successful based on

both AUC and f-measure values, which were pretty close to 1.0.

58

Figure 3.13. Performance results (AUC) regarding phase in categorical studies

59

Figure 3.14. Performance results (f-measure, precision and recall) regarding phase in

categorical studies

For the continuous studies, the prediction performance results were reported in a variety

of measures, which makes it difficult to convert the results into a common measure.

Mostly preferred performance measures reported in continuous studies were based on

error measures, which are Mean Magnitude of Relative Error (MMRE), Root Mean

Square Error (RMSE), Balanced Mean Magnitude of Relative Error (BMMRE), and

Mean Absolute Error (MAE). MMRE results with regard to phase information were

provided in Figure 3.15, which were reported in 10 studies [S7, S10, S15, S27, S30, S34,

S37, S43, S48, and S49]. Except an outlier value reported in [S37], which belonged to a

Bayesian network-based model built with data from all phases, it can be seen that most

MMRE results were smaller than 0.5. In addition, it is very important to see that three

models including only requirement phase-based data [S10, S15, S49] resulted in an

MMRE value of approximately 0.28, which was smaller in comparison to the error value

60

of the models based on requirement and coding phase data in [S27]. Also, models based

on requirement and design phase-based data in [S48] and design phase-based data in

[S15] reported good performance values, which were MMRE = 0.098 and MMRE = 0.2,

respectively. Besides, it is important to note that these models were based on different

kinds of prediction methods (i.e. Bayesian networks, fuzzy rule-based and statistical

techniques), which might have had an effect on the performance of the prediction apart

from the phase information. Still, despite the differences in prediction methods, ESDP

models demonstrated desired (high) performance.

Figure 3.15. Performance results (MMRE) regarding phase in continuous studies

61

Moreover, R2 values were also preferred among continuous studies. We provide those

results with regard to the phase information in Figure 3.16. It can be seen that the most

successful model [S13] was built with integrating data from the requirement, design,

coding, and testing phases together (with R2 = 0.989). Two studies [S10] and [S27]

presented an ESDP model based on data only from the requirement phase with the

performance values very close to 1.0, which were R2 = 0.971 and R2 = 0.951, respectively.

These two distinctive studies demonstrate the power of requirements stage in the

performance of ESDP models.

* Retrieved from [S10]

Figure 3.16. Goodness-of-fit (R2) values reported in continuous studies

3.4.2.3. RQ2.3 What are the benefits of early defect prediction as reported in the

studies?

Only few of the studies, i.e. [S37] and [S49], both using Bayesian Network models,

reported comprehensive benefits of the ESDP. In [S37], it was indicated that an obvious

benefit of a Bayesian Network was its capability to organize a range of decision analysis

and risk assessment modeling, which were conceivably important for software project

managers. In addition, decision support capability was explained with example scenarios,

in which the model parameters were changing regarding to the values of others, especially

when the resource constraints made some of them impossible to increase. In [S49], the

usability of the model was evaluated by using data (e.g. size of artifacts, number of

defects) collected for five historical projects. Knowledge of seven domain experts was

gathered by using questionnaires in order to build the prediction model, which required

112 min per expert. The results indicated that the model was useful for quality assurance

62

(QA) planning by identifying high-risk projects. Moreover, this also applied for QA

controlling by providing better prediction for the number of defects than models using

only measurement data. Consequently, it was stated that the proposed hybrid prediction

model would be used in the software requirements phase of the company to support QA

activities.

Aside from these two studies, most of the other studies concluded with a couple of general

findings, which represented the benefits of early models verbally. We have categorized

those benefits with regard to the mostly reported benefits in the primary studies. Table

3.5 presents the benefits of early software defect prediction and highlight the main focuses

that the ESDP models can be used advantageously. It is worth noting that; for better

clarification of this RQ, we performed "reciprocal translational analysis" reported in

Dixon-Woods et al. [104]. This technique is helpful in order to analyze and synthesize

the qualitative data and translate the main benefits reported across primary studies to the

headings to identify the similarities between them.

Table 3.5. Reported benefits of early software defect prediction

Benefit

ID

Benefits Focus Reported Benefits Primary Studies # of

Studies

B1 Useful for software

practitioners in

requirement phase

ESDP models can be beneficial to software

engineers, managers and researchers for defect

prediction in the requirement phase of software

development.

[S10, S49] 2

B2 Useful for software

practitioners in

design phase

Experiments resulted in the fact that design

metrics can be used accurately as software

defect indicator in early phases of software

development.

[S16, S19, S22,

S29, S36, S44,

S51, S52]

8

B3 Supports making

best design

decisions with the

help of design

phase metrics

Design phase-based metrics are good predictors

of software defects, thus they support for

selecting the suitable design among the

available different design choices by avoiding

defect-prone areas of the software.

[S6, S14, S38] 3

B4 Improved and

effective resource

planning

ESDP provides a basis for effective resource

planning and utilization by allocating the

necessary resources (human, computer of

infrastructure) optimally.

[S2, S3, S4, S5, S7,

S8, S9, S11, S15,

S18, S20, S23, S24,

S25, S28, S30, S32,

S43, S46, S48]

20

63

B5 Improved testing

focus and effective

testing effort

planning

ESDP models can be used for prioritizing

software testing activities effectively with a

specific focus on defective parts of the software

in a comprehensive way, hence enable

developers, testers or verification experts to

concentrate their time and resources on the

problematic areas.

[S5, S9, S10, S11,

S12, S13, S18, S19,

S23, S25, S28, S31,

S33, S35, S38, S41,

S43, S46, S47]

19

B6 Developing cost

effective software

and providing cost

reduction

Identifying defective parts of the software early

in the SDLC may lead to reduce cost by better

planning and management of the project. Early

identification of cost overruns and making

corrective actions enable the software teams for

developing cost effective software.

[S2, S7, S8, S9,

S10, S18, S24, S30,

S32, S42, S45]

11

B7 Useful in

optimizing

software schedule

Early prediction of defects supports software

managers through improved scheduling and

early identification of schedule mismatch.

[S9, S10, S30, S32,

S35]

5

B8 Helpful for

developing more

reliable software

Predicting defects early in the SDLC can be

used to achieve high software reliability by

making effective strategies for improving the

reliability of the whole system and deciding the

necessary amount of corrective actions is

achieved or not in order to achieve target

software reliability.

[S2, S6, S7, S8,

S12, S14, S17, S24,

S32, S35, S47]

11

B9 Effective project

planning and

management

Early life cycle prediction can play an

important role in project management by

supporting software quality engineering

through highlighting the quality needs earlier.

Involving early phase risk mitigation and

planning frequent review activities may also

provide better software project management.

[S5, S15, S23, S31,

S33, S35, S40,

S51]

8

B10 Effective decision-

support

ESDP provides effective decision-support and

enables to make correct decisions regarding

rework, testing and release planning. Software

developer may easily detect the defective

artifacts and may make correct decisions

accordingly.

[S7, S20, S23, S30,

S37, S40]

6

B11 Trade-off analysis ESDP models provide to make effective trade-

off analysis during early phases of software

development.

[S20, S37] 2

B12 Improved software

process control

Early prediction is used to improve software

process control by early identification of

software development process issues, therefore

will be helpful for taking corrective actions

through process improvement.

[S12, S30, S35] 3

64

3.4.2.4. Observations on review by performance of models

Regarding performance evaluation methods, most studies choose to predict the number

of defects that exist in the software (i.e. continuous studies); hence they prefer to report

performances based on measures related to error-rate.

We extracted performance values of continues studies with regard to MMRE and R2

values. It is very important to see that studies include only requirement phase-based data,

only design phase-based data, and requirement/design phase-based data together reported

good performance values, in terms of MMRE values smaller than 0.28. We can also say

that two studies [S10] and [S27] presented models based on data only from the

requirement phase with R2 = 0.971 and R2 = 0.951, respectively, which may indicate the

power of requirement phase-based data for ESDP.

When we look at the phase-based performance values of the categorical models, we see

that model types established from the early-stage knowledge are successful. One of the

most important finding of this systematic review is that models based on requirement and

design phase metrics are very successful based on both AUC and f-measure values, which

are pretty close to 1.0.

The main benefits of the ESDP as reported in the studies can be listed under several

topics:

• It can be beneficial to software project managers by supporting early planning and

management of project with higher quality in requirement or design phases of

software development.

• It may provide a basis for effective resource planning by allocating the necessary

resources optimally.

• It can be useful for planning of testing activities effectively, reducing the testing

effort, and focusing the defective parts of the software in a comprehensive way as

defect-prone areas will be already known.

65

• It may be used as a decision analysis mechanism during early phases of software

development by supporting design decisions and helping the developers to select

the suitable design choice by avoiding defect-prone areas of the software.

• The cost of the software development could be optimized and even may be

reduced through early defect predictors.

• Early software defect prediction helps software managers on planning schedule

effectively.

• High software reliability may be achieved and guaranteed early in the SDLC, by

identifying the defective parts earlier.

• Predicting defects early in the software life cycle may improve software process

control with early identification of the issues in software development processes.

Consequently, early phase data can help to build more accurate models when combined

with metric data from the coding phase, and provide more benefits than software defect

predictors based only on metric data from coding and testing stages.

3.5. Software Defect Prediction in Turkey – A Survey Study from Industry (RQ3)

A survey study was conducted to take a picture of the applications on SDP in software

companies in Turkey. Mainly, we wanted to get the opinions of people working in

different companies in the sector, and gather the needs and expectations of the industry.

The relevant survey can be accessed via the Google forms4.

3.5.1. Survey Design

The questionnaire is structured in three parts. In the first part, the title information of the

participant's company and some general information specific to the company are asked

for statistical evaluation. In this context, there are questions such as quality certificates

and activities carried out within the scope of quality management to determine the quality

management approach of the company. Finally, it is asked whether software defect

4 tinyurl.com/yc7ah7xt

66

prediction is applied in the company. The second part of the questionnaire is structured

according to the answer to this question.

If it is stated that software defect prediction is applied in the company; to understand in

detail how the defect prediction process works, the following questions are asked:

• How do you operate software defect prediction?

• For what purpose do you apply software defect prediction?

• At what phases of the software development life cycle do you predict defects?

• Which metrics do you use for software defect prediction?

• What approach(es) and/or tool(s) do you use to build the software defect

prediction model?

• What do you think are the benefits or advantages of software defect prediction

applications in your company?

• What do you think are the difficulties or disadvantages of software defect

prediction applications in your company?

If it is stated that there is no software defect prediction in the company; the following

questions are asked to generate recommendations to motivate the useful application of

defect prediction in software companies:

• Why do you think software defect prediction is not applied in your company?

• What do you think would be the benefits if software defect prediction was being

applied in your company?

• What kind of difficulties would you think if software defect prediction was being

applied in your company?

The final part of the questionnaire asks the following questions to understand the need

for guidance for software defect prediction from the early phases of SDLC:

67

• Do you think it would be helpful if there was a guide on how to operate the

software defect prediction process from the early phases of life cycle?

• Is guidance needed for choosing the defect prediction method?

• Is guidance needed to identify the inputs and outputs of the defect prediction

model?

• Is guidance needed for the creation of the defect prediction model?

• Is guidance needed on how to predict defects?

• Is guidance needed on how to evaluate defect prediction performance?

• What do you think, in addition to the above issues, could be included in a guideline

for software defect prediction from the early phases of software development?

3.5.2. Results

A total of 35 people participated in the survey. The data provided by the participants are

shared in Appendix-2. The most important results grouped by the research questions can

be listed as follows.

RQ 3.1. If software defect prediction is applied, how does the company operate it?

• 28.6% of the participants stated that software defect prediction was applied in

their companies.

• It was seen that 60% of the participants applied SDP to predict the number of

defects, 50% for the prediction of defective components, and 50% for determining

the severity of the defects.

• It is seen that defect prediction is mostly applied in the requirement analysis phase

of the software development life cycle (60%). This result is critical for addressing

early-phase information while predicting the defects. In addition, it is seen that

defect prediction is applied with a rate of 50% during the design phase. It is

understood that the coding and testing phases are preferred by 50% and 40%,

respectively.

68

• It is seen that process metrics are used with a rate of 90% in companies where

defect prediction is made. Also, 80% of the participants stated that they used

product metrics and 60% stated that they used resource metrics.

• While it is seen that statistical methods / tools are mostly preferred as an approach

to creating a prediction model (80%), it is seen that approaches based on expert

opinion are used at a rate of 40% and machine learning approaches at a rate of

20%.

RQ 3.2. If the company is applying SDP, what are the advantages or disadvantages of

applying it?

• The benefits / advantages reported by those who stated that defect prediction was

applied in their companies can be expressed as: predicting possible risks in

projects, its contribution on time and quality management, and controlling the

number of defects that will appear in future versions.

• The difficulties / disadvantages of defect prediction were stated as: the lack of

qualified human resources to apply prediction, the different dynamics of the

projects and the inability to be used by the teams, while the possibility of incorrect

prediction of the defects that may occur was reported as its disadvantage.

RQ 3.3. If the company is not applying SDP, what would be the benefits and/or

challenges in applying SDP in your company?

• While 37.1% of the participants stated that no prediction was made, 34.3% of

them stated that they did not know whether SDP was applied or not.

• In companies that do not apply SDP, time, budget and cost constraints come to

the fore, while the lack of experienced personnel and the lack of know-how on

SDP are among the reasons for not using SDP models.

• It was stated that if they would apply SDP in their companies, there would be an

increase in efficiency and quality in the planning of development and testing

processes, resource and time management could be made more efficiently, the

69

developed software could be produced with higher quality, thus increasing

customer satisfaction, awareness, and reusability.

• It was stated that in companies that do not apply SDP, if estimation were made, it

would be the most important difficulty to collect the necessary data for applying

SDP models, and there might be difficulties in building SDP models correctly.

Besides, it is thought that SDP would bring an extra cost and workload.

RQ 3.4. Is there a need for guidance on software defect prediction from the early phases

of SDLC?

• 89% of the participants stated that a guide would be helpful in choosing the SDP

method and determining the inputs and outputs of the model.

• 86% of the participants stated that there should be guidance on the building of the

model, how to apply the prediction and how to evaluate its performance.

In addition to these results, the survey contributors stated that issues such as which model

will be selected in which type of projects and/or sectors among different models, usage

and example scenarios of those models, and the benefits of the defect prediction process

to the companies can be included in the defect prediction guide.

In line with the information obtained from the literature review and the survey results, it

was seen that a decision analysis method is required for the selection of the defect

prediction method in the field of ESDP. In this direction, in the studies described in the

next section, details are given for the steps of preparation, design and implementation of

a decision analysis method that will provide a basis for the selection of the defect

prediction method suitable for the early phases.

70

4. DECISION ANALYSIS APPROACH

Up to this section, we have explored the feasibility of early phase defect prediction by

addressing the most important aspects of SDP models. Thus, it was deemed appropriate

to adopt a broad and comprehensive decision analysis approach to answer the crucial

question of this thesis: “RQ4. How to select a method for early prediction of software

defects?”

In this section, the steps taken in order to systematically synthesize the information

obtained as a result of the extensive literature review and to use it in the modeling of the

decision analysis approach are explained by matching the related processes with the

detailed RQs.

4.1. Design of Decision Analysis Approach

The design of the decision analysis approach can be seen in Figure 4.1. It consists of four

components: the preparation for decision analysis approach, generating the knowledge

base, modeling of the decision analysis approach and the application of the approach.

Figure 4.1. Design of the decision analysis approach

In the preparation stage for decision analysis, the literature was examined in detail as

explained in Chapter 3.4, to reveal the current state of the early software defect prediction

area. With this in mind, a list of alternatives to be compared during the decision analysis

process was identified. After, several important characteristics that will be considered for

71

the selection of the alternative SDP methods, namely the criteria, were outlined. In doing

so, an expert opinion study was prepared in order to gather opinions about the proposed

criteria and to finalize them. The overall preparation process of decision analysis

approach is given in Chapter 4.2-4.3.

The knowledge base contains all the data in a format that was derived from the previous

stage. At this stage, a base matrix is defined, which contains the values that the criteria

can take for each alternative. A second expert opinion study is conducted in order to

finalize the base matrix, as well as to evaluate the alternatives against criteria. Chapter

4.4 covers the detailed steps executed to generate and develop the knowledge base.

In Chapter 4.5, a questionnaire is presented to collect the preferences of the stakeholders

to guide the selection in line with the criteria and alternatives.

For modeling the decision analysis approach, all the information gathered in the

knowledge base were synthesized. In this manner, a two-phase decision analysis approach

that combines decision tree and MCDA methodologies is presented to form the decision

analysis process for SDP method selection in the early SDLC phases. The decision

analysis process is explained in detail in Chapter 4.6.

For the application of the decision analysis, the characteristics of the example dataset and

the stakeholders’ requirements are elicited through the proposed questionnaire. This

allows the stakeholders to select the values of various attributes regarding their needs in

the context of their software project and related defect dataset. In Chapter 5, the

application of the decision analysis approach through several case studies were

demonstrated.

4.2. What are the alternative methods for building ESDP models? (RQ4.1)

Based on our systematic literature review study on ESDP [15] and by considering other

systematic reviews on SDP [8,10,82,83,105], several prediction methods were identified

72

to be considered as alternatives. In Table 4.1, these alternative methods and their basic

characteristics were listed. The references to the primary studies were also provided in

the rightmost column, which were helpful in retrieving the characteristics of the methods.

Table 4.1. Characteristics of software defect prediction methods

Method Approach to

construct the

SDP model

Purpose of

use

Type of

output

Dataset size Primary Studies in

[15] c

ANN Data

Dependent

Classification,

Regression

Categorical,

Numerical

Medium / Large /

Very Large

S5, S23, S25, S29,

S35, S36

BBN Can Address

Both

Classification,

Regressiona

Categorical,

Numericala

No data requiredb,

Small / Medium /

Large

S1, S14, S37, S40,

S43, S46, S49

DT Data

Dependent

Classification,

Regressiona

Categorical,

Numericala

Large S9, S33, S44, S52

FIS Based on

Human

Judgement

Classification,

Regressiona

Categorical,

Numericala

No data requiredb S7, S10, S12, S18,

S27, S30, S32, S34,

S48

LinR Data

Dependent

Regression Numerical Small / Medium /

Large

S16, S47, S50

LogR Data

Dependent

Classification Categorical Small / Medium /

Large

S19, S36, S51

NB Data

Dependent

Classification Categorical Small / Medium S20, S21, S22, S42,

S44

SVM Data

Dependent

Classification,

Regressiona

Categorical,

Numericala

Medium / Large S38, S45

a. May depend on the implementation of the algorithm

b. Can be constructed independent from data

c. Full references of primary studies can be obtained

4.3. What are the criteria to consider when selecting a method for ESDP? (RQ4.2)

4.3.1. Initially Defined Criteria

The criteria that should be considered in the context of ESDP for the evaluation of the

identified alternatives were determined and grouped under five main headings. The

relevant criteria were defined roughly before the preparation stage of the decision

analysis, which were first published as a conference paper [33], then matured and updated

with various feedbacks received from the experts (e.g. in conference peer-reviews or

expert opinion study described in the next sub-section).

73

To put it concretely, basic characteristics of the prediction methods have been considered

for the determination and grouping of criteria, as well as the information required to build

an SDP model in the early phases, such as data characteristics, data quality and the context

information of the project. These criteria have also been mentioned in literature in various

ways [8,37,38,41]. The grouping for the criteria is given as follows:

• Model Construction (MC): The main purpose and model constructing approach

are discussed under this group.

• Data Characteristics (DCh): There are several characteristics which are crucial to

address the constraints of the data that will be used for building the SDP model.

• Data Quality (DQ): The quality characteristics of the data to be used to construct

the SDP model are discussed under this group.

• Method Characteristics (MCh): The characteristics of the methods to be used to

construct the SDP model are discussed under this group.

• Project Context (PC): The factors related to the context information of the project

subject to SDP are discussed under this group.

Next, the definitions of the criteria under each grouping are given below.

Model Construction

• Main purpose of use: The purpose of an SDP model can be predicting the number

of defects or classifying the software as defective / defect-free (i.e. prediction

versus classification) [106]. This information is said to be distinguishable for both

the construction of the model and for the performance evaluation of the resulting

model [8].

• Approach to construct the model: To construct the SDP model, we can use

machine learning based methods that learn from historical data and make

predictions on new data, or we can prepare a model that is independent from data

with the help of expert judgement [106]. It is necessary to evaluate the modeling

technique since different techniques may produce different results under varying

conditions [8].

74

Data Characteristics

• Dataset size: Dataset size is the size of the dataset that will be used for training

the model. Small (number of examples (n) ≤ 500), Medium (500 < n < 1000),

Large (1000 ≤ n < 10000), Very Large (n ≥ 10000) [81,94,107].

• Type of input / output data: Type of data can be categorical or numerical [54].

Data Quality

• Causality: Causality is the degree that attributes are dependent when the value of

one attribute influences the other [21].

• Uncertainty: Uncertainty is the degree to which data is inaccurate, imprecise,

untrusted or unknown [108].

• Missing data: Missing data is the values that are empty or left blank in the dataset

[109].

• Outlier: Outlier is the degree to which the data do not meet with the general

behavior of the dataset [110].

Method Characteristics

• Interpretability: Interpretability is the degree of which the user can understand the

cause of any result (output) [37,111].

• Complexity: Complexity is the degree to which the method is complicated or

complex in design [37].

• Performance: Performance is the degree of which the method performs well in

general [112].

• Speed: Speed is the degree of costs associated with generating and using the

method [37].

• Maintainability: Maintainability is the degree of which the method is easy to

manage in time [41].

75

Project Context

• Size of the artifact: Size metric of the artifact subject to SDP can be used as a

coefficient (normalizer) if the case is predicting the number of defects [21]. It is

important to note that, the size of the artifact is defined as an indicator of the

project rather than an indicator of the dataset.

• Development methodology: Development methodology is the approach used

throughout the project's life cycle [15].

• Development phase: Development phase information can be considered as the

phase information (requirements analysis, design, coding etc.) when the SDP

model is constructed [21].

• Domain: Domain information is about the business domain of the project [15].

4.3.2. Expert Opinion Study on Identifying and Ranking the Criteria

To select the most suitable method for early software defect prediction, an expert opinion

survey was prepared with a purpose of investigating the main factors (criteria) that were

considered important for evaluating alternative SDP methods and weighting the

determined criteria.

The survey was prepared in Google Forms and it consisted of four sections5. In the first

section, there was an introduction part to inform the experts about the research conditions,

with the terms of agreement. In the second section, the participants were asked about

some personal information to be processed for descriptive statistics anonymously. In the

third section, each criterion was presented under the related criteria group given in the

previous section. The experts were expected to evaluate each criterion based on a scale

that consist of six values: “Not Important”, “Very Low”, “Low”, “Medium”, “High”, and

“Very High”. In addition, the experts were expected to select which of the relevant criteria

might be important in the context of the early phases. In the last section of the survey,

experts could submit a new criterion proposal and rate its importance within a scale of

5 https://tinyurl.com/2e6tvcd5

76

"Very Low" to "Very High". The results of the expert opinion survey were given in

Appendix-3.

The expert opinion survey was sent to twenty identified experts in the field via e-mail. At

the end of the defined period, eight experts participated in the study. The descriptive

information about the participant profiles is given in Table 4.2.

Table 4.2. The profile of the experts

Expert Organization

Type

Title Level of

knowledge

in SDP

(out of 5)

Experience

on SDP

(in years)

h-

index

papers

in

SDP

Years

in

Industry

E1 Government Software

Quality

Manager

3 3 - 5 years 15

E2 University Assistant

Professor

5 6 - 10 years 24 21

E3 University Professor 5 > 20 years 35 34

E4 University Associate

Professor

5 11 - 20

years

25 19

E5 Government Senior

Software

Engineer

(PhD)

5 6 - 10 years 13

E6 Private

Company

Senior

Software

Engineer

(PhD)

5 6 - 10 years 12

E7 University Associate

Professor

4 3 - 5 years 16 10

E8 University Assistant

Professor

4 6 - 10 years 16 20

Figure 4.2 shows the responses of the experts for all the criteria questions. Each response

reflects the opinion of an expert about the importance degree of the related criteria in the

context of software defect prediction. Verbal scales are defined as VH, H, M, L, VL, and

NI that correspond to “Very High”, “High”, “Medium”, “Low”, “Very Low”, and “Not

Important”, respectively.

