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ABSTRACT 

 

INVESTIGATION OF THE EFFECTS OF STRUCTURAL NONLINEARITIES ON 

THE AEROELASTIC STABILITY OF TWO DIMENSIONAL AIRFOIL 

 

 

Oğuzhan KOCA 

 

 

Master of Science, Mechanical Engineering Department 

Supervisor: Prof. Dr. Selahattin Çağlar BAŞLAMIŞLI 

February 2022, 81 pages 

 

In this thesis, the effects of nonlinear structural components on the aeroelastic stability of a 

2D airfoil section which is studied in the academic and industrial environments since the 

theoretical foundation that was published in 1940s, is investigated. The aerodynamic forces 

obtained from the potential flow theory were used in the studies. Potential flow theory is  

decided to be used in this thesis as it is a widely used in aeroelastic studies hence it gives 

successful results at subsonic speeds and can be applied mathematically quickly and 

simply.  The time integration methods are found to be time inefficient especially at higher 

airspeed where the oscillation amplitudes are high as well. It is also realized that time 

integration methods are not capable of describing the stability and bifurcations in details. 

For these reasons, numerical continuation methods are decided to be used to obtain detailed 

stability and bifurcation characteristics of the system in shorter times. The flutter speed of 

the linear system is found with solving eigenvalue problem which is derived from equation 

of motion. Again using this equations and mathematical expressions of the nonlinear 

structural components, the nonlinear differential equations were obtained. The nonlinear 
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structural components cubic stiffness, quadratic damping and free-play are studied in this 

thesis. The numerical continuation analyzes are performed in an open source MATLAB 

package software MATCONT. In these analyzes, it was observed that the nonlinear 

components have important impact on the stability of the system and caused to arise limit 

cycle oscillations. It is also found that, the stability and amplitude of the limit cycle 

oscillations are highly effected from the coefficients of nonlinear components and the 

degree of freedom where the nonlinear components are introduced. 

 

Keywords: aeroelasticity, flutter, limit cycle oscillation, bifurcation, dynamic stability, 

numerical continuation 
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ÖZET 

 

İKİ BOYUTLU KANAT KESİTLERİNDE YAPISAL DOĞRUSALSIZLIKLARIN 

AEROELASTİK KARARLILIĞA ETKİLERİNİN İNCELENMESİ 

 

 

Oğuzhan KOCA 

 

 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Selahattin Çağlar BAŞLAMIŞLI 

Şubat 2022, 81 sayfa 

 

Sunulan bu tezde, mühendisliğin hem akademik hem de endüstriyel alanlarında teorik 

temellerinin atıldığı 1940’lı yıllardan bu yana üzerinde çalışılmaya devam edilen iki 

boyutlu kanat kesitlerinde bulunan doğrusal olmayan yapısal etkilerin aeroelastik 

kararlılığa etkisi incelenmiştir. Yapılan çalışmalarda potansiyel akış teorisinden elde edilen 

aerodinamik kuvvetler kullanılmıştır. Potansiyel akış teorisi, ses altı hızlarda başarılı 

sonuçlar vermesi ve matematiksel olarak hızlı ve basit bir şekilde uygulanabilir olması 

nedeniyle aeroelastik çalışmalarda oldukça yaygın olarak kullanılan bir metot olması 

dolayısıyla bu tezde de kullanılmasına karar verilmiştir. Doğrusal olmayan yapısal 

bileşenlerin etkilerinin incelemelerde doğrusal olmama seviyelerinin yüksek olduğu 

durumlarda özellikle yüksek hava hızları için artan genliklerle beraber zaman integrasyon 

metotları ile çözümlerin uzun sürdüğü, sistem kararlılığı ve bifurkasyonların detaylı olarak 

kestirilemediği gözlenmiştir. Bu sebeple nümerik devamlılık metotları kullanılarak daha 

hızlı çözümler alınması ve de sistem karakteristiğinin daha detaylı belirlenmesi 

hedeflenmiştir. Hareket denklemlerinden elde edilen özdeğer problemi çözülerek doğrusal 
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sistemin çırpıntı hızı belirlenmiştir. Yine bu denklemlere doğrusal olmayan yapısal 

bileşenler eklenerek doğrusal olmayan hareket denklemleri türetilmiştir. Bu tezde incelenen 

doğrusal olmayan yapısal etkiler; kübik katılık, ikinci derece sönüm ve de boşluklardır. 

Nümerik devamlılık analizleri açık kaynak bir MATLAB paket programı olan MATCONT 

ile gerçekleştirilmiştir. Gerçekleştirilen analizler kapsamında doğrusal olmayan bu yapısal 

bileşenlerin sistemin kararlılığında önemli değişikliklere sebep olduğu ve limitli döngü 

titreşimlerini oluşturduğu gözlenmiştir. Limitli döngü titreşimlerinin kararlılığının ve 

genliğinin doğrusal olmayan yapısal bileşenlerin katsayılarına, bu bileşenlerin hangi 

serbestlikte tanımlandığına göre önemli ölçüde etkilendiği görülmüştür.  

 

 

Anahtar Kelimeler: aeroelastisite, çırpıntı, limit döngü titreşimi, bifurkasyon, dinamik 

kararlılık, nümerik devamlılık  



v 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to express my special thanks to my supervisor Prof. Dr. Selahattin 

Çağlar Başlamışlı for his guidance and patience.  

 

I am grateful to my colleagues Muhammed Emin Cerit, Taylan Karaağaçlı, Özlem Sökmen, 

for their support and insightful comments. I am also thankful to my chief Dr. Ümit Ceyhan 

for his understanding and patience during the thesis studies. I also thank to TÜBİTAK 

SAGE for the opportunities that create for me. 

 

I am especially grateful to my parents Ali Koca and Hanife Koca who raised me with many 

sacrifices and love and my little sister Gamze Nur Koca for their unlimited and 

unconditional supports throughout my education and my life. 

 

I also would like to express my sincere and deepest acknowledgements to my loving and 

caring wife Ebru Koca who is always with me and shows ultimate understanding and 

support during the thesis studies.  

 

  



vi 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ............................................................................................................................ i 

ÖZET ..................................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................... v 

TABLE OF CONTENTS ...................................................................................................... vi 

LIST OF TABLES ................................................................................................................ ix 

LIST OF FIGURES ................................................................................................................ x 

SYMBOLS AND ABBREVIATIONS ................................................................................ xii 

1. INTRODUCTION ............................................................................................................. 1 

1.1. Static Aeroelasticity ................................................................................................. 2 

1.2. Dynamic Aeroelasticity ............................................................................................ 3 

1.3. Historical Background ............................................................................................. 6 

1.4. Scope of the Thesis ................................................................................................ 12 

1.5. Literature Survey .................................................................................................... 12 

2. AEROELASTIC MODELING OF 3 DOF TYPICAL SECTION .................................. 17 

2.1. Structural Modeling of 3 DOF Typical Section ..................................................... 17 

2.2. Aerodynamic Modeling of 3 DOF Typical Section ............................................... 19 

2.3. Aeroelastic Equation of Motion ............................................................................. 25 

3. LINEAR AND NONLINEAR SOLUTION APPROACHES ........................................ 26 

3.1. Eigenvalue Solution ............................................................................................... 26 

3.2. Nonlinear Modeling and Solution Techniques ...................................................... 27 

3.2.1 Numerical Continuation .................................................................................... 27 

3.2.2 Bifurcation Analysis .......................................................................................... 30 



vii 

 

3.2.2.1. Hopf Bifurcation ......................................................................................... 31 

3.2.2.2. Fold Bifurcation .......................................................................................... 32 

3.2.2.3. Neimark-Sacker Bifurcation ....................................................................... 32 

3.2.2.4. Period Doubling .......................................................................................... 33 

3.2.3 MATCONT ........................................................................................................ 34 

4. EIGENVALUE ANALYSIS OF LINEAR AEROELATIC MODEL ............................ 34 

5. ANALYSIS OF LINEAR MODEL IN ZAERO ............................................................. 38 

5.1. Mathematical Background of Aeroelasticity in ZAERO ....................................... 39 

5.2. Spline ...................................................................................................................... 42 

5.3. Mathematical Background of Flutter Solutions in ZAERO ................................... 43 

5.3.1 p-Method ............................................................................................................ 43 

5.3.2 k-Method ............................................................................................................ 44 

5.3.3 p-k Method ......................................................................................................... 46 

5.3.4 g-Method ............................................................................................................ 47 

5.4. Aeroelastic Analysis Setup in ZAERO .................................................................. 49 

5.4.1 The Panel Model ................................................................................................ 50 

5.4.2 Modal Analysis Results ..................................................................................... 51 

5.5. ZAERO Results ...................................................................................................... 51 

6. ANALYSIS OF NONLINEAR MODELS ...................................................................... 54 

6.1. Cubic Stiffness Nonlinearity Analyses ................................................................... 54 

6.1.1 Cubic Nonlinearity Analysis in Pitching Direction ........................................... 54 

6.1.2 Cubic Nonlinearity Analysis in Plunge Direction ............................................. 59 

6.1.3 Cubic Nonlinearity Analysis in Control Surface ............................................... 61 

6.2. Quadratic Damping Nonlinearity Analyses ............................................................ 64 

6.2.1 Quadratic Damping Nonlinearity Analyses in Pitch Direction .......................... 64 

6.3. Free-Play Nonlinearity Analysis ............................................................................ 68 

6.3.1 Free-Play Nonlinearity Analyzes in Pitching Direction .................................... 70 



viii 

 

7. CONCLUSION AND FUTURE WORK ........................................................................ 72 

8. REFERENCES ................................................................................................................ 75 

APPENDIX .......................................................................................................................... 80 

APPENDIX 1 – Explicit Forms of Structural and Aerodynamic Matrices ..................... 80 

APPENDIX 2– Originality Report .................................................................................. 82 

CURRICULUM VITAE ...................................................................................................... 83 

  



ix 

 

LIST OF TABLES 

 

 

Table 4.1. The physical properties of the airfoil ................................................................... 35 

Table 4.2. Comparison of the results .................................................................................... 37 

Table 5.1. Finite Element Results of 3D wing-control surface system ................................ 51 

Table 5.2. Airspeeds ............................................................................................................. 52 

Table 5.3. Comparison of the results .................................................................................... 53 

  



x 

 

LIST OF FIGURES 

 

 

Figure 1.1. Interactions between field of elasticity, dynamics and aerodynamic [1]. ............ 1 

Figure 1.2. Effects of swept angle on aeroelastic response [2]. ............................................. 2 

Figure 1.3. The responses of a missile fin at different air speeds [4]. .................................... 4 

Figure 1.4. Modal coupling [5] .............................................................................................. 5 

Figure 1.5. Tail buffeting of F-18 [7] ..................................................................................... 6 

Figure 1.6. Wright Brothers’ aeroelastic model. [9] .............................................................. 7 

Figure 1.7. Launch of Langley’s monoplane ......................................................................... 8 

Figure 1.8. Handley Page O/400 ............................................................................................ 9 

Figure 1.9. Fourier transform relation between time domain and frequency domain 

modeling methods of unsteady aerodynamics [15]. .......................................... 10 

Figure 1.10. Von Schlippe’s flight flutter test technique [16] ............................................. 11 

Figure 1.11. Comparison of LCO amplitudes from test and nonlinear ZEUS analysis ....... 16 

Figure 2.1. 2D Typical Section with 3 DOFs ....................................................................... 18 

Figure 2.2. Conformal mapping of a circle and flat plate [38] ............................................. 20 

Figure 2.3. 2D Typical Section with 3 DOFs ....................................................................... 21 

Figure 2.4. Unsteady and Steady Lift vs. time ..................................................................... 23 

Figure 3.1. Duffing Oscillator Newton Raphson Method Results ....................................... 28 

Figure 3.2. Duffing Oscillator Numerical Continuation Method ......................................... 29 

Figure 3.3. The representation of arclength and pseudo-arclength continuation ................. 30 

Figure 3.4. The representation of Moore-Penrose continuation method .............................. 30 

Figure 3.5. Bifurcation from equilibria to oscillations [40]. ................................................ 31 

Figure 3.6. Illustration of fold bifurcation on a bifurcation diagram ................................... 32 

Figure 3.7. NS bifurcation- LCO to Torus [41] ................................................................... 33 

