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ABSTRACT

ANALYZING THE EFFECTS OF LOW-LEVEL FEATURES FOR
VISUAL ATTRIBUTE RECOGNITION

Emine Gül DANACI

Master of Science,Computer Engineering Department
Supervisor: Asst. Prof. Dr. Nazlı İKİZLER CİNBİŞ

September 2015, 80 pages

In recent years, visual attributes became a popular topic of computer vision research. Visual

attributes are being used on various tasks including object recognition, people search, scene

recognition, and so on. In order to encode the visual attributes, a common applied procedure

for supervised learning of attributes is to extract low-level visual features from the images

first. Then, an attribute learning algorithm is applied and visual attribute models are formed.

In this thesis, we explore the effects of using different low-level features on learning visual

attributes. For this purpose, we use various low-level features, which aim to capture differ-

ent visual characteristics, such as shape, color and texture. In addition, we also evaluate the

effect of the recently evolving deep features on the attribute learning problem. Experiments

have been carried out on four different datasets, which were collected for different visual

recognition tasks and extensive evaluations have been reported. Our results show that, while

using the supervised deep features are effective, using them in combination with low-level

features are more effective for visual attribute learning.

Keywords:Visual attributes, low-level features, Texton, LBP, HOG, SIFT, CSIFT, CNN
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ÖZET

GÖRSEL NİTELİK ÖĞRENMEDE ALT-DÜZEY ÖZNİTELİKLERİN
ETKİLERİNİN ANALİZİ

Emine Gül DANACI

Yüksek Lisans,Bilgisayar Mühendisliği
Danışman: Yrd. Doç. Dr. Nazlı İKİZLER CİNBİŞ

Ağustos 2015, 80 sayfa

Görsel nitelikler bilgisayarlı görü alanında son zamanlarda popüler olmaya başlamış bir

konudur. Görsel nitelikler nesne tanıma, insan arama, sahne tanıma gibi bir çok alanda kul-

lanılmaktadır. Görsel niteliklerin öğreticiyle öğrenilebilmesi için ilk adım düşük seviyeli

özniteliklerin çıkartılmasıdır. Sonrasında görsel nitelik öğrenme algoritmaları uygulanarak

görsel nitelik modelleri oluşturulur.

Bu tez çalışmasında düşük seviyeli özniteliklerin görsel nitelik öğrenmeye etkisi araştırılmıştır.

Bu amaçla şekil, renk ve doku gibi farklı görsel karakteristikleri tanımlayabilen çeşitli öznite-

likler kullanılmıştır. Ayrıca gitgide gelişmekte olan derin özniteliklerin görsel nitelik öğrenmeye

etkileri de değerlendirilmiştir. Deneyleri gerçekleştirmek için farklı görsel tanıma görevleri

için tanımlanmış dört adet veri kümesi kullanılmış ve sonuçları kaydedilmiştir. Sonuçlarımıza

göre görsel nitelik öğrenme için derin öznitelik kullanımı etkilidir. Bunun yanında bu özniteliklerin

düşük seviyeli öznitelikler ile kombinasyonu daha etkili sonuçlar vermiştir.

Anahtar Kelimeler:Görsel nitelikler, alt-düzey öznitelikler, Texton, LBP, HOG, SIFT, CSIFT,

CNN
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1. INTRODUCTION

Computer vision algorithms are used for processing binary storage information of images

and videos with the purpose of describing them in a human understandable way. In most of

the computer vision applications, the first step of the process is to represent the images via

low-level features like color histograms, histogram of orientations, edges, and more. Low-

level features are used to describe or recognize objects directly. However, these features are

inadequate for humans to understand since they only include machine detectable data.

Suppose that one intends to describe a bird. Low-level features can only detect basic infor-

mation like its colors and size, but these features are not enough for describing particular

properties such as feather, beak and head. These properties are called as visual attributes

which give more information than low-level features. So, we can say the visual attributes are

more meaningful than low-level features, and low-level features are used for learning these

visual attributes.

Consider it from a different perspective; the image can describable by only its category. For

the example mentioned above, saying it is a bird can be enough in some cases. The label

bird corresponds to the category label, as in the case of people, building, potted plant, and so

on. Attributes are more detailed than these categories. So the attributes form a middle level

between the low-level features and categories. Attributes can be any adjective, material and

functional properties of objects. Glasses, head, face, hair, tail, plastic, black, white, stripes,

natural, smiling, etc. can be example of attributes. Figure 1.1. shows example images,

together with their category labels and list of attributes available in the images.

We need the attributes because the human vision sees the world with attributes. You can

imagine a robot which wants to learn the way is walkable for him. If it can learn the attributes

like muddy, then it can decide the road is walkable or not. It is inadequate only learnt the

road. The attributes of road are also important. Because of these reasons, visual attribute

learning has been included in the computer vision literature recently.
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Chapter 1. INTRODUCTION

FIGURE 1.1.: Examples of Attributes and Categories

1.1. Motivation

Recently, visual attribute learning and usage have become a popular research topic of com-

puter vision. Attributes have many application areas, including object recognition, face veri-

fication, product search, people search etc. Learning attributes automatically and using their

expressive power is beneficial in the advancement of these applications.

In this thesis, we aim to explore which low-level features contribute to the modeling of the

visual attributes the most. In this context, several low-level features that encode the color,

texture and shape information in various levels are explored and their contribution to the

recognition of the attributes are evaluated experimentally. To this end, we first evaluate the

individual effects of low-level features in attribute learning, and then investigate the effect

of using low-level features in combination. We experiment over four different datasets, in-

cluding object recognition, shoes description, people description datasets. We choose these

datasets in order to evaluate the effect of low-level features on attribute learning from differ-

ent aspects.

In addition to evaluating the effect of using different low-level features, we also looked at

the performance of recently evolving deep features, which can be considered as mid-level

features which are shown to be quite effective in various computer vision tasks. In our ex-

periments, we also evaluate their performance in attribute recognition scenarios and evaluate

how they effect the performance when used alone or in combination with low-level features.

2



Chapter 1. INTRODUCTION

1.2. Major Contributions of This Thesis

In this thesis, we have the following contributions :

• We evaluate the individual performances of various low-level features, including color,

texture, shape in the attribute learning framework

• We evaluate the recent deep learning features [4] regarding their effect on attribute

learning performance

• We evaluate the performance of the combination of these features on different datasets

and different settings. We report individual findings on different attributes on different

datasets.

To the best of our knowledge, there is no prior work that investigates the effect of low-

level features on attribute recognition. So this work is intended to fill the deficiency of such

comparisons in this field.

1.3. Organization of the Thesis

In Chapter 2. we review the attribute learning methods. We give examples to these methods

by explaining their classification methods and low-level features used in their works. In

Chapter 3., we introduce the low-level features that we used in this work and explain the

method with the usage of low-level features and classification method. In Chapter 4., we

present results of low-level features and combined features. We explain the attribute and

low-level features correlation and we compare our results with the-state-of-the-art methods.

Lastly, in Chapter 5. we sum up the results and we discuss possible feature works.

3



2. BACKGROUND AND RELATED WORK

In this chapter, we first give a brief background about attributes and attribute recognition.

Then, we present the related work on attribute learning methods, features used in attribute

learning and applications.

2.1. Attributes

Attributes are depicted aspects of visual appearance which are human understandable as

well as machine detectable. They have higher content than low-level features such as ’color’,

’edge’, and so on, but they have lower content than categories like ’cars’, ’buildings’, ’birds’,

and so forth. Attributes can be assumed within the range of low-level features and high-

level categories such as ’natural’, ’3D’, ’long hair’, ’wooden’ . Generally attributes can be

expressed as any semantic, material or functional properties.

In current literature of computer vision, there is mainly three types of attributes that can be

used for various applications which can be listed as binary, relative and spoken. We briefly

define and review each of these attributes here.

Binary Attributes Many of the earliest works about visual attributes use binary attributes

as their basis of representation [1], [5], [6]. Images comprise one or more objects where

binary attributes are used to characterize these objects in a single image. An attribute can

belong to an image or not, there is no other probability. For example, the person has some

properties such as ’has sunglasses’, ’has long hair’, ’has t-shirt’ which are called as attributes

that is specific to this image. If we would try to discuss the emotions of the person in the

picture, we can find whether the person is happy or sad, but we might not find strength

information that indicates his emotions.

Relative Attributes The relative attribute concept was introduced to the field by Parikh

and Grauman [7]. In their work, they stated that binary attributes can be inadequate for

representing semantic relationships. Binary attributes cannot introduce comparisons between

images. If we consider the example in the previous part we cannot compare the images of

two people with binary attributes by using strength of their emotions. For such cases relative

4



Chapter 1. BACKGROUND AND RELATED WORK

attributes are used to overcome this drawback. Based on this explanation, relative attributes

can be defined as attributes such as ’more angry’, ’more happy’, ’more open’, ’more broad’,

and so on. In this type of attributes, all images in the dataset are ranked by attributes. These

attributes are useful when the purpose is comparing attribute magnitude with the choices

’more’, ’less’ or ’equal’ and suitable for applications such as image search, people search,

product search, and so on. If we want to find queries such as ’more angry person’, ’less blond

girl’ these attributes are useful.

