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ABSTRACT

TEMPORAL ANOMALY LOCALIZATION IN VIDEO

Halil İbrahim ÖZTÜRK

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. Ahmet Burak CAN

June 2021, 70 pages

Detecting anomalies in surveillance videos is an important research problem in computer

vision. In this thesis, we propose two deep network architectures for anomaly detection,

Anomaly Detection Network (ADNet) and Anomaly Detection Network by Object Rela-

tions (ADOR). ADNet utilizes temporal convolutions to localize anomalies in videos. The

model works online by accepting consecutive windows of video clips. Features extracted

from video clips in a window are fed to ADNet, which allows to localize anomalies in videos

effectively. We propose the AD Loss function to improve abnormal segment detection perfor-

mance of ADNet. ADOR employs an object detector and spatio-temporal feature extractor

to fuse object relations and action information. Fusion is achieved with cross attention layers

which use attention memory from cross encoders. Additionally, we propose to use F1@k

metric for temporal anomaly detection. Segment based F1@k is a better evaluation metric

than frame based AUC in terms of not penalizing minor shifts in temporal segments and

punishing short false positive temporal segment predictions. Furthermore, we extend UCF

i
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Crime [1] dataset by adding two more anomaly classes and providing temporal anomaly an-

notations for all classes. Finally, we thoroughly evaluate our model on the extended UCF

Crime dataset. ADNet and ADOR produce promising results according to the F1@k metric.

Keywords: Temporal Anomaly Detection, Temporal Anomaly Localization, Surveillance

Videos, Video Anomaly Detection, Deep Learning
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ÖZET

VİDEODA ZAMANSAL ANOMALİ YERELLEŞTİRMESİ

Halil İbrahim ÖZTÜRK

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü
Tez Danışmanı: Doç. Dr. Ahmet Burak CAN

Eylül 2021, 70 sayfa

Gözetim videolarındaki anomalileri tespit etmek, bilgisayarlı görüde önemli bir araştırma

problemidir. Bu çalışmada, Anomali Tespit Ağı (ADNet) ve Nesne İlişkileri ile Anomali

Tespit Ağı (ADOR) olmak üzere iki ağ öneriyoruz. Önerdiğimiz ADNet, videolardaki anor-

mallikleri lokalize etmek için zamansal konvolüsyonları kullanan bir ağdır. Model, ardışık

video klip pencerelerini kabul ederek çevrim içi veya çevrim dışı çalışabilir. Bir penceredeki

video kliplerden çıkarılan özellikler, videolardaki anormallikleri etkili bir şekilde yerelleştirmeyi

mümkün kılan ADNet’e gönderilir. ADNet’in anormal segment algılama performansını

iyileştirmek için "AD Loss" fonksiyonunu öneriyoruz. ADOR ise, nesne ilişkilerini ve

eylem bilgisini birleştirmek için nesne algılayıcı ve uzamsal-zamansal özellik çıkarıcı kul-

lanır. Füzyon, çapraz kodlayıcıdan gelen dikkat belleğini kullanan çapraz dikkat katman-

larıyla sağlanır. Ek olarak, zamansal anomali tespiti için F1@k metriğini kullanmayı öneriy-

oruz. Segment tabanlı F1@k, zamansal segmentlerdeki küçük kaymaları cezalandırmamak
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ve kısa yanlış pozitif zamansal segment tahminlerini cezalandırmak açısından çerçeve ta-

banlı AUC’den daha iyi bir değerlendirme metriğidir. Ayrıca, UCF Crime [1] veri setini, iki

anomali sınıfı daha ekleyerek ve tüm sınıflar için zamansal anomali açıklamaları sağlayarak

genişletiyoruz. Son olarak, genişletilmiş UCF Crime veri setinde modelimizi etraflıca değer-

lendiriyoruz. ADNet ve ADOR yöntemleri ile F1@k metriğine göre elde edilen sonuçlar

ümit vericidir.

Anahtar Kelimeler: Zamansal Anomali Tespiti, Zamansal Anomali Lokalizasyonu, Göze-

tim Videoları, Video Anomali Tespiti, Derin Öğrenme
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1. INTRODUCTION

Surveillance cameras become widespread in today’s physical world. Abnormal cases can

occur in areas (e.g. public space, shopping malls, rail stations) watched with the cameras.

Detecting abnormal cases in online stream or recorded video will provide better safety in

our daily life. Early intervention for people injured in a traffic accident or explosion is very

important in a place where there are no people to help. Rapid detection of an arson helps

prevent the fire from growing and catch the culprit. However, analyzing video streams in

real-time and detecting abnormal cases require excessive human resources. Since human ob-

servation is not an effective solution, automatic anomaly detection approaches that leverage

artificial intelligence mechanisms are needed in surveillance systems.