77

Figure 4.2. Responses of the experts (E) regarding the criteria

As mentioned before, the expert opinions were gathered about which of the relevant

criteria may be important in the context of ESDP. Based on the answers, we determined

that it would be more appropriate to address the criteria that were selected for ESDP

context. According to the frequency values of each criterion shown in Table 4.3, “Domain

information” criterion was eliminated since it has not been selected.

78

Table 4.3. Frequency values of each criterion

Criteria # of selection for ESDP # of responses Frequency

Main purpose of use 8 8 1

Dataset size 7 8 0.875

Approach to construct the model 6 8 0.75

Performance 6 8 0.75

Uncertainty 5 8 0.625

Interpretability 5 8 0.625

Maintainability 5 8 0.625

Development phase information 5 8 0.625

Type of the output 4 8 0.5

Type of the input 4 8 0.5

Missing values 4 8 0.5

Outlier 4 8 0.5

Complexity 4 8 0.5

Causality 3 8 0.375

Size of the artifact 2 8 0.25

Development methodology 2 8 0.25

Speed 2 8 0.25

Domain information 0 8 0

In addition, the elimination of the five initially defined criteria was decided in subsequent

iterations. Below, the excluded criteria with their elimination reasons is presented.

• “Type of the output”: This criterion was found to have values that are directly

parallel to the values of the “Main purpose of use” criterion. Therefore, this

criterion was eliminated to avoid addressing the same information.

• “Type of the input”: It was found to be a neutral element, that is, it was not a

criterion affecting the decision analysis during the evaluation of the alternatives.

In other words, it was pruned from the decision tree according to the results of the

second expert opinion study, because it had the same value for all alternatives.

• “Development phase information”: This criterion would not be evaluated in a

meaningful way in the decision-making process, since it was not clear enough

which phase information could be handled by any of the alternatives. Besides, its

79

existence is good for any SDP method but does not affect selection, as it can be

used only as an input element when building phase-based SDP models.

• “Size of the artifact”: It was found to be useful as an input element (rather than a

criterion) when building an SDP model in the early phases.

• “Development methodology”: It is decided to address in future studies for two

reasons: i) it may not be possible to know the development methodology in open

datasets that are subject to the most empirical studies, ii) the projects included in

the NASA dataset, which was also used in our case study, were developed long

before the advent of agile methodologies. For this reason, it is assumed the

development method as plan-driven in the relevant dataset and decided to consider

the update of the knowledge base to address this criterion as a future work.

4.3.3. Ranking and Weighting the Criteria

The first two criteria groups (i.e. Model Construction and Data Characteristics) were used

in the decision tree analysis, where the last two criteria groups (i.e. Data Quality and

Method Characteristics) were used in the Fuzzy TOPSIS analysis, as described in more

detail in the following sections. The main reason for this distinction is the data type

considered when evaluating the alternatives for the first two criteria groups is nominal,

while the data type considered for the last two criteria groups is interval.

Ranking the criteria under MC and DCh

A data transformation was performed to rank the criteria in the first two groups. Following

transformation is used to convert verbally collected responses to the numerical weights

within a scale from 1 to 5:

• Very High (VH) corresponds to “5”

• High (H) corresponds to “4”

• Medium (M) corresponds to “3”

• Low (L) corresponds to “2”

• Very Low (VL) corresponds to “1”

80

To determine the criteria group order, the sub-criteria weights in the group were

aggregated and a calculation was made by considering their average weights. After

weighting a criteria group, each criterion was ranked in the group based on their

median/mean values. Based on these values, criteria were reordered within the criteria

group. In Table 4.4, the criteria group and criterion ranking with their resulted values

(mean and median) determined from the results of this initial expert opinion study are

demonstrated. These criteria would later be used in Phase - 1 of the decision analysis

process, which is explained in Chapter 4.6.1.

Table 4.4. Numerical values of the expert opinions and mean / median values

Criteria

Group
Criteria E#1 E#2 E#3 E#4 E#5 E#6 E#7 E#8

Group

Mean

Group

Median

Criteria

Mean

Criteria

Median

MC

Main purpose

of use
5 5 5 5 5 5 5 4

4.56 4.50

4.88 5.00

Approach to

construct the

model

4 4 3 4 5 5 4 5 4.25 4.00

DCh Dataset size 5 5 4 4 4 5 4 5 4.50 4.50 4.50 4.50

Weighting the criteria under DQ and MCh

As we used linguistic variables to gather the opinions of the experts, we needed to

transform their values into the fuzzy numbers [113]. In fuzzy set theory, conversion scales

are applied to transform the linguistic terms into fuzzy numbers. As for the last two

criteria groups, aggregated fuzzy importance weights were calculated with regard to

expert opinion study results given in Figure 4.2, since they would be used for the Fuzzy

TOPSIS evaluation, which is explained in Chapter 4.6.2.

4.4. How should the most appropriate method be selected by evaluating the defined

criteria? (RQ4.3)

In order to develop the decision analysis approach, it is important to reveal the knowledge

base that would provide the necessary inputs to the decision analysis process. In doing

so, first the results were collected from literature review [15].

81

To execute the decision analysis process, alternative SDP methods should be evaluated

on the basis of the final set of criteria. The information in the literature was gathered and

synthesized, which is necessary for the evaluation of alternatives against criteria. Even

though our knowledge could allow us to make the evaluation on the basis of criteria for

alternatives, there would be a possible validity threat of reflecting only the views of the

authors. To eliminate this threat, the opinions of experts in the field were reflected to the

evaluation, so that a more reliable and robust decision analysis process could be operated.

At this point, the knowledge base was not only an input for the preparation of the second

expert opinion study, but also the outputs of the expert opinion study enabled us to update

and finalize the knowledge base. When the second expert opinion study was conducted,

its results revealed the "base (decision) matrix”, which should provide the basis for

decision analysis.

4.4.1. Expert Opinion Study for the Evaluation of Alternatives against Criteria

This expert opinion survey was prepared to be helpful for creating the base matrix and

selecting the most appropriate method for early software defect prediction. Therefore, the

aim was to gather the expert opinions for evaluating the alternatives regarding each

criterion in the context of ESDP. The experts were asked to complete the survey by rating

the related criteria on each SDP method.

This survey was also prepared in Google Forms and it consisted of eight sections6. As in

the previous survey, the first section was an introduction form to inform the experts about

the research conditions, with the terms of agreement. In the second section, the

participants were asked about some personal information as well as with their degree of

knowledge and experience years both in SDP and in building / using of the prediction

methods. In addition, the experts were expected to choose their expertise level on the

alternative methods, since this information would be used as a basis for scoring the

alternatives. In the following sections, the criteria groups were presented with included

criteria and their explanations to be evaluated by the experts. In the last section of the

survey, experts could note any additional comments that should be considered when

6 https://tinyurl.com/mryyx5hx

82

selecting the SDP method in the early phases. The results of the expert opinion study on

the evaluation of alternatives against criteria were given in Appendix-4.

The expert opinion survey was sent to fifteen identified experts in the field via e-mail. At

the end of the defined period, four experts participated in the study. The descriptive

information related to the participant profile were as follows: Two university staff with

the title of assistant professor, one private sector staff with the title of senior software

engineer (PhD), and one government staff with the title of senior software engineer (PhD).

Two of the participants reported the degree of knowledge as 4 out of 5 while the other

two reported it as 5. Two participants reported their years of expertise in the field of SDP

as 3-5 years, and the other two participants as 6-10 years. Three participants reported the

degree of knowledge in prediction methods as 4 out of 5, while the other participant

reported it as 5. Lastly, one participant stated the years of experience on building / using

of the prediction models as 3 - 5 years, where two participants stated it as 6 - 10 years and

the other one stated it as 11 - 20 years.

The values reflected to the base matrix from the expert opinion study results are

summarized in Table 4.5 for the first two criteria groups (“model construction” and “data

characteristics”), and in Table 4.6 for the last two criteria groups (“data quality” and

“method characteristics”).

4.4.2. Base Matrix

In base matrix, possible values of the criteria were extracted for each alternative. For the

first two criteria groups (“model construction” and “data characteristics”), base matrix

was easier to fill in, since the values that the criteria could take on the basis of alternatives

were more precise. However, for the other criteria groups (“data quality” and “method

characteristics”) it was not that easy to distinguish the values of the criteria and evaluate

them clearly, since they contained uncertainty for decision makers. For example, to assess

the “Interpretability” criterion, it was harder to answer the question “Do you think the

following methods are interpretable?” than “To what extent do you think the following

methods are interpretable?”. The main reason for this was the first question is a “yes / no”

83

question, while the second question contains a scale that supports a linguistic rating. For

this reason, the results of the second expert opinion study is used to finalize the base

matrix, especially for those vague criteria groups. Table 4.5 demonstrates the final base

matrix generated based on both the literature review and the expert opinions for the first

two criteria groups. This table was then used as a basis for “Phase - 1: Decision Tree

Analysis”, as we explain in Chapter 4.6.1.

Table 4.5. Base matrix for the decision tree analysis

Method Main Purpose of use
Approach to

construct the model
Dataset Size

ANN Classification, Prediction Data Dependent Medium / Large / Very Large

BBN Classification, Predictiona Can Address Both No datab, Small / Medium / Large

DT Classification, Predictiona Data Dependent Large

FIS Classification, Predictiona Human Judgement No datab

LinR Prediction Data Dependent Small / Medium / Large

LogR Classification Data Dependent Small / Medium / Large

NB Classification Data Dependent Small / Medium

SVM Classification, Predictiona Data Dependent Small / Medium

a. May depend on the implementation of the algorithm

b. Can be constructed independent from data

Table 4.6 demonstrates the final base matrix generated based on the expert opinions for

the last two criteria groups. Here, the formula used for weighting the criteria (Eq. 4.1)

was used similarly to evaluate the alternatives against criteria based on the responses of

four experts participated in the second expert study. In other words, the aggregated fuzzy

values of the alternatives with regard to the criteria were reflected in this base matrix.

This table was then used as a basis for “Phase - 2: MCDA (Fuzzy TOPSIS)”, as explained

in Chapter 4.6.2.

84

Table 4.6. Base matrix (continued) for the Fuzzy TOPSIS evaluation

 ANN BBN DT FIS LinR LogR NB SVM

Causality

1 3 1 1 1 1 1 1

4 7.67 3.67 5.5 2.33 3 2.33 3

7 9 7 9 5 7 7 7

Uncertainty

1 3 1 1 1 1 5 1

5 7.67 4.33 4 3.67 3.67 7.67 4.33

9 9 7 7 7 7 9 7

Missing Data

3 3 1 1 1 1 5 1

5.5 7 5 5 4.33 4.33 7.67 5

9 9 9 9 9 9 9 9

Outlier

5 3 1 1 1 1 1 1

7 5.67 4.33 4.33 4.33 5 5 4.33

9 9 9 7 7 9 9 9

Interpretability

1 3 5 3 5 5 3 1

1 6.33 8.5 7.67 7.67 7.67 7 3

3 9 9 9 9 9 9 7

Complexity

5 3 1 1 1 1 1 1

8 6.33 2.33 3.67 1 1 2.5 5.5

9 9 5 9 3 3 7 9

Performance

3 3 5 1 3 5 5 3

7.5 6.33 7 4.5 6.33 7 7 5.5

9 9 9 9 9 9 9 9

Maintainability

1 3 1 1 3 3 3 1

4 6.33 3.67 5 6.33 6.33 6 3

9 9 9 9 9 9 9 7

Speed

1 3 5 1 3 3 5 3

3.5 5.67 8.33 4.5 7.67 7.67 8.5 5.67

9 9 9 9 9 9 9 9

4.5. How should we gather the characteristics of the project data and the needs of

the users systematically? (RQ4.4)

It should be re-emphasized that the choice of the method to be used to build the SDP

model depends mostly on the data to be used, as well as the needs of the stakeholders to

apply the model in the early phases [94,114]. For this purpose, a questionnaire was

proposed to reveal the values of the criteria in a comprehensible manner in terms of being

the basis of decision analysis. This questionnaire needs to be filled before the application

of the decision analysis, each time, prior to the ESDP effort.

85

Questionnaire to address the needs of stakeholders in a systematic manner is given in

Table 4.7 along with the criteria that each question is related to. The questions should be

answered by “yes” or “no”. In order to facilitate the answering process, te selection type

is also specified for each criteria group. If the criteria will be evaluated by answering

multiple questions, the user is expected to answer more than one question.

Table 4.7. Questionnaire for evaluation of SDP methods in the early phases

Criteria

group
Criteria Selection type Questions

Model

Construction

Approach to

construct the model
Select multiple

Do you want your method be dependent on data?

Do you want to address human judgement?

Main purpose of use Select one
Do you want to perform classification?

Do you want to make a numeric prediction?

Data

Characteristics
Dataset size Select one

Do you have a large sized dataset to train an SDP

model?

Do you have a medium sized dataset to train an

SDP model?

Do you have a small sized dataset to train an SDP

model?

Data quality

Causality

Select multiple

Is there any dependency between data attributes? If

yes, do you want to address these dependencies?

Uncertainty
Is there any uncertainty in the data? If yes, do you

want to address the uncertainty?

Missing data
Is there any missing point in the data? If yes, do

you want to handle the missing data?

Outlier
Is there any outlier in the data? If yes, do you want

to handle these outliers?

Method

Characteristics

Interpretability

Select multiple

Is it important that SDP method has high

interpretability?

Complexity
Is it important that SDP method has low

complexity?

Performance
Is it important that SDP method has high

performance?

Maintainability
Is it important that SDP method has high

maintainability?

Speed Is it important that SDP method has high speed?

86

4.6. Modeling the Decision Analysis Approach

4.6.1. Phase - 1: Decision Tree Analysis

According to the ranking of identified criteria groups presented in Table 4.4 and the base

matrix given in Table 4.5, the first phase of the decision analysis process was designed

based on the decision tree concept. The first two criteria groups (“Model Construction”

and “Data Characteristics”) were included in the decision tree construction. In fact, the

tree was structured based on the rules extracted from the base matrix. Proposed decision

tree is intended to recommend a subset of alternative methods in line with the needs and

requirements of the practitioner. In Figure 4.3, proposed decision tree for the first phase

of the decision analysis process was presented.

Figure 4.3. Decision tree for the phase–1 of the decision analysis process

4.6.2. Phase - 2: MCDA (Fuzzy TOPSIS)

According to the weights of all criteria presented in Table 4.5 and the base matrix given

in Table 4.6, the second phase of the decision analysis process was designed based on the

MCDA concept. The last two criteria groups (“data quality” and “method

characteristics”) were included in the construction of MCDA model. Proposed MCDA

was intended to rank the subset of alternatives in line with the needs and requirements of

the practitioner.

87

Fuzzy TOPSIS method was adopted for MCDA application due to its success in

addressing the incomplete or vague information into the decision analysis process of an

uncertain context like SDP method selection [115]. For ranking the alternatives, the

implementation of the Fuzzy TOPSIS method was applied by following the steps

proposed by Chen [78]. As given in the previous sections, the criteria and alternatives

were identified and are summarized in Table 4.8. Below, the steps for the implementation

of the Fuzzy TOPSIS algorithm is explained.

Table 4.8. Defined criteria and alternatives for Fuzzy TOPSIS application

Criteria ID Criteria Name Alternative ID Alternative Name

C1 Causality A1 ANN

C2 Uncertainty A2 BBN

C3 Missing Data A3 DT

C4 Outlier A4 FIS

C5 Interpretability A5 LinR

C6 Complexity A6 LogR

C7 Performance A7 NB

C8 Maintainability A8 SVM

C9 Speed

Step 1. Define the linguistic variables and their corresponding fuzzy values

The linguistic values used in the expert opinion study and their corresponding fuzzy

values were determined as given in Figure 4.4.

Figure 4.4. Linguistic variables and their corresponding fuzzy values

Linguistic Values Corresponding Fuzzy Values

Very Low (VL) (1,1,3)

Low (L) (1,3,5)

Medium (M) (3,5,7)

High (H) (5,7,9)

Very High (VH) (7,9,9)

88

Here, we chose using triangular fuzzy numbers for the five linguistic variables as

presented in [116] and applied a scale of 1 to 9 for weighting the identified criteria. In

Table 4.9, we introduced the aggregated fuzzy weights for each criterion that we

calculated based on the formula presented in [80]. Where, K is the total number of

decision makers (in our case there are eight experts), and W is the weight of a criterion,

the aggregated fuzzy weight w˜j = (wj1, wj2, wj3) for a criterion Cj is calculated as follows:

 𝑊𝑗1 = min
𝑘

{𝑤𝑗1
𝑘 } , 𝑊𝑗2 =

1

𝐾
 ∑ 𝑤𝑗2

𝑘𝐾
𝑘=1 , 𝑊𝑗3 = max

𝑘
{𝑤𝑗3

𝑘 } (Eq. 4.1)

Table 4.9. The aggregated fuzzy weights for the criteria under DQ and MCh

Criteria Group Criteria Aggregated Fuzzy Weights

Data Quality (DQ)

Causality 1.00 5.75 9.00

Uncertainty 1.00 7.50 9.00

Missing Data 1.00 6.25 9.00

Outlier 3.00 6.50 9.00

Method Characteristics (MCh)

Interpretability 1.00 6.75 9.00

Complexity 1.00 6.25 9.00

Performance 5.00 8.00 9.00

Maintainability 1.00 7.00 9.00

 Speed 1.00 5.00 9.00

Step2. The decision makers (DMs) evaluate the ratings for each alternative with respect

to each criterion by using the determined linguistic variables as shown in Figure 4.5.

Figure 4.5. Decision matrix for DM1

89

Step 3: The ratings of the DMs is converted into the fuzzy decision matrix (Figure 4.6) by

using triangular fuzzy numbers given in Figure 4.4.

Figure 4.6. Fuzzy matrix for DM1

Step 4. The fuzzy decision matrix of each DM is merged and calculated as a combined

(aggregated) fuzzy decision matrix.

The aggregated fuzzy decision matrix is given in Table 4.6. Where, N is the total number

of decision makers (in our case there are four experts), the aggregated fuzzy rating x˜ij =

(aij, bij, cij) of ith alternative with regard to jth is calculated as follows:

 𝑎𝑖𝑗 = min
𝑛

{𝑎𝑖𝑗
𝑛 } , 𝑏𝑖𝑗 =

1

𝑁
 ∑ 𝑏𝑖𝑗

𝑛𝑁
𝑛=1 , 𝑐𝑖𝑗 = max

𝑛
{𝑐𝑖𝑗

𝑛 } (Eq. 4.2)

Step 5. The combined decision matrix is converted into normalized by using cost / benefit

criteria.

Since our aim is maximizing benefit and minimizing cost for the criteria, we convert our

fuzzy decision matrix into normalized fuzzy decision matrix denoted by R by using:

𝑟𝑖�̃� = (
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗ ,

𝑐𝑖𝑗

𝑐𝑗
∗) 𝑎𝑛𝑑 𝑐𝑗

∗ = max
𝑖

{𝑐𝑖𝑗} (𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)

(Eq. 4.3)

𝑟𝑖�̃� = (
𝑎𝑗

−

𝑐𝑖𝑗
,
𝑎𝑗

−

𝑏𝑖𝑗
,
𝑎𝑗

−

𝑎𝑖𝑗
) 𝑎𝑛𝑑 𝑐𝑗

− = min
𝑖

{𝑎𝑖𝑗} (𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)

In our scenario, Compexity (C6) is the cost criterion while the rest is benefit criteria.

90

Step 6. Compute the weighted normalized fuzzy decision matrix.

The weighted normalized fuzzy decision matrix is

 �̃� = (�̃�𝑖𝑗), where �̃�𝑖𝑗 = �̃�𝑖𝑗 × 𝑤𝑗 (Eq. 4.4)

Step 7. Compute the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal

Solution (FNIS).

Since the best alternative is calculated by selecting the one that is that is nearest to the

FPIS and farthest from the FNIS.

𝐴∗ = (�̃�1
∗ , �̃�2

∗, … , �̃�𝑛
∗), where �̃�𝑗

∗ = max
𝑖

{𝑣𝑖𝑗3}

(Eq. 4.5)

𝐴− = (�̃�1
− , �̃�2

−, … , �̃�𝑛
−), where �̃�𝑗

− = min
𝑖

{𝑣𝑖𝑗1}

Step 8. Compute the distance from each alternative to the FPIS and to the FNIS by using

Euclidian distance.

𝑑𝑖
∗ = ∑ 𝑑(�̃�𝑖𝑗,�̃�𝑗

∗)𝑛
𝑗=1 , 𝑑𝑖

− = ∑ 𝑑(�̃�𝑖𝑗,�̃�𝑗
−)𝑛

𝑗=1 (Eq. 4.6)

Step 9. Compute the closeness coefficient (CC) for each alternative.

𝐶𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
−+ 𝑑𝑖

∗ (Eq. 4.7)

Step 10. Rank the alternatives based on their CC.

The best alternative with highest closeness coefficient is selected.

4.6.3. Decision Analysis Tool: MCDA for ESDP

A web-based tool was implemented using Java, Angular and Spring Boot Framework for

utilizing the application of the two-phase decision analysis. In Figure 4.7 and Figure 4.8,

screenshots of the Phase-1 and Phase-2 application are given for the scenario of Case

Study 1A, respectively.

91

Figure 4.7. Screenshot of Phase-1: Decision Tree Analysis for case study 1A

Figure 4.8. Screenshot of Phase-2: Fuzzy TOPSIS Application for case study 1A

92

5. CASE STUDY

“RQ 5. How should we investigate the trustworthiness of the proposed SDP method

selection approach through case studies?”. In order to answer this RQ, five case studies

in three different contexts were conducted.

5.1. Design of the Multiple Case Study

An embedded multi-case design proposed by Yin [26] was applied for defining the

context, case and units of analysis. For Case-1A, 2A and 3, it was aimed to observe that

if the ranking recommended by the decision analysis considering the performance criteria

was compatible with the ranking obtained from the performance values of the

experimental results. For Case-1B and 2B, the aim was to observe that if the ranking

recommended by the decision analysis considering the speediness criteria was compatible

with the ranking obtained using the time measures of the experimental results. The rest

of the cases were also constructed regarding performance or speed criteria. Figure 5.1

demonstrates our multiple case study design, which includes NASA dataset [117],

NASA-93 [60] dataset and Fenton dataset [20] as the contexts.

Figure 5.1. Multiple case study design

93

The rest of this chapter is structed as follows. In Chapter 5.2, research questions of the

case study are given. The RQs are answered for NASA, NASA-93, and Fenton datasets

in Chapter 5.3, 5.4, and 5.5, respectively. For those sections, first, case study design is

given for the related context. Second, the application of the decision analysis process

based on the questionnaire and results are given. The questionnaire filled based on the

specifications of each dataset and its context information, where “1” denotes “Yes” and

“0” indicates “No” for each case study. Third, the details on the experimental study and

the prediction results are covered. Next, based on the results of decision analysis and

experiments, we analyze whether there is any similarity between the ranking

recommended by the decision analysis and the ranking obtained from the actual

prediction results. Lastly, we share our observations on the related case study results.

5.2. Research Questions

The primary goal of the case study was to investigate the trustworthiness of the decision

analysis approach by answering the following research questions:

• RQ5.1: Which SDP methods are primarily suggested by decision analysis

approach?

• RQ5.2: Which SDP methods do perform better in execution?

• RQ5.3: Are there any difference between the results of RQ5.1 and RQ5.2?