Spoken Attributes Sadovnik et al. [8] define the spoken attribute as the term that com-

bines the binary and relative attributes to get better attribute definitions for images. Binary

attributes are meaningful for describing one single image where relative attributes are sig-

nificant for the comparison of two different images. In order to find out spoken attributes,

ranking operation is conducted according to pairs of people in one single image. In this way,

spoken attributes provide to compare people in a single image by merging the binary and

relative attributes.

2.2. Attribute Learning Methods

Binary Classifier Learning Binary classifiers use the binary attributes to learn whether

the image has attribute or not. For each attribute, learning classifiers that model the attributes

are used and predict these attributes separately. Farhadi et al. [1] used three types of semantic

attributes including shapes, parts and materials. They also used discriminative attributes to

distinguish classes which have the same attributes. They used L1-regularized logistic regres-

sion to select effective features for classes. Kumar et al. [9] worked on two methods. First

method consists of binary classifiers on attribute learning. There are sixty five attributes for

face verification in their work and SVM classifiers are used for binary classification. Second

method consists of simile classifiers which do not need label information and automatically

find simile classes by using regions of faces. They found out if two images belong the same

person by using two trait vectors of images with their extracted features. Firstly, binary clas-

sifiers are used and their results are saved in range of [-1,1]. Then, final SVM is used for

separation boundary, to predicate similarity with the values close to zero. Lampert et al.

[10] combined two types of predictions in their work. First one is direct attribute prediction

(DAP) which is based on the attributes and makes decision from attribute comparison by
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using separate classifiers for each attribute. Second one is indirect attribute prediction (IAP)

which is based on training classes and makes decision from training classes then attributes.

In IAP, multiclass classifiers are estimated for each training classes. Jayaraman and Grauman

[11] used different classifiers for each attribute to build decision trees for prediction.

Weakly Supervised Learning In this method training is applied via attributes of weakly

labeled categories. Ferrari and Zisserman [12] performed this method with two attribute

categories. First attribute category was extracted from one segment and used for colors

that are red, green, blue, yellow. Second one was extracted from two segments that used

for patterns like stripes, dots and checkerboard. Each image is represented by segments

and image likelihood is calculated according to the model which consists of appearance,

shape and layout features. Best background probability and best foreground segments are

found by geometric properties. Models are learned separately and then the model which

has best ratio is selected. They used the Google image search results for training and 20

percent of these images are not reliable which do not have the attribute that they want to

learn. Rastegari et al. [13] used binary codes representations of images. They proposed

two terms containing unsupervised similarity and discriminative similarity, that uses similar

binary codes and different binary codes, respectively. To accomplish this, they used KNN and

linear SVM for classification. This learning is based on categories and it does not guarantee

that whether all images in category have the same binary codes.

Ranking Based Learning This learning method uses relative attributes. All images in

a dataset can be compared with each other. To do this all attributes in dataset are ranked

with ranking algorithms. Usually attribute comparison is made by three options with ’less’,

’similar’ or ’more’. Parikh and Grauman [7] worked on relative zero-shot learning. They

learned classifiers by using ranks of each attribute. For the ranking algorithm they used

Joachims’s ranking SVM [14]. Then they ranked all images in the dataset by classifier results.

Relative zero-shot learning uses ranking based classifiers. Parikh and Grauman [7] worked

on two types of learning. Firstly, they used direct attribute prediction (DAP) model of Lam-

pert et al. [10] for zero shot learning. Relative zero-shot learning was the second type. They

learned classifiers by using ranks for each attribute. When an image which belong unseen

category came up they firstly found score of ranking for its attributes. Then they assigned
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image to unseen classes if it has the highest likelihood score is not available in seen cate-

gories.

This learning method is mostly used in image search. Attributes offer a similar structure to

the keywords. For example, high-heel attribute for shoes is an important feature for someone

who is looking for high heels shoes in product search. Image search consists two stages.

Offline learning is the first stage and attribute classifiers are learned in this stage. Then, all

images are ranked separately according to each attribute. In the online stage user gives a

query to system and system finds the ranks according to the characteristics of the image of

the query and, the system displays the most relevant ones. Vaquero et al. [15] worked on

people search, which include some parts of people like upper face part, middle face part,

lower face part, facial hair type, torso and legs. Firstly, they detected faces with AdaBoost

classifiers and used nine Viola-Jones detectors to find facial attributes. They found torso and

legs attributes by using color classifiers in HSL space.

Feris et al. [16] improved the previous work [15] and they added ranks of attributes to

people search. Herewith they selected the most relevant images and showed to user. Kumar

et al. [6] created a face tracer system that can search people by their faces. They divided

faces into regions and used their regions’ features for classification. Their classification

method combines the SVM and Adaboost classifiers. Firstly, they used SVM classifiers for

all attributes, then they used Adaboost to round SVM weights of attributes.

Relative feedback is one of the methods used for image search. It is quite difficult to find

a good result with single keyword. Searches can be improved by taking feedbacks from

users. User feedbacks are used for filtering results with each iteration. Kovashka et al. [2]

worked on two types of feedback. First one is binary relevance feedback that user gives the

feedback by ’relevant’ or ’unrelevant’ choices. System refines the results according to this

selection by using SVM. Second one is relative attribute feedback and user has three choices

(less, more, similar) in this type. Kovashka et al. ranked all attributes in dataset by using

Joachims’s SVMRank code [14]. When the user makes his choice, the attributes are ranked

and their scores are updated by selected image. For example, sportive and also colorful shoes

are wanted. The user selects an image from sportive shoes and indicates ’more’ options with

attribute ’colorful’. The system finds images which have high rank score by comparing the

selected image.
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Active Learning Active learning requires a supervisor from outside the system. Suppose

that we have a query image and we want to know whether this bus. Supervisor responds

to this query, and says to us about why. For example, the reason of why the vehicle cannot

be bus is may be the vehicle is too small to be a bus, and it must be larger. After that, the

system accepts all images is smaller than this vehicle are not bus. In this manner system can

learn information of images which are not labeled. In this way, the system can get more label

information by using less effort. Parkash and Parikh [17] used this method. They applied

binary classifier to each category by using RBF SVMs. They improved binary classifiers re-

sult by explanation of supervisors about the attributes of classes. The explanation is expected

only if classifier gives wrong choice and the user can give one attribute explanation. System

picks an image, which is not labeled and asks to supervisor according to the maximum result

of binary classifiers. Supervisor gives an answer and if the image does not belong to the

suggested class gives an explanation too. Then, the system update the models according to

this explanation. They used Joachims’s ranking SVM [14] for attribute ranking.

Different from regular supervised learning, in active learning, supervisors indicate reason for

their labels. Then, all attributes are handled from these reasons. For example, users are asked

which images more attractive. Users can say that some of images more attractive because

they are more colorful. All subsequent images like having these colors will be automatically

considered attractive. Kovashka and Grauman [18] initialized a graph for object attribute

model. Then, they updated their labels for object and attributes by supervisor feedbacks

with entropy-based selection function. If the object label changes by supervisor old label

throws and new labeled. If the attribute label changes it is added to attributes of image. They

used multi-class SVM for object classes by ignoring attributes. They used binary classifiers

for attributes by ignoring object classes. Their model consists of object classes, attributes,

attribute-attribute relationships and object-attribute relationships.

Biswas and Parikh [19] used active learning with attributes based feedback. A supervisor is

expected to give a label feedback, which is true or false then give an attribute based expla-

nation in case labeling is false. These explanations can be like ’too’ or ’not enough’ options.

They used binary classifier for each category as SVMs. Weighting schemas are used in this

work to consider all attributes in image and entropy of system are calculated to actively select

an image. Liang and Grauman [20] used active learning to rank relative attributes because

ranking of relative attributes is costly. In this work images are selected by pool-based ap-

proach which prediction of ranking group images benefits to learn. They used Joachims’s

8



Chapter 1. BACKGROUND AND RELATED WORK

ranking SVM [14] with 1-D ordering features.

Multi-Attribute Learning Binary and ranking attribute learning models get one attribute

and learn classifiers for only this attribute. Multiple attributes may be requested in applica-

tions. To do this, attributes can be learned separately then attributes can be combined accord-

ing to the user request. Scheirer et al. [21] used different classifiers for each attribute and

tried to calibrate of these SVM scores. Douze et al. [22] used Fisher vectors and SVMs for

multi-attribute learning. They learned each attribute classifier with non-linear binary SVMs.

Then they used L2 norm normalization on attribute scores and combined them with Fisher

vectors. But these methods could be difficult to giving weights of all attributes. Instead of

these methods multi-label queries can be used. Siddiquie et al. [23] combined retrieval and

ranking to achieve multi-label attribute learning. In multi-label queries they handled attribute

classifiers together instead of using separate classifiers for each attribute. They used bundle

methods for regularized risk minimization and evaluated their works on facial datasets.

Human in the loop recognition Some recognition problems can be hard for people. For

example, when defining a bird with what color of feathers are easy for people. But it is

difficult to tell which bird species it belongs. In such cases, human in the loop recognition

is used that human interaction helps the learning in runtime. User gives an input image to

system and system attempts to identify the image with the feedback given by the user. If

we talk over our example, user wants to find the species of a bird. System begins to ask

questions via the supplied picture. The user would will have reached the correct species by

the answers of him. Wah et al. [24] asked twenty questions to user. The user gave the results

and also qualified his result by ’guessing’, ’probably’ and ’definitely’ choices. They updated

their models with user answers by using maximum information gain. They used one vs all

SVMs for each classes. On validation set Platt scaling is used.