Definition of anomaly becomes crucial to design automatic anomaly detection systems. Usu-

ally abnormal cases are defined as diverging from normal cases. Since normal events are de-

termined environment specific, abnormal events depend on the environment. Therefore, each

environment usually requires a special anomaly detector trained with data containing normal

events in the environment. The studies [8, 10–15] follows the approach to detect anoma-

lies in specific environments like in UCSD [7] and UMN [6] datasets. However, special

anomaly detector approach is not applicable to a wide area surveillance system. Although

most anomalies are environment specific, but some events are accepted as anomaly in most

environments like explosion, shooting, road accident etc. Detecting these kind of anomalies

enables a global anomaly detector which can be used every camera in cities. To model real

world anomalies, we need to train anomaly detection models with large number of surveil-

lance videos on different environments and anomaly cases.

In this thesis, we propose Anomaly Detection Network (ADNet) and Anomaly Detection

Network by Object Relations (ADOR) approaches to detect and localize anomalies in tem-

poral space of videos. ADNet and ADOR use temporal convolutions to localize anomalies

in temporal space by using wide time span. In order to augment data in temporal space, we

split videos as overlapping with specified ratio windows. Instead of processing entire video

1



at once, window based video processing provides better performance in ADNet. In order to

obtain a model that is more applicable to real world cases, we studied with the UCF Crime [1]

dataset. This dataset contains large amount of real world surveillance data with common real

world anomaly cases in 13 classes. The classes are Abuse, Arrest, Arson, Assault, Burglary,

Explosion, Fighting, Road Accident, Robbery, Shooting, Shoplifting, Stealing and Vandal-

ism. Scenes in the dataset are complex environments than action recognition, temporal action

localization datasets. Complex environment makes context information, human-human in-

teractions, human-object interactions essential to detect anomalies. Additionally, long term

temporal data is required to detect anomalies like as stealing and robbery.

Our first model ADNet utilizes deep action recognition models with temporal convolution

networks to localize anomalies in videos. The model uses extracted features from video

clips by using a spatio-temporal deep action recognition network and then takes features of

all clips in a window and produces a separate anomaly score for each clip. We further define

AD Loss function to increase anomaly detection accuracy. When ADNet is trained with the

proposed AD Loss, performance of detecting abnormal segments increases.

Second model ADOR utilizes object detection and object relationships in addition to action

information in order to detect abnormal events in videos. Extracted features corresponding

to objects from object detection network are processed by an object relationship encoder.

At the same time, spatio-temporal features extracted from an action recognition model are

handled by action encoder. Fusion of object relationships and action information is achieved

by cross connections between encoders. The encoders process a clip of video to recognize

short range anomaly in the clip, long range anomaly detection is accomplished with temporal

convolutional network like in ADNet.

We also propose to use segment based F1@k metric to measure effectiveness of an anomaly

detection model instead of clip based AUC metric. Clip based AUC is not a good metric for

this purpose since it does not take into account temporal order of clips. It penalizes minor

shifts in temporal segments and can not effectively punish short false positive segments in

temporal space. Effectiveness of temporal F1@k metric is shown with experiment results
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in Section 5.5.3. F1@k is calculated on IoU with k percentage of temporal segments ob-

tained by thresholding anomaly scores of clips with a specified value. It is better in terms

of measuring how correctly predicted temporal segment matches with ground truth temporal

segment.

As a last contribution we add two more anomaly classes to UCF Crime [1] dataset, which

consists of 13 anomaly classes. UCF Crime [1] data set provides temporal anomaly annota-

tions in the test set, but only provides video level annotations in the training set. We provide

temporal annotations for all anomaly classes of the data set. Finally, we thoroughly evaluate

our model on UCF Crime dataset and extended dataset version, UCF Crime V2. ADNet and

ADOR produce promising abnormal segment detection scores with 28.32 F1@10 and 33.94

F1@10 respectively, while the baseline model’s [1] score is 4.13 F1@10. For the normal and

abnormal segments, ADNet has 58.16 F1@10 score ADOR has 63.49 F1@10 score while

baseline model’s score is 45.20 F1@10.

In rest of the thesis, we give background information about deep convolutional neural net-

works and self-attention architectures in Chapter 2. Next, we review related works about

anomaly detection, action recognition, temporal action localization, image captioning and

object detection in Chapter 3. Then we present first method ADNet in Chapter 4. In same

chapter, we introduce segment based F1@K metric and explain UCF-Crime dataset and ex-

tensions. Evaluation results on UCF-Crime dataset and ablation studies are in same chapter.

Then, we present second method Anomaly Detection by Object Relations (ADOR) in Chap-

ter 5. We evaluate the same dataset to compare ADOR with other methods, ablation studies

are also included in the same chapter. Finally, we conclude the thesis with a brief summary

and a discussion on future research opinions in Chapter 6.
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2. BACKGROUND

In this chapter, we give brief summary about Deep Neural Networks and some image classi-

fication models. A summary about self-attention transformer networks follows deep neural

networks. Then, we explain a pre-training strategy and BERT model used in pre-training and

fine-tuning. In rest of the chapter, we cover action recognition, temporal action localization,

image captioning and object detection.

2.1. Deep Neural Networks (CNN)

Convolutional neural networks (CNN) are an artificial neural network class consisting of se-

quential convolution layers, convolution filter kernels contain learnable weights. Learning

convolution filters from data by backpropagation was first achieved by LeCun et al. [16].