Generally speaking, the main goal is to see the similarities between the ranking of the

SDP methods recommended by the decision analysis approach and the ranking of the

methods with regard to the performance and time measurements obtained from the cases

after predictions on the datasets. Below, the motivation for defining the research questions

for each case study are discussed.

Motivation for Case Study 1A & Case Study 2A & Case Study 3. In order to verify

the effect of "performance" criterion on the ranking of the alternative methods in decision

analysis, it is necessary to understand how the classifiers and predictors are ranked

according to their actual performance values on the dataset.

94

Motivation for Case Study 1B & Case Study 2B. In order to verify the effect of "speed"

criterion on the ranking of the alternative methods in decision analysis, it is necessary to

observe the actual execution times of the classifiers and predictors, and how they are

ranked according to those durations.

RQ5.1 is answered by applying the decision analysis process on datasets, while RQ5.2 is

answered by executing the classifications and predictions. Afterwards, the results for each

case are evaluated by comparing the decision analysis results and prediction results for

RQ5.3. Cluster analysis methodology [118] and Friedman analysis with Nemenyi post-

hoc test [119] were applied where applicable. To ensure transparency, we have made the

resulted values for the experiments available online at [120].

5.3. Case Study 1 - Classification Based on Design Phase Data

5.3.1. Case Study Design

Case study 1A and 1B were performed in the context of the most known public repository

for SDP, NASA Metrics Data Program (MDP). We preferred the cleaned version of the

dataset [117], which excludes duplicated and inconsistent samples.

As given in Table 2.1, NASA projects are useful for making a classification of the

defective classes as it contains ‘defectiveness’ as the dependent variable. Each project has

various features ranging from 22 to 40. The independent variables that are used as inputs

are all numeric values. Each dataset has different number of samples, which causes a

variation in the size of the datasets. As shown in Table 2.1, CM1 project falls into the

“Small” category for the dataset size, where PC1 is defined as “Medium”, and JM1 is

defined as “Large” dataset [81,94,107]. As for data quality criteria, it can be said that

there is not any dependency between attributes, nor uncertainty in the data. Besides, there

are no missing values. However, there are outliers in the dataset.

Four features were selected to use within the scope of the case study. These metrics are

suitable for the early-phase defect prediction problem because they can be gathered

95

during the design phase. McCabe metrics are method level metrics and also the most used

metrics in SDP area [85]. The most important feature that separates design metrics from

code metrics is the opportunity to extract them from design phase diagrams such as UML

[121]. These metrics are summarized below [122]:

• Cyclomatic Complexity (v (G)) measures the complexity of the decision structure

of a module. It is expressed as the number of linearly independent paths which is

actually the minimum number of paths to be tested. “v(G)” is calculated by "v(G)

= e - n + 2", where "G" is a program's flowgraph, "e" is the number of arcs in the

flowgraph, and "n" is the number of nodes in the flowgraph.

• Module Design Complexity (iv (G)) measures the complexity of the module with

reduced design and immediately reflects the complexity of the module's calling

patterns to its submodules. Thus, it distinguishes between modules that would

seriously complicate the design of any program to which they belong, and

modules with complex computational logic.

• Essential Complexity (ev (G)) is a measure that expresses the degree of

structuredness and the quality of the code by measuring the degree to which a

module contains unstructured code pieces. "ev(G)" is calculated using "ev(G) =

v(G) - m" where “m” is the number of subflowgraphs (of "G") that are D-

structured primes, in other words “proper one-entry one-exit subflowgraphs”.

• Lines of code (LOC) is measured according to McCabe’s line counting

conventions. This metric can be estimated in the early phase of projects by various

methods.

It is stated that there is no need to find the best software metrics group for SDP because

the performance variation of models using different metrics is not significant [123].

Therefore, to benchmark the performance of the different classifiers, this metric group

from design-phase would be sufficient enough.

96

5.3.2. Decision Analysis (RQ5.1)

5.3.2.1. Gathering case study requirements through questionnaire

The questionnaire was filled based on the specifictions of this dataset and its context

information as seen in Table 5.1. We can perform classification since the independent

variable is categorical. As there is enough sample point for this dataset, the different

dataset sizes would be evaluated in the decision analysis. The performance and speed

criteria matter for building an SDP model in this context to compare them.

Table 5.1. Questionnaire filled for case study 1

Question Case #1A Case#1B

Do you want your method to be dependent on data? 1 1

Do you want to address human judgement? 0 0

Do you want to perform classification? 1 1

Do you want to make a numeric prediction? 0 0

Do you have a large sized dataset to train an SDP model? 1a 1a

Do you have a medium sized dataset to train an SDP model? 1b 1b

Do you have a small sized dataset to train an SDP model? 1c 1c

Is there any dependency between data attributes? If yes, do you want to

address it? 0 0

Is there any uncertainty in the data? If yes, do you want to address the

uncertainty? 0 0

Is there any missing point in the data? If yes, do you want to handle the

missing data? 0 0

Is there any outlier in the data? If yes, do you want to handle these outliers? 1 1

Is it important that SDP method has high interpretability? 0 0

Is it important that SDP method has low complexity? 0 0

Is it important that SDP method has high performance? 1 0

Is it important that SDP method has high maintainability? 0 0

Is it important that SDP method has high speed? 0 1

a. Sample size >= 1000 has been considered as Large-sized dataset

b. Sample size >= 500 and < 1000 has been considered as Medium-sized dataset

c. Sample size < 500 has been considered as Small-sized dataset

5.3.2.2. Phase-1: Decision Tree Analysis

In the first phase of the decision analysis process, the subset of alternatives recommended

by the decision tree applied according to the answers of questionnaire can be seen in

97

Figure 5.2. The execution of the decision tree traversal can be summarized with the node

numbers: #1, #2 and #3.

Figure 5.2. Decision tree analysis for case study 1

5.3.2.3. Phase-2: Fuzzy TOPSIS Analysis

The results related to the execution of the Fuzzy TOPSIS application for both cases are

given in Table 5.2. It is important to note that, size of the dataset information was not

after the decision tree phase, as we aim to make a comparison for all methods that are

suitable for classification, regardless of dataset size. In other words, all the methods

proposed by decision tree in node #3 (see Figure 5.2) were evaluated within this scope

and considered for Fuzzy TOPSIS application.

As seen in the table, the decision analysis process was resulted with the selection of Naive

Bayes (NB) method as the best SDP method for both Case Study 1A and Case Study 1B,

with a score of 0.693 and 0.702, respectively. On the other hand, Fuzzy Rule Based

Classifier (FRBC) was ranked last for both cases, with a score of 0.243 and 0.289,

respectively.

98

Table 5.2. The score and rankings of the methods recommended by Fuzzy TOPSIS

 Case Study 1A Case Study 1B

Rank Method Score Method Score

1 NB 0.693 NB 0.702

2 LogR 0.644 BBN 0.636

3 BBN 0.641 LogR 0.627

4 DT 0.595 DT 0.613

5 ANN 0.543 SVM 0.393

6 SVM 0.392 ANN 0.377

7 FRBC 0.243 FRBC 0.289

5.3.3. Experimental Study (RQ5.2)

Within the scope of the case study, different ML-based models were constructed and

applied on NASA dataset by using WEKA tool with the version of 3.8.5 [124].

Each classifier in Weka tool was used with their default values, in other words, no

optimization has been made for any of the classifiers. The main reason for that is to be

able to compare the performances of the classifiers as they are. Besides, no preprocess or

cleaning operation has been performed on the data for the sake of consistency among

datasets. The classifiers used for the experiments are summarized below:

• Artificial Neural Network (ANN):

weka.classifiers.functions.MultilayerPerceptron

• Bayesian Belief Network (BBN): weka.classifiers.bayes.BayesNet

• Decision Tree (DT): weka.classifiers.trees.REPTree

• Fuzzy Rule Based (FRBC):

weka.classifiers.rules.MultiObjectiveEvolutionaryFuzzyClassifier

• Logistic Regressin (LogR): weka.classifiers.functions.SimpleLogistic

• Naïve Bayes (NB): weka.classifiers.bayes.NaiveBayes

• Support Vector Machines (SVM): weka.classifiers. functions.LibLINEAR

99

A 10-fold cross-validation approach was adopted in the training and testing stages of the

classifiers. Cross-validation operations were run 10 times for different random segments,

resulting in a total of 100 iterations.

The resulted performance values of the classifiers are reported in terms of AUC in Table

5.3, where the best AUC value of the classifiers is given in bold for each dataset. It can

be said that the most successful method was Logistic Regression (LogR) for all types of

datasets, where Fuzzy Rule-Based Classifier was the worst in terms of AUC.

Table 5.3. Resulting AUC values of the classifiers

LogR ANN NB BBN DT SVM FRBC

CM1 0.699 0.671 0.646 0.563 0.513 0.540 0.494

JM1 0.692 0.691 0.602 0.675 0.658 0.546 0.516

KC1 0.671 0.674 0.658 0.652 0.637 0.534 0.541

KC3 0.639 0.550 0.651 0.489 0.517 0.510 0.547

MC1 0.731 0.727 0.699 0.663 0.532 0.511 0.500

MC2 0.664 0.631 0.677 0.622 0.601 0.561 0.587

MW1 0.780 0.768 0.747 0.734 0.522 0.537 0.533

PC1 0.815 0.808 0.601 0.720 0.599 0.548 0.523

PC2 0.773 0.778 0.676 0.478 0.510 0.519 0.502

PC3 0.728 0.726 0.652 0.714 0.635 0.529 0.500

PC4 0.758 0.794 0.702 0.671 0.651 0.551 0.513

PC5 0.720 0.719 0.684 0.738 0.704 0.589 0.594

Avg 0.723 0.711 0.666 0.643 0.590 0.540 0.529

Rank 1 2 3 4 5 6 7

Below the performance values in terms of AUC and the training time of the classifiers

are given with regard to the size of the datasets, in Figure 5.3 and Figure 5.4, respectively.

100

Figure 5.3. AUC values of the classifiers with regard to dataset sizes

Figure 5.4. Average training time of the classifiers with regard to dataset size

5.3.4. Results Comparison (RQ5.3)

5.3.4.1. Case Study 1A

Cluster Analysis

Approach. Firstly, the decision analysis process was executed by setting only the

"performance" criterion in order to evaluate the performance of each method. To do that,

NB BBN DT LogR SVM ANN FRBC

Small 0,08 0,47 0,43 13,28 16,29 83,87 1076,76

Medium 0,39 0,86 0,78 39,92 44,30 260,94 2516,80

Large 1,12 3,44 7,94 145,81 222,53 986,93 7420,31

All 0,65 2,02 4,25 83,98 124,08 564,91 4488,54

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

M
il

li
se

co
n

d
 (

lo
ga

ri
th

m
ic

 s
ca

le
)

101

the default values were used for the criteria other than "performance", and the decision

analysis was executed five times for each fuzzy weight for the "performance" criterion,

which are VL, L, M, H and VH, respectively. Based on the resulted rankings, a statistical

clustering on Minitab was performed for all the methods. Secondly, AUC values from

our experiment results were gathered for all projects in NASA dataset and a statistical

clustering on Minitab was performed for all the methods. Lastly, the two rankings were

analyzed if they show any similarity.

Results. According to the cluster analysis on Minitab, resulted clusters for decision

analysis ranking and experimental performance results (with respect to AUC values) are

given in Figure 5.5.a and Figure 5.5.b, respectively. It can be seen that, the decision

analysis approach recommended a ranking grouped as follows: (1) BBN, LogR, NB, (2)

ANN, DT, and (3) FRBC, SVM; where the performance values of the experiments

resulted in a grouping like: (1) ANN, LogR, NB, (2) BBN, DT, and (3) FRBC, SVM.

When we look at the clusters, it is seen that the recommendation presented by the decision

analysis approach in consideration of the “performance” criterion is in line with the

ranking of the AUC values, except for BBN and ANN. Hence, it can be concluded that

the decision analysis approach presented a reasonable recommendation based on the

characteristics of the NASA dataset.

Figure 5.5.a Cluster Analysis of DA-Performance (left), b. Cluster Analysis of Prediction

Performance (right)

102

Friedman analysis with Nemenyi post-hoc test

Approach. In order to see if there were statistically significant differences in prediction

performances of the classifiers, a non-parametric Friedman test was carried out [125]. It

is used to test for differences between groups when the dependent variable is ordinal or

continuous, and samples do not need to be normally distributed. It is recommended for

the evaluation of multiple classifiers’ prediction performance or computation times [126].

It is also known as the best alternative to the one-way ANOVA with repeated measures.

It is important to note that the Friedman test shows whether there are overall differences

among the groups but does not specify which groups differ from each other. To do this,

we need to run post hoc tests, such as Nemenyi, Wilcoxon signed rank and Dunn test

[127]. Nemenyi test is a post-hoc test intended to find the groups of data that differ after

Friedman test has rejected the null hypothesis that the performance of the comparisons

on the groups of data is similar. The test makes pairwise comparisons using Nemenyi-

Wilcoxon-Wilcox all-pairs test for a two-way balanced complete block design. We

applied the Nemenyi post-hoc test on RStudio by using PMCMRplus package [119].

Results. We can see that there is an overall statistically significant difference in prediction

performance based on the AUC values of the classifiers in Figure 5.6 (χ2(6) = 54.607, p

< 0.05).

Figure 5.6. Friedman test results for prediction performance (based on AUC)

Based on the Nemenyi test results, there is statistically significant difference in several

methods’ prediction performances as given in Table 5.4. As we already know the rankings

103

of the classifiers based on their prediction performance results from Figure 5.6, we can

say that ANN performs better than DT, FRBC and SVM, LogR performs better than DT,

FRBC and SVM, and NB performs better than FRBC and SVM (p < 0.05). Among these

results, only the comparison between ANN and DT is different from our decision analysis

results.

Table 5.4. Friedman with Nemenyi post-hoc test results for classifier performances

ANN BBN DT FRBC LogR NB

BBN 0.25975 - - - - -

DT 0.00856 0.8833 - - - -

FRBC 1.80E-05 0.11252 0.79266 - - -

LogR 0.99769 0.06877 0.00095 8.90E-07 - -

NB 0.84145 0.9652 0.31007 0.00609 0.48706 -

SVM 0.00018 0.31007 0.9652 0.99918 1.10E-05 0.0301

5.3.4.2. Case Study 1B

Cluster Analysis

Approach. Firstly, the decision analysis process was performed by setting only the

"speed" criterion to evaluate the speediness of each method. To do this, the default values

for the criteria other than "speed" were used. The decision analysis was executed five

times for each fuzzy weight (i.e. VL, L, M, H and VH). Based on the rankings obtained,

a statistical clustering on Minitab was performed for all the methods. Secondly,

"UserCPU_Time_millis_training" values were collected from WEKA for all projects in

NASA dataset and a statistical clustering was performed on Minitab for all the methods.

Finally, the two rankings were analyzed whether they show any similarity.

Results. Based on the cluster analysis on Minitab, result sets for both decision analysis

ranking and experimental time to train the model are given in Figure 5.7.a and Figure

5.7.b, respectively. It can be seen that, the decision analysis approach recommended a

ranking grouped as follows: (1) BBN, LogR, DT, NB, (2) ANN, SVM and (3) FRBC;

where the training time values of the experiments resulted in a grouping like: (1) NB,

104

BBN, DT, LogR, SVM, (2) ANN, and (3) FRBC. It can be seen that the recommendation

presented by the decision analysis approach, taking into account the “speed” criterion, is

somewhat compatible with the ranking of the time values, except for SVM. Hence, it can

be concluded that the decision analysis approach presented a reasonable recommendation.

Figure 5.7.a Cluster Analysis of DA-Speed (left), b. Cluster Analysis for Training Time

of the Classifiers (right)

Friedman analysis with Nemenyi post-hoc test

We applied the same statistical analysis that is given for Case Study 1A in Section 5.3.4.1.

According to the results of the Friedman test given in Figure 5.8, it can be seen that there

is an overall statistically significant difference in speediness of the classifiers based on

the training time values (χ2(6) = 70.388, p < 0.05). It is important to note that while the

training time of a classifier increases, its rank is expected to decrease as there is a opposite

relationship between training time and ranking based on speediness.

Figure 5.8. Friedman test results for speed criterion (based on time to train)

105

Based on the Nemenyi test results, there is statistically significant difference in several

methods’ training times. According to Table 5.5, it can be said that NB performs faster

than LogR, SVM, ANN and FRBC, BBN performs faster than SVM, ANN and FRBC,

DT performs faster than ANN and FRBC, and LogR performs faster than FRBC (p <

0.05). These results are fully consistent with the rankings suggested by the decision

analysis.

Table 5.5. Friedman with Nemenyi post-hoc test results for classifier performances

NB BBN DT LogR SVM ANN

BBN 0.79266 - - - - -

DT 0.61549 0.99996 - - - -

LogR 0.01641 0.48706 0.67827 - - -

SVM 0. 00018 0.04010 0.08849 0.91777 - -

ANN 5.2e-07 0.00064 0. 00206 0. 25975 0. 91777 -

FRBC 4.1e-10 2.5e-06 1.1e-05 0.01192 0.25975 0. 91777

5.3.5. Observations

Observations for the classifiers used in the case study are summarized below:

• Classifiers generally have given higher performance results as the size of the

dataset has increased.

• LogR method has had the best results for most of the datasets.

o It is the most successful classifier in all datasets except PC3 and PC4

(large-sized datasets), while it ranks second on decision analysis.

o The difference in the AUC values is statistically significant for more than

one dataset (for JM1, PC1, PC2; with p = 0.05)

o It also has an average speed among other methods as seen in decision

analysis, and its training time is increasing excessively when dataset size

increases.

106

• NB classifiers have performed better on small datasets.

o It ranks second in small size datasets, while decision analysis suggested it

to be ranked first.

o As the size of the dataset increases, the performance of the NB decreases.

o It has been found to train very fast, as suggested by decision analysis.

• BBN method has generally yielded good results as expected by decision analysis.

o It performs better than SVM and DT, worse than LogR and NB, as

recommended by decision analysis.

o It is also very fast like NB, especially for small- and medium-sized

datasets, as suggested by decision analysis.

• ANN method has the best AUC values for three datasets (mostly large ones) and

ranks second in average, while it ranked in 5th place in the decision analysis.

o For JM1, the largest dataset, it has performed better than all the methods

except LogR (and it is statistically significant).

o For the large datasets, unlike the recommendation of the decision analysis,

it can be said that ANN might be preferred in scenarios where other criteria

are not important since it shows high performance.

o On the other hand, the training time has been much longer for ANN than

other classifiers. This situation may cause that although the performance

of the ANN is high, it might not be preferred for use in practice.

• DT method has been ranked in fourth place according to the decision analysis, it

has not shown the expected performance in the prediction results and has been

ranked the 5th.

o It may be due to the selected implementation of DT.

o Random Forests may result in higher performances than DTs (since it is

an ensemble method, we have not included Random Forests in our

decision analysis and predictions).

o It is also very fast like NB and BBN as it is recommended by decision

analysis, however, its training time increases for large-sized datasets.

107

• When looking at the SVM classifier results, decision analysis and experiment

results have been in parallel.

o According to the AUC values, SVM has been the second to the last as

recommended in decision analysis.

o SVM ranks the third from the last in terms of training time, as well as in

the decision analysis.

o Although there are different SVM implementations on Weka, it might give

better results if the model is optimized.

• Looking at the FRBC results, it has the worst AUC and time to train values as

expected.

o It is known that the performance of Fuzzy models increases with the

preparation of the expert opinion, so when the parameter adjustment is

made, higher performance of the FRBC might be obtained.

o Besides, the training time of FRBC is much longer than other classifiers,

and therefore, it might not be preferred in practical use as suggested by

decision analysis.

5.3.6. Investigating Evidence from Literature

In the context of our case study on NASA dataset, it would be helpful to investigate the

literature in addition to the experiments we conducted, so that we will further solidify the

evidence we have.

One of the most important and valuable studies published in the field of SDP is a

systematic review study examining 208 experimental studies published between 2000-

2010 [8]. The main purpose of the study is to evaluate the effects of software context,

SDP techniques and independent variables on the performance of SDP models. The main

findings they obtained based on the performance of the models can be summarized as

follows:

• Naive Bayes based models generally have the best performance values. In

addition, the main reason why Naive Bayes is widely used is that it is a well-

understood and simple technique.

108

• Models using Logistic Regression are also found to perform well in general.

• SVM method does not have good performance values as expected. The reason

may be the default Weka settings, which are not optimal for SVM.

• The performance of the models using C4.5 technique (its equivalent in Weka is

J48 classifier) is quite average.

In another systematic literature review with important findings [82], 64 studies were

examined, the performance of machine learning techniques for SDP was analyzed. In

terms of AUC, Random Forest (RF) gave the best performance (AUC = 0.83), ANN, NB

and BN models ranked second (AUC = 0.78). Then DT method (C4.5) took place with

an AUC value of 0.77, while SVM models showed the worst performance with 0.70 AUC.

The accuracy values were found to be between 75% and 85%. This result shows that ML

techniques have reasonable prediction ability.

Aside from these secondary studies, there are several primary studies that utilized NASA

dataset for SDP.

Catal and Diri [11] investigated the effects of dataset size, metrics set, and feature

selection techniques on SDP and conducted experiments on NASA datasets using

different ML algorithms, such as Random Forest, Decision Tree, Naïve Bayes. They

reported that Naive Bayes is the best prediction method for small sized datasets, while

Random Forest classifiers provide better performance on large datasets. They also

mentioned the most important selection in SDP is the algorithm and not the metrics suite.

A similar performance comparison study was conducted on the cleaned version of NASA

MDP datasets [128]. In this study, the authors concluded that the predictive performance

of classifiers is significantly different, and the choice of classifier is important for defect

prediction. The overall ranking of the simple classifiers was reported in ascending order

as follows: Simple Logistic, Naïve Bayes, Decision Tree, and Support Vector Machines.

109

A more recent study was conducted on the cleaned NASA dataset [129]. In this study, the

authors performed analysis with 10 different classifiers and reported the results with

several performance measures. Based on the overall AUC values they reported, the

performance of the classifiers can be ordered from best to worst as follows: Naïve Bayes,

Artificial Neural Network, Decision Tree, and Support Vector Machines.

In addition, we investigated the literature with a focus on early SDP and analyzed several

studies that report comparison of the performance values of different classifiers on NASA

dataset, especially by using the requirement or design phase metrics. The performances

of several classifiers were synthesized based on reported AUC values. All the data was

presented using a box-and-whisker chart demonstrated in Figure 5.9. Overall, the

performance data from a total of four papers were extracted as the following: [121,130–

132]. The performance values of each classifier were collected and presented in the papers

that intersect with the methods we chose (i.e., Decision Tree, Logistic Regression and

Naïve Bayes) for all datasets. We grouped the datasets (12 NASA projects) based on their

sizes. It is important to note that the notation "<classifier name> (n = <number of

datasets>)" was used in the chart to provide the AUC values, where “n” denotes the total

number of datasets that are reported in all four papers.

Figure 5.9. AUC values of the classifiers regarding dataset size in the literature

As we can see from the figure, both LogR and NB give good results in all datasets, where

NB is slightly better than LogR. However, it is observed that DT is not as successful as

110

the others. Since performance results of other methods, such as ANN, BBN, SVM and

FRBC, were not reported in the relevant publications, we cannot provide an AUC analysis

of them.

While LogR, ANN and NB are observed as the best performing methods in our

experiments, there are also similar results in the literature accordingly. Likewise, SVM

and FRBC were among the worst performing methods in our experiments. Although there

are not many results about FRBC in the literature, findings about SVM indicate that it

performs poorly. Based on this, we can conclude that the results in the literature are in the

same axis with our experimental results.

When we evaluate the validity of the ranking recommendations of decision analysis, we

observed that 5 out of 7 methods (excluding ANN and BBN) for performance criteria,

and 6 methods (excluding SVM) for speed criteria are compatible with our own

experiments and the literature. Besides, the benchmarks in the literature usually examine

only the prediction performance of the classifiers, but do not address the speed factor. By

reporting the speed results of the classifiers in our second case study, we contributed with

a discussion on the training time of the classifiers, which can be an important criterion

for selection the suitable SDP method.