Branson et al. [25] approached this problem by combining part-based models and attribute

learning. In attribute learning part they used separate classifiers for each attribute. In de-

tection part they found detection scores of images with sliding window parts by using struc-

tured SVMs. User response the questions and gives qualification degree of his answers from

’guessing’, ’probably’ or ’definitely’ choices. After each answer, probabilities are recalcu-

lated again by information gain. The system asks the question with the maximum informa-

tion gain to the user and this iteration goes on until the result is found.
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Deep Learning In recent years Deep Convolutional Neural Networks (CNNs) [4] are fre-

quently used in computer vision. This method is used mostly for object recognition, but some

works used it for attribute learning. Shankar et al. [26] are worked on attribute learning with

Deep Convolutional Neural Networks (CNNs). In their work for attribute learning pseudo-

labels are used. Each fixed number of iterations the responses are analyzed and multiple

attribute labels were handled. To do this, they used feature maps of images in convolutional

layers. After that, they tried to learn attributes by using the average spatial response. They

called deep-carving method to their work which analyses the features in the training stage

and try to learn missing labels to get fine attribute-specific feature maps. Razavian et al.

[27] worked on different tasks by deep learning and they handled attribute detection in their

work by using OverFeat network. Their feature vector is the first fully connected layer of

this network and its size 4096.

Transfer Learning Attributes are handled mostly like category-independent properties.

But in some cases this generalization can be wrong. Grauman and Chen [28] worked on

to create category-sensitive attribute models. They created some classifiers with labeled

data and created analogous attribute classifiers with unlabeled data. For labeled data they

used category-sensitive SVMs for each classes with their attributes whether presence. They

factorized a tensor for each object and attribute to build latent structure. After that, they used

K-dimensional latent feature vectors to find the same attributes how look in other categories.

Multi-Task Learning Some attributes can be sensitive to training images. Let’s think some

images in training set have wheel attribute and all images have metallic wheels. Learning

in this situation could be wrong because metallic and wheel attributes are correlated. In test

stage the new image prediction will fail because of the wooden wheel. To prevent this Hwang

et al. [29] proposed multi-task learning for attribute learning. They wanted to decorrelate the

attributes that are semantically distinct each other and, correlate attributes that they are shar-

ing semantically similar. They used jointly classifiers instead of using separately classifiers.

They used logistic regression classifier model with L2 normalized to find in-group sharing

and logistic regression classifier model with L1 normalized to inter-group competition.
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2.3. Tasks and Applications

Dhar et al. [30] worked to predict aesthetics and interestingness of images. They used 3 types

of attributes. Compositional attributes related to layout, content attributes related to consist

of some objects and sky-illumination attributes related to illumination of image. Feris et al.

[31] worked on searching vehicles in traffic videos. They used attributes to help searching

keywords like ’show me yellow cars’.

Saleh et al. [32] found out abnormal images from set. They used qualitative and quantitative

analysis for this work and they brought a point of view how people looking abnormalities.

Image search can be expensive because of it scan all dataset for one attribute. Kovashka et

al. [33] tried to find a solution to this problem with attribute pivots. They used binary search

trees for searching. Each attribute have some pivots. Searching by query begins with these

pivots. Then the others images from these pivots are investigated by left or right children.

Kovashka et al. [34] tried to implement user specific attribute models. They collected the

labeled data according to explicitly ask to user for labeling. Then, they mined the user’s

search history to find labels implicitly.

In images, every attributes may not draw attention. Some attributes draw more attention than

others. Turakhia and Parikh [35] tried to find out this attributes in images. Christie et al.

[36] used attributes in their predictable annoyance work. They predicted the user annoyance

when they react occurring mistakes in computer vision systems. They learned mistakes by

using the example mistakes. Kovashka and Grauman [37] gave a new approach with shades

attributes. These attributes are different interpretations of users. Variant of an attribute are

learned by using this method. For example, open attribute for shoes can be learned ’open at

heel’ or ’open at toe’. In this way attribute learning can be more generic. Bourdev et al. [3]

used part-based approach to learn attributes of people. They wanted to learn these attributes

under the condition of the viewpoints and poses.

2.4. Low-level Features Used in Attribute Learning

All low-level features can be used in attribute learning. Table 2.1 shows the low-level features

that have been used in attribute learning methods that have been explained in the previous

subsection.
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Color histograms are used to represent distribution of colors of image. In attribute learning

methods mentioned above used RGB, CIELAB and HSV color spaces. Scale-Invariant Fea-

tures (SIFT) [38] are used on gray-scale images and provide to robustness to image rotation,

image scaling and image translation. Color SIFT models are used to like SIFT also adding

to color information. HueSIFT, HSV-SIFT, OpponentSIFT, rgSIFT, CSIFT, RGBSIFT are

the color SIFT models [39]. In the related works rgSIFT is mostly used. Haar-like features

are calculated with the rectangular parts intensities and used for face detection [40]. Texture

features are used to achieve patterns of an image. Some of the related work used this texture

feature. Local Binary Patterns (LBP) [41] feature is like texture information, but it is calcu-

lated with neighborhood. GIST [42] descriptors are extracted by applying Gabor filters to

image and usually are used in scene recognition. SURF [43] is used to detect interest points

which are scale and rotate invariant.

According to Table 2.1, color histograms are the most frequently used low-level features for

attribute learning. This is not surprising since color is an adjective and therefore attribute by

definition, and color histograms are a straightforward way to represent them. A second ob-

servation from this table is that, shape features such as HOG [44] and SIFT [38] are also fre-

quently used for attribute recognition. In addition, GIST [42] feature is also frequently used,

probably aiming to capture the contribution of the global information to attribute recognition.
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TABLE 2.1: Low-level Features commonly used in attribute learning

Color Histograms HOG SIFT ColorSIFT Haar-like LBP GIST SURF Texture
Parikh and Grauman [7] 2011 X - - - - - X - -
Ferrari and Zisserman [12] 2007 X - - - - - - - X
Farhadi et al. [1] 2009 X X - - - - - - X
Kumar et al. [9] 2009 X X - - - - - - -
Jayaraman and Grauman [11] 2014 X X - - - - - - -
Lampert et al. [10] 2014 X X X X - - - X -
Parkash et al. [17] 2012 X - - - - - X - -
Kovashka et al. [18] 2011 X X - X - - - - -
Biswas and Parikh [19] 2013 X - - - - - X - -
Liang and Grauman [20] 2014 X - - - - - X - -
Vaquero et al. [15] 2009 X - - - X - - - -
Kumar et al. [6] 2008 X - - - X - - - -
Siddiquie et al. [23] 2011 X - X - - X - - X
Kovashka et al. [2] 2012 X - - - - - X - -
Wah et al. [24] 2011 X - X - - - - - -
Branson et al. [25] 2010 X - X - - - - - -
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3. APPROACH

In this chapter, we first describe the low-level features and mid-level features that have been

evaluated within the attribute learning framework. Then, we describe the attribute learning

method we use. We also briefly describe how different features are combined in our evalua-

tion framework.

3.1. Feature Types

In order to analyze the performance of the low-level features on attribute recognition, we

chose four basic types of low-level features to evaluate. These are a) Color features, b)

Shape features, c) Texture features and d) Hybrid features. In addition to low-level features,

we also evaluate the recently evolving mid-level feature, which can also be referred as a

semantic feature, Convolutional Neural Network (CNN) feature. Below, we describe each of

these features in further detail.

3.1.1. Color Features

As it is seen in table 2.1 all works use the color histograms that basic feature of attribute

learning. In order to evaluate the effectiveness of color histograms, we used three different

types of color histograms which use three different color spaces. These are RGB, HSV and

CIE LAB color spaces, respectively.

RGB Color Space Primary colors red for ’R’, green for ’G’ and blue for ’B’ are the coor-

dinates of this color space. Each pixel are calculated by the range of 0 to 255 values of these

colors.

HSV Color Space HSV is represented by cylindrical coordinates. ’H’ is hue, ’S’ is sat-

uration and ’V’ is the value of brightness. The hue is angular value of colors that value of

red 0 to 120 degree, value of green 120 to 240 degree and value of blue 240 to 360 degree.

Saturation and brightness values are between 0 and 1.
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CIELAB Color Space There are three coordinates in this color space. ’a’, ’b’ are the

color-opponent dimensions and ’L’ is the lightness. ’L’ is the lightness of colors that L=0 is

black and L=100 is white. ’a’ is the color between magenta and green that negative values

define green and positive values define magenta. ’b’ is another color between yellow and

blue that negative values define blue and negative values define yellow.

Color histograms represent the distribution of colors in images. The color spaces are used to

construct these histograms. Each pixel is handled one by one and the color value of the pixel

is extracted according to color space. The distribution of all pixels gives the color histogram

of image.

3.1.2. Shape Features

Histogram of Gradients (HOG) : Dalal and Triggs [44] represented the images by inten-

sity gradients or edge directions. In their work, they used these features for human detection.

Image convolution by filter with using the kernel [-1 0 1] is the first step to get HOG fea-

tures. The second step is to find gradient magnitude and direction from regions of image

which size 64x128 pixels. The third step is computing histograms of selected small parts of

regions named by cells and usually have size 8x8 pixels. The next step is grouping cells into

descriptor blocks with overlapping. This descriptor blocks can be circular or rectangular.

