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ABSTRACT 

SUPER-RESOLUTION IMAGE GENERATION FROM EARTH 

OBSERVATION SATELLITES USING GENERATIVE ADVERSARIAL 

NETWORKS 

Ezgi Burçin GAZEL BULUT 

Master of Science, Department of Geomatics Engineering 

Supervisor: Prof. Dr. Ali Ozgun OK 

January 2022, 96 pages 

The spatial resolution is one of the main criteria representing the level of detail in an image. 

The necessity for the high spatial resolution has increased with the development in satellite 

technologies. Using modern sensors and optics is an expensive way to improve image spatial 

resolution. Image super resolution is one of the most important computer vision research 

topics that aims to obtain higher spatial resolution image(s) from one or more lower spatial 

resolution ones. It is a cheaper and more effective way as it does not require any modification 

to the camera hardware. 

In this thesis, the Super-Resolution Generative Adversarial Networks (SRGAN) and the 

Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) both trained with 

Google Earth were utilised for the super-resolution enhancement of Sentinel-2 and Göktürk-2 

images. The results of the pre-trained deep learning models using the different data sources 

with multi-sensor and multi-temporal characteristics were analyzed and their super resolution 

performances were evaluated. The results show that the perceptual image quality of low 

spatial resolution satellite images can be improved by using SRGAN and ESRGAN methods. 

Keywords: Remote Sensing, Deep Learning, Super-resolution, Satellite Imagery, Generative 

Adversarial Network (GAN) 
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ÇEKİŞMELİ ÜRETİCİ AĞLAR KULLANILARAK YER GÖZLEM 

UYDULARINDAN SÜPER ÇÖZÜNÜRLÜKLÜ GÖRÜNTÜ 

OLUŞTURULMASI 

Ezgi Burçin GAZEL BULUT 

Yüksek Lisans, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Ali Özgün OK 

Ocak 2022, 96 sayfa 

Mekânsal çözünürlük, görüntüdeki detay seviyesini tanımlayan ana kriterlerden biridir. 

Gelişen uydu teknolojileri ile yüksek mekânsal çözünürlüğe olan ihtiyaç artmıştır. Daha 

modern algılayıcılar ve optikler kullanmak, mekânsal görüntü çözünürlüğünü iyileştirmenin 

pahalı bir yoludur. Görüntü süper çözünürlüğü, bir veya daha fazla düşük mekânsal 

çözünürlüklü görüntüden daha yüksek mekânsal çözünürlüklü görüntü(ler) elde etmeyi 

amaçlayan en önemli bilgisayarlı görü araştırmalarından biridir. Kamera donanımında 

herhangi bir değişiklik gerektirmediği için daha ucuz ve daha etkili bir yoldur. 

Bu tezde, Sentinel-2 ve Göktürk-2 görüntülerinin süper çözünürlük iyileştirmesi için Google 

Earth uydu verileri ile eğitilen Super-Resolution Generative Adversarial Networks (SRGAN) 

ve Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) yöntemleri 

kullanılmıştır. Çok sensörlü ve çok zamanlı farklı veri kaynakları kullanılarak önceden 

eğitilmiş derin öğrenme modellerinin sonuçları analiz edilmiş ve süper çözünürlük 

performansları değerlendirilmiştir. Sonuçlar, düşük mekânsal çözünürlüklü uydu 

görüntülerinin algısal görüntü kalitesinin SRGAN ve ESRGAN yöntemleri kullanılarak 

iyileştirilebileceğini göstermektedir. 

Anahtar Kelimeler: Uzaktan Algılama, Derin Öğrenme, Süper-çözünürlük, Uydu 

Görüntüsü, Çekişmeli Üretici Ağlar (ÇÜA) 
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1. INTRODUCTION 

 

With the growing use of satellite imagery in a variety of applications, research on the concept 

of spatial resolution, which is a critical factor in determining the image's quality, has 

increased significantly. While the spatial resolution provided by a satellite optical sensor is 

typically expressed as a nominal value representing the pixel's footprint, the actual resolution 

may vary due to atmospheric and imaging conditions, the satellite's off-nadir angle, and 

various image artefacts caused by the operation or the optics. While it is possible to improve 

the optical components of a sensor in order to obtain images with high resolution (HR), this 

method is quite expensive. As a result, software solutions have been sought to minimize 

costs. Numerous super-resolution algorithms have been developed in the literature to improve 

spatial resolution. The primary objective of super-resolution (SR) algorithms is to generate 

high-resolution (HR) images from one or more low-resolution (LR) images (from the original 

collection). Image enhancement can be accomplished through the use of various SR 

approaches in a variety of application fields, including satellite and aerial image processing 

[1, 2, 3, 4], medical image processing [5, 6], facial image enhancement [6, 7], fingerprint 

image enhancement [7], text image enhancement [8, 9], compressed images and video 

enhancement [8, 9], and sign and number plate reading [10]. This chapter introduces the 

thesis's subject matter, i.e. improving spatial resolution using state-of-the-art deep learning 

(DL) methods, as well as the study's objectives. Additionally, the thesis outline is included, as 

are brief descriptions of the chapters. 

 

1.1. Problem Statement 

Satellite images have been extensively used in a wide variety of application fields in parallel 

with the rapid development of space technologies. Their capacity for use has been facilitated 

by the current data flow across the globe and relatively easy access to data. However, images 

with very high resolution (VHR) are quite expensive. While both medium resolution (MR) 

and low resolution (LR) images are generally available for free, the required level of detail 

may not be achieved in the majority of applications using MR and LR images. As a result, it 

was determined that higher resolution performance could be achieved at a lower cost by 

developing algorithmic solutions and utilizing novel approaches known as SR to increase 

spatial resolution without modifying the sensor structure. The SR approaches have the 

potential to significantly increase the use of LR satellite images in a variety of applications.  
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1.2. Approaches on Spatial Resolution Improvement 

The conventional method for increasing the spatial resolution of optical satellite images is 

pan-sharpening, which produces HR color images from the sensor's panchromatic and 

multispectral (MS) images. Principal Component Analysis (PCA) [11], Intensity Hue 

Saturation (IHS) [12], and Wavelet transform [13] are frequently used fusion techniques for 

this purpose. There are some limitations to geometric integration [14], including color 

distortions, the lack of a fully automated method that is consistent across datasets, and the 

operator's experience with the fusion technique. 

 

SR aims to increase the resolution of images by revealing details that have been lost due to 

poor optics, focus issues, blurring, and noise. SR methods are classified into two broad 

categories: frequency domain and spatial domain approaches [15]. While frequency domain 

approaches, such as those described in [16, 17, 18] are computationally efficient, they are 

insufficiently effective at modeling complex problems. Almost all subsequent research on the 

SR has been conducted in the spatial domain, despite the high computational cost. In the 

spatial domain, SR approaches are classified into two categories: single image SR (SISR) 

approaches and multi-image SR (MISR) approaches [19, 20]. SISR can make assumptions 

about the HR image based on a single input image, whereas MISR displays hidden HR 

details. MISR requires multiple LR images as input for the generation of HR images; despite 

the fact that only one LR image is typically available. As a result, the use of SISR methods 

has grown in popularity. In recent years, there has been a surge of interest in methods based 

on convolutional neural networks (CNNs) and deep learning (DL). Particularly, super-

resolution studies based on Generative Adversarial Networks (GANs), such as [21, 22, 23, 

24], have become more favorable than traditional pan-sharpening methods. Because GAN-

based approaches have the highest accuracy and visual performance, the Super-Resolution 

Generative Adversarial Networks (SRGAN) and the Enhanced Super-Resolution Generative 

Adversarial Network (ESRGAN) were preferred to enhance the image spatial resolution in 

this thesis. 

 

Maxar's HD Technology is a commercial example of how to improve the quality of satellite 

images. While the ground sampling distance (GSD) of the imagery remains unchanged, this 

technique improves the clarity of the information captured in each pixel by increasing the 

number of pixels in the image. The 15 cm HD and 30 cm HD products are promoted by 

reprocessing existing native resolution images of 30 cm and 40–60 cm, respectively [25]. 
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European Space Imaging makes use of this technology (EUSI). Additionally, two new 

products, 15 cm HD and 30 cm HD, were added to the GeoEye-1, QuickBird-2, and 

WorldView (1–4) collections through an agreement between EUSI and ESA (European 

Space Agency) [26]. 

 

1.3. Study Goals  

The research on the potential of deep learning approaches and CNNs for image enhancement 

is relatively scarce. The primary goals of this thesis were (i) to determine the efficacy of 

SRGAN and ESRGAN methods for SR enhancement of Sentinel-2 and Göktürk-2 images 

trained with HR images obtained from Google Earth, (ii) and to assess the potential of pre-

trained DL models that were used to incorporate data from multiple sensors and time periods. 

Another notable objective was to enhance the spatial quality of LR satellite images at a lower 

cost without requiring hardware upgrades, and to lay the groundwork for increasing the 

performance of a variety of image processing applications such as object recognition, object 

extraction, pattern recognition, and image classification. 

 

1.4. Thesis Structure  

The thesis is divided into six chapters. The current Chapter provides an overview of super 

resolution, the thesis's objectives, and organization. Chapter 2 provides background 

information on CNN, GAN, and SR methods, as well as prominent CNN-based image SR 

studies. Chapter 3 provides an overview of the study area and the input dataset. Additionally, 

the pre-processing of the dataset is discussed. Chapter 4 describes in detail the methodologies 

employed in the study, including the data processing methods, the SR algorithm, the accuracy 

assessment, and the validation of results. Chapter 5 presents the experimental results for the 

models. Each method is briefly evaluated for its advantages and disadvantages. Chapter 6 

concludes the thesis and discusses possible future works. 
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2. BACKGROUND 

 

The purpose of SR is to generate an HR image from one or more LR images. It is critical to 

reveal details in the LR image and to recover or estimate missing information in the images in 

order to improve the accuracy obtained for various image processing studies such as feature 

extraction, object tracking, target detection, and image classification, among others. 

 

Numerous different factors are taken into account when classifying SR algorithms. According 

to [15], SR algorithms can be classified primarily according to their processing domain, 

particularly regarding spatial and frequency domains. In the frequency domain, the shifts 

property of Fourier Transform-based, Discrete Cosine Transform (DCT-based), and wavelet 

transform-based SR methods have been proposed. Although the first algorithms were 

developed in the frequency domain, a large number of SR algorithms have been highlighted 

in the spatial domain, and can be classified as SISR or MISR methods based on the number 

of LR images used. 

 

This chapter discusses the fundamentals of the DL methods and explains the different SR 

methods and applications available in the literature. The following four subsections provide a 

general overview of CNN (Section 2.1), GAN (Section 2.2), and other SR methods (Section 

2.3). In the form of a literature review, Section 2.4 summarizes the application of deep 

learning (DL) and machine learning (ML) methods for radiometric enhancement of satellite 

optical images. 

 

2.1. Convolutional Neural Networks (CNNs) 

Given that the human brain is the best known problem solver and event interpreter, it was 

anticipated that a computer algorithm performing these operations would mimic the human 

brain. In this context, Frank Rosenblatt pioneered the development of a perceptron algorithm 

that mimics biological neurons [27]. The perceptron algorithm is depicted in Figure 2.1. 

 



5 
 

 

Figure 2.1 Perceptron Algorithm [28]. 

 

The first developed example was a primitive illustration of such techniques. It is composed of 

a single neuron and an activation function that activates the neuron based on a simple 

threshold value. Subsequent research has concentrated on the Multi-Layer Perceptron (MLP) 

concept [29], as illustrated in Figure 2.2. The studies have been accelerated by the 

backprogation algorithm [30], which is a widely used algorithm for training neural networks. 

 

 

Figure 2.2 Multi-Layer Perceptron schema [31]. 

 

The MLP structure is not well suited to problems involving image processing. Images contain 

a large number of features, which results in a redundancy in the number of parameters as the 

image progresses through the MLP layers. Additionally, this issue is worsened by the fact 

that MLP is composed of fully connected layers. Despite these drawbacks, research in this 

area has continued, as MLP trained with backpropagation is a gradient-based learning method 

that has shown significant potential. The work that truly boosted the field forward occurred in 

1998 [32]. CNN was conceptualized as a result of this study. Figure 2.3 illustrates a 

fundamental CNN architecture. 
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Figure 2.3 Basic CNN architecture [33]. 

 

CNNs are composed of repeated neuron blocks that span space. A given image is subjected to 

repeated application of two-dimensional (2D) convolution kernels. These locally connected 

kernels are applied to various regions of the image and share their weights. Sharing weights 

has a number of significant advantages. They make the calculation process more feasible by 

reducing the number of parameters. Rather than being completely connected, the layers are 

sparsely or partially connected. Not every node in the model must be connected to every 

other node. 

 

Convolution, activation, pooling, and fully connected layers are all components of CNN 

architecture (Figure 2.4). On each layer, weights and bias parameters are trained. 