Another point that should be emphasized is that we have executed the decision analysis

application independent of the dataset size in order to demonstrate the rankings of all

methods in the case study. If we had dealt with the dataset size in decision analysis, we

would not be able to see the raking of some filtered methods due to the dataset size.

Nevertheless, we included our observations on the size of the dataset in Chapter 5.3.5.

5.4. Case Study 2 - Prediction Based on Product, Process and Resource

5.4.1. Case Study Design

Case study 2A and 2B were performed in the context of NASA-93 dataset [60]. After

removing the attributes which have repeating values, we had a total of 17 attributes for

our case study. The final set can be seen in Figure 5.10.

111

Figure 5.10. Selected metrics from NASA-93 dataset

5.4.2. Decision Analysis (RQ5.1)

5.4.2.1. Gathering case study requirements through questionnaire

The questionnaire was filled based on the specifictions of NASA-93 dataset and its

context information as seen in Table 5.6. We can perform numerical prediction since the

independent variable is numerical. As there is only 93 sample points for this dataset, the

dataset size can be considered as small. The performance and speed criteria matter for

building our SDP model in this context.

112

Table 5.6. Questionnaire filled for case study 2

Question
Case

#2A

Case

#2B

Do you want your method to be dependent on data? 1 1

Do you want to address human judgement? 0 0

Do you want to perform classification? 0 0

Do you want to make a numeric prediction? 1 1

Do you have a large sized dataset to train an SDP model? 0 0

Do you have a medium sized dataset to train an SDP model? 0 0

Do you have a small sized dataset to train an SDP model? 1 1

Is there any dependency between data attributes? If yes, do you want to address it? 0 0

Is there any uncertainty in the data? If yes, do you want to address the uncertainty? 0 0

Is there any missing point in the data? If yes, do you want to handle the missing data? 0 0

Is there any outlier in the data? If yes, do you want to handle these outliers? 0 0

Is it important that SDP method has high interpretability? 0 0

Is it important that SDP method has low complexity? 0 0

Is it important that SDP method has high performance? 1 0

Is it important that SDP method has high maintainability? 0 0

Is it important that SDP method has high speed? 0 1

5.4.2.2. Phase-1: Decision Tree Analysis

In the first phase of the decision analysis process, the subset of alternatives recommended

by the decision tree applied according to the answers of questionnaire can be seen in

Figure 5.11. The execution of the decision tree traversal can be summarized with the node

numbers: #1, #2 and #6.

Figure 5.11. Decision tree analysis for case study 2

113

5.4.2.3. Phase-2: Fuzzy TOPSIS Analysis

For the decision analysis, Fuzzy TOPSIS process was applied according to the answers

of the questionnaire in order to make a ranking-based selection among SDP methods. The

results related to the execution of the Fuzzy TOPSIS application for both cases are given

in Table 5.7. It is important to note that we only included ANN, DT, LinR and SVM

methods, as we aim to make a comparison for the methods that are suitable for our

empirical design as explained in Section 5.4.3. In other words, suitable methods proposed

by decision tree in node #6 (see Figure 5.11) were evaluated within this scope and

considered for Fuzzy TOPSIS application.

Table 5.7. The score and rankings of the methods recommended by Fuzzy TOPSIS

 Case Study 2A Case Study 2B

Rank Method Score Method Score

1 DT 0.690 DT 0.763

2 LinR 0.542 LinR 0.675

3 ANN 0.423 SVM 0.371

4 SVM 0.279 ANN 0.226

As seen in the table, the decision analysis process was resulted with the selection of

Decision Tree (DT) method as the best SDP method for both cases, with a score of 0.690

and 0.763, respectively. On the other hand, SVM was ranked last for Case Study 2A,

where ANN was the last selected method for Case Study 2B with a score of 0.279 and

0.226, respectively.

5.4.3. Experimental Study (RQ5.2)

Each predictor in Weka tool was used with their default values, in other words, no

optimization has been made. The predictors used for the experiments are given below:

• Artificial Neural Network (ANN): weka.classifiers.functions.MultilayerPerceptron

• Decision Tree (DT): weka.classifiers.trees.M5P

• Linear Regression (LinR): weka.classifiers.functions.LinearRegression

• Support Vector Machines (SVM): weka.classifiers.functions.SMOreg

114

A 10-fold cross-validation approach was adopted in the training and testing stages of the

predictors. Cross-validation operations were run 10 times for different random segments,

resulting in a total of 100 iterations. The resulted performance values of the predictors are

reported in terms of R2, RAE and RRSE in Table 5.8. It can be said that the most

successful method was DT, where SVM was the worst in terms of R2.

Table 5.8. Resulting performance values of the predictors

DT LinR ANN SVM

R2 0.965a 0.893b 0.879 0.859

RAE (%) 25.839a 35.048 40.771 40.392

RRSE (%) 33.952a 44.491b 50.149 52.874

Rank 1 2 3 4
a DT performed significantly better than LinR, SVM and ANN (α=0.05)

b LinR performed significantly better than SVM (α=0.05)

The training time of the predictors are given in Table 5.9 in terms of

“UserCPU_Time_millis_training”. Since the training times can be different for each

iteration, we analyzed the results for each execution of training and calculated the average

values. Based on the Paired T-Test results, there is no significant difference between LinR

and DT models, however, they have performed significantly faster than SVM and ANN

models (p < 0.05). Besides, SVM has performed significantly faster than ANN.

Table 5.9. Training times (millisecond) for each predictor regarding to iterations

#Iteration LinR DT SVM ANN

1 3.13 4.69 153.13 978.13

2 1.56 3.13 148.44 982.81

3 1.56 4.69 153.13 992.19

4 3.13 6.25 165.63 1001.56

5 1.56 6.25 198.44 985.94

6 3.13 3.13 196.88 1010.94

7 0.00 6.25 190.63 1006.25

8 1.56 6.25 178.13 1039.06

9 0.00 6.25 185.94 1104.69

10 3.13 4.69 153.13 1090.63

Avg. 1.88a 5.16a 172.34b 1019.22

Rank 1 2 3 4
a LinR and DT results are significantly better than SVM and ANN results (α=0.05)

b SVM is significantly better than ANN (α=0.05)

115

5.4.4. Results Comparison (RQ5.3)

Due to the lack of enough sample data points, we could not perform cluster analysis or

Friedman test for Case Study 2A and Case Study 2B. Instead, we reported the rankings

of the predictors for both decision analysis process and experimental study results.

According to the resulted rankings for decision analysis and experimental results given

in Table 5.10, we can see that, the decision analysis approach recommended a ranking as

follows: (1) DT, (2) LinR, (3) ANN and (4) SVM; where the performance values of the

experiments resulted in the same ranking.

When we evaluate the results in terms of performance criteria, it was seen that the ranking

recommended by the decision analysis and the ranking based on the performance obtained

from the experiments were the same (DT, LinR, ANN, SVM).

Table 5.10. Decision Analysis and Empirical Results for Case Study 2A

Case Study 2A Case Study 2B

Rank Decision Analysis Empirical Result Decision Analysis Empirical Result

1 DT DT DT LinR

2 LinR LinR LinR DT

3 ANN ANN SVM SVM

4 SVM SVM ANN ANN

It can be seen that DT method is quite successful for predicting the numerical dependent

variable. It has been observed that this performance is also valid for small datasets (data

point < 100) of tree-based learning methods. Therefore, the need arises for an

arrangement in the first phase of the decision analysis process, which consists of the DT

method as an alternative for small datasets. LinR method was also found to be the most

successful method after DT. Although ANN and SVM methods performed above

expectations, they were placed last in the ranking. This result confirms the assumption

that the relevant methods are not successful enough for small datasets.

When we evaluate in terms of the speed criterion, it was seen that the ranking

recommended by the decision analysis (DT, LinR, SVM, ANN) and the ranking based on

116

the learning durations of the prediction models obtained from the experiments (LinR, DT,

SVM, ANN) were not exactly the same, and there was a difference in the order between

LinR and DT.

In general, it has been observed that regression models are built faster, while tree models

learn slower than regression models. In line with this information, it is thought that it may

be necessary to make an adjustment in the structuring of the decision analysis process and

increase the score of LinR method on speed criteria.

5.5. Case Study 3 - Lack of Data: Prediction Based on Expert Opinion

5.5.1. Case Study Design

Case study 3 was performed by using Fenton dataset [21], which is suitable for early

software defect prediction problem since it includes phase information of software

metrics gathered. The context information reported about the public dataset is given in

Table 5.11.

Table 5.11. Basic information of Fenton dataset [21]

Business Domain Consumer electronics Size (KLOC) Min: 0.9 – Max: 155.2

Programming

Language

C, VC++, MFC Effort (Hour) Min: 1,308 – Max: 53,995

SDLC

Methodology

Waterfall life cycle Defects

(Number)

Min: 5 – Max: 1,906

Total Project

Number

31 Missing data

values

Yes (32 missing data points

out of 930)

Number of

features

30 Outlier values Yes

As we can see from Table 5.11, Fenton dataset is useful for making a numerical prediction

as it contains 'number of defects' as the dependent variable (output). The dataset has a

total of 31 data points (samples).

117

As shown in Table 5.12, there are metrics with categorical data ranging from very low

(VL) to very high (VH) that can be used as input metrics in the dataset. It also has the size

information given in thousands of lines of code (KLOC) which can be used as a

normalizer metric to predict the number of defects. In addition, since the qualitative data

collection process of this dataset was conducted through a questionnaire [21], it is noted

that there might be some data quality problems, such as dependency between attributes,

uncertainty, which should be considered when evaluating the prediction methods.

Besides, it is mentioned that there are missing values and outliers in the dataset, with a

total of 32 missing data values and three projects with the number of defects more than

1500, respectively. the first three data points are given as an example in Table 5.12.

Table 5.12. Example data from public dataset [21]

Project ID KLOC RFD RS RIW ERT Number of Defects

1 6 H L VH H 148

2 0.9 H H VH H 31

3 53.9 VH H VH H 209

5.5.2. Decision Analysis (RQ5.1)

5.5.2.1. Gathering case study requirements through questionnaire

The questionnaire was filled based on the specifictions of this dataset and its context

information. As there is not enough sample point for this dataset, it can be assumed that

there is a lack of data, therefore expert opinion matters for building an SDP model in this

context. Besides, the dependent variable is the number of defects, which leads us to

generate a numerical prediction model. In terms of data quality of the dataset, as given in

Table 5.13, there is uncertainty, missing points, and outliers in the data, as well as

dependency between the attributes. Moreover, since it will be an expert opinion-based

model, it would be beneficial for SDP model to have the specified method characteristics.

118

Table 5.13. Questionnaire filled for case study 3

Question Case Study 3

Do you want your method to be dependent on data? 0

Do you want to address human judgement? 1

Do you want to perform classification? 0

Do you want to make a numeric prediction? 1

Do you have a large sized dataset to train an SDP model? 0

Do you have a medium sized dataset to train an SDP model? 0

Do you have a small sized dataset to train an SDP model? 0

Is there any dependency between data attributes? If yes, do you want to address it? 1

Is there any uncertainty in the data? If yes, do you want to address the uncertainty? 1

Is there any missing point in the data? If yes, do you want to handle the missing data? 1

Is there any outlier in the data? If yes, do you want to handle these outliers? 1

Is it important that SDP method has high interpretability? 1

Is it important that SDP method has low complexity? 1

Is it important that SDP method has high performance? 1

Is it important that SDP method has high maintainability? 1

Is it important that SDP method has high speed? 1

5.5.2.2. Phase-1: Decision Tree Analysis

In the first phase of the decision analysis process, the subset of alternatives recommended

by the decision tree applied according to the answers of Questionnaire Phase-1 can be

listed as follows: BBN and FIS. The execution of the decision tree traversal can be

summarized with the node numbers: #1 and #4, as demonstrated in Figure 5.12.

Figure 5.12. Execution of the decision tree for case study 3

119

Here, the decision tree can be executed with the answer of the first question of the

questionnaire, and it was decided that human judgment methods (FIS and BBN) would

be used. In other words, decision tree does not require further questions in the

questionnaire since the subset of alternatives can be eliminated by the "MC - Approach

to construct the model" criteria.

5.5.2.3. Phase-2: Fuzzy TOPSIS Analysis

As for the second phase, Fuzzy TOPSIS process was applied according to the answers of

the questionnaire to make a ranking between the two selected methods. The results related

to the execution of the Fuzzy TOPSIS application for Case Study 3 is given in Table 5.14.

Table 5.14. The score and rankings of the methods recommended by Fuzzy TOPSIS

Rank Method Score

1 FIS 0.505

2 BBN 0.495

As seen in the table, the decision analysis process is resulted with the selection of FIS

method as the best SDP method for this case, with a score of 0.505. The second

convenient method is identified as BBN with a score of 0.495.

5.5.3. Experimental Study (RQ5.2)

5.5.3.1. Selected software metrics

The most important motivation for choosing the selected input metrics for this case study

is the extensive literature review that we performed in our previous work [31], which was

mainly focused on the process based metrics used for early software defect prediction.

According to the results of our literature review study, the most used process-based

metrics are related to the effort of the review activities, stability of the requirements, and

the number of defects found from the review activities. Therefore, we considered three

process metrics that can be gathered at the requirement phase. We also select a resource

related metric, experience of the requirement team, which we found as the most used

120

resource related metric in the literature [15]. The selected software metrics and their

explanation is given below.

Requirement fault density (RFD): This metric measures the ratio between the total number

of defects obtained from the requirements analysis phase and the size of the software. The

defects can be found during the review activities in the requirement phase. Also, the size

of software can be estimated by function point (FP) at the beginning of a software project.

Therefore, this metric can be collected during the requirement phase of SDLC. The

number of defects to be predicted is assumed to be directly proportional to the value of

the RFD.

Requirement Stability (RS): Requirement changes can be at any time during the

development of the software project. However, it is better to minimize the changes in

requirements in order to reduce the impact of the defects occurred during the addition,

deletion or modification of the requirements. This metric describes the stability of the

software requirements. Hence, the number of defects to be predicted is assumed to be

inversely proportional to the value of the RS.

Review, inspection and walkthrough (RIW): This metric describes the consistency,

feasibility and completeness of the artifacts produced during the requirement analysis

phase. Software reviews are activities necessary to identify and correct defects during the

development life cycle. In addition, it is aimed to produce reliable software on time and

budget with regular review, inspection and walkthrough activities. For this reason, the

indicator of reviews was included as a critical metric for the early stages and included in

the model. As similar to RS, the number of defects to be predicted is assumed to be

inversely proportional to the measure of RIW.

Experience of requirement team (ERT): This metric gives the information about the

experience, knowledge and skill of the requirement team members in analyzing and

generating requirements. We can say that if requirement analysis team consists of

experienced people, we can ensure that the artifacts related to the requirement phase are

121

of higher quality and therefore transfers less defects to the later phases. The number of

defects to be predicted is assumed to be inversely proportional to the experience of

requirement team.

Aside from these input metrics, we also used the size of the software as a normalizer

parameter for calculating the predicted number of defects as the last step of the model

implementation. Although, it is not possible to measure the size of software exactly in the

early phases of SDLC, there are many methods to estimate the size of the software, such

as function points or feature points. In general, it is reported that larger and smaller

software may include more errors than medium-sized software. For this reason, size is

used in the model as a normalizer metric for predicting the number of defects.

5.5.3.2. Empirical design of FIS based model

FIS based SDP model was implemented by using the MATLAB Fuzzy Logic Toolbox

[133]. The architectural design for the model is presented in Figure 5.13. Implementation

steps for the proposed model are as follows:

1. Selection of the software metrics that will be used as inputs for the fuzzy model.

2. Determination of membership functions of input and output metrics.

3. Designing fuzzy logic rules.

4. Performing fuzzy inference.

5. Defuzzification and calculation of the crisp values of number of defects.

Figure 5.13. The design of the proposed FIS based model

122

As for the membership functions of input metrics RFD, RS and ERT, logarithmic scale

was considered, while for input metric RIW, linear scale was used. As shown in Figure

5.14, the linguistic values of all input metrics were considered as five scale values, which

are Very High (VH), High (H), Medium (M), Low (L) and Very Low (VL). As for the

output variable, we used seven-scale linear fuzzy profile as given in Figure 5.15, which

are Very Very High (VVH), Very High (VH), High (H), Medium (M), Low (L), Very

Low (VL) and Very Very Low (VVL). Figure 5.16 shows a portion of the fuzzy rule set

which has 625 (54) rules in total.

Figure 5.14. Membership function of the input variable ‘RFD’

Figure 5.15. Membership function of the output variable

123

Figure 5.16. A portion of the fuzzy rule set

5.5.3.3. Empirical design of BBN based model

BBN based SDP model was implemented by using the WEKA tool [124]. The

architectural design for the model is presented in Figure 5.17. Implementation steps for

the proposed model are as follows:

1. Selection of the software metrics that will be used as inputs for the bayes network.

2. Construction of causal relationships (network structure) between selected metrics

3. Determining the probability tables of the nodes in the network

4. Compilation of bayes network

5. Finding the probabilistic values of the predicted number of defects

a. Entering the qualitative values of the model's inputs (metrics) into the

compiled BN

b. Obtaining categorical (VL, L, M, H, VH) outputs and probabilistic values

of the defects

6. Calculation of the number of defects using categorical output, probability values

and size information

124

Figure 5.17. The design of the proposed BBN based model

In this context, six different model structures that reflect the expert opinion have been

formed. The experiments conducted based on these six different model designs, however,

in this paper, the design with the best prediction performance is reported. Figure 5.18

shows the structure of the proposed BBN based model. In this design, ERT influences

RIW and RFD metrics, RIW metric is affecting RFD and RS metric is affecting RFD.

Figure 5.18. The structure of the proposed BBN based model

5.5.3.4. Prediction Results

In Table 5.15, the resulted performance evaluation measures are reported in terms of

MMRE, BMMRE and R2. When we compare the prediction performance results of our

proposed FIS based model with the existing models in the literature, we can say that our

results are close to the fuzzy rule-based model results presented by D. K. Yadav et al.

[114] (R2 = 0.951) and Chatterjee and Maji [134] (R2 = 0.971). When we compare the

prediction performance results of our proposed BBN based model with the existing

models in the literature, we can say that our results are better than the Bayesian Network

based prediction model by [21] (R2 = 0.899).

125

Table 5.15: Performance results of the proposed models

Model MMRE BMMRE R2

FIS based model 0.430 0.685 0.926

BBN based model 0.588 1.249 0.913

It can be said that the prediction results are showing a good performance for early

software defect prediction.

5.5.4. Results Comparison (RQ5.3)

The ranking based on the prediction results of the experimental study is in line with the

ranking recommended by the decision analysis approach, in which fuzzy model was

found to be the most convenient method for prediction of the potential software defects

in the requirement phase with process and resource-based metrics. While the performance

results of BBN based model are also satisfactory, FIS based model is slightly successful

in terms of all the performance measures. Therefore, we can confirm that the decisions

recommended by the decision analysis process is trustworthy in terms of the performance

comparison of the first and second alternative methods in ESDP context.

5.5.5. Investigating Evidence from Literature

Decision analysis results are more significant when the evidence from other studies

conducted on the same dataset in the literature were synthesized. Firstly, the primary

studies presenting and using the same dataset were listed. After that, the subsequent

studies that use this dataset to investigate the suitability of the SDP models built in the

early phases of SDLC by using BBN and FIS methods were examined.

BBN based models

Fenton et al. [21] proposed an early life cycle defect prediction model based on the

Bayesian network method to predict the number of defects that may be found during

independent tests or operational use. The results showed that early prediction models

could be used as an effective decision support mechanism in the early stages of

126

development. They performed performance evaluation with R2 and various error rates

(MMRE, BMMRE etc.). Based on some example scenarios, they also showed how the

model can be used for decision support in the operational environment. In addition, they

conducted a sensitivity analysis to determine the most effective factors on the number of

defects, and reported those factors as the size, complexity, and distributed communication

level of the project. It is stated that the model can be used from the early stages of the life

cycle since it does not require detailed domain knowledge in the context of the project.

Moreover, they have made an important contribution to the literature with the dataset

published publicly.

Kumar and Yadav [135] proposed a BBN based defect prediction model constructed with

six different metrics (software complexity, requirement stability, experience of teams,

review effort, quality of outputs, and rate of new development) that can be obtained from

requirements analysis, design and coding phases. The performance evaluation of the

model applied on the Fenton dataset was performed with MMRE and BMMRE, and they

reported better results than Fenton et al. [21].

Chatterjee and Maji [136] presented a BBN based model to predict the number of defects

in the early phase of the software development process. In order to construct the belief

network, six requirement and design phase-based metrics were selected. They chose a

fault index (FI) as the target node of the BBN. They also used an ANN model to calibrate

the final number of predicted defects, by using actual size of the software and FI values

as input nodes for ANN. They randomly chose twenty projects to be used for network

training, and the remaining six projects were used for simulation. For this reason, they

reported the performance evaluation of the proposed model with regard to those selected

six projects. According to the specific projects, they reported RMSE, NRMSE, MMRE,

BMMRE, and R2 values better than Fenton et al. [21].

In Table 5.16, we summarized the number of metrics used by the models proposed in

these studies, the phase information of the metrics belong to, and reported performance

values with the number of projects included in performance evaluation.

127

Table 5.16. BBN based SDP models and reported performance values for Fenton’s dataset

presented in the literature

BBN model Number

of metrics

Phase

information a

Number of projects

included in

performance

evaluation (out of 31)

MMRE BMMRE R2

Fenton et al.

[21]

31 R,D,C,T 31 0.960 0.300 0.931

Kumar and

Yadav [135]

11 R,D,C 10 0.069 0.075 -

Chatterjee

and Maji

[136]

6 R,D 6 0.400 0.410 0.930

a. R=Requirement Analysis, D=Design, C=Coding, T=Testing phase

FIS based models

Pandey and Goyal [137] proposed a model based on FIS method that uses metrics for

requirements analysis, design, coding, and test phases. The model is structured on a

phase-based basis and the output of each phase (predicted number of defects) is used as

input in the next phase, and the output from the test phase is constructed to yield the result

of the model. In general, it is stated that the first phases of the software life cycle should

be handled more carefully than the later phases. They confirmed these models with

experiments using Fenton's dataset and reported their performance with MAPE (Mean

Absolute Percent Error).

Yadav et al [114] proposed a FIS based model, which was constructed by using three

metrics related to software size and requirement analysis phase. Fenton’s dataset was used

for validation. The predictive performance of the proposed approach was compared with

the existing models over the values of MMRE and BMMRE and the model presented was

reported to be better than Fenton et al. [21].

Yadav and Yadav [138] proposed a model based on FIS method that uses seven metrics

from requirements analysis, design and coding phases. The model is structured similar to

128

the model proposed by Pandey and Goyal [137]. They reported the results via MMRE

and BMMRE, which are better than Fenton et al. [21].

Yadav and Yadav [139] extended their previous work by adding two more metrics of test

phase to the FIS based SDP model. They reported the results by MMRE and BMMRE,

which are better than Fenton et al. [21]. They also performed a sensitivity analysis and

reported that software metrics, which can detect the defects in the early phases of SDLC,

need to be considered with more attention than the metrics that become available in the

later phases.

Chatterjee and Maji [134] presented a FIS based model that uses four metrics related to

the requirement phase. In this study, unlike previous studies, a new algorithm is proposed

instead of expert opinion to develop fuzzy rule-based system. It is stated that the weight

of each metric as well as the target reliability are taken into consideration in order to

develop the proposed fuzzy rule algorithm. As a result, the proposed model showed better

performance results than other models.

Kumar and Ranjan [140] proposed a phase based FIS model that uses five metrics from

requirements to testing phases. The model is structured similar to the model proposed by

Pandey and Goyal [137]. They also reported the results via MMRE and BMMRE, which

are better than Fenton et al. [21].