The last step is normalization and L2-Hys, L2-norm and L1-sqrt, L1-norm normalization

schemes are applied to this work and except L1-norm all other schemes performed results

equally.

Dalal and Triggs [44] method was used in this work to get HOG feature. We used 8x8 block

size and 4 pixel to step size using feature pyramid.

Scale-Invariant Features (SIFT) : Lowe [38] found a feature type, which is invariant to

image scaling, image rotation and image translation on gray scale images. They used key

locations that they are difference points after Gaussian functions applied to image. These

points are maxima and minima according to its eight neighbors. But all of the key points

are not meaningful in this stage. So Taylor series extrama value is used to refine the key

points which have bad contrast. Other filtration is done on the edges that response only one

direction. An image pyramid occurs with key points. Then, image gradients and orientations
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are found with each level of pyramid. 16x16 pixels of gradients are calculated and they are

divided into 4x4 regions. From each region eight image gradients and orientations are ex-

tracted. The result 4x4=16 size of histograms with one and all eight bins is 128 dimensional

feature vectors.

In this thesis, we used the standard SIFT descriptors as described above.

3.1.3. Texture Features

Texton Textures are the patterns in images. Varma and Zisserman [45] used texton rep-

resentation from textures. Texture descriptors are extracted from randomly chosen training

images. Then, filter bank is applied to all texture descriptors. K-means clusters are done

by using this filter responses. From these clusters the texton dictionary is formed. Training

images are filtered by filter bank and the distance is calculated to texton dictionary for each

response from these filters and closest response is picked for representation and to forming

the model. The test image is represented with histogram by using texton dictionary. After

that nearest neighbour classifier apply to find closest model. The four filter sets are applied to

this model of learning which are The Leung-Malik(LM), The Schmid(S) and The Maximum

Response(MR4, MR8). In their experiments MR8 filters gave the best result.

In this work texton method was applied the same way Varma and Zisserman [45] and MR8

filters which gave the best results in their work are applied to images.

Local Binary Patterns (LBP) : Ojala et al. [41] used texture unit which represents the

texture spectrum of image, to create local binary patterns from gray scale images. Texture

unit is calculated with eight pixels which in the neighborhood. The first step is to pick one

center pixel and get 3x3 pixel neighborhood values. Then, difference between neighborhood

and center pixel is found. If the difference is negative, then set zero else set one. So the

center pixel is threshold value. Then, all values are multiplied by their weights and the sum

of these values gives the LBP value. Ojala et al. [46] improved local binary patterns to

rotation invariant. For achieve this purpose they consider the signs of neighborhood instead

of difference value. All possible values are calculated for neighborhoods in case rotation.

We used 8 pixel cell size for neighborhood to compute LBP in this work.
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3.1.4. Hybrid Features

Color Invariant Characteristic SIFT Feature (CSIFT) SIFT may not enough to repre-

sent an image because it is worked with gray scale images and color information is ignored.

Whereas color information can be distinguishing feature. Color SIFT is created for this

missing property of SIFT. There are some color sift models like HueSIFT, HSV-SIFT, Op-

ponentSIFT, rgSIFT, CSIFT, RGBSIFT. In this work Abdel-Hakim and Farag [47] color sift

feature representation which named CSIFT is used. They used the same strategy for SIFT

to geometric invariant. The only difference is using color invariant gradients instead of gray

gradients. RGB color space and Gaussian color models are used to giving input parameters

to Kubelka-Munk theory that diffuse the reflectance for color invariants.

3.1.5. Deep Features

Convolutional Neural Networks (CNN) Features In multi-layer neural networks there

are some neurons which get the inputs and do some operations and produce the outputs.

The outputs of neurons can be the inputs of another neurons. This passing is called forward

pass. The important part of the multi-layer networks is backpropagation. Backpropagation

uses the loss function that gives the consistency of the work with comparing the ground truth

labels with predicted labels. Backpropagation begins to operate with the last output and

recursively calculate the loss function for all neurons to start. Backpropagation can be used

more effectively by divided forward pass operation into the parts.

Convolutional neural networks are similar to multi-layers neural networks. In multi-layer

neural networks, neurons have one dimension and it is not effective to images due to their

three-dimensional structure. For example, if the image size is 50x60X3 it will be 900 weights

passing as outputs and this will decrease the performance. Krizhevsky et al. [4] used con-

volutional neural networks with three dimensions layers, which is using for communicating

and storing. Width, height and depth are the three dimensions. There are three main layers in

this neural networks. These are convolutional layer, pooling layer and fully-connected layer.

Pooling layers does not pass parameters so the gradient of error does not calculate for them.

Gradient of error is calculated for convolutional and fully-connected layers.

Convolutional Layer (CONV): The connection of activation neurons are provided by local

regions. The size of these regions is the one of hyperparameter and is called receptive fields.
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This layer applies the filters to these local regions by using the filter number supplied by

hyperparameter. The receptive field size, stride and the amount of zero padding are the

hyperparameters for this layer and the output size is calculated by using them. This layer

introduces an output that has square of receptive field size and image depth and number of

filters. Backpropagation of this layer also is a convolutional layer.

Pooling Layer (POOL): Usually this layer is used after convolutional layers. For each depth

slice it calculates the maximum activation and it provides reduce the parameter size and

reduce the local region size. The spatial size of resizing and stride are the hyperparameters

of this layer. Backpropagation is used with the tracking of maximum activation neuron value

for calculation of gradient.

Fully-connected layer (FC): Local regions are fully pairwise connected to activation neurons

in this layer. The size of this layer is 4096 and, the last part convolutional neural networks is

after that and has size as 1000 and is used for compute class scores. Fully-connected layers

can be considered convolutional layer by getting the filter size as 4096.

In addition to these layers Rectified Linear Units (ReLUs) are used for output of convolution

layers and fully connected layer. This provides less time to training.

The most used convolutional neural network pattern is like the following:

INPUT -> [[CONV -> ReLU]*N -> POOL?]*M -> [FC -> ReLU]*K -> FC

(N <= 3, M >= 0, 0<= K < 3)

FIGURE 3.1.: Layers with kernel size of VGGNet Architecture
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We used the output of fully-connected layer which size is 4096 as CNN feature in our work.

There are some architectures for convolutional neural networks. We used VGGNet architec-

ture [48] in this work that contains 16 convolutional/fully connected layers. The figure 3.1.

shows the kernel size of layers. We used ’imagenet-vgg-verydeep-16’ pre-trained models for

extracting CNN features as in [48].

We should note that main point of this thesis is analyzing the effects of low-level features.

CNN features are actually supervised features that can be considered as mid-level features.

Since they achieve the current state-of-the-art in many recognition tasts, we aim to find out

the effects of this representation to attribute recognition, and hence, we also include these

features to our evaluation framework, and test their recognition performance both individu-

ally and in combination with low-level features.

3.2. Method

The purpose of this work is to find out which low-level features are useful to predict at-

tributes. Attributes can be different from each other and the low-level features that perform

the best in recognizing each of them can be different. In our evaluation framework, to assess

which low-level feature is the best for attribute learning, we use an attribute learning method,

with different underlying features. For this purpose, we adopt the method of Farhadi et al.

[1]. In their work, the main usage of attributes is to find out object classes. In this thesis,

we omit the object recognition part since as noted above, attributes could be used in many

different application domains and we focus on only attribute prediction since its performance

is likely to affect corresponding tasks such as object recognition.

The overall attribute learning process is shown in Figure 3.2. and the main steps of this

framework can be listed as follows:

• Low-level Feature Extraction

• Feature Selection

• Classifier Training and Prediction
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FIGURE 3.2.: Approach of this work

Low-level Feature Extraction In [1] three types of features are used. Base features consist

of HOG, texton and CIELAB color histograms. We used these base features too and added

some base features like SIFT, LBP, CSIFT, RGB color histograms, HSV color histograms.

We used CNN as mid-level feature.

Feature Selection Attribute classifiers could fail if they learn with correlated attributes.

For example, we want to learn ’furniture arm’ classifiers and in our dataset all furniture has

wooden arms and ’wooden’ is another attribute in this dataset. Learning process is con-

structed with these training images and ’furniture arm’ classifiers are affected with ’wooden’

attribute. When the new furniture is added to dataset with plastic arms the learning will fail.

These attributes cannot be separable in this situation. To resolve this problem learning classi-

fiers are designed with or without the attribute for object recognition. For example, we want

to learn ’furniture arm’ classifier then, we calculate the result of ’sofa’ object recognition

with and without ’furniture arm’. The confusion of classifier between the ’furniture arm’

and ’wooden’ attribute can be solved by implementing this method. Features are selected to

represent most important features to learn classifiers by applying L1-regularized logistic re-

gression. This regression provides the best features by trying different parameters which are

dependent attribute result according to nearest ground truth values. The features of other ob-

jects which has the ’furniture arm’ attribute are extracted by the same L1-regularized logistic
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regression. Then, all of these features are pooled to learn ’furniture arm’ classifier. In our

example ’armchair’ object class has ’furniture arm’ attribute and the features are extracted by

using L1-regularized logistic regression to distinguish with or without this attribute. Then,

we pool the features from ’armchair’ and ’sofa’ to learn ’furniture arm’ classifier. In [1] ,

selected features as mentioned above and whole features are compared and the correlation

of the attributes by using selected features gave lower rate. As a result, it can be said that

selected features are less sensitive to biases in dataset.

Classifier Training and Prediction Learning a model is the first step of classification.

From extracted features in training images we learn a model then classify them by using this

model. We used L1 regularized logistic regression to create models. Linear regression is

the base of regression. This type of regression is used to get binary results. We can select

an example which is based on getting probability sales of water according to temperature.

The probability should be between 0 and 1. Linear regression gives us a model from training

temperatures with formula in 1.

y = β0 + β1x1 + β2x2 + ε (1)

The model does not support very high or very low temperature because it cannot be negative

or greater than 1 which is contradictory with probability. This regression type will fail for

these reasons and we will have underfitting problem which the training data does not fit in

model, and another problem will occur that called high bias. To prevent these problems,

logistic regression is used. Logistic regression can be considered as probability of linear

regression with formula in 2.

P (y|x) = 1

1 + e−ywT x
, where y = ±1 (2)

Using these high polynomial terms cause the overfitting problem that fit the training data

well, but incapable of learning new data, and another problem comes with high variance.

To avoid these problems there are two methods. The size of features can be reduced or

regularization can be applied. The regularization method keeps all features, but changes
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their weights with formula in 3.

minw ||w||1 + C
l∑

i=1

log(1 + e−ywT x)

||.|| as 1− norm

(3)

The parameter selection for regularization is essential. We want to fit the model on train

well and get the parameter which gives the weights smaller. Loss function is used to learn

the best parameter which obtain the result of loss function with lowest value. L1-regularized

logistic regression reduces the parameter and encourages the sparsity in order to find the most

important features. In this way less important features are eliminated with value of zero and

most important ones are selected.

In this work all attributes have the separated classifiers. After extracting the features, attribute

classifiers are learned. Then, attribute predictions are found for each classifier.

Feature Combination In this thesis, we also look at the performance of the feature com-

binations, as well as the performance of the individual features. For this purpose, we utilize

three types of feature combinations, which are:

• Early Fusion In this type of fusion, the feature vectors are extracted as described above

and these vectors are concatenated consecutively. The combinations are composed by

early fusion in this work unless otherwise indicated.

• Late Fusion In late fusion, prediction scores coming from the individual feature clas-

sifiers are combined. This type of fusion, each classifier response is multiplied with a

weight wi where
∑

iwi = 1 and the sum of the weighted scores is taken as the final

prediction score. Here, when combining scores, we give equal weights to each of the

classifiers. We used late fusion to evaluate top 4 features combinations with the best

feature.

• Weighted Late Fusion In weighted late fusion, the prediction scores coming from the

individual feature classifiers are used as in late fusion. For each model weights are

computed with cross validation method that is used on only train images and obtain a

validation set to find accuracy of models. We used the best accuracy from the cross

validation results for weights of classifiers. In weighted late fusion, each classifier
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weight is computed according to equation 4 as taken zi, ..., zn best accuracy for each

attribute, si, ..., sn score for each attribute.

wi =

∑n
i=1 zi.si∑n
i=1 zi (4)

3.3. Implementation Details

In this part we explain the usage of features.

• Color Features We used kmeans cluster method on the color histograms. Visual vo-

cabulary computed with 128 kmeans centers. Nearest codevector index was used for

building color histograms. Color histograms were densely sampled.

• Shape Features HOG features were constructed with spatial pyramid. 8x8 blocks,

two scale factor, four pixel step size were used to construct pyramid. HOG descriptors

were used also with kmeans clustering. Feature histograms were formed with the

nearest 1000 kmeans centers. HOG extraction were done by using the source code as

handled in [1].

SIFT descriptors were extracted with the Vedaldi et al. [49] library. After extract-

ing SIFT descriptors, kmeans clustering was performed and kmeans centers were ex-

tracted. SIFT descriptors were quantized to nearest 1000 kmeans centers. These de-

scriptors were handled with the coordinates of the frames.

• Texture Features In this work texture features were extracted and The Maximum

Response(MR8) filter set and Gaussian filter were applied. The texton filter bank is

constructed. Textons were used with kmeans clustering method. The features are

quantized to nearest 256 kmeans centers. Textons were extracted by using the source

code as handled in [1].

By using the [49] library we extracted the LBP features too. The cell size was required

for LBP which is using for neighborhood limit. We chose eight for this parameter.

Kmeans clustering was used for this feature. The LBP features were quantized to

nearest 1000 kmeans centers.
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• Hybrid Feature We extracted the CSIFT descriptors by using ColorDescriptor soft-

ware v4.0, which is created by Sande et al. [50] [39]. CSIFT descriptors were densely

sampled at every six pixels. Kmeans clustering was used for CSIFT descriptors and

1000 kmeans centers were formed. The CSIFT descriptors were quantized to nearest

1000 kmeans centers. The output of this descriptor includes the coordinates. So, we

used this information when for building CSIFT histograms.

• Semantic Features We used CNN features from mid-level features. We extracted

CNN features by using library of Vedaldi and Lenc [48]. The fully connected layers

output of the last layer was extracted and used as a CNN feature. This feature size was

4096.

For all features mentioned above if the dataset has bounding box information, the histograms

of features are calculated with each bounding box bins. The dataset without bounding box

information is handled with the full-size of image and its histograms.
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In this chapter, we present the experimental evaluations of using various low-level features

for the problem of attribute recognition. First, we describe the datasets used in our evalua-

tions. Then, we give detailed experimental results and related discussions.

4.1. Datasets

a-Pascal Dataset Farhadi et al. [1] used The Pascal VOC 2008 dataset for object recogni-

tion and they extended this dataset with attribute annotations. Object classes in this dataset

can be grouped by person, animals, vehicles, and indoor. In animals group there are sheep,

bird, dog, cat, horse, and cow object classes. In vehicles group there are bus, aeroplane, mo-

torbike, bicycle, car, train, and boat object classes. In indoor group dining table, bottle, sofa,

chair, tv/monitor and potted plant object classes. There are 20 object categories in total and

each category has 150 to 1000 objects. Sixty four attributes are defined to represent these

classes. Each label for attributes and object classes are gotten from Amazon’s Mechanical

Turk. This dataset has the object bounding box information. The size of images can be dif-

ferent from each other. This dataset is separated to training and test images. In training there

are 2113 images and in testing there are 2227 images. Figure 4.1. shows example images of

this dataset.

a-Yahoo Dataset a-Yahoo dataset created by Farhadi et al. [1] for object recognition. It

is collected by Yahoo image search. There are twelve object categories which are similar

to a-Pascal dataset according to labels and bounding box information. But this dataset has

different object categories and attribute correlations from the a-Pascal dataset. The object

classes are building, donkey, wolf, statue of people, zebra, goat, monkey, bag, jet ski, car-

riage, mug and centaur. This dataset also have label of attributes like a-Pascal dataset and

64 attributes are defined. Amazon’s Mechanical Turk users labeled the attributes and object

classes in dataset. This dataset also has the information of bounding box, images can have

more objects in each image. The size of images can be different. There are 2644 images in

this dataset. Figure 4.2. shows example images of this dataset.

25



Chapter 4. EXPERIMENTS & RESULTS

FIGURE 4.1.: Example images and their corresponding attributes for a-Pascal Dataset [1]

FIGURE 4.2.: Example images and their corresponding attributes for a-Yahoo Dataset [1]
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FIGURE 4.3.: Example images and their corresponding attributes for Shoes Dataset [2]

Shoes Dataset Berg et al. [51] created the Attribute Discovery Dataset that has four shop-

ping categories which are bags, earrings, ties, and shoes. Kovashka et al. [2] used the shoes

dataset from these shopping categories. Amazon’s Mechanical Turk users labeled the dataset

with binary and relative attributes. We used only binary attribute labels for our work and only

shoes dataset. There are 14,658 images in dataset and the images have the same 280x280

pixels size. There is no bounding box information because there is only one object in each

image. There are 10 attributes in total which are ’pointy at the front’, ’high at the heel’,

’covered with ornaments’, ’bright in color’, ’open’, ’long on the leg’, ’feminine’, ’sporty’,

’shiny’, and ’formal’. Figure 4.3. shows example images of this dataset.

Attributes of People Dataset Bourdev et al. [3] created a dataset that used for people

attribute recognition. There is bounding box information for each image. All dataset are

labelled by nine attributes. They are ’is male’, ’has jeans’, ’has long hair’, ’has t-shirt’, ’has

hat’, ’has long sleeves’, ’has shorts’, ’has long pants’, and ’has glasses’ properties of people.

There are 4013 training and 4022 testing images and all images in dataset have different size.

Figure 4.3. shows example images of this dataset.
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FIGURE 4.4.: Example images and their corresponding attributes for Attributes of People
Dataset [3]

4.2. Experiment Implementation Details

In our experiment we used four dataset as mentioned above. Attribute classifiers are learned

for each attribute in each dataset. Fan et al. [52] created a LIBLINEAR library that use

regression types. LIBLINEAR provides the multi-class classification with L1-regularized

logistic regression. In the learning stage, we select the best C parameter by using cross-

validation which divide the images by training and testing and try to find the best accuracy.

The cross-validation provides learning better classifier that accurately predict unknown test-

ing data. The overfitting problem can also be prevented by using cross-validation.

4.3. Experimental Results

In the evaluation part we separate the train and test classes as follows. We used a-Pascal train

set according to the [1] for learning and a-Pascal test set in reference to [1] for testing. When

using a-Yahoo dataset at the learning stage we used a-Pascal models and tested them with
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a-Yahoo dataset. The Shoes dataset does not have the information of train and test categories.

Train and test sets ratio of other datasets, we divided the dataset by two and used for train

and test images. For Attributes of People dataset the train and test sets are prearranged so we

used them for training and testing.

Performance of Individual Features This part is separated into color features and other

features that used as low-level features.

• Color Features We used color histograms with three color spaces. RGB, LAB and

HSV color spaces were evaluated in this work. LAB color histograms gave the best

results for a-Pascal and Attributes of People datasets in reference to tables 4.1 and 4.4,

respectively. RGB color histograms mostly gave the best results for a-Yahoo dataset

as it is shown in the table 4.2. For Shoes dataset the HSV color histograms gave the

best results in reference to Table 4.3.

Features ROC Area AP
RGB Color 0.760 0.298
HSV Color 0.768 0.311
LAB Color 0.771 0.293

TABLE 4.1: The results of color features for a-Pascal dataset

Features ROC Area AP
RGB Color 0.668 0.198
HSV Color 0.667 0.193
LAB Color 0.659 0.187

TABLE 4.2: The results of color features for a-Yahoo dataset

Features ROC Area AP
RGB Color 0.898 0.871
HSV Color 0.903 0.877
LAB Color 0.893 0.867

TABLE 4.3: The results of color features for Shoes dataset
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Features ROC Area AP
RGB Color 0.623 0.281
HSV Color 0.616 0.277
LAB Color 0.630 0.283

TABLE 4.4: The results of color features for Attributes of People

• Shape Features We used HOG and SIFT feature types in this category. HOG is the

best shape feature among them. For all dataset HOG features gave the best result as

shown in tables 4.10, 4.11, 4.12, 4.13. So, if user wants to use shape feature in attribute

learning, he should use HOG feature.

We wanted to learn effects of kmeans center count on the results. The tables 4.5 and 4.6

show the results of different kmeans center count. For a-Pascal and a-Yahoo datasets

the lowest value resulted in 250 kmeans centers and 750 kmeans centers provide the

best result. We can analyze these tables 4.5 and 4.6 as if we used small count of centers

it will learn small vocabulary and it will be inadequate to represent visual words, and

if we used large count of centers it will learn big vocabulary and visual words will be

pointless parts.

Features ROC Area
250 Centers HOG 0.859
500 Centers HOG 0.874
750 Centers HOG 0.876
1000 Centers HOG 0.870

TABLE 4.5: The results of different k-means center clustering of HOG feature for a-Pascal
dataset

Features ROC Area
250 Centers HOG 0.820
500 Centers HOG 0.832
750 Centers HOG 0.832
1000 Centers HOG 0.828

TABLE 4.6: The results of different k-means center clustering of HOG feature for a-Yahoo
dataset

• Texture Features We used texton for texture features. This feature worked better

from color histograms in Shoes and a-Yahoo dataset as shown in table 4.11 and 4.12

and worked worse in a-Pascal and Attributes of People datasets as shown in 4.10 and

4.13. Attribute learning by using only this feature may not give the good results. We
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also used LBP features for texture feature. In between SIFT and LBP features, SIFT

better performed in a-Pascal and Shoes dataset and LBP is better performed in a-Yahoo

and Attributes of People dataset.

• Hybrid Feature In hybrid category we used the CSIFT descriptors. CSIFT descriptors

gave better result as compared with SIFT features, also CSIFT descriptors have better

performance as compared with color histograms. So using color invariant in SIFT

features improved results of SIFT feature in attribute learning. We wanted to analyze

the effects of kmeans center count on CSIFT feature. The tables 4.7, 4.8 and 4.9 show

that kmeans center count vary in accordance with datasets. In addition to this the

results have one thing in common that they do not give good results for very small

count of centers.

Features ROC Area
250 Centers CSIFT 0.959
500 Centers CSIFT 0.964
750 Centers CSIFT 0.962
1000 Centers CSIFT 0.955

TABLE 4.7: The results of different k-means center clustering of CSIFT feature for Shoes
dataset

Features ROC Area
250 Centers CSIFT 0.856
500 Centers CSIFT 0.865
750 Centers CSIFT 0.875
1000 Centers CSIFT 0.874

TABLE 4.8: The results of different k-means center clustering of CSIFT feature for a-Pascal
dataset

Features ROC Area
250 Centers CSIFT 0.792
500 Centers CSIFT 0.807
750 Centers CSIFT 0.808
1000 Centers CSIFT 0.817

TABLE 4.9: The results of different k-means center clustering of CSIFT feature for a-Yahoo
dataset

• Semantic Features We used CNN features in this category. Except a-Yahoo dataset

CNN is the best feature for attribute learning according to the results as shown in

Tables 4.10, 4.11, 4.12, 4.13.
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Features ROC Area AP
LBP 0.731 0.252
SIFT 0.734 0.340

Texton 0.758 0.265
LAB Color 0.771 0.293

HOG 0.871 0.497
CSIFT 0.874 0.505
CSIFT* 0.875 0.507
HOG* 0.876 0.511
CNN 0.878 0.473

TABLE 4.10: The results of low-level and mid-level features for a-Pascal dataset
* : 750 kmeans centers

Features ROC Area AP
RGB Color 0.668 0.198

Texton 0.719 0.234
SIFT 0.731 0.333
LBP 0.748 0.314
CNN 0.814 0.445

CSIFT 0.817 0.381
HOG 0.828 0.427

TABLE 4.11: The results of low-level and mid-level features for a-Yahoo dataset

Features ROC Area AP
LBP 0.895 0.871

HSV Color 0.903 0.877
Texton 0.924 0.910
SIFT 0.947 0.936

CSIFT 0.955 0.943
HOG 0.968 0.961
CNN 0.983 0.979

TABLE 4.12: The results of low-level and mid-level features for Shoes dataset
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FIGURE 4.5.: ROC curves of low-level and mid-level features for a-Pascal dataset

Features ROC Area AP
Texton 0.554 0.257
SIFT 0.576 0.266
LBP 0.607 0.242

LAB Color 0.630 0.283
HOG 0.688 0.337

CSIFT 0.726 0.384
CNN 0.805 0.498

TABLE 4.13: The results of low-level and mid-level features and their combinations for
Attributes of People dataset

According to our experimental results on evaluating individual features in Tables 4.10, 4.11,

4.12, 4.13, CNN features can be regarded as the most effective features for attribute learning,

except for the a-Yahoo dataset as shown in all ROC curves for datasets in Figures 4.5., 4.6.,

4.7., 4.8.. This result is not surprising, since CNN features are supervised features that have

been extensively trained using additional data. CSIFT feature is the second-best feature in

a-Pascal and Attributes of People Dataset. HOG feature is the second-best for Shoes dataset.

The results of a-Yahoo dataset are different from other datasets. For a-Yahoo dataset HOG

feature is the best and second-best is CSIFT feature.
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FIGURE 4.6.: ROC curves of low-level and mid-level features for a-Yahoo dataset
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FIGURE 4.7.: ROC curves of low-level and mid-level features for Shoes dataset

We got the results of each attribute separately and we concatenated them, finally we created

ROC curves for combined attribute scores. Apart from those, we used the result of each

attribute separately and demonstrated them in figures for a-Pascal dataset 4.9., 4.10., 4.11.,

4.12., 4.13., 4.14., 4.15., for a-Yahoo dataset 4.16., 4.17., 4.18., 4.19., 4.20., for Shoes dataset

4.21. and for Attributes of People dataset 4.22.. The purpose of these charts is to present the

correlation of attribute and low-level feature types.

In a-Pascal dataset the body parts like ear, nose, mouth, hair, face, eye, torso, hand, arm, leg,

gave the best results with HOG feature as shown in figures 4.10. and 4.11.. CSIFT descriptors

are the second-best and CNN is the third-best for these types of attributes. The object parts

like furniture arm, furniture leg, furniture seat, furniture back, rein, saddle, propeller, jet

engine, window, row wind, wheel, pedal, handlebars, sail, engine, mast, gave the best results

with CNN feature as shown in figures 4.11., 4.12., 4.13., 4.14.. The HOG feature is mostly

the second-best for these attributes and CSIFT is mostly the third-best feature for this type

of attributes. In the small part of these attributes HOG feature and CSIFT replace each other.

The material attributes like leather, wool, feather, wood, plastic, gave the best results with

CNN feature as shown in 4.14. and 4.15.. The second-best and third best replaceable with
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FIGURE 4.8.: ROC curves of low-level and mid-level features for Attributes of People
dataset

HOG and CSIFT features. Some of them like metal gave the best results with CSIFT feature.

The spatial attributes like 2D boxy, 3D boxy, vertical cylinder, horizontal cylinder gave the

best results mostly with CNN features. CSIFT and HOG results for these attributes are very

close together as shown in figure 4.9.. The color histograms gave varying results regarding

to attributes.

In a-Yahoo dataset these results changed. The reason can be explained with the data distri-

bution of two different dataset. The figures 4.16., 4.17., 4.18., 4.19., 4.20. show the results

of a-Yahoo dataset. There are some missing attributes in a-Yahoo dataset that are defined

for a-Pascal dataset. We did not add these attributes in figures. Similar to a-Pascal dataset

this dataset also gave the best result for body parts like hand, arm, face, eye, head, ear, nose

with HOG features as shown in figures 4.16. and 4.17.. Some material attributes like metal,

leather, plastic gave the best results with CNN feature, but some material attributes like wool

and feather gave the best result with LBP feature as shown in figures 4.19. and 4.20.. The

object parts like rein, saddle, window, row wind, wheel, handlebars, engine gave the best

results with CNN feature as shown in figures 4.18. and 4.19.. The spatial attributes like
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FIGURE 4.9.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-1

2D boxy, 3D boxy, vertical cylinder, horizontal cylinder gave changeable results with HOG,

CSIFT and CNN features as shown in figure 4.16..

In Shoes dataset CNN feature is the best feature to learning all attributes as shown in figure

4.21.. For this dataset HOG feature also gave good results for all attributes. The CSIFT

feature is the third-best feature in this dataset, but SIFT feature worked better in ’log-on-the-

leg’ attribute than CSIFT descriptors. The LBP and SIFT features performanced on ’covered-

with-ornaments’ is lower than other attributes. The color histograms gave the worst results

on ’open’ attribute.

In Attributes of People dataset also CNN feature provide the best results all of them except

has-glasses attribute which worked better with LBP feature as shown in figure 4.22.. The

CSIFT descriptor may be the second-best feature for this dataset except for ’has-glasses’ and

’has-shorts’ attributes. The HOG feature is the third-best feature for Attributes of People

dataset. The color histograms gave the worst results on ’has-glasses’ attribute.
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FIGURE 4.10.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-2

FIGURE 4.11.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-3

38



Chapter 4. EXPERIMENTS & RESULTS

FIGURE 4.12.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-4

FIGURE 4.13.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-5
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FIGURE 4.14.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-6

FIGURE 4.15.: The results of attributes and low-level features and mid-level features corre-
lations for a-Pascal dataset, Part-7
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FIGURE 4.16.: The results of attributes and low-level features and mid-level features corre-
lations for a-Yahoo dataset, Part-1

FIGURE 4.17.: The results of attributes and low-level features and mid-level features corre-
lations for a-Yahoo dataset, Part-2
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FIGURE 4.18.: The results of attributes and low-level features and mid-level features corre-
lations for a-Yahoo dataset, Part-3

FIGURE 4.19.: The results of attributes and low-level features and mid-level features corre-
lations for a-Yahoo dataset, Part-4
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FIGURE 4.20.: The results of attributes and low-level features and mid-level features corre-
lations for a-Yahoo dataset, Part-5
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FIGURE 4.21.: The results of attributes and low-level features and mid-level features corre-
lations for Shoes dataset
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is-male im

has-long-hair hlh

has-glasses hg

has-hat hh

has-t-shirt hts

has-long-sleeves hls

has-shorts hs

has-jeans hj

has-long-pants hlp

FIGURE 4.22.: The results of attributes and low-level features and mid-level features corre-
lations for Attributes of People dataset
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Performance of Feature Combinations

• Results on a-Pascal Dataset In figure 4.5. there are ROC curves results for each

feature. After the evaluation of performance of individual features, we look at some

combinations of these features. In forming these combinations, we employed both

early fusion and late fusion techniques. In these evaluations, we used the best color

result that LAB color for a-Pascal dataset, CSIFT, HOG, LBP, Texton and CNN fea-

tures. We did not use SIFT features because CSIFT features gave better results than

it and their structure is similar. The results for all of these combinations are in Tables

4.15, 4.14 and ROC curves are in Figure 4.24.. Note that combinations of features

were used firstly in a-Pascal dataset and best result of these combinations was applied

to other datasets.

The following conclusions can be done through by these results. Only using the shape

features or only using the color features are generally inadequate to represent images.

We added to CSIFT and HOG combinations texton, LBP and LAB color. The LAB

color feature made the best contribution. Color histograms are insufficient to represent

an image, but they are very effective to complete shape features. We can say using

more features do not always give the best result. The features combination except CNN

is not the best result. For this dataset combination of CSIFT + HOG + LAB Color gave

the best result. We added the CNN feature to this combination and the performance of

this combination decreased. We wanted to see better result for these combinations, so

we used late fusion to see combination clearly and this combination gave the best result

for this dataset as shown in Table 4.15. As it can be seen in these results, Weighted

Late Fusion (WLF) gives the best results in obtaining the combinations of features.

• Results on a-Yahoo Dataset We used the best combination of a-Pascal dataset which

CSIFT + HOG + Color for a-Yahoo dataset. But differently we used RGB Color which

the best color result for this dataset as shown in 4.2. Then, we used CNN features in

combinations with early and late fusion methods. The table 4.16 and the figure 4.28.

shows the results. Only using CNN feature gave better result than early fusion of CNN.
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Features ROC Area AP
CNN + CSIFT* + HOG* 0.858 0.537

CNN + CSIFT + HOG + LAB Color 0.864 0.539
CNN + CSIFT* 0.869 0.523

CNN + CSIFT* + HOG* + LAB Color 0.865 0.547
CSIFT + Texton 0.881 0.510

CSIFT + HOG + Texton 0.882 0.546
HOG + LAB Color + Texton 0.886 0.534
LBP + HOG + LAB Color 0.884 0.531

CSIFT + LBP + HOG 0.893 0.557
CSIFT + LAB Color + HOG + Texton 0.897 0.566

CSIFT* + HOG* + LAB Color 0.898 0.573
CSIFT + LBP + HOG + Texton 0.899 0.564

CSIFT + HOG + LAB Color + Texton + LBP 0.901 0.570
CSIFT + HOG + LAB Color 0.904 0.574

TABLE 4.14: The results of early fusion feature combinations for a-Pascal dataset
* : 750 kmeans centers

Features Fusion Type ROC Area AP

CNN + LAB Color
LF 0.891 0.522

WLF 0.892 0.521

CNN + CSIFT*
LF 0.915 0.593

WLF 0.914 0.589

CNN + HOG*
LF 0.916 0.602

WLF 0.915 0.599

CNN + CSIFT* + LAB Color
LF 0.916 0.596

WLF 0.916 0.597

CNN + HOG* + LAB Color
LF 0.919 0.609

WLF 0.920 0.609
CNN + (CSIFT* + HOG* + LAB Color) LF 0.923 0.621

CNN + HOG* + CSIFT*
LF 0.924 0.624

WLF 0.924 0.624
CNN + (CSIFT + HOG + LAB Color) LF 0.925 0.620

CNN + CSIFT* + HOG* + LAB Color
LF 0.925 0.625

WLF 0.926 0.627

TABLE 4.15: The results of late fusion and weighted late fusion feature combinations for
a-Pascal dataset

* : 750 kmeans centers
LF : Late Fusion, WLF : Weighted Late Fusion

• Results on Shoes Dataset The best combination of a-Pascal dataset was used for this

dataset too. We used HSV color for these combinations because it gave the best result

for this dataset as shown in 4.3. The results are in the table 4.17 and in the figure 4.29..
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Features Fusion Types ROC Area AP
CNN + (CSIFT + HOG + RGB Color) EF 0.785 0.436

CNN + (CSIFT* + HOG* + LAB Color) EF 0.795 0.461
CNN + LAB Color LF 0.806 0.440

CNN + RGB Color
LF 0.810 0.444

WLF 0.814 0.453
CSIFT* + HOG* + LAB Color EF 0.824 0.439
CSIFT + HOG + RGB Color EF 0.832 0.443

CNN + CSIFT + RGB Color
LF 0.847 0.514

WLF 0.850 0.522

CNN + CSIFT
LF 0.858 0.537

WLF 0.858 0.536

CNN + HOG* + RGB Color
LF 0.861 0.546

WLF 0.863 0.552
CNN + (CSIFT* + HOG* + LAB Color) LF 0.863 0.553
CNN + (CSIFT + HOG + RGB Color) LF 0.866 0.556

CNN + HOG*
LF 0.870 0.561

WLF 0.869 0.559

CNN + HOG* + CSIFT + RGB Color
LF 0.868 0.546

WLF 0.870 0.553

CNN + HOG* + CSIFT
LF 0.875 0.559

WLF 0.875 0.561

TABLE 4.16: The results of feature combinations for a-Yahoo dataset
* 750 kmeans centers

EF : Early Fusion, LF : Late Fusion, WLF : Weighted Late Fusion

Features Fusion Types ROC Area AP

CNN + HSV Color
LF 0.978 0.974

WLF 0.979 0.975

CNN + HSV Color + CSIFT
LF 0.979 0.974

WLF 0.979 0.974
CSIFT + HOG + HSV Color EF 0.979 0.976

CNN + CSIFT + HOG + HSV Color
LF 0.980 0.976

WLF 0.980 0.977

CNN + CSIFT
LF 0.981 0.976

WLF 0.981 0.976

CNN + HOG + CSIFT
LF 0.981 0.978

WLF 0.982 0.978

CNN + HOG + HSV Color
LF 0.981 0.978

WLF 0.982 0.978

CNN + HOG
LF 0.983 0.980

WLF 0.983 0.980
CNN + (CSIFT + HOG + HSV Color) EF 0.984 0.981
CNN + (CSIFT + HOG + HSV Color) LF 0.987 0.985

TABLE 4.17: The results of feature combinations for Shoes dataset
EF : Early Fusion, LF : Late Fusion, WLF : Weighted Late Fusion
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• Results on Attribute of People Dataset We used the best combination of a-Pascal

dataset with LAB color for this dataset. Early and late fusion methods were used for

CNN feature. The results are in the table 4.18 and in the figure 4.30.. The early fusion

of CNN performance was worse than only using of CNN feature.