Pioneering CNN LeNet-5 [17] recognizes handwritten numbers by gradient based learning.

Learning lots of parameters from data requires big data and parallel computing resources.

Deep learning algorithms were utilizes Central Processing Units (CPU) which causes long

learning schedules. Graphics Processing Unit (GPU) makes available shorter training time.

Also increased visual data enables learning deep architectures without memorizing. Other

advantage of convolutional neural networks that reducing parameters by using shared param-

eters. State-of-the-art results achieved with deep learning-based models (e.g. image classi-

fication, object detection, instance segmentation, semantic segmentation, image captioning,

action recognition, temporal action localization)

AlexNet [18] is winner of ImageNet ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge. Architecture of AlexNet involves two branches positioned between first layer

and last layer, each branches works on different GPU to utilize two GPU at the same time.

Overfitting is avoided by data augmentation and dropout [19] techniques. Non-linearity is

achieved by ReLU [20] activation layers.

VGGNet [21] won the localization task in ILSVRC 2014 challenge, runner up in classifica-

tion task. The proposed model uses small 3 x 3 convolution filters in contrast to AlexNet that

4



consists of 11 x 11 and 5 x 5 convolution filters in first two layers. Small filters make deeper

architecture possible with approximately same number of parameters. VGGNet consists of

stacked 16-19 convolution layers. The authors underline importance of depth in CNNs.

Winner of ILSVRC 2015 challenge in image classification task is ResNet [2]. While max-

imum number of convolution layers in VGGNet is 19, ResNet consists of 152 convolution

layers with less number of parameters and less complexity. The reason of that removing

fully connected layers placed after convolution layers in VGGNet . Residual connections

in ResNet makes training deeper networks possible. Residual connection which is shortcut

connection between input and output of convolution layer, avoids gradient vanishing prob-

lem by flowing gradients from shortcut connections. An ensemble of residual connections

ResNet with 152 convolution layers achieves 3.57% top-5 error rate on the ImageNet test set.
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Figure 2.1. ResNet-34 is deeper than VGGNet-19, residual connections increase success of deep
networks (Image is taken from [2])

MobileNet [22] introduces dept-wise separable convolutions to decrease required computa-

tion power. Depth-wise separable convolutions consists of two sequential convolution layers.

Kernel size of first convolution is 1 x 1, the convolution mixes features in different channels.

Second convolution kernel has 3 x 3 weights, the convolution operation occurs on only one

channel of feature map. Computation decreases from H X W X Cin x Cout to H X W X Cin

where Cin = Cout. Top-1 score of Mobilenet is 70.6% in ImageNet test set. y
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MobileNet v2 [23] improves ImageNet image classification accuracy by inverted residual

blocks. While MobileNet does not use residual connections, inverted residual blocks of Mo-

bilenet v2 has residual connections between inputs and outputs. Forwarded feature map to

inverted residual block is expanded in contrast to ResNet block that shrinks feature map.

Activation function follows convolution layers of blocks in MobileNet and ResNet, but ex-

periments in the study show that activation function in bottlenecks hurts performance. For

that reason, activation functions in bottlenecks in blocks are removed. MobileNet v2 achieves

74.7% top-1 score in ImageNet test set.

Mobilenet v3 [24] has better architecture that is tuned by Neural Architecture Search al-

gorithm. Inverted residual blocks are improved by inserting squeeze and excitation [25] in

blocks. ReLU 6 activation function is replaced with h-swish activation function which is

improvement of swish function. Top-1 score of the model is 75.2% in ImageNet test set.

EfficientNet [26] model gains efficiency by scaling model with compound coefficient in

depth, width and input image resolution. The architecture consists of inverted residual blocks

as in MobileNet v3. Top-1 score of smallest model efficientnet-b0 is 77.1% in ImageNet test

set. Largest model EfficientNet-b7 achieves 84.3% top-1 score.

2.2. Action Recognition

Action recognition in untrimmed videos is important problem for video understanding tasks

(e.g. temporal action localization, video anomaly detection etc.). Static image is not suffi-

cient to recognize most actions, since action is combination of spatial and temporal infor-

mation. For example fighting and dancing can not be distinguished from static image, but

playing football can be understood from background information in static image. Temporal

and spatial knowledge fusion happens by three methods late fusion, early fusion and slow

fusion.

A slow fusion model C3D (Convolutional 3D) [27] input is fixed number consecutive RGB

frames. 2D convolutions lose temporal information of the input signal right after every con-

volution operation. 3D convolution operation convolves on spatial and temporal space, while
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2D convolution does not work on temporal space. 3D max pool decrease temporal and spa-

tial dimension of feature to compute efficiently. Kernel sizes in all layers are 3 x 3 x 3, the

architecture with the shape in all layers is best in experimented architectures.

Other slow fusion model I3D [28] recognizes action in clips by utilizing consecutive RGB

and Optic-flow frames. Different type inputs are handled by two separete network branches.

Generated probabilities for clips are summed together to get final probabilities. Also RGB

and Optic-Flow branches are trained independently. I3D consists of 3D convolution layers

and 3D max pool layers as [27]. Convolution kernels are initialized with pre-trained Incep-

tