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Phase I analysis of a control chart implementation comprises parameter estimation, chart 

design, and outlier filtering, which are performed iteratively until reliable control limits are 

obtained. These control limits are then used in Phase II for online monitoring and prospective 

analyses of the process to detect out-of-control states. Although a Phase I study is required 

only when the true values of the parameters of a process are unknown, this is the case in 

many practical applications. In the literature, however, process parameters had often been 

assumed as known and parameter estimation step of Phase I analysis was often skipped to 

simplify the development of control charts. Recently, effects of parameter estimation on the 

performance of process monitoring in Phase II were recognized as an important research 

field. However, these studies consider availability of complete and clean data sets, without 

outliers and missing observations, and neglect the iterative nature of Phase I analysis, in 

which outliers are identified and control charts are designed through revisions. In the 

traditional use of control charts, it is also assumed that process observations are independent 

and identically distributed. The real industrial processes, however, often have correlated 

observations. It is well known that autocorrelation effects parameter estimation and so 

control chart design. Many charting methods have been proposed for autocorrelated data.  

In this thesis, AutoRegressive models of order 1, AR(1),  are considered and  the effects of 

two extreme cases for Phase I analysis are studied; the case where all outliers are filtered 
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from the data set (parameter estimation from incomplete but clean data) and the case where 

all outliers remain in the data set during estimation. To investigate these effects, 

autocorrelated observations from AR(1) process are generated for different observation 

lengths and autocorrelation parameters. For the case of all outliers remaining in the dataset, 

some of the generated observations are randomly selected (for different rates) and 

contaminated to simulate outliers. Then, process parameters are estimated without filtering 

the outliers. For the missing observations case, randomly selected observations from the 

dataset are assumed as outliers and filtered from the data set before estimations. For 

estimating the parameters under both cases in Phase I, performance of the maximum 

likelihood and conditional sum of squares estimators are evaluated. As an approach to 

evaluate control charts, firstly control chart is designed with the estimated parameters and 

then average run length performance for Phase II is computed by using the obtained design. 

Results indicate that presence of outliers may have severe effects on the estimates of control 

chart parameters. Moreover, the effect of not detecting outliers in Phase I can be also severe 

on the Phase II application of a control chart. A real world example is provided to illustrate 

the proposed method and importance of an appropriate Phase I analysis. 

 

 

Key Words: Statistical process control, Phase I analysis, Phase II analysis, control charts, 

autocorrelation, outliers, maximum likelihood estimator, conditional sum of squares 

estimator. 
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İstatistiksel süreç kontrolünde, kontrol grafikleri Faz I ve Faz II olmak üzere iki aşamalı 

olarak uygulanmaktadır. Faz I aşamasında, süreçle ilgili geriye dönük analizler yapılarak 

sistemin kontrol altında olduğu duruma ait parametreler tahmin edilir. Kontrol grafiklerinde 

Faz I uygulaması, parametre tahmini, kontrol grafiğinin tasarımı ve kontrol dışı noktaların 

(aykırı noktaların) filtrelenmesi işlemlerini içerir. Bu işlemler, güvenilir kontrol limitleri 

elde edilene kadar yinelenir. Elde edilen bu güvenilir limitler, Faz II aşamasında süreci 

gerçek zamanlı izlemek için kullanılır. Bu aşamada sürecin kontrol dışına çıktığı durumlar, 

bir başka deyişle sinyaller tespit edilir.  

İstatistiksel süreç kontrolü literatüründe genellikle sürece ait parametrelerinin bilindiği 

varsayılmakta, bu nedenle de Faz I aşamasının parametre tahmin işlemi göz ardı edilerek 

doğrudan Faz II uygulamaları üzerinde durulmaktadır. Oysaki birçok gerçek endüstriyel 

uygulamada süreç parametreleri bilinmemekte ve bu nedenle de Faz I analizinin yapılması 

gerekmektedir. Bununla birlikte kontrol grafiklerinin, Faz II aşamasındaki çevrimiçi gözlem 

performansları, Faz I analizi sonuçlarından etkilenmektedir. Bu da Faz I uygulamasının 

önemini artırmaktadır. Son yıllarda parametre tahminlerinin Faz II aşamasındaki gözlem 

performansı üzerindeki etkileri önemli bir araştırma alanı olarak ortaya çıkmıştır. Ancak 

yapılan çalışmaların birçoğu temiz ve eksiksiz veri setine sahip olunduğu varsayılarak 
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yapılmakta, aykırı veya eksik gözlemler dikkate alınmamakta ve de aykırı gözlemlerin tespit 

edilip kontrol grafiklerinin tasarımlarının revize edildiği Faz I’in yinelemeli yapısı hesaba 

katılmamaktadır.  

Literatürdeki ikinci bir geleneksel yaklaşım da, kontrol altındaki süreç gözlemlerinin normal 

dağılıma sahip, bağımsız ve aynı dağılımlı olduğu varsayımıdır. Süreç gözlemleri bağımsız 

olduğunda, Faz I uygulaması esnasında kontrol dışına çıkan gözlemler süreçten sorunsuz bir 

şekilde çıkarılabilmektedir. Ancak, gerçek endüstriyel süreçlerin birçoğunda gözlemler bir 

zaman serisi olarak önceki gözlemlere bağımlıdır. Birbirini takip eden gözlemler arasında 

otokorelasyon olduğu zaman, Faz I uygulaması esnasında kontrol dışına çıkan gözlemlerin 

süreç dışında bırakılması, süreç parametrelerinin tahminlerini ve buna bağlı olarak kontrol 

grafiğinin performansını etkilemektedir. Bu konuyla ilgili çalışmalar yapılmış, 

otokorelasyonlu veriler için birçok yeni kontrol grafiği yöntemi önerilmiştir. İstatistiksel 

süreç kontrolü literatüründe, otokorelasyonlu gözlemlere sahip süreçler için Faz I 

uygulaması araştırmaya oldukça açık bir konudur. 

Bu tezde, bağımlı gözlemlerin Faz I analizi temel alınmaktadır. Otokorelasyonlu gözlemler 

için Faz I analizinde nasıl bir yaklaşım izlenmesi gerektiği ve bu yaklaşımın Faz II 

aşamasındaki kontrol grafiklerinin performansına olan etkileri incelenmiştir. Bu doğrultuda 

yapılan simülasyon çalışmasında, özbağlanımlı AR(1) süreci ele alınmış ve Faz I analizinde 

iki ekstrem durumun etkileri incelenmiştir. Bu durumlar, parametre tahmini öncesinde tüm 

aykırı gözlemlerin süreç dışında bırakıldığı durum ve tüm aykırı gözlemlerin süreç içerisinde 

bırakıldığı durumdur. Etkilerin araştırılması için, farklı otokorelasyon parametresine sahip 

AR(1) süreçlerinden farklı uzunluklarda veri setleri üretilmiştir. Aykırı gözlemler veri 

setinde tutularak parametrelerin tahmin edildiği durumda, üretilen veri setlerinden farklı 

oranlarda rasgele gözlemler seçilmiş, bu gözlemler aykırı gözlemlere dönüştürülmüştür. Bu 

şekilde parametre tahminleri yapılmıştır. Aykırı gözlemlerin filtrelenerek veri seti dışında 

bırakıldığı durumda ise, üretilen veri setinden belirli oranlarda rasgele gözlemler seçilmiş, 

bu gözlemler aykırı gözlem olarak varsayılmış ve parametre tahmini öncesinde veri seti 

dışında bırakılmıştır.  

Bu amaçla gerçekleştirilen simülasyon çalışmasında; 0.3, 0.5 ve 0.7 olmak üzere üç farklı 

otokorelasyon parametresine sahip veri setleri üretilmiştir. Bu üç farklı değerin her biri için 

50, 100 ve 200 olmak üzere üç farklı uzunlukta veri setleri üretilmiştir. Yukarıda bahsedilen 

iki durum (aykırı gözlemlerin süreç içerisinde bırakıldığı ve filtrelendiği durumlar) için veri 
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setlerinin uzunluklarının 0, 0.02, 0.05, 0.1 ve 0.25 oranlarında aykırı gözlemler yaratılmıştır. 

Faz I aşamasındaki parametre tahminleri aşamasında, her iki durum için de En Büyük 

Olabilirlik ve Koşullu Kareler Toplamı tahmin edicilerinin performansları incelenmiştir. 

Yaklaşım olarak, öncelikle tahmin edilen parametrelerle kontrol grafikleri tasarlanmıştır. 

Faz I sonunda elde edilen bu tasarımlar kullanılarak Faz II aşamasında kontrol grafiklerinin 

ortalama tespit uzunluğu (ARL) performansları hesaplanmıştır. Çalışmanın sonunda, gürbüz 

tahmin konusu da kısaca değerlendirilmiştir.  

Bu araştırmanın sonunda elde edilen sonuçlar, otokorelasyonlu bir veride %2 oranındaki 

aykırı gözlemin bulunmasının bile Faz I aşamasındaki parametre tahminlerini oldukça çok 

etkilediğini ve güçlü bir negatif etki oluştuğunu ortaya koymaktadır. Bu olumsuz etki, En 

Büyük Olabilirlik ve Koşullu Kareler Toplamı tahmin edicilerinin her ikisinde de ortaya 

çıkmaktadır. Ayrıca. Faz II aşamasındaki ortalama tespit uzunluğu performansları 

incelendiğinde de, Faz I aşamasındaki aykırı gözlemlerin parametre tahmini öncesinde 

filtrelenmesinin gerekliliği ve önemi anlaşılmıştır. Aykırı gözlem oranının yükselmesiyle 

birlikte, ARL0 değerlerinin arttığı açık bir şekilde görülmüştür.  Aykırı gözlemlerin dışarıda 

bırakılması sonucunda elde edilen temiz ancak eksik veri setinin tahminlerde 

kullanılmasının, anlamlı bir şekilde tahmin performanslarını etkilemediği görülmüştür. 

Ancak, aykırı gözlem oranı yükseldiğinde, bir başka deyişle çok fazla sayıda gözlemin 

filtrelenmesi gerektiğinde, En Büyük Olabilirlik tahmin edicisinin kullanılması kullanıcıya 

önerilmektedir. 

    

Anahtar Kelimeler: İstatistiksel süreç kontrolü, Faz I analizi, Faz II analizi, kontrol 

grafikleri, otokorelasyon, aykırı gözlemler, en büyük olabilirlik tahmin edicisi, koşullu 

kareler toplamı tahmin edicisi 
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1. INTRODUCTION 

The fundamentals of statistical quality control (SQC) were proposed in the 1920s. Although 

there had been many important advances until the mid to late 1970s, it was the quality 

revolution in 1980s that made the field really attractive for the researchers. The quality 

revolution was the result of increased competition in global market. Since high quality 

products were required to survive in global competition, research activities in the field of 

quality were greatly increased. Quality control has gained a relative importance and 

numerous methods and tools that supports continuous improvement have been proposed by 

the researchers [1].  

Statistical Process Control (SPC) as a field of SQC, is a collection of tools to improve 

processes by reducing variability and ensuring stability. A process may be operating in an 

in-control state, where only common causes of variation exist. Alternatively, a process may 

be operating in an out-of-control state, in which special causes of variation exist. Although 

common causes of variation may be considered to be acceptable due to technological or 

economic reasons, out-of-control process states should be rapidly detected for taking 

corrective actions to improve processes. As a powerful SPC tool, control charts have been 

widely used in the industry to monitor transitions between these two process states and detect 

unusual variations occurring due to the assignable causes. Through the SPC history, 

numerous statistical methods have been incorporated into SPC procedures. Today, SPC is a 

field that has a very rich and comprehensive research literature.  

1.1. Problem Definition 

Monitoring a process using control charts first requires defining the in-control state of the 

process, and then this information is used to detect out-of-control process states. Hence, there 

are two different phases of a control chart application. Phase I is the retrospective analysis 

of process observations. Parameter estimation, chart design, and outlier filtering are 

performed iteratively during Phase I, until reliable control limits for actual process 

monitoring are obtained [2]. Control chart design obtained in Phase I is then used in Phase 

II for online monitoring and prospective analyses of the process to detect out-of-control 

states [3]. In Phase II, a point exceeding the control limits is an alarm signal, which is an 

indication of a potential out-of-control process state. Hence, a widely used metric for 

evaluating control chart performance in Phase II is the average run length (ARL), which is 

the average number of points plotted on a control chart until a signal is triggered. A 
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classification of the ARL metric is used to differentiate the performance; for the false alarms 

(ARL0) when the process is actually in-control, and for the detection performance when the 

process shifts out-of-control (ARL1). 