Figure 3.8. Periodic doubling phase diagram ....................................................................... 33 

Figure 4.1 Conner’s experimental setup .............................................................................. 35 

Figure 4.2. Air speed vs. frequency and air speed vs. damping ........................................... 36 

Figure 4.3. Time responses of 3 DOF system at         and        airspeeds................ 38 



xi 

 

Figure 5.1. The panel element order difference between ZONA06 and DLM [43]. ............ 39 

Figure 5.2. Aerodynamic Function Diagram [44] ................................................................ 40 

Figure 5.3. The aerodynamic paneling of the 2D system ..................................................... 51 

Figure 5.4. The change of frequency and damping with respect to airspeed (ZAERO) ...... 52 

Figure 5.5. The change of frequency and damping with respect to airspeed ....................... 53 

Figure 6.1. The cubic stiffness results for               ........................................... 56 

Figure 6.2. The bifurcation diagram for pitching response   for               ....... 56 

Figure 6.3. The phase plane change after period doubling ................................................... 58 

Figure 6.4. The response frequency with respect to airspeed for               ....... 59 

Figure 6.5. The cubic stiffness results for               ............................................ 60 

Figure 6.6. The bifurcation diagram for plunge response for                  ........ 60 

Figure 6.7. The frequency of limit cycle with respect to airspeed for 

                 ..................................................................................... 61 

Figure 6.8. The cubic stiffness results for                  ..................................... 62 

Figure 6.9. The bifurcation diagram for control surface response for 

                 ..................................................................................... 63 

Figure 6.10. The response frequency with respect to airspeed for                  63 

Figure 6.11. The quadratic damping results for                  ............................... 65 

Figure 6.12. The bifurcation diagram for pitching response for                  ...... 66 

Figure 6.13. The response frequency with respect to airspeed for                  ... 66 

Figure 6.14. The quadratic damping results for                .................................. 67 

Figure 6.15. The bifurcation diagram for pitching response for                ......... 67 

Figure 6.16. The response frequency with respect to airspeed for                ...... 68 

Figure 6.17. Comparison of piecewise linear and hyperbolic tangent models ..................... 69 

Figure 6.18. The quadratic damping results for             .......................................... 70 

Figure 6.19. The bifurcation diagram for pitching response for             ................. 71 

Figure 6.20. The response frequency with respect to airspeed for             ............. 72 

  



xii 

 

SYMBOLS AND ABBREVIATIONS 

 

 

Symbols 

h  Displacement in plunge direction 

a  Rotation in pitching direction 

b  Rotation about control surface hinge axiss 

U  Airspeed  

δ  Free-play angle 

    Stiffness in plunge direction 

    Stiffness in pitching direction 

    Stiffness value of control surface hinge 

 

 

Abbreviations 

LCO  Limit Cycle Oscillations 

EOM  Equation of Motion 

AEOM  Aeroelastic Equation of Motion 

NS  Neimark-Sacker  

LPC  Limit Point of Cycles  

BPC  Branch Point of Cycles 

PD  Period Doubling 

BPC  Branch point 

H  Hopf  



1 

 

1. INTRODUCTION 

In aviation, the field of aeroelasticity gain importance with the higher speed demands for 

aircrafts. This demand was the main design parameter for the aircrafts both structurally and 

geometrically. The new designs were converging to the thin aircrafts with less mass and 

more powerful engines and these types of aircrafts started to show certain characteristic or 

motion which can be static or dynamic. The aerodynamic forces also changed with the 

speed of aircrafts and the geometry. 

 

Aeroelasticity investigates the interaction of the fluid and structure. The interactions could 

be seen in details in Figure 1.1. Aeroelastic behavior could be divided into two main 

branches which are static aeroelasticity and dynamic aeroelasticity. For calculation of static 

aeroelasticity, the elastic and aerodynamic forces must be included in mathematical model. 

However, in dynamic aeroelasticity inertial forces must be involved too.  

 

Figure 1.1. Interactions between field of elasticity, dynamics and aerodynamic [1]. 

 

Static and dynamic aeroelasticity also have branches. The branches of the static 

aeroelasticity are control reversal, divergence, control effectiveness. Dynamic aeroelasticity 
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can be investigated in following phenomena; flutter, buffeting, buzzing, dynamic response. 

All these aeroelastic phenomena are briefly explained. 

 

1.1. Static Aeroelasticity 

One of the first aeroelastic failures was the reason of restoring elastic forces could not 

compensate the aerodynamic forces. This inequality of the moment on the wing causes 

large deformation at a certain airspeed limit and the failure occurs. This type of failure is 

called divergence. Generally, the early era thin winged war planes were prone to 

divergence. Divergence is not caused by vibrations so it is not a dynamic behavior. 

 

In aircrafts, swept angle of the wing changes the occurrence condition of instability as can 

be seen in Figure 1.2. The reason for the lower divergence speed of forward swept wing is 

the twisting effects due to aerodynamic loading. On the contrary, the deformation of back-

swept wing is more likely to be bending.  

 

Figure 1.2. Effects of swept angle on aeroelastic response [2]. 

 

Aileron effectiveness is one another subject of the static aeroelasticity. The locations of the 

aerodynamic and the elastic centers of the airfoil section have effect on lift, moment and 

also controllability of the air vehicle. In steady state condition, if the aerodynamic and 

elastic centers coincide, the total forces on the wing would not create moment. However, 

the deformation of the wing will change the location of aerodynamic center. So, the total 
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forces will create moment on the wing. For example, the down moving control surface 

causes to translation of aerodynamic pressure center to backwards. It means that the total 

aerodynamic force will create moment around elastic axis. This moment will cause a 

downward motion on the leading edge. It will also cause both the effective angle of attack 

and total lift force to decrease. The decrease on the total lift is called as reduced control 

surface effectiveness. At a certain speed, the aileron inputs will not be able to perform 

accordingly but will cause opposite of the desired inputs. This situation is called as aileron 

or control-surface reversal. 

 

1.2. Dynamic Aeroelasticity 

As it is shown in Figure 1.1, dynamic aeroelasticity is a field that investigates inertial, 

aerodynamic and elastic forces. In all aeroelastic phenomena, the flutter is the most 

important one due to its catastrophic results. The flutter term is used for defining unstable 

behavior of the structure at specific speed and altitude. In flutter, the structure deforms 

under unsteady aerodynamic forces which leads to change in the total lift area. This change 

causes another deformation field and this situation goes on and on. These cycles of event 

will repeat itself while the total damping of the system is greater than zero. The meaning of 

being damping ratio of a system is greater than zero is the total energy is no longer in the 

system in mechanical form. Otherwise, if the total damping ratio is less than zero, the 

system will start to extract energy from the air which will cause amplifying the amplitude 

of the vibration. At a certain point the amplitude of the vibration will exceed the limits and 

cause failure. Also, if the total damping equals zero, it is possible to see limit cycles in the 

system. In general, flutter occurred mostly in the linear systems and LCO occurred in 

nonlinear systems. In the context of nonlinear system theory, an LCO is one of the simplest 

bifurcations, and defined as ‘first stop on the road to chaos’ [3]. In LCO, the total damping 

ratio of the system is not less than zero but equals to zero.  This equivalence causes the 

fixed amplitude oscillations. The amplitude of oscillations generally depends on the amount 

of the nonlinearity and initial conditions. At a specific speed, the LCO may turn in to 

flutter. It should be easier to understand and visualize the response of a structure with 

respect to changing speed. The responses of a missile control fin are given in the Figure 

1.3. One can see that at 200 m/s speed the response of the fin is damped out. At 213 m/s the 
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response is first damped out after a second the amplitude of the response starts to increase 

to a limit. In the third figure, at 233 m/s, the vibration is damped out to a certain level after 

that LCO is not damped out. Finally in the last figure, the speed increases to 234 m/s and 

the amplitude of the vibration increases to very high levels, this behavior is called flutter. 

 

Figure 1.3. The responses of a missile fin at different air speeds [4]. 

 

In flutter, the system extracts energy from air via modal coupling. The flutter cannot be 

occurred unless there are contributions from two modes. The well-known modal couplings 

for an aircraft are listed below: 

- Classic flutter, wing bending – wing torsion coupling 

- Body flutter, wing torsion – body pitching coupling 

- Control surface coupling, control surface rotation – wing bending  
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Figure 1.4. Modal coupling [5] 

 

Separately neither motion causes flutter. At critical values of amplitude and phase angle, 

the forces produced by one motion excite the other; the two types of motion are then said to 

be coupled. As can be seen in Figure 1.4, the frequencies of the modes are getting closer 

while the dynamic pressure increases.  

 

At transonic speeds, another important phenomenon, buffeting occurs due to flow 

separation and shock induced wakes. High performance aircrafts like F-16, F-15 and F-18 

show buffeting generally at high angle of attack maneuvers. As indicated in MIL-STD-

810G buffeting usually happens in the interval of 10-50 Hz in the form of random 

vibration. The flow separation from the wing, control surfaces, nacelles, wing-pylon 

junctions may induce loading at tail and stabilizers. The loading may cause fatigue on the 

aircraft parts. In general tails are vulnerable to buffeting [6]. 
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Figure 1.5. Tail buffeting of F-18 [7] 

 

It is mentioned that in common flutter must occur as coupling of at least two modes of the 

structure. As oppose to this explanation there is also single degree of freedom which is 

called control surface buzz or just buzz flutter. In this type of aeroelastic phenomena the 

control surface oscillates around its hinge due to location of aerodynamic shock in 

transonic or low supersonic region. 

 

The failures are not only concerns of aeroelasticity. It is also used in calculating dynamic 

response of maneuver loads, gust, landing loads and taxi operations. These calculations are 

grouped under the term of dynamic response. 

 

1.3. Historical Background 

The first examples of solution for the aeroelastic problems date back to several centuries 

ago in Holland. The location of the wind mill blade spar was moved from middle of the 

chord to one quarter of the chord where aerodynamic center is located. This modification 

made in order to prevent twisting moment around elastic axis [8].    
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In early years of aviation, aeroelasticity based designs, calculations or problems were 

studied in many projects like Wright Brothers, Langley’s tandem monoplane etc. In Wright 

Brothers case, they used wing-warp method to control roll of the plane [9]. The Wright 

brothers patented their invention, all aircraft control tools were covered with this patent. 

The wing-warp method was controlled by the pilot easily and creates rolling moment 

around the center of the fuselage.  

 

Figure 1.6. Wright Brothers’ aeroelastic model. [9] 

 

Aside from the wing-warp method, Wright brothers also studied on propellers, and they 

found out that thinning propeller caused thrust loss due to structural deformation and angle 

change.  

 

Another example for early aeroelastic problem is Langley’s monoplane. Professor Samuel 

P. Langley of the Smithsonian Institute designed an airdrome. Langley’s monoplane was 

launched from catapult mechanism nine days before the Wright brothers’ flight. The reason 

behind the failure will be explained as the divergence which is a static phenomenon related 

with the torsional strength of the wing structure. As in cited in Glenn’s article, after some 

modification on Langley’s monoplane, it succeeded to fly at a short distance. These 

modifications aimed to strengthen the wing structure to prevent change of angle of attack 

and center of pressure which causes divergence [10]. 
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Figure 1.7. Launch of Langley’s monoplane 

 

During the World War I, both sides suffered from aeroelastic problems, mostly flutter and 

divergence caused losses. In England, E. W. Lanchester studied on the excess vibration on 

the tail of a bomber, Handley Page O/400. He explained the reason as the vibration due to 

insufficient stiffness in torsional direction because the elevators of the airplane were 

independent from each other, and was controlled separately by the wires. He also described 

the nature of the vibration as; the vibrations were not the results of any source of forced 

excitation but self-excited. He came with the idea of torque tube to eliminate the excess 

vibrations. The same solution was applied to another plane, Havilland DH-9.  Brostow and 

Fage theoretically backed up the Lanchester’s solution on Handley Page’s torque tube. 

Later, the torque tube became basic design methodology.  