Chatterjee et al. [141] proposed an interval type-2 FIS based SDP model that can be used

separately in the requirement analysis, design and coding phases of the software life cycle.

In addition to the expert opinion and human reasoning, a new algorithm developed to

form a generalized consistent fuzzy if-then rule base for FIS. One of the advantages of

the proposed SDP model is that it predicts the number of defects three times during each

of the SDLC phases, therefore it can be helpful during the early development process

about potential software defects. They presented the performance evaluation of the

proposed model by using nine software projects from Fenton’s dataset. Based on these

129

selected projects, they reported RMSE, NRMSE, MMRE, BMMRE, and R2 values better

than Fenton et al. [21].

In Table 5.17, we summarized the number of metrics used by the models proposed in

these studies, the phase information of the metrics belong to, and reported performance

values with the number of projects included in performance evaluation.

Table 5.17. FIS based SDP models and reported performance values for Fenton’s dataset

presented in the literature

FIS model # of

metrics

Phase

information a

of projects

included in

performance

evaluation

(out of 31)

of

FIS

Rules

MMRE BMMRE R2

Pandey and

Goyal [137]

10 R,D,C,T 15 1350 0.226 b 0.231 b 0.953

b

D. K. Yadav et

al [114]

3 R 20 27 0.361 0.419 0.951

b

Yadav and

Yadav [138]

7 R,D,C 20 117 0.069 0.076 -

Yadav and

Yadav [139]

9 R,D,C,T 20 162 0.047 0.048 -

Chatterjee and

Maji [134]

4 R 20 625 0.286 - 0.971

Kumar and

Ranjan [140]

5 R,D,C,T 20 130 0.181 0.188 0.992

b

Chatterjee et

al. [141]

9 R,D,C 9 125 0.473 0.621 0.936

a. R=Requirement Analysis, D=Design, C=Coding, T=Testing phase

b. Calculated manually by the author

When we investigate the studies using Fenton’s dataset, FIS based models seem to be

outnumbered. This may be interpreted as the relevant dataset is more suitable for ESDP

using FIS based models. Furthermore, when the performance evaluation tables are

examined, it can be seen that FIS based models performed slightly better than BBN based

130

ones, with the values of R2 > 0.93 for FIS based models and R2 = 0.93 for BBN based

models. In this regard, it is clear that the results of the decision analysis approach that we

propose correspond with the preferences of the studies in the literature.

Given the nature of the Fenton’s dataset, machine learning based methods, in particular

ANN and SVM, are not suitable for use due to learning constraints from a sufficient

number of sample datasets. For example, a study suggesting neural network based

prediction models implementing different ANN algorithms [142] reported the accuracy

of experiments performed on the sample dataset between 0.41 and 0.77. These low

performance values may be due to the fact that ANN approach does not work well with

datasets that contain a small number of data points.

In addition, other machine learning based methods such as Naïve Bayes or Regression

are not preferred to apply to the example dataset since they remain very simple to explain

the various and complex properties of the given data. Although, Decision Tree method

may be considered as appropriate because of its various capabilities such as modeling

uncertain data, ease of use with low complexity and high performance in most cases [37],

it does not work well with small sized datasets. Therefore, it can be concluded that the

evidence for the methods used in the literature is consistent with our decision analysis

results.

131

6. RECOMMENDATIONS

By considering the findings that were obtained during this thesis, we highly recommend

that early software defect prediction models be constructed especially in requirements or

design phases, using metrics that can be collected over early-stage artifacts as well as the

metrics that focus on early-stage processes and resources. Most critical metrics would be

based on the size or complexity of the early artifacts, effort of the review activities,

stability of the requirements, maturity level of the organization, and experience of the

project staff. Apart from the chosen metrics, the methods and techniques for building the

prediction model are important for the nature of the data used. Most particularly, we

recommend using fuzzy rule-based models in order to handle the qualitative and

incomplete data of the early stages. Including contextual information is very important

while designing the prediction models and reporting their results, which makes it possible

to repeat the study and compare model performances. In addition, stronger empirical

studies will increase the reliability of the ESDP models and build confidence in the

predictive performance of these models.

The recommendations are grouped on the basis of the factors that have been discussed

throughout the thesis.

SDLC phase and development methodology

Once again, it is important to note that the "early" statement of the development phase

can be evaluated differently according to the SDLC. While in developments based on

waterfall model it corresponds directly to the early stage that coincides with the beginning

of the project, in developments based on incremental model it may coincide with the early

stage within each increment. Thus, it may be necessary to use a feedback supporting

model (such as Recurrent Neural Network) for performing SDP early on the iterations,

which is beyond the scope of this thesis. Nevertheless, several important factors can be

mentioned as follows: Outputs such as the documents of review activities or user stories

that emerge during the life cycle are crucial for agile development methodologies. The

effort information of the review activities and the number of defects found on reviews are

the most important indicators. As project teams progress through iterations, static code

metrics become more important since the number of lines of code increases.

132

Consequently, the lessons learned and suggestions regarding Waterfall development

methodology are summarized below. Figure 6.1 demonstrates suitable SDP methods

grouped with the metrics that give the most successful result within the phases related to

Waterfall development methodology.

Waterfall

• Begin with building ESDP models using expert-based methods at the earliest.

o Consider designing FIS based model by using requirement phase-based

process data for a fresh start.

o No need to design complex fuzzy rules at first, usage of tools like MATLAB

Fuzzy Logic Toolbox is recommended.

o Prefer process and resource-based metrics (effort for review activities,

stability of requirements, maturity of the organization (i.e. CMMI level), and

experience of the staff etc.).

o Need for experts who know the related process and resource factors, which

will affect possible defects.

o Context information may undertake the task of guiding and can be helpful to

build simple and effective models.

o Make use of Bayes Network based models when qualitative and dependent

data proliferate.

o Use publicly available Bayes Network design and adapt it based on project’s

needs (AgenaRisk or Weka is recommended to start).

• Consider statistically based methods when the outputs of the requirement and design

phases are obtained.

o Regression based models are easy and accurate for a rapid start.

o Analyze requirement and design phase outputs in order to gather product-

based metrics (such as size of the requirement specifications or number of use

cases).

133

o Benefit from process-based metrics to increase prediction performance.

o Make use of data from past projects (historical data) similar to the context of

the current project, where available.

• Assess ML-based methods during coding phase.

o Source code-based metrics are indispensable for building an ML-based model

accurately.

o Start with easy-to-use and high-performance methods like Naïve Bayes.

When the dataset gains large number of data points, consider building ANN

based models to increase accuracy, if practitioners are familiar with it.

Figure 6.1. Recommended methods related to Waterfall phases with the most successful

metric suites

Data – originated metrics

Different types of metrics can be evaluated at the requirements or design stages that

originate metrics to build prediction models. According to Table 3.2, resulted metrics

were mapped with the most suitable methods as follows:

Product-based

• Size metrics: number of uses cases, LOC.

o Regression based methods should be preferred for accuracy.

o FIS-based methods are also helpful at the earliest stages.

• Halstead size metrics:

134

o ML based method primarily preferable, especially Naïve Bayes.

• Structure: McCabe metrics.

o Both regression and NB methods are applicable.

o OO metrics: Regression based methods should be preferred primarily.

Process-based

• Number of defects: statistical.

• Effort, time, stability, process maturity: FIS based.

Resource-based

• Human characteristics: FIS based, BBN based

• Project characteristics: BBN based

Data – type and quality aspect

• Qualitative data

o FIS-based or BN-based methods should be preferred.

• Quantitative data

o Give priority to ML-based, Regression-based or BN-based methods,

respectively

If data has:

• Dependency between attributes (causality):

o Use of BN based model is recommended.

• Outliers:

o ANN should be preferred first, however DT works well, too.

• Missing data points:

o Bayesian methods, i.e., Naïve Bayes and Bayes Network should be

preferred.

135

• Uncertainty and incompleteness:

o Bayesian methods, i.e., Naïve Bayes and Bayes Network should be

preferred first, yet some of ML-based methods suit well (such as ANN,

DT).

• Vagueness, imprecision, and inconsistency:

o FIS-based methods gain importance when experts are available.

136

7. CONCLUSION

In this chapter, the summary of this thesis, the contributions to the literature and threats

to validity of the study are summarized. In addition, planned future work is presented.

7.1. Summary of Thesis

Software quality is the main proof of compliance for software products that enable proper

and correct implementation of customer needs. Software quality assurance is therefore

important not only in the later phases and also in the earlier phases of the SDLC. Software

prediction models can help in the early detection of software defect proneness. Although

it is relatively hard to collect early-stage data for every kind of project, findings from

software process assessments or process audits might be significant in gathering the

information needed by the early prediction models.

In this thesis, a decision analysis approach is proposed in order to select the best-fit SDP

method according to the dataset characteristics and stakeholder needs that can be elicited

via presented questionnaire in the early phases of the SDLC.

The introduction to the subject and overall goal of this thesis is presented in Chapter 1, as

well as the research methods used throught the thesis and the main contributions. In

Chapter 2, the detail information on the background is introduced. Chapter 3 identifies

the related work from different aspects. Most importantly, evidence on the trends and

maturity of research as well as the success and usefulness of early software defect

prediction are investigated systematically. Besides, the survey is presented to gain insight

into the current situation on SDP in Turkey. In Chapter 4, the details on decision analysis

approach are presented, which includes solution architecture of the approach, alternatives

and criteria, knowledge base, and the methodology for decision analysis, as well as the

questionnaire. Chapter 5 demonstrates the investigation of the decision analysis approach

through case studies implementing SDP on early phases and provides discussion on the

results with regard to related literature. Chapter 6 highlights the recommendations. Lastly,

Chapter 7 concludes the thesis by presenting the overall summary and contributions,

137

explaines the validity threats with the actions taken to minimize them, and reveals the

future work.

According to our findings based on the systematic literature map and review; few studies

reporting evaluation research indicate the need for conducting stronger empirical

validation for future contributions in the context of ESDP. Product, process, and resource-

based software metrics play an important role in building ESDP models, and there is a

constant increase in the studies published especially as journal papers. The performances

of many categorical studies and few continuous studies demonstrate evidence on the

success of the ESDP models. Although the included studies mostly report that early

prediction models are beneficial and useful to make effective resource planning, there is

a need for further quantitative evidence on the benefits of using the ESDP models in

practice.

According to the evidence obtained from the literature and our empirical studies, the

prediction performance is satisfactory using early-stage data and supports the result of

our decision analysis approach, in which Naïve Bayes and Logistic Regression based

models are the most convenient methods for predicting the potential software defects in

the early phases using NASA dataset. Similarly, the results obtained for NASA-93 dataset

are quite consistent. The results comparison shows that the decision analysis recommends

the same ranking with the experiments focused on performance criteria, in which

Decision Tree based models are firstly chosen. Also, in terms of speed criteria, the

rankings are very similar except DT and LinR. Finally, we perform an experiment based

on the human judgement for Fenton’s dataset, which lacks sufficient data points for

applying a learning algorithm. According to the case study results, the ranking between

the FIS and BBN based models in terms of the performance criteria is the same as the

experiment results.

As a main conclusion of this thesis, when evaluating possible alternative SDP methods

and choosing a suitable one to build an SDP model in the early phases of the SDLC, we

can say that we need to consider different aspects to address stakeholders' needs and

various factors related to the defect dataset. Evidence from the case studies and the related

138

literature confirm the results of the decision analysis approach, in which the resulted

scores reflect both the constraints of the given dataset within its specific context, and the

requirements arising from these constraints. Thus, given which phase of SDLC we are in,

what kind of data is available and what needs of stakeholders appear primarily, certain

defect prediction methods may be more appropriate than others and should be preferred.

The decision analysis approach could be helpful and beneficial for software practitioners

in deciding which prediction method they should use based on their specific needs. It

might also serve as a guideline for stakeholders, especially for software project managers,

in building their early SDP models that could support the management of the software

development projects with effective resource, schedule and cost planning, thus ensuring

higher quality software from the earliest phases of the projects.

Moreover, the systematic literature review in the field of early phase SDP may structure

a protocol that future researchers can model. For instance, it can be improved by focusing

on the early stages for iterative incremental and agile methods, rather than the

requirements and design stages focused on in this thesis. In addition, it is thought that

innovations such as expert opinion surveys prepared for SDP method selection and

decision analysis approach in which different methods are used together will benefit

researchers in many fields of software engineering.

It is also important to note that, the proposed decision analysis approach can be adapted

not only in the context of software defect prediction, but also in different fields, such as

software effort, cost, and reliability estimation. It can even be evaluated in areas that are

outside the field of software engineering but require revising the questionnaire for that

specific area, and also comparing many alternative classification of prediction methods

and choosing the best. Having said that, it is also important to mention the possibility of

the transformation of this proposed approach as a meta-learning model. It would be quite

possible and useful to configure the proposed decision analysis approach as a meta-

learning framework. It should be emphasized that this transformation may be possible not

only in the SDP domain, but also in software engineering area where machine learning

methods will be benchmarked in a wider scope.

139

7.2. Contributions

The contributions of this thesis to the literature can be highlighted in three main headings.

Extensive literature review on Early Software Defect Prediction

• Identifying the primary studies on ESDP and the main characteristics of their

prediction models with regard to prediction methods, software metrics, datasets,

contextual parameters, and performance evaluation approaches, as well as the

addressed SDLC phases;

• Providing a classification scheme and mapping;

• Analysis of the prediction model design in the studies as well as their prediction

performances, benefits or advantages of the early software defect prediction.

Proposing a new approach for selecting the most suitable prediction method

• Identifying the alternatives and criteria to be used in decision analysis process;

• Creation of a knowledge base regarding the evaluation of the various SDP

methods according to identified criteria;

• Presenting a questionnaire that gathers the preferences of the stakeholders in the

early phases of SDLC and the characteristics of the dataset subject to SDP;

• Proposing a two-phase decision analysis approach that combines decision tree and

MCDA methodologies;

• Presenting case studies using public datasets and investigating the trustworthiness

of the proposed decision analysis approach.

Making the outputs from the research available

• Providing the paper repository regarding a classification scheme;

• Publishing the criteria, alternatives, and their evaluations in the context of ESDP

within the knowledge base;

140

• Publishing the source code of the web-based application that includes the

implementation of the Fuzzy TOPSIS evaluation and demonstrates its usage on

ESDP.

7.3. Threads to Validity

The potential threats to validity of the thesis have been systematically identified and

addressed by taking steps to minimize or mitigate them. Below, the main threats to the

validity of this study are discussed based on the checklist adopted from Wohlin et al. [27].

7.3.1. Internal Validity

Threats to internal validity are influences that can affect the independent variable with

respect to causality, without the researcher’s knowledge.

Perception of the term “early”

The most important threat in this study may be the author’s consideration of the term

“early” to refer to requirements and/or design phases. However, a pre-release phase could

be thought as early in incremental or agile development projects. Although the initial

searches showed that there were few primary studies on software defect prediction in

agile or incremental development, we could not have the chance to retrieve all such

studies by the selected search strategy. There may be a need for conducting further

research that investigates studies on pre-release defect prediction in such contexts.

Especially in recent years, the interest in agile development methods has increased a lot.

Since the transition to agile methodologies is relatively recent compared to the use of

plan-based methods such as waterfall, there is limited literature or data on the related

topics, i.e., defect prediction at early stages of the development. Therefore, the phase

information discussed in this thesis does not fully correspond to the agile environment.

In this context, it is worth emphasizing once again that the term “early” should be

interpreted as independent from the software development model employed, and as

dependent to the phases of requirements or design that originate metrics for building

prediction models where applicable. Consequently, in order not to perceive the term

141

“early” for different contexts, the requirement and design phases were frequently used

throughout the thesis, to mitigate this validity.

Researcher bias

The researcher bias is one of the main internal validity threats for the literature analysis

part of this thesis since the author conducted most of the search process for the literature

review. To reduce this threat, some actions have been taken. Firstly, the review protocol

of the research was prepared with thesis supervisor to ensure the clarity of the design of

research methodology. To increase the reliability of our review protocol, we reviewed

and considered the protocols of other secondary studies. Secondly, a detailed data

extraction form was defined to make the extraction well-structured. The classification

scheme and extracted data were peer-reviewed by the supervisor on a test-set of including

papers with sampling, which shows a very high degree of agreement to involve the related

papers. Few corrections required after the peer-review was reflected in the overall data

extraction and analysis.

Selecting the decision analysis methodology

As reported in Chapter 2.3.2, there are different implementations of MCDA, such as AHP,

PROMETHEE, ELECTRE etc. and the selection of an appropriate MCDA tool is not an

easy task. At this point, we followed the guideline by [143] as a general framework for

selecting a suitable MCDA methodology for the specified area of decision analysis. Thus,

we considered using Fuzzy TOPSIS approach, since the hybrid usage of MCDA

methodology and fuzzy set theory provides solutions for decision makers to handle

incomplete, vague, and ambiguous knowledge.

Identifying participants to the expert opinion studies

Another threat might have occurred due to selection bias of the experts who volunteered

to participate in the expert opinion surveys. Due to the extensive literature search in the

field, the expert profiles from the academy were gathered systematically by considering

their contributions to the SDP area and Google Scholar profiles. In addition, thanks to the

142

authors' 10+ years of experience in the industry, access has been provided to experts from

the industry who are relevant to the subject.

7.3.2. Construct validity

Construct validity is concerned with the relation between the study structure and the

actual reflection of the research.

Suitability of literature review

Threats related to this type of validity might be suitability of research questions and

classification scheme used for data extraction through systematic literature review.

Research questions were answered based on a classification scheme, which was designed

based on the standards adapted from [24]. Also, we finalized the scheme through several

iterations until we extracted all related information with the research questions.

Defining criteria and evaluation in decision analysis

Threats to construct validity could also occur while identifying the criteria and rating

them for each alternative. To minimize this threat, we conducted two expert opinion

studies, so that we could design the decision analysis approach in a more reliable and

robust way. First, an expert opinion questionnaire was administered to finalize and rank

the initially defined criteria. After, another expert opinion survey was applied to evaluate

the alternatives on the basis of criteria, and the support of experts from both academia

and the sector was received. Thus, the resulting knowledge base was supported and

strengthened by expert opinions as well as basing it on the literature. Besides, we

explained our mindset and reasoning by providing the comprehensive literature review

results through the base decision matrix within a knowledge base and by grounding the

definitions we mentioned throughout the decision analysis process.

Method selection as alternatives to the decision analysis

Another threat would be about selection of the prediction methods to evaluate in the

decision analysis. We did not include any ensemble methods (e.g., Random Forest), since

143

the choice and implementation of the algorithm could have impacted the prediction

results; so we only included basic algorithm implementations in our case studies. Besides,

we did not have any knowledge base about ensemble algorithms, as they did not appear

in the literature review at the first place, thus we did not include them in our surveys.

Nevertheless, one may replicate the decision analysis study using today’s popular

prediction methods, such as Random Forest and Deep Learning.

Lack of parameter optimization

Last and most important validity threat is related to the parameter setting. Although there

are several studies that recommends parameter tuning [144,145], we used the default

parameters for each classifier used in our study and did not apply any optimization on the

parameters in order to minimize this threat. By doing so, we could compare the

performances of the classifiers as they were. However, especially for some methods like

ANN, DT or SVM, parameter optimization may affect the overall ranking of the

classifiers, where the improment in the prediction performance after the optimization is

non-negligible for some of the classification techniques in [145]. Conversely, the

performance of the NB model built with default values is as stable as optimized models.

Therefore, we believe that our comparison will be the base for possible future studies,

which may perform deeper experiments by using parameter tuning.

7.3.3. Conclusion validity

This type of validity is mainly concerned with the reliability of the proposed study by

examining its reproducibility.

Reliability of the proposed approach

It is concerned with the reliability of the decision analysis that if it is applied by other

researchers, the outcome shall be the same. By defining details of the methodologies and

processes followed, we ensure reliability to the extent that researchers who apply our

approach with the same requirements would come up with the same results. Moreover, a

web application of the decision analysis was developed using Angular, Java and Spring

framework. The source code made available and shared on GitHub to enable researchers

144

or practitioners to perform the decision analysis using the determined criteria, weights,

and the list of selected alternatives. When the application is executed according to the

scenarios given in the case studies, SDP methods and their ranking recommended by the

decision analysis can be validated.

Replicability of literature review

This type of validity also considers the relationship between the data collected from

primary studies and the results/conclusions. We wanted to make sure that there was a high

degree of traceability between data and conclusions. In order to ensure this, we publicly

shared the spreadsheet of the data gathered from literature review [99].

7.3.4. External validity

The threat to external validity is related to the ability to generalize the results of the

empirical studies in broader contexts.

As only three contexts are used for validation of the proposed decision analysis approach,

threat to external validity is a major threat to this thesis. Although we presented the

process for selecting the most convenient SDP method to build a prediction model in the

early phases within our proposed approach, it would be obviously misleading to argue

that the decision analysis approach will give the correct result under all circumstances. It

is important to say that as the number of experiments carried out by collecting metrics

from software projects involving different context information increases, the base on

which the decision analysis approach is depending on would be strengthened and the

results could be more trustworthy.

7.4. Future Work

Today, most of the SDP studies in the literature focus on developing, improving, and

evaluating prediction models empirically with the help of various software metrics. Such

studies contribute significantly to the research on software engineering, but few studies

create research-based tools for the practical application and advancement of SDP

145

research. In the future, we plan to focus on improving our proposed approach to create a

tool that guides practitioners in building and incorporating SDP models from the

beginning of their software projects. To do this, first the usability of our decision analysis

application package should be investigated. Then, our package can also be integrated with

widely used project management tools available in the industry to facilitate the usage.

While the results of this thesis provide insight for future research on the context of ESDP,

further evidence on different software projects are necessary in order to enhance decision

analysis process and make stronger inferences. For future work, the validation of the

proposed decision analysis approach will be investigated by conducting further empirical

studies with data from different software projects. Besides, we plan to study on

improvements of the knowledge base by including further experts and their opinions.

There is also some space to the validation of the proposed decision analysis approach by

conducting further empirical studies with data collected from industry in Turkey.

Accordingly, we plan to include software development methodology information to the

decision analysis process in our future studies.

146

8. BIBLIOGRAPHY

[1] B. Boehm, V.R. Basili, Software Defect Reduction Top 10 List, Computer (Long.

Beach. Calif). 34 (2001) 135–137. https://doi.org/10.1109/2.962984.

[2] C. Jones, O. Bonsignour, The Economics of Software Quality, 1st ed., Addison-

Wesley Professional, 2011.

[3] B.W. Boehm, Software engineering economics, Prentice Hall , 1981.

[4] B. Haskins, J. Stecklein, B. Dick, G. Moroney, R. Lovell, J. Dabney, Error Cost

Escalation Through the Project Life Cycle, 2004.

https://ntrs.nasa.gov/citations/20100036670 (accessed April 24, 2022).

[5] C. Smidts, M. Stutzke, R.W. Stoddard, Software reliability modeling: an approach

to early reliability prediction, IEEE Trans. Reliab. 47 (1998) 268–278.

https://doi.org/10.1109/24.740500.

[6] L.C. Briand, J. Wüst, Empirical Studies of Quality Models in Object-Oriented

Systems, Adv. Comput. 56 (2002) 97–166. https://doi.org/10.1016/S0065-

2458(02)80005-5.

[7] B. Cukic, J.H. Hayes, The Virtues of Assessing Software Reliability Early, IEEE

Softw. 22 (2005) 50–53. https://doi.org/10.1109/MS.2005.79.

[8] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature

review on fault prediction performance in software engineering, IEEE Trans.

Softw. Eng. 38 (2012) 1276–1304. https://doi.org/10.1109/TSE.2011.103.

[9] J.S. Collofello, S.N. Woodfield, Evaluating the effectiveness of reliability-

assurance techniques, J. Syst. Softw. 9 (1989) 191–195.

https://doi.org/10.1016/0164-1212(89)90039-3.