Studies in the literature mainly focus on theoretical/empirical sampling distributions of 

parameters without considering the iterative nature of a Phase I analysis, in which outliers 

are identified and control charts are designed through revisions. Process parameters have 

been commonly assumed as known, which is not the case in practice. Often, unknown 

process parameters need to be estimated in practice and it is known that estimation during 

Phase I effects control chart design. Furthermore, process observations are usually assumed 

as independent and identically distributed, which may not be the case in real processes.  

In this thesis, effects of Phase I analysis on the parameter estimates as well as performance 

of control charts in Phase II implementations are investigated for autocorrelated time series 

data. Note that, this research does not simply focus on investigating the effects of 

autocorrelation in parameter estimation, which has been already studied in the literature. 

This research also investigates the effects of outliers in autocorrelated data on the parameter 

estimates in Phase I and on the control chart performance in Phase II implementations, i.e. 

use of the control chart for online process monitoring. The findings of this research may be 

a solution to the problem of deciding for whether filtering or keeping outliers in 

autocorrelated data during Phase I implementation.  

1.2. Motivation 

In the literature, the parameter estimation step of a Phase I analysis is often neglected and 

in-control process parameters are assumed to be known for simplifying development and 

evaluation of control charts [2] [4]. In practice, however, process parameters are often 

unknown and control chart design first requires parameter estimation, which is then used to 

determine control limits of the chart [5]. It is well known that parameter estimation in Phase 

I analysis has significant effects on the actual performance of process monitoring in Phase 

II. More specifically, the use of estimated parameters might cause a dramatic increase in the 

false alarm rates [6]. A comprehensive literature review by Jensen et al. [7] concluded that 

the effects of parameter estimation have to be considered while investigating control chart 

performance. Moreover, Montgomery and Woodall [1], and Woodall and Montgomery [8] 

pointed out the effect of parameter estimation on control chart performance as an active 

research area.  
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Although SPC researchers often consider independent observations, monitoring of 

autocorrelated observations is also common in industry. For autocorrelated observations, 

applying standard control charts to the residuals of an appropriate time series model or 

modifying the control limits of known charts for the correlation are the two mainly proposed 

approaches in SPC [9] [10].  Yet, effects of Phase I analysis are often neglected in evaluating 

performance of control charts for autocorrelated observations. 

1.3. Contribution of the Thesis  

As a main difference from the literature, here outliers for autocorrelated data in Phase I are 

considered in a more realistic scenario for practical applications. Effects of outliers are 

investigated under two extreme cases: all outliers are filtered from data and all outliers 

remain in data. Note that filtering of outliers would result in incomplete time series data. 

Time series observations from an AutoRegressive process model of order 1, i.e. an AR(1) 

process, are simulated by using different data lengths and autocorrelation parameters. For 

the first case, some of the autocorrelated data are randomly assumed as outliers and filtered 

from the dataset before parameter estimations. For the second case, outliers are randomly 

generated in the autocorrelated dataset. To generate outliers, first some of data are selected 

with different rates. Then, these selected data are contaminated according to a certain rule 

and parameters are estimated without filtering these contaminated data. The behavior of the 

maximum likelihood (ML) and conditional sum of squares (CSS) estimators under the two 

cases are described and compared. The obtained designs at the end of Phase I are then used 

to investigate effects of outliers in autocorrelated observations on average run length 

performance of the control chart in Phase II. Furthermore, the topic of robust estimation is 

briefly considered.  

The results of this research show that even 2% outliers in the autocorrelated data set heavily 

affects the parameter estimates and a strong negative bias can be observed in Phase I both 

with ML and CSS estimators. It is also shown that filtering outliers in Phase I is important 

to obtain a better Phase II process monitoring performance. Additionally, it can be suggested 

to use ML estimator if many data need to be filtered due to the outliers. 

1.4. Thesis’s Organization  

The rest of this thesis is organized as follows. In Chapter 2, the related literature is discussed, 

Phase I and Phase II implementations of control charts are explained. Chapter 3 presents the 

methodology employed in this research. Details regarding the investigation of the 

performances of estimators through simulation experiments are described. The method to 
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investigate the control charts’ performance, using the designs obtained from a Phase I 

analysis, is also provided in Chapter 3. The results of the thesis’s research and their 

interpretations are provided in Chapter 4. The proposed solutions for parameter estimation 

and the chart design are illustrated by a real-world example in Section 5. Finally, conclusions 

and remarks concerning future research, including a discussion of robust parameter 

estimation, are given in the Section 6. 
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2. LITERATURE REVIEW 

SQC is a field where industrial statistics and quality improvement philosophies are 

integrated. More specifically, SQC comprises the areas of acceptance sampling, statistical 

process control, design of experiments, and capability analysis [3]. Since this thesis research 

is mainly related with the field of SPC, the following literature review will be focusing on 

the details of SPC and control charting.  

2.1. Statistical Process Control (SPC) 

In the beginning, quality researchers were focusing mostly on keeping the mean of a quality 

control characteristic in between certain specification limits. Later on, researchers like 

Deming, an important figure in quality history, emphasized that meeting specification limits 

is not enough by itself to claim a good quality; variability also need to be considered. Another 

quality guru Taguchi supported the aim of reducing the variability, as long as remaining in 

the feasible region in terms of cost [11]. Montgomery [3] also stated that in order to meet 

customer’s quality expectations, a product should be produced by a stable process in terms 

of deviation from the target quality characteristic. Hence, today quality improvement is 

considered as reduction in variability for critical quality characteristics. 

SPC is often employed to understand, analyze, and continuously improve the processes over 

time [11]. Since SPC comprises useful tools for achieving process stability, it has a key role 

in understanding and reducing the variations existing in the processes. The tools employed 

in SPC are also named as “magnificent seven” in the literature, as shown in Figure 1. 

 

Figure 1. The Seven Tools (Magnificent Seven) used in SPC  

Among these tools, control chart is the most complex and technical tool that is capable to 

reduce variability and improve process quality. Since control charting is the major SPC tool 

used in this thesis, the following sections will focus on it. Any reader also interested with 

other six tools may see Montgomery [3] for their details. 
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2.2. Control Charting 

Walter A. Shewhart, who is considered as the father of SPC, was the first one who proposed 

the fundamentals of control charting in 1920s and 1930s [12]. Since first control chart in the 

history was introduced by Shewhart, a basic control chart is also referred to as Shewhart 

Control Chart in the literature.  

Control charting is primarily used to reduce variability through monitoring of the processes. 

In order to understand principles of control charts, one must first understand the role of 

variability in the process control. In terms of variability, a process may be operating in two 

states, whether statistically in-control or out-of-control. There are mainly two distinct type 

of causes for the variation occurring in the processes [1]: 

 Common Causes of Variation (Chance Causes of Variation): This type of causes 

are considered as they inherently exist in the processes. In SPC terminology, if a 

process operates only with chance causes, it is assumed as statistically in-control.  

 Assignable Cause of Variation (Special Causes of Variation): This type of causes 

are considered as the unusual variation indicators. The process is assumed as 

statistically out-of-control, if any assignable cause exists.  

Although there are various definitions for in-control and out-of-control processes in the 

literature, it is easy to realize that they all describe the same concept by only using different 

words. For example, Woodall [11] stated that a process is in statistical control if the 

probability distribution of the quality characteristic is stable over time, and out of control if 

the distribution changes over time.  

A control chart detects assignable causes of variation and then signals it to the users. When 

a chart signals, corrective actions must be taken to reduce variability. These actions primarily 

include analyzing the process, identifying the assignable causes of variation, and removing 

them from the process.  

2.2.1. Principles of Shewhart Type Control Charts 

In a basic Shewhart type Control Chart, there are three lines drawn on the two dimensional 

coordinate system (X-Y coordinates). Center line (CL) represents the mean of the monitored 

control statistic. The Upper Control Limit (UCL) and Lower Control Limit (LCL) lines 

represent the boundaries of the allowable in-control interval for the control statistic. A 
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typical control chart is illustrated in Figure 2. These limits are first determined through 

statistical analysis of the relevant process, and then used for monitoring the actual process. 

In process monitoring, a control statistic obtained from the observations of a monitored 

quality characteristic are plotted on this coordinate system, over time. A control chart gives 

an alarm, if the value of a point goes outside these limits. Please remember that even if all 

the observations fall between the limits, if they show any systematic or nonrandom behavior 

this may also indicate that the process is out-of-control.  

As an example, assume that there is a metal bar production process and the quality 

characteristic of interest is the lengths of the produced bars. The following Figure 2 may 

represent a simple control chart for an in-control bar production process. Here, the center 

line represents the average value of the quality characteristic corresponding to the in-control 

state. Since all the observations fall between the limits, this process is considered to be in 

statistical control.  

 

Figure 2. A typical control chart representing an in-control process 

When a certain quality characteristic obtained from observations falls outside the in-control 

interval, the process is considered as out-of-control and the control chart alarms. An alarming 

control chart is an indication that there is an unusual variability, e.g. an assignable cause, in 

the process. Going back to the previous example, Figure 3 represents an out-of-control bar 

production process, where an alarm is triggered at point 15.  

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
v
e
r
a

g
e

Q
u

a
li

ty
 C

h
a

r
a

te
r
is

ti
c

Observations

CL 

UCL 

LCL 

In
 co

n
tro

l in
terv

al 



8 

 

 

Figure 3. A simple control chart representing an out-of-control process 

2.2.2. Statistical Calculations for the Chart Construction 

Construction of a Shewhart Control Chart requires simple statistical calculations from a 

retrospective dataset. CL, UCL and LCL are calculated according to the certain statistics that 

are obtained through the observed values of a defined quality characteristic. Montgomery 

[3] provides a general model for a Shewhart-type control chart: 

𝑈𝐶𝐿 =  𝜇𝑤 + 𝐿𝜎𝑤 

𝐶𝐿 =  𝜇𝑤 

𝐿𝐶𝐿 =  𝜇𝑤 − 𝐿𝜎𝑤 

Here, w is a control statistic that measures some quality characteristic of interest, mean of w 

is denoted by 𝜇𝑤, and standard deviation of w is denoted by 𝜎𝑤. As an example, consider 

sample average (𝑥̅) as the control statistic (w). The following equations are given for this 

example to describe how the control limits are determined by using the sample averages of 

the monitored quality characteristic:  

𝑈𝐶𝐿 =  𝜇𝑥̅ + 𝐿𝜎𝑥̅ 

𝐶𝐿 =  𝜇𝑥̅ 

𝐿𝐶𝐿 =  𝜇𝑥̅ − 𝐿𝜎𝑥̅ 

For a “sample i" with size n, the average of the sample, denoted by 𝑥̅𝑖, is calculated as 

𝑥̅𝑖 =  
𝑥1 +  𝑥2 + 𝑥3+. . . +𝑥𝑛

𝑛
  

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
v
e
r
a

g
e
 Q

u
a

li
ty

 C
h

a
r
a

c
te

r
is

ti
c

Observations

CL 

UCL 

LCL 



9 

 

The CL is determined through the mean value (µ) of the sample averages, represented with 

𝝁𝒙̅ in the formula. For example, if m samples are considered for determining the process 

mean, 𝝁𝒙̅ is calculated through 

𝜇𝑥̅ =  
𝑥̅1 +  𝑥̅2 +  𝑥̅3 + … +  𝑥̅𝑚

𝑚
 

In calculations, L represents the distance of the limits from the center line. This distance is 

usually expressed in terms of standard deviation units. The general consideration for the L 

is 3𝜎 that is also referred to as “three sigma control limits”. Upper and lower control limits 

(UCL and LCL) are determined through the multiplication of L and the sample standard 

deviation 𝜎𝑥̅, 

𝜎𝑥̅ =  
𝜎

√𝑛
 

where 𝜎 is the standard deviation of individual observations. Note that, in the design of the 

chart, here it is assumed that an observation come from an in-control process and no out-of-

control data are presented. Since this is often unknown, a Phase I implementation of control 

charts is often performed.  Details regarding how the control limits are obtained in Phase I 

are described in the next sections. 