 

The aeroelastic problems became more frequent and visible, when the monoplane era 

started. The biplane wings had higher torsional rigidity due to bracing. The monoplanes had 

many issues in the context of instabilities like flutter, divergence, control surface reversal 

and ineffectiveness due to insufficient torsional rigidity. One of the early victims of the 

monoplane design was Fokker D-8. The plane had a cantilever wing design and its torsional 

rigidity was determined according to the criteria that used in biplane designs. The Fokker 

D-8 had superior capabilities which were decided to start production. After a few days, 

many planes had similar wing failures, The Fokker Company and army tried to understand 

the problem. Static deformation and strength tests were performed to understand the reason 

of the failure. However, as it is understood the reason was not related with the strength. 
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Anthony Fokker who discovered the reason try to explain it like that: “I discovered that 

with the increasing load the angle of incidence at the wing tips increased perceptibly. It 

sudden dawned on me that this increasing angle of incidence was the cause of the wings 

collapse, as logically the load resulting from the air pressure in a steep dive would increase 

faster at the wing tips than at the middle. The resulting torsion caused the wings to collapse 

under the strain of combat maneuvers.” [11] 

 

Figure 1.8. Handley Page O/400 

 

Another design to improve both control of the aircraft and the oscillation on the wings 

applied by the U.S. Army Air Corps to a violent but nondestructive case of wing bending – 

aileron flutter. The problem was eliminated by applying mass balance method on aileron. In 

this procedure, the aileron balanced about the aileron hinge line. Baumhaure and Koning 

were the first ones mentioned about this theorem in 1922 [12].  

 

During the early monoplane era, a lot of failures were recorded and these failures provided 

understanding on the nature of flutter, divergence, load distribution, aileron effectiveness 

and aileron reversal. The load distribution and divergence theory was published first by 

Hans Reissner in 1926 [13]. After six year from Reissner’s work, Cox and Pugsley studied 

aileron reversal and effectiveness and wing divergence [14]. The potential flow theory for 

the flutter was highly understood and used for design purposes where most of the work was 

done by Glauert.  
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In 1925, H. Wagner gave a basic approach to the theoretical problem of non-stationary flow 

supplementing the harmonic approach in his doctoral thesis. He studied the lift distribution 

after a sudden change in the angle of incidence or a sudden acquisition of unit downwash.  

 

In 1929, H.G. Küssner published a basic paper on flutter improving Birnbaum’s method 

and was able to converge the problem for ω=1.0 while Birnbaum had convergence issues at 

the reduced frequencies greater than 0.10. He also investigated the effects of 

hysteresis/material damping on flutter response. 

 

In 1935, Theodore Theodorsen studied airfoil stability that had plunge, pitch and aileron 

degrees of freedom. His method created the ability of parametric design and to see the 

effects of gravity, mass of inertia, mass ratio, and aileron hinge location. In Figure 1.9, it is 

possible to see the unsteady modeling of Küssner and Wagner which are in time domain 

and their frequency domain counterparts which are derived from Sears and Theodorsen. 

 

Figure 1.9. Fourier transform relation between time domain and frequency domain 

modeling methods of unsteady aerodynamics [15]. 

 

In 1935, Von Schlippe became the first person who brought a different approach to the 

flutter testing. The test procedures before Von Schlippe, the pilot dived the aircraft until the 
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airplane reach to its maximum speed. If there was no failure, the aircraft was clear to fly. 

Von Sclippe suggested that, while the aircraft was approaching to its flutter speed, the 

response of the aircraft was showing an asymptotic increase. The flutter speed could be 

estimated by the position of asymptote and dive could be ceased before the aircraft reach 

the limits.   

 

Figure 1.10. Von Schlippe’s flight flutter test technique [16] 

 

The effects of structural nonlinearity on aeroelastic response were investigated by 

Woolston et al. [17] and Shen [18]. They modeled a system with a nonlinear spring and 

solved via computers. Shen was one the first people who applied harmonic balance method 

to nonlinear aeroelasticity. The method was first presented by Kryloff and Bogoliuboff [19] 

and since that method become one of the primary tools for nonlinear dynamics that 

undergoes periodic oscillations. 

 

The bifurcation theory is used for understanding which parameters cause unstable behavior. 

In 1994, one of the first studies that apply bifurcation methods to nonlinear aeroelastic 

systems was presented by Price et al [20]. They used bifurcation diagrams to understand the 

behavior of typical section with nonlinearity. Nowadays, nonlinear aeroelasticity is an 

important field for estimating LCO limits, determining design parameters and test planning.  
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1.4. Scope of the Thesis  

One of the main aims of this thesis is become acquaintance with the theory of nonlinear 

aeroelasticity, investigating the effects of nonlinearities that are introduced to a 3DOF 

airfoil system and the effects of nonlinear parameters on the stability and response of the 

airfoil with changing airspeed. 

 

1.5. Literature Survey  

In this part, previous studies and methods which focused on solving nonlinear aeroelastic 

problem are going to be summarized. It could be said that the aeroelastic modeling era 

started with Theodorsen and Garrick [21] as mentioned in historical background part. 

However, it took ten years to develop structural nonlinear modeling methods [17]. From the 

very beginning of the first developed model, scientist and engineers are still working on 

improving better physically representing models. In this thesis many of the previous works 

were studied and investigated.  

 

The free-play causes sudden changes in stiffness which creates nonlinearity in the system. 

The linear solution approaches are not valid anymore. The modeling technique for linear 

aeroelastic stability generally starts with normal mode analysis of the structural model. It is 

possible to use both frequency domain and time domain methods for modeling 

aerodynamics. As stated before, Theodorsen and Sear separately were able to model 

unsteady aerodynamics of an airfoil in frequency domain. The time domain solution of 

unsteady aerodynamics came from both Küssner and Wagner. The Wagner unsteady 

aerodynamics is used for 2D modeling of an airfoil. 

 

Modeling 3D structures in time domain requires panel methods such as doublet lattice 

method (DLM). However, the panel methods cannot be used in time domain analysis 

directly, since the aerodynamic influence coefficient (AIC) matrix is in frequency domain. 

It is necessary to represent or approximate the AIC in time domain. This is succeeded 

through using Rational Function Approximation (RFA) [22], which approximate the AICs 

obtained from aerodynamic modeling that uses reduced frequency domain. 
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The nonlinear aeroelasticity could be divided into two such: nonlinear aerodynamic and 

nonlinear structural properties and physics. The sources in nonlinearity aerodynamics are, 

turbulence, shock etc. Structural nonlinearity could be classified as distributed and 

concentrated. While nonlinear behaviors such as free play, hysteresis and friction are 

examples of concentrated nonlinear features, material non-linearity and deformation non-

linearity are examples of distributed nonlinear features. 

 

In nonlinear systems, most of the problems do not have exact solution, so that iterative 

methods are used. In solution of nonlinear aeroelastic problems, implicit or explicit Euler’s 

time integration methods are highly used. Another solution method that is valid for the 

systems which have periodic response is harmonic balance method. Runge-Kutta method 

also gives very close results to exact ones. It should not be forgotten that all of these 

methods depends on the initial conditions and time step size, getting convergence in highly 

nonlinear system could be very challenging task. 

 

The free-play is firstly studied by Woolston et al [23]. In this study, it is stated that the 

LCO may arise before linear flutter speed. Yang and Zhao investigated the effects of 

asymmetric freeplay effects on the stability of a typical section using harmonic balance 

method [24]. In this work, the divergent behavior observed at the linear flutter speed and 

LCOs was seen before linear boundary. McIntosh et al. studied the effects of hardening and 

softening stiffness effect on the stability of a typical section [25]. They founded that the 

dynamical behavior of the typical section can be summarized as; the LCOs may emerge 

with a fixed amplitude fixed frequency, may or may not show LCO behavior depends on 

the initial condition. In the context of nonlinear dynamics these behavior can be called as 

subcritical and supercritical behavior. More recent study on the effects of structural 

nonlinearities on a typical section was studied Chung et al [26]. They use perturbation 

incremental method for the study of limit cycles and bifurcations of the typical system. The 

implementation of the perturbation incremental method provided to model the system with 

C
0
 continuous stiffness such as bilinear stiffness or freeplay. The founded results were in 

good agreement with literature that shows the subcritical behavior. Another highly referred 
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work belongs to Conner et al. [27]. In Conner’s and his friends work, the effects of free-

play are investigated both mathematically and experimentally. The geometrical, structural 

and inertial properties which used in the present study are taken from Conner’s to validate 

the model. Saied et al investigates the effects of the order of harmonic balance at 3-DOF 

typical section with cubic stiffness nonlinearity. [28] They founded that, in some case 

harmonic balance of order one was not sufficient to capture flap amplitudes accurately. 

 

The nonlinear analyses in 3D domain require more tedious work. The fictitious mass (FM) 

method [29] is one of the popular methods that used in reducing the size of the problem and 

solution time. In the FM method, a large mass is added to DOF where the sudden change 

occurs. In addition to that, generalized coordinates are able to represent nonlinear changes 

with FM added generalized coordinates. The solution process of the FM is similar to the 

normal mode analysis with added fictitious mass in the mass matrix. Lee and Chen applied 

FM method on a folding wing with free-play hinge nonlinearity using ZAERO and 

MSC.Nastran [30]. They investigated the effects of varying free-play angle for various 

folding angles. They founded that LCO can still be present event the higher altitudes then 

the altitudes flutter observed due to free-play.  

 

The component mode synthesis method (CMS) is using modal coupling method to model 

complex structure by dividing into components and solve separately and synthesis of the 

results to achieve the solution of whole structure. In this method, the interface at the region 

of divided component and main structure is modeling coupling either displacement or 

forces. Ning et al. present a new modeling method using CMS to model free-play 

nonlinearity [4]. They studied a folding-fin structure with various free-play angles. They 

performed numerical analyses and wind tunnel experiments. They founded that the 

increasing free-play angle provide higher divergent speed. The most important outcome of 

the study that states the linear flutter analysis results are conservative and provide safe 

flight conditions.  
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The studies on the effects of structural nonlinearities on more complex structures are still 

an ascending area of interest among many aeroelasticians. The Fighting Falcon F-16 

aircrafts is one of the mostly studied aircraft owing to its LCO prone characteristic. The 

limitations of the linear structural and aerodynamic approaches cause to miss the LCO 

behavior of the aircraft. At the speed where LCO arise can be different from the flutter 

speed. For this reason, the amplitude and the airspeed of the LCO are important parameters 

for flight safety. Some of the researchers thought that the LCO mechanism in F-16 is a 

conclusion of oscillation of transonic aerodynamic shocks and another group of researcher 

the bounding mechanism of LCO is created due to structural effects. Zhang et al. [31]  

investigate the results of the first group which relate LCO with nonlinear aerodynamics and 

stated that the sole nonlinear aerodynamics does not explain the LCO as the aircraft shows 

LCO behaviors at the airspeed 0.6 and 1.4 Mach. As these speeds are not in the transonic 

range and there would be no transonic shock on the aircraft wing. According to these 

informations, the nonlinear aerodynamics cannot be only reason for LCO to arise. Fearnow 

[32] investigates the damping change for increasing amplitude of oscillations. He found 

that the damping of the system increases with increasing amplitudes. Dossogne et al. [33] 

shows that the changing damping mechanism of the full-scale F-16 using sine-sweep tests. 

For this reason implementing this nonlinearity provides better physical representation for 

aeroelastic analysis. In this manner, ZONA Technology developed a nonlinear modeling 

method that provides nonlinear damping implementation. This method depends on 

assumption of any mechanical joint provide stabilizing effect with the help of dry friction. 

The flight test results are compared to results from nonlinear module of ZEUS which uses 

Euler aerodynamics and seen good agreement for this specific store configuration. The 

results are given in the Figure 1.11. 
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Figure 1.11. Comparison of LCO amplitudes from test and nonlinear ZEUS analysis 

 

All air vehicles must be certified in a manner of airworthiness along the flight envelope that 

guarantees the stability of the vehicle. The certification of aircrafts for a new store is the 

mostly studied aeroelastic phenomenon in TÜBİTAK SAGE. The certification of the 

aircraft for new stores is conducted according to MIL-HDBK-1763. The certification steps 

are modal analysis, pre-aeroelastic analysis ground vibration test, modal updating, 

aeroelastic analysis for updated model and flight test. Some of the academic contributions 

are briefly explained in following lines. The flutter characteristics of plate like structures 

investigated through ZAERO and wind tunnel test [34]. In this study, flutter solution 

methods such as k-method and g-method of ZAERO is compared. The g-method results are 

found as more reliable for rectangular plate and F-16 wing shaped plate with a store on the 

wing tip.  In another work, flutter analysis and simulated flutter test of wings is studied. In 

this study, flutter speed is calculated for a linear 2D typical section and comparison 

performed from NASTRAN Flight Loads software. In this study, flutter speed estimation 

models are also studied [35]. Apart from this work, aeroelastic stability determination using 

flight test datas is studied and reliable prediction methods are compared and a new method 

is presented [36]. In a recent study, effects of design parameters such as taper ratio, aspect 

ratio and sweep angle on the aeroelastic stability of a cruise missile wing is studied [37] . It 
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is found that, the increment on the aspect ratio and taper ratio causes lower flutter speed. 

