EVALUATING THE USE OF NEURAL RANKING
METHODS IN SEARCH ENGINES

SINIRSEL SIRALAMA YONTEMLERININ ARAMA
MOTORLARINDA KULLANIMININ
DEGERLENDIRILMESI

Omer SAHIN

Prof. Dr. flyas CICEKLI

Supervisor

Dr. Gonen¢ ERCAN

Co-Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Master of Science
In Computer Engineering

2022

http://fenbilimleri.hacettepe.edu.tr/index_eng.html
https://www.hacettepe.edu.tr/

ABSTRACT

EVALUATING THE USE OF NEURAL RANKING METHODS
IN SEARCH ENGINES

Omer SAHIN

Master of Sciences, Department of Computer Engineering
Supervisor: Prof. Dr. Ilyas CICEKLI
Co-Supervisor: Dr. Gonen¢c ERCAN

January 2022, 77 pages

A search engine strikes a balance between effectiveness and efficiency to retrieve
the best documents in a scalable way. Recent deep learning-based ranker meth-
ods prove effective and improve state of the art in relevancy metrics. However,
unlike index-based retrieval methods, neural rankers like BERT do not scale to
large datasets. In this thesis, we propose a query term weighting method that
can be used with a standard inverted index without modifying it. Using a pair-
wise ranking loss, query term weights are learned using relevant and irrelevant
document pairs for each query. The learned weights prove to be more effective
than term recall values previously used for the task. We further show that these
weights can be predicted with a BERT regression model and improve the perfor-
mance of both a BM25 based index and an index already optimized with a term
weighting function. In addition, we examine document term weighting meth-

ods in the literature that work by manipulating term frequencies or expanding

https://www.cs.hacettepe.edu.tr/

documents for document retrieval tasks. Predicting weights with the help of con-
textual knowledge about document instead of term frequencies for documents

terms significantly increase retrieval and ranking performance.

Keywords: Information Retrieval, Passage Ranking, Term Weighting, Pairwise

Ranking Optimization

i

OZET

SINIRSEL SIRALAMA YONTEMLERININ ARAMA
MOTORLARINDA KULLANIMININ DEGERLENDIRILMESI

Omer SAHIN

Yiiksek Lisans, Bilgisayar Miihendisligi B6liimii
Danigman: Prof. Dr. ilyas CICEKLI
Es Danisman: Dr. Gonen¢ ERCAN

Ocak 2022, 77 sayfa

Bir arama motoru, en alakali belgeleri 6l¢eklenebilir bir zamanda alabilmelsi,
etkinlik ve verimlilik arasinda bir denge kurmalidir. Son zamanlardaki derin
O0grenme tabanli siralayici yontemlerinin etkili oldugu kanitlanmistir ve alaka
Olciitlerinde en son teknolojiyi olusturmaktadir. Ancak, dizin tabanli alma
yontemlerinin aksine, BERT gibi sinirsel siralayicilar biiyiik veri kiimelerine
Olceklenemez. Bu tezde, standart bir ters indekslemeyi degistirilmeden
kullanilabilecek bir sorgu terimi agirliklandirma yontemi oneriyoruz. Sorgu
terim agirliklar, ikili siralama kaybi1 kullanilarak her sorgu igin alakali ve
alakasiz belge ciftleri kullamilarak egitilir. Ogrenilen agirliklarin, bu gorev icin
daha once kullanilan terim hatirlama degerlerinden daha etkili oldugu
kanitlanmistir. Ayrica, bu agirliklarin bir BERT regresyon modeli ile tahmin
edilebilecegini ve hem BM25 tabanli bir indeksin hem de bir terim
agirhiklandirma fonksiyonu ile halihazirda optimize edilmis bir indeksin
performansini iyilestirdigini gosteriyoruz. Ek olarak, belge alma gorevleri icin

terim sikliklarini degistirerek veya belgeleri genisleterek calisan literatiirdeki

iii

https://www.cs.hacettepe.edu.tr/

belge terimi agirliklandirma yontemlerini inceliyoruz. Belge terimleri i¢in terim
frekanslar1 yerine belge hakkindaki baglamsal bilginin yardimiyla agirliklar:
tahmin etmek, alma ve siralama performansini1 dnemli 6lgiide artirir.

Anahtar Kelimeler: Bilgi Getirme, Pasaj Siralama, Terim Agirliklandirma, Ikili
Siralama Optimizasyonu

iv

ACKNOWLEDGEMENTS

I am grateful to my supervisor Prof. Dr. llyas Cicekli and my co-supervisor
Dr. Goneng Ercan for guiding me in this journey and illuminating the way I

walkthrough.

I thank valuable lecturers of Hacettepe University, Department of Computer En-
gineering, for the courses that improve my skills and experiences in the field

when I studied for my master’s.

In addition, I would like to thank my family for supporting me unsparingly while

I am working on accomplishing my degree of master.

CONTENTS

ABSTRACT i
OZET iii
ACKNOWLEDGEMENTS v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xiii
LIST OF SYMBOLS XV
LIST OF ABBREVIATIONS xvii
1 INTRODUCTION 1
1.1 Motivationand Scope oL 1

1.2 Contribution s 2

1.3 Thesis Organization. 3

2 LITERATURE REVIEW 5
21 Ranking Function 5
2.2 Relevance Feedback 7
23 Term Weighting 7
24 LearningtoRank 9

3 LANGUAGE MODELS 11
3.1 Transformer o e e 11
3.1.1 Encoderand Decoder 11

3.1.2 Attention. e 13

Scaled Dot-Product Attention 13

Multi-Head Attention 14

3.1.3 DPosition-wise Feed-Forward Networks 14

3.14 Positional Encoding 0. 15

vii

3.2 Bidirectional Encoder Representations from Transformers
321 Model Architecture oo oL
3.2.2 Input/Output Representations
323 Pre-Training

Masked LanguageModel
Next Sentence Prediction

324 Finetuning 0 L

3.3 Text to Text Transfer Transformer
33.1 Model Architecture 00 oL
3.3.2 Input/Output Representations
333 Pre-Training
334 Fine-Tuning

SEARCH ENGINE

41 Lucene e
411 TextIndex
412 QuerySearch,

RELEVANCE FEEDBACK

5.1 Term Recall Based Term Weighting

5.2 Pairwise Ranking Loss Based Term Weighting
521 Min-Max Normalization,
522 Minimization Absolute Values of Negative Weights
52.3 Non-Negative Weight Constraint
524 PairSelection 0.

TERM WEIGHTING

6.1 Query Term Weighting
6.1.1 DeepIR
6.1.2 DeepCT-Query
6.1.3 Term Weight Prediction Model

6.2 Document Term Weighting
621 DeepCT-Index
622 TextRank
6.23 Doc2Query
624 DocTTTTTQuery

21
22
22
23

25
26
27
29
30
30
31

7 EVALUATION

71 Recall
7.2 Mean Average Precision

7.3 Mean Reciprocal Rank oo 0oL

7.4 Normalized Discounted Cumulative Gain

75 Pairedt-Test

8 EXPERIMENTS

8.1 Dataset e,
82 Configurations. o
8.3 MethodstoEvaluate,

9 RESULTS

9.1 Number of Pair for Pairwise Term Weight Optimization

9.2 Query Term Weighting

9.21 Term Recall and Pairwise Term Weight Optimization
9.22 Term Weight Estimation
9.2.3 Combining with Index Term Weighting

9.3 Document Term Weighting

9.3.1 Term Frequency Models

9.3.2 Term Expansion Models
94 PhraseSearch 0 .

9.41 Maximum Length of Phrases

9.42 Phrase Weighting
95 OverallResults

10 CONCLUSION

REFERENCES

ix

53
54
55
55
57
59
61
61
62
63
63
64
66

69

71

3.1
3.2

6.1
6.2

8.1
8.2
8.3

LIST OF FIGURES

Transformer Network Architecture 12
Attention Mechanism of Transformer 13
BERT Query Term Weighting Model Architecture 38
Doc2Query Document Expansion Model 41
MS MARCO Passage-Term Histogram 48
MS MARCO Query-Term Histogram 49
MS MARCO Query-Relevant Passage Histogram 49

X1

51

8.1
8.2

9.1
9.2

9.3

94

9.5

9.6

9.7

9.8

9.9
9.10

9.11
9.12
9.13

9.14
9.15

LIST OF TABLES

Relevant and irrelevant pair foraquery. 32
The number of passages and queries in MS MARCO collection. . . 47
BM25 parameter configurations for methods. 50
Number of documents to optimize pairwise model. 54
Query term weighting with oracle methods using the document

relevance information. MRR, MAP, and RECALL metrics evaluation. 56
Query term weighting with oracle methods using the document
relevance information. NDCG metric evaluation. 56
Query term weighting using estimated term weights. MRR, MAD,
and RECALL metrics evaluation. 58
Query term weighting using estimated term weights. NDCG met-
ricevaluation. Lo oo 59
Combined effect of query term weighting with index term weight-
ing (DeepCT-Index). MRR, MAP, and RECALL metrics evaluation. 60
Combined effect of query term weighting with index term weight-

ing (DeepCT-Index). NDCG metric evaluation. 60
Document term weighting. MRR, MAP, and RECALL metrics eval-

uation. 61
Document term weighting. NDCG metric evaluation. 62
Document term expansion. MRR, MAP, and RECALL metrics eval-

uation. 63
Document term expansion. NDCG metric evaluation. 63
Maximum length of the phrases. 64
Term Weighting for Phrase Query. MRR, MAP, and RECALL met-

ricsevaluation. Lo Lo Lo 65
Term Weighting for Phrase Query. NDCG metric evaluation. 65
Overall results of query and document term weighting. 67

xiil

LIST OF SYMBOLS

Q Query

D Document
Dge Relevant document
Djyer Irrelevant document

Dx Top K documents

qi ith term of the query

avgdl Average document length

D, Set of relevant documents

Dyt Set of relevant documents that contain term ¢

Q4 Set of queries that address the document

Qq: Setof queries that address the document and contain term ¢
w Weight vector of query terms

w; Weight of ith query term

Wiax Maximum term weight in @

=

min ~ Minimum term weight in @
Feature vector of the relevant document

Feature vector of the irrelevant document

R T wR

Minimum distance between relevant and irrelevant documents, margin

XV

NLP

TF

IDF

BoW
BERT

T5

MAP
MRR
NDCG
qid

pid
Min-Max
Min-Abs-Neg
Non-Neg

LIST OF ABBREVIATIONS

Natural Language Processing

Term Frequency

Inverse Document Frequency

Bag of Words

Bidirectional Encoder Representations from Transformers
Text to Text Transfer Transformer

Mean Average Precision

Mean Reciprocal Rank

Normalized Discounted Cumulative Gain

Query ID

Passage ID

Mininimum-Maximum Normalization
Minimization Absolute Values of Negative Weights
Non-Negative Weight Constraint

Xvii

1. INTRODUCTION

1.1 Motivation and Scope

A typical search engine retrieves the “best” matching documents to a user query.
Its effectiveness is measured through how accurately it ranks documents against
the query. On the other side, the retrieval algorithm must scale to billions of
documents and thus must be efficient. Recent research show that contextual-
ized word embeddings like BERT [6] are effective in retrieval and outperform the
long-standing baseline BM25 [34] significantly. Unfortunately, processing all doc-
uments with a ranker like BERT is not efficient and scalable. Recent studies try to
address this problem by striking a balance between effectiveness and efficiency

using multi-stage retrieval systems [25, 3].

In multi-stage search engines, the first stage is to create a subset of documents
by selecting the documents that are possibly related to the query. The second
stage is re-ranking the candidate documents according to their relevance with the
query. In the second stage, more complex learning-to-rank algorithms re-rank the
candidate documents chosen in the first stage.

As an alternative solution, it is possible to process only the query with BERT and
transfer information via term weights to an efficient index-based retrieval method
like BM25. This allows the retrieval system to scale to large datasets but still be
able to capture the importance of the terms using rich semantic information cap-
tured in BERT embeddings. Furthermore, a readily available standard inverted

index-based retrieval system like Lucene! can be used without any modifications.

Frequency-based ranking algorithms such as BM25 use corpus statistics to deter-
mine the importance weights for terms. A term appearing in a large portion of the
documents is deemed to be less important, while a normally less frequent term is
assigned a large weight. Inverse document frequency (IDF) is an effective weight-
ing scheme that incorporates this to BM25. BM25 can be further improved when
some form of relevance feedback is available, i.e., when relevant documents to
the query are known. The proportion of relevant documents a term appears in is
used as the weighting factor. We will refer to this as the Term Recall value of the

1 Apache Lucene search engine - lucene.apache.org

https://lucene.apache.org/

term. While this improves the retrieval effectiveness, the term recall values are

specific to the query and do not generalize to a diverse set of queries.

Term recall based weights are effective in optimizing recall at high cutoff values,
as terms appearing in all relevant documents are boosted. A term appearing
in all relevant documents will be assigned a high weight value, even though it
is also commonly used in irrelevant documents. A stop word appearing in all
documents will be assigned a high weight. In this thesis, we investigate the use of
pairwise ranking loss to learn the term weights of each query as a replacement for
term recall values. This can potentially adjust term weights to better distinguish
relevant documents from irrelevant ones. Furthermore, we continue to show that
these learned weights can be predicted by the BERT model and yield performance
improvements over term recall based weights.

1.2 Contribution

To increase effectiveness and maintain efficiency simultaneously, most of the ap-
proaches in the literature do index-time term weighting, which manipulates doc-
uments before the index. Considering the size and accessibility of the indices,
re-indexing might not be feasible or possible. In other respects, term weights
can also be applied in search-time by preprocessing the query with a deep learn-
ing model. In such a case, term weighting for query terms is an effective and
efficient way to fetch relevant documents for the query. For this purpose, we fo-
cus on query term weighting that aims to estimate optimum weights for query
terms by optimizing a pairwise ranking loss to achieve higher scores for relevant
documents than irrelevant ones and propose a BERT regression model to predict
desired target term weights.

We propose a new relevance feedback method that learns optimum term weights
for a query to retrieve relevant documents in the top ranks. The pairwise loss-
based optimization method tries to find the best coefficients for query terms that
boost term contribution in BM25. When boosting terms according to importance
fetching relevant documents, it has to not tend to favor irrelevant documents. The
proposed relevance feedback method called pairwise term weight optimization
generalizes over hard instances of relevant and irrelevant pairs to choose relevant

documents instead of irrelevant ones. The optimization highlights terms that

express the query and relevant document and reduce the effect of the generic

terms that are insignificant for relevant documents.

Pairwise term weight optimization runs supervised, which means it requires la-
beled data for the query. To boost query term weights in the search time, we
propose BERT based regression model that takes term and the query as input,
and the model estimates target term weight which can be term recall or pairwise
optimized ones. The proposed BERT regression model allows to phrase weight-
ing like term weighting as distinct from the term estimation frameworks in the
literature thanks to the term-query input design. The BERT regression model is
trained with the proposed relevance feedback as offline, and with the minor ad-
dition of inference time for query term weight estimation in search time, better
retrieval and ranking performances are obtained.

Besides our proposed relevance feedback and term weight estimation methods,
we bring together a comparison of the query and document term weighting mod-
els. We evaluate different approaches for query and document term weighting
schemes and investigate the neural network models they use for representing
natural language. In addition to the approaches for the studied task in the litera-

ture, we present research for relevance feedback and language models.