2.2.3. Type I - II errors and Their Relationship with Selection of “L” 

Montgomery [3] stated that there is a close relationship between control charts and 

hypothesis testing. In control charting, the process mean is tested with respect to the 

hypothesis of the process is in a state of statistical control. During process monitoring, if a 

sample average 𝒙̅𝒊 falls between the defined control limits, process mean is considered as 

in-control which may be expressed as 𝜇𝑥̅ =  𝜇0 in hypothesis testing. On the other hand, 

when a sample average 𝒙̅𝒊 falls outside the in-control interval, process mean is considered 

as out-of-control and may be expressed as 𝜇𝑥̅ ≠  𝜇0 in hypothesis testing. In spite of this 

close relationship, there are also differences between these two concepts. Interested readers 

may find detailed discussions in the literature regarding the similarities and differences of 

control charting and hypothesis testing, see for example Woodall [11]. 

The most important contribution of hypothesis testing to the control charting is the 

performance analysis. As in the hypothesis testing, two types of errors emerges in a control 

chart, as a result of the selected limits. 
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 Type I (α) error is the probability of concluding the process is out of control when it 

is really in control. 

 Type II (β) error is the probability of concluding the process is in control when it is 

really out of control. 

Although three sigma control limits are commonly preferred in control chart design, deciding 

to the value of L, is always an issue for the practitioners; because, it is directly related with 

the Type I and Type II errors. In terms of Type I (α) error, L can be defined as, 

𝐿 =  𝑍𝛼/2  

Therefore, in a typical control chart, selection of L requires careful considerations. For 

example, Type I (α) error is 0.0027 in the common selection of three sigma control limits (L 

= 3) when the distribution of observations is normal. This means that a Type I (α) error, 

which is a false out-of-control alarm, will occur 27 times out of 10,000 observations on 

average. This values is obtained as 

𝑍0.0027/2 =  𝑍0.000135  → 𝑍 = 3 (See the standard normal distribution table). 

When one desire to reduce Type I (α) error to 0.001 in one direction, the “L” should be 

selected as 3.09 sigma: 

𝑍0.002/2 =  𝑍0.001  → 𝑍 = 3.09 (See the standard normal distribution table). 

Selecting a greater value for L means that control limits will move away from the center line 

and the in-control interval will expand. Since the probability of falling outside the limits will 

decrease, the probability of Type I (α) error will reduce. However, since the points will have 

a higher probability of falling to the in control interval when it is wider, Type II (β) errors 

also increase. As a conclusion the following two behavior will occur according to the 

selection of L: 

 Larger L → wider in-control interval → Type I (α) will decrease, Type II (β) will 

increase. 

 Smaller L → narrower in-control interval → Type I (α) will increase, Type II (β) will 

decrease. 
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There are several discussions still have been going on regarding the selection of L. 

Montgomery [3] concluded that selecting the “L=3 sigma” as a multiple of standard 

deviation is common since it gives good results in practice.  

Selection of L also has a close relationship with performance evaluation of control charts. 

Average run length (ARL) metric is calculated trough Type I (α) and Type II (β) errors. 

Details regarding the relationship of L selection and chart performance will be given in 

Section 2.4.  

2.2.4. Further Details on Shewhart Control Charts 

Although the in-control interval is usually determined according to the ± 3 sigma limits, 

there are other proposed methods to increase sensitivity to the small shifts in the mean. 

Additionally, there are some generally accepted run rules, which have been used to detect 

unusual patterns on the control charts. These rules are mostly based on “non-random” 

patterns on the chart. Interested readers may see Western Electric Handbook [13] for the 

patterns indicating out of control processes. These run rule are usually good in terms of 

improving sensitivity; however, they are also poor in terms of increasing false alarm rates 

[11]. 

There are several control charts that are originated from the Shewhart Type Control Charts. 

“R” and “s” charts are used to monitor a process’s variability, “p” and “np” charts are used 

to monitor non-conforming products, and “c” and “u” charts are used to monitor 

nonconformities [3]. Moreover, for monitoring the parameters of all the standard probability 

distributions, there are various proposed control charts in the literature [1]. 

Although Shewhart control charts are very useful in practice, they have a major 

disadvantage. Montgomery [3] stated that Shewhart control charts are relatively insensitive 

to the small shifts; because, they only consider the last sample mean and ignore the 

information from previous samples. One may find various research attempts for Shewhart 

control charts, aiming to use the information from previous samples and thereby increase the 

sensitivity of the charts. They, however, have not became so popular since they decrease the 

simplicity and performance of Shewhart control charts [14]. 

After researches had focused more on to the control charting, some complementary charts 

such as Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average 

(EWMA) type control charts were developed. The main difference between these new charts 

and Shewhart type control charts is that CUSUM and EWMA allows information to be 

accumulated over time. Therefore, EWMA and CUSUM are also referred as time-weighted 
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control charts in the literature. Since these charts accumulate information from previous 

samples, they are effective charts when small shifts are of concern. Interested readers are 

referred to Hawkins and Olwell [15], Lucas and Saccucci [16], and Montgomery [3] for 

details regarding to the CUSUM and EWMA control charts. 

2.3. Phase I and Phase II Implementations in SPC 

SPC is implemented in two phases when process parameters are unknown: Phase I, in which 

retrospective analysis is implemented, and Phase II, in which process monitoring is 

implemented [5].  Being a retrospective study of the observations from a process, Phase I 

analysis aims to understand the process, characterize its in-control process performance and 

establish an online monitoring scheme, by investigating historical data. On the other hand, 

Phase II analysis aims to monitor the process in real time (online) and alarm if any 

abnormality occurs. 

Control charts have a major role in Phase I implementation. Phase I analysis is an iterative 

process and first control limits are assumed as trial limits. Assignable causes of variation 

indicate that there is an abnormality in the process; thus, corrective actions must be 

immediately taken when any assignable cause is detected. Samples with assignable causes 

are investigated, and when the sources of the causes can be determined and removed, the 

samples are removed from the data.  For each removal of the assignable cause, control limits 

are revised. This process continues until obtaining a stable process performance [5]. The 

output of a Phase I analysis is a model for the in-control state, which is then used to design 

a control chart for online process monitoring in Phase II (not necessarily the same type of 

chart as it was used for Phase I analysis). In phase II, the process data is monitored online to 

quickly detect process shifts. For each phase, different statistical methods should be used 

[17]. 

Despite the importance of Phase I analysis for SPC, most researchers ignored the distinction 

between Phase I and II in the current teaching and practice of SPC. It is common to assume 

that control chart parameters are known for Phase II implementation. In practice, however, 

this is not the case; because, Phase II control limits are obtained through a Phase I 

implementation. Vining [18] stated that the distinction between Phase I and II 

implementations of control charts is an issue that have attracted the attention of researchers 

recently.  
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2.3.1. Phase I Implementation 

The major purpose of Phase I analysis is ensuring that the process is operating in an in-

control state. An in control process should be operating around an acceptable target without 

assignable causes. Several statistical tools including control charts, graphical and numerical 

analysis tools, and data handling methods are employed in this phase [5]. Among these 

methods, control charts have a substantial position for Phase I analysis. More specifically, 

Shewhart Control Charts are appropriate for Phase I implementation; because, they are used 

for general purposes and effective in detecting large shifts. The following steps are 

implemented sequentially as a part of Phase I Analysis [4] [19].  

i. As an initial step, identification of an appropriate probabilistic model for 

observations is essential.  

ii. Based on the considered model of the observations, an appropriate control chart is 

selected.  

iii. The parameters required for the control chart design are estimated.  

Although the parameter estimation step of a Phase I analysis may be skipped when the 

parameters are assumed to be known, in practice this is not the case since there is often not 

enough historical knowledge and expert opinion. In the literature, the situation in which 

parameters are known is referred as the “standards known case or Case K”; the situation in 

which the parameters are unknown is referred as the “standards unknown case or Case U”.  

iv. Estimated parameters are first used to calculate trial control limits of the selected 

control chart, which is then used to identify outliers.  

v. Outliers, as the out-of-control points exceeding the control limits, are investigated 

for possible process upsets and corrective actions are taken accordingly. 

vi. Outliers that indicate a deviation from the in-control state of a process are then 

filtered and the parameter estimates are revised. 

vii. The control limits are recalculated from the revised estimates and these iterations are 

continued until all the remaining observations fall between the control limits. Mind 

that in-control a false alarm rate is expected, therefore, some observations may fall 

close but outside the control limits. 

Sometimes, it may not be possible to classify an outlier as a process upset. In such cases, 

possible actions are; 



14 

 

a. Filter the observation, which is common when it is believed that the point does not 

represent an in-control process state. 

b. Retain the observation, which is common when it is believed that the point does 

represent an in-control process state. 

Phase I analysis will lead to parameter estimation from incomplete data if outliers are 

filtered. On the other hand, if such outliers are erroneously kept in the sample, they are 

expected to influence the parameter estimates used in chart design, and consequently the 

process monitoring performance in Phase II. As conclusion, the performance of process 

monitoring in Phase II depends on to the success of the former Phase I implementation. See 

Figure 4 for a flow chart of the activities used in Phase I implementation. 

2.3.2. Phase II Implementation 

After obtaining a stable and reliable process in Phase I, the final control chart design is 

assumed as representative of an in-control process performance. This design is then used in 

Phase II, in which future process monitoring is executed. Therefore, Phase II implementation 

of control charts is for process monitoring, not achieving an in-control chart design. An 

alarming control chart during process monitoring is an indicator of an abnormality in the 

process. When such a situation exists, the out-of-control-action plan (OCAP) related with 

the control chart must be activated. The OCAP aims to resolve out of control condition and 

eliminate the assignable cause [3]. 

As mentioned in previous sections; in the literature, process parameters are often assumed 

as known before the Phase II implementation. However, a chart designer usually must 

estimate process parameters in real world applications. Hence, parameter estimation in Phase 

I analysis will directly effects the chart design and process monitoring performance in Phase 

II [7]. Statistical performance of Phase II is measured by the probability of a signal or some 

parameter of the run length distribution. Average run length (ARL) is the most common 

performance indicator used in control charts. Since it is more important to detect reasons of 

out-of-control points rather than false alarms in Phase I, ARL is not a good measure for that 

phase. On the other hand, monitoring the process is the main task of Phase II implementation 

in which false alarm rates are important. Thus, ARL is a good performance evaluator for 

Phase II control charts [3]. See the following section for the performance metrics used in 

control charts. See the following Figure 4 for a flow chart of the activities used in Phase II 

implementation. 
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2.4. Metrics for Control Chart Performance 

The number of samples required until the chart alarms is referred to as run length. Although 

the run length distribution is usually skewed to the right, the average run length (ARL) is the 

most popular performance metric used in control charts [1]. The primary purpose of ARL is 

to describe the average number of points plotted before a point falls outside of the control 

limits. For any Shewhart Type Control Chart (when observations are uncorrelated), the ARL 

can be calculated as [3]: 

ARL = 
1

p
 

Here, p is the probability that any point falls outside of the in-control interval. To evaluate 

the monitoring performance of a control chart, the average number of plotted statistics before 

a false signal is investigated as the in-control ARL (ARL0), while its performance to quickly 

detect out-of control points is quantified through out-of control ARL (ARL1).  

Remember the Type I (α) and Type II (β) errors described previously. The former is the 

probability of concluding the process is out of control when it is really in control; the latter 

is the probability of concluding the process is in control when it is really out of control. Since 

Type I (α) error represent the probability of a point to fall outside of the limits for an in-

control process, the probability “α” represents the probability “p” in ARL0 calculations. For 

example, remember that Type I (α) error is 0.0027 for the “three sigma control limits (L=3)” 

and when the observations are normal distributed. Therefore, ARL0 is calculated as: 

ARL0 = 
1

α
 = 

1

0.0027
 = 370 

Note that, ARL0 = 370 means that, during process monitoring, a Shewhart Control Chart will 

signal a false alarm in on average 370 samples. In the other hand, out of control ARL (ARL1) 

is used to measure the performance of a control chart to detect an out of control point (e.g. 

shifts in the mean). Note that, in a control chart design, sample size and the frequency of 

sampling are the two parameters that determines the performance of a control chart to detect 

small shifts in the process. When sample size increases, probability of detecting a shift in 

the mean increases [20].  
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Since Type II (β) error represents the probability of an out of control point to fall in between 

the control limits, the probability “β” represents the probability 1-p for out of control ARL 

(ARL1) calculations. Thus, ARL1 is calculated as   

ARL1 = 
1

1 - β
 

The probability of a point to fall between control limits (𝛽) can be determined by using 

Operating-Characteristic Curves. Operating-characteristic curves for some control charts 

can be found in [3]. 