On the other hand, the sweep angle provides higher flutter speed in general.  

 

In this section, the enhancements and the new methodologies for linear and nonlinear 

aeroelasticity are examined. The articles and theses from both industrial and academic areas 

are studied. 

 

2. AEROELASTIC MODELING OF 3 DOF TYPICAL SECTION 

In this section the aeroelastic modeling of a 3 DOF wing-aileron section is obtained. In the 

first part the equation of motion for the structural model is obtained. In the second part the 

aerodynamic modeling will be explained. Finally, in the third part, the aeroelastic equation 

of motion will be derived using structural and aerodynamic model.  

 

2.1. Structural Modeling of 3 DOF Typical Section  

As mentioned in the earlier sections, the typical section which has two degree of freedoms 

is widely used for aeroelastic response calculations. This approach gives meaningful results 

generally for infinite non-tapered and unswept wings. As it mentioned before, the 

motivation behind this work is becoming familiar with nonlinear aeroelasticity. So that, 

working on a 2D typical section would be a good starting point.  

 

The typical section with the ability to move in pitch, plunge and aileron rotation direction is 

given in Figure 2.1. The distance xf defines the position of elastic axis,    defines the 

position of aileron hinge, c is the chord length and finally b is the half – chord length. The 

displacement in vertical direction is denoted by h, the rotation about    is denoted by α and 

finally the rotation about    is denoted by β. 
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Figure 2.1. 2D Typical Section with 3 DOFs  

 

The positive directions are downward in the plunge direction, clockwise rotation in the 

pitch and control section directions. m is the mass per unit length,     is the static mass 

moment around   and    is the mass moment of inertia around   .    is the static mass 

moment around   ,    is the mass moment inertia around    and finally     is defined as 

the summation of    with the static mass moment    times the distance between control 

surface hinge and elastic axis that emerges due to coupled motion of airfoil and control 

surface.  The force vector includes aerodynamic lift, aerodynamic moment around    and 

aerodynamic moment around   . The stiffness and damping terms are denoted as    and    

where           . The equation of motion of the system is obtained via Lagrange 

method. The Lagrangian of a system can be defined as  

      2.1 

where T and V denote kinetic and potential energy of the system. The application of the 

virtual displacement method on a non-conservative system can be shown as in Equation 

2.2. 

 

  
(
  

   
̇
)  

  

   
 

  

   ̇
                    2.2 

D and Q denote dissipative terms and external forces. The kinetic and potential energies of 

the system and the dissipated energy from the system are given as follows. The external 

forces are aerodynamic lift and moments which will be given in the Section 2.2. 
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The Lagrangian of the system can be obtained substituting Equations 2.3 and 2.4 in to 2.1. 
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2.6 

It is possible to see the damping and stiffness terms are uncoupled. Substituting Equation 

2.5 and 2.6 into 2.2 will give the final form. 

  ̈     ̈     ̈     ̈     ̈     ̈     ̈      ̈      ̈         

        ̇     ̇     ̇ 
2.7 

The above equation can also be written in matrix form as given below. 

[

    

      

       

] [
 ̈
 ̈
 ̈

]  [

    
    
    

] [
 ̇
 ̇
 ̇

]  [

    
    
    

] [
 
 
 
]  (

  
  

  

) 2.8 

 

The force vector added to right side of the equality which will be obtained from the 

aerodynamic lift and moments.  

 

2.2. Aerodynamic Modeling of 3 DOF Typical Section  

In this thesis, simplified airfoil geometry with a control section will be investigated which 

is generally called as typical section. Although a typical section analysis is a simplified 

model and valid for only certain conditions it could give very important and powerful 

insights. Application of the potential theory in typical section does not require tedious work 

and it is frequently used to estimate the 3D wing behavior in both academic and industrial 

works.  
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The 3DOF typical section was given in Figure 2.1 and the equation of motion of the wing-

aileron system was given in 2.8. The force vector includes aerodynamic lift, aerodynamic 

moment around elastic axis and aerodynamic moment around control surface rotation axis. 

The force vector can also be written in the form of aerodynamic mass, stiffness and 

damping.  

 

In potential flow, conformal mapping is used for modeling flow around an airfoil by using 

flow around a circle. It is need to satisfy Kutta condition to apply this method. The Kutta 

condition states that there is no flow on the trailing part of the airfoil which also means that 

the rear stagnation point is relocated at the trailing edge. 

 

Figure 2.2. Conformal mapping of a circle and flat plate [38] 

 

Theodorsen applied this method to oscillating wing or airfoil [21]. In his work, the wing-

aileron system in 2D is studied. This work is apart from the studies of Theodorsen with 

introducing nonlinear elements on different degree of freedoms and solution methods. This 

part of the thesis is referenced from the work of Theodorsen.  

 

The geometry of the typical section with a control surface (aileron) has an importance for 

aerodynamic forces such as; the location of center of gravity, aileron hinge location, the 

distance between center of gravity and center of elasticity etc. The typical section with a 

control surface representation is given Figure 2.3 once more. The dimensionless values   

and    which reduced according to the semi-chord length  , can be defined as below and 

the variable   is defined which equals        .  



21 

 

 

Figure 2.3. 2D Typical Section with 3 DOFs  

 

  
  

 
   2.9 

   
  

 
   2.10 

 

The force and moments that are calculated using potential flow theory are given in the 

equations between 2.11 and 2.13. The force and moments equations were obtained in 

frequency domain. 
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2.13 

 

The Theodorsen function has real and imaginary parts such as  ( )   ( )    ( ) where 

the parameter k is defined as reduced frequency. The  ( ) and  ( ) are the first and 

second kind of Bessel functions.                 are aerodynamic constants which are 

given in the following lines.  
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The abovementioned force and moments can be transferred into the time domain using 

Fourier Transform which is performed by Wagner and the new function is called with his 

name. The Wagner function   is used for unsteady modeling of aerodynamics. The 

difference between Theodorsen and Wagner’s method is the domain of solution. These two 

methods can be transformed one to another by using Fourier and inverse Fourier 

transforms. The Wagner function is defined in Eq.2.14 that creates the effect of unsteady 

aerodynamic on lift which can be seen in Figure 2.4. 

 ( )       
 
    

     
        2.14 

 

Figure 2.4. Unsteady and Steady Lift vs. time 

 

The transformation between Theodorsen and Wagner functions can be defined as follows. 

 ( )   ( )  ∫
  (    )

   

 

 

 (  )    2.15 

The force and moments equations are rewritten in time domain using above transformation.  
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The terms that consists integration of Wagner function in lift and moment equations can be 

solved as follows. 
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where         ,         ,          ,        and          are the 

aerodynamic states.  

 

2.3. Aeroelastic Equation of Motion 

The given aerodynamic force and moment equations can be manipulated to acquire 

acceleration, velocity and displacement terms for plunge, pitch and control surface degree 

of freedoms. The coefficient of acceleration, velocity and displacement terms are called 

aerodynamic mass, aerodynamic damping and aerodynamic stiffness. These coefficients 

make contribution to structural behavior. The aeroelastic equation of airfoil with a control 

section is obtained by manipulating the acceleration, velocity and displacement terms in 

both structural and aerodynamic equations. The matrix form of the aeroelastic equation is 

given as below. 

 

(    ) ̈  (     ) ̇  (      )            ( ) 
2.20 

 ̇             

 

The term     ( ) states external excitation and its effects can be neglected since these 

effects decay in a short time. The aeroelastic equation of motion (AEOM) of a typical 

section with 3 DOFs can be transformed into matrix form such as given in 2.21 

  [
 (    )  (     )  (    )  (      )  (    )  (    )

            

         

] 2.21 

  [ ̇  ̇  ̇                         ]
 
 2.22 

 ̇     2.23 

where A, C, E are structural mass, damping and stiffness matrices and B, D, F are 

aerodynamic mass, damping and stiffness matrices.   is aerodynamic influence matrix and 

   and    aerodynamic state matrix.     and   are displacements in plunge, pitch and 

control surface directions. Finally,            are aerodynamic states. Each structural 

and aerodynamic matrix will be given explicitly in the appendix. 
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3. LINEAR AND NONLINEAR SOLUTION APPROACHES 

In this section the solution approaches and the foundation of the numerical analysis will be 

explained. At first, the solution of linear model with eigenvalue solution in the time domain 

will be explained. Secondly, solution of linearized version of a nonlinear model will be 

explained. And finally, the nonlinear theory, solution techniques and the information about 

the software package MATCONT will be given. 

 

3.1. Eigenvalue Solution 

The stability of the linear aeroelastic equation of motion can be defined by eigenvalue 

problem. The solution of above AEOM will give the stability of the linear system. The 

results of the eigenvalue problem can be manipulated into frequency, damping and the 

mode shapes that change with airspeed. An eigenvalue problem can be shown as follows  

 ̇       3.1 

The eigenvalues of the matrix   can be found as shown below, 

|    |    3.2 

Equation 3.2 is generally called as characteristic equation. The roots of the equation are 

eigenvalues. The aeroelastic flutter is the case where the total damping of the system is less 

than zero. Another indication of flutter, the frequencies of two modes shape getting closer 

or becoming identical. The AEOM is obtained using Wagner approach for unsteady 

aerodynamic modeling and Lagrange method. The solutions for damping and frequency are 

obtained using following equations where   stands for number of states.  

   |  |             3.3 

    
  (  )

  
             

3.4 
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3.2. Nonlinear Modeling and Solution Techniques 

The solution of the aeroelastic equation of motion that given in 2.20 can be solved with 

time integration methods. However, time integration method is inefficient while acquiring 

solution at higher airspeed. Also, the characteristic of the nonlinear system could not be 

fully understood with time integration methods. The stability, bifurcations, LCO behavior 

of the system should be obtained to understand dynamics of the nonlinear system. The 

nonlinear bifurcation analysis and time response results are obtained with an open-source 

package software, MATCONT. MATCONT [39], is a MATLAB package for solving 

continuous and discretized systems for stability analysis, bifurcation analysis, calculation 

and classification of branch points and system response calculation for multiple parameters. 

MATCONT uses numerical continuation method with discretization methods for solving 

ODEs. The capabilities, theory behind and usage of MATCONT are briefly explained in 

following paragraphs.  

 

3.2.1 Numerical Continuation 

The nonlinear systems can have many solutions and may not have general solution. The 

famous Newton – Raphson method can be inadequate and cannot find all the solutions for 

the interested regions. For example, if a single DOF mechanical system has a cubic 

stiffness, the frequency response of the system for an excitation will follow a path 

according to the sign of the stiffness. The positive stiffness causes hardening and negative 

stiffness causes softening behaviors. The solution of these systems is not possible while 

using Newton – Raphson method if the system is highly nonlinear. The Harmonic Balance 

(HB) method results of well-known Duffing Oscillator are presented in Figure 3.1. The 

Fourier coefficients of HB method are calculated with using Newton – Raphson method. It 

can be seen that as the nonlinearity increases, there is a sudden drop on the curves.  
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Figure 3.1. Duffing Oscillator Newton Raphson Method Results 

 

The Newton - Raphson method become inefficient in the case of if the initial guess is not 

good enough and if the solution has multiple branches such as hardening and softening 

behavior on mechanical systems. In these cases, parameterization of one of the system 

properties may enhance the solution. The numerical continuation methods provide more 

robust solutions. The numerical continuation equality can be represented simply as in 3.5. 

 (   )    3.5 

 

where f is a     vector and   is one of the system parameter. The free parameter can be 

frequency, cubic stiffness or quadratic damping constant. One of the drawbacks of the 

numerical continuation is, it is not possible to force Newton predictor to find the all the 

solution in the desired branch. But it is possible to manipulate Newton predictor using 

prediction correction. For a visual understanding of the mentioned methods Duffing 

oscillator is also studied with numerical continuation. The frequency response of the 

previous Duffing oscillator is calculated with numerical continuation method and given in 

Figure 3.2.  If the system is weakly nonlinear it is possible to obtain same solution with 

both numerical continuation and Newton – Raphson method.  
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Figure 3.2. Duffing Oscillator Numerical Continuation Method 

 

In Figure 3.2 the marked circles show that a new prediction correction vector is needed and 

these vectors must be introduced manually. The first guess for the vector should be good 

enough otherwise the method would not converge. It is possible to handle these 

disadvantages by using arclength continuation. The arclength continuation method can 

follow the path at turning point where multiple solutions are present.  The method is based 

on the idea of using arclength parameter s instead of the natural parameter   which is also a 

function of s. The arclength parameter s is the radius of a sphere where the solution of the 

system is sought. After the first prediction near the turning point, the algorithm searches for 

solutions within the sphere according to a defined error criterion. The value of s is 

important to find correct solution. If s value is larger than it should be, the algorithm may 

find another solution which disrupts the continuity of the path.  

 

The pseudo-arclength method is based on arclength continuation method to improve 

solution process. In arclength continuation method the continuation may go back since two 

or more points satisfy the arclength equation. The pseudo arclength method provides a 

solution that prevents continuation to reverse its direction. The method uses prediction 

vector as a solution method. The solution is sought in the perpendicular direction of 

prediction vector. The representations of pseudo – arclength and arclength continuation 

methods are given in Figure 3.3. On the other hand, MATCONT uses a version of Moore-
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Penrose continuation which is also a variant of pseudo – arclength continuation method and 

its representation is given in Figure 3.4. MATCONT uses equilibria and limit cycles 

continuation for ordinary differential equations for obtaining bifurcation points. 

 

 

Figure 3.3. The representation of arclength and pseudo-arclength continuation 

 

 

Figure 3.4. The representation of Moore-Penrose continuation method 

 

3.2.2 Bifurcation Analysis 

In nonlinear dynamics, the bifurcation theory shows the effects of varying system 

parameters on the system. Bifurcation point can be defined as where there is a change in the 

stability or equilibrium (fixed) point behavior of the nonlinear dynamical system. The 

nonlinearity sources are chosen as cubic stiffness, quadratic damping and free-play in this 

- solution 
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thesis. The typical section model with nonlinearities is studied to understand the effects of 

nonlinear sources on an aeroelastic system. The types of bifurcation depend on eigenvalues 

of the system and indicate different types of dynamics. A brief explanation of the types of 

bifurcation is presented in following paragraphs.  

 

3.2.2.1. Hopf Bifurcation 

The Hopf bifurcation occurs when both of the complex conjugate eigenvalues cross the 

positive part of the phase plane as the parameter   changes in Eq. 3.5.  The parameter   

reaches critical value at    where the responses do not damp out anymore. The 

representation of the Hopf bifurcation is given in Figure 3.5. As can be seen in this figure, 

at the Hopf point the oscillations start and increase with the parameter. So that, the Hopf 

bifurcation can be explained as bifurcation from equilibria to oscillation. 

 

The Hopf bifurcation is classified into supercritical and subcritical Hopf bifurcation. As the 

parameter   is getting closer to the critical value, the rate of damping is also getting closer 

to zero. Eventually, at the critical value of damping, the system shows periodic and 

constant amplitude sinusoidal response. The amplitude of the response depends on also the 

  parameter. For the subcritical Hopf bifurcation, after   value reaches the critical value the 

system become unstable and the response can go to another orbit, limit cycle or infinity. As 

oppose the supercritical Hopf bifurcation, subcritical Hopf bifurcation is more dangerous in 

engineering.  

 

Figure 3.5. Bifurcation from equilibria to oscillations [40]. 
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3.2.2.2. Fold Bifurcation 

The destruction or creation of fixed points is called fold or saddle-node bifurcation. One of 

the new fixed points is stable and the other one is unstable and as the parameter increases 

the fixed points getting away from each other. At the fold bifurcation the derivative of the 

LCO amplitude with respect to parameter become infinite. Being derivative is infinite, the 

sign of the derivative changes sign. It means that the fold bifurcation occurs at turning 

points. At the fold point LCO is half stable. The illustration of the fold bifurcation is given 

in Figure 3.6. 

 

Figure 3.6. Illustration of fold bifurcation on a bifurcation diagram 

 

3.2.2.3. Neimark-Sacker Bifurcation 

The Neimark-Sacker (NS) bifurcation can be explained as Hopf bifurcation of LCO. The 

NS bifurcation is also called as torus bifurcation as well. The NS bifurcation happens when 

a pair of complex eigenvalues has unity in modulus. In the presence of NS, the 

characteristics of LCO changes from pure sinusoidal to aperiodicity. The NS bifurcation is 

also divided into as subcritical and supercritical. The supercritical NS bifurcation 

transforms stable limit cycle to unstable limit cycle and a stable torus born. The subcritical 

NS bifurcation transforms stable limit cycle to unstable limit cycle and unstable torus.  

 

For the aeroelastic point of view, to NS bifurcation occurs there must be more than one 

flutter mechanism which is triggered with the fundamental LCO frequency. The 
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transformation from limit cycle to NS can be explained via using phase planes that given in 

Figure 3.7. 

 

Figure 3.7. NS bifurcation- LCO to Torus [41] 

 

3.2.2.4. Period Doubling 

The periodic doubling is a phenomenon that caused when a slight change in system 

parameter which causes to born a new trajectory. The period of this new trajectory has the 

period where the period doubled compared to the previous one. The periodic doubling 

bifurcation is more chaotic phenomenon than Hopf bifurcation and occurs on the limit 

cycle curve which is born due to Hopf bifurcation. The periodic doubling bifurcation has 

also subcritical and supercritical definition that transforms stable orbits to unstable orbits 

with doubling the period or vice versa. The phase plane of a periodic doubling bifurcation 

is given Figure 3.8. 

 

 

Figure 3.8. Periodic doubling phase diagram 
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3.2.3 MATCONT  

The development of MATCONT started in 2000 and published its first version in 2003 by 

Dr. Willy Govaerts, Prof. Yuri A. Kuznetsov and Dr. Bart Sautois [42]. MATCONT is a 

MATLAB package and can work only MATLAB installed computers. The package 

provides bifurcation analysis, time integration, vector fields and maps, numerical 

continuation, periodic and homoclinic orbits and normal form analysis. 

 

MATCONT can be used via GUI or MATLAB files manually. The GUI includes three 

main windows; the main window where ODEs can be defined, analysis type can be chosen 

and graphs can be created. In “Starter” window, one can select the bifurcation types to be 

found, define initial point, continuation and discretization parameters.  In “Continuer” 

window the step size, error tolerances and maximum number of point to be calculated can 

be defined. Another window, “Integrator” will pop up when time integration is selected in 

main window. Time integration parameters such as solver, step size, error tolerance and 

time interval to be integrated are defined in “Integrator” window. 

 

MATCONT is able to locate bifurcations such as Hopf, pitchfork, limit cycle, period 

doubling and fold bifurcations. The package provides also normal form coefficients and 

eigenvalues of the system at varying system parameters. The stability analysis of limit 

cycle can be performed with Lyapunov coefficients. The Poincare maps can be created for 

further investigation. The locations of bifurcations are conducted using test functions which 

are specialized for a certain types of bifurcations.  

 

4. EIGENVALUE ANALYSIS OF LINEAR AEROELATIC MODEL 

The AEOM was transformed into a matrix form in the section 2.3
th

 section as given in Eq. 

4.1. The physical properties of the 3 DOFs wing and control surface is taken from [27] and 

given in Table 4.1. 
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  [
 (    )  (     )  (    )  (      )  (    )  (    )

            

         

] 4.1 

 

Table 4.1. The physical properties of the airfoil 

 
m Total mass (kg) 3.391 

l Length of span (m) 0.52 

   mass moment inertia around    (kg.m
2
) 1.347e-2 

   static mass moment around    (kg.m) 8.587e-2 

   mass moment inertia around    (kg.m
2
) 3.264e-4 

   static mass moment around    (kg.m) 3.95e-3 

    product of mass moment inertia kg.m
2
 8.280e-04 

   the position of elastic axis of wing (m) 0.0635 

   The position of elastic axis of control surface (m) 0.1905 

c the length of airfoil (m) 0.254 

   Stiffness in plunge direction (N/m) 2818.8 

   Stiffness in pitch direction (N.m/rad) 37.3 

   Stiffness in control direction (N.m/rad) 3.9175 

   Modal damping in plunge direction (N.s/m) 0.0113 

   Modal damping in pitch direction (N.m.s/rad) 0.01626 

   Modal damping in control direction (N.m.s/rad) 0.0115 

 

 

Figure 4.1 Conner’s experimental setup 
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The eigenvalues of AEOM is obtained solving characteristic equation. The solution of 

characteristic equation is handled using eig( ) command of MATLAB. The eigenvalues and 

eigenvectors are calculated at various airspeeds. The natural frequencies of the structure are 

found as 4.443 Hz, 9.206 Hz and 19.482 Hz.  

At the airspeed equals          m/s the total damping of the pitching mode crosses the 

zero line. The frequency of the flutter motion is           . The change of damping and 

frequency of the system with varying airspeed is given in Figure 4.2.  

 

Figure 4.2. Air speed vs. frequency and air speed vs. damping  

 

The comparison of the results with respect to referenced article is given in the Table 4.2. 

The errors are calculated relative to the experimental results. The results are in agreement 

with both experimental and numerical results of the reference. The difference between wind 

tunnel test and numerical solutions can be related to the aerodynamics effect that cannot be 

calculated with potential theory. 
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Table 4.2. Comparison of the results 

 
Present  

Study 

Conner 

(Numerical) 

Conner 

(Experimental) 
Error[%] 

    23.98 m/s 23.9 m/s 20.6 m/s 16.41 

    6.06 Hz 6.112 5.47 10.786 

    4.443 Hz 4.455 4.375 Hz 1.554 

    9.206 Hz 9.218 Hz 9.125 Hz 0.888 

    19.482 Hz 19.442 18.625 Hz 4.601 

 

 

The time responses of the system are calculated using ode45 MATLAB’s Runge – Kutta 5
th

 

order time integration method. The time responses are calculated at the airspeeds; 23 m/s, 

23.98 m/s and 24.1 m/s and given in Figure 4.3. As one can see in upper left response at 

Figure 4.3, the damping is high enough to damp the system response. But in the upper right 

response, time responses do not change with the time. As mentioned earlier, this 

phenomenon is called limit cycle oscillation or LCO. The airspeed where LCO occurs is 

called Hopf speed,    in nonlinear systems. In the bottom figure, time responses of the 

system increases with time for linear system this phenomenon is called flutter.  
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Figure 4.3. Time responses of 3 DOF system at         and        airspeeds 

 

5. ANALYSIS OF LINEAR MODEL IN ZAERO 

ZAERO is widely used software in the field of aeroelasticity. The software is used for 

flutter, aeroservoelasticity, transient gust, maneuver, trim and ejection load analysis. The 

software uses different type of aerodynamic modeling methods according to Mach speed. 

ZONA06 is used for subsonic speed which is a higher order paneling scheme compared to 

DLM. The difference in the order of the panel element can be shown in Figure 5.1. The 

higher order element of ZONA06 provides more robust solution due to the efficient 

modeling with fewer elements compared to DLM. 

time (sec) 

time (sec) 

time (sec) 
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Figure 5.1. The panel element order difference between ZONA06 and DLM [43]. 

 

The ZAERO results will be obtained to compare results from abovementioned linear 

analysis method to check consistency with the numerical results. Before presenting the 

results, mentioning about the modeling methods and mathematical background of the 

software would create understanding. In the following paragraphs, for the theoretical 

background of ZAERO, ZAERO User Manual 9.3 and Theoretical Manual 9.3 are greatly 

benefited. 

 

5.1. Mathematical Background of Aeroelasticity in ZAERO 

As mentioned before, aeroelasticity is the field of engineering that investigates the 

interactions of a body in the aspects of aerodynamic, dynamic and elasticity. The 

aeroelastic equation of motion for discrete system is given in general form as follows: 

 ̅ ̈   ̅   ( ) 5.1 

The force vector can be defined as summation of structural and aerodynamic forces such as 

 ( )    ( )    ( ) 5.2 

where   ( ), is external forces and depends on a given input such as control surface 

command, ejection of a store or unwanted aerodynamic forces such as gusts.   ( ) is the 

aerodynamic force that depends on the structural deformation which causes deflection in 

aerodynamic surfaces and changes aerodynamic force vector. The relation of this coupling 

is represented as aerodynamic feedback in the Theoretical Manual of ZAERO v9.3 and 

given in Figure 5.2. 
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Figure 5.2. Aerodynamic Function Diagram [44] 

 

The introduction of    ( ) eliminates the above equation becoming a forced vibration 

equation so that the new form of Eq. 5.1 can be rearranged as follows. 

 ̅ ̈   ̅    ( )    ( ) 5.3 

As the flutter is a self-excited phenomenon the external forces defined in Eq. 5.3 is not 

necessary any further and new form of the equation is given below 

 ̅ ̈   ̅    ( )    5.4 

If the force    ( ) is nonlinear, the eigenvalue solution is not valid anymore and time-

marching methods must be used for solution. However, it is also possible to approximate to 

linear system by linearizing the amplitudes which makes possible to use complex 

eigenvalue solutions method and become stability problem once again. The amplitude 

linearization is valid if the perturbation is small enough at all air speeds. A transfer function 

can be defined for the assumed linear model. The abovementioned aerodynamic feedback 

mechanism relates   ( ) and   using convolution integral as follows. 

  ( )  ∫    (
 

 
(   ) ( )  

 

 

 5.5 

The term   represents the aerodynamic transfer function and it can be transformed into 

Laplace domain which is given in the following equation. 

  ( ( ))     ̅ (
  

 
)  ( ) 5.6 

where  ̅ is the Laplace domain counterpart of  . 
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The aeroelastic equation of motion in Laplace domain is defined as below where M and K 

are generalized mass and stiffness matrix and    is dynamic pressure.  

[   ̅   ̅     ̅ (
  

 
)]  ( )    5.7 

The solution of eigenvalues in physical coordinates is a cumbersome, so that, the solution is 

obtained in the modal coordinates. The displacements can be transformed from one to 

another using modal matrix,   such as 

      5.8 

where   is the displacement in modal coordinates or generalized coordinates. The 

substitution of Eq. 5.8 into 5.7 and pre-multiplication of Eq. 5.7 with the transpose of 

modal matrix,    gives the following aeroelastic equation of motion  

[         (
  

 
)]     5.9 

The matrices  ,   and   are generalized forms of mass, stiffness and aerodynamic force 

matrices and given as follows 

     ̅  5.10 

     ̅  5.11 

 (
  

 
)     ̅ (

  

 
)  5.12 

The solution of Eq. 5.9 in Laplace domain is not efficient due to the complexity of unsteady 

aerodynamics. For this reason, the formulation of unsteady aerodynamics in frequency 

domain with the assumption of simple harmonic motion provides more efficient solutions. 

The aerodynamic transfer function that defined in frequency domain is called Aerodynamic 

Influence Coefficient (AIC) matrix. 

 

Each element in panel method are called as aerodynamic boxes, have control points where 

the boundary conditions are defined. In panel method, the integration on control points and 

summation of these integrals gives a matrix whose coefficients resembles the aerodynamic 
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influences at control points of each boxes. This matrix is called as Aerodynamic Influence 

Coefficients as it is mentioned before where it defines relationship between structural 

deformation and aerodynamic forces as defined in following equation. 

     [   (  )]  5.13 

where    aerodynamic forces as a result of structural deformation   at the aerodynamic 

boxes,. The AIC matrix is computed in the reduced frequency domain which is defined as  

  
  

 
 5.14 

where   is harmonic oscillation frequency, b is the reference length of aerodynamic 

surface, U is undisturbed airspeed. The AIC matrix defines the relation between structural 

deformation and aerodynamic forces where AIC is calculated on the control points of 

aerodynamic boxes whose coordinates differs from grid points of structural model. The 

spline method accomplishes this forces and displacements transferal using interpolation 

from grid points to aerodynamic control points of panels. The spline method will be 

explained in the following paragraphs. 

 

5.2. Spline  

The force and displacement coupling between structural and aerodynamic model is 

accomplished with the spline method. The displacement transfer is performed from 

structural grid point of finite element (FE) model to control points of aerodynamic boxes 

and force displacement is performed from control points of aerodynamic boxes to grid 

points of structural model.  

 

The position difference between structural grid points and aerodynamic control points must 

be small for accomplishing interpolation from structural component to aerodynamic 

surfaces accurately. This transfer is accomplished using spline matrix,   such that:  

     5.15 

where h is defined as aerodynamic control points and x is defined as structural grid point in 

finite element model. The generated spline matrix transfers the forces from aerodynamic 

control points to structural grid points as shown below: 
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        5.16 

The spline method is founded on the virtual work principle. Since the work done by 

aerodynamic forces must equal to structural forces, one can define using virtual 

displacement:  

            5.17 

After substitution of Eq. 5.15 into 5.17 and rearranging the outcome, the following equation 

is obtained. 

   (       )    5.18 

where    cannot be zero due to the randomness of virtual displacement, Eq. 5.16 is 

obtained. The substitution of Eq. 5.13 and 5.15 into Eq. 5.16 yield the following equation. 

       [   (  )]    5.19 

The generalized form of aerodynamic forces can be obtained using the same procedure as 

used in acquiring modal mass, stiffness and transfer function. 

 (  )      [   (  )]    5.20 

 

As mentioned before, ZAERO solves the flutter problem in the frequency domain with the 

assumption of simple harmonic motion. The frequency domain form of Eq.5.9 can be 

represented as follows 

[          (  )]    5.21 

 

5.3. Mathematical Background of Flutter Solutions in ZAERO 

In ZAERO the flutter analysis can be performed with using multiple methods such as; g-

method, k-method and p-k method. For the p-k method, the explanation of p method is 

necessary. The differences of these methods are briefly explained in following parts.  

 

5.3.1 p-Method 

The p-method uses Laplace parameter, p, which is introduced as follows 
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 (     ) 5.22 

Where k is reduced frequency and defined as     
 ⁄ , and   is transient decay 

coefficient. After substituting Eq. 5.22 into 5.9, the new equation is obtained and called as 

p-method.  

[(
 

 
)
 

         ( )]    5.23 

Since the p-method solution provides true damping yet the complicated solution of 

unsteady aerodynamics in the Laplace domain makes the p-method inefficient. ZAERO 

uses mostly reduced frequency domain methods for flutter solution.  

 

5.3.2 k-Method 

ZAERO performs flutter analysis in frequency domain with assumption of simple harmonic 

motion. The substitution of  (
  

 
) in Eq. 5.9 with  (  ) and s with i  will give the 

following equation. 

[          (  )]    5.24 

An artificial damping is added into Eq. 5.24 and the final form is given in 5.25 where g is 

artificial structural damping which was firstly introduced by Theodorsen for providing 

harmonic motion. The k-method is able to calculate flutter points at zero damping however 

a reliable damping prediction is essential for flight flutter test. For these reasons, another 

method p-k method is frequently used for obtaining flutter boundary.  

[     (     )     (  )]    5.25 

The equation that is given in Eq. 5.25 is so-called k-method. To transform the above 

equation into complex eigenvalue problem the dynamic pressure can be derived as follows 

   
 

 
    

 

 
 (

  

 
)
 

 5.26 

where   is the air density. After substituting Eq. 5.26 into 5.25 and dividing to    will give 

the following equation: 
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[     
 

 
 (

 

 
)
 

 (  )]     5.27 

where  

  
(     )

  
 5.28 

which is the complex eigenvalue of Eq. 5.25. The existence of the rigid body modes makes 

the solution more challenging due to the requirement of trivial solution. So that, it is 

required to eliminate the trivial solution by partitioning in Eq.5.27 as rigid body and elastic 

modes: 

[[
    
    

]  
 

 
 (

 

 
)
 

[
      

      
]   [

  
    

]] {
  

  
} 5.29 

where subscripts R and E denote rigid body and elastic modes. The rigid body displacement 

can be written as follows 

        ̅  
  

 ̅       5.30 

The AEOM that is given in 5.29 can be reduced as given below 

[[  ̅   ̅  
  

 ̅    ̅  ]   [   ]]        5.31 

where 

  ̅   
 

 
 (

 

 
)
 

    

 ̅       
 

 
 (

 

 
)
 

    

 ̅   
 

 
 (

 

 
)
 

    

 ̅       
 

 
 (

 

 
)
 

    

5.32 
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The solution for   at different reduced frequencies and aerodynamic conditions will give 

the flutter solution. The damping and frequencies for each structural mode as the airspeed 

changes can be calculated as follows 

   
 

√  ( ) 
 

   
  ( )

  ( )
 

   
   

 
 

5.33 

The flutter occurs where the damping crosses the zero line as mentioned in the linear 

solution method in the 3
th

 section. The frequencies and air speeds are evaluated at defined 

Mach and air density. The flutter solution is called matched if    equals multiplication of 

Mach number,   and sound of speed,    at the given air density otherwise it is called non-

matched flutter solution. The flutter solution must be evaluated at different airspeed to 

obtain matched solution where       . 

 

5.3.3 p-k Method 

The aeroelastic equation of p-k method is derived using both   and    terms that given in p 

and k methods and become as follows 

[(
 

 
)
 

      
 

 
    (  )]       5.34 

The p-k method uses complex eigenvalue solution at defined values of U and    that alters 

the value of  . It is necessary to obtain matched solution for the reduced frequency with the 

imaginary part of  . For simplicity, the damping term,    is omitted and embedded into the 

  term as shown below 

  (    ) 5.35 

since  

     5.36 
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where   is transient decay coefficient. The p-k method has mathematical inconsistency due 

to the expression of eigenvalue p as a damped sine where  (  ) is defined as undamped 

sine harmonic yet it is proofed as a good approximation of p-method. The structural 

damping added form of Eq. 5.34 was derived by Rodden [45] and given as below 

[(
 

 
)
 

      
 

 
   

  ( (  ))

 
  

 

 
   

  ( (  ))

 
]       5.37 

Substituting Eq. 5.35 into Eq. 5.37 and rewrite the equation will give 

[(
 

 
)
 

      
 

 
   

  ( (  ))

 
  

 

 
    (  )]       5.38 

The extra term compared to Eq. 5.34 is defined as aerodynamic damping matrix which is 

stated as follows 

 
 

 
   

  ( (  ))

 
   

The AEOM is solved at given values of airspeed,   and air density,   for complex 

eigenvalue   which is related with the mode of interest. The solution for   is accomplished 

with iterative solution process when the iterated reduced frequency is matched with the 

imaginary part of   for each structural modes which also requires consecutive 

interpolations for defined reduced frequencies. 

 

5.3.4 g-Method 

The g-Method is developed as a newly flutter solution method by ZONA Technology that 

is generalizing k-method and p-k method for better damping estimation. The p-k method 

could produce unrealistic damping values when the generalized aerodynamic forces are 

highly nonlinear.  

 

The matched point flutter solutions are performed using g-methods in ZAERO. The 

software has its own standard atmosphere table, where air density changes with altitude. 
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The g-method consists damping of first order which is derived from Laplace domain 

aerodynamics. The assumption of Eq. 5.39 is analytic in the interval of     and     is 

the foundation of g-method. 

 ( )   (    ) 5.39 

The term  ( ) can be expanded on the imaginary axis by assuming    . The expansion 

of  ( ) is given as follows 

 ( )   (  )   
  ( )

  
|
   

 5.40 

The assumption of  ( ) is analytic gives chance to apply Cauchy-Riemann rule on the 

partial derivative part of the above equation and given as follows 

    ( ( ))

  
 

    ( ( ))

  
 

    ( ( ))

  
  

    ( ( ))

  
 

5.41 

Summation of first equation with   multiplied second equation gives the following result 

  ( )

  
 

  ( )

 (  )
 5.42 

The above equation is valid through the p-domain except along the real negative axis due to 

continuity changes. So that the term 
  ( )

  
|
   

 can be replaced with 

  ( )

  
|
   

 
  ( )

 (  )
|
   

 
  (  )

 (  )
  (  )  5.43 

The final form of 5.40 can be represented as follows 

 ( )   (  )    (  )  5.44 

The final form of AEOM can be obtained substituting the Eq. 5.44 into Eq. 5.23 which is 

given in below 

[(
 

 
)
 

      
 

 
    (  )   

 

 
    (  )]       5.45 
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The comparison of the final form of AEOM in g-method and p-k method shows that if the 

damping value,   is zero both equations become identical. The solution of above equation 

is briefly explained in following part. The substitution of      into   in the Eq. 5.45 gives 

the following equation 

[        ]      5.46 

where: 

  (
 

 
)
 

  

     (
 

 
)
 

  
 

 
    (  )  (

 

 
)  

     (
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    (  )    (

 

 
)  

5.47 

 

The term   is modal structural damping matrix. In the above equation flutter speed can be 

obtained when the imaginary part of   becomes zero. The g-Method equation that is given 

the Eq. 5.45 is second order linear system and its solution can be completed when the 

abovementioned criteria is met. The Eq. 5.45 can be rewritten in the form of eigenvalue 

problem and solved for eigenvalues at several reduced frequencies. The eigenvalue problem 

and eigen solution of Eq. 5.45 can be shown as follows 

[    ]      5.48 

where   is the eigenvector and   is given as below  

   [
  

          
] 5.49 

 

5.4. Aeroelastic Analysis Setup in ZAERO 

ZAERO uses scripts as an input where the airspeed, geometry, FE results and spline data 

are entered manually. The inputs in ZAERO are classified as “Executive Control Section” 

and “Case Control Section”. In the first section, finite element results file and the 

symmetry conditions are defined. In the second section, the solution method, airspeed, 
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geometry inputs, spline, structural damping can be defined. The important case control 

commands are briefly explained in the following paragraphs. 

 

The aerodynamic surfaces that generate lift are defined with the CAERO7 and the surfaces 

that will not generate lift are defined with the BODY7 bulk data card. The spline is 

generated with SPLINE0, SPLINE1, SPLINE2 and SPLINE3 bulk data cards. Each spline 

bulk data card uses different spline theorem. In this work, SPLINE1 bulk data card is used 

which uses infinite plate spline method. Infinite plate spline theory is based on the idea of 

2D interpolation. A working plane is defined as the lifting surface plane. This makes 

infinite plate spline more suitable for wing-like geometries. 

 

 

MKAEROZ bulk data card is used for defining airspeed and the reduced frequencies that is 

going to be swept. For each airspeed, an AIC matrix is generated and saved which can be 

used for different finite element results of same geometry and spline and obtain faster 

results for iterative works. FLUTTER bulk data card is used for defining the input for 

flutter or aeroservoelastic analysis. In this card, the structural damping, symmetry condition 

and number of modes can be defined for flutter analysis. The FIX label in the FLUTTER 

bulk data card, defines the solution type for flutter. In this work, FIXDEN bulk data card is 

used for solution which activates k-method solution procedure and is a non-matched 

method which is the same solution procedure that used in the eigenvalue analysis above. 

 

5.4.1 The Panel Model  

The experimental model is created using CAERO7 bulk data card. The geometry of airfoil 

section is not represented when using panel method due to its negligible effects. The 

thickness effect on lifting surface is first order for unsteady linear aerodynamics that gives 

the possibility of modeling lifting surfaces as flat plate. The source and doublet 

singularities that are present on the flat plate are used for simulating the thickness effects 

and generating lift. However since the typical section method is valid and gives better 

results for higher aspect ratios. The new aspect ratio for the model is defined as 100. The 
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image of the model with aspect ratio of 100 would be too thin to share here. So that the 

symbolic panel model of the experimental setup is given in Figure 5.3.  

 

Figure 5.3. The aerodynamic paneling of the 2D system 

 

5.4.2 Modal Analysis Results 

The mass normalized mode shapes that are obtained from the modal analysis that is given 

above is used as inputs for the ZAERO analysis. The mode shapes of the system are 

visualized using MSC Patran. The mode shapes and the natural frequencies of the model 

are given in Table 5.1. The first mode shape of the system shows plunge motion, the second 

mode shape shows pitching motion. Finally the third mode shows control surface motion.  

 

Table 5.1. Finite Element Results of 3D wing-control surface system 

Mode 1 @4.444 Hz Mode 2 @9.23 Hz Mode 3 @19.334Hz 

   

 

5.5. ZAERO Results 

The flutter analyses are performed at the varying and airspeed. The airspeeds are given in 

Table 5.2.  
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Table 5.2. Airspeeds  

# 1 2 3 4 5 6 7 8 9 

[m/s] 5 8 10 15 20 21 22 22.5 23 

 10 11 12 13 14 15    

[m/s] 24 24.5 25 30 35 40    

 

The frequency-airspeed and damping – airspeed diagram are obtained using the output file 

of ZAERO and given in Figure 5.4. The frequency-airspeed and damping – airspeed 

diagram from eigenvalue solution of linear system are given in Figure 5.5 for comparing 

results from both solutions.  

 

 

Figure 5.4. The change of frequency and damping with respect to airspeed (ZAERO) 
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Figure 5.5. The change of frequency and damping with respect to airspeed  

 

Table 5.3. Comparison of the results 

 
Present 

Study 

(Numerical) 

Present Study 

(ZAERO) 

Conner 

(Experimental) 

Error[%] 

Numerical 

Error[%]

ZAERO 

    23.98 m/s 23.55 m/s 20.6 m/s 16.41 14.27 

    6.06 Hz 6.20 Hz 5.47 Hz 10.786  13.35 

 

In ZAERO, the flutter speed and flutter frequency are calculated at 23.55 m/s and 6.20 Hz 

at sea level. The flutter speed and flutter frequency were calculated using eigenvalue 

solution at 23.98 m/s and 6.06 Hz at sea level. The errors for the flutter frequency and 

flutter airspeed are compared in the Table 5.3. The ZAERO and numerical solution in this 

study is consistent with Conner’s numerical results. 

 

 As mentioned above, the typical section gives more accurate results at high aspect ratios. 

So that to compare the results with typical section results the ZAERO model rearranged for 
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high aspect ratio value of 100. Another model with the original dimensions is analyzed in 

ZAERO and it is seen that flutter speed and frequency of this model is higher compared to 

model that have higher aspect ratio.  

 

6. ANALYSIS OF NONLINEAR MODELS 

The nonlinear model is obtained via introducing nonlinear structural elements into the 

equation of motion of linear system. The MATLAB software is used for acquiring the 

nonlinear AEOM using symbolic math tool. Each nonlinearity analyses are given in 

separate sections. In the first section, cubic stiffness defined for each degree of freedom. In 

the second section, the quadratic damping is introduced for pitching degree of freedom. 

Finally, the free-play nonlinearity is also introduced into pitching direction. 

 

The stability of the limit cycles is assigned according to the types of bifurcation. For more 

complex bifurcation diagrams with more than one branch, the test functions and Lyapunov 

coefficients are investigated to decide whether the limit cycle is stable or unstable.  

 

6.1. Cubic Stiffness Nonlinearity Analyses 

6.1.1 Cubic Nonlinearity Analysis in Pitching Direction 

In this section, the cubic stiffness,    
 in pitching direction defined with the multipliers of 

10 of the linear stiffness in pitching direction. The new AEOM with nonlinearity in 

pitching direction is given in Eq. 6.1 

 ̇        
    6.1 

where   is the aeroelastic equation of motion that is obtained in Section 2.3 and given with 

Eq. 2.23,   is the forcing vector and given as follows 

  [
 (    )  [

 
 
 
 ] 

    

] 6.2 
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The MATCONT form of the nonlinear AEOM has a varying parameter which is the 

airspeed  . In MATCONT, the first step is to find equilibrium points. The equilibrium 

points can be found after initial parameters are chosen. The initial parameters are   

         for airspeed and    
          

  

   
.  

 

The first bifurcation point is achieved at the airspeed             as a Hopf bifurcation. 

The nonlinear analysis continues with choosing the Hopf point as a starting airspeed to 

obtain response of the nonlinear aeroelastic system. After selection of initial point and the 

initial conditions of the system and the system parameters that are going to be tracked are 

selected. The airspeed and the period of the oscillation are chosen as the varying parameters 

during the continuation while cubic stiffness remains constant.  

 

The limit cycle amplitudes of each state and the periods are calculated at varying airspeeds. 

The results of the analysis are given with the assumption of the structure withstand 

excessive deformations. The phase plane change with varying airspeeds for the pitching 

direction is given in Figure 6.1 which consist the airspeed   on X axis, the rotation   at Y 

axis and derivative of the rotation    at Z axis. The projection of the results on XY plane 

gives Figure 6.2. In this analysis, two limit point cycles (LPC), two Neutral Saddle points 

(NS), and two branch points of cycles (BPC) are obtained and stated in the figures. The 

maximum values of limit cycles are obtained for pitching motion and given in Figure 6.2. 

The figures that shows the response of a system with respect parameter change is called as 

bifurcation diagrams. As shown in bifurcation diagram, one can find out the following 

outcomes. First of all, in the presence of the cubic stiffness nonlinearity, more benign 

behavior can be observed compared to linear system. As it can be seen with the increasing 

airspeed, the system response shows much less amplitude than any divergent situation as 

would be in the linear system.  
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Figure 6.1. The cubic stiffness results for    
     

  

   
 

 

 

Figure 6.2. The bifurcation diagram for pitching response   for    
     

  

   
 

 

The LPC points which can be stated as fold bifurcation as well which are found at the 

turning points along the line. As mentioned before, the fold bifurcation creates stable and 

unstable branches before and after the point. As it is known, the Hopf bifurcation transform 
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the system from stable equilibria to stable oscillations, this type of Hopf bifurcation is 

called as supercritical Hopf. So that the section between Hopf point to LPC point, the 

oscillations are stable. The stability in limit cycle can be explained as the amplitude of 

oscillation converges to limit amplitude that calculated. The neutrally stable points are not a 

bifurcation points so that stability of the cycle does not change. After first fold point the 

LCO become unstable. Along the unstable line, oscillations can be attracted from random 

attractors which can cause failure in the structure due to excessive deformations. The 

unstable branch becomes stable once more after the second fold point.  

 

There are two branch points on the line that lies between Hopf point and the first fold point. 

These branch points are connected each other. Along the green line that can be seen in 

Figure 6.2, three period doubling bifurcations, four fold bifurcations and two Neimark-

Sacker (torus) bifurcations are observed. 

 

At the period doubling bifurcation, the elliptic shape that is seen before period doubling 

changes its shape which is given in Figure 6.3. As mentioned in the part we explained the 

bifurcation types, the change in the parameter changes the trajectory of phase plane. One of 

the occurring conditions of period doubling is the possibility that frequency of the control 

surface can be defined with the integer multiplication of LCO frequency. 
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Figure 6.3. The phase plane change after period doubling 

 

The normal form and first Lyapunov coefficients are used to decide the stability of the 

abovementioned bifurcations. The BPC points and Neimark-Sacker (torus) bifurcation 

points have the normal form coefficients less than zero so that after the bifurcations the 

limit cycle oscillations are still stable. The period doubling bifurcations are unstable due to 

positive normal form coefficient. The consequent period doubling makes the system more 

unstable, the cascade period doubling bifurcations could even cause chaos and destruction 

of the system.  