Features Fusion Types ROC Area AP
CSIFT + HOG + LAB Color EF 0.687 0.384

CNN + (CSIFT + HOG + LAB Color) EF 0.783 0.474

CNN + LAB Color
LF 0.800 0.494

WLF 0.803 0.496

CNN + HOG + LAB Color
LF 0.805 0.506

WLF 0.809 0.509

CNN + HOG
LF 0.809 0.509

WLF 0.811 0.512

CNN + LAB Color + CSIFT
LF 0.809 0.510

WLF 0.812 0.513

CNN + HOG + CSIFT
LF 0.813 0.518

WLF 0.816 0.521

CNN + CSIFT
LF 0.816 0.518

WLF 0.817 0.520
CNN + (CSIFT + HOG + LAB Color) LF 0.809 0.520

CNN + CSIFT + HOG + LAB Color
LF 0.809 0.512

WLF 0.812 0.516

TABLE 4.18: The results of feature combinations for Attributes of People dataset
EF : Early Fusion, LF : Late Fusion, WLF : Weighted Late Fusion

Except for the aYahoo dataset, the best results are obtained using the (weighted) late fusion

of CSIFT, HOG, Color and CNN features. We can say that while CNN features are powerful

supervised features, they may not achieve the best results, and the combination of low-level

features with CNN features gives promising improvements on attribute recognition
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(A) CSIFT + Texton for a-Pascal
dataset

(B) CSIFT + HOG + Texton for
a-Pascal dataset

(C) Hog + Texton + LAB Color for
a-Pascal dataset

(D) CSIFT + HOG + LAB Color for
a-Pascal dataset

FIGURE 4.23.: ROC curves of feature combinations for a-Pascal dataset - Part 1
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(A) LBP + HOG + LAB Color for
a-Pascal dataset

(B) LBP + HOG + CSIFT for
a-Pascal dataset

(C) LBP + HOG + CSIFT + Texton
for a-Pascal dataset

(D) CSIFT* + HOG* + CNN for
a-Pascal dataset

(E) CSIFT* + CNN for a-Pascal
dataset

(F) CSIFT + HOG + LAB Color+ CNN
for a-Pascal dataset

FIGURE 4.24.: ROC curves of feature combinations for a-Pascal dataset - Part 2
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(A) CNN + HOG* (LF) for a-Pascal
dataset

(B) CNN + CSIFT* (LF) for
a-Pascal dataset

(C) CNN + LAB Color (LF) for
a-Pascal dataset

(D) CNN + CSIFT* + HOG* (LF) for
a-Pascal dataset

(E) CNN + CSIFT* + LAB Color
(LF) for a-Pascal dataset

(F) CNN + HOG* + LAB Color (LF)
for a-Pascal dataset

FIGURE 4.25.: ROC curves of late fusion feature combinations for a-Pascal dataset - Part1
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(A) (CSIFT + HOG + LAB Color) +
CNN (LF) for a-Pascal dataset

(B) (CSIFT + HOG + LAB Color) +
CNN (LF) for a-Pascal dataset

(C) CSIFT* + HOG* + LAB Color +
CNN (LF) for a-Pascal dataset

(D) CSIFT* + HOG* + LAB Color +
CNN (WLF) for a-Pascal dataset

FIGURE 4.26.: ROC curves of late fusion feature combinations for a-Pascal dataset - Part2
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(A) CNN + HOG* (WLF) for
a-Pascal dataset

(B) CNN + CSIFT* (WLF) for
a-Pascal dataset

(C) CNN + LAB Color (WLF) for
a-Pascal dataset

(D) CNN + CSIFT* + HOG* (WLF)
for a-Pascal dataset

(E) CNN + CSIFT* + LAB Color
(WLF) for a-Pascal dataset

(F) CNN + HOG* + LAB Color (WLF)
for a-Pascal dataset

FIGURE 4.27.: ROC curves of wighted late fusion feature combinations for a-Pascal dataset
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(A) CSIFT + HOG + RGB Color for
a-Yahoo dataset

(B) CSIFT + HOG + RGB Color+ CNN
for a-Yahoo dataset

(C) CSIFT + HOG + RGB Color+
CNN (Late Fusion) for a-Yahoo

dataset

FIGURE 4.28.: ROC curves of feature combinations for a-Yahoo dataset
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(A) CSIFT + HOG + HSV Color for
Shoes dataset

(B) CSIFT + HOG + HSV Color+ CNN
for Shoes dataset

(C) CSIFT + HOG + HSV Color+ CNN
(Late Fusion) for Shoes dataset

FIGURE 4.29.: ROC curves of feature combinations for Shoes dataset
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(A) CSIFT + HOG + RGB Color for
Attributes of People dataset

(B) CSIFT + HOG + RGB Color+
CNN for Attributes of People

dataset

(C) CSIFT + HOG + RGB Color+ CNN
(Late Fusion) for Attributes of

People dataset

FIGURE 4.30.: ROC curves of feature combinations for People dataset
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4.4. Comparison with Reference Work

We used the Farhadi et al. [1] method in this work. Their results for logistic regression and

selected features were compared with our results in table 4.19. In their work they combined

only three features that HOG, LAB Color and Texton. We used different combinations of

them and with other features. As seen from the table the results can be improved with differ-

ent features and their combinations.

Features AP
HOG + LAB Color + Texton [1] 0.535

HOG + LAB Color + Texton 0.534
CSIFT + HOG + LAB Color 0.574

CNN + CSIFT* + HOG* + LAB Color (LF) 0.625
CNN + CSIFT* + HOG* + LAB Color (WLF) 0.627

TABLE 4.19: The results of comparison between [1] and our work for a-Pascal dataset

Lampert et al. [10] used the a-Pascal dataset too. The table 4.20 shows the comparison

the results of two methods. They used similar features like color SIFT as rgSIFT color his-

tograms PHOG, but the results are lower. Different methods could cause this result. They

used direct attribute prediction (DAP) and indirect attribute prediction (IAP) differently from

us. Another reason can be the feature combinations. More features can decrease the results

as seen in the results of this work.

Features ROC Area
HSV Color + SIFT + rgSIFT + PHOG + SURF [10] 0.737

CSIFT + HOG + LAB Color 0.904
CNN + CSIFT* + HOG* + LAB Color (LF) 0.925

CNN + CSIFT* + HOG* + LAB Color (WLF) 0.926

TABLE 4.20: The results of comparison between [10] and our work for a-Pascal dataset
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Bourdev et al. [3] used HSV color histograms, HOG and skin-specific features to describe

people by attributes. They wanted to learn invariant attributes to viewpoints and poses. Our

method does not provide these properties. Our result is lower than their result as shown in

4.21.

Razavian et al. [27] also used CNN features in their work. The table 4.21 shows their results

are better than us. They extracted CNN feature vector within the bounding box bins we, on

the other hand used full size of image when extracting CNN feature vectors and this could

reduce the performance.

Features AP
CNN (OverFeat) [27] 0.730

HSV Color + HOG + Skin-specific features [3] 0.651
CNN + (CSIFT + HOG + LAB Color) 0.474

CNN + CSIFT + HOG + LAB Color (LF) 0.512
CNN + CSIFT + HOG + LAB Color (WLF) 0.516

TABLE 4.21: The results of comparison between [27], [3] and our work for Attributes of
People dataset
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5. CONCLUSIONS

In this thesis, our aim is to analyze the effects of low-level features for visual attribute recog-

nition. To do this, we explore four main categories of low-level features, which are RGB,

HSV and LAB color histograms for color features, texton and LBP for texture features, HOG

and SIFT for shape features, CSIFT for hybrid and CNN for deep learning features.

In our experiments, we make use of four datasets, which are designed to handle different

visual recognition tasks, such as object recognition, shoe description and people description.

These are a-Pascal, a-Yahoo, Shoes and Attributes of People datasets.

Overall the CNN feature can be the most effective feature for attribute learning. CSIFT and

HOG features are the second best features and may be replaced with each other. The structure

of attributes affects the results of learning. For example, the body parts worked better with

HOG feature and human clothes worked better with CNN feature.

We also look at the performance of some feature combinations. In general, using features

in combination gives better performance. However, the results also show us that using more

features for combinations does not give better results. It is important to find feature combi-

nations such that features complement each other.

Based on these results CNN feature could be used in product search which can be shoes or

clothes. HOG, CSIFT or CNN may be preferred for object recognition problems.

This work can be extended by different datasets and different features. The feature combi-

nations can be handled more detailed. We used the best combinations of a-Pascal dataset for

other datasets. All combinations of features can be applied to each dataset separately and

combination analyzing can be done according to datasets.
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