The performance of the control charts in terms of ARL results are also closely related with 

selection of “L”. Details regarding how selection of “L” effects control chart performance 

were already described in Section 2.2.3. Table 1 is given to show how different “L” 

selections for a control chart design effects ARL0 and ARL1 performances. As it is seen, 

increased “L” will result in enhanced ARL0 performance, which means that the designed 

control chart will be giving less false alarms. On the other hand, ARL1 performance, 

however, will be worse with increased “L”. In other words, it will take longer to detect 

process shifts for a chart designed with increased “L”. Additionally, one may also observe 

how Shewhart Type Control charts perform worse for small shifts, e.g. “0.5σ ”. 

Table 1. The relationship between the selection of L value, ARL0 and ARL1 performances 

 ARL0 ARL1 (mean shifts, in terms of “σ”) 

  0.5 1 2 4 

L = 3.00 370.4 155.2 43.9 6.3 1.2 

L = 3.09 499.6 201.4 54.6 7.3 1.2 

L = 3.30 1034.3 380.6 93.2 10.3 1.3 

2.5. Performance Evaluation in Phase I 

For performance evaluation in Phase II, the major concern is detecting process shifts as 

quickly as possible. ARL is common metric used in performance comparison of control 

charts in Phase II. For Phase I, the major concern is controlling the false alarm rate. There 

are two common methods used to measure the statistical performance of a control chart in 

Phase I implementation: False alarm rate (FAR), and False alarm probability (FAP) [17]. 

FAR is the probability of a false alarm at every sampling stage. Control chart limits may be 

designed according to a desired FAR such as 0.0027. Unfortunately, some problems causing 
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increased false alarms occur when a fixed FAR is used in Phase I. The major problems 

related with FAR are dependency and simultaneous comparison. Since same control limits 

are used to compare all subgroups, signals given by chart are somewhat statistically 

dependent. Additionally, comparing subgroups at the same time results in a simultaneous 

comparison problem [5].  

FAP is the probability of a control chart to alarm at least one time when the process is in-

control [11]. A specific FAP that helps to control the probability of false alarms, may be used 

as a metric to decide control limits on Phase I charts. Calculation of control limits for a 

certain FAP is the recommended method in the literature for Phase I chart design. FAP 

considers dependency issues between signals and handle the simultaneity problems [21].  

Chakraborti et al. [5] explain the effects of FAR and FAP usages in control chart 

performance with the following very simple, but clear example. Assume that one desire to 

design a Shewhart type control chart with “3 sigma” control limits. For a control chart with 

“3 sigma” limits, FAR is 0.0027. This probability is the false alarm probability of each 

sample. Thus, the probability of not alarming is (1-0.0027). For example, if 25 samples 

simultaneously compared in Phase I, the probability of at least one false alarm, FAP, is equal 

to 1-(1-0.0027)25= 0.0654 that is unacceptably high for an in-control process. As it seen, 

using FAR in chart design results with a higher false alarm probability that causes a poor 

control chart performance. Alternatively, one may desire to have a FAP that is equal to 

0.0027, instead of 0.0654. Then, 1-(1-FAR)25 should be equal to the 0.0027. Hence, FAR 

can be calculated as 1-(1-0.0027)1/25 = 0.0001. This means that one who desires to have a 

FAP equals to 0.0027 need to choose “3.69 sigma control limits” in Phase I.  

As a conclusion, FAP is a more reasonable performance metric used in Phase I to design 

control limits; because, it considers effects of estimation, dependency, and the simultaneous 

comparison issues [5].  
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3. METHODOLOGY 

Phase I analysis of control charting includes parameter estimation, trial chart design, and 

outlier filtering, which are performed iteratively until reliable control limits are obtained. 

These final control limits are then used in Phase II for online monitoring to detect out-of-

control states. During Phase I and Phase II implementations, there have been two common 

assumptions in SPC control charting literature. 

In order to simplify development of control charts, process parameters have generally been 

assumed as known. In practice, however, process parameters are often unknown and one 

needs to estimate them to decide on an appropriate chart design (Chakraborti et al., 2008). 

Many studies have presented that the parameter estimation in Phase I implementation have 

significant effects on the actual chart performance of process monitoring in phase II [7]. 

Since effects of parameter estimation on control chart performance are significant, Phase I 

implementations have gained attention from the SPC researchers.  

As a second assumption in the studies, process observations are generally token as 

independent and identically distributed over time.  Although this assumption facilitate the 

works of SPC researchers, real industrial processes in practice often have correlated 

observations. When correlation exists, Phase I implementation becomes a more challenging 

issue. Autocorrelation between observations effect parameter estimations, and so control 

chart design. Adams and Tseng [22] showed that the error in estimating autocorrelation 

parameters causes a poor ARL performance. Furthermore, Boyles [23] considered that 

autocorrelation is an important issue for control chart design and proposed an approach for 

Phase I analysis of autocorrelated data. As a conclusion, researchers have conducted various 

studies to implement control charting for autocorrelated observations. In SPC, applying 

standard charts to the residuals of an appropriate time series model or modifying the known 

charts for correlated data are the mainly proposed two approaches for dependent 

observations [9]. Both of these two methods are explained in the Section 3.1. 

The methodology employed in this thesis research deals of with both these two assumptions. 

Both effects of parameter estimation on chart design during Phase I implementation, and 

effects of Phase I analysis on performance of control charts in Phase II implementation are 

investigated for autocorrelated time series data. The main difference of this research from 

the others investigating effects of autocorrelation on the control chart performance is that, 

this research also investigates the effects of outliers on the parameter estimations for 
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correlated data. When the outliers are erroneously retained in the set of observations for 

Phase I analysis, this will have effect on the estimates of the control chart parameters used 

in the design, where the effect will propagate to the monitoring performance of the chart in 

Phase II [19]. For instance, Ledolter [24] showed that outliers have significant effects on the 

forecasts of time series models.  

As a methodology, autocorrelated observations from AR (1) processes are simulated by 

using different observation lengths and autocorrelation parameters. To generate outliers, 

some data with certain rates are randomly selected and converted to the outliers according 

to a certain rule. For the missing case, randomly selected data are assumed as outliers and 

filtered from the generated AR(1) observations. For Phase I implementation, these simulated 

data were analyzed for two extreme cases: all outliers are retained in the data, and all outliers 

are discarded from the data. Note that filtering of outliers here results in incomplete time 

series data for parameter estimation. For both cases, parameters are estimated and control 

charts are designed according to the estimations. Maximum Likelihood (ML) and 

Conditional Sum of Squares (CSS) estimators are used for parameter estimation process. 

The approach employed in this study has two stages: 

1. The control chart design with estimated parameters,  

2. The computation of the ARL performance using the obtained design.  

Therefore, after the final control chart design is obtained at the end of Phase I, Phase II 

performance of this control chart design is also investigated through the ARL metric. As a 

conclusion, this research develops a general strategy for Phase I analysis of autocorrelated 

data with outliers [19].  

3.1. Control Charts for Autocorrelated Variables Data 

Standard control charts explained in Chapter 2 were proposed for the cases where 

consecutive observations are independent and identically distributed (i.i.d.). Autocorrelated 

observations, however, are also common in many industrial applications, and such 

autocorrelation may significantly affect the ARL performance of standard control charts. In 

fact, Maragah and Woodall [25] showed that ARL performance may be misleading if the 

chart design is done by ignoring the actual level of autocorrelation. Knoth and Schmid [10] 

showed that applying standard control charts to the dependent data affects the false alarm 

rates and leads to an unexpected control chart performance. Interested readers are also 
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referred to [19], Alwan and Roberts [26], Montgomery, et al.  [27], Alwan [28], Harris and 

Ross [29], and Runger and Willemain [30] for researcher that investigated effects of 

autocorrelation on control chart performance. 

There are two common approaches to monitor autocorrelated observations [9]:  

i. Residual Control Charts: Explain process dynamics by an appropriate time series 

model [31] and monitor the forecast residuals. If the process can be modeled 

adequately, residuals will be independent and standard control charts can be used on 

the residuals rather than the actual observations. This is a widely accepted approach 

for dealing with autocorrelated processes [10]. Hence, residual control charts have 

been intensively discussed in the literature (see for example; Alwan and Roberts [26], 

Harris and Ross [29], Montgomery, et al. [27], and Schmid [32]. Note that, time 

series parameters are often estimated from a sample of observations that is believed 

to represent the normal operating conditions of the process. Although the differences 

between the estimated and exact parameter values are expected to be small for larger 

sample sizes, it is not possible to achieve a purely independent residual sequence [9].  

ii. Modified Control Charts: Monitor the autocorrelated observations by modifying 

the standard control limits to account for the autocorrelation. For the modified 

CUSUM, EWMA, and Shewhart control charts, a review can be found in Knoth and 

Schmid [10]. Schmid [32] compared the performance of the modified Shewhart chart 

with that of the residual Shewhart chart in the case of an underlying AR(1) process. 

He concluded that the modified chart provides the better out-of-control performance 

if the autocorrelation parameter is positive (as it is usually observed in practice). 

Analogous conclusions in the case of estimated parameters or concerning CUSUM 

and EWMA charts are drawn by Kramer and Schmid [33] and Knoth and Schmid 

[10], respectively. 

There are several other researches in the literature investigating the residuals and modified 

charts. Interested readers are referred to, for example, Runger, Willemain and Prabhu [34], 

Wiel [35], Apley and Shi [36], Runger [37], Lu and Reynolds [38], Kramer and Schmid [39], 

Jiang [40].  

In this research, in view of the findings by Schmid [41] and Kramer and Schmid [33], a two-

sided modified Shewhart control chart for individual observations, which is well-suited for 
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positively correlated data (𝜙 > 0) is used.  Since the normally distributed data is considered, 

the control chart has symmetric control limits with the standardized control limit denoted by 

L. Hence, an alarm is triggered if |𝑋𝑡 − 𝜇| ≥ L∙σ.  

3.2. Investigating Effects of Estimation on the Control Chart Design Parameters in 

Phase I 

To illustrate the effect of estimation on the control chart parameters, a stationary AR(1) 

model for autocorrelated observations, 𝑋, is considered as an important special case of the 

AutoRegressive Integrated Moving Average (ARIMA) models for time series data [31].  

Consider the AR(1) model 

𝑋𝑡 = 𝜙 𝑋𝑡−1 + 𝜀𝑡,              t=1, 2 ,…, 

where 𝜙 is the autoregressive parameter, 𝜀𝑡 is the white noise process of i.i.d. normal random 

variables having mean 0 and variance 𝜎𝜀
2, and 𝑡 is the time index. Note that an AR(1) model 

of a time series process regresses the observation 𝑋𝑡 at time 𝑡 on the observation 𝑋𝑡−1 at time 

𝑡 − 1. For a stationary process, the autocorrelation parameter assumes a value |𝜙| < 1, the 

mean and variance of the process 𝑋𝑡 are 𝜇 = 0 and 𝜎2 = 𝜎𝜀
2 (1 − 𝜙2)⁄ , respectively. 

Without loss of generality but for simplicity, we let 𝜎𝜀
2 = 1 − 𝜙2 so that 𝜎2 =1, i.e., we have 

the same marginal distribution for any choice of 𝜙. 

In this research, like as Weiß and Testik [4] and [19], two extreme cases regarding the 

availability of data are considered for estimating process parameters:   

Case (i): All outliers are filtered from the dataset before estimation. 

Case (ii): All outliers remain in the dataset while estimation. 

In these settings, case (i) can be considered to be the “the best-case scenario” in terms of 

identifying out-of-control process data in Phase I. Note that filtering of outliers here results 

in incomplete time series data for parameter estimation. Because of the autocorrelation, the 

exact position of the filtered observations is required for the estimation methods, also see 

Weiß and Testik [4]. Similarly, case (ii) can be considered to be “the worst-case scenario” 

for identifying out-of-control process data in Phase I, where contaminated but complete time 

series data are available for parameter estimation.  
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For estimating the process parameters, here the maximum likelihood (ML) and conditional 

sum of squares (CSS) estimators are considered. These and further approaches have been 

studied intensively in the literature, both for complete and incomplete time series data (e.g., 

R. H. Jones [42]). In the present research, we use the readily available implementations in 

R’s arima command [43]. The following command is used in the simulations to fit AR (1) 

model to the simulated time series data: 

 arima(x, order = c(1,0,0), transform.pars=FALSE, method = ("ML", or “CSS”)). 

Here, x represents a univariate time series data. Order represents the specifications of the 

non-seasonal part of the ARIMA model: the components (p, d, q) are the AR oder, the degree 

of differencing, and the MA order, respectively. Since the time series data are simulated 

from an AR (1) process in this study, see the next section, order is (1, 0, 0). Transform.pars 

is a logical argument. If it is set as true, the AR parameters are transformed to ensure that 

they remain in the region of stationarity. This argument is not used for CSS method.  Finally, 

the method represents the fitting method: ML or CSS. In this research, both methods are 

fitted to the generated time series data. 

3.3. Experimental Settings for Simulations 

Simulations were realized by using R’s arima.sim command [43]. The following describes 

how R’s arima.sim command runs to simulate time series data from ARIMA models [43]:  

 arima.sim(model=list(ar=c(𝜙)), n= T, rand.gen = rnorm, mean=0, sd =√1 − 𝜙2) 

Here, “model” represents a list with component “ar” giving the AR(1) coefficient. As stated, 

0.3, 0.5, and 0.7 are used for the model argument. The length of output series is represented 

with “n”, which is selected 50, 100, and 200 respectively. “Rand.gen” is the function to 

generate innovations. Here, the data are generated from a normal distribution (rnorm); thus 

the “mean” and “standard deviation (sd)” are the parameters of normal distribution. 

By using generated data from the AR(1) model, the ML and CSS estimators were evaluated 

as follows: 

 The mean and variance of the simulated process 𝑋𝑡 were 𝜇 = 0 and 𝜎2 =1, 

respectively.  

 The values of the autocorrelation parameter 𝜙 used in the simulations of the process 

were 0.3, 0.5, and 0.7, which satisfy the stationary condition.  
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 In the simulations, data lengths of size T= 50,100, and 200 were considered to obtain 

the estimates 𝜙̂, 𝜇̂, and 𝜎̂2 for 𝜙, 𝜇, and 𝜎2, respectively. To differentiate ML and 

CSS estimates, subscripts are used in the following.  

 10,000 replications were conducted for each scenario and, hence, empirical 

distributions of the ML and CSS estimators were obtained.  

Table 2  summarizes all considerations for the simulations. Here, the outliers’ rate column 

represents the rates for both for outliers and missing observations cases. Time series data 

were generated for all the simulation scenarios.  

Table 2. Experimental Settings Scenarios 

𝝓 T 
Outliers’ Rate 

(Missing Rate) 
Estimators Estimates 

0.3 

0.5 

0.7 

50 

100 

200 

0 

0.02 

0.05 

0.1 

0.25 

ML 

CSS 

𝜙̂ 

𝜇̂ 

𝜎̂2 

For the case (i) above (perfect outlier identification), in each replication, observations from 

the generated time series with length 𝑇 were randomly selected with rates 𝑟 =

0, 0.02, 0.05, 0.1 and 0.25. Then these selected observations were treated as randomly 

scattered outliers within the time series data and therefore filtered (value “NA” at the 

respective positions), which leaves an incomplete time series dataset for estimation.  

In the case (ii), where it is assumed that all the outliers are in the time series during estimation 

(worst case), a similar procedure is applied to randomly select the observations with rates 

𝑟 = 0.02, 0.05, 0.1 and 0.25. This time, without filtering the randomly selected 

observations, random variates from a normal distribution with mean 4 and variance 1 are 

generated and added to the selected observations, to have contaminated time series data with 

additive outliers [44] at rates 𝑟. This particular choice of 4𝜎 shift in the mean for generating 

outliers was motivated by the popular 3𝜎 rule, where the extension of the outliers will usually 

be sufficiently large to be detected by a chart with 3𝜎 limits. 

For the two cases above, the rate 𝑟 = 0 implies no outliers and no missing observations in 

the time series process. In fact, the special case 𝑟 = 0 corresponds to the studies on the 

effects of estimation on control charts’ performance (see, e.g., Jensen, et al. [7]), where 

outliers and missing observations are not considered. The following simulation scenarios 
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tree in Figure 5 is given to explain how simulation cases are branched. In total, 486 scenarios 

were simulated.  

 

Figure 5. Simulation Scenarios Tree 
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3.4. Investigating Effects of Phase I Analysis on Control Chart Performance in Phase II 

As it is stated in the beginning of the Chapter 3, the approach employed during this research 

has two stages: First, estimating parameters and obtaining a final control chart design in 

Phase I; second, computing ARL performance for this final design to investigate effects of 

Phase I Analysis on Phase II performance.  

In the second stage, the effects of these parameter estimates are studied through the chart 

design on the performance of control charts, again considering the cases (i) and (ii). During 

Phase I, the use of Shewhart charts is recommended [3]. Remember that details regarding 

Shewhart type control charts are discussed in Section 2.2. The control charts for the 

autocorrelated data are also discussed in Section 3.1. Please remember that, there are two 

common approaches to monitor autocorrelated data: Residual Control Charts and Modified 

Control Charts. After some simulation studies, Schmid [41] and Kramer and Schmid [33] 

concluded that modified Shewhart chart with estimated parameters should be preferred for 

AR(1) processes with positive correlation (𝜙 > 0). As stated before, in view of the findings 

of these researches, a two-sided modified Shewhart control chart is used in this thesis. 

Normally distributed data is considered; thus, the control chart has symmetric control limits 

with the standardized control limit at a distance “L”, in terms of standard deviation unit. 

Hence, whenever |𝑋𝑡 − 𝜇| ≥ L∙σ, an alarm is triggered.   

The simulation principles and settings for parameter estimation were already discussed in 

previous sections. In the second stage, the estimates for 𝜙 from each replication were used 

to determine control limits through ARL0 evaluations, where the AR(1) model with the 

estimated parameter 𝜙̂ is used to yield an expected ARL0 performance of 370.4. For this 

purpose, ARL0 computations were conducted by means of R’s spc package [45], see 

Appendix A for the details. This design is then used in the second stage of our approach, 

where the true process parameters are used to compute the true ARL0 performance of the 

chart having the control limits obtained by use of process parameter estimates.  Note that, 

here ARL is a function of the estimators and, hence, itself random. Therefore, as the 

performance measures, mean ARL0 and median ARL0 were computed from the results of 

10,000 simulation replications. 
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4. RESULTS AND DISCUSSION 

During simulations, AR (1) time series processes are generated for different observation 

lengths and autocorrelation parameters, and certain parameters are estimated. As explained 

previously, the outliers were generated for different rates and randomly placed to the time 

series data before estimations. Remember that, while estimating parameters in Phase I, two 

cases are considered: all outliers are retained in the data (case i), and all outliers are discarded 

from the data (case ii). Each simulation scenario is replicated for 10,000 times; thus, 

parameter estimation results are obtained from these 10,000 repetitions. As stated before, to 

estimate the parameters, Maximum Likelihood (ML) and Conditional Sum of Squares (CSS) 

estimators are used. The estimation results presented in this chapter are both for ML and 

CSS estimators. After obtaining parameter estimates and the final control chart design at the 

end of Phase I, Phase II control chart performance based on this chart design is also 

investigated through the ARL metric. 

In this chapter, the results of parameter estimations will be presented first. Then, the ARL 

performance of the control chart designed through the estimated parameters will be 

discussed.  

4.1. Simulation Results for Estimates of Control Chart Design Parameters 

Means and standard deviations of the parameter estimates are provided and discussed for 

both case (i) and case (ii) in the following sections. The results are provided for the data 

lengths T = 200,100, and 50 respectively.  

As expected, main differences of the results when T = 200 from the corresponding results of 

T = 100 and 500 are; means of the estimates are closer to the true values of the parameters, 

and standard deviations of the estimates are smaller with the larger data length T = 200. As 

an example, means and standard deviations of 10,000 𝜙 estimates for case (i) are compared 

in Figure 6. One may see how estimation results behave for different data lengths T = 200, 

100, and 50. The mean results (left graph) are more close to the actual value and standard 

deviations (right graph) are smaller with larger data length T = 200, compared to the T = 

100, and T = 50. The comparison are only provided for ML estimator here; however, CSS 

estimator behaves similar.  Additionally, this conclusion is also same for case (ii) and for 

𝜇 𝑎𝑛𝑑 𝜎2 estimations. 
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Figure 6 – Mean and standard deviation of 𝜙 = 0.5 estimates obtained by ML estimator  

Remember that this research focuses on the effects of outliers on parameter estimations when 

the data is correlated. The parameter estimation results of T = 200, estimated from 10,000 

repetitions, for Case (i) and for Case (ii), are given in the Table 3 and Table 4, respectively. 

Note that, there are two major parts in the tables: Mean of Parameter Estimates (left part), 

and Standard Deviation of Parameter Estimates (right part). Here, “mean” represents the 

average value of 10,000 estimates, and “standard deviation” represents the standard 

deviation of 10,000 estimates.  

Table 3. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 200: The case of outliers being filtered from the dataset before estimation, Case (i). 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2908 0.2908 -0.0024 -0.0024 0.9931 0.9930 0.0674 0.0674 0.0954 0.0959 0.1090 0.1091 

0.02 0.2906 0.2906 -0.0025 -0.0025 0.9927 0.9925 0.0684 0.0686 0.0958 0.0979 0.1101 0.1118 

0.05 0.2904 0.2905 -0.0024 -0.0026 0.9927 0.9924 0.0703 0.0712 0.0964 0.1011 0.1110 0.1144 

0.1 0.2901 0.2900 -0.0025 -0.0022 0.9927 0.9914 0.0733 0.0749 0.0978 0.1072 0.1137 0.1211 

0.25 0.2879 0.2890 -0.0022 -0.0024 0.9905 0.9900 0.0854 0.0904 0.1020 0.1279 0.1235 0.1479 

0.5 

0 0.4871 0.4871 0.0011 0.0013 0.9835 0.9835 0.0621 0.0621 0.1210 0.1219 0.1268 0.1273 

0.02 0.4870 0.4871 0.0013 0.0015 0.9834 0.9836 0.0626 0.0633 0.1213 0.1246 0.1275 0.1300 

0.05 0.4865 0.4865 0.0011 0.0007 0.9836 0.9835 0.0637 0.0652 0.1217 0.1282 0.1284 0.1343 

0.1 0.4854 0.4854 0.0009 0.0013 0.9822 0.9819 0.0660 0.0696 0.1231 0.1361 0.1305 0.1420 

0.25 0.4834 0.4843 0.0008 0.0003 0.9814 0.9820 0.0733 0.0835 0.1252 0.1625 0.1376 0.1730 

0.7 

0 0.6851 0.6850 0.0007 0.0005 0.9741 0.9739 0.0518 0.0520 0.1662 0.1689 0.1663 0.1675 

0.02 0.6850 0.6850 0.0008 0.0007 0.9739 0.9745 0.0521 0.0530 0.1662 0.1714 0.1666 0.1714 

0.05 0.6849 0.6845 0.0008 0.0007 0.9739 0.9735 0.0526 0.0550 0.1664 0.1779 0.1672 0.1767 

0.1 0.6846 0.6843 0.0004 0.0003 0.9737 0.9755 0.0533 0.0577 0.1666 0.1880 0.1684 0.1876 

0.25 0.6832 0.6828 0.0011 -0.0020 0.9727 0.9816 0.0571 0.0707 0.1684 0.2279 0.1727 0.2372 

0.41
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Table 4. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 200: The case of outliers being in the dataset while estimation, Case (ii). 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML 𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML 𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2908 0.2908 -0.0024 -0.0024 0.9931 0.9930 0.0674 0.0674 0.0954 0.0959 0.1090 0.1091 