Convolutional layers operate similarly to conventional convolution. Within the convolutional 

layer, there are filters with trainable parameters. The filters are shifted across the image's 

width and height. At each spatial location in this layer, the dot product of the input image and 

the learned weights of the associated kernel are calculated. The activation function is applied 

in the subsequent layer, i.e. the activation layer. This layer selects an appropriate activation 

function based on the type of problem. This layer's purpose is to introduce nonlinearity into 

the network. The pooling layer is used to compress the image while maintaining the same 

number of input features. It is critical for minimizing computational complexity. 

Additionally, there are numerous pooling types, including maximum pooling, minimum 

pooling, and average pooling, with maximum pooling being the most common. The max 

pooling operation passes the highest activation map to the subsequent layers. Finally, the 

fully connected layer gets its name from the fact that each node is connected to every other 

node. The data obtained as outputs from the preceding layers represent the input's high-level 

features. Nonlinear combinations of these properties are learned by adding fully connected 

layers to the end of these layers. 
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Figure 2.4 Convolution and pooling operations, adapted from [34]. 

 

Many other CNN architectures have been studied as a result of their increased use and 

application in a wide variety of fields. As examples, LeNet [32], AlexNet [35], and Inception 

[36] style architectures can be given, each of which has distinct advantages. The Resnet [37] 

architecture was chosen for the application portion of this study, and therefore is discussed in 

greater detail in the following section. 

 

2.1.1. Residual Networks (ResNet) 

One of the most critical findings from studies in the field of deep learning [32, 35, 36] is that 

network depth has a significant effect on performance. As the number of layers increases, the 

capacity of the network increases, and theoretically, performance improves. However, as the 

network's depth increases, certain issues may arise. The vanishing gradient problem is one of 

the most serious of these issues. The issue is caused by neurons that do not have a high level 

of activation during the backpropagation algorithm's use [38]. With increasing layer count, 

the effect of the backpropagation algorithm is less reflected in the deeper layers, and the 

neurons in these layers are unable to contribute to the network's training. ResNet [37], which 

was developed in 2015 by the Microsoft Research Team, offers an effective solution to this 

problem. A residual block is depicted in Figure 2.5. 

 

The classical method defines the segment between input and output as a non-linear H (x) 

function. The same path is mapped as another non-linear function F (x) = H (x) - x in the 

ResNet architecture. In addition, the input value is added to the output of the F (x) function. 

The purpose of this process is to append the identity value to the end of the layer and to 

reinforce the values passed down from previous layers. 



8 
 

 

Figure 2.5 Residual block [37]. 

 

2.1.2. Activation Function 

The activation function of a node specifies the output that the node will produce in response 

to a set of inputs. However, if the activation functions are linear, the result will be linear 

regardless of the total number of functions, as linear functions combine to form other linear 

functions. As a result, activation functions are frequently chosen non-linearly to account for 

the non-linear properties of the real world. 

 

Numerous activation functions have been defined in the literature, including ReLU [39], 

Softmax, SELU [40], Leaky ReLU [41], tanh, and binary step. Each of these functions is used 

for a different purpose and has a unique set of advantages and disadvantages. The widely 

used rectified linear unit (ReLU) function [39] has the following definition: 

 

𝑔(𝑥)  =  𝑚𝑎𝑥 {0, 𝑥} 

 

where 𝑥 is input of neuron. Figure 2.6 shows the graph of this function. 

 

 

Figure 2.6 ReLU graph [42]. 

 

(2.1) 
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One of the reasons ReLU is so widely used is that it is extremely easy to optimize. 

Additionally, it is quite fast and simplifies the calculation. It outperforms earlier methods 

such as sigmoid and hyperbolic-tangent functions [39]. One of the primary reasons for this is 

that it decreases the probability of the gradient vanishing problem. When x>0, the gradient in 

ReLU has a constant value. On the other hand, sigmoid gradients have extremely small 

values. The following is the definition of the sigmoid function: 

 

σ(𝑥) =
1

1+𝑒−𝑥
  

 

Additionally, the ReLU function has some drawbacks. With the ReLU activation function, 

the neurons generate output zero and have a zero derivative for negative inputs. This means 

that if the inputs are negative, this neuron will make no contribution to the network's training. 

This is referred to as the 'dying ReLU' problem.  

 

Leaky ReLU [41] was developed to maximize the benefits of ReLU while minimizing some 

of its drawbacks. The Leaky ReLU is very similar to the ReLU, except for a small leak in the 

negative area. Leaky ReLU, which accepts values other than zero in the negative region, 

attempts to solve the dying ReLU problem (Figure 2.7). Leaky ReLU multiplies the input 

value by a relatively small constant number in negative regions. The Leaky ReLU function is 

denoted by the following: 

 

𝑓(𝑥) = {
𝑎𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

  

 

A graph similar to that shown in Figure 2.7 is obtained by calling this function. 

 

 

Figure 2.7 Leaky ReLU graph [43]. 

(2.2) 

(2.3) 
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2.1.3. Batch Normalization 

Batch normalization [44] is being used to improve the stability and speed of artificial neural 

networks (ANNs). Its primary function is to normalize the output of the preceding activation 

layer prior to proceeding to the next stage. This reduces the internal covariate shift value [44]. 

Each layer of a neural network has weights that are influenced by the randomness of the input 

data. This randomness in the distribution of input data has an effect on the inner layer 

training. This phenomenon is referred to as internal covariate shift.  

 

2.2. Generative Adversarial Networks 

GANs (Generative Adversarial Networks) [45] are a type of machine learning that consists of 

two networks that compete against one another (generator and discriminator). The GAN 

architecture is depicted in Figure 2.8. Generator, one of the networks that comprise this 

structure, attempts to generate sample data that closely resembles the real data. The objective 

here is to deceive the discriminator network (DN), such that the DN cannot tell which input is 

real and which is a fake. The DN model, on the other hand, attempts to determine whether the 

data produced by the generator network (GN) is real or not. 

 

 

 

Figure 2.8 Generative Adversarial Network (GAN) structure. 

 

During the training of this network, the GN attempts to fool the DN by producing the most 

realistic images possible, while the DN attempts to accurately distinguish real data from 

produced data. As a result, the generator and discriminator are continuously in competition. 

One of the main advantages of this approach is that the GN is trained not to produce results 

closest to a specific data, but to fool the DN. The parameters of GAN are listed in Table 2.1. 
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Table 2.1 Inputs, parameters and cost functions of GAN Framework [46]. 

Name Inputs Parameters Cost Function 

Generator(G) 𝑧 θ(𝐺)
 J(𝐺)(θ

(𝐺),θ
(𝐷)) 

Discriminator(D) 𝑥, 𝐺(𝑧) θ(𝐷)
 J(𝐷)(θ

(𝐺),θ
(𝐷)) 

 

The GN takes as input the noise z and attempts to minimize its cost function 

J(𝐺)(θ
(𝐺),θ

(𝐷)) by using   θ(𝐺)
 parameters.  θ(𝐺)

 is the parameter set used by the GNs to 

generate the most realistic data possible. Additionally, minimizing the cost function is critical 

for optimizing the results. 

 

The discriminator network accepts as inputs the real data x and the output of the GN G(z), 

and attempts to minimize its cost function J(𝐷)(θ
(𝐺),θ

(𝐷)) by employing θ(𝐷)
 parameters 

from its own network. It is critical to minimize the cost function when determining whether 

the data is fake or real. Given that the generator and discriminator are designed as neural 

networks, θ(𝐺)
 and θ

(𝐷)
 denote the weights and other parameters of the generator and 

discriminator, respectively. The cost of training is calculated as follows during the training 

process:  

 

𝑚𝑖𝑛
θ(𝐺)𝑚𝑎𝑥θ(𝐷)𝑉 (𝐺, 𝐷) = 𝐸𝑥~ 𝑝data(x)[log𝐷(𝑥)] + 𝐸𝑧~ 𝑝data(z))[(1 −  𝐷(𝐺(𝑧)))]  

 

where the 𝐸𝑥~ 𝑝data(x) and 𝐸𝑧~ 𝑝data(z) parameters denote the expectation based on the real 

data distribution and the generator's output data distribution, respectively. Additionally, 

𝐷(𝑥) represents the probability of input is coming from real data, whereas 𝐷(𝐺(𝑧)) 

symbolizes the probability of input is coming from generator’s output. Indeed, because the 

generator and DNs are constantly in competition, minimizing GN error implies maximizing 

the probability of DN error [47]. 

 

GAN has a wide range of applications. To name a few, super-resolution [48, 49], art and 

fashion [50], sciences [51], and robotics [52]. The Methodology Section discusses the 

application of GAN in the field of SR in greater detail. 

 

(2.4) 
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2.3. Super-Resolution Methods 

This section discusses the well-known MISR and SISR methods. The MISR employs 

multiple images of the same scene in various configurations (translation, rotation, scale, and 

so on) [15]. Traditional SR techniques frequently employ multiple bands of an acquisition to 

improve their spatial resolution. On the contrary, SISR algorithms use a single image to 

increase spatial resolution. While Earth Observation (EO) missions can acquire images of the 

same scene on a regular basis, the scenes change over time due to atmospheric conditions 

(e.g. shadow, clouds), Earth surface changes (e.g. snow, moving objects), and land use/land 

cover (LU/LC) changes for a variety of reasons. Interpolation methods, such as bilinear or 

bicubic interpolation, are fundamental attempts to mitigate the SISR problem. The more 

recent machine learning algorithms, particularly the CNN, can learn from large datasets in 

end-to-end frameworks with optimized parameters [19]. 

 

2.3.1. Multi-Image Super-Resolution 

MISR's objective is to obtain high-resolution images of a scene using multiple LR data. The 

final image is created by combining details from multiple LR images using image fusion. 

Many traditional SR methods are based on image reconstruction. Tsai and Huang [1] 

proposed the SR reconstruction problem for the first time in 1984. Numerous SR 

reconstruction techniques have been developed to overcome the problem's computational 

complexity and ill-posedness [53]. Due to the offsets and noise inherent in the LR images as 

a result of the sensor's optical characterization, it is necessary to align the inputs and control 

noise in order to capture details. The SR problem is an inverse problem, and the observation 

model is a forward model for solving it. The observation model depicted in Figure 2.9 

establishes the relationship between HR and LR. The model's general form in MISR 

problems is as follows [54]: 

 

𝑦𝑘 = 𝐷𝐵𝑘𝑀𝑘𝑥 + 𝑛𝑘 (5)     for 𝑘=1 ≤ 𝑘 ≤ 𝑝 

 

where 𝑦𝑘 is an observed LR image, 𝐷 represents a downsampling operator, 𝐵𝑘 models blur 

effect, 𝑀𝑘 encodes the motion information or represent geometric warping operation 

capturing image motion, 𝑛𝑘 is a noise term, and 𝑥 is the ideal HR image.  

 

(2.5) 
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In other words, due to sensor and optical blur, HR images appear to be LR images. SR is the 

inverse of the observation model described previously. Multi-frame SR is performed on LR 

images with known or predicted sub-pixel shifts. 

 

 

Figure 2.9 Observation model that relates LR images to HR images [54]. 

 

Non-uniform interpolation, iterative back projection, and projection onto convex sets are all 

well-known methods for reconstructing multi-frame SR images. These methods are discussed 

in the following subsections. Apart from these approaches, the literature also contains 

Bayesian methods (for example, maximum likelihood and maximum a posteriori estimations) 

[55], direct methods [15], optimal and adaptive filtering methods [56, 57], and so on. 

 

2.3.1.1. Non-uniform Interpolation 

The most intuitive SR method is non-uniform interpolation, which is based on motion-

compensated frames. As illustrated in Figure 2.10, this approach consists of three stages: 

registration (motion estimation), non-uniform interpolation (to improve resolution), and 

restoration (deburring and denoising). 

 

 

Figure 2.10  Super resolution stages [54]. 
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The HR image is acquired first with the predicted relative motion information, and then 

reconstructed directly or iteratively to produce uniformly spaced sampling points [58, 59]. 

Finally, a deconvolution method based on the observation model is used to restore the image 

by removing blurring and noise. While non-uniform interpolation is a potentially useful 

technique, it is susceptible to noise and misregistration [60]. 

 

2.3.1.2. Iterative Back Projection 

While MISR methods generally perform less well than SISR methods, iterative methods 

enable them to perform better by utilizing prior information from previous results through the 

use of simple but powerful techniques. One of them is the iterative back projection method, 

which is effective for solving the SR problem [61]. It is possible for it to use the averaging of 

the registered images as the a priori image. The primary objective of this method is to 

compare the simulated and observed LR images iteratively and minimize the error between 

them in order to generate more accurate simulations, as the HR image is estimated by back 

projecting this error. To terminate the iteration, the ending rules, such as a threshold value or 

a predefined number of iterations, must be met [60]. The steps of the iterative back projection 

algorithm are depicted in Figure 2.11. 

 

Due to the ill-posed nature of the SR problem, the solution is not unique. At this point, the a 

priori image is critical, and thus different methods from the mean operation can be used to 

determine the a priori constraint [61]. HR image estimation is explained as follows [54]: 

 

𝑥𝑛+1[𝑛1, 𝑛2] = 𝑥
𝑛[𝑛1, 𝑛2] +∑(𝑦𝑘[𝑚1,𝑚2]) − 𝑦𝑘

𝑛

𝑁

𝑘=1

[𝑚1, 𝑚2]) × ℎ
𝐵𝑃[𝑚1, 𝑚2; 𝑛1, 𝑛2] 

 

where 𝑛 is the iteration number, 𝑥 is the simulated HR image, 𝑁 is the number of images, 𝑦𝑘 

is the observed LR images, 𝑦𝑘
𝑛 is the final simulation of LR images after n iterations, 𝑛1, 𝑛2 

are the HR space, and 𝑚1, 𝑚2 is the LR space. ℎ𝐵𝑃 is the projection kernel and the selection 

of ℎ𝐵𝑃 may affect to the property of the solution [62]. Thus, ℎ𝐵𝑃 can be used as an additional 

constraint, representing the desired property of the solution. 

 

(2.6) 
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Figure 2.11 The process of iterative back projection algorithm [60]. 

 

2.3.1.3. Projection onto Convex Sets 

The method of projection onto convex sets is an alternative iterative approach that relies on 

prior knowledge of the HR image as constraints [54]. This method is intended to solve 

restoration and interpolation problems under a set of constraints. The following are some 

examples of a priori knowledge that have been used in the literature [15]: 

 

• Additional constraints based on prior knowledge of parameters such as amplitude, 

energy, reference image, and bounded support [63]. 

• Constraint sets for data consistency [64]. 

• Band-to-band and luminance total variation, inter-channel cross correlation sets, 

boundedness and non-negativity constraint set to improve color image [65]. 
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Each constraint is a convex set for the whole solution space to minimize error. The 

intersection of these convex sets is the solution of SR. Stark and Oskoui conducted the first 

study on this subject [63], and Tekalp et al. [66] proposed a more robust formulation. The 

intersection is found as follows [51]: 

 

𝑥𝑛+1 = 𝑃𝑚𝑃𝑚−1…𝑃2𝑃1𝑥
𝑛 

 

where 𝑥0 is an arbitrary starting point, and 𝑃𝑖 is the projection operator which projects an 

arbitrary signal 𝑥 onto the closed, convex sets, 𝐶𝑖(𝑖=1,2,…,𝑚). A data consistency constraint 

set is represented for each pixel within the LR images 𝑦𝑘[𝑚1, 𝑚2] [63]: 

 

𝐶𝐷
𝑘[𝑚1,𝑚1] = {𝑥[𝑛1, 𝑛2]: |𝑟

(𝑥)[𝑚1, 𝑚2]|≤ 𝛿𝑘[𝑚1, 𝑚2]} 

 

where 

𝑟(𝑥)[𝑚1, 𝑚2] = 𝑦𝑘[𝑚1, 𝑚2] − ∑ 𝑥[𝑛1, 𝑛2]𝑊𝑘[𝑚1, 𝑚2; 𝑛1, 𝑛2]𝑛1,𝑛2   

 

and 𝛿𝑘[𝑚1, 𝑚2] is a bound reflecting the statistical confidence.  

 

The projection of an arbitrary 𝑥[𝑛1, 𝑛2] onto 𝐶𝐷
𝑘[𝑚1, 𝑚1] can be defined as [63]: 

  

𝑥(𝑛+1)[𝑛1, 𝑛2]

= 𝑥(𝑛)[𝑛1, 𝑛2]

+

{
 
 

 
 
(𝑟(𝑥)[𝑚1, 𝑚2] − 𝛿𝑘[𝑚1, 𝑚2]).𝑊𝑘[𝑚1,𝑚2; 𝑛1, 𝑛2]

∑ 𝑊𝑘
2

𝑝,𝑞 [𝑚1,𝑚2, 𝑝, 𝑞]
, 𝑟(𝑥)[𝑚1, 𝑚2] > 𝛿𝑘[𝑚1, 𝑚2]

0, |𝑟(𝑥)[𝑚1, 𝑚1]| ≤ 𝛿𝑘[𝑚1, 𝑚2]

(𝑟(𝑥)[𝑚1, 𝑚2] + 𝛿𝑘[𝑚1, 𝑚2]).𝑊𝑘[𝑚1,𝑚2; 𝑛1, 𝑛2]

∑ 𝑊𝑘
2

𝑝,𝑞 [𝑚1,𝑚2, 𝑝, 𝑞]
, 𝑟(𝑥)[𝑚1, 𝑚2] < 𝛿𝑘[𝑚1, 𝑚2] 

 

 

In contrast to the iterative back projection approach, this method makes it simple to apply a 

priori constraints. However, the solution is not unique, the computational cost is high, and the 

method converges slowly or does not converge at all times [60]. 

 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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2.3.2. Single-Image Super-Resolution 

SISR techniques take a single LR image as input and output a recovered version of it as HR 

image. In comparison to MISR, alignment is not required for multiple images because no 

other images are used as input. Additionally, the accuracy of MISR algorithms is dependent 

on the estimation of motions between the LR images, but real-world objects exhibit complex 

motions. As a result, SISR algorithms can perform better in these situations [67]. Given that 

SISR is the thesis's primary method, this section discusses several SISR approaches. 

Interpolation techniques such as nearest-neighbor, bilinear, and bicubic interpolation are 

among the first methods in SISR. These are the traditional methods for obtaining SR images, 

and significant pre- and post-processing and optimization may be necessary [68]. Recently, 

the high accuracy of CNN has increased its appeal. The following sections provide an 

overview of several interpolation techniques. Additionally, significant studies utilizing deep 

learning methods in the computer vision community were mentioned. 

 

2.3.2.1. Interpolation  

Interpolation, when used in conjunction with upsampling, creates new pixel points from the 

original pixel or pixels. The disadvantage of this technique is that aliasing artifacts may 

appear along the edges [69]. In image interpolation, various techniques have been developed. 

The following subheadings describe three frequently used methods. 

 

2.3.2.1.1. Nearest-Neighbor Interpolation 

The pixel value closest to the pixel in the input image is used as the output pixel in this 

method. The nearest-neighbor interpolation kernel is used to estimate the values of 

neighboring pixels are specified as [70]: 

 

𝑦(𝑥) = {
0
1
     
|𝑥| > 1
|𝑥| < 1

  

 

The frequency response of the linear interpolation kernel is: 

 

𝑦(𝜔) = sinc(𝜔)/2 

 

It is the simplest method among traditional approaches. However, the result of applying the 

kernel has a number of undesirable effects, including blurring and aliasing [71]. 

(2.12) 

(2.11) 
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2.3.2.1.2. Bilinear Interpolation 

Bilinear interpolation is a frequently used example of an interpolation-based technique. It 

enlarges the kernel by inferring the unknown pixel values from the nearest four pixel 

neighbors (2 x 2). The resulting image is smoother than that produced by nearest-neighbor 

interpolation. The bilinear interpolation kernel is presented as [70]: 

 

𝑓(𝑥) = {
0

1 − |𝑥|
     
|𝑥| > 1
|𝑥| < 1

  

 

where 𝑥 is distance between two points in the input image to interpolate. 

 

2.3.2.1.3. Bicubic Interpolation 

In comparison to bilinear and nearest-neighborhood interpolation, bicubic interpolation 

produces a higher-quality image. The cubic convolution algorithm uses the value obtained by 

averaging the sixteen pixels values closest to a pixel point. 

 

The bicubic convolution interpolation kernel is defined as [70]: 

 

ℎ(𝑥) = {
(𝛼 + 2)|𝑥|3 − (𝛼 + 3)|𝑥|2 + 1     

𝛼|𝑥|3 − 5𝛼|𝑥|2 + 8𝛼|𝑥| − 4𝛼
0

          |𝑥| ≤ 1
  1 < |𝑥| < 2
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 

where 𝛼 is between -0.5 and -0.75 in most cases. 

 

2.3.2.2. Brief Survey on CNN-based Image SR 

Recent advances in deep learning have assisted in the resolving of a variety of computer 

vision problems. In remote sensing, DL methods are used for a variety of tasks, including 

image preprocessing, segmentation, classification, target recognition, and feature extraction 

[72]. Two significant models utilizing the CNN for SR are discussed in this section. 

 

Dong et al. [73] introduced the SR CNN (SRCNN) model, which used a CNN to enhance the 

LR image. SRCNN's objective is to establish a network for end-to-end mapping between LR 

and HR images while optimizing all layers simultaneously. Patch extraction and 

(2.13) 

(2.14) 
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representation, non-linear mapping, and reconstruction are the three operational layers in 

SRCNN [73]. Each operation in the SRCNN structure is illustrated in Figure 2.12. 

 

 

Figure 2.12 The structure of SRCNN [73]. 

 

Patch extraction and representation, denoted as 𝐹1, is the first step in this network and its 

purpose is to construct image patches via convolving them. The first layer operates as follows 

[73]: 

 

𝐹1(𝑌) = max (0,𝑊1 ∗ 𝑌 + 𝐵1)  

 

where 𝑌, 𝑊1 and 𝐵1 represent the LR input image, filters and biases, respectively. The size of 

𝑊1 is 𝑐 × 𝑓1 × 𝑓1 × 𝑛1. 𝑐 is the number of bands in the input image, 𝑓1 is the filter size and 𝑛1 

is the number of filters. 

 

In the second step, a high-dimensional vector is mapped onto another high-dimensional 

vector using non-linear mapping. Each mapped vector corresponds to a single HR patch [73] 

as follows: 

 

𝐹2(𝑌) = max (0,𝑊2 ∗ 𝐹1𝑌 + 𝐵2) 

 

where 𝑊2 represents filter with 𝑛1 × 1 × 1 × 𝑛2 size. Each 𝑛2-dimensional output is 

indicated a HR patch to be used for reconstruction. 𝐵2 is 𝑛2-dimensional vector. The final HR 

image is formed during the reconstruction operation by averaging overlapping HR patches. 

The equation is presented as [73]: 

 

(2.15) 

(2.16) 
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𝐹(𝑌) = 𝑊3 ∗ 𝐹2𝑌 + 𝐵3 

 

where the size of 𝑊3 is 𝑛2 × 𝑓3 × 𝑓3 × 𝑐 and 𝐵3 is 𝑛3-dimensional vector. 

 

Kim et al. [74] proposed the Very Deep Super Resolution (VDSR) model with the goal of 

developing SRCNN. It employs twenty convolutional layers to increase the network's depth 

and accuracy. The image size is kept constant by adding zero padding to each convolutional 

layer. The optimization of a very deep network is accomplished through the use of residual 

learning and high learning rates. The network structure of VDSR is depicted in Figure 2.13. 

 

 

Figure 2.13 The network structure of VDSR [74]. 

 

2.4. Application of DL and ML Algorithms for SR of Satellite Optical Images 

The part presents examples of recent SR methods based on deep learning and machine 

learning algorithms that have been published in the literature. Zhang et al. [21] proposed a 

GAN-based SR (SR2GAN) approach for improving the resolution of Sentinel-2 (S2) 20 m 

and 60 m bands by learning from S2 10 m bands. A GN is used in this approach to combine 

upsampled LR bands and higher resolution bands and to transfer information from the higher 

resolution bands to the LR bands. Following the production of the generator's SR band, DN 

differentiates between the SR band and the ground truth. The primary objective was to 

generate more realistic SR bands. This technique was compared to bicubic interpolation, 

area-to-point regression kriging (ATPRK), SE for Multispectral Multiresolution Estimation 

(SuperReME), Superres, and Deep Sentinel-2 (DSen2). As a result, it was determined that 

SR2GAN outperforms the other methods. 

(2.17) 
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Ma et al. [75] proposed a dense residual network (DRGAN) to improve performance. They 

used a modified Wasserstein GAN with a gradient penalty to increase training speed and 

stability. For training, testing, and validation, a dataset of remote sensing images containing 

airplanes was used. Additionally, authors evaluated the model's robustness using additional 

types of remote sensing datasets and several natural images. This method was compared to 

the Bicubic, the SRCNN, the Fast SR CNN (FSRCNN), the Efficient Sub-Pixel CNN 

(ESPCN), the VDSR, the Deep Recursive Residual Network (DRRN), and the SRGAN. The 

reconstructed HR data were evaluated qualitatively using the Peak Signal-to-Noise Ratio 

(PSNR), the Structural Similarity Index Metric (SSIM), the Normalized Root Mean Square 

Error (NRMSE), and ERGAS. Visual inspection of the results revealed that SRGAN and 

DRGAN were generally sharper. 

 

Because EO satellites take multiple images of the same scene on a regular basis, the images 

have a high degree of similarity; however, factors such as weather conditions and seasonal 

changes cause the images to differ. SISR is a technique for recovering lost details from a 

single input image by combining multiple frames of a scene. Different geometric 

interpolation techniques (e.g. bilinear or bicubic interpolation) have been used to efficiently 

mitigate the SISR problem. However, deep learning techniques, particularly CNN, have 

recently address the shortcomings of interpolation methods by performing end-to-end 

learning on a large training dataset and obtaining optimal parameters. Liebel et al. [22] 

developed a SISR architecture based on CNNs using a dataset of S2 images. They aim to 

improve the resolution of the lower resolution S2 spectral bands by replacing them with 

higher resolution S2 spectral bands, as described in [21]. The results are quantified using 

PSNR and SSIM. 

 

Due to the fact that HR images were used to train CNN, this is not considered as data fusion. 

Pouliot et al. [76] used S2 images to train a shallow and deep CNN to enhance Landsat 

images. Three study areas were used to develop the models; each area has spatial and 

temporal variations and represents a different ecosystem in Canada. The predicted image was 

compared pixel by pixel to the original Sentinel-2 image using the Mean Square Error (MSE) 

loss function and the Adam optimization method. A few quantitative analyses have been 

conducted such as SSIM, Mean Absolute Error (MAE) and Standard Deviation (STD). In 

general, the deep CNN yielded superior results. However, the model's high computational 

complexity may result in overestimation. Additionally, extra memory may be required. 
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Collins et al. [77] used another CNN-based image SR method. Data from the Advanced Wide 

Field Sensor (AWiFS) and the Linear Image Self Scanner (LISS-III) on the Indian Space 

Research Organisation’s (ISRO) Resourcesat-1 and 2 missions were used to enhance low 

resolution imagery. Both of them collect data with the same spectral bands (Green, Red, NIR, 

short-wave infra-red / SWIR) but at different spatial resolutions. As pre-processing for more 

effective learning, a portion of the dataset was divided into small patches. When the network 

was learned, the Exponential Linear Unit (ELU) was chosen as the activation function 

because it is always differentiable. Additionally, various interpolation techniques were used, 

including nearest neighbor, bilinear, and cubic. The PSNR and SSIM values provided by 

CNN were compared to those obtained through other methods in the study. 

 

Although ESRGAN [49] achieved good results, it encountered difficulties when 

reconstructing high-frequency edges. As a result, it did not perform well in studies involving 

object detection. The EESRGAN [78] study was conducted in response to the EEGAN [79] 

and ESRGAN [49] studies. Although it performed well in studies of object detection in real-

world images, it did not perform well in studies of object detection in aerial and satellite 

images. Satellite images have been used to detect vehicles [80], buildings [81], and storage 

tanks [82]. However, these studies were limited to specific objects and used a fixed 

resolution. The GAN structure was slightly modified in this study with the goal of preserving 

high-frequency edge details in the reconstructed images and thus achieving a more successful 

object detection process. The structure of the GAN was altered by incorporating an edge 

enhancement network into the GN and a detector for the DN. The Landsat (30 m) and S2 (10 

m) satellites, with their large ground sampling distances (GSD), are not well suited for object 

detection. Very high resolution images are required for successful object detection. One of 

the datasets was created by editing 30 cm and 1.2 m resolution satellite images (Bing Maps) 

of Alberta Province, Canada. The main motivation for this work was to apply SR to HR 

satellite images in order to increase their resolution and success rate for object detection. In 

comparison to other methods, they demonstrated promising results in terms of small-object 

detection. 

 

CNN-based approaches may produce smoothing or blurring effects due to MSE optimization. 

However, approaches based on GANs produce more perceptible results. Wang et al. [83] 

demonstrated the use of an ultra-dense GAN (udGAN) to improve SR performance in both 

qualitative and quantitative assessments. The udGAN model is composed of a generative 
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network built on connections and a discriminative network built on CNNs. The available 

datasets consist of a Kaggle Open Source Dataset and Jilin-1 video satellite images. The 

Kaggle Open Source Dataset contains HR aerial images and Jilin-1 video satellite images 

with 1.12 m spatial resolution. The indicators SSIM and PSNR, which are derivatives of 

MSE, were used for evaluation. These two parameters, however, were insufficient for the 

verification [45, 46, 84, 85, 86]. As a result, additional assessment methods, such as the 

Average Gradient (AG) [87] and the Naturalness Image Quality Evaluator (NIQE) [88], were 

used to undertake the evaluations. These indicators can provide accurate information about 

sharpness, contrast, and textural information even when no external reference is available. 

The image clarity is indicated by the large AG and small NIQE values [78]. 
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3. STUDY AREA AND DATASETS 

 

To ensure high performance in deep learning-based models, it is critical to have comparable 

train and test datasets. As a result, a thorough investigation of the dataset was conducted prior 

to the start of the study. The S2 sensor was examined due to the fact that its data are freely 

and easily accessible. Additionally, a collection of Göktürk-2 (GK-2) images were processed. 

Aerial images, high-resolution satellite imagery, and a variety of publicly available datasets 

have all been evaluated for model training. As a result, Google Earth images were chosen as 

the reference data source because they are easily accessible worldwide and also provide a 

large amount of training data. To generate the SR images efficiently, training and testing data 

with similar features were chosen. Google Earth images have been used in numerous studies 

[89, 90, 91, 92, 93, 94] due to their accessibility, affordability, and high resolution. 

 

3.1. The Study Area 

While the images on Google Earth were collected from a variety of countries, the majority 

were chosen from Turkey. While taking these images at various zoom levels, attention was 

paid to the variety of LULC types present, including roads, buildings, vegetation, airports, 

lakes, and sea surface. The images in the dataset are easily comparable due to the fact that 

they are typically cover urban areas. All images contain three bands (Red, Green, Blue). 

When compared to multispectral satellite images, the fact that Google Earth images contain 

only visible bands is a constraint. The images were cropped into a uniform size of 600 x 600 

pixels. Using the same image sizes for training has no effect on the aspect ratio when the 

image is resized. Increasing the size of an image increases computation times and necessitates 

additional memory and high-performance computing systems such as GPUs. The optimal 

image size was chosen in this thesis based on the dataset and deep learning efficiency. Figure 

3.1 illustrates some of the dataset's of Google Earth imagery. 
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Figure 3.1 Image samples provided on Google Earth platform and utilized in the thesis. 

 

Several S2 images containing a variety of buildings and a road network were tested in close 

proximity to urban areas in various locations including Erzincan, Ankara, Indiana and Dubai. 

Figure 3.2 depicts test images taken in Erzincan, Turkey, and Dubai, United Arab Emirates. 

 

  

Figure 3.2 Examples of S2 images in Erzincan (left) and Dubai (right). 

 

3.2. Input Datasets 

S2, GK-2, and Google Earth images were used in the methodology of this thesis. Sentinel-2A 

and Sentinel-2B are two identical satellites operating in the same sun-synchronous orbit at the 

same time. According to the S2 observation scenario, at least every five days, all areas 

covered will be revisited. The constellation was primarily intended to acquire continuous and 

operational MS images for global land and coastal region monitoring [95].The S2 sensor 

captures images with 13 distinct spectral bands at varying spatial resolutions (60, 20 or 10 

meters). Table 3.2 [96] contains descriptions of these spectral bands. Copernicus, a program 
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of the European Commission, provides free access to Sentinel-2 and contributing missions' 

EO data [97]. That platform was used to download Level-1C ortho-images containing top of 

atmosphere reflectance for this thesis. 

 

The GK-2 satellite is Turkey's third (after BilSat and Rasat) ground observation satellite. It 

was built by the TUBITAK UZAY and Turkish Aerospace Industries Inc. Consortium and 

launched successfully on December 18, 2012, from China's Jiquan base. The GK-2 is 

positioned at a 90° inclination in the sun's synchronous orbit at a height of 685 kilometers and 

is capable of taking stereo images with mono nadir and ± 30º incidence angles. The camera 

on board the GK-2 satellite is capable of imaging in panchromatic (2.5 m) and multispectral 

(5 m) bands, as specified in Table 3.1. Level 0 (Raw imagery), Level 1 (Radiometrically 

corrected), Level 1R (Radiometrically corrected and band-to-band registration is complete), 

Level 2 (Radiometrically corrected and rectified imagery), and Level 3 (Orthorectified 

imagery) have been defined for GK-2 imagery [98]. The GK-2 Level 1R images have been 

used in this thesis. 

 

Table 3.1 Radiometric and spatial resolutions of GK-2 [98]. 

Spectral Bands Bandwidths (nm) Spatial Resolution (m) 

Pan 450 – 900 2.5 

Blue 450 – 520 5 

Green 520 – 600 5 

Red 630 – 690 5 

NIR 760 – 900 5 

 

Google Earth's virtual globe platform presents data collected from satellites and aircraft at 

various dates and times [99]. The spatial resolution is known to vary between 15 meters and 

15 centimeters depending on the source data. Additionally, images with varying resolutions 

are displayed in Google Earth based on the zoom level (scale). Google Earth images were 

used in this thesis because it is an open-source platform for providing HR aerial and satellite 

imagery. 

 

To prepare the dataset for analysis, a color image was created by combining the Red (Band-

4), Green (Band-3), and Blue (Band-2) bands from each Sentinel-2 image. Then, as test 

samples, they were tiled from several image parts with a resolution of 600 x 600 pixels. 
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Google Earth images were cropped randomly to maintain the same area size. Approximately 

3000 small patches (600 x 600) were provided, and divided into 10% for testing, 10% for 

validation and the rest (80%) were employed as training data. 

 

Table 3.2  Radiometric and spatial resolution of Sentinel-2 sensors [96]. 
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4. METHODOLOGY 

 

The first section of this chapter discusses the SRGAN and ESRGAN workflows. The 

methods are then described in detail, including their network architectures and learning 

system. Finally, the methods' evaluation criteria and experimental details are described. 

 

4.1. Study Workflows 

The SR problem was investigated in this study using two different DL methods. This section 

explains the layout of experiments conducted using these two methods. Besides that, 

information about the dataset that was used in accordance with both methods is presented. 

 

4.1.1. Data Pre-Processing 

Images obtained through Google Earth were cropped to 600 x 600 size. The images that were 

considered unsuitable for the dataset were removed, leaving the dataset ready for use. 

SRGAN and ESRGAN experiments both used the same dataset. 

 

4.1.2. Super Resolution Generative Adversarial Network (SRGAN) Workflow 

Figure 4.1 illustrates this architecture using a simplified schema. The overall workflow of the 

procedures used in the SRGAN experiments is depicted in Figure 4.2. Section 4.2.1 discusses 

the method in greater detail. The part of the dataset reserved for training is used as input to 

the SRGAN architecture. 

 

As in the original SRGAN [45] study, an input image with a resolution of 600 x 600 is first 

downscaled to 150x150 using a bicubic kernel. The 150 x 150-pixel image is then forwarded 

to the GN. The downscaled image initiates the GN at a resolution of 150x150 and exits at a 

resolution of 600 x 600. DN accepts two parameters. One is the original 600 x 600 image, 

and the other is the GN-generated 600 x 600 SR image. Discriminator attempts to determine 

which of these images are real and which images are fakes. As a result, the model's values are 

updated in accordance with the DN's decision. Indeed, generator and discriminator networks 

are constantly attempting to manipulate and outperform one another. The GAN's objective is 

for these two networks to continuously compete and develop. 
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Figure 4.1 Simplified SRGAN architecture. 

 

Figure 4.2 The overall workflow of SRGAN method. 
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It is critical to maintain a balance between the two networks by constantly monitoring the 

generator and discriminator loss values in terms of the optimal results according to the 

evaluation measures of the trained model. Several experiments with Gaussian noise [100] at 

various standard deviations (STDs) were conducted to achieve this balance while also 

addressing the "artifact" problem, which is a well-known issue with the SRGAN method and 

is discussed in Section 4.2.1. The noise investigations were conducted empirically, utilizing a 

range of STD values. The experiments indicated that 0.5 and 0.75 STDs formed the best 

results in terms of evaluation measures. The artifact problem and the balance of loss values 

between networks were evaluated in experiments using these STD values. To ensure 

comparability, the model without Gaussian noise was trained in the same manner as the 

others. Each of the three models is trained in the same manner as illustrated in Figure 4.2. 

 

Throughout the training period, the model's progress was tracked for validation purposes. The 

model was evaluated using the evaluation measures on these recorded versions (checkpoints). 

This was accomplished by providing each checkpoint of the model with the portion of the 

dataset reserved for validation as input. The images from the validation dataset are used as 

input, and each model checkpoint generates an SR version of these images. The evaluation 

measures are used to assess these SR images generated by each model checkpoint. According 

to the evaluation results, the checkpoint model was chosen as the final model for the tests. 

 

The following sections detail the training and validation processes for each process. 

Similarly, the evaluation measures used to test the trained model are detailed. 

 

4.1.3. Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) 

Workflow 

The ESRGAN experiments employ processes that are very similar to those used in the 

SRGAN method. The primary difference is that between the generator and discriminator 

networks, Gaussian noise is not being used. Given that one of the primary goals of the 

ESRGAN architecture [49] is to resolve the artifact problem in SRGAN and to provide 

stabilization via additional operations, as explained in the following sections, this step was 

excluded here. The ESRGAN architecture resembles the SRGAN architecture quite closely. 