[10] C. Catal, B. Diri, A systematic review of software fault prediction studies, Expert

Syst. Appl. 36 (2009) 7346–7354. https://doi.org/10.1016/j.eswa.2008.10.027.

[11] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets, and feature

selection techniques on software fault prediction problem, Inf. Sci. (Ny). 179

(2009) 1040–1058. https://doi.org/10.1016/J.INS.2008.12.001.

[12] A.K. Pandey, N.K. Goyal, Early Software Reliability Prediction, in: Early Softw.

Reliab. Predict., Springer, India, 2013: pp. 17–33. https://doi.org/10.1007/978-81-

147

322-1176-1.

[13] N.E. Fenton, I.C. Society, M. Neil, I.C. Society, A Critique of Software Defect

Prediction Models, 25 (1999) 675–689.

[14] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, A general software defect-proneness

prediction framework, IEEE Trans. Softw. Eng. 37 (2011) 356–370.

[15] R. Özakıncı, A. Tarhan, Early software defect prediction: A systematic map and

review, J. Syst. Softw. 144 (2018) 216–239.

https://doi.org/10.1016/j.jss.2018.06.025.

[16] IEEE, IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE

Std 1012-2016/Cor1-2017) : IEEE Standard for System, Software, and Hardware

Verification and Validation., (2017).

[17] S.H. Kan, Metrics and models in software quality engineering, Second Edi,

Addison Wesley, 2003.

[18] A. Aydin, A. Tarhan, Investigating defect prediction models for iterative software

development when phase data is not recorded lessons learned, in: 9th Int. Conf.

Eval. Nov. Approaches to Softw. Eng., 2014: pp. 1–11.

[19] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Cross-project defect

prediction, Proc. 7th Jt. Meet. Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.

Found. Softw. Eng. Eur. Softw. Eng. Conf. Found. Softw. Eng. Symp. - E. (2009)

91. https://doi.org/10.1145/1595696.1595713.

[20] N. Fenton, M. Neil, W. Marsh, P. Hearty, Łu. Radliński, P. Krause, Project data

incorporating qualitative factors for improved software defect prediction, in: Proc.

- ICSE 2007 Work. Third Int. Work. Predict. Model. Softw. Eng. PROMISE’07,

2007.

[21] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, P. Krause, On the

effectiveness of early life cycle defect prediction with Bayesian nets, Empir. Softw.

Eng. 13 (2008) 499–537. https://doi.org/10.1007/s10664-008-9072-x.

[22] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic

mapping studies in software engineering: An update, Inf. Softw. Technol. 64

(2015) 1–18. https://doi.org/10.1016/j.infsof.2015.03.007.

148

[23] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature

Reviews in Software Engineering, 2007.

https://doi.org/10.1145/1134285.1134500.

[24] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic Mapping Studies in

Software Engineering, 12th Int. Conf. Eval. Assess. Softw. (2008) 68–77.

[25] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,

Systematic literature reviews in software engineering - A systematic literature

review, Inf. Softw. Technol. 51 (2009) 7–15.

https://doi.org/10.1016/j.infsof.2008.09.009.

[26] R.K. Yin, Case Study Research and Applications: Design and Methods, 6th ed.,

SAGE Publications, Inc, 2017.

[27] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in software engineering, Springer Publishing Company,

Incorporated, 2012. https://doi.org/10.1007/978-3-642-29044-2.

[28] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research

in software engineering, Empir. Softw. Eng. 14 (2009) 131–164.

https://doi.org/10.1007/s10664-008-9102-8.

[29] B. Kitchenham, L. Pickard, S.L. Pfleeger, Case studies for method and tool

evaluation, IEEE Softw. 12 (1995) 52–62. https://doi.org/10.1109/52.391832.

[30] J.W. Creswell, Research Design - Qualitative, Quantitative, and Mixed Methods

Approaches, 4rd ed., Sage Publications, Thousand Oaks, California, 2014.

https://doi.org/0.1177/2050312117740990.

[31] R. Ozakinci, A. Tarhan, The role of process in early software defect prediction:

Methods, attributes and metrics, in: Commun. Comput. Inf. Sci., 2016: pp. 287–

300. https://doi.org/10.1007/978-3-319-38980-6_21.

[32] R. Özakıncı, A. Tarhan, Yazilim gelistirmede erken asamalarda toplanan verinin

hata tahmini performansina etkisi, in: CEUR Workshop Proc., 2016: pp. 532–543.

http://ceur-ws.org/Vol-1721/UYMS16_paper_120.pdf (accessed October 12,

2017).

[33] R. Özakıncı, A. Tarhan, An Evaluation Approach for Selecting Suitable Defect

Prediction Method at Early Phases, in: Proc. - 45th Euromicro Conf. Softw. Eng.

149

Adv. Appl. SEAA 2019, 2019: pp. 199–203.

https://doi.org/10.1109/SEAA.2019.00040.

[34] R. Ozakinci, A. Kolukısa Tarhan, A Decision Analysis Approach for Selecting

Software Defect Prediction Method in the Early Phases, Softw. Qual. J. (2022).

(Under Minor Revision).

[35] IEEE, IEEE Standard Classification for Software Anomalies (IEEE 1044 - 2009),

IEEE Std. 1044 (2009) 1–4.

[36] IEEE Reliability Society, IEEE Std 1633TM-2008, IEEE Recommended Practice

on Software Reliability, IEEE Std. (2008) 1–69.

[37] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd ed.,

Elsevier Inc., 2012. https://doi.org/10.1016/B978-0-12-381479-1.00001-0.

[38] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Pratical Machine Learning Tool

and Tecniques, 3rd ed., Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2011.

[39] G.J. Klir, B. Yuan, Fuzzy sets and fuzzy logic : theory and applications, Prentice

Hall PTR, 1995.

[40] Y. Zhou, N. Fenton, M. Neil, C. Zhu, Incorporating Expert Judgement into

Bayesian Network Machine Learning, in: Proc. Twenty-Third Int. Jt. Conf. Artif.

Intell. Inc., 2013: pp. 3249–3250.

[41] M. Kuhn, K. Johnson, Applied predictive modeling, Springer, 2013.

https://doi.org/10.1007/978-1-4614-6849-3.

[42] M.M.T. Thwin, T.S. Quah, Application of neural networks for software quality

prediction using object-oriented metrics, J. Syst. Softw. 76 (2005) 147–156.

https://doi.org/10.1016/j.jss.2004.05.001.

[43] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, S.J. Aud, Application of neural

networks to software quality modeling of a very large telecommunications system,

IEEE Trans. Neural Networks. 8 (1997) 902–909.

https://doi.org/10.1109/72.595888.

[44] Q. Wang, B. Yu, J. Zhu, Extract rules from software quality prediction model based

on neural network, in: Proc. - Int. Conf. Tools with Artif. Intell. ICTAI, 2004: pp.

150

191–195. https://doi.org/10.1109/ICTAI.2004.62.

[45] G.J. Pai, J.B. Dugan, Empirical analysis of software fault content and fault

proneness using Bayesian methods, IEEE Trans. Softw. Eng. 33 (2007) 675–686.

https://doi.org/10.1109/TSE.2007.70722.

[46] T. Menzies, J.S. DiStefano, A.S. Orrego, Assessing Predictors of Software

Defects, in: Work. Predict. Softw. Model., 2004.

[47] S. Amasaki, Y. Takagi, O. Mizuno, T. Kikuno, A Bayesian belief network for

assessing the likelihood of fault content, in: Proc. - Int. Symp. Softw. Reliab. Eng.

ISSRE, IEEE Computer Society, 2003: pp. 215–226.

https://doi.org/10.1109/ISSRE.2003.1251044.

[48] T.M. Khoshgoftaar, N. Seliya, Fault prediction modeling for software quality

estimation: Comparing commonly used techniques, Empir. Softw. Eng. 8 (2003)

255–283. https://doi.org/10.1023/A:1024424811345.

[49] W. Afzal, R. Torkar, A comparative evaluation of using genetic programming for

predicting fault count data, in: Proc. - 3rd Int. Conf. Softw. Eng. Adv. ICSEA 2008,

Incl. ENTISY 2008 Int. Work. Enterp. Inf. Syst., 2008: pp. 407–414.

https://doi.org/10.1109/ICSEA.2008.9.

[50] M. Reformat, A fuzzy-based meta-model for reasoning about the number of

software defects, in: Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.,

Springer Verlag, 2003: pp. 644–651. https://doi.org/10.1007/3-540-44967-1_77.

[51] X. Yuan, T.M. Khoshgoftaar, E.B. Allen, K. Ganesan, An application of fuzzy

clustering to software quality prediction, in: Proc. - 3rd IEEE Symp. Appl. Syst.

Softw. Eng. Technol., Institute of Electrical and Electronics Engineers Inc., 2000:

pp. 85–90. https://doi.org/10.1109/ASSET.2000.888052.

[52] S. Sup So, S. Deok Cha, Y. Rae Kwon, Empirical evaluation of a fuzzy logic-based

software quality prediction model, Fuzzy Sets Syst. 127 (2002) 199–208.

https://doi.org/10.1016/S0165-0114(01)00128-2.

[53] IEEE Standard for a Software Quality Metrics Methodology, IEEE Std 1061-1998.

(1998) i-. https://doi.org/10.1109/IEEESTD.1998.243394.

[54] N. Fenton, J. Bieman, Software Metrics: A Rigorous and Practical Approach,

2014. https://doi.org/10.1201/b17461.

151

[55] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE

Trans. Softw. Eng. 20 (1994) 476–493. https://doi.org/10.1109/32.295895.

[56] R. Jabangwe, J. Börstler, D. Šmite, C. Wohlin, Empirical evidence on the link

between object-oriented measures and external quality attributes: a systematic

literature review, Empir. Softw. Eng. 20 (2014) 640–693.

https://doi.org/10.1007/s10664-013-9291-7.

[57] D. Aslan, A. Tarhan, ve O. Demirörs, How Process Enactment Data Affects

Product Defectiveness Prediction - A Case Study, Softw. Eng. Res. Manag. Appl.

Stud. Comput. Intell. 496 (2014) 151–166. https://doi.org/10.1007/978-3-319-

00948-3_10.

[58] T. Menzies, R. Krishna, D. Pryor, The Promise Repository of Empirical Software

Engineering Data, (2016). http://openscience.us/repo.

[59] M. Shepperd, Q. Song, Z. Sun, C. Mair, NASA MDP Dataset, A Backup Site

NASA Defect Datasets That Were Orig. Publ. by Shepperd Al., (2013). (2013).

[60] T. Menzies, nasa93, (2008). https://doi.org/10.5281/ZENODO.268419.

[61] C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer, R.

Selby, B. Steece, Cocomo II Model Definition Manual, (1998).

[62] Y. Jiang, B. Cukic, Y. Ma, Techniques for evaluating fault prediction models,

Empir. Softw. Eng. 13 (2008) 561–595. https://doi.org/10.1007/s10664-008-9079-

3.

[63] T.J. Ostrand, E.J. Weyuker, How to measure success of fault prediction models,

in: Fourth Int. Work. Softw. Qual. Assur. Conjunction with 6th ESEC/FSE Jt.

Meet. - SOQUA ’07, ACM Press, New York, New York, USA, 2007: p. 25.

https://doi.org/10.1145/1295074.1295080.

[64] E. Erturk, E. Akcapinar Sezer, Iterative software fault prediction with a hybrid

approach, Appl. Soft Comput. J. 49 (2016) 1020–1033.

https://doi.org/10.1016/J.ASOC.2016.08.025.

[65] D. Baker, D. Bridges, R. Hunter, G. Johnson, J. Krupa, J. Murphy, K. Sorenson,

Guidebook to decision-making methods, USA, 2001.

[66] J. Fulop, Introduction to Decision Making Methods, 2005.

152

https://doi.org/10.1.1.86.6292.

[67] J. Dodgson, M. Spackman, A. Pearman, L. Phillips, Multi-criteria analysis: a

manual, Department for Communities and Local Government, London, 2009.

[68] J.R. Quinlan, Decision Trees and Decision-making, IEEE Trans. Syst. Man

Cybern. 20 (1990) 339–346. https://doi.org/10.1109/21.52545.

[69] V. Belton, T. Stewart, Multiple Criteria Decision Analysis: An Integrated

Approach, Springer US, 2002. https://doi.org/10.1007/978-1-4615-1495-4.

[70] W.A. Goh, Applying Multi-Criteria Decision Analysis for Software Quality

Assessment Methods, Blekinge Institute of Technology, Sweden, 2010.

[71] T.L. Saaty, Axiomatic Foundation of the Analytic Hierarchy Process, Manage. Sci.

32 (1986) 841–855. https://doi.org/10.1287/mnsc.32.7.841.

[72] J.R. Figueira, V. Mousseau, B. Roy, ELECTRE methods, Int. Ser. Oper. Res.

Manag. Sci. 233 (2016) 155–185. https://doi.org/10.1007/978-1-4939-3094-4_5.

[73] C. Hwang, K. Yoon, Multiple Attribute Decision Making: Methods and

Applications, A State of the Art Survey, Springer Berlin Heidelberg, 1981.

https://doi.org/10.1007/978-3-642-48318-9.

[74] J.-P. Brans, B. Mareschal, PROMETHEE methods, in: Int. Ser. Oper. Res. Manag.

Sci., Springer New York LLC, 2005: pp. 163–195. https://doi.org/10.1007/0-387-

23081-5_5.

[75] R.E. Bellman, L.A. Zadeh, Decision-Making in a Fuzzy Environment, Manage.

Sci. 17 (1970) B-141-B-164. https://doi.org/10.1287/mnsc.17.4.b141.

[76] S.-J. Chen, C.-L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and

Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992.

https://doi.org/10.1007/978-3-642-46768-4.

[77] E. Triantaphyllou, Multi-criteria Decision Making Methods: A Comparative

Study, Springer US, 2000. https://doi.org/10.1007/978-1-4757-3157-6.

[78] C.T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy

environment, Fuzzy Sets Syst. 114 (2000) 1–9. https://doi.org/10.1016/S0165-

0114(97)00377-1.

[79] C.T. Chen, C.T. Lin, S.F. Huang, A fuzzy approach for supplier evaluation and

153

selection in supply chain management, Int. J. Prod. Econ. 102 (2006) 289–301.

https://doi.org/10.1016/j.ijpe.2005.03.009.

[80] S. Nădăban, S. Dzitac, I. Dzitac, Fuzzy TOPSIS: A General View, Procedia

Comput. Sci. 91 (2016) 823–831. https://doi.org/10.1016/j.procs.2016.07.088.

[81] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault prediction

metrics: A systematic literature review, Inf. Softw. Technol. 55 (2013) 1397–1418.

https://doi.org/10.1016/j.infsof.2013.02.009.

[82] R. Malhotra, A systematic review of machine learning techniques for software

fault prediction, Appl. Soft Comput. J. 27 (2015) 504–518.

https://doi.org/10.1016/j.asoc.2014.11.023.

[83] R.S. Wahono, A Systematic Literature Review of Software Defect Prediction :

Research Trends , Datasets , Methods and Frameworks, J. Softw. Eng. 1 (2015) 1–

16.

[84] J. Murillo-Morera, C. Quesada-López, M. Jenkins, Software Fault Prediction: A

Systematic Mapping Study, in: CIBSE 2015 - XVIII Ibero-American Conf. Softw.

Eng., 2015: pp. 446–459.

[85] C. Catal, Software fault prediction: A literature review and current trends, Expert

Syst. Appl. 38 (2011) 4626–4636. https://doi.org/10.1016/j.eswa.2010.10.024.

[86] M. Jureczko, L. Madeyski, A review of process metrics in defect prediction

studies, Methods Appl. Comput. Sci. 1 (2011) 133–145.

[87] P.K. Singh, D. Agarwal, A. Gupta, A Systematic Review on Software Defect

Prediction, in: 2nd Int. Conf. Comput. Sustain. Glob. Dev., 2015: pp. 1793–1797.

[88] D. Wahyudin, R. Ramler, S. Biffl, A framework for defect prediction in specific

software project contexts, in: Proc. Third IFIP TC 2 Cent. East Eur. Conf. Softw.

Eng. Tech., Springer-Verlag Berlin, Heidelberg, Brno, Czech Republic, 2008: pp.

261–274. https://doi.org/10.1007/978-3-642-22386-0_20.

[89] S.N. Das Dôres, L. Alves, D.D. Ruiz, R.C. Barros, A meta-learning framework for

algorithm recommendation in software fault prediction, Proc. ACM Symp. Appl.

Comput. April (2016) 1486–1491. https://doi.org/10.1145/2851613.2851788.

[90] F. Porto, L. Minku, E. Mendes, A. Simao, A Systematic Study of Cross-Project

154

Defect Prediction With Meta-Learning, 2018.

https://doi.org/https://doi.org/10.48550/arXiv.1802.06025.

[91] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software

defect prediction, Inf. Softw. Technol. 54 (2012) 248–256.

https://doi.org/10.1016/J.INFSOF.2011.09.007.

[92] Q. Cao, Q. Sun, Q. Cao, H. Tan, Software defect prediction via transfer learning

based neural network, in: Proc. 2015 1st Int. Conf. Reliab. Syst. Eng. ICRSE 2015,

Institute of Electrical and Electronics Engineers Inc., 2015.

https://doi.org/10.1109/ICRSE.2015.7366475.

[93] S. Tang, S. Huang, C. Zheng, E. Liu, C. Zong, Y. Ding, A novel cross-project

software defect prediction algorithm based on transfer learning, Tsinghua Sci.

Technol. 27 (2022) 41–57. https://doi.org/10.26599/TST.2020.9010040.

[94] S.S. Rathore, S. Kumar, A decision tree logic based recommendation system to

select software fault prediction techniques, Computing. 99 (2017) 255–285.

https://doi.org/10.1007/s00607-016-0489-6.

[95] A.O. Balogun, A.O. Bajeh, V.A. Orie, A.W. Yusuf-asaju, Software Defect

Prediction Using Ensemble Learning: An ANP Based Evaluation Method, J. Eng.

Technol. 3 (2018) 50–55.

[96] Y. Peng, G. Kou, G. Wang, W. Wu, Y. Shi, Ensemble of Software Defect

Predictors: an Ahp-Based Evaluation Method, Int. J. Inf. Technol. Decis. Mak. 10

(2011) 187–206. https://doi.org/10.1142/s0219622011004282.

[97] W. Wu, Extension of Analytic Hierarchy Model for High-Efficiency Clustering in

Software Defect Prediction, Int. J. Manag. Sci. 2 (2015) 13–20.

[98] G. Kou, Y. Peng, Y. Shi, W. Wu, Classifier evaluation for software defect

prediction, Stud. Informatics Control. 21 (2012) 117–126.

https://doi.org/10.24846/v21i2y201201.

[99] R. Özakıncı, A. Tarhan, Paper Repository and References for “Early software

defect prediction: A systematic map and review,” (2017).

https://doi.org/10.5281/ZENODO.3621223.

[100] K. Petersen, Measuring and predicting software productivity: A systematic map

and review, Inf. Softw. Technol. 53 (2011) 317–343.

155

https://doi.org/10.1016/j.infsof.2010.12.001.

[101] A. Idri, A. Abran, Analogy-based software development effort estimation : A

systematic mapping and review, Inf. Softw. Technol. 58 (2015) 206–230.

[102] W.A. Florac, R.E. Park, A. Carleton, Practical Software Measurement: Measuring

for Process Management and Improvement, 1997.

[103] K. Petersen, C. Wohlin, Context in industrial software engineering research, in:

2009 3rd Int. Symp. Empir. Softw. Eng. Meas. ESEM 2009, 2009: pp. 401–404.

https://doi.org/10.1109/ESEM.2009.5316010.

[104] M. Dixon-Woods, S. Agarwal, D. Jones, B. Young, A. Sutton, Synthesising

qualitative and quantitative evidence: a review of possible methods, J Heal. Serv

Res Policy. 10 (2005) 45–53. https://doi.org/10.1258/1355819052801804.

[105] S. Hosseini, B. Turhan, D. Gunarathna, A Systematic Literature Review and Meta-

Analysis on Cross Project Defect Prediction, IEEE Trans. Softw. Eng. 45 (2017)

111–147. https://doi.org/10.1109/TSE.2017.2770124.

[106] R. Rana, Software Defect Prediction Techniques in Automotive Domain :

Evaluation , Selection and Adoption, Chalmers University of Technology &

University of Gothenburg, 2015. https://doi.org/10.13140/RG.2.1.1452.8160.

[107] V.U.B. Challagulla, F.B. Bastani, I.L. Yen, R.A. Paul, Empirical assessment of

machine learning based software defect prediction techniques, Int. J. Artif. Intell.

Tools. 17 (2008) 389–400. https://doi.org/10.1142/S0218213008003947.

[108] A. Motro, Sources of Uncetainty, Imprecision, and Inconsistency in Information

Systems, Uncertain. Manag. Inf. Syst. (1996) 9–34.

https://doi.org/10.1080/03639040801928762.

[109] W. Zhang, Y. Yang, Q. Wang, Handling missing data in software effort prediction

with naive Bayes and em algorithm, in: 7th Int. Conf. Predict. Model. Softw. Eng.

(Promise ’11), 2011. https://doi.org/10.1145/2020390.2020394.

[110] O. Alan, C. Catal, An outlier detection algorithm based on object-oriented metrics

thresholds, in: 2009 24th Int. Symp. Comput. Inf. Sci. Isc. 2009, 2009: pp. 567–

570. https://doi.org/10.1109/ISCIS.2009.5291882.

[111] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Definitions, methods,

156

and applications in interpretable machine learning, Proc. Natl. Acad. Sci. U. S. A.

116 (2019) 22071–22080. https://doi.org/10.1073/pnas.1900654116.

[112] I. Portugal, P. Alencar, D. Cowan, The use of machine learning algorithms in

recommender systems: A systematic review, Expert Syst. Appl. 97 (2018) 205–

227. https://doi.org/10.1016/j.eswa.2017.12.020.

[113] I. Mahdavi, A. Heidarzade, B. Sadeghpour-Gildeh, N. Mahdavi-Amiri, A general

fuzzy TOPSIS model in multiple criteria decision making, Int. J. Adv. Manuf.

Technol. 45 (2009) 406–420. https://doi.org/10.1007/s00170-009-1971-5.

[114] D.K. Yadav, S.K. Chaturvedi, R.B. Misra, Early software defects prediction using

fuzzy logic, Int. J. Performability Eng. 8 (2012) 399–408.

[115] F. Sitorus, J.J. Cilliers, P.R. Brito-Parada, Multi-criteria decision making for the

choice problem in mining and mineral processing: Applications and trends, Expert

Syst. Appl. 121 (2019) 393–417. https://doi.org/10.1016/j.eswa.2018.12.001.

[116] B. Sodhi, T.V. Prabhakar, A Simplified Description of Fuzzy TOPSIS, (2012) 1–

4.

[117] M. Shepperd, Q. Song, Z. Sun, C. Mair, Data quality: Some comments on the

NASA software defect datasets, IEEE Trans. Softw. Eng. 39 (2013) 1208–1215.

https://doi.org/10.1109/TSE.2013.11.

[118] Minitab 18.1, Statistical & Data Analysis Software Package | Minitab, (2017).

[119] T. Pohlert, PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank

Sums Extended, (2022). https://cran.r-

project.org/web/packages/PMCMRplus/index.html.

[120] R. Özakıncı, A. Tarhan, A Decision Analysis Approach for Selecting Software

Defect Prediction Method in the Early Phases - Case Study Data, Experiments, and

Results, (2021). https://doi.org/10.5281/zenodo.6478564.

[121] Z. Jiang, Y., Lin, J., Cukic, B., Lin, S., & Hu, Replacing Code Metrics in Software

Fault Prediction with Early Life Cycle Metrics, in: Third Int. Conf. Inf. Sci.

Technol., 2013: pp. 516–523. https://doi.org/10.1109/SCC.2014.108.

[122] T.J. McCabe, A Complexity Measure, IEEE Trans. Softw. Eng. SE-2 (1976) 308–

320. https://doi.org/10.1109/TSE.1976.233837.