1.3 Thesis Organization

In the next chapter, we review the literature for seeking the history of ranking
functions, relevance feedback, term weighting, and recent learning-to-rank algo-
rithms. The development of the probabilistic ranking functions is investigated,
and BM25, which is the most known probabilistic weighting scheme, is used
in experiments. Probabilistic relevance feedback method and the different term
weighting frameworks are evaluated, and some of term weighting frameworks
use the examined relevance feedback method. Learning-to-rank approaches are

defined, and recent researches about learning-to-rank algorithms are inspected.

In the chapter of Language Models, Transformer based language models are
given. The network architectures of these language models are represented. Pre-
training and fine-tuning procedures are explained. The given language models
are used by evaluated term weighting models and the proposed term estimation
model.

In Search Engine chapter, logic of a typical text search engine is explained. The
capabilities of an open-source text search engine called Lucene are given. Text
indexing and query searching processes are detailed.

In the chapter of Relevance Feedback, the usage of relevance feedback methods
in the ranking function is explained. The existing relevance feedback method
called Term Recall is presented, and a pairwise-loss-based optimization method
for optimum relevance feedback is proposed.

In Term Weighting chapter, query and document term weighting frameworks
are given. Query term boosting methods and the proposed BERT-based term
weight estimation model is specified. Document term weighting models that by

manipulating term frequencies or expanding documents are indicated.

In the following chapters, evaluation metrics for retrieval and ranking perfor-
mance are given. The dataset for retrieval task and configurations of the test setup
is remarked. In the result chapter, the results of all experiments are explained for
different metrics and different test cases.

At the end of the thesis, final thoughts and evaluations are given as a conclusion
of the thesis.

2. LITERATURE REVIEW

The text ranking is an old topic. Indexing documents and searching something in
that indexed documents done for years. In this chapter, text retrieval and ranking
techniques in the literature are reviewed in several titles. In the first part, the
ranking schemes and probabilistic weighting schemes are investigated. In the
next part, relevance feedback is looked over for retrieval performance. In the
next part, query and document term weighting methods are explored. Finally,

we inform about learning-to-rank algorithms.

There is a well-known statistical relevance feedback method called term recall
and various term weighting schemes that use term recall in literature. Most term
weighting models focus on document term weighting, and there are fewer query
term weighting models. Furthermore, there is no study to use query and doc-
ument term weighting together. There is a work area for new relevance feed-
back and evaluating the combination of query and document term weighting
approaches in the literature.

2.1 Ranking Function

One of the most known probabilistic weighting schemes is BM25 [34]. In BM25,
BM stands for "Best Match". The probabilistic weighting schemes rely on the
exact term matching. To calculate the relevance score for a document with re-
spect to the input query, there are must be common terms between both of them.
Consequently, the cumulative relevance scores of each term give the document

relevance score.

The traditional probabilistic term weighting scheme can be formulated as follow
[31, 32]:

(ks +1)g " (k1 +1)f " log(r+0.5)(N—n—R+r+0.5)

k3+q k1L+f (n_7’+0.5)(R—1’—|—0.5) (21)

where ki and k3 are constant, which helps to scale the weights, g and f are the
term frequencies, g is in the query and f is in the document. In the equation, N
is the number of total documents in the collection, the number of documents that

contain the term is shown as n. The number of relevant documents is R and the

number of relevant documents that contain the term is . The normalized docu-
ment length is computed as the length of this document divided by the average
document length of all documents in the collection, and the normalized docu-

ment length is represented as L.

BM11 uses the probabilistic term weighting equation (Equation 2.1) with addi-
tional value to sum with cumulative document score. The following equation

shows the additional query information:

1-L
1+L

kang (2.2)
where kj is another constant and 7, is the number of term in query, in other

words, length of the query.

BM15 is the same as BM11 except k1L 4 f changed with the kj 4 f in probabilistic
weighting scheme (Equation 2.1).

BM25 is the combination of BM11 and BM15 with a scaling factor. Overall rele-
vance score for a document is calculated as follow [43]. The detailed equation of
BM25 at Chapter 5, Relevance Feedback.

n
BM25(D,Q) =) IDF(g;) - TF(D, q;) (23)
i=1
BM25F [40, 41] is a variation of BM25 that handles the contribution of a field when

the document consists of several fields such as headlines, contents.

BM25+ [33] is an extension for BM25 to dissolve an incompleteness in BM25. As
a consequence of the incompleteness, the long documents that contain the term
may be scored the same as the shorter documents that do not have the term due
to normalization of the term frequencies by the length of the document. To solve
this problem, an additional free parameter § added to TF(D, g;) as distinct from
BM25. BM25 equation is changed to the following equation:

BM25(D, Q) = f IDF(q;) - [TE(D, g;) + 6] (2.4)
i=1

where 6 is an additional free parameter that equals 1 in default.

2.2 Relevance Feedback

Terms have different contributions to the relevance score. The term frequencies
do not involve any contextual information to retrieve a document. A relevance
feedback metric can be defined when knowing the relevance between queries and

documents in the collection.

A probabilistic relevance feedback is defined by Mogotsi [20]. Assume that, for
each term x; in the query, there is constant p; that is probability estimation. Set
of user judgment relevant documents is defined as R = {d: R, =1}. When
relevant and irrelevant document sets are big enough, the relevance feedback p;

for term t is shown as follow:

_ VR,
Pt=VR]

(2.5)

where VR; is the set of relevant documents that contain term x;, and VR is the
set of all relevant documents. With smoothing factor, the relevance feedback for

term x; equals to following equation:

VR +1

~ |VR|+1 (2.6)

Pt
This probabilistic relevance feedback can be applied to the document-side. The
relevance probability is estimated by replacing with each other the query and
document in the assumption. The document-side relevance probability is calcu-
lated as the same but this time V' R; is the set of queries that address the document
and contain term x; and VT is the set of queries that address the document, and
x; is the tth term of the document, instead of a query.

The probabilistic relevance feedback without smoothing factor is called Term Re-
call and it is used in retrieval frameworks [49, 5] to obtain more knowledge than
the statistical TF-IDF values.

2.3 Term Weighting

Term frequencies and inverse document frequencies are statistical relevance feed-

back about a term that is independent of the input query in a basic way. Term

weighting is more accurate relevance feedback about terms for retrieval and rank-

ing relevant documents by replacing term frequency with estimated term weight.

To realize this purpose, there are several methods such as estimating target rel-
evance feedback by contextual embeddings, defining term importance by term
co-occurrence, or predicting possible queries that address to the document and
expand the document with these possible queries. Some of these methods can be
applied in both document and query terms.

DeepTR is a query term weighting method that boosts the score of the term in
the ranking function proposed by Zheng and Callan [49]. DeepTR tries to esti-
mate term recall [20] relevance feedback by using the distance between the term
and the query as a feature vector. Terms are represented in the feature space by
Word2Vec [19] word embeddings. The query is the average of the word vectors
that compose the query itself.

Dai and Callan [5] proposed a contextual term weighting framework called
DeepCT for document and query terms. The contextual knowledge about text
extracted with BERT [6] language model and a regression layer tries to predict
target relevance feedback which is term recall [20]. The pre-trained BERT
language model is fine-tuned for the task that estimates term recall values with

an additional regression layer.

TextRank is a graph-based keyword extraction model proposed by Mihalcea and
Tarau [18]. TextRank uses the PageRank [1] algorithm to find the most impor-
tant terms in the document by using their co-occurrence matrix. Relevance feed-
back of the terms is defined by the PageRank algorithm in Text Rank. Most co-
occurrence terms in the documents are the most important terms to represent the
documents and the terms that co-occurrence with most important terms is impor-
tant as well in regard to the PageRank algorithm.