0.02 0.2186 0.2185 0.0778 0.0777 1.3280 1.3280 0.0742 0.0742 0.0977 0.0982 0.2088 0.2092 

0.05 0.1649 0.1649 0.1973 0.1974 1.7980 1.7980 0.0777 0.0777 0.1077 0.1080 0.4194 0.4197 

0.1 0.1211 0.1211 0.3971 0.3972 2.5180 2.5180 0.0799 0.0799 0.1369 0.1373 0.7556 0.7561 

0.25 0.0762 0.0762 0.9922 0.9920 4.1450 4.1450 0.0779 0.0779 0.2671 0.2672 1.5316 1.5316 

0.5 

0 0.4871 0.4871 0.0011 0.0013 0.9835 0.9835 0.0621 0.0621 0.1210 0.1219 0.1268 0.1273 

0.02 0.3673 0.3673 0.0812 0.0813 1.3150 1.3150 0.0806 0.0805 0.1228 0.1236 0.2205 0.2213 

0.05 0.2760 0.2760 0.2008 0.2010 1.7860 1.7870 0.0917 0.0917 0.1305 0.1311 0.4240 0.4253 

0.1 0.2020 0.2020 0.4028 0.4028 2.5260 2.5260 0.0960 0.0960 0.1580 0.1585 0.7584 0.7587 

0.25 0.1270 0.1270 1.0060 1.0060 4.2010 4.2000 0.0900 0.0900 0.2788 0.2791 1.5697 1.5698 

0.7 

0 0.6851 0.6850 0.0007 0.0005 0.9741 0.9739 0.0518 0.0520 0.1662 0.1689 0.1663 0.1675 

0.02 0.5151 0.5149 0.0807 0.0804 1.3040 1.3040 0.0928 0.0927 0.1675 0.1691 0.2426 0.2428 

0.05 0.3883 0.3882 0.2005 0.2005 1.7790 1.7790 0.1099 0.1098 0.1736 0.1749 0.4392 0.4396 

0.1 0.2836 0.2836 0.4013 0.4016 2.5080 2.5090 0.1153 0.1152 0.1950 0.1961 0.7690 0.7700 

0.25 0.1787 0.1787 1.0020 1.0020 4.1620 4.1620 0.1079 0.1079 0.2979 0.2983 1.5316 1.5315 

Consider the estimation results for the “parameter 𝝓”. The ML and CSS estimators perform 

nearly equivalently in terms of their means, with some negative bias in all cases, which 

increases as “r (outliers’ rate)” increases. In general, the effect of incomplete datasets used 

in case (i) is slight on the mean of estimates from both estimators for 𝜙, while the standard 

deviations of the CSS estimates get larger than the ones of ML estimates with increasing 𝑟. 

However, with the contaminated datasets used in case (ii), even 2 % outliers in the dataset 

heavily affect the means of the ML and CSS estimates and a strong negative bias can be 

observed. This observation is completely analogous to the findings by Weiß and Testik [4] 

for discrete autoregressive processes. 

Now consider the results of estimation corresponding to the “parameters 𝝁 𝒂𝒏𝒅 𝝈𝟐”, where 

the observed patterns are the same for both of the parameters. Here, the ML and CSS 

estimators of the parameters perform nearly equivalently in terms of their means, while slight 

deviations seem to have no patterns and can be attributable to the simulation error. In terms 

of the standard deviation of the estimates, CSS estimator is more sensitive to the incomplete 

datasets of case (i) than the ML estimator. Although the means of the estimators are not 

significantly affected when incomplete datasets of case (i) are used, bias and standard 

deviation of estimators significantly increase, as 𝑟 increases, with the use of contaminated 

datasets from case (ii).  
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All these results are also represented with the boxplots to visualize the given conclusions 

above. Note that, only the boxplots of data length T = 200 and 𝜙 = 0.5 are provided in here 

due to similarity of conclusions and maintaining the integrity of the text, but complete 

boxplots for the remaining autocorrelation parameters 𝜙 = 0.3 and 0.5 are available in 

Appendix B. 

 

a. Box plot of estimates for the autocorrelation parameter 𝜙. 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 7. Box plots of the parameter estimates from simulations – 𝑇 = 200, 𝜙 = 0.5. 
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As stated at the beginning of this section, estimation results for T = 200, 100 and 50 are 

similar in terms of patterns. The only difference is that, T = 200 results have precise closer 

means of the estimates to the actual value and smaller standard deviations compared to the 

T = 100, and 50. The parameter estimation results of T = 100 and 50, estimated from 10,000 

repetitions for Case (i) and for Case (ii), are given in the Tables 5-8, respectively. 

Table 5. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 100: The case of outliers being filtered from the dataset before estimation. 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2804 0.2804 -0.0011 -0.0013 0.9808 0.9808 0.0963 0.0964 0.1365 0.1380 0.1520 0.1528 

0.02 0.2801 0.2804 -0.0011 -0.0011 0.9807 0.9808 0.0980 0.0984 0.1372 0.1406 0.1533 0.1558 

0.05 0.2795 0.2799 -0.0010 -0.0015 0.9797 0.9793 0.1006 0.1017 0.1382 0.1460 0.1558 0.1622 

0.1 0.2790 0.2798 -0.0016 -0.0011 0.9803 0.9793 0.1045 0.1070 0.1400 0.1543 0.1581 0.1698 

0.25 0.2727 0.2749 -0.0014 -0.0024 0.9777 0.9735 0.1234 0.1297 0.1474 0.1861 0.1713 0.2037 

0.5 

0 0.4731 0.4732 -0.0019 -0.0024 0.9697 0.9701 0.0892 0.0894 0.1731 0.1755 0.1780 0.1801 

0.02 0.4727 0.4729 -0.0020 -0.0021 0.9692 0.9698 0.0901 0.0914 0.1735 0.1790 0.1789 0.1841 

0.05 0.4724 0.4724 -0.0018 -0.0030 0.9693 0.9697 0.0918 0.0945 0.1742 0.1852 0.1805 0.1918 

0.1 0.4712 0.4718 -0.0014 -0.0022 0.9687 0.9695 0.0948 0.1002 0.1751 0.1964 0.1829 0.2015 

0.25 0.4666 0.4672 -0.0015 0.0008 0.9650 0.9647 0.1056 0.1200 0.1795 0.2352 0.1919 0.2473 

0.7 

0 0.6695 0.6690 -0.0001 -0.0005 0.9485 0.9470 0.0762 0.0766 0.2338 0.2403 0.2308 0.2317 

0.02 0.6693 0.6687 0.0000 0.0002 0.9483 0.9477 0.0766 0.0781 0.2339 0.2444 0.2312 0.2373 

0.05 0.6689 0.6683 -0.0002 -0.0006 0.9484 0.9482 0.0774 0.0804 0.2341 0.2533 0.2321 0.2464 

0.1 0.6681 0.6676 0.0002 -0.0008 0.9478 0.9515 0.0789 0.0852 0.2348 0.2679 0.2327 0.2623 

0.25 0.6654 0.6651 0.0006 -0.0014 0.9460 0.9719 0.0848 0.1043 0.2367 0.3413 0.2398 0.4457 

Table 6. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 100: The case of outliers being in the dataset while estimation. 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2804 0.2804 -0.0011 -0.0013 0.9808 0.9808 0.0963 0.0964 0.1365 0.1380 0.1520 0.1528 

0.02 0.2094 0.2093 0.0790 0.0788 1.3130 1.3130 0.0998 0.0997 0.1381 0.1395 0.2500 0.2517 

0.05 0.1561 0.1561 0.1985 0.1984 1.7850 1.7850 0.1055 0.1054 0.1457 0.1470 0.4511 0.4540 

0.1 0.1126 0.1125 0.3995 0.3993 2.5190 2.5190 0.1062 0.1061 0.1696 0.1710 0.7951 0.7977 

0.25 0.0663 0.0663 1.0000 1.0000 4.1790 4.1780 0.1054 0.1054 0.2850 0.2859 1.5762 1.5768 

0.5 

0 0.4731 0.4732 -0.0019 -0.0024 0.9697 0.9701 0.0892 0.0894 0.1731 0.1755 0.1780 0.1801 

0.02 0.3536 0.3534 0.0782 0.0777 1.3040 1.3040 0.1055 0.1054 0.1740 0.1761 0.2649 0.2674 

0.05 0.2652 0.2652 0.1978 0.1974 1.7770 1.7770 0.1163 0.1164 0.1809 0.1826 0.4643 0.4666 

0.1 0.1952 0.1952 0.3952 0.3948 2.4760 2.4770 0.1199 0.1198 0.2009 0.2028 0.7859 0.7882 

0.25 0.1166 0.1166 0.9999 1.0000 4.1640 4.1640 0.1157 0.1158 0.3055 0.3066 1.5757 1.5767 

0.7 

0 0.6695 0.6690 -0.0001 -0.0005 0.9485 0.9470 0.0762 0.0766 0.2338 0.2403 0.2308 0.2317 

0.02 0.6693 0.6687 0.0800 0.0795 1.2790 1.2770 0.1163 0.1160 0.2352 0.2390 0.3019 0.3037 

0.05 0.6689 0.6683 0.2005 0.2001 1.7600 1.7590 0.1326 0.1324 0.2400 0.2431 0.4862 0.4895 

0.1 0.6681 0.6676 0.4020 0.4016 2.4920 2.4900 0.1374 0.1373 0.2551 0.2574 0.8012 0.8022 

0.25 0.6654 0.6651 0.9989 0.9984 4.1210 4.1200 0.1308 0.1307 0.3443 0.3463 1.5640 1.5655 
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Table 7. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 50: The case of outliers being filtered from the dataset before estimation. 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2625 0.2623 0.0009 0.0010 0.9665 0.9655 0.1353 0.1354 0.1912 0.1951 0.2127 0.2153 

0.02 0.2615 0.2617 0.0008 0.0003 0.9658 0.9642 0.1377 0.1384 0.1922 0.1993 0.2153 0.2200 

0.05 0.2608 0.2612 0.0007 0.0009 0.9656 0.9642 0.1403 0.1415 0.1933 0.2044 0.2165 0.2263 

0.1 0.2578 0.2593 0.0005 0.0000 0.9637 0.9603 0.1489 0.1522 0.1967 0.2182 0.2228 0.2396 

0.25 0.2474 0.2531 0.0011 0.0022 0.9596 0.9537 0.1761 0.1832 0.2058 0.2659 0.2361 0.3462 

0.5 

0 0.4511 0.4503 -0.0018 -0.0016 0.9461 0.944 0.1266 0.1269 0.2405 0.2471 0.2469 0.2505 

0.02 0.4502 0.4496 -0.0016 -0.0022 0.9462 0.9437 0.1284 0.1300 0.2410 0.2526 0.2482 0.2559 

0.05 0.4495 0.4489 -0.0021 -0.0007 0.9456 0.9429 0.1295 0.1325 0.2416 0.2580 0.2491 0.2615 

0.1 0.4474 0.4479 -0.0021 -0.0012 0.9441 0.9422 0.1348 0.1411 0.2439 0.2771 0.2536 0.2842 

0.25 0.4402 0.4445 -0.0021 0.0035 0.9404 0.9532 0.1539 0.1707 0.2494 0.3570 0.2679 0.5081 

0.7 

0 0.6375 0.6362 0.0006 0.0008 0.9007 0.8986 0.1140 0.1152 0.3252 0.3437 0.3065 0.3139 

0.02 0.6370 0.6357 0.0004 0.0019 0.9006 0.9005 0.1148 0.1174 0.3256 0.3508 0.3071 0.3237 

0.05 0.6364 0.6353 0.0005 0.0008 0.9004 0.9026 0.1159 0.1201 0.3256 0.3595 0.3085 0.3391 

0.1 0.6348 0.6335 0.0004 -0.0024 0.8996 0.9069 0.1189 0.1288 0.3271 0.3882 0.3122 0.3803 

0.25 0.6281 0.6276 0.0000 0.0029 0.8944 0.9599 0.1298 0.1534 0.3307 0.6482 0.3189 1.0418 

Table 8. Means and standard deviations of parameter estimates obtained from 10,000 replications 

with 𝑇 = 50: The case of outliers being in the dataset while estimation. 

  Mean of Parameter Estimates Standard Deviation of Parameter Estimates 

𝝓 𝒓 𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  𝝓̂ ML  𝝓̂ CSS 𝝁̂ML 𝝁̂CSS 𝝈̂ML
𝟐  𝝈̂CSS

𝟐  

0.3 

0 0.2625 0.2623 0.0009 0.0010 0.9665 0.9655 0.1353 0.1354 0.1912 0.1951 0.2127 0.2153 

0.02 0.1941 0.1936 0.0814 0.0813 1.3020 1.3000 0.1386 0.1381 0.1924 0.1959 0.3146 0.3211 

0.05 0.1534 0.1530 0.1621 0.1619 1.6270 1.6250 0.1417 0.1414 0.1955 0.2000 0.4399 0.4472 

0.1 0.0974 0.0972 0.4022 0.4019 2.5070 2.5030 0.1443 0.1440 0.2167 0.2214 0.8492 0.8552 

0.25 0.0565 0.0564 0.9579 0.9583 4.0510 4.0500 0.1442 0.1441 0.3095 0.3143 1.5785 1.5851 

0.5 

0 0.4511 0.4503 -0.0018 -0.0016 0.9461 0.944 0.1266 0.1269 0.2405 0.2471 0.2469 0.2505 

0.02 0.3334 0.3323 0.0798 0.0793 1.2810 1.2770 0.1425 0.1416 0.2419 0.2470 0.3397 0.3456 

0.05 0.2640 0.2633 0.1597 0.1596 1.6020 1.5990 0.1492 0.1488 0.2438 0.2484 0.4544 0.4627 

0.1 0.1723 0.1720 0.3981 0.3979 2.4710 2.4690 0.1548 0.1545 0.2617 0.2667 0.8411 0.8502 

0.25 0.1020 0.1019 0.9591 0.9588 4.0470 4.0440 0.1555 0.1555 0.3391 0.3438 1.5818 1.5860 

0.7 

0 0.6375 0.6362 0.0006 0.0008 0.9007 0.8986 0.1140 0.1152 0.3252 0.3437 0.3065 0.3139 

0.02 0.4603 0.4588 0.0844 0.0841 1.2400 1.2380 0.1538 0.1528 0.3293 0.3458 0.3958 0.4384 

0.05 0.3679 0.3665 0.1634 0.1616 1.5600 1.5530 0.1662 0.1655 0.3308 0.3394 0.5005 0.5050 

0.1 0.2397 0.2393 0.4010 0.4009 2.4310 2.4290 0.1705 0.1702 0.3435 0.3512 0.8567 0.8662 

0.25 0.1438 0.1437 0.9625 0.9618 4.0080 4.0040 0.1659 0.1658 0.4093 0.4166 1.5993 1.6037 

As in the case T = 200, all the results for T = 100 and T = 50 are also represented with the 

boxplots to visualize the given conclusions above. Due to similarity of conclusions and 
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maintaining the integrity of the text, complete boxplots for these two cases are provided in 

Appendix B. 

4.2. Effects of Phase I Analysis on Control Chart Performance in Phase II 

Remember that, there are two stages for performance computation in this research: (1) The 

control chart design with estimated parameters, (2) The computation of the ARL 

performance using the obtained design. 

According to the results provided in the previous section, it was shown that filtering of 

outliers and use of incomplete datasets do not significantly affect the estimates of control 

chart parameters with the ML estimator, however, presence of outliers may have severe 

effects on the estimates of control chart parameters both with ML and CSS estimators. 

After obtaining the estimation results, the effects of these parameter estimates on the 

performance of control charts in Phase II were investigated for the case (i) and (ii). The 

estimates for 𝜙 from each replication, which is given in Tables 3-8, were used to determine 

control limits through ARL0 evaluations. Remember that a modified Shewhart type control 

chart is used and the expected ARL0 performance is 370.4 for the AR(1) model with 

estimated parameter 𝜙̂. ARL0 results are obtained through the means of R’s spc package 

[45]. 

In Tables 9 - 14, the results corresponding to the data lengths T = 200, 100 and 50 are 

provided for the ML and CSS estimators, respectively Since the simulations are repeated for 

10,000 times, parameter estimates are obtained through the mean of 10,000 replications. 

Here, ARL is a function of the estimators and, hence, itself random. Therefore, mean ARL0 

and median ARL0 were computed again from the results of 10,000 simulation replications. 

Note that even in the case of no outliers (r=0), the mean ARL0 deviates from the design 

value 370.4, which is simply an effect of estimated parameters [7]. 

Consider the results of T = 200 case, which are given in Table 9 and Table 10. In the presence 

of outliers, the L values, being determined through 𝜙̂, are increased close to the upper bound 

3 (corresponding to the design performance 370.4)1. Although these increases may look 

small at a first glance, they have a strong effect on the resulting true ARL0 performance. 

                                                           
1 In the i.i.d. case (𝜙 = 0), the ARL0 value of 370.4 corresponds to the choice L = 3. If 𝜙 ≠ 0, we have to 

choose L < 3 to obtain ARL0 = 370.4 [41, p. 119]. 
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These ARL0 estimates are influenced through all three parameter estimates, 𝜙̂, 𝜇̂, and 𝜎̂2. 

From the mean ARL0 performance evaluation, it can be observed that significantly higher 

ARL0 values are obtained with increasing rate of outliers. Even for only 2 % outliers, the 

true ARL0 is considerably greater than the design ARL0 value of 370.4, which indicates the 

importance of filtering outliers (note the analogous conclusion by Weiß and Testik [4] in the 

discrete case). The filtering of outliers, in contrast, results in incomplete data, but as the rate 

𝑟 increases, mean ARL0 values increase only very moderately, with a somehow stronger 

effect with the CSS estimator. Interestingly, with increasing rate 𝑟 for filtering, the median 

ARL0 values decrease, again with a stronger effect with the CSS estimator. Furthermore, 

median ARL0 values are always smaller than the mean ARL0 values. This positive skewness 

in the ARL0 distributions increases with increasing 𝜙 and decreases with increasing 𝑇. 

Note that, CSS estimator performs poor compared to the ML estimator when many data are 

filtered, for example r = 0.25. Therefore, as a recommendation for practitioners, it can be 

suggested to use ML estimators since CSS estimators may be misleading if many data have 

to be filtered due to outliers in the Phase I dataset.  

Table 9. ARL0 performance with the ML estimator in Phase I (T = 200). 

 

 

 
 

 

 

 

 

 

  

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.995 395.7 336.4    

0.02 2.995 396.0 335.3 2.997 2968 1553 

0.05 2.995 396.7 334.4 2.998 127100 9624 

0.1 2.995 398.7 334.7 2.999 26240000 98210 

0.25 2.995 404.8 328.5 2.999 25600000 1110000 

0.5 

0 2.979 385.4 311.5    

0.02 2.979 385.8 312.2 2.990 2887 1406 

0.05 2.979 387.2 310.7 2.995 153300 9012 

0.1 2.979 387.0 310.4 2.997 25680000 106700 

0.25 2.979 392.8 308.9 2.999 28320000 1089000 

0.7 

0 2.930 387.2 285.1    

0.02 2.930 387.3 284.8 2.973 2996 1333 

0.05 2.930 388.0 283.5 2.987 169700 8562 

0.1 2.930 388.9 284.9 2.994 41740000 96600 

0.25 2.930 392.8 280.9 2.998 36260000 1059000 
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Table 10. ARL0 performance with the CSS estimator in Phase I (T = 200). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only differences between the case T = 200, and cases T = 100 and T = 50 is that T = 200 

case has more precise results since the parameter estimates are better for larger data lengths, 

as expected (see Tables 11-14). Remember that T = 200 estimates are more accurate in terms 

of mean, and have smaller standard deviations.  ARL results show the same pattern that 

estimates have. Therefore, T = 200 have smaller and better ARL values compared to the 

smaller data lengths T = 100 and T = 50. Note that, CSS estimator performs poor when many 

data need to be filtered. The only difference, this performing effect is more clear for the case 

T = 50, since the remaining data quantity after filtering is very small.   

Table 11. ARL0 performance with the ML estimator in Phase I (T = 100). 

 

 

 

 

 

 

  

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.995 395.6 336.5    

0.02 2.995 397.0 333.8 2.997 2976 1545 

0.05 2.995 398.4 331.4 2.998 121100 9725 

0.1 2.995 402.0 329.1 2.999 24980000 97570 

0.25 2.994 429.1 315.3 2.999 25170000 1104000 

0.5 

0 2.979 385.8 311.0    

0.02 2.979 387.9 309.5 2.990 2898 1398 

0.05 2.979 391.6 308.1 2.995 159600 8970 

0.1 2.979 395.1 302.0 2.997 28820000 106100 

0.25 2.978 432.5 287.5 2.999 28780000 1082000 

0.7 

0 2.930 387.1 284.2    

0.02 2.930 391.6 282.3 2.973 2996 1317 

0.05 2.930 395.2 277.1 2.987 169500 8618 

0.1 2.930 410.0 275.2 2.994 41510000 97650 

0.25 2.928 546.1 255.8 2.998 36530000 1058000 

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ  r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.995 414.4 297.5    

0.02 2.995 415.9 297.0 2.997 3432 1320 

0.05 2.995 417.4 293.8 2.998 197800 8690 

0.1 2.995 421.9 294.4 2.999 45470000 93380 

0.25 2.994 436.5 287.3 2.999 30740000 965300 

0.5 

0 2.980 420.9 267.9    

0.02 2.980 421.8 268.1 2.99 3604 1219 

0.05 2.980 420.4 267.4 2.995 311800 8132 

0.1 2.979 424.7 266.3 2.997 28830000 81060 

0.25 2.979 437.5 260.3 2.999 36880000 950200 

0.7 

0 2.933 434.5 225.6    

0.02 2.933 435.2 225.3 2.974 4754 1028 

0.05 2.933 436.7 225.2 2.988 408300 7173 

0.1 2.933 436.9 225.0 2.994 43960000 85500 

0.25 2.933 450.7 221.5 2.997 56110000 930800 
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Table 12. ARL0 performance with the CSS estimator in Phase I (T = 100). 

 

 

 

 

 

  

Table 13. ARL0 performance with the ML estimator in Phase I (T = 50) 

 

 

 

 

 

 

Table 14. ARL0 performance with the CSS estimator in Phase I (T = 50). 

 

 

 

 

  

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ  r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.995 415 296.3       

0.02 2.995 419.2 294.8 2.997 3482 1304 

0.05 2.995 423.9 289 2.998 215200 8675 

0.1 2.994 435.6 286 2.999 42430000 93950 

0.25 2.994 484.9 260.8 2.999 30730000 979200 

0.5 

0 2.98 425.8 268.7       

0.02 2.979 435.3 264.7 2.99 3664 1217 

0.05 2.979 439.6 260.5 2.995 339100 8120 

0.1 2.979 459.8 254.8 2.997 30890000 80770 

0.25 2.978 613.1 224.8 2.999 36070000 957800 

0.7 

0 2.933 426 223.9       

0.02 2.933 439.3 222.6 2.974 4648 1016 

0.05 2.933 463.9 217.8 2.988 433500 7020 

0.1 2.932 495 211.7 2.994 44890000 83920 

0.25 2.928 3276 185.3 2.997 58610000 923900 

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ  r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.994 513.5 249.2       

0.02 2.994 516.7 247.2 2.997 5880 1141 

0.05 2.994 525.6 246.6 2.997 245800 4322 

0.1 2.994 547.1 238.2 2.998 83830000 82030 

0.25 2.993 570.4 229.0 2.999 51010000 782900 

0.5 

0 2.98 522.3 210.7       

0.02 2.98 524.6 209.9 2.99 7011 928.8 

0.05 2.98 524.0 208.8 2.994 122300 3478 

0.1 2.98 543.3 205.2 2.997 82730000 70260 

0.25 2.979 601.5 199.8 2.998 72480000 821600 

0.7 

0 2.938 621.8 152.0       

0.02 2.938 624.3 151.8 2.975 19030 678.4 

0.05 2.938 627.2 153.2 2.985 230600 2463 

0.1 2.938 678.8 150.8 2.994 136600000 51830 

0.25 2.939 689.3 146.0 2.997 158200000 667700 

Case (i) – Outliers Filtered Case (ii) – With Outliers 

ϕ  r CL MeanARL0 Median ARL0 CL Mean ARL0 Median ARL0 

0.3 

0 2.994 519.8 245.5       

0.02 2.994 524.4 241.3 2.997 6291 1123 

0.05 2.994 569.1 238.5 2.997 295800 4160 

0.1 2.994 607.3 224.8 2.998 70850000 80500 

0.25 2.992 845 188.8 2.999 51100000 786700 

0.5 

0 2.98 523.5 205.9       

0.02 2.98 541.8 201.9 2.99 7593 899.3 

0.05 2.98 562.6 197.4 2.994 157300 3388 

0.1 2.979 753.2 187.2 2.997 77810000 68040 

0.25 2.976 141300 158 2.998 76210000 787900 

0.7 

0 2.939 688.6 144.5       

0.02 2.938 824.4 142.5 2.976 17800 647.1 

0.05 2.937 10010 140.8 2.986 236400 2310 

0.1 2.936 2212 129.4 2.994 157700000 50890 

0.25 2.929 264500 106.8 2.997 167000000 644700 
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5. ILLUSTRATIVE EXAMPLE 

The assay data from Table 3 in Mukundam et. al. [46] constitutes a time series of length 𝑇 =

53, which exhibits an AR(1)-like autocorrelation structure. Please see Table 15 for the data 

provided in Table 3 in Mukundam et. al. [46]. 