To improve the SRGAN architecture, modifications to the network architecture and 

calculation of loss functions were developed, which are discussed in detail in Section 4.2.2. 

Figure 4.3 illustrates the general workflow of the ESRGAN method. 
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 Figure 4.3 The overall workflow of ESRGAN method. 

 

As suggested in the original ESRGAN study, the ESRGAN method was used to conduct two 

different experiments by changing the batch size value, one of the DL hyperparameters, to 

128 and 192. These parameters were used to train two models, and the models were used to 

carry out investigations. 

 

4.2. Implementation Details on the DL Methods 

This subsection describes the network architecture designs and learning procedures for 

SRGAN and ESRGAN, which were used in this thesis to generate HR images from LR 

images. 



32 
 

4.2.1. Super Resolution Generative Adversarial Networks (SRGAN) 

Following its initial development, the GAN architecture described in Section 2.2 has been 

applied to a variety of fields. The traditional methods for SR (basic filtering, interpolation, 

etc.) are not well suited to the human visual system. PSNR, SSIM, and MSE are used to 

quantify performance in these methods [101], and thus texture detail in reconstructed SR 

images is generally not realistic [102]. 

 

The processing results from the dataset created by editing the Google Earth images for this 

thesis are shown in Figure 4.4. As can be seen, there is a noticeable visual difference between 

the reconstructed SR image using bicubic interpolation and the reconstructed SR image using 

the SRGAN method, despite the fact that the PSNR and SSIM values are nearly identical. 

 

 

               

 

 

 
 

a) Original                     b) Bicubic                                   c) SRGAN  

               (27.45 db / 0.90)                          (27.06 db /0.92) 

Figure 4.4 Corresponding PSNR and SSIM are shown in order (upsampling factor = 4). (a) 

Original image, (b) bicubic interpolation, and (c) reconstructed SR image with SRGAN 

method.  

 

The SRGAN [48] method was proposed in 2017 with the goal of resolving the 

aforementioned issues and obtaining more realistic results using the GAN architecture. By 

adapting the GAN architecture described in Section 2.2 for the SR problem; the resulting 

architecture is depicted in Figure 4.5. 
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Figure 4.5 The basic architecture of SRGAN method. 

 

This architecture contains two networks that are continuously in competition. The first of 

these is GN; it takes a low-resolution image as input and, using its own parameters, converts 

it to a high-resolution image. The discriminator, the second network, accepts two inputs. One 

is the original image, and the other is the GN's SR image. DN makes an attempt to assess 

which of these two inputs is real and which is generated. Both networks update themselves in 

accordance with the DN's decision, and this process continues throughout the training. 

 

4.2.1.1. Generator Network 

A GN is mainly responsible for generating SR images from a low resolution input image. 

Figure 4.6 depicts the internal architecture of this network. 

 

 

Figure 4.6 Generator Network (GN) structure of SRGAN method [51]. 

 

This network is built around the SRResnet architecture, which is a variant of the ResNet [37] 

architecture described previously in the background section. Besides that, the skip-connection 

concept [103] is preferred for the residual blocks that comprise the ResNet. Connecting each 

block directly to the neighboring blocks while transferring information between residual 

blocks significantly increases the training time of the network and reduces the effect of the 

backpropagation algorithm. This is the advantage of the skip-connection concept. The 
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residual blocks are interconnected at regular intervals, which reduce the network's training 

time and the likelihood of the backpropagation algorithm's decreasing effect. The primary 

objective of the GN in the original study was to optimize the following formulation for the 

purpose of constructing more realistic SR images. 

 

θ𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛θ𝐺

1

𝑁
∑ I(𝑆𝑅)(Gθ𝐺

(I𝑛
(𝐿𝑅)), I𝑛

(𝐻𝑅))

𝑁

𝑛=1

 

 

In this equation; θ𝐺  represents weight and biases of network, Gθ𝐺
 represents GN 

parametrized by θ𝐺 , I(𝑆𝑅) represents SR specific loss function, I𝑛
(𝐿𝑅) represents n𝑡ℎ low 

resolution image in dataset and  I𝑛
(𝐻𝑅) represents n𝑡ℎ high resolution image in dataset.  Loss 

functions and other details are explained in the following parts. 

 

The part labeled "B residual block" in Figure 4.6 demonstrates that the number of residual 

blocks is variable. This approach has been investigated previously by Johnson et al. [104] and 

Gross and Wilber [105]. The original article conducted experiments to determine the optimal 

number, and the final model's residual block number was determined to be 16. 

 

Two convolution layers consisting of 3 x 3 kernels, 64 feature maps, and batch normalization 

layers were used after these maps within each residual block [44]. Additionally, the activation 

function Parametric Relu (PReLU) [106], a variant of ReLU, was used as follows: 

 

𝑓(𝑦𝑖) =  {
𝑦𝑖 , 𝑖𝑓 𝑦𝑖 > 0
𝑎𝑖𝑦𝑖, 𝑖𝑓 𝑦𝑖  ≤ 0

 

 

The pixel-wise MSE loss function was frequently used in previous training-based studies 

addressing the SR problem [107, 108]. However, when loss functions are calculated in this 

manner, as previously stated, high frequency details are lost and perceptually unsatisfying 

results are obtained. The following is the pixel-by-pixel MSE loss function: 

 

I𝑀𝑆𝐸
𝑆𝑅 =

1

r2𝑊𝐻
∑  𝑟𝑊
𝑥=1 ∑ (I𝑥,𝑦

𝐻𝑅 − Gθ𝐺
(I𝐿𝑅)𝑥,𝑦)

2
𝑟𝐻

𝑦=1
  

 

(4.1) 

(4.2) 

(4.3) 
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As a result, a new method based on perceptual similarity was proposed in place of the pixel-

wise method, taking into account the previous works [104, 109]. As previously described by 

Simonyan and Zisserman [110], the loss function was defined over a pre-trained 19-layer 

VGG network. The loss function that was proposed:  

 

I𝑆𝑅𝑉𝐺𝐺 / 𝑖,𝑗 =
1

W𝑖,𝑗H𝑖,𝑗
∑  
W𝑖,𝑗

𝑥=1 ∑ (φ𝑖,𝑗(I
𝐻𝑅)𝑥,𝑦 − φ𝑖,𝑗(Gθ𝐺

(I𝐿𝑅))𝑥,𝑦)
2

H𝑖,𝑗

𝑦=1
  

 

In the proposed new function, the expression φ𝑖,𝑗 indicates the feature map at the end of the 

j𝑡ℎconvolution (after activation) process that precedes the i𝑡ℎ maxpooling layer in the VGG-

19 network. As the last process, the Euclidian Distance value of Gθ𝐺
(I𝐿𝑅) , which is the 

reconstructed SR image, is calculated with the original HR image. 

 

4.2.1.2. Discriminator Network 

Essentially, the DN is in charge of determining which of the two inputs it receives is real and 

which is generated. Both the weights in itself and the weights of the GN are updated based on 

its decisions during training. This network's internal structure is visualized in Fig 4.7. 

 

 

Figure 4.7 Discriminator Network [48]. 

 

The DN is actually trained to solve the min-max problem as following: 

 

𝑚𝑖𝑛
θ(𝐺)𝑚𝑎𝑥θ(𝐷)𝐸I𝐻𝑅~𝑝min(I𝐻𝑅)[log Dθ𝐷

(I𝐻𝑅)] + 

    𝐸I𝐿𝑅~𝑝𝐺(I𝐿𝑅)[log (1 − Dθ𝐷
(Gθ𝐷

(I𝐿𝑅)))]        

 

 

(4.4) 

(4.5) 
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The general approach taken in this formula is to allow the trained generator model to attempt 

to deceive the discriminator model that attempts to distinguish images. As a result, the GN 

produces results that are highly similar to the original image, making classification difficult 

for the DN. 

 

The DN contains eight convolutional layers, as in previous VGG network studies [110]. 

These layers have 3 x 3 kernel filters and feature maps ranging from 64 to 512 increasing by 

a factor of 2. Strided convolution was used to solve the problem of increasing the image 

resolution as the number of features doubled. Two dense layers were added after the feature 

map reached 512. Finally, the probability of sample classification is determined by a sigmoid 

activation function. As illustrated in Figure 4.7, the DN's architecture is derived from 

Radford's research [111]. As an activation function, LeakyReLU [41] was preferred. 

 

In addition to the previously described concept of generator loss (content loss), the GAN's 

own loss function (adversarial loss) is defined as follows: 

 

I𝑆𝑅𝐺𝑒𝑛 = ∑−logDθ𝐷
(Gθ𝐺

(I𝐿𝑅)) 
 

N 

𝑛=1

 

 

The Dθ𝐺
(Gθ𝐺

(I𝐿𝑅))  part in this expression is the probability that the reconstructed image 

Gθ𝐺
(I𝐿𝑅) is actually HR image. 

 

Following the definitions of content and adversarial loss, the derived perceptual loss is 

defined. The term "perceptual loss" refers to the following: 

 

I𝑆𝑅 = I
𝑆𝑅
𝑋  + 10

−3I𝑆𝑅𝐺𝐸𝑁  

 

Here I𝑆𝑅 defines perceptual loss, I𝑆𝑅𝑋 content loss, I𝑆𝑅𝐺𝐸𝑁 defines adversarial loss. As the 

statement implies, perceptual loss can be derived from both adversarial and content loss 

statements. This loss function definition is one of the primary reasons why the results of the 

SRGAN study produce perceptually superior results. In comparison to MSE-focused loss 

functions used in other methods, this loss function is less sensitive to pixel-based changes. 

 

(4.7) 

(4.6) 
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4.2.2. Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) 

While the SRGAN method produces more perceptually promising results than other methods 

in the SR field, it does have some drawbacks, including the production of color artifacts 

(Figure 4.8). To address this issue, the ESRGAN [49] method was developed from SRGAN. 

While the ESRGAN method retains the general functionality of SRGAN, it was intended to 

address the issues encountered by making changes at certain points. These points are as 

follows: network architecture, adversarial loss, and perceptual loss. 

 

 

a) Original 

 

 

b) SRGAN 

 

 

             c) ESRGAN 

Figure 4.8 Color artifacts clearly visible on the images produced with the SRGAN method. 

(a) Original image, (b) SR image with SRGAN method, and (c) SR image with ESRGAN 

method.  

 

4.2.2.1. Network Architecture in ESRGAN 

There are some differences in the network structure of the ESRGAN method compared to the 

SRGAN method. The first is the removal of batch normalization layers (Figure 4.9). As 

described in Section 2.1.3, the batch normalization layers normalize the features during 

training using the mean and standard deviation values. Then, during testing, batch 

normalization layers use the mean and standard deviation values obtained during training to 

allow estimations. 
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a) SRGAN GN Structure  b) ESRGAN GN Structure 

Figure 4.9 (a) SRGAN GN structure with batch normalization layers, and (b) ESRGAN GN 

structure without batch normalization layers [49]. 

 

According to the findings of the original ESRGAN studies, when statistically significant 

differences between the training and test datasets exist, batch normalization layers frequently 

produce undesirable artifacts. Again, according to the researchers' observations of the original 

ESRGAN method, the possibility of generating unpleasant artifacts increases when working 

with deeper networks within the GAN framework. Furthermore, deleting batch normalization 

layers reduces computational complexity [112]. 

 

Another modification to the network structure was the introduction of the Residual-in-

Residual Dense Block (RRDB) concept (Figure 4.10) used in the GN from the ESRGAN 

study. Previous research [113, 114] has demonstrated that, despite the difficulty of the 

training process, using a deeper and more connected network produces superior results. The 

RRDB concept proposed in that study is based on the observation that deeper networks may 

result in more accurate results. 

 

 

 

Figure 4.10 Internal structure of Residual in Residual Dense Block (RRDB) [18]. 

 

Thanks to the residual in residual block structure in the RRDB, residual learning occurs at 

different levels. Besides that, by utilizing a deeper network, it was aimed to increase the 

network's capacity for learning. Apart from the original ResNet [38] residual block 

architecture, there are further studies [115] involving residual blocks similar to RRDB.  
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4.2.2.2. Adversarial Loss 

Relativistic GAN [116] is being used to improve the DN's performance. The DN predicts the 

probability of the input image being real in the conventional discriminator structure found in 

SRGAN. A relativistic discriminator, on the other hand, attempts to predict the probability 

that a real image is more realistic than a fake image in a relative sense. The decision-making 

mechanism of the discriminator in standard SRGAN is as follows: 

 

   DX𝑅𝑒𝑎𝑙  =   θ(C (Real Image))) => 1      (Is it real image?) 

 

DX𝐹𝑎𝑘𝑒 =   θ(C (Fake Image))) => 0      (Is it fake image?) 

 

The standard discriminator structure is defined as D(x) = θ(C(x)). The value of θ in above 

expression represents the sigmoid function, and C(x) represents non-transformed 

discriminator output. However, there are differences in the new discriminator method, which 

are stated as:  

 

  DRa (X𝑅𝑒𝑎𝑙  , X𝐹𝑎𝑘𝑒 ) =  θ(C (Real Image) – E [C (Fake Image)]) => 1 

(Is it more realistic than fake image?) 

 

DRa (X𝐹𝑎𝑘𝑒  , X𝑅𝑒𝑎𝑙 ) =  θ(C (Fake Image) – E [C (Real Image)]) => 0 

       (Is it less realistic than real image?) 

 

The standard discriminator has been replaced with a relativistic discriminator and is shown as 

DRa . This structure of relativistic discriminator is formulated as DRa(X𝑅  , X𝐹 ) =  θ(C (XR ) 

– EX𝐹 |𝐶(X𝐹 )|).  The expression of EX𝐹 |. | means to average all fake data in each batch. 

 

With the modification of the DN structure, the adversarial loss calculation described in the 

SRGAN section is also updated. The loss function is updated as given below so that the LG 
Ra 

expression shows the adversarial loss value in the generator.  

 

LG 
Ra = −EXr [log (1 − DRa (𝑋𝑟, 𝑋𝑓))] − EXf [log (DRa (𝑋𝑓, 𝑋𝑟))] 

 

(4.8) 

(4.9) 

(4.10) 
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The advantage of using a relativistic discriminator also arises at this point. The adversarial 

function in this new expression contains both 𝑋𝑟 and 𝑋𝑓. In this way, both real and generated 

data contribute to generator training. However, in SRGAN, only the generated data 

contributed to this part. 

 

4.2.2.3. Perceptual Loss 

Following the development of the concept of proximity to perceptual similarity [116], the 

concept of perceptual loss [104] was introduced, as detailed in SRGAN. Perceptual loss is 

initially defined in terms of the pre-trained network's activation layers, because the distance 

between the two active features is at its minimum level at that point. 

 

On the contrary, a different method was applied to solve two problems of the original 

concept. The first issue was that activated features, particularly those following the deep 

network, are determined in a very sparse manner. As a result of this, supervision is 

inadequate, resulting in lower performance. The second issue was utilizing features after they 

were activated. This leads in the generated images having different brightness and color 

characteristics than the original image (Figure 4.11). To address these issues, features were 

used prior to activation to ensure their density. 

 

 

a) Original 

 

b) SRGAN 

 

c) ESRGAN 

 Figure 4.11 Different color and brightness characteristic images generated SRGAN and 

ESRGAN. (a) original image, (b) SR image with SRGAN method, and (c) SR image with 

ESRGAN method.  
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4.3. Implementation 

The images in the dataset were acquired using Google Earth software. MATLAB was used to 

edit these images. Both methods are implemented using the Python programming language 

and its Tensorflow and PyTorch frameworks. Python and MATLAB libraries were used to 

implement the methods for evaluating the resulting SR images. 
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5. RESULTS AND DISCUSSION 

 

5.1. Model Training Experiments 

All training experiments were conducted on 2986 images obtained through Google Earth. 

These images were randomly divided into three groups: 80% training, 10% validation, and 

10% test. The low resolution images are generated by using the bicubic kernel to downscale 

the original images 4 times. Additionally, all training and testing were carried on an NVIDIA 

GTX 1070 graphics card. 

 

5.1.1. Evaluation Measures 

This subsection will discuss the evaluation measures that were used to assess the results. 

 

5.1.1.1. No-Reference Image Quality Measures 

The term "no-reference image quality measures" refers to methods that evaluate the image 

without using any reference data. Since the main purpose of this thesis is to improve the 

spatial resolution of satellite images, there is no reference to evaluate the SR images. 

 

Due to the fact that was used in previous studies of super-resolution perceptual similarity 

[49], the no-reference performance indicators Natural Image Quality Evaluator (NIQE) [88] 

and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [117] were used to 

evaluate SR images. The following section will discuss these methods in detail. 

 

5.1.1.1.1. Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 

 

To obtain data for studies that use human perception to assess visual quality, large-scale 

studies involving large numbers of people are conducted. The tested Image Quality 

Assessment (IQA) model's performance is then evaluated by comparison to these human 

perceptions. 

 

BRUSQUE [117] is an IQA method that is blind/referenceless in nature. It evaluates images 

using locally normalized luminance coefficient values rather than image distortions such as 

noise and blur. This enables it to conduct a holistic assessment. Although it does not evaluate 
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the image using distortions, it can detect image distortions using locally normalized 

luminance coefficients. 

 

Local mean subtraction and divisive normalization are used to calculate the aforementioned 

locally normalized luminance coefficients. It is also suitable for real-time applications due to 

its low computational complexity. It was discovered that the results of the BRISQUE study's 

statistical features progressed in agreement with human perceptions. 

 

5.1.1.1.2. Natural Image Quality Evaluator (NIQE) 

 

IQA methods such as BRISQUE [117] and DIIVINE [118] attempt to learn to predict human 

judgments from databases of human-evaluated data. IQA methods that are based on 

subjectively reported image quality data by humans are referred to as opinion-aware (OA) 

methods. Such methods are limited in their capabilities, as they are trained on a single set of 

views. 

 

After that, methods for evaluating images that do not rely on human judgment emerged. 

These are referred to as opinion-free methods (OU). One of the first studies [119] conducted 

in this manner used only image distortion and did not involve human opinion. Without 

relying on human judgment, OU methods can be created using image distortions or simply 

natural images. 

 

NIQE [88] is an OU model that does not require human judgment or image distortion to be 

used. As stated in the original study [88], it outperforms full-reference methods such as 

PSNR and SSIM (FR). This method employs the natural scene statistic (NSS) model, which 

is straightforward but contains a large number of examples. The researchers derive the so-

called "quality-aware feature" from this model. Next, the multivariate Gaussian (MVG) 

distance between the images to be tested for quality and the quality-aware features obtained 

from the model is measured. 
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5.1.1.2. Full-Reference Image Quality Measures 

 

In this context, measures that require a reference image to evaluate the image are considered. 

The validation phase of this study was conducted using Google Earth images. Because the 

original versions of the Google Earth images in the dataset can be compared to the SR 

versions, the full-reference measure was chosen at this stage. The following section will 

discuss the Learned Perceptual Image Patch Similarity (LPIPS) algorithm [120] that was used 

in this study. 

 

5.1.1.2.1. Learned Perceptual Image Patch Similarity (LPIPS)  

 

LPIPS is a measure for perceptual similarity that requires a reference image. This method 

divides images into patches referred to as various number of image regions. Following that, 

in large-scale studies involving a large number of people, human opinion was gathered 

regarding the similarity of these image regions to the original image. The results of these 

perceptual evaluations were entered into a database. Just after which, neural network training 

is performed on the database data. This neural network's purpose is to establish a correlation 

between the patch similarity features considered and human perspectives. Thus, the trained 

neural network is expected to produce perceptual results that are consistent with human 

judgments. 

 

5.1.1.2.2. Structural Similarity Index (SSIM) 

 

The Structural Similarity Index (SSIM) compares the luminance, contrast, and structure 

properties of two images to determine their similarity. The SSIM value is a digit between 0 

and 1. A correlation coefficient of 0 indicates no correlation with the original image, while a 

correlation coefficient of 1 indicates the actual same image as the original image. Thus, a 

higher SSIM value indicates that the images are more similar. The SSIM equation is as 

follows [121, 122]:  

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 

 

(5.1) 
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In this equation; 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 are the local means, standard deviations, and cross-

covariance for images, respectively. 𝐶1 = 𝑘1𝐿 and 𝐶2 = 𝑘2𝐿 are constants that depend on the 

dynamic range (𝐿) of pixel values for avoiding instability, 𝑘1≪1 and 𝑘2≪1 are being small 

constants. 

 

5.1.1.2.3. Peak Signal to Noise Ratio (PSNR) 

 

The peak signal-to-noise ratio (PSNR) is the ratio of a signal's maximum possible value 

(power) to the power of distorting noise that degrades the quality of its representation. PSNR 

is expressed as a decibel value (dB). If the MSE between images is kept to a minimum in 

relation to the image's maximum signal value, the PSNR value will be higher. The greater the 

PSNR value, the more similar the two images are, and thus the higher the quality of the 

reconstructed image. PSNR is defined as the following equations [121, 123]: 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

𝑃𝑆𝑁𝑅 = 10. log10
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
 

𝐿 =  𝑀𝐴𝑋𝐼 = 2
𝑏 − 1 

 

First, the mean square error (MSE) is calculated for the PSNR. 𝐼 represents an input image, 

and 𝐾 represents its SR image. 𝑚 and 𝑛 are rows and columns in the input image, 

respectively. 𝑀𝐴𝑋𝐼 represents the highest possible pixel value in the input image. It depends 

on the bit depth (𝑏) of the image. Typical PSNR values vary from 20 to 40. 

 

Between two identical images, the MSE value is zero, and thus the PSNR is undefined due to 

division by zero. The main drawback of this measure is that, like SSIM, it does not take into 

account the human visual system. 

 

5.2.1. SRGAN Experiments 

This subsection describes the SRGAN method's training and validation processes in detail. 

 

(5.2) 

(5.3) 

(5.4) 
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5.2.1.1. SRGAN Training 

Prior to beginning the training process, the LR images were created by downscaling the 

original Google Earth images for four times. Additionally, all HR images were scaled to the 

range [-1, 1], while all LR images were scaled to the range [0, 1]. As a first step, the GN was 

pre-trained using MSE-based SRResnet. The purpose of this process is to initialize the 

generator prior to starting the actual GAN training and to avoid local optima during GAN 

training. Additionally, it should be considered that beginning the GN's training process from 

a predetermined starting point rather than from scratch will shorten the total duration of the 

training period. All implementation were carried out in accordance with the original design of 

the SRGAN. In the pre-training process; the total number of iterations was used as about 

55,000 and the learning rate as 10−4. The Adam method [124] was used for optimization (β = 

0.9). 

 

After completing the pre-training process for the GN operation, the GAN training process 

was initiated. The objective here was to optimize the adversarial and perceptual loss values, 

as described previously. To optimize the results, several GAN training processes with slight 

modifications to the training parameters were performed. All experiments used the same pre-

trained GN. 

 

During the GAN training, each mini batch contained 16 HR images with a resolution of 96 x 

96. The MSE-based loss function was replaced in GAN training with a loss calculated in the 

VGG network's feature maps because it was more insensitive to changes in pixel space [125]. 

The reason for using the loss function of the VGG network's feature map rather than pixel-

based MSE was that, as Ferwarda [126] stated, pixel-based methods cannot produce 

perceptually realistic results due to the over-smoothed textures and lack of high-frequency 

details they typically generate. 

 

A total 55,000 iterations were carried out during the GAN training. In first 105 of these, the 

learning rate was used as 10−4, and in the next 105th iteration, the learning rate was used as  

10−5. In the GN, 16 identical residual blocks were used. Maintaining two distinct networks in 

active competition with one another during GAN training was a difficult task. Instability is a 

frequent occurrence in GAN models [100, 127]. When one of the generators or DNs is 

constantly cheating the other, instability occurs. The instability problem occurred in the 



47 
 

model that was trained on the basis of the method in the original SRGAN study. Figure 5.1 

depicts this situation graphically. During the training of this GAN model, it was observed that 

the discriminator loss is close to zero after nearly 200 epochs, indicating that the 

discriminator correctly determines whether the generated image is real or not. This progress 

of these two loss values, which should normally proceed in a competitive manner, adversely 

affected the model training. 

 

a)  

b)  

Figure 5. 1 (a) adversarial loss, and (b) discriminator loss graphs of the trained SRGAN 

model without using noise. 
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Along with the stability issue depicted in the graphs in Figure 5.1, this model experienced 

artifact issues (Figure 5.2). To address both the stability and artifact issues, the noise addition 

method (Figure 5.3) was used, as previously proposed [100]. This method's primary objective 

was to increase the complexity of discriminator training by including noise in both real and 

generated data. Adding noise helps to give some stability to the data distributions of the two 

competing networks. 

 

          

a) Original 

 

b) SRGAN Result 

Figure 5. 2 Image artifacts occurred with the SRGAN method. (a) original image, and (b) 

SRGAN result.  

 

 

Figure 5. 3 Adding noise to both inputs of DN in SRGAN. 

 

Following empirical investigations, Gaussian noise was added to both the GN output and the 

real data at standard deviations of 0.5 and 0.75. In this way, the DN received two inputs, one 

real and one generated, with noise added. The training graphs for the models obtained by 

adding noise to the generator and using real data are shown in Figures 5.4 and 5.5. As 
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illustrated in the figures, two network losses outperform the noiseless model in terms of 

competitiveness and stability. Likewise, it was observed in experiments with these noise-

added models that the probability of artifact formation is lower than with the non-noise 

model. Figure 5.6 illustrates one of the images tested with these models.  