157

[123] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn

defect predictors, IEEE Trans. Softw. Eng. 33 (2007) 2–13.

https://doi.org/10.1109/TSE.2007.256941.

[124] E. Frank, H. Mark A., W. Ian H., The WEKA Workbench. Online Appendix for

“Data Mining: Practical Machine Learning Tools and Techniques,” (2016).

[125] M. Friedman, A Comparison of Alternative Tests of Significance for the Problem

of m Rankings, Ann. Math. Stat. 11 (1940) 86–92.

https://www.jstor.org/stable/2235971 (accessed March 28, 2022).

[126] J. Demšar, Statistical Comparisons of Classifiers over Multiple Data Sets, J. Mach.

Learn. Res. 7 (2006) 1–30.

[127] D.G. Pereira, A. Afonso, F.M. Medeiros, Overview of Friedmans Test and Post-

hoc Analysis, Commun. Stat. Simul. Comput. 44 (2015) 2636–2653.

https://doi.org/10.1080/03610918.2014.931971.

[128] B. Ghotra, S. McIntosh, A.E. Hassan, Revisiting the impact of classification

techniques on the performance of defect prediction models, in: Proc. - Int. Conf.

Softw. Eng., IEEE Computer Society, 2015: pp. 789–800.

https://doi.org/10.1109/ICSE.2015.91.

[129] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad, A. Husen, Performance

analysis of machine learning techniques on software defect prediction using NASA

datasets, Int. J. Adv. Comput. Sci. Appl. 10 (2019) 300–308.

https://doi.org/10.14569/ijacsa.2019.0100538.

[130] Y. Ma, S. Zhu, K. Qin, G. Luo, Combining the requirement information for

software defect estimation in design time, Inf. Process. Lett. 114 (2014) 469–474.

https://doi.org/10.1016/j.ipl.2014.03.012.

[131] P. Singh, S. Verma, O.P. Vyas, Software fault prediction at design phase, J. Electr.

Eng. Technol. 9 (2014) 1739–1745. https://doi.org/10.5370/JEET.2014.9.5.1739.

[132] P. Singh, S. Verma, Cross Project Software Fault Prediction at Design Phase, Int.

J. Comput. Electr. Autom. Control Inf. Eng. 9 (2015) 800–805.

https://doi.org/10.5370/JEET.2014.9.4.742.

[133] MATLAB, https://www.mathworks.com/products/fuzzy-logic.html, (n.d.).

158

[134] S. Chatterjee, B. Maji, A new fuzzy rule based algorithm for estimating software

faults in early phase of development, Soft Comput. 20 (2016) 4023–4035.

https://doi.org/10.1007/s00500-015-1738-x.

[135] C. Kumar, D.K. Yadav, Software defects estimation using metrics of early phases

of software development life cycle, Int. J. Syst. Assur. Eng. Manag. (2014).

https://doi.org/10.1007/s13198-014-0326-2.

[136] S. Chatterjee, B. Maji, A bayesian belief network based model for predicting

software faults in early phase of software development process, Appl. Intell. 48

(2018) 2214–2228. https://doi.org/https://doi.org/10.1007/s10489-017-1078-x.

[137] A.K. Pandey, N.K. Goyal, Fault Prediction Model by Fuzzy Profile Development

of Reliability Relevant Software Metrics, Int. J. Comput. Appl. 11 (2010) 975–

8887. https://doi.org/10.5120/1584-2124.

[138] H.B. Yadav, D.K. Yadav, Early software reliability analysis using reliability

relevant software metrics, Int. J. Syst. Assur. Eng. Manag. (2014).

https://doi.org/10.1007/s13198-014-0325-3.

[139] H.B. Yadav, D.K. Yadav, A fuzzy logic based approach for phase-wise software

defects prediction using software metrics, Inf. Softw. Technol. (2015) 44–57.

https://doi.org/10.1016/j.infsof.2015.03.001.

[140] S. Kumar, P. Ranjan, A proposed methodology for phase wise software testing

using soft computing, Int. J. Appl. Eng. Res. 12 (2017) 15855–15875.

[141] S. Chatterjee, B. Maji, H. Pham, A fuzzy rule-based generation algorithm in

interval type-2 fuzzy logic system for fault prediction in the early phase of software

development, J. Exp. Theor. Artif. Intell. 31 (2019) 369–391.

https://doi.org/10.1080/0952813X.2018.1552315.

[142] P.S. Sandhu, S. Lata, D.K. Grewal, Neural Network Approach for Software Defect

Prediction Based on Quantitative and Qualitative Factors, Int. J. Comput. Theory

Eng. 4 (2012) 298–303.

[143] J. Wątróbski, J. Jankowski, P. Ziemba, A. Karczmarczyk, M. Zioło, Generalised

framework for multi-criteria method selection, Omega (United Kingdom). 86

(2019) 107–124. https://doi.org/10.1016/j.omega.2018.07.004.

[144] W. Fu, T. Menzies, X. Shen, Tuning for software analytics: Is it really necessary?,

159

Inf. Softw. Technol. 76 (2016) 135–146.

https://doi.org/10.1016/J.INFSOF.2016.04.017.

[145] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, K. Matsumoto, The Impact of

Automated Parameter Optimization on Defect Prediction Models, IEEE Trans.

Softw. Eng. 45 (2019) 683–711. https://doi.org/10.1109/TSE.2018.2794977.

[146] I. Sharma, M.P. Bano, A Combined Approach of Software Metrics and Software

Fault Analysis to Estimate Software Reliability, IOSR J. Comput. Eng. 11 (2013)

01–14.

[147] P.S. Sandhu, M. Kaur, A. Kaur, A density based clustering approach for early

detection of fault prone modules, in: ICEIE 2010 - 2010 Int. Conf. Electron. Inf.

Eng. Proc., 2010: pp. 525–530. https://doi.org/10.1109/ICEIE.2010.5559753.

[148] A. Kaur, S. Gulati, A Framework for Analyzing Software Quality using

Hierarchical Clustering, Int. J. Comput. Sci. Eng. 3 (2011) 854–861.

[149] V. Vashisht, M. Lal, G.S. Sureshchandar, S. Kamya, A Framework for Software

Defect Prediction Using Neural Networks, J. Softw. Eng. Appl. (2015) 384–394.

https://doi.org/10.9734/BJMCS/2016/26337.

[150] R. Bharathi, R. Selvarani, A framework for the estimation of OO software

reliability using design complexity metrics, in: 2015 Int. Conf. Trends Autom.

Commun. Comput. Technol., IEEE, 2015: pp. 1–7.

https://doi.org/10.1109/ITACT.2015.7492648.

[151] A.K. Pandey, N.K. Goyal, A Fuzzy Model for Early Software Fault Prediction

Using Process Maturity and Software Metrics, Int. J. Electron. Eng. 1 (2009) 239–

245. https://doi.org/10.1007/978-81-322-1176-1.

[152] P.S. Sandhu, R. Goel, A.S. Brar, J. Kaur, S. Anand, A model for early prediction

of faults in software systems, in: 2010 2nd Int. Conf. Comput. Autom. Eng., IEEE,

2010: pp. 281–285.

[153] P.S. Sandhu, S. Khullar, S. Singh, S.K. Bains, M. Kaur, G. Singh, A Study on Early

Prediction of Fault Proneness in Software Modules using Genetic Algorithm,

World Acad. Sci. Eng. Technol. 48 (2010) 648–653.

[154] P.S. Sandhu, S. Khullar, S. Singh, S.K. Bains, M. Kaur, G. Singh, A Subtractive

Clustering Based Approach for Early Prediction of Fault Proneness in Software

160

Modules, World Acad. Sci. Eng. Technol. 4 (2010) 1165–1169.

[155] M. Dhiauddin, M. Suffian, S. Ibrahim, A Systematic Approach to Predict System

Testing Defects using Prior Phases Metrics for V-Model, Open Int. J. Informatics.

1 (2013) 1–17.

[156] S. Mohanta, G. Vinod, R. Mall, A technique for early prediction of software

reliability based on design metrics, Int. J. Syst. Assur. Eng. Manag. 2 (2011) 261–

281. https://doi.org/10.1007/s13198-011-0078-1.

[157] Y. Hong, J. Baik, I.Y. Ko, H.J. Choi, A value-added predictive defect type

distribution model based on project characteristics, in: Proc. - 7th IEEE/ACIS Int.

Conf. Comput. Inf. Sci. IEEE/ACIS ICIS 2008, Conjunction with 2nd IEEE/ACIS

Int. Work. e-Activity, IEEE/ACIS IWEA 2008, 2008: pp. 469–474.

https://doi.org/10.1109/ICIS.2008.36.

[158] M. Cartwright, M. Shepperd, An empirical investigation of an object-oriented

software system, IEEE Trans. Softw. Eng. 26 (2000) 786–796.

https://doi.org/10.1109/32.879814.

[159] K.S. Kumar, R.B. Misra, An Enhanced Model for Early Software Reliability

Prediction Using Software Engineering Metrics, in: 2008 Second Int. Conf. Secur.

Syst. Integr. Reliab. Improv., 2008: pp. 177–178.

https://doi.org/10.1109/SSIRI.2008.32.

[160] Z.A. Rana, M.M. Awais, S. Shamail, An FIS for early detection of defect prone

modules, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics). 5755 LNAI (2009) 144–153.

https://doi.org/10.1007/978-3-642-04020-7_16.

[161] A. Nugroho, M.R. V Chaudron, E. Arisholm, Assessing UML design metrics for

predicting fault-prone classes in a Java system, in: Proc. - Int. Conf. Softw. Eng.,

2010: pp. 21–30. https://doi.org/10.1109/MSR.2010.5463285.

[162] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow, Comparing Design and Code Metrics

for Software Quality Prediction, in: 4th Int. Work. Predict. Model. Softw. Eng.

PROMISE 2008, 2008: pp. 11–18.

[163] V. Vashisht, M. Lal, G.S. Sureshchandar, S. Kamya, Defect Prediction Framework

Using Neural Networks for Software Enhancement Projects, Br. J. Math. Comput.

161

Sci. 16 (2016) 1–12. https://doi.org/10.9734/BJMCS/2016/26337.

[164] A.K. Pandey, N.K. Goyal, Early Fault Prediction Using Software Metrics and

Process Maturity, in: Early Softw. Reliab. Predict., 2013.

https://doi.org/10.1007/978-81-322-1176-1.

[165] R. Ratra, N.S. Randhawa, P. Kaur, Early Prediction of Fault Prone Modules using

Clustering Based vs . Neural Network Approach in Software Systems, Reliab. Eng.

7109 (2011) 47–50.

[166] K.K. Mohan, A.K. Verma, A. Srividya, Early Qualitative Software Reliability

Prediction and Risk Management in Process Centric Development Through a Soft

Computing Technique, Int. J. Reliab. Qual. Saf. Eng. 16 (2009) 521–532.

https://doi.org/10.1142/S0218539309003551.

[167] A. Kaur, P.S. Sandhu, A.S. Bra, Early Software Fault Prediction Using Real Time

Defect Data, in: 2009 Second Int. Conf. Mach. Vis., 2009: pp. 242–245.

https://doi.org/10.1109/ICMV.2009.54.

[168] B. Yang, L. Yao, H.-Z. Huang, Early Software Quality Prediction Based on a

Fuzzy Neural Network Model, in: Third Int. Conf. Nat. Comput. (ICNC 2007),

2007: pp. 760–764. https://doi.org/10.1109/ICNC.2007.347.

[169] S. Yamada, Early-stage Software Product Quality Prediction Based on Process

Measurement Data, in: Handb. Performability Eng., 2008: pp. 1227–1237.

[170] Y. Jiang, B. Cukic, T. Menzies, Fault Prediction using Early Lifecycle Data, in:

18th IEEE Int. Symp. Softw. Reliab. (ISSRE ’07), 2007: pp. 237–246.

https://doi.org/10.1109/ISSRE.2007.24.

[171] A.K. Pandey, N.K. Goyal, Multistage Model for Residual Fault Prediction, in:

Early Softw. Reliab. Predict., 2013: pp. 117–130. https://doi.org/10.1007/978-81-

322-1176-1.

[172] D.L. Gupta, A.K. Malviya, Observations on Fault Proneness Prediction Models of

Object-Oriented System to Improve Software Quality, Int. J. Adv. Res. Comput.

Sci. 2 (2011) 57–65. http://www.ijarcs.info/index.php/Ijarcs/article/view/367.

[173] T. Zimmermann, N. Nagappan, Predicting defects with program dependencies, in:

2009 3rd Int. Symp. Empir. Softw. Eng. Meas. ESEM 2009, 2009: pp. 435–438.

https://doi.org/10.1109/ESEM.2009.5316024.

162

[174] R. Sehgal, D. Mehrotra, Predicting faults before testing phase using Halstead’s

metrics, Int. J. Softw. Eng. Its Appl. 9 (2015) 135–142.

https://doi.org/10.14257/ijseia.2015.9.7.14.

[175] J. Ba, S. Wu, ProPRED: A probabilistic model for the prediction of residual

defects, in: Proc. 2012 IEEE/ASME 8th IEEE/ASME Int. Conf. Mechatron.

Embed. Syst. Appl., 2012: pp. 247–251.

https://doi.org/10.1109/MESA.2012.6275569.

[176] S. Bibi, G. Tsoumakas, I. Stamelos, I. Vlahavas, Regression via Classification

applied on software defect estimation, Expert Syst. Appl. 34 (2008) 2091–2101.

https://doi.org/10.1016/j.eswa.2007.02.012.

[177] H. Euyseok, Software Fault-proneness Prediction using Random Forest, Int. J.

Smart Home. 6 (2012) 147–152.

[178] C. Kumar, D.K. Yadav, Software Quality Modeling using Metrics of Early

Artifacts, in: Conflu. 2013 4th Int. Conf. Next Gener. Inf. Technol. Summit, 2013:

pp. 7–11. https://doi.org/10.1049/cp.2013.2285.

[179] W. Lee, J.K. Lee, J. Baik, Software Reliability Prediction for Open Source

Software Adoption Systems Based on Early Lifecycle Measurements, in: 2011

IEEE 35th Annu. Comput. Softw. Appl. Conf., 2011: pp. 366–371.

https://doi.org/10.1109/COMPSAC.2011.55.

[180] S. Wajahat, A. Rizvi, R.A. Khan, V.K. Singh, Software Reliability Prediction

using Fuzzy Inference System: Early Stage Perspective, Int. J. Comput. Appl. 145

(2016) 16–23.

[181] M. Kläs, H. Nakao, F. Elberzhager, J. Münch, Support planning and controlling of

early quality assurance by combining expert judgment and defect data- A case

study, Empir. Softw. Eng. 15 (2010) 423–454. https://doi.org/10.1007/s10664-

009-9112-1.

[182] P. Tomaszewski, L. Lundberg, H. Grahn, The accuracy of early fault prediction in

modified code, in: Proc. Fifth Conf. Softw. Eng. Res. Pract. Sweden, 2005: pp. 57–

63.

[183] K. El Emam, W. Melo, J.C. Machado, The prediction of faulty classes using object-

oriented design metrics, J. Syst. Softw. 56 (2001) 63–75.

163

https://doi.org/10.1016/S0164-1212(00)00086-8.

[184] T.M. Khoshgoftaar, N. Seliya, Tree-based software quality estimation models for

fault prediction, in: Proc. Eighth IEEE Symp. Softw. Metrics, 2002: pp. 203–214.

https://doi.org/10.1109/METRIC.2002.1011339.

164

APPENDIX

APPENDIX 1 – Mapping references to ids of primary studies in [15]

[S1] [47] S. Amasaki, Y. Takagi, O. Mizuno, T. Kikuno, A Bayesian belief network for

assessing the likelihood of fault content, in: Proc. - Int. Symp. Softw. Reliab. Eng.

ISSRE, IEEE Computer Society, 2003: pp. 215–226.

[S2] [146] I. Sharma, M.P. Bano, A Combined Approach of Software Metrics and Software Fault

Analysis to Estimate Software Reliability, IOSR J. Comput. Eng. 11 (2013) 01–14.

[S3] [147] P.S. Sandhu, M. Kaur, A. Kaur, A density based clustering approach for early

detection of fault prone modules, in: ICEIE 2010 - 2010 Int. Conf. Electron. Inf. Eng.

Proc., 2010: pp. 525–530.

[S4] [148] A. Kaur, S. Gulati, A Framework for Analyzing Software Quality using Hierarchical

Clustering, Int. J. Comput. Sci. Eng. 3 (2011) 854–861.

[S5] [149] V. Vashisht, M. Lal, G.S. Sureshchandar, S. Kamya, A Framework for Software

Defect Prediction Using Neural Networks, J. Softw. Eng. Appl. (2015) 384–394.

[S6] [150] R. Bharathi, R. Selvarani, A framework for the estimation of OO software reliability

using design complexity metrics, in: 2015 Int. Conf. Trends Autom. Commun.

Comput. Technol., IEEE, 2015: pp. 1–7.

[S7] [139] H.B. Yadav, D.K. Yadav, A fuzzy logic based approach for phase-wise software

defects prediction using software metrics, Inf. Softw. Technol. (2015) 44–57.

[S8] [151] A.K. Pandey, N.K. Goyal, A Fuzzy Model for Early Software Fault Prediction Using

Process Maturity and Software Metrics, Int. J. Electron. Eng. 1 (2009) 239-245.

[S9] [152] P.S. Sandhu, R. Goel, A.S. Brar, J. Kaur, S. Anand, A model for early prediction of

faults in software systems, in: 2010 2nd Int. Conf. Comput. Autom. Eng., IEEE, 2010:

pp. 281–285.

[S10] [134] S. Chatterjee, B. Maji, A new fuzzy rule based algorithm for estimating software faults

in early phase of development, Soft Comput. 20 (2016) 4023–4035.

[S11] [153] P.S. Sandhu, S. Khullar, S. Singh, S.K. Bains, M. Kaur, G. Singh, A Study on Early

Prediction of Fault Proneness in Software Modules using Genetic Algorithm, World

Acad. Sci. Eng. Technol. 48 (2010) 648–653.

[S12] [154] P.S. Sandhu, S. Khullar, S. Singh, S.K. Bains, M. Kaur, G. Singh, A Subtractive

Clustering Based Approach for Early Prediction of Fault Proneness in Software

Modules, World Acad. Sci. Eng. Technol. 4 (2010) 1165–1169.

[S13] [155] M. Dhiauddin, M. Suffian, S. Ibrahim, A Systematic Approach to Predict System

Testing Defects using Prior Phases Metrics for V-Model, Open Int. J. Informatics. 1

(2013) 1–17.

[S14] [156] S. Mohanta, G. Vinod, R. Mall, A technique for early prediction of software reliability

based on design metrics, Int. J. Syst. Assur. Eng. Manag. 2 (2011) 261–281.

[S15] [157] Y. Hong, J. Baik, I.Y. Ko, H.J. Choi, A value-added predictive defect type distribution

model based on project characteristics, in: Proc. - 7th IEEE/ACIS Int. Conf. Comput.

165

Inf. Sci. IEEE/ACIS ICIS 2008, Conjunction with 2nd IEEE/ACIS Int. Work. e-

Activity, IEEE/ACIS IWEA 2008, 2008: pp. 469–474.

[S16] [158] M. Cartwright, M. Shepperd, An empirical investigation of an object-oriented

software system, IEEE Trans. Softw. Eng. 26 (2000) 786–796.

[S17] [159] K.S. Kumar, R.B. Misra, An Enhanced Model for Early Software Reliability

Prediction Using Software Engineering Metrics, in: 2008 Second Int. Conf. Secur.

Syst. Integr. Reliab. Improv., 2008: pp. 177–178.

[S18] [160] Z.A. Rana, M.M. Awais, S. Shamail, An FIS for early detection of defect prone

modules, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics). 5755 LNAI (2009) 144–153.

[S19] [161] A. Nugroho, M.R. V Chaudron, E. Arisholm, Assessing UML design metrics for

predicting fault-prone classes in a Java system, in: Proc. - Int. Conf. Softw. Eng., 2010:

pp. 21–30.

[S20] [130] Y. Ma, S. Zhu, K. Qin, G. Luo, Combining the requirement information for software

defect estimation in design time, Inf. Process. Lett. 114 (2014) 469–474.

[S21] [162] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow, Comparing Design and Code Metrics for

Software Quality Prediction, in: 4th Int. Work. Predict. Model. Softw. Eng. PROMISE

2008, 2008: pp. 11–18.

[S22] [132] P. Singh, S. Verma, Cross Project Software Fault Prediction at Design Phase, Int. J.

Comput. Electr. Autom. Control Inf. Eng. 9 (2015) 800–805.

[S23] [163] V. Vashisht, M. Lal, G.S. Sureshchandar, S. Kamya, Defect Prediction Framework

Using Neural Networks for Software Enhancement Projects, Br. J. Math. Comput. Sci.

16 (2016) 1–12.

[S24] [164] A.K. Pandey, N.K. Goyal, Early Fault Prediction Using Software Metrics and Process

Maturity, in: Early Softw. Reliab. Predict., 2013.

[S25] [165] R. Ratra, N.S. Randhawa, P. Kaur, Early Prediction of Fault Prone Modules using

Clustering Based vs . Neural Network Approach in Software Systems, Reliab. Eng.

7109 (2011) 47–50.

[S26] [166] K.K. Mohan, A.K. Verma, A. Srividya, Early Qualitative Software Reliability

Prediction and Risk Management in Process Centric Development Through a Soft

Computing Technique, Int. J. Reliab. Qual. Saf. Eng. 16 (2009) 521–532.

[S27] [114] D.K. Yadav, S.K. Chaturvedi, R.B. Misra, Early software defects prediction using

fuzzy logic, Int. J. Performability Eng. 8 (2012) 399–408.

[S28] [167] A. Kaur, P.S. Sandhu, A.S. Bra, Early Software Fault Prediction Using Real Time

Defect Data, in: 2009 Second Int. Conf. Mach. Vis., 2009: pp. 242–245.

[S29] [168] B. Yang, L. Yao, H.-Z. Huang, Early Software Quality Prediction Based on a Fuzzy

Neural Network Model, in: Third Int. Conf. Nat. Comput. (ICNC 2007), 2007: pp.

760–764.

[S30] [138] H.B. Yadav, D.K. Yadav, Early software reliability analysis using reliability relevant

software metrics, Int. J. Syst. Assur. Eng. Manag. (2014).

https://doi.org/10.1007/s13198-014-0325-3.

166

[S31] [169] S. Yamada, Early-stage Software Product Quality Prediction Based on Process

Measurement Data, in: Handb. Performability Eng., 2008: pp. 1227–1237.

[S32] [137] A.K. Pandey, N.K. Goyal, Fault Prediction Model by Fuzzy Profile Development of

Reliability Relevant Software Metrics, Int. J. Comput. Appl. 11 (2010) 975–8887.

[S33] [170] Y. Jiang, B. Cukic, T. Menzies, Fault Prediction using Early Lifecycle Data, in: 18th

IEEE Int. Symp. Softw. Reliab. (ISSRE ’07), 2007: pp. 237–246.

[S34] [171] A.K. Pandey, N.K. Goyal, Multistage Model for Residual Fault Prediction, in: Early

Softw. Reliab. Predict., 2013: pp. 117–130.

[S35] [142] P.S. Sandhu, S. Lata, D.K. Grewal, Neural Network Approach for Software Defect

Prediction Based on Quantitative and Qualitative Factors, Int. J. Comput. Theory Eng.

4 (2012) 298–303.

[S36] [172] D.L. Gupta, A.K. Malviya, Observations on Fault Proneness Prediction Models of

Object-Oriented System to Improve Software Quality, Int. J. Adv. Res. Comput. Sci.

2 (2011) 57–65.

[S37] [21] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, P. Krause, On the effectiveness

of early life cycle defect prediction with Bayesian nets, Empir. Softw. Eng. 13 (2008)

499–537.

[S38] [173] T. Zimmermann, N. Nagappan, Predicting defects with program dependencies, in:

2009 3rd Int. Symp. Empir. Softw. Eng. Meas. ESEM 2009, 2009: pp. 435–438.

[S39] [174] R. Sehgal, D. Mehrotra, Predicting faults before testing phase using Halstead’s

metrics, Int. J. Softw. Eng. Its Appl. 9 (2015) 135–142.

[S40] [175] J. Ba, S. Wu, ProPRED: A probabilistic model for the prediction of residual defects,

in: Proc. 2012 IEEE/ASME 8th IEEE/ASME Int. Conf. Mechatron. Embed. Syst.

Appl., 2012: pp. 247–251.

[S41] [176] S. Bibi, G. Tsoumakas, I. Stamelos, I. Vlahavas, Regression via Classification applied

on software defect estimation, Expert Syst. Appl. 34 (2008) 2091–2101.

[S42] [121] Z. Jiang, Y., Lin, J., Cukic, B., Lin, S., & Hu, Replacing Code Metrics in Software

Fault Prediction with Early Life Cycle Metrics, in: Third Int. Conf. Inf. Sci. Technol.,

2013: pp. 516–523.

[S43] [135] C. Kumar, D.K. Yadav, Software defects estimation using metrics of early phases of

software development life cycle, Int. J. Syst. Assur. Eng. Manag. (2014).

[S44] [131] P. Singh, S. Verma, O.P. Vyas, Software fault prediction at design phase, J. Electr.

Eng. Technol. 9 (2014) 1739–1745.

[S45] [177] H. Euyseok, Software Fault-proneness Prediction using Random Forest, Int. J. Smart

Home. 6 (2012) 147–152.

[S46] [178] C. Kumar, D.K. Yadav, Software Quality Modeling using Metrics of Early Artifacts,

in: Conflu. 2013 4th Int. Conf. Next Gener. Inf. Technol. Summit, 2013: pp. 7–11.

[S47] [179] W. Lee, J.K. Lee, J. Baik, Software Reliability Prediction for Open Source Software

Adoption Systems Based on Early Lifecycle Measurements, in: 2011 IEEE 35th Annu.

Comput. Softw. Appl. Conf., 2011: pp. 366–371.

167

[S48] [180] S. Wajahat, A. Rizvi, R.A. Khan, V.K. Singh, Software Reliability Prediction using

Fuzzy Inference System: Early Stage Perspective, Int. J. Comput. Appl. 145 (2016)

16–23.

[S49] [181] M. Kläs, H. Nakao, F. Elberzhager, J. Münch, Support planning and controlling of

early quality assurance by combining expert judgment and defect data- A case study,

Empir. Softw. Eng. 15 (2010) 423–454.

[S50] [182] P. Tomaszewski, L. Lundberg, H. Grahn, The accuracy of early fault prediction in

modified code, in: Proc. Fifth Conf. Softw. Eng. Res. Pract. Sweden, 2005: pp. 57–

63.

[S51] [183] K. El Emam, W. Melo, J.C. Machado, The prediction of faulty classes using object-

oriented design metrics, J. Syst. Softw. 56 (2001) 63–75.

[S52] [184] T.M. Khoshgoftaar, N. Seliya, Tree-based software quality estimation models for fault

prediction, in: Proc. Eighth IEEE Symp. Softw. Metrics, 2002: pp. 203–214.

168

APPENDIX 2 – Results of “Survey Study on SDP from Industry in Turkey”

169

170

Yazılım hata tahminini nasıl işletiyorsunuz?

1 Statik Kod analizi yaparak, sürekli entegrasyon faaliyeti yapıp, çıkan hatalar analiz

ediyor. Ayrıca hata takip sistemi ölçümleri alınıyor.

2 Poje başlangıcında tamamlanmış benzer projelerden kestirimde bulunarak

3 Her Sprint iterasyonunda ortaya çıkan geliştirme hataları ile iterasyon süresince

sahadan gelen hatalar birleştirilerek kök nedenlerine göre sınıflandırılmaktadır.

Geçmiş sprint içindeki özellik ekleme puan toplamı(velocity) ile iterasyon hataları

koreledilerek yapılan sprint planlamasında sonraki sprintde beklenen hata oranı

hesaplanmaktadır. Aynı zamanda bu velocity ve hata büyüklüğü toplamları bölünerek

ekibin özellik ekleme hata oluşturma katsayısı hesaplanmakta ve bir kalite metriği

olarak ekiplerin bu katsayıyı büyütmesi(daha fazla özellik puanı daha az hata)

beklenmektedir.

4 Benzer proje verileri toplanmakta ve geliştirilicek olan yeni yazılım projesinde

potansiyel hataya açık kesimlerin tahmini istatistiksel yöntemlerle yapılmaktadır.

5 Geçmiş verilere dayalı istatistiksel yöntemler kullanılarak oluşturulmuş hata tahmin

modeli ile her sürümden önce ekiplerin ilgili sürümde kaç hata ortaya çıkacağını

öngörebilmeleri sağlanıyor.

6 Code coverage, coupling/cohesion, Automated test tools vb. araçlar ve yöntemler

yardımı ile test fazından önce hata tahmini ve ürün olgunluğu kontrolü yapılmaktadır.

7 Matematiksel bir model ile kontrol edilebilir değişkenlerden bir sonraki sürüm hata

sayısı tahmini

8 Yazılımların yeniden kullanımının fazlaca olduğu projelerde (ürün hattı gibi) ve

regresyon testi işletilen projelerde yazılım güvenilirlik tahmin modelleri

uygulamaktayız.

9 Yalnızca öngörü tahmin ve sözlü, geçmiş deneyime binaen

10 Geçmiş deneyime binaen

171

172

173

Sizce firmanızdaki yazılım hata tahmini uygulamalarının faydaları veya avantajları

nelerdir?

1 Kaliteli ürün oluşturmak için oldukça faydalıdır.

2 Çıkabilecek hataların öngörülmesi projenin uzama riskini de ölçmeyi sağlıyor.

3 Öncelikle bir performans metriğ oluşturarak ekiplerin giderek az hata yapması için

motivasyon sağlanmaktadır(hata tahminin aşılması aşılmaması). Aynı zamanda release

planlama ve sprint commitmentlarının belirlenmesinde olası hata metriği riski

öngörülebilir kılmaktadır.

4 Yeni başlanacak yazılım geliştirme projelerinde, gereksinimlerin belirlenmesi

sürecinde ve ekiplerin oluşturulması aşamasında, önceki projelerden topladığımız

metriklerle korelasyon yapıyoruz. Böylelikle olası hatalı bileşenleri önceden kestirip,

bu noktalarda daha fazla kaynak ayırabiliyoruz.

5 Sürüm bazlı hata tahmini yapılmaktadır. Bu sayede ekipler yeni sürüm almadan önce,

geçmiş sürüm verilerine dayalı olarak bir sonraki sürümde çıkacak hata sayısını

öngörebiliyor ve buna dayalı olarak test ve gözden geçirme gibi kalite faaliyetlerine

ağırlık vererek hata sayısını indirgeyebiliyor.

6 test / kabul fazından önce hata tahmini ve ürün olgunluğu kontrolü yapılması

7 Bir sonraki sürümde çıkacak hata sayısını kontrol altına almak

8 İterasyonlar bazında ortaya çıkabilecek hataların sayısına göre, sonraki iterasyonların

ön kabulünden önce koşturulan testlerin sayısında ve kapsamında artış / azalışa

gidebiliyoruz.

9 Faydası olduğunu düşünmüyorum.

10 Ürünün kalitesine doğrudan etkisi olmaktadır. Zamandan kazanım sağlamaktadır.

174

Sizce firmanızdaki yazılım hata tahmini uygulamalarının zorlukları veya dezavantajları

nelerdir?

1 Dinamik sürüm üretme ve takvim sıkışıklığının tahminlemenin etkin yapılmasını

önlemesi

2 Hata sayısı kestirimi her zaman sağlıklı yapılamıyor.

3 Hata sayısı ölçülebilir olsada büyüklük değerlendirmesi uzman tahminine dayılı

olmaktadır. Bu nedenle kestirimlerde hatalı değerlendirme sonucu beklentiyle oluşan

sonuç arasında ciddi farklılaşma olabilmektedir.

4 Her projenin dinamikleri birbirinden farklı olabiliyor, bu noktada benzerlikleri /

farklılıkları çıkarmak kolay olmuyor.

5 Modelin belirli aralıklarla yeni verilerle birlikte kalibre edilmesi ve güncel tutulması

gerekiyor. Süreçler tarafından tahmin modelinin kullanımı zorunlu kılınmadığı için

ekipler arasında kullanımının yaygınlaştırılması ve faydaları konusunda farkındalığın

arttırılması zorlayıcı olabiliyor.

6 Maliyet

7 Ekipler tarafından kullanılmaması

8 Daha fazla ölçüm içeren daha başarılı performans veren yöntemlere (makine öğrenmesi

gibi) ihtiyacımız bulunmaktadır. Tasarımları konusunda know-how'ımız olmadığı için

geliştiremiyoruz. Kullandığımız hata tahmin modelleri aslında yetersiz kalmaktadır,

aşağıdaki bilgileri de ekleyerek daha geniş kapsamlı bir tahmin modeli ihtiyacımız

vardır: iterasyon kapsamında eklenecek / silinecek kod satır sayısı yeni gereksinimlerin

sayısı gereksinimlerim zorluk seviyesi gibi

9 Yorumsuz

10 Hata tahmini yapacak seviyede insan kaynağına sahip olmak zorlukları arasında yer

almaktadır. Her projenin farklı dinamikleri olduğu için yapılan tahminlerde sapmalar

olabilir.

175

Sizce firmanızda yazılım hata tahmini neden yapılmıyor?

1 Çalıştığım firmada geliştirilen yazılımların ortak yönleri ile ilgili bir çalışma

yapılmamış ve bir envanter oluşturulmamış. Projeler yazılım ve donanım içeren sistem

entegrasyon projeleri olduğundan hata tahmininin öncelikli görülmediğini

düşünüyorum.

2 Bu durum firmanın ve ilgili süreçlerinin olgunluk seviyesiyle ilişkili. Olgunluk

seviyesi arttıkça sadece düzeltici değil önleyici faaliyetler de artacaktır. Firmamızda

şu an daha önce analistler tarafından yapılan test aktivitelerinin alanında uzman test

mühendisleri tarafından yapılmasını önceliklendirmiş durumdayız. Bu çalışmanın

olgunlaşmasıyla uzmanlığı test ve kalite olan ekipler önleyici tahminleme

çalışmalarına odaklanabileceklerdir. Özetle, kaynak, önceliklendirme, sürece hazır

olgunluk seviyesi sebepleri oluşturuyor.

3 Projelerin başında çok hızlı bir şekilde kod geliştirme sürecine geçilmek isteniyor

çıktıların hızlı olması açısından. Bu nedenle diğer işlere vakit ayrılmıyor / önem

verilmiyor.

4 Bilinmediğinden ve bunu destekleyecek ölçüm alt yapısının olmamasından

5 Firmamızda projeler kısıtlı zamanda düşük maliyetle yapılmaya çalışılıyor. Yazılım

hata tahmini yapmak için zaman ve bütçe ayrılmıyor.

6 Uygulama şekli ve faydaları yeterince bilinmiyor,

7 Kullanılması planlanıyordur ancak farklı teknolojiler ve yazılım dilleri

kullanıldığından dolayı maliyeti göz önünde bulundurulduğundan

önceliklendirilmemiştir.

8 Yazılım hata tahmini yapmak için yetişmiş personel bulunmadığından yapılmıyor

9 Zaman kısıtından dolayı

10 İhtiyaç duyulmuyor

176

Firmanızda yazılım hata tahmini yapılıyor olsaydı sizce ne gibi faydaları olurdu?

1 Çalışmanın başında projelerin sınıflandırılması ve büyüklüklerinin nasıl ölçülmesi

gerektiği ortaya çıkardı. Farkındalık ve yeniden kullanılabilirlik artardı. Testler daha

verimli geliştirilebilirdi.

2 Test süreçlerinin kalitesi artar, kaynak ve zaman yönetimi daha verimli yapılırdır.

3 Hızlı geliştirme aktiviteleri nedeniyle fazla sayıda bug çıkıyor. Sprintlerin 3'te 1'ini

bug çözmek için ayırıyoruz ve bu süreç yeni bugların inject olmasına da neden

olabiliyor. Kodlama öncesi aşamalarda hata tahmini yapılıyor olsaydı (tasarım

dökümanlarındaki hatalar çoğunlukla yazılım hatası olarak doğuyor) daha az rework

çıkardı diye düşünüyorum.

4 Geliştirmeyi buna göre yönlendirirdik

5 Üründen yapılan hatalı ya da eksik geri bildirimlerin azalması sağlanabilirdi

6 Geliştirilen yazılım daha kaliteli üretilebilirdi.

7 Ekibimde yer alan işgücünü yazılımın hatalı kısımları üzerinde yoğunlaştırır, o

kısımlarda olan test aktivitelerini arttırırdım.

8 Projenin hem yazılım hem de test evresindeki süre kesinlikle kolaylaşacaktır.

9 Daha az hata oluşacağı için müşteri memnuniyeti ve ürün kalitesi artar, maliyet

düşerdi.

10 Gerçek bir metrik bulunsaydı, yazılım geliştirmede önlem alırdık, koku araştırır daha

kaliteli yazılım cikarirdik. Bununla ilgili analizler sağlıklı yurutulurse kök nedeni

bulup geliştirme gereksinim test süreçlerine girdi saglardik.

11 Hataları daha erken tespit etme

177

Firmanızda yazılım hata tahmini yapılıyor olsaydı sizce ne gibi zorlukları olurdu?

1 Tahmin modelini oluşturmak zor olurdu. Projelerin benzer nitelikte olduğunu

belirleyen kriterlerin tanımlanması zor olabilirdi. Matris yapıda bir firmada çalıştığım

için yazılım ve test mühendisliği ekiplerinin iş yükü artabilirdi.

2 Yeterli verinin oluşması, personel sirkülasyonunun modele etkisi, değişen altyapı vb.

3 Deadline'ları yakalamak için çok hızlı geliştirme yapılıyor, bu süreçte hata tahmini

uygulamak bizi yavaşlatabilirdi.

4 Tahminleme için gerekli veriyi toplama

5 Projelere ekstra maliyet getirirdi. Bu durum özellikle Kamu projelerinde firmamıza

dezavantaj oluştururdu.

6 Bu zamana kadar herhangi bir tahmin yapılmadığı için (ilk kez yapılacağı için)

bilinmezlikler olurdu. Gereken verileri toplamak için zaman ve kaynak gerekebilirdi.

7 Kullanılan yönteme bağlı olarak yazılımcılar tek düze kod geliştirmeye yönlenmek

zorunda kalabilirler.

8 Hata tahmini yapmak için hangi metriklerinin kullanılacağı ve bunların nasıl doğru bir

şekilde toplanacağı en zorlayıcı sorunlar olurdu

9 Doğru bir tahminlere yapmak zor. Genelde insanlar bu modellerin başarısına

inanıyorlar. İkna edilmeleri lazım. Hata tahmini için çok fazla değişken mevcut. Bir

projenin kimi diğeriyle karşılaştırabilirsiniz, çünkü projelerin doğası farkli-kullanici

sayısı, kullanım sıklığı vs. Eğer doğru tahminlere yapılırsa normalden sapma olmadığı

sürece kullanılmaz. Hata tahmini normalden saparsa da alarm vermek yerine önce

kalite olarak manuel doğruluğu değerlendirilmeli sonra ekiple çalışma yapılmalıdır.

Belki o sürümde ekstra bir durum olmuştur. Acil durum sinyali vermektense doğruluğu

inandırıcılığı oluşana kadar ölçülmelidir.

10 Veri toplamak

178

179

180

Sizce yazılım geliştirme sürecinin ilk aşamalarından itibaren yazılım hata tahmini için

önerilecek bir kılavuzda yukarıdaki hususlara ek hangi konular ele alınabilir?

1 Farklı nitelikteki projeler için farklı modeller önerebilir. Ayrıca modelin yanısıra

modelin içeriğinin de hangi roller tarafından işletileceğini de içerebilir.

2 Sektörel bazdaki farklılıklar. Örneğin savunma sanayine özel yazılımlardaki yöntem

ile bankacılık ve finans sektöründeki yazılım modellerinde farklılık var mı?

3 Özellikle yazılım hata tahmini öncesinde kullanılabilecek verilerin ve yöntemlerin

belirlenmesi amacıyla, o projenin dinamiklerine uygun bir yönlendirme işe

yarayacaktır. Eski projelerden topladığımız verileri ortaklaştırabileceğimiz ve sonrası

için kullanabileceğimiz bir yapı işimize yarayabilir. Kullandığımız istatistiksel

yöntemler bazen yeterli olmuyor, ek olarak farklı metrikleri (ekip dinamiği,

paydaşların öncelikleri, projelerdeki belirsizlikler vb) de işleyebileceğimiz bir yöntem

seçimi işimize yarayacaktır.

4 Yukarıdaki bilgilerin yeterli olduğunu düşünüyorum.

5 Farklı modeller arasından hangi tür projelerde hangi modelin kullanılacağına dair bir

model seçim kılavuzu faydalı olabilir.

6 En basit uygulanabilecek ve en iyi sonucu verebilecek bir tahmin modelini en kısa

sürede nasıl oluşturabilirim sorusunun cevabı çok faydalı olurdu

7 Elimizde bulunan verilerle kullanabileceğimiz en ideal model hangisi, bizim için en

kritik olan bu

8 Hangi sektörlerde geliştirilen yazılımlarda bu süreç daha faydalı olmaktadır.

Geliştirilmek istenener her uygulama için bu yöntem sürdürülebilir mi? Varsa yanlış

uygulandığı takdir de ne tür sorunlara neden olmaktadır?

9 Bu tarz tahmin süreçlerinin ilgili kuruma olan faydaları ve bu süreçlerin ek yük değil

avantaj sağlayabileceğinin vurgulandığı konular ele alınabilir.

10 Metrikler açıkça ifade edilmeli ve ekip lideri veya Pylere inandırıcılığı sağlanması için

örnek senaryolar üretilmelidir. Ayrıca dinamikleri sürekli değişen küçük projelerde

uygulanmamali. Daha kurumsal büyük projelerde uygulanabilir.

181

APPENDIX 3 – Results of “Expert Opinion Study on Identifying and Ranking the

Criteria”

182

183

184

APPENDIX 4 – Results of “Expert Opinion Study for the Evaluation of Alternatives

against Criteria”

185

Expert#1

I am

familiar

with this

method

No

experience

I have

expertise

in this

method

No

experience

I have

expertise

in this

method

I have

expertise

in this

method

I am

familiar

with this

method

I am

familiar

with this

method

 ANN BBN DT FIS LinR LogR NB SVM

Dataset size Large Large Small Medium Medium Medium Small Large

Causality Average Average Average Low Low Average Average Average

Uncertainty Average Average Average Low Average Average High Average

Missing Values High High High Average High High High High

Outlier High Average Very Low Average Average High High High

Interpretability Very Low Average Very High Average Very High Very High Very High Average

Complexity High High Very Low High Very Low Very Low Very Low High

Performance Average High High Average Average High High High

Speed Low Average Very High Average Very High Very High Very High Average

Maintainability Low Average High Low High High High Average

Size No Yes Yes No No No Yes Yes

Development

methodology
No No No Yes No No No No

Development

phase
Yes Yes No No No No No

Domain Yes Yes Yes Yes No No No No

186

Expert#2

I have

expertise

in this

method

No

experience

No

experience

I have

expertise

in this

method

No

experience

No

experience

I am

familiar

with this

method

I am

familiar

with this

method

 ANN BBN DT FIS LinR LogR NB SVM

Dataset size Large No data

required
 Medium Medium

Causality Average Very High

Uncertainty High Low

Missing Values Average Low

Outlier High Low

Interpretability Very Low High Very High

Complexity Very High Very Low Low Average

Performance Very High High High Average

Speed Low High High

Maintainability Average Very High High

Size Yes No Yes Yes

Development

methodology
Yes No Yes Yes

Development

phase
Yes No Yes Yes

Domain No No No No

187

Expert#3

I am

familiar

with this

method

I have

expertise

in this

method

I am

familiar

with this

method

No

experience

I have

expertise

in this

method

I have

expertise

in this

method

I have

expertise

in this

method

I am

familiar

with this

method

 ANN BBN DT FIS LinR LogR NB SVM

Dataset size
Very

Large

No data

required

No data

required
Medium Medium Medium Medium Large

Causality Very Low Very High Very Low Very Low Very Low Very Low Very Low Very Low

Uncertainty Low Very High Low Average Low Low Very High Low

Missing Values Average Very High Average Average Low Low Very High Low

Outlier High High High Low Low Average Average

Interpretability Very Low Very High Very High High High High Very Low

Complexity High Average Low Very Low Very Low Very Low Low

Performance High High High Very Low High High High Average

Speed High Average Very High Average Very High Very High Very High High

Maintainability Very Low Very High Very Low Very Low Average Average Average Very Low

Size Yes Yes Yes Yes Yes Yes Yes Yes

Development

methodology
Yes Yes Yes Yes Yes Yes Yes Yes

Development

phase
Yes Yes Yes Yes Yes Yes Yes Yes

Domain No Yes No Yes No No No No

188

Expert#4

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

I am

familiar

with this

method

 ANN BBN DT FIS LinR LogR NB SVM

Dataset size Large
No data

required
Medium

No data

required
Small Small Small Large

Causality Average Very High Average Very High Low Low Very Low Low

Uncertainty Average Very High Average Average Low Low High Average

Missing Values Average Average Low High Low Low High Average

Outlier High High Low Average Average Average Low Low

Interpretability Very Low High Very High Very High High High Average Low

Complexity Very High High Low Low Very Low Very Low Average High

Performance Very High Average High Average High High High Average

Speed Very Low Very High Very High Very Low Average Average Very High Average

Maintainability High Average Low High High High Average Low

Size No Yes Yes Yes No No No Yes

Development

methodology
No Yes Yes Yes No No No No

Development

phase
No Yes No Yes Yes Yes No No

Domain No Yes No Yes No No No No

189

APPENDIX 5 – Related Publications – Journal Articles

R. Özakıncı, A. Tarhan, Early software defect prediction: A systematic map and review,

J. Syst. Softw. 144 (2018) 216–239. https://doi.org/10.1016/j.jss.2018.06.025.

R. Özakıncı, A. Tarhan, A Decision Analysis Approach for Selecting Software Defect

Prediction Method in the Early Phases (2022), Software Quality Journal, (In Press)

190

APPENDIX 6 – Related Publications – Conference Papers

R. Özakıncı, A. Tarhan, The role of process in early software defect prediction: Methods,

attributes and metrics, in: Commun. Comput. Inf. Sci., 2016: pp. 287–300.

https://doi.org/10.1007/978-3-319-38980-6_21.

R. Özakıncı, A. Tarhan, Yazılım Geliştirmede Erken Aşamalarda Toplanan Verinin Hata

Tahmini Performansına Etkisi, in: CEUR Workshop Proc., 2016: pp. 532–543.

http://ceur-ws.org/Vol-1721/UYMS16_paper_120.pdf.

R. Özakıncı, A. Tarhan, An Evaluation Approach for Selecting Suitable Defect Prediction

Method at Early Phases, in: Proc. SEAA 2019 - 45th Euromicro Conf. Softw. Eng. Adv.

Appl., 2019: pp. 199–203. https://doi.org/10.1109/SEAA.2019.00040.

D. Erhan, A.K. Tarhan, R. Özakıncı, Selecting Suitable Software Effort Estimation

Method, in: 30th International Workshop on Software Measurement (IWSM), 15th

International Conference on Software Process and Product Measurement (MENSURA),

2020. https://www.iwsm-mensura.org/wp-content/uploads/2020/10/paper11.pdf

191

APPENDIX 7 – Dissertation Originality Report

192