 

The frequency change of the system with varying airspeed is given Figure 6.4. The 

frequency of the system and LCO amplitudes follows nearly same behavior. The similarity 

occurs due to the increasing rotation values makes the system more and more stiff which 

causes changes in the frequency of the limit cycle. The LCO frequency equals the flutter 

frequency at the beginning of the analysis however with the changing stiffness the 

frequency changes accordingly.  
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Figure 6.4. The response frequency with respect to airspeed for    
     

  

   
 

 

6.1.2 Cubic Nonlinearity Analysis in Plunge Direction 

The new AEOM with nonlinearity in plunge direction is given in Eq.6.3 

 ̇        
    6.3 

where   is the forcing vector and given as follows 

  [
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] 6.4 

The results of introducing cubic stiffness into plunge direction differ from the pitch 

direction analysis. The Hopf point for the system is calculated at             that is the 

same Hopf point that was calculated in pitch direction analysis. The phase plane change of 

the system as the airspeed varying is given in Figure 6.5. For this analysis, the system 

shows subcritical Hopf bifurcation. The subcritical Hopf bifurcation is a dangerous 

phenomenon due to unstable nature. In supercritical Hopf bifurcation, the amplitudes of the 

limit cycle converge to a certain value as a result of being stable. However, in subcritical 

Hopf bifurcation the amplitude of limit cycle cannot be known and can be attracted by a 

random attractor.  
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Figure 6.5. The cubic stiffness results for    
           

 

The bifurcation diagram of current analysis is given in the Figure 6.6. The results of current 

analysis show that the minimum initial conditions levels for LCO to be start. This situation 

shows also the importance of initial condition values for nonlinear systems.  

 

Figure 6.6. The bifurcation diagram for plunge response for    
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Higher initial condition values are required for the LCO to start at lower airspeeds which 

also cause higher frequency. The increasing frequency of plunge motion is getting closer to 

pitch frequency and more likely to create flutter mechanism. As mentioned before, the 

difference in frequency of two modes is an important factor that affects flutter behavior 

such as flutter speed and LCO occurrence.  

 

Another aspect of the subcritical Hopf bifurcation is that it is frequency dependent. If the 

cubic stiffness high or low enough which means higher or lower frequency than the 

coupling require, the presence of LCO can be changed due to the frequency of the plunge 

mode will not be close to the coupled plunge mode anymore and cause to damp the 

oscillations. The frequency change of the oscillation is given in Figure 6.7.  

 

Figure 6.7. The frequency of limit cycle with respect to airspeed for    
        

  

   
 

 

6.1.3 Cubic Nonlinearity Analysis in Control Surface 

The AEOM with nonlinearity in control surface is defined as given in Eq. 6.5 

 ̇        
    6.5 

where   is the forcing vector and given as follows 
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] 6.6 

The effects of cubic stiffness on control surface differ from the aforementioned two 

analyses. In this analysis, the cubic stiffness does not have dominant control on the 

response of the airfoil in a manner of preventing divergent behavior because of the control 

surface mode does not make contribution to flutter mechanism. The phase plane change of 

the control surface response with increasing airspeed is given in Figure 6.8. As can be seen 

in this figure the response of the system increases rapidly with an increase in airspeed of 

about 0.25 m/s. At the airspeed            , Hopf bifurcation is observed.   

 

Figure 6.8. The cubic stiffness results for    
        

  

   
 

 

The bifurcation diagram of the system as the parameter U, airspeed changes is given in 

Figure 6.9. The MATCONT also find two fold points at the airspeed              

and             at turning points. However as can be seen in bifurcation diagram, there 

are more turning points which could also be fold bifurcation. The MATCONT was not able 

to capture these bifurcations in this analysis which shows that the parameters that are 

chosen for the continuation analysis may cause to miss bifurcation points.  
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Figure 6.9. The bifurcation diagram for control surface response for    
        

  

   
 

 

The changes on the frequency with the varying airspeed can be seen in the Figure 6.10. The 

cubic stiffness in control surface direction does not cause a change in the fundamental 

frequency of LCO for the reason that stated at the beginning of this section.  

 

Figure 6.10. The response frequency with respect to airspeed for    
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6.2. Quadratic Damping Nonlinearity Analyses 

The second nonlinearity that introduced into aeroelastic system is quadratic damping. The 

quadratic damping modeling is a more realistic damping method for modeling solid in a 

fluid. For the pitching degree of freedom, 0.1 and 1 quadratic damping coefficients are 

defined. The effects of damping on the system response for different levels of damping are 

investigated. 

 

6.2.1 Quadratic Damping Nonlinearity Analyses in Pitch Direction 

The new AEOM with nonlinearity in pitching direction is given in Eq. 6.7 

 ̇        
  ̇| ̇| 6.7 

where   is the forcing vector and given as follows 
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In the first analysis, the quadratic coefficient    
     is defined for the pitching direction. 

During the numerical continuation process, a Hopf and a fold (LPC) bifurcation is found. 

As in the Section 6.1.2, the system show subcritical Hopf bifurcation and the Hopf airspeed 

equals         
 

 
. On the other hand, the fold bifurcation is encountered at the airspeed 

of        
 

 
. The change of phase plane is given in Figure 6.11. As can be seen from 

this figure, the LCO characteristic of the system is preserved during the analysis.  
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Figure 6.11. The quadratic damping results for    
     

     

   
 

 

The bifurcation diagram for the pitching response is given in Figure 6.12. The section 

between Hopf bifurcation and fold bifurcation is unstable due to nature of subcritical Hopf 

bifurcation. The section became stable after fold bifurcation. In oscillated structures, the 

damping is a desired structural property. However, as can be seen in this example, the 

introduction of damping changes characteristics of the bifurcation and creates subcritical 

Hopf bifurcation and destabilizing effects for lower airspeed than Hopf speed.  

 

The response frequency change of the system is given in Figure 6.13. As the airspeeds 

decreases from   , the frequency of the response starts to decrease as well. After the fold 

bifurcation, the decrease rate become slower and at a point the frequency of the response 

starts to increase.  
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Figure 6.12. The bifurcation diagram for pitching response for    
     

     

   
 

 

 

Figure 6.13. The response frequency with respect to airspeed for    
     

     

   
 

 

In the second analysis, quadratic damping coefficient    
   

     

   
 is defined for pitching 

degree of freedom. The results of this analysis show same behavior with the previous 
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analysis except the levels of LCO amplitude. As the damping coefficient increases LCO 

amplitudes decreases. The phase plane change is given in Figure 6.14. The bifurcation 

diagram for pitching response is given in Figure 6.15.  

 

Figure 6.14. The quadratic damping results for    
   

     

   
 

 

 

Figure 6.15. The bifurcation diagram for pitching response for    
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The frequency of the response for quadratic damping coefficient    
   is given in Figure 

6.16. The frequency change is almost same for the analysis where    
     is taken. As a 

result of these analyses, it is understood that the quadratic damping coefficient affect the 

amplitude of LCO but the frequencies and the behavior of the nonlinear system does not 

change. 

 

 

Figure 6.16. The response frequency with respect to airspeed for    
   

     

   
 

 

6.3. Free-Play Nonlinearity Analysis 

The free-play occurs due to discontinuity in the stiffness. The main reasons of free-play are 

the mistolerances, manufacturing imperfections and gaps. The mathematical modeling of 

free play is given for moment calculation in Eq. 6.9 for torsional spring of pitching 

direction. The schematic representation of the free-play is given in Figure 6.17 for   

        . In this figure red dashed line belongs to mathematical representation of Eq. 6.9. 

On the other hand, the blue dashed line belongs to hyperbolic tangent method [46] for 

modeling piecewise linear free-play behavior. The mathematical model of mentioned 

method is given in 6.10.  
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where  , is the free-play angle,    is the smoothness coefficient and    is the stiffness 

value of linear system. As can be seen in Figure 6.17, the piecewise linear model and 

hyperbolic tangent model is almost coincident. As the derivative of piecewise linear model 

is not continuous, solving the nonlinear system equations with the hyperbolic tangent 

model approach will ease the numerical calculations. 

 

Figure 6.17. Comparison of piecewise linear and hyperbolic tangent models 

 

It is understood that, introducing the nonlinearity on the control surface has nearly no 

impact on the behavior of the system. Therefore, free-play nonlinearity is introduced only 

in the pitching direction. 
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6.3.1 Free-Play Nonlinearity Analyzes in Pitching Direction 

The mathematical model of the system is given in Eq. 6.11. 

  ̇          ( )√((
(     )
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where   is the forcing vector and given as follows 
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The free-play analysis performed for the free play angle value of 0.01 rad. The 

corresponding value in degree is 0.573 . The phase plane change with respect to varying 

airspeed is given in Figure 6.18. There are two bifurcations along the LCO response curve. 

The first one is Hopf bifurcation which is encountered at the airspeed        
 

 
 and the 

second bifurcation occur at the airspeed        
 

 
 as a fold bifurcation.  

 

Figure 6.18. The quadratic damping results for             
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The bifurcation diagram for pitching response of the system is given in Figure 6.19. The 

first Lyapunov of the Hopf bifurcation is positive which means the type of Hopf bifurcation 

is subcritical and the higher initial condition than the given amplitude between Hopf and 

fold bifurcation points cause unstable LCOs. The second bifurcation is fold bifurcation that 

transform unstable LCO behavior to stable LCO.  

 

 

Figure 6.19. The bifurcation diagram for pitching response for             

 

The frequency change of the system is given in Figure 6.20. As one can see, at the Hopf 

point the frequency of LCO equals the first natural frequency of the linear system due to 

there is no stiffness at the pitching direction. As the amplitude of the LCO oscillation 

increase, the amplitudes exceed the free-play angle and the system started to show reaction 

which causes increase on the frequency of pitch direction. For this reason, the frequency of 

the system increases as well. The flutter speed for the linear system was found at   

     
 

 
. As can be seen in Figure 6.19, as the airspeed approaches linear flutter speed, the 

LCO amplitude diverges.  
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Figure 6.20. The response frequency with respect to airspeed for             

 

7. CONCLUSION AND FUTURE WORK 

In this thesis, we derived equation of motion, unsteady aerodynamic force and moments, 

aeroelastic equation of motion for the 2D typical section with a control surface. The 

structural properties of the typical section are acquired from the article which was written 

by Conner et al [27]. The numerical analysis and ZAERO analysis are performed for the 

linear model to compare results with Conner’s experimental results to check the 

consistency. The both analyses especially the numerical analysis is in good agreement with 

the experimental results. This agreement provides us to make assumption of numerical 

analysis of nonlinear system could be correlated with real systems. For the nonlinear 

calculations, MATCONT software is used which provides continuation analysis for discrete 

system instead of using time integration methods which are inefficient for highly nonlinear 

system.   

 

In numerical analyzes the nonlinear structural elements such as cubic stiffness, quadratic 

damping and free-play nonlinearities were introduced to aeroelastic system. These 

nonlinearities affect the system in many different ways. First of all, the cubic stiffness that 
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defined in the pitching direction limit the oscillation limits and creates benign behavior and 

prevents the amplitudes to diverge. The introduction of cubic stiffness in plunge direction 

creates more dangerous behavior which is called as subcritical Hopf bifurcation. In the last 

cubic stiffness analysis, the nonlinearity was defined on the control surface of airfoil. The 

cubic nonlinearity on the control surface has nearly no effect on system response since it 

does not contribute to the flutter mechanism.  

 

The quadratic damping nonlinearity creates more benign behavior and causes lower 

amplitude of oscillations. In quadratic damping analyses, it is seen that the value of the 

damping does not change frequency content. The subcritical Hopf bifurcation is also seen 

in these analyses. However, the subcritical range in these analyses is limited and does not 

occur elsewhere other than at the beginning of analyses.  

 

Finally, in the free-play analysis, it is found that a system with free-play on the degree of 

freedom which creates flutter mechanism may experience LCO at the airspeed lower that 

linear flutter speed. It is found that as a result of subcritical Hopf bifurcation unstable LCO 

may be observed if the initial conditions higher than the response curve that is given in 

bifurcation diagram. Another finding of the analysis is that divergent behavior is observed 

as the air velocity approaches the linear flutter velocity. Once more it is understood that the 

underlying linear system has an important impact on the nonlinear system. 

 

As a conclusion the degrees of freedom that creates the mode shapes which contribute to 

flutter mechanism has fundamental impact on the nonlinear system response. The 

underlying linear system defines the Hopf speed where LCOs arise. In this aspect it is 

important to say; even the nonlinear effects improve the system response in some cases, the 

structural properties of the linear system stands as one of the main factors that determine 

the system response in a way. 
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As a future work, the nonlinear effects on the aeroelastic system response for 3D model and 

higher Mach speeds will be studied. The achievements that are gained through this thesis 

will provide better understanding and judgment for the 3D model analyses.   
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APPENDIX 

APPENDIX 1 – Explicit Forms of Structural and Aerodynamic Matrices 
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