 

a)  

b)  

Figure 5. 4 (a) adversarial loss and (b) discriminator loss graphs of the trained SRGAN model 

using Gaussian noise with 0.5 standard deviation. 
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a)  

b)  

Figure 5. 5 (a) adversarial loss and (b) discriminator loss graphs of the trained SRGAN model 

using Gaussian noise with 0.75 standard deviation. 
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a) Original 

 

b) Non-noise model 

 

c) 0.75 STD model 

Figure 5. 6 Difference in artifacts between models with and without noise added. (a) original 

image, (b) reconstructed SR image with SRGAN method without using noise, and (c) 

reconstructed SR image with SRGAN method using Gaussian noise with 0.75 STD.  

 

5.2.1.2. SRGAN Validation 

When training a model, the states of the model were recorded in each epoch to find out which 

version of the model gave the most optimal result according to evaluation measures. As 

illustrated in Figure 5.7, Figure 5.8 and Figure 5.9, non-noise models and models with 

Gaussian noise at 0.5 and 0.75 STDs were trained for between 300 and 600 epochs using 

GAN training. The first 300 epochs are used for pre-training and are identical for all models. 

After each epoch (model checkpoint), the current state of the model was recorded, and these 

recorded states were used to determine which version of the model performed optimally.  

 

a)  

b)  

Figure 5. 7 Validation process of noiseless SRGAN model according to (a) LPIPS and (b) 

PSNR measures. 
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a)  

b)  

Figure 5. 8 Validation process Gaussian noise with 0.5 STD SRGAN model according to (a) 

LPIPS and (b) PSNR measures. 

 

a)  

b)  

Figure 5. 9 Validation process Gaussian noise with 0.75 STD SRGAN model according to (a) 

LPIPS and (b) PSNR measures. 

 

To find out exactly which checkpoint version of the model performs optimally, the validation 

dataset was given as a separate input to each checkpoint. The SR images generated by each 

model checkpoint were evaluated using the Learned Perceptual Image Patch Similarity 

(LPIPS) measure [120], a perceptual similarity method, and the LPIPS [120] values were 

averaged. Additionally, the same results were compared using the traditional PSNR method. 

A higher PSNR score is preferable, while a lower LPIPS score is preferable. 
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The average LPIPS value for each model checkpoint was calculated, and given that images 

with a lower LPIPS value were perceptually more similar [120], the optimal checkpoint was 

chosen as the final model for the related tests. As illustrated in Figure 5.7, the LPIPS value 

decreases as the model's checkpoints are recorded in subsequent iterations, indicating that the 

two images are more perceptually similar [120]. When the same checkpoints are examined 

using a traditional method, PSNR, it appears that there is a stabilization problem. 

 

Since the pre-training process, which is the first 300 epochs, is the same for all models, the 

LPIPS and PSNR measures are identical for each model. After the GN's pre-training phase is 

complete and the 300-600 checkpoints where the generator and discriminator are trained 

concurrently are completed, it is observed that there are differences between the two models. 

The most striking case of these differences can be seen in Figure 5.8 as a sharp decrease in 

checkpoints where the pre-training process ends and GAN training begins. This decrease 

results in images that are perceptually closer to the original when measured using the LPIPS 

measure. Similarly, a decrease is also seen in the PSNR measure. This demonstrates that the 

same checkpoints perform better when evaluated using the LPIPS measure, but perform 

worse when evaluated using the PSNR measure. As previously stated, this situation arises as 

a result of the two measures focusing on different points. 

 

When the noiseless model is compared to the 0.5 STD Gaussian model, it is observed that the 

model with noise has more stable checkpoints than the noiseless model. These findings also 

support the idea of using Gaussian noise to stabilize GAN training, as proposed by Favaro 

[100]. 

 

The validation results for the model's checkpoints when 0.75 STD Gaussian noise is used 

during GAN training are shown in Figure 5.9. When examining the checkpoints for this 

model, it is clear that once GAN training begins, the checkpoints produce significantly more 

stable results than other models. 

 

Additionally to stabilizing, experiments have revealed that adding noise partially helps in 

addressing the artifact problem. Section 5 presents the results of the models that were trained 

using noise. The final model for the relevant tests was constructed using the checkpoints that 

produce the optimal LPIPS results. 
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5.3.1. ESRGAN Experiments 

This subsection discusses the details of the training and validation processes used with the 

ESRGAN method. 

 

5.3.1.1. ESRGAN Training 

As with SRGAN, the LR images for training were obtained by downscaling HR images four 

times with a bicubic kernel. Two distinct parts comprised the training process. In the first 

part, before the GAN training started, the GN was pre-trained with pixel wise PSNR oriented. 

There are advantages to starting GAN training with a GN that has been trained in PSNR 

oriented. The first is that by beginning training with an initialized GN, undesirable local 

optima in the GN are avoided. 

 

The candidate solution generated from an uninitialized GN is more likely to get stuck to local 

optimums and not find global optimum, in a situation like Figure 5.10. Another advantage of 

beginning GAN training with an initialized GN is that it simplifies the DN's job. Thanks to 

the initialized GN, the DN takes relatively good SR images as input instead of black and 

noisy images in first iterations at the training. Thus, the discriminator is able to place a 

greater emphasis on parts such as texture detail. Finally, starting with initialized generator 

training reduces the time required for GAN training. 

 

 

Figure 5. 10 Local-global optima. 

 

PNSR oriented generator pre-training process is carried out using L1 loss [128].  L1 loss 

function, also called Least Absolute Deviations (LAD), is used to minimize the absolute error 

between the actual value and the calculated value. The formula for this function is as follows, 

denoting y𝑖 target value, f(x𝑖) calculated value:  
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𝐿𝐴𝐷 = ∑ | y𝑖 −  f(x𝑖)|
n 
𝑛=1  (28) 

 

The original ESRGAN study's application details were mostly followed.  During pre-training, 

the learning rate starts with 2 x 10−4 at the beginning, and decayed every 15000 mini-batches 

by a factor of 2. The pre-training process continues for a total of 55000 iterations. 

 

After the pre-training process of the GN is completed, GAN training starts. At this point, a 

deeper model is used compared to the model in SRGAN, this model has 23 RRDB blocks. 

Adam [124] optimizer is used for optimization with β = 0.9 value. 16 HR images are handled 

at each mini batch during GAN training. For this training, the learning rate is initialized as 

 10−4 and decayed every 15000 mini-batch updates and a total of 55000 iterations were run. 

 

Two different patch size values (128x128 and 192x192 dimensions) are used in ESRGAN 

training processes. These values were chosen to make reference to the original ESRGAN 

study, and they indicate the dimensions of the HR images that will be cropped during 

training. 

 

The graphics of the experiments with these two different patch sizes are as follows. 

 

a)       b)  

Figure 5. 11  (a) Adversarial loss and (b) discriminator loss of model trained with patch 

size=128. 
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a)  b)  

Figure 5. 12  (a) Adversarial loss and (b) discriminator loss of model trained with patch 

size=192. 

 

Different patch size values were used in both pre-training and training phases of the 

experiments. It has been found that using a larger patch size is more beneficial when training 

with a deeper network [49], as a larger patch size can capture more semantic information. 

However, training with a large patch size adds time and complexity to the process. 

 

5.3.1.2. ESRGAN Validation 

The validation process of the ESRGAN method is done in the same way as in SRGAN. The 

current state of the model is recorded at the end of each epoch in experiments using both 

128x128 and 192x192 patch sizes. The part of the dataset reserved for validation was given 

as input to each of these saved model checkpoints. The LPIPS measure was used to evaluate 

the SR images generated by each of these checkpoints. The average of the LPIPS values 

calculated across the SR images generated by each model checkpoint was then determined. In 

this way, each model checkpoint on the validation data has an average LPIPS value. 

 

The optimal model checkpoint was determined by considering that images with a low LPIPS 

value expressed more perceptually similar images. This optimal checkpoint was selected as 

the final model for the relevant tests. Along with the LPIPS values for each checkpoint, 

PSNR values were calculated for comparison. 

 

The validation graphics of the model trained with these two different patch sizes are as 

follows. 
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a)  

b)  

Figure 5. 13 Validation graph of model trained with patch size=128 according to (a) LPIPS 

and (b) PSNR measures. 

a)  

b)  

Figure 5. 14 Validation graph of model trained with patch size=192 according to (a) LPIPS 

and (b) PSNR measures. 

 

5.2. Accuracy Results 

The entire training and validation process was carried out using Google Earth imagery. As 

previously described, the 600 x 600 Google Earth images were first downscaled to 150x150. 

Following that, it was resized to 600 x 600 pixels using SRGAN and ESRGAN techniques. 

Thus, the generated SR images were compared to the original Google Earth images, and the 

models' success was determined. 
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However, because the main objective of this study is to improve the resolution of LR satellite 

images, there is no reference image available to evaluate the performance of SR versions of 

satellite images. As a result, the reference indicators LPIPS and PSNR, which are used to 

validate Google Earth images, cannot be used for satellite images. Due to this limitation, the 

NIQE [88] and BRISQUE [117] measures have been used to evaluate satellite images. These 

measures have been applied in previous perceptual image similarity studies [49] and operate 

without reference. The BRISQUE score is a numeric value between 0 and 100. Lower values 

indicate that images have superior perceptual qualities. The NIQE model is trained using a 

database of pristine images. This model is capable of determining the quality of images with 

any amount of distortion and does not rely on subjective quality scores. NIQE score may not 

correlate as well as the BRISQUE score with human perceptions of quality [129]. With the 

understanding that a lower value corresponds to more natural results in both the NIQE and 

BRISQUE methods, the following results can be evaluated. Additionally, as another method 

of evaluation, the results of these measures can be compared using the original and SR 

images. Table 5.1 and Table 5.2 contain the quantitative evaluation results for the SRGAN 

and ESRGAN-generated SR images. Figure 5.15 and Figure 5.16 illustrate these results 

graphically. The letters "S" and "G" in the image names correspond to Sentinel-2 and 

Göktürk-2 images, respectively. 
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Table 5.1 Quantitative evaluation of SRGAN models and ESRGAN models (NIQE). 

Image 

Names 

Original SRGAN 

(No STD) 

SRGAN 

(0.5 STD) 

SRGAN 

(0.75 STD) 

ESRGAN 

(128) 

ESRGAN 

(192) 

S1 2.9267  2.8011  2.7619  3.0403  2.4191 2.2853 

S2 2.7901 3.6036  2.8903  3.1692  2.1002 2.4804 

S3 2.7863 3.3377 2.8225  3.2232  2.1278 2.6780 

S4 3.2108 2.7881  2.9323  3.0911  2.4295 2.2583 

S5 3.1094  2.7303  2.8767  3.3470  2.3563 2.6416 

S6 3.1193  4.2887  3.5796  3.6887  4.0781 4.0201 

S7 3.3172  4.2871  3.3575  3.2629  4.1246 3.4231 

S8 4.2865 3.6862  3.0456  3.2722  3.6882 3.8497 

S9 5.2930  2.7619  2.7818  2.9252  2.3717 2.2204 

S10 2.7599  3.6208  2.7646  2.9949  2.1641 2.4703 

G1 4.0682  4.0165  3.3593  3.6839  3.1038 3.7137 

G2 3.8535 4.1627  3.5507  4.0775  2.9109 3.4853 

G3 4.1751 4.1519  3.8733  3.7867  2.8046 3.3225 

G4 5.5272  5.6712  4.8040  4.7060  5.1806 4.8198 

G5 4.5823  5.2773  4.4210  4.4965  5.0790 4.3920 
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a)  

b)  

 

c)  

 

Figure 5. 15  Quantitative evaluation results of SRGAN models and ESRGAN models 

calculated by the NIQE method for (a, b) Sentinel-2 images and (c) Göktürk-2 images. 
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Table 5.2 Quantitative Evaluation of SRGAN models and ESRGAN models (BRISQUE). 

Image 

Names 

Original SRGAN 

(No STD) 

SRGAN 

(0.5 STD) 

SRGAN 

(0.75 STD) 

ESRGAN 

(128) 

ESRGAN 

(192) 

S1 34.836 29.2628 25.4772 23.2540 23.9767 25.9367 

S2 38.8668 38.1378 28.0079 24.6603 21.2335 21.9201 

S3 38.0314 35.0607 28.1222 24.7433 20.7257 24.1544 

S4 40.2291 32.9122 26.2990 25.1945 25.1066 26.4660 

S5 42.7179 31.3161 28.4913 25.0617 23.8283 27.6437 

S6 40.0377 29.7804 27.1828 26.4684 30.4498 32.3532 

S7 45.1271 35.6359 29.2438 27.2394 35.7882 34.5011 

S8 52.0582 31.4308 26.2833 24.4816 29.9186 31.8190 

S9 76.0114 31.6119 28.2033 26.5504 31.5617 30.9881 

S10 40.4440 33.5455 23.2306 25.6593 21.6847 23.2669 

G1 41.0714 32.6578 27.6681 24.1232 28.1251 40.3453 

G2 43.6071 35.2116 31.3175 29.4674 27.4371 36.1295 

G3 42.4679 31.4474 21.9157 24.4259 25.2833 27.6432 

G4 74.7272 40.4489 33.5148 30.3024 37.6193 28.2645 

G5 59.0978 37.9435 30.8932 29.2833 33.9318 29.0001 
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a)  

b)  

c)  

 

Figure 5. 16 Quantitative evaluation results of SRGAN models and ESRGAN models 

calculated by the BRISQUE method for (a, b) Sentinel-2 images and (c) Göktürk-2 images. 
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5.3. Discussion 

The results obtained from the SR images produced by the SRGAN and ESRGAN for S2 and 

GK-2 images are shown in Appendix 1 in the form of figures. These results are used for 

qualitative evaluation. In addition, Appendix 2 contains SR images that are focused on a 

specific area. 