Document expansion models change term frequencies by adding terms and
reduce term mismatching between query and document by adding new terms to
the document. Doc2Query [24] and its follow-up work DocTTTTTQuery [23]
models expand documents by estimating queries that address to the document.
Both models use sequence-to-sequence [42] neural network architecture that
takes documents as input sequence and predicts queries as output sequence.

Doc2Query model is trained end-to-end to estimate possible queries for

documents. DocTTTTTQuery model is fine-tuned for query estimation task
from Text-to-Text Transfer Transformer model trained as a generative language
model for different tasks with rich text data by Raffel et al. [30].

A more recent research, DeepImpact [17] combines document expansion by
DocTTTTTQuery [23] and term weighting together. The enriched documents
with the help of document expansion by DocTTTITTQuery reduce word
mismatching and the contextual document term weighting helps to get better

ranking and retrieving performance.

2.4 Learning to Rank

Learning-to-Rank algorithms use three main approaches that are point-wise, pair-
wise, and list-wise to rank documents, and focus on representation or interaction

of query and document.
The learning-to-rank approaches can be listed as follows:

¢ Point-wise approach learns to rank documents on a single document and
input query. The point-wise model calculates the relevance score for each
document.

* The pair-wise approach learns which of the document pairs is more relevant
to the input query. The model compares the documents in pairs according
to their relevance to the query and returns the more relevant document.
RankSVM [14] and RankBoost [7] use the pair-wise approach to rank docu-
ments by judging which documents in the pair are more relevant with the

input query.

¢ The list-wise approach learns to rank the set of documents according to their
relevance to the input query. The model returns an ordered list of docu-
ments. ListNet [4], AdaRank [47] and LambdaMart [2] apply the list-wise
approach. The set of documents is ranked as a whole in a single run.

Representation-focused learning-to-rank algorithms extract a representative fea-
ture vector for the query and the document individually and relevance scores are
measured by using the similarity between representation vectors of query and
document pair. DSSM [12], CDSSM [39], ARC-I [11], and SQA [36] learning-to-
rank algorithms focus on the representation of document and query.

Interaction-focused learning-to-rank algorithms try to match the query and docu-
ment feature patterns according to the interaction of the query and the document.
The more matching patterns the higher the relevance between the query and the
document. DRMM [9], ARC-II [11], MatchPyramid [26], Match-SRNN [45], Deep-
Rank [27] learning-to-rank algorithms focus on the interaction between document
and query.

Zamani et al. [48] proposed a sparse representation method for documents in the
collection. The sparse representation vectors are used to index documents by in-
verted index [50] structure. The queries are represented as sparse vectors in the
same space. The matched non-zero values between query and documents pro-
vide document retrieval and the similarity of sparse vectors gives the relevance

score.

Recent research BERT-based ranking models like Passage Re-ranking [22], TF-
Ranking [10], ColBERT [15] and COIL [8] show that contextualized word embed-
dings like BERT [6] are effective in retrieval and outperform the long-standing
baseline BM25 [34] significantly.

10

3. LANGUAGE MODELS

3.1 Transformer

Transformer [44] is a model that uses the attention mechanism to detect global
dependencies between input and output sequences instead of recurrence. On the
machine translation task, Transformer achieved better quality success and the
transformer model needs less time for training significantly due to more paral-

lelization than recurrent models.

In many sequence transduction tasks, the main objective is finding relevance be-
tween tokens in the long sequence range. Self-Attention provides to learn these
dependencies in a long-range by creating combinations of the tokens in the se-
quence. Additionally, self-attention layers work faster than recurrent layers, if

the sequence length is less than the representation dimensionality.

Transformer consists of encoder and decoder architecture, both encoder and de-
coder use stacked self-attention and point-wise fully connected dense layers. The

model architecture of Transformer is given in Figure 3.1.

3.1.1 Encoder and Decoder

The encoder part of Transformer is stacked N identical layers that consist of two
sub-layers. The first one of the sub-layers is a multi-head self-attention mecha-
nism and the second one is a position-wise feed-forward network that fully con-
nected. There are residual connections around sub-layers which are followed by

a normalization layer.

The decoder of Transformer is stacked N identical layers similar to the decoder.
The decoder has one more sub-layer between multi-head attention and position-
wise feed-forward block. The additional sub-layer applies multi-head attention
to the output of the encoder stack. As in the encoder, there are residual con-
nections around sub-layers and after that, a normalization layer. In the decoder
stack, the self-attention sub-layer is adjusted to ensure prediction at position i

rely on the known output that position is less than i by masking.

11

Output
Probabilities

)

Softmax

)

| Decoder
[Encoder }
Posmo.nal @ @ Posmo‘nal
Encoding Encoding
Input Output
Embedding Embedding
|nputs OUtpUtS

(shifted right)

FIGURE 3.1: Model architecture of Transformer [44]

12

Scaled Dot-Product Attention Multi Head Attention

)
[Lin;ar]

Concatenate

] h

~

SoftMax

[Scaled Dot-Product Attention

= e S
L R

Q K V Q K Vv

Scale

FIGURE 3.2: Scaled Dot-Product Attention and Multi-Head Atten-
tion [44]

3.1.2 Attention

The definition of the attention function is mapping a query and a set of key-value
pairs to an output that is the sum of values weighted by the compatibility of the
query and key, which corresponds to the query.

Scaled Dot-Product Attention

Queries, keys of dimension di, and values of dimension d, are taken by scaled
dot-product attention as input. The keys of dimension dj are used for scale factor
when computing dot-products of the query by dividing each key to \/dy. After
that, softmax is applied to values for weighting. Scaled Dot-Product Attention

layer is shown on the left in Figure 3.2.

The scaled dot-product attention is computed as follows:

13

T
Attention(Q,K, V) = (QTIZ) 1% (3.1)
k

where Q is the query set matrix, K and V are for the keys and values respectively.
KT is the transpose of the K.
Multi-Head Attention

Each query, key, and value are projected to linear space & times by independent
linear projections for d,, dy, and d, dimensions. The attention function for these
linearly projected queries, keys, and values is applied in the manner of parallel.
The output of attention functions which is at head &, are concatenated with each
other and another linear projection is applied over this concatenation. Multi-
Head Attention layers are shown on the right in Figure 3.2.

MultiHead(Q, K, V) = Concat(heady, head,, . . .,headh)WO (3.2)

where

head), = Attention(QWS, KWK, VW) (3.3)

where weights of liner projections Wl-Q € Rifmozerdi, WK € Rimoter>d WV €
RdmodeIde’ and WO e thdemodel_
3.1.3 Position-wise Feed-Forward Networks

There is a fully connected feed-forward network that is performed at each posi-
tion separately and with the same weight for different positions. Each layer has
different weights for the feed-forward network.

The Feed-forward network performs two linear transformations and it has the
ReLU activation function which is in between linear transformations.
Fully connected feed-forward performed as follow:

FFN(x) = max(0,xW; + b1)W, + by (3.4)

14

3.1.4 Positional Encoding

Transformer has no information about the position of the tokens in the sequence
by relatively or absolutely due to Transformer does not contain any recurrence or
convolution. For the sake of giving positional information, there is the positional
encoding for adding to input embeddings at the beginning of encoder and de-
coder stacks. To sum the positional encoding and input embeddings, they have

the same dimension d,;, ;-

The positional encoding obtained as given sine equation:

PE (s i) = sin(pos/10000%/ @modt (3.5)

where positions of the token in the sequence are shown as pos and the dimension

shown as i.

3.2 Bidirectional Encoder Representations from Transformers

BERT (Bidirectional Encoder Representations from Transformers) is a language
representation model that is designed to pre-train on unlabeled text corpus by
bidirectional to learn the context of the text. Transformer applies bidirectional
self-attention, each token interacts with other tokens in BERT architecture.