  Table 15. The assay data 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

100.8 100.8 101.5 101.5 101.5 101.3 100.9 100.6 100.6 100.4 100.8 100.1 100.7 100.4 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

100.4 100.3 98.9 100.3 100.3 100.3 100.3 100.2 100.8 100.8 99.5 100.7 100.4 100.4 

29 30 31 32 33 34 35 36 37 38 39 40 41 42 

100.8 100.7 100.7 100.4 100 100.3 100.7 100.7 100.7 100.6 100 100.7 100.8 100.3 

43 44 45 46 47 48 49 50 51 52 53    

100.3 100.9 100.5 100.5 101.2 100.6 100.7 100.6 101.1 101 101.1   
 

Fitting an AR(1) model to the data via ML estimation, the initial estimates 𝜙̂ = 0.387, 𝜇̂ =

100.60, and 𝜎̂2 = 0.202 are obtained. Remember the equations given in Section 2.2.2. to 

calculate control limits for Shewhart Type Control Charts [3]: 

UCL = 𝜇𝑤 + 𝐿𝜎𝑤 

CL = 𝜇𝑤 

LCL = 𝜇𝑤 − 𝐿𝜎𝑤 

Based on these estimates and aiming at ARL0 = 100 (which seems a reasonable level in view 

of 𝑇 = 53), we compute L = 2.557 and, hence, the upper and lower control limits 

LCL = 99.45 and UCL = 101.75, respectively: 

UCL= 100.60 + 2.557 . √0.202 

CL= 100.60 

LCL=  100.60 - 2.557 . √0.202 

Plotting the data on this chart, a signal is triggered at time 𝑡 = 17 (see Figure 8) 

corresponding observation 𝑥17 = 98.9 is much below the LCL. Hence, this is treated as an 

outlier and excluded from the data set (i.e., we replace the observation 98.9 at time 17 by the 

value “NA”).  
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Figure 8. Shewhart type control chart for the assay data  

Next, we use the filtered data set and obtain the revised estimates as 𝜙̂ = 0.410, 𝜇̂ = 100.63, 

and 𝜎̂2 = 0.150. The strong deviation between the original and the revised estimates 

𝜙̂ and  𝜎̂2 illustrates the effect of the outlier at time 𝑡 = 17. Then the revised chart design 

has L = 2.554, CL = 100.63, LCL = 99.64 and UCL = 101.62. The revised chart has narrower 

limits, and as a result, a new alarm is triggered, now for time 𝑡 = 25 where 𝑥25 = 99.5 <

LCL (see Figure 9). We exclude this observation similarly and continue with the third 

iteration of our Phase I analysis.  

 

Figure 9. Revised Shewhart type control chart for assay data (𝑥17 was filtered)  
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Using the data after filtering the outliers at times 𝑡 = 17 and 𝑡 = 25 (i.e., with “NA” at times 

17 and 25), revised estimates are now 𝜙̂ = 0.535, 𝜇̂ = 100.66, and 𝜎̂2 = 0.127 (note the 

strong increase in 𝜙̂), where the revised chart design has L = 2.5239, CL = 100.66, 

LCL = 99.76 and UCL = 101.56. Now all points are plotted between the control limits (see 

Figure 10), i.e., the Phase I analysis stops and gives the AR(1) model with the above 

parameter values as the in-control model.  

 
Figure 10. Revised Shewhart type control chart for assay data (𝑥17 and 𝑥25 were filtered)  

The whole Phase I process is summarized in Table 16. In fact, comparing with the analysis 

in Mukundam et al. [46], the observations 𝑡 = 17 and 𝑡 = 25 were also declared as outliers 

there, although the authors worked with a different monitoring approach and ignored the 

apparent autocorrelation in the data. It supports our observation from Figure 1 that especially 

the estimation of autocorrelation parameter and variance is severely affected by even only 

few outliers.” 

Table 16. Summary of Phase I analysis for assay data. 
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Iteration  Identified outliers 𝝓̂ 𝝁̂ 𝝈̂𝟐 LCL UCL 
New 

outliers 

1 – 0.387 100.60 0.202 99.45 101.75 𝑡 = 17 

2 𝑡 = 17 0.410 100.63 0.150 99.64   101.62 𝑡 = 25 

3 𝑡 = 17, 25 0.535 100.66 0.127 99.76   101.56 – 
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this thesis, as an alternative but more realistic approach to study the effects of Phase I 

analysis on the performance of control charts in Phase II, availability of contaminated or, 

clean but incomplete datasets are considered for parameter estimation. It was shown that 

filtering of outliers and use of incomplete data sets do not significantly affect the estimates 

of control chart parameters when the ML estimators are used. On the other hand, presence 

of outliers in the Phase I data set may have severe effects on the estimates of control chart 

parameters both with ML and CSS estimators. Since the main intention of a control chart is 

online process monitoring, study of control chart designs from Phase I on the ARL 

performance in Phase II indicate that, ARL0 performances are influenced by the parameter 

estimates 𝜙̂, 𝜇̂, and 𝜎̂2, used with the AR(1) process model. It is observed that significantly 

higher ARL0 values are obtained with increasing rate of outliers. On the other hand, filtering 

of outliers results in incomplete data, but as the rate increases, mean ARL0 values increase 

only very moderately, with a more robust performance with the ML estimator. As a 

recommendation for practitioners, it is suggested to use ML estimators since CSS estimators 

may be misleading if many data have to be filtered due to outliers in the Phase I data set.  

For future research, a more refined study of the Phase I process by also considering the 

efficiency in detecting outliers may be considered. In this context, also the use of robust 

estimators seems to be an interesting option. There are enumerable proposals available in 

the literature on how to robustly estimate the AR(1) parameters, see the survey by Dürre et 

al. [47]. While many of these proposals are computationally demanding, a relatively quick 

and intuitive way of robust parameter estimation is the approach of Ma and Genton [48], 

which is somehow similar to the method of moments. There, autocorrelations (and hence 𝜙) 

are estimated based on the 𝑄𝑛 estimator, the latter being computed from absolute pairwise 

differences. To get an idea about the performance of such a robust approach, the above 

simulations in this thesis were extended and 𝑄𝑛 was used to estimate 𝜙 and 𝜎2 [48, pp. 665-

666], while 𝜇 was estimated by using the median. Some results are summarized in Table 17. 

Comparing with the corresponding ML estimates in Table 4, it can be seen that the robust 

estimates have higher standard deviation if there are no outliers, but they show less bias and 

standard deviation if the data are contaminated by outliers. Note that even only 2 % outliers 

have a visible effect on the robust estimates (although the effect is less worse than for the 

ML estimates). An analogous observation is made if the ARLs are compared to the ones in 

Table 9; while for clean data, the ML approach is preferable, the robust approach gives more 
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satisfactory results as long as data are contaminated. A more detailed analysis and a strategy 

of when and how to use robust estimators will be part of a future research project. 

Table 17. Means and standard deviations of robust parameter estimates (10,000 replications with 

𝑇 = 200 and 𝜙 = 0.5, with outliers), resulting chart design and ARL performance. 

 Mean of Standard Deviation of Mean of 

𝒓 𝝁̂rob  𝝓̂rob 𝝈̂rob
𝟐  𝝁̂rob 𝝓̂rob 𝝈̂rob

𝟐  CL ARL0 

0 -0.0004 0.4859 0.9984 0.1342 0.0684 0.1420 2.979 427 

0.02 0.0247 0.4698 1.1190 0.1346 0.0696 0.1627 2.981 811 

0.05 0.0651 0.4446 1.3220 0.1359 0.0729 0.2093 2.984 2544 

0.1 0.1382 0.4011 1.7050 0.1377 0.0794 0.3394 2.988 34740 

0.25 0.4233 0.2783 3.1450 0.1465 0.1035 1.1245 2.995 836300000 
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APPENDICES 

Appendix A - Numerical Calculations of the ARL in the AR(1) Case 

To calculate the ARL of the modified AR(1) Shewhart chart, we essentially make use of 

ideas published in Schmid [41]. Introducing 𝑍𝑡 = (1 − 𝜙)𝑋𝑡, which turns out to be an 

EWMA smoothing of the AR(1) residuals, allows to apply numerical routines for computing 

the ARL values of EWMA charts in the i.i.d. case. For ARL0, we can directly use the function 

xewma.arl in the R package spc [45] with smoothing constant 𝜆 = 1 − 𝜙 and head start 

value 𝑍0 = 0. To evaluate ARL1, we have to deal with the special way on how the shift in 

the mean of 𝑋𝑡, say 𝛿, is mirrored from the residuals. As already mentioned by Schmid [41], 

we have to combine a random head start with mean 𝛿 and the ARL1 function provided by, 

e.g., xewma.arl with shift size (1 − 𝜙)𝛿. The related integral is approximated by applying 

the Gauß-Legendre quadrature with 30 nodes. The latter is used as well within the Nyström 

method implemented in the R function xewma.arl for numerically solving the ARL integral 

equation of a common i.i.d. EWMA chart following Crowder [49]. 

Finally, note that for negative 𝜙, the EWMA smoothing constant 𝜆 is larger than 1, which is 

rather remarkable, because the classical upper bound 1 corresponds to the memory-less 

Shewhart chart. Values for 𝜆 larger than 1 would diminish this non-existing memory even 

further. 
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Appendix B – Remaining Boxplots for the Parameter Estimates 

I. T=200 

 

a. Box plot of estimates for the autocorrelation parameter 𝜙.  

 

b. Box plot of estimates for the mean 𝜇.  

 

c. Box plot of estimates for the variance σ2. 

Figure 11. Box plots of the parameter estimates from simulations – 𝑇 = 200, 𝜙 = 0.3. 
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a. Box plot of estimates for the autocorrelation parameter 𝜙.  

 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 12. Box plots of the parameter estimates from simulations – T = 200, ϕ = 0.7. 
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II. T=100 

 

a. Box plot of estimates for the autocorrelation parameter 𝜙.  

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 13. Box plots of the parameter estimates from simulations – 𝑇 = 100, 𝜙 = 0.3. 
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a. Box plot of estimates for the autocorrelation parameter 𝜙. 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 14. Box plots of the parameter estimates from simulations – T = 100, ϕ = 0.5. 
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a. Box plot of estimates for the autocorrelation parameter 𝜙. 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 15. Box plots of the parameter estimates from simulations – T = 100, ϕ = 0.7. 

  



52 

 

III. T=50 

 

a. Box plot of estimates for the autocorrelation parameter 𝜙. 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 16. Box plots of the parameter estimates from simulations – T = 50, ϕ = 0.3. 

 

 

 



53 

 

 

a. Box plot of estimates for the autocorrelation parameter 𝜙. 

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

 Figure 17. Box plots of the parameter estimates from simulations – T = 50, ϕ = 0.5. 
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a. Box plot of estimates for the autocorrelation parameter 𝜙.  

 

b. Box plot of estimates for the mean 𝜇. 

 

c. Box plot of estimates for the variance σ2. 

Figure 18. Box plots of the parameter estimates from simulations – T = 50, ϕ = 0.7. 
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