 

As digital imaging has become more widespread, the demand for higher resolution has 

increased. When high resolution requirements are met, the imaging chips and optical 

components required to capture very high resolution images become prohibitively expensive 

to manufacture. With super resolution, it is possible to produce images with higher resolution 

than currently available low resolution images at a lower cost. Deep learning-based methods 

are now being used in addition to traditional methods to create SR images, which is a 

significant advancement. 

 

In terms of their fundamental architecture, the two methods used in this study are similar to 

one another. It was found that SRGAN, which was conducted earlier than ESRGAN, 

produced more successful results than conventional methods. The SRGAN method, on the 

other hand, has some drawbacks. The most significant of these is the unpleasant artifact 

problem in the SR image, which is described below. In recent studies [44], it was discovered 

that the batch normalization layers in the SRGAN architecture were the source of the problem 

[45]. Because of the GAN architecture on which the SRGAN method is based, there is yet 

another issue with the method's performance. It is a difficult task to provide stabilization in 

the GAN method, which is based on competitively training two different networks at the 

same time. 

 

SRGAN was followed by the ESRGAN study, which sought to address some of the issues 

that had been identified by SRGAN. The ESRGAN research work made some modifications 

to the architecture described in the previous sections. For example, one of the most obvious is 

that it was necessary to remove the batch normalization layer, which was the source of the 

artifact problem. This prevents artifact problems in the SR images generated by the ESRGAN 

method from occurring again in the future. Additional to this, the use of RRDB was 

implemented, and the use of relative discriminators was preferred in the discriminator 

network. These operations to improve performance, on the other hand, add to the complexity 

of the already difficult GAN training process. The training time for the ESRGAN method is 
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prolonged, and the process of determining the correct parameter values required for the 

model to perform optimally becomes more difficult. 

 

Because the goal of the study is to improve the original satellite images, and because there is 

no image against which to compare the SR images, referenceless performance measures were 

chosen instead of referenced performance indicators. When evaluating the results, it is 

important to remember that a lower value indicates better perceptual quality in both the NIQE 

and BRISQUE measures. 

 

When the results are evaluated in this context, the results of the SRGAN method appear to be 

more successful in the SR images obtained using the Sentinel-2 satellite. The results of the 

ESRGAN method, on the other hand, can be considered more successful in the SR images 

obtained using the GK-2 satellite. According to the findings of the original study [49], the 

ESRGAN method produced better results than the SRGAN method. In the SR images 

obtained using the Sentinel-2 satellite, the SRGAN method produced more successful results 

than the ERGAN method, which can be attributed to dataset compatibility and the fact that 

the ESRGAN network was not optimized very well. It is also possible that the use of Google 

Earth as a source of imagery had an impact on the results, as it has a variety of data sources 

ranging from medium resolution images to high resolution images. Additionally, in general, 

both methods produced clearer satellite images and revealed more details in the images they 

processed.  
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6. CONCLUSION 

 

A major focus of this study is on increasing the spatial resolution of satellite images. In order 

to deal with this problem, two GAN-based methods are discussed, and their performances are 

compared. While the SRGAN and ESRGAN models were being trained, the generator and 

discriminator loss values were being monitored continuously, and the two networks were 

being tried to be balanced as much as they possibly could. The loss function is used to 

determine the optimal parameter values for the model. A lower loss indicates a more accurate 

model. It has been observed that the SRGAN and ESRGAN methods outperform classical 

methods in terms of perceptual quality, which is a factor that has been specifically addressed 

in this study.  Section 5 also includes an evaluation of the performances of the two methods 

that have been discussed thus far. Lower values of the NIQE and BRISQUE scores indicate 

that the images have better perceptual qualities. Typically, a low score value indicates high 

perceptual quality, while a high score value indicates low perceptual quality. 

 

In this thesis, SRGAN and ESRGAN were investigated in depth, and the SR problem was 

addressed using satellite images, which is a different research environment than that used in 

previous studies. Following careful consideration of the studies and re-evaluation of the 

models, some recommendations for further research have been made. The dataset that was 

used is critical to the development of this study as well as the achievement of better results. It 

is estimated that approximately approximately 3000 images were used in used in this study. 

The dataset images used in this study were obtained from Google Earth. A more effective 

training process can be done when the variety and number of images in the used dataset are 

increased. The parameters to be used in the optimization of the GAN network, on the other 

hand, are also extremely important to consider. The impact of the parameters that will be 

used in the studies that will be conducted in this area should be thoroughly investigated. 

There are some limitations to using images in Google Earth, such as the fact that they can 

only be worked with in RGB (Red-Green-Blue) mode and that they cannot be saved as 

unprocessed, i.e. unfiltered images. To carry out SR on high-dimensional remote sensing 

images, high-resolution satellite images with multiple-spectral bands can be used in place of 

Google Earth images when performing SR on high-dimensional remote sensing images. So it 

might be possible to evaluate the performance of GAN approaches in low resolution bands, 

and differences in datasets can have an impact on the accuracy of the results. If an object 
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detection approach is applied to SR images instead of the original image, it can be 

investigated how this affects the performance output of the approach, particularly in detecting 

features. This can be an interesting future work to be carried out. As an example, the Maxar 

HD technology described in Section 1.2, which visually improves satellite imagery by 

making it clearer and sharper, was used by the Maxar Analytics Engineering team for feature 

detection, and the HD model was found to outperform the original model [130]. 
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APPENDIX 

 

APPENDIX 1 – SR Images Produced from Sentinel-2 and Göktürk-2 

a)  b)  

c)  

e)  

d)  

f)  

Figure A.1 S2 image from Erzincan; (a) original image, (b) non-noise SRGAN result, (c) 0.5 

STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN result, 

(f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  d)  

e)  f)   

Figure A.2  Sentinel-2 image from Erzincan; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 



81 
 

a)        b)   

c)  d)  

e)  

                             

f)  

Figure A.3  Sentinel-2 image from Erzincan; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)  b)   

 c)       d)                      

e)  

                                

f)                                   

Figure A.4  Göktürk-2 image from Ankara; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  d)  

e)  f)  

Figure A.5  Göktürk-2 image from Ankara; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  d)  

e)  f)   

Figure A.6  Sentinel-2 image from Istanbul; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  d)  

e)    f)  

Figure A.7  Sentinel-2 image from Istanbul; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)   b)  

c)  d)  

e)  f)  

Figure A.8  Sentinel-2 image from İstanbul; (a) original image, (b) non-noise SRGAN result, 

(c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch size ESRGAN 

result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  d)  

e)         f)  

Figure A.9 Sentinel-2 image results from Indiana, USA. (a) original image, (b) non-noise 

SRGAN result, (c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch 

size ESRGAN result, (f) 192x192 patch size ESRGAN result. 
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APPENDIX 2 – A Closer Inspection of SR Images Produced from Sentinel-2 and 

Göktürk-2 images 

 

a)  
b)  

c)  

e)  

d)  

     f)  

Figure A.10 A part of Sentinel-2 image from Erzincan; (a) original image, (b) non-noise 

SRGAN result, (c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch 

size ESRGAN result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  

e)  

d)  

       f)  

Figure A.11 A part of Sentinel-2 image from Dubai; (a) original image, (b) non-noise 

SRGAN result, (c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch 

size ESRGAN result, (f) 192x192 patch size ESRGAN result. 
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a)  b)  

c)  

e)  

d)  

      f)  

Figure A.12 A part of Göktürk-2 image from Ankara; (a) original image, (b) non-noise 

SRGAN result, (c) 0.5 STD SRGAN result, (d) 0.75 STD SRGAN result, (e) 128x128 patch 

size ESRGAN result, (f) 192x192 patch size ESRGAN result. 
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APPENDIX 3 – Image Samples From Dataset 

The images in the dataset were cropped to 600 x 600 pixels from Google Earth. During the 

training process, it was later downscaled to 150x150 dimensions. 

 

a)    b)  

c)    d)  

Figure A.13 (a) and (c) the samples of cropped Google Earth image in 600 x 600 pixels from 

Turkey, (b) and (d) their down-sampled version to 150 x 150 pixels.  
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a)  b)  

c)  d)  

Figure A. 14 (a) and (c) the samples of cropped Google Earth image in 600 x 600 pixels from 

USA, (b) and (d) their down-sampled version to 150 x 150 pixels.  
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APPENDIX 4 – Code 

The following MATLAB code was used to crop the images available in Google Earth at 600 

x 600 pixels. 

 

h=599; 

w=599; 

count=0; 

images = dir('*.jpg') ;  % Get all images from the directory  

N = length(images) ;     % Number of images  

for m = 1:N 

    I(:,:,:,N) = imread(images(m).name) ;   % Read image  

    [r,c,~,~]=size(I(:,:,:,N)); 

    [filepath,name,ext] = fileparts(images(m).name) ; 

    for i=0:w:(floor(c/w)*w) 

        for j=0:h:(floor(r/h)*h) 

            count=count+1; 

            image=imcrop(I(:,:,:,N),[(i+1) (j+1) h w]); 

            [a b ~]=size(image); 

            if a==600 && b==600 

                imwrite(image,strcat(name,'_cropped_',num2str(count),'.png')) ;   % Save image  

            end 

        end 

    end 

    count=0; 

end 

 

 

 

 

 

 

 



94 
 

https://github.com/eriklindernoren/PyTorch-GAN#super-resolution-gan implementation is 

followed in SRGAN study. The training process of this implementation is as follows: 

 

#  Training 

 

for epoch in range(epoch_start, epoch_start + opt.n_epochs): 

 

    generator.train() 

    train_logs = {'mse': 0, 'd_loss': 0, 'g_loss': 0, 'content_loss': 0, 'adversarial_loss': 0} 

    train_bar = tqdm(train_loader) 

    for i, imgs in enumerate(train_bar): 

 

        # Configure model input 

        imgs_lr = Variable(imgs["lr"].type(Tensor)) 

        imgs_hr = Variable(imgs["hr"].type(Tensor)) 

 

        #  Train Generators        

 

        optimizer_G.zero_grad() 

 

        # Generate a high resolution image from low resolution input 

        gen_hr = generator(imgs_lr) 

 

        # Tensors with gaussian noise added 

        imgs_hr_noisy = imgs_hr +    (torch.fmod(torch.randn(imgs_hr.shape), 1) * 

opt.gaussian_noise_std).cuda() 

        gen_hr_noisy = gen_hr + (torch.fmod(torch.randn(gen_hr.shape), 1) * 

opt.gaussian_noise_std).cuda() 

 

        # MSE loss 

        loss_mse = criterion_mse(gen_hr, imgs_hr) 

 

        if not opt.pretrain: 

            # SRGAN 

            # Adversarial loss 

            loss_adversarial = torch.sum(-torch.log(discriminator(gen_hr_noisy) + opt.eps)) 

 

            # Content loss 

            # gen_features = feature_extractor(normalize((gen_hr + 1.) * 0.5)) 

            # real_features = feature_extractor(normalize((imgs_hr + 1.) * 0.5)) 

            # loss_content = criterion_content(gen_features, real_features.detach()) 

 

            # loss_content = loss_fn_vgg(gen_hr, imgs_hr).sum() 

 

            loss_content = torch.tensor(0) 

            # Total loss 

            loss_G = loss_content + 1e-3 * loss_adversarial 

 

 

 

https://github.com/eriklindernoren/PyTorch-GAN#super-resolution-gan
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The Python code used to evaluate the generated SR images is as follows: 

 

import glob 

import cv2 

import torch 

 

from basicsr.metrics.niqe import calculate_niqe 

from piq import brisque 

 

filepaths = glob.glob('/home/Downloads/SRGAN-ESRGAN-Bicubic/*/*png', 

recursive=True) \ 

            + glob.glob('/home/Downloads/SRGAN-ESRGAN-Bicubic/*/*/*png', 

recursive=True) 

 

 

print('path niqe brisque') 

for path in filepaths: 

    im = cv2.imread(path) 

 

    niqe = calculate_niqe(im, 4) 

    niqe = niqe[0][0] 

 

    im = torch.tensor(im) 

    im = im.permute(2, 0, 1) 

    im = im / 255. 

    brisq = brisque(im).item() 

 

    print(path, niqe, brisq) 
 

 
         

 

 

 

 

 

 

 

 

 