The pre-train objective of the BERT is the masked language model (MLM). Ran-
domly selected tokens in a text sequence are masked and the model tries to find
masked words by using the context of the text extracted from unmasked terms in

the task of the masked language model.

The language representation models are pre-trained by two known approaches
which are future-based and fine-tuning. The unidirectional language models such
as ELMo [28] and Generative Pre-trained Transformer (GPT) [29] have the same
objective for pre-training. ELMo applied a future-based approach, it has task-
specific features. GPT has fewer task-specific features and it can be trained for
any other task by simply fine-tuning.

15

3.2.1 Model Architecture

The architecture of BERT consists of Transformer described by Vaswani et al. [44]
in multi-layer bidirectional form. Transformer applies bidirectional self-attention,
each token interacts with other tokens on both left and right sides in BERT archi-

tecture.

In BERT architecture, L stands for the number of layers, in other words, Trans-
former blocks, H stands for the hidden size, and A stands for the number of
self-attention heads. Base BERT model has 12 layers, 768 hidden sizes, and 12
self-attention heads. The total number of parameters is 110 million for the base
model of BERT.

3.2.2 Input/Output Representations

BERT has special tokens to represent single sentences and pairs of sentences like
question-answer tasks without any ambiguation to create a generalized language
model by independent from any task. Each text sequence starts with the special
classification token [CLS] which represents the final hidden state that aggregated
through the sequence, and this token is used on the classification tasks. To sep-
arate sentences in a pair of text sequences, the special separator token [SEP] is
used between the first sentence and the second sentence.

BERT uses WordPiece embeddings [46] to tokenize text sequences into tokens
of vocabulary which has 30.000 unique tokens. WordPiece tokenization handles

decode single character and full word without suffering mismatch.

3.2.3 Pre-Training

BERT pre-trained two unsupervised tasks that are masked language model
(MLM) and next sentence prediction (NSP). BERT was pre-trained with a large
text corpus by using BooksCorpus which consists of 800M words and English
Wikipedia which consists of 2.500M words.

Masked Language Model

In the masked language model, randomly 15% of tokens are masked of all to-
kens in a text sequence that tokenized by WordPiece. When pre-train BERT by
MLM task, the model only predicts to masked words. With help of bidirectional

16

transformer architecture, each token interacts with any other tokens in both left
or right ways. In this way, masked terms are predicted by using the context of

the whole text sequence.

Randomly chosen tokens in a text sequence are replaced with the special token
[MASK] by 0.8 probability, by 0.1 probability a random token is used instead of
the masked one, and the other 0.1 probability chosen token is used as it is without

masking.

Next Sentence Prediction

Some NLP tasks like Question Answering are based on detecting interaction be-
tween two sentences. To detect the relationship between pairs of sentences, BERT
pre-trained for the next sentence prediction (NSP). In half of the training data,
the second sentences are actually the continuation of the first sentences. In the
other half, the second sentences are unrelated to the first ones. BERT is trained
to predict the first sentence is followed by the second sentence or not in the NSP
task.

3.2.4 Fine-tuning

BERT pre-training creates a language model that can extract contextual embed-
dings with the help of Transformer’s self-attention mechanism [44]. Through this,

BERT can be used in many language processing tasks by only fine-tuning.

The pre-trained BERT model is used as a starting point to fine-tune a specific task.
The model is fine-tuned end-to-end using task-specific inputs and outputs. The
aggregated representation token [CLS] is feed-forward into classification layers
on classification tasks. At the end of fine-tuning, all parameters in BERT and

task-specific layers are updated.
The fine-tuning requires less time compared to pre-training of BERT.
3.3 Text to Text Transfer Transformer

Raffel et al. [30] proposed a model that approaches each natural language pro-
cessing (NLP) task as a text-to-text problem. The idea of the Text to Text Transfer

Transformer (T5) is the learning of a language model by using a huge amount

17

of English text knowledge and fine-tune for downstream tasks which are ques-
tion answering, document summarization, sentiment classification, and machine

translation.

The rich dataset was obtained from the internet. Each month, nearly 20TB of text
data is written on the internet. The web-based text data called "Colossal Clean
Crawled Corpus", filtered by some preprocessing such as discarding web pages,
which contain placeholder "lorem ipsum" text, slangy words, programming lan-
guages, or short web pages. The cleaned text corpus is used to learn a generative

language model to become applicable for the text-to-text tasks.

3.3.1 Model Architecture

T5 tries to explore the limits of transfer learning by understanding the text and
tine-tuning for tasks by learning a language model for the English language with
a rich and clean text corpus. To this end, the T5 model uses a similar architecture
with Transformer as proposed by Vaswani et al. [44] instead of proposing a new
network architecture. To actualize the text-to-text approach, the generative lan-
guage model is required, therefore, BERT [6] language model is not applicable for
this task. Though, the configuration of the encoder and decoder of Transformer

is the same with the BERTg 45 model structure.

T5 model architecture has some differences from Transformer. One of them is
removing layer normalization bias and adding to the residual path from outside
as layer normalization. Another difference is relative position embeddings [37]

are used instead of sinusoidal position embedding.

3.3.2 Input/Output Representations

Each downstream task is considered a text-to-text task. Therefore, a task-specific
prefix is used before the input text as an indicator for the downstream task. For
example, to translate an English sentence to German, the prefix will be "translate
English to German:" and that is followed by the input sentence. And the output
of this input sequence is the translation of the English sentence to the German
one. Another example, to summarize a long text, the prefix "TL;DR:" (stand for
"too long, didn’t read") is added to the text. The input text is given with this prefix

and the output is the summary of the input.

18

The input text sequences are represented with WordPiece [46] tokens as same as
BERT input representation. T5 model fine-tuned to translate English to German,
French, and Romanian, therefore, the WordPiece vocabulary extended to cover
other languages. The web pages are used to crawl text in these languages and
expand vocabulary. At the end of this, the T5 model only supports a constant set
of languages.

3.3.3 Pre-Training

Pre-training is performed on the T5 to learn a generative language model before
fine-tuning to apply downstream tasks. The pre-training was done in the manner
of the unsupervised learning text-to-text task. T5 model pre-trained with cleaned
web crawled text corpus (Colossal Clean Crawled Corpus) from April 2019. The
dataset consists of about 750GB of text data.

T5 pre-training task is inspired by BERT’s "masked language model". In T5, the
masked language model is masking randomly chosen tokens in the input se-
quence and the T5 model tries to predict the original text. Additionally, prefix
language modeling which is the next sentence prediction in BERT’s pretraining
task and deshuffling input text is evaluated by T5. The deshuffling language
model is the put the text in order to original form from a scrambled input se-

quence.

In all pre-training objectives, the input and the output of the T5 are used as the
text sequence. To measure the loss of the generative performance of the T5 model,
the cross-entropy loss was used, and the model was optimized with AdaFactor
[38]. When prediction, at each timestep highest probability is chosen, which is
called greedy decoding.

3.3.4 Fine-Tuning

After pre-training with text-to-text tasks to learn a generative language model, T5
is fine-tuned for specific tasks which can be also solved as text-to-text objectives.
All downstream tasks are combined into a single model by fine-tuning by adding

a prefix to the input text sequence to specify the task.

The downstream tasks like question answering, document summarization, sen-

timent classification, and machine translation are fine-tuned by identifying with

19

task-specific prefix and the output of the model is the expected text of these tasks.
For classification tasks, the expected output is the target class in text format.
Thence, the multiple NLP tasks are handled with a single model.

20

4. SEARCH ENGINE

Search engines are tools that retrieve related information about user requests.
Most of the time, user fill a form which has different fields such as text, date,
or list, the search engines try to find relevant information that is in kind of doc-
ument, web page, etc. by seeking the form of request. Search engines can be
specialized for a specific area like library search tool or more general like web

search tools that can search text or media.

A search engine has two main objectives. The first objective is retrieving relevant
information for an input request, and the second one, ranking retrieved informa-

tion by their relevance score according to the input request.

For this purpose, a search engine may have a single-stage or multi-stage. Single-
stage search engines produce results in a single fetching and ranking algorithm.
In multi-stage search engines, retrieving possible related information and rank-
ing them are separated into two stages. Multi-stage searching provides using
a lightweight information retrieval algorithm to select possible documents as a
subset of the collection. After that, a complex ranking algorithm can be used to

sort a subset instead of ranking the whole collection for each input request.

In multi-stage search engines for text data, first, the collection is ranked in an
efficient way and creates a subset for the input query. After that, a more effective
ranking algorithm re-rank the subset of the collection. To achieve easy access to
documents that contain one of the words in the query, the inverted index method
is used. To determine the most possible documents, retrieved documents are
ranked by BM25.

In this thesis, the search engine specialized for searching text documents by text
queries. The main focus of this work is ranking all documents in the collection.
Improving first-stage retrieval performance by maintaining the efficiency of the

tirst-stage retrieval on the search time is aimed.

21

4.1 Lucene

Lucenel

is an open-source framework that provides text indexing and search-
ing capabilities. Lucene framework is written in Java programming language.
Lucene is a lightweight and reliable search engine specialized in text search. It re-
quires a small amount of memory usage, and it works high performance. Lucene
has fielded text search and it can rank documents according to queries with a
similarity metric like BM25. Lucene supports more than 10 languages and some

language-specific processing can be applied on the index time and query time.

4.1.1 Text Index

Lucene index documents with inverted index method. The inverted index is a
way to access documents by searching a set of words without requiring investi-
gating all documents in the corpus. The inverted index is a data structure that
stores documents, and by searching words, can easily reach documents in the
index. To create an inverted index, first, unique words are extracted from the
corpus, and it is a vocabulary of the corpus. Unique words are used for con-
structing an index table. After that, document references are mapped to words if
they contain the word in the index table. Thus, when a word is searched, the set
of documents that have the word is accessed by O(1) complexity.

In this thesis, the English language corpus is used to evaluate methods. There-
fore, a language-specific analyzer, the English analyzer is used, Lucene has a
built-in language analyzer for English. Lucene also provides a set of options that
can be applied like ignoring stopwords or stemming words. These preprocessing

are applied in search time too.

Default English analyzer applies pre-processes on the corpus consecutively
which are word tokenizer, possessive filter, lower case filter, stopword filter, and

porter stemmer in the index time.

* Word Tokenizer: A text corpus is tokenized into the words according to

word break rules by using the Unicode Text Segmentation algorithm.

* Possessive Filter: The possessive filter gets rid of possessives (trailing ’s)

from words.

Lucene - lucene.apache.org

22

https://lucene.apache.org/

¢ Lower Case Filter: All word tokens converted to lowercase.
¢ Stopword Filter: Removes words that are stopwords from the text.

* Porter Stemmer: Words are transformed to the stemmed version by porter
stemmer algorithm. Porter stemmer normalizes terms by removing the

commoner morphological and inflexional endings from words in English.

4.1.2 Query Search

The query search is done term by term. TF-IDF scores are calculated for each
term in the query and cumulative scores of them give the document score for the
query for BM25 similarity. The same pre-process in the index time is applied to
the query before document search. Additionally, there are several options when
searching a query like a phrase search and fuzzy search. There is a boost factor

for query term weighting as well.

With the help of query term boosting, query term weighting methods can be eas-
ily evaluated by adding weight to terms to query before search. With reference
to this, there can be a coefficient for each term as a boost that is multiplied by the

term score to define the importance of the term.
what~0.137 is71.043 dynamic~0.812 resolution~0.910

Lucene query search provides phrase search instead of word by word document
search. The sequential words can be searched as a single term and the phrase
is searched in the document in the same way. At this stage, with fuzzy search,
phrases match with phrases in the documents if the edit distance is less than the
defined fuzzy value.

what is "operating system misconfiguration"™3

23

5. RELEVANCE FEEDBACK

The ranking is the task of finding relatively higher scores for relevant documents
than irrelevant ones. In this way, relevant documents are placed at the top of
the output result list. Relevance feedback information identifies if the presented
documents are relevant or not. While this information is not usually available,
methods using pseudo-relevance feedback exists that utilize user interactions to
adjust the retrieval methods. Term recall is such a method that uses the term
weights to adjust the retrieval function like BM25 to retrieve relevant documents.

BM25 score of a query Q that consists of terms 41,42, - - -, 4s, and document D, is
calculated as follows [43]:

BM25(D, Q) = Y IDF(g;) - TE(D, 1) (5.1)
i
f(4i,D) - (k1 +1)
TF(D, q) = 52)
f(4i, D) +ky (1 —b+ balf;lu)

where f(g;, D) is term frequency of g; in the document D, |D| is length of the
document. Average document length is given as avgdl. ki is the parameter to
control the rate of term-frequency saturation and b is the parameter for the effect
of document length normalization. IDF(qg;) is the inverse document frequency

that contain g; is shown as:

IDF(g;) = log (N ;(Z()qu J50'5 + 1) (5.3)

where N is the number of documents and 7(g;) stands for number of document

that contains gi.
BM25 equation with weighted terms can be written as follow:

BM25:,(D, Q) = f w; - IDF(g;) - TE(D, ;) (5.4)
i=1

where w; is weight of ith term of the query.

25

When ranking documents for the given query, each term has a different effect on
fetching relevant documents. Some terms are more meaningful to understand the
keywords of the query while others serve a more grammatical purpose. Term re-
call is a probabilistic weight function for setting w; weights. It uses only relevant
documents to weighting the terms, and without using the information in other

irrelevant documents in the corpus.

5.1 Term Recall Based Term Weighting

The importance of the query term in the given query to retrieval success is deter-
mined by the term recall value. Term recall is the ratio of the number of relevant
instances that contain the term over the total number of all relevant instances.
Thus, term recall shows the usage frequency of a term in the relevant instances

and contribution to fetch relevant ones.

Term recall can be applied over two side of term weighting. For query term
weighting, term recall is number of relevant documents with the term divided

by number of all relevant documents, and the equation is as follows:

D
TermRecall(t,q) = Dy (5.5)
where D, is set of relevant documents that contain the term of query and Dj is
set of relevant documents for the query. While this weighting scheme rewards
terms appearing in relevant documents, it does not penalize terms with low dis-
criminative value. A stop word appearing in all documents both relevant and

irrelevant will receive the maximum weight under this framework.

For document term weighting, this time, the number of queries that address to
document is used. The term recall value of a query term is the number of queries
that contain the term for the document divided by the number of all queries that
address the document. Term recall for document term weighting is shown as
follows:

|Qa
Q4

TermRecall(t,d) = (5.6)

26

where Q is the set of queries for document d and Qj; is the subset of Q; that
contains term t. Due to the queries being shorter than the documents, for all

document terms, a term weight cannot be produced under the term recall scheme.

5.2 Pairwise Ranking Loss Based Term Weighting

We propose an optimization function that learns optimal weights for query terms
to achieve a higher weighted BM25 score for relevant documents than irrelevant

ones.

Let BM25(D, g;) be BM25 value of the ith term of the query for document D.
In this case, BM25 score of document D with weighted terms equals to w; -
BM25(D,qy) + wy - BM25(D, q2) + - - - + w,, - BM25(D, q,). In this equation, n
is the number of terms in the query, and it does not change for different docu-
ments. For this equation, we try to optimize term weights to obtain a higher final
BM25 score for relevant documents and bring forward the most important query
terms for retrieval performance.

Sorting is based on pairwise comparisons between the documents. The docu-
ments which are relevant to the query should have a higher rank compared to
the irrelevant documents. To find term weights that lift the score of relevant doc-

uments, an optimization based on pairwise ranking loss is designed.

For an input query Q = {q1,92,- - -, qn}, relevant documents are paired with ir-
relevant ones to form a training instance. A training instance is represented with
two feature vectors formed of BM25 values for each term in the same order with
query terms. Feature vectors can be represented as Dy, =< x1,X2,-++,x, > for
relevant document and Dy,..; =< y1,Y2, - - -, Yn > for irrelevant document in the
pair. BM25 score of the relevant document is written like BM25;,(Dg., Q) =
Wy - X1+ Wy X2 + -+ + Wy - X,. In the same way, for irrelevant document BM25,
score is BM254,(Dyyye;, Q) = w1 -y1+ W2 - Y2 + -+ - + Wy - Y.

The final objective is to learn term weights that produce high scores for relevant
documents while reducing the score of irrelevant ones. The pairwise optimiza-
tion aims to provide the following condition, and the loss function can be defined
as the next one:

27

BMZStw(DRelr Q) > BM25tw(D1rrelz Q) + (5-7)

loss = [mQXimum(BMz"stw(Dlrrel/ Q) - BM25tw(DRel, Q) +u, O)]z
2

(5.8)

where « is the margin between relevant and irrelevant document pairs, assur-
ing that the difference between a relevant and irrelevant document is at least «
[35]. If the weighted BM25 score of the relevant document is greater than sum
of the margin and the irrelevant one, then the loss will be 0, and weights are not
updated.

Let BM2544,(Dge;, Q) be equal to @ - X and BM25¢,(Dp,e1, Q) equals to @ - i, and
- is dot product. If relevant score is less than the irrelevant one and margin «,

W - X < W -y + a, derivative of loss with respect to weights as follows:

oloss
oW

—

= (@ §—@ % +a)(f—) (5.9)

To find optimal weights using a gradient, Adam [16] optimizer is used. Adam
optimizer is an optimization algorithm of stochastic objective by based gradient
on first-order. For each weight, individual adaptive learning rates are used in
Adam optimizer. Rescaling of the gradient does not vary parameter changing
values and hyperparameters limit the step-sizes. The weights are updated at
each iteration to find the optimal solutions by the following equations.

Biased first moment and second raw moment estimation updated as follow:
my < Br-mp—1+ (1—P1) - 8 (5.10)

v < Bo- v+ (1—B2) - &7 (5.11)

where B and 3, is moment estimation parameters as exponential decay rates in

range [0, 1), and the initial values of the first and second moment vectors are 0.

Bias corrected first and second raw moments are calculated as follow:

iy < my/ (1— BY) (5.12)

28

O < v/ (1—BY) (5.13)

where t is the timestep, in another word, the number of iteration. Timestep ¢

increased by 1 at the beginning of each iteration and the initial value is 0.

Finally, the weights are updated as follow:

Wi — Wy — & - Mg/ <\/z7—t—|—e) (5.14)

where « is the stepsize and ¢ is the very small number to prevent undefinition

due to zero division in the equation.

Initial weights are defined as a normal distribution with 0.5 mean and 0.05 stan-
dard deviation. After pairwise ranking loss-based term weighting, some of the
optimal weights for query terms can be negative. That means the optimal so-
lution is provided by penalizing unwanted terms. The negative term weights
are not applicable by search framework Lucene. Therefore, all weights must be
greater or equals to 0. To provide this constraint, there are two ways, the weights
are normalized after optimization or force the weights to be positive when search-
ing optimal solution.

The first way is the min — max normalization, the optimized term weights fit the
range 0 and 1. When learning optimal term weights, we can force the weights
to be positive with constraint. For this purpose, a cost value is added to the loss
for being negative weights, or another solution, negative values are projected to

zeros in each iteration after updating weights.

5.2.1 Min-Max Normalization

Final weights, optimized for the higher BM25 score for relevant documents, are
in the range —oo and co. After the optimization, to scale the weights between 0

and 1, min-max normalization applied as follows:

W
Scaled w; = H (5.15)
max min

where w; is the ith term weight for query, Wj,qx is the maximum term weight for

the query, and W,,;,, is the minimum term weight for the query.

29

5.2.2 Minimization Absolute Values of Negative Weights

Positive term weights let us be sure that optimized weights promote the most
valuable terms in the query to fetch relevant documents. However, negative

weights refer to reduce document score by penalizing unwanted terms.

To prevent this, a cost function that aims to minimize absolute values of the neg-
ative weights is added to the loss. Irrelevant documents cause negative weights
due to the loss, to this end, the additional cost function tries to minimize the
gap between negative scores of terms and zero. Negative scores are calculated
by element-wise multiplication of estimated weights and feature vectors of the
irrelevant documents. The document features are always positive due to BM25

calculation and negative scores are caused by negative weights.

For this objective, the additional cost function written as follow:

cost = |minimum (@ © i,0)| (5.16)

where © is element-wise multiplication, @ is weights and i/ is feature vector of
irrelevant features.
The derivative of the cost function by w is:

ocost
oW

= sign((W O ¥) O Y) (5.17)

when @ © i < 0 otherwise 0.

At the end of the optimization, there can be still negative weights even if they are
close to 0. To prune negative weights, the weights below zero are ignored and

projected to 0 as following equation:

W = maximum(,0) (5.18)

5.2.3 Non-Negative Weight Constraint

In the training time, the negative weights are projected to another space by as-
signing them to 0 at each iteration after updating weights. In the next iteration,
the equation tries to find another solution without negative weights. If a weight

30

tends to negative values, it is prohibited by ignoring weights less than 0 at each
iteration. The final solution is in positive space with the help of the non-negative

constraint.

In each iteration, the following operation is applied to optimized weights after
updating weights by gradient:

W11 = maximum(y,0) (5.19)

where @; is the updated weights by optimizer and ;. the new weights for next
iteration. The non-negative constraint is like ReLU activation function, but it is

applied to the weights instead of the output.

5.2.4 Pair Selection

Relevant and irrelevant pair selection starts with the initial BM25 ranking with-
out weighting terms. Relevant instances are known for a query thanks to the
labels, and they are picked from the collection. Ranking documents by original
(unweighted) queries is called the initial run. Irrelevant instances are selected
from the top results that are retrieved by the initial run, after excluding relevant
instances for the query. This allows the model to discriminate the relevant docu-
ments from irrelevant false positives of the default BM25.

Each relevant document is matched with irrelevant documents from the initial
run to construct pairs. Pair generation is based on cross-production of the rele-
vant and irrelevant documents. The number of pairs at the end of the pair gen-
eration depends on the number of documents retrieved by the initial run and the
number of relevant documents. Most of the queries fetch the desired number of
documents from the initial ranking, but some of them may be less result if there
is less match with the documents.

Each query is optimized independently from the other queries. This method in a
way overfits weights with respect to relevant and irrelevant documents per each
query. In this way, the optimization model predicts the best weights to increase
relevant document weights and decrease irrelevant ones when compared to each
other. It should be noted that as these weights would be too specific to a query
and not generalize to a different query, they would not be useful for a search

31

engine. However, as we proceed to predict these weights for an unseen query
using contextualized word embeddings, considering both the semantics of the
query and the role of the term in the query, it is applicable to unseen queries. After
estimating optimal weights, a contextual model like BERT learns the predicted

weights by only using the query terms.

In short, the pairwise term weight optimization method learns specific term
weight for each query by overfitting relevant and irrelevant pairs for the query.
A language model like BERT aims to understand contextual information of
queries to predict these optimized term weights by learning interactions
between terms in the query. In the end, a term weighting model is trained that

estimates pairwise term weight for each term in a query.

TABLE 5.1: Relevant and irrelevant pair for a query.

Query What is dynamic resolution?

Relevant DynamiX is a unique implementation of real-time dynamic res-
olution technique that is designed to enable a tunable minimum
performance level to increase the playability of a game by dy-
namically changing the render target resolution of objects in real
time, without the need of the game developer to design it in ad-
vance.

Irrelevant Imaging the larynx’s positions and the vocal folds” vibrations is
possible using dynamic MRI. This technique permits measure-
ments of laryngeal structures and glottal parameters in dynamic
function with multiplanar high-resolution imaging.

*Query and passages were taken from MS MARCO passage dataset.

32

6. TERM WEIGHTING

The term weighting adds more contextual knowledge to text than statistical in-
formation from term frequency and inverse document frequency [5, 17, 49]. For
specialized tasks, term weights are estimated with the help of contextual knowl-
edge. The specialized task is determined as document retrieval and ranking. To
this end, the term weighting can be applied to the documents in index time or to
the queries in the search time. By this means, term weighting carries much more
retrieval and ranking information than the classic TF-IDF features.

In this thesis, document and query term weighting methods in the literature
were examined. The BERT-based term weight estimation model was evaluated
with the proposed pairwise relevance feedback. In the following sections, the
query term weighting methods in literature and proposed BERT-based estimation
model are given. Next, the document term weighting methods in the literature

are explained.

6.1 Query Term Weighting

Query terms are weighted to indicate how essential their contribution to the
query for retrieval and ranking documents. Contextual knowledge is used for
query term weighting. The documents are retrieved and ranked with matched
query terms. The cumulative scores of the query terms give the document rel-
evance score for the query. As mentioned in Chapter 5, Relevance Feedback,

predicted weights are used as a coefficient.

DeepTR and DeepCT-Query use term recall as relevance feedback. To predict tar-
get relevance feedback, DeepTR uses a term-query difference vector calculated
by word embedding vectors. DeepCT-Query is the same framework as DeepCT-
Index, DeepCT-Query handles term weighting on the query side. Additively, a
proposed query term estimation model based on BERT is explained in this sec-
tion.

6.1.1 DeepTR

DeepTR [49] is a method that weighting query terms by their distance to query

itself. The distance between term and query is measured by word embedding

33

vectors. The word embedding is weighting words to represent according to their
semantic values as a k dimensional vector. Embedding vector of word w; in k
dimensional space is shown like w; = (xg,x1,x2---x¢). Word2Vec [19] word

representation as vector space method was used in DeepTR.

The importance of the query term in the given query to retrieval success is deter-
mined by the term recall value. Term recall for query term weighting is a ratio of
the number of relevant documents that contain the term over the total number of
all relevant documents. Thus, term recall shows the usage frequency of the query

term in the relevant documents and contribution to fetch relevant ones.
Features

The features for each term in a query are extracted by its distance to the query.
The distance is calculated by word embedding vectors. A query is represented
in a k dimensional space by taking average word vectors of terms that form the
query and the feature of a term is the vectorial distance between the word em-
bedding vector of the term and the query.

Let a query is represented as q; = tj1,tj, ti3, - . ., tin, and w;; is a word embedding
vector for ¢;;. In this case, the feature vector x;; of ¢;; calculated as follows:

Xjj = Wij — Wy, (6.1)
where
1 ¢
Wy, = — Y Wik 6.2)
ni 3
Training

DeepTR model tries to estimate the term recall value for each query term. The
input of the model is the distance of the term to query. The target values of the
model are logit of term recalls. The target value for term ¢;; is calculated as fol-
lows:

1’1']'

T (6.3)

yij = log

34

where 7;; is term recall value of the term ¢;;.

The model tries to learn weights of B in the equation of y = BT x. Before the
optimization [;-norm regularization applied to input features. Finally, the model

tries to optimize LASSO regression as follows:

. I 2
;B = arg min — Z Z (yl] - IBTXZ']'> +)LH,BHl (6.4)
BeR? 2 i 1o
where M is number of queries, 7; is term number of ith query, x;; is feature vector
and y;; target of ith query’s jth term.

At the end of the model estimation, sigmoid values are computed for predicted
weights to map predictions in [0,1] range. Final query term weights are calcu-

lated as follows:

—_— ~ X AT
IP (¢t | R) = sigmoid (5Tx> =7 ifx;()ﬁ([;)x) (6.5)

6.1.2 DeepCT-Query

DeepCT [5] is a framework to weighting terms based on contextual embeddings.
Term frequency does not contain any clue about the context of the text, and it
can be equal for relevant and irrelevant documents. To extract contextualized
embeddings for words in the text, the BERT [6] natural language model is used.

DeepCT is a regression model that tries to learn target term weight value by con-
textual knowledge of the text for each word in the text by fine-tuning the BERT
model. The input of the regression layer of the model is the tth contextual em-
bedding of the BERT sequential output. Word importance weight is calculated by
DeepCT as follow:

Jte =wWTic+D (6.6)

where T; . is the contextual embedding for text c, w is the weight and b is the bias

of the linear regression.

35

DeepCT tries to minimize mean squared error (MSE) between target and pre-

dicted weights.

losspisg = ZZ(yt,C - yAy,c)z (6.7)
c t

where y is the target weights and 7 is the predicted weights.

Term weight predictions of DeepCT are in the range between —oco and oo, still,
most predictions remain in the [0,1] range due to ground truth weights in the
[0, 1].

BERT tokenization generates subwords for words that are not in the vocabulary of
BERT. When computing MSE loss, the first subword is used for evaluating as the
entire word and other subwords are masked in DeepCT. For example, DeepCT
is tokenized as “deep” and “##ct”, the loss of the model prediction is computed
over “deep” which is the first subword and "##ct” is masked out.

DeepCT-Query [5] is a way to the usage of DeepCT framework for weighting
query terms. In DeepCT-Query, the terms of the queries are weighted and the
term recall value is used as a relevance feedback target. The similar way with
DeepTR, target term weights of queries are defined by the term recall for query

term weighting.

In the search time, estimated query term weights are multiplied by BM25 rele-
vance score of the term to boost score by term importance, as mentioned in Chap-
ter 5, Relevance Feedback.

6.1.3 Term Weight Prediction Model

Pairwise term weight optimization model runs in the manner of supervised learn-
ing. The model must know relevant and irrelevant pairs for the query with the
query itself. For this reason, weight estimation cannot be made for new queries
in the search-time. A BERT based regression model is trained with the weights
optimized pairwise, the BERT model uses only the input query to predict term
weights of the query.

To fine-tune the BERT model, a regression task targeting query term weights is
used. BERT takes term and query as a pair. The term of the query and query

36

itself are separated with special token [SEP]. This way, the interaction between
individual terms and queries is learned. The pooled output of BERT which is
[CLS] token vector is followed by a fully connected feed-forward layer with a
single output value. The output layer has no activation function due to trained as
a regression task. To prevent overfitting and achieve more generalization there is
a dropout layer with 0.2 probability between pooled output and fully connected
layer. The model is trained with the MSE (mean squared error) by fine-tuning the
pre-trained BERT model to estimates the term weights of the input query. The
model is optimized with Adam [16] optimizer and 10% of training steps are used
as warm-up steps.

All training pairs have a target value between 0 and 1. For this reason, most
of the predicted term weights fall into this range. In the end, negative weights
are ignored and set as 0. Non-negative term weights enable the use of boosting
factors available in most search engines.

Thanks to interaction architecture, phrases which are sequential words can be
weighted as terms. The first part of the input is the phrase in the query and the
second part is the query, both of them are separated by the special token. The
target weight predicted by the model is for a phrase instead of a single word in
this case.

In search-time, the model estimates weights of each term of the query simultane-
ously. For each term in the query, model estimates weights as the coefficient for
terms. An example for tokenization of the query and forming input given with

BERT term weight learning model architecture at Figure 6.1.

The proposed term weighting model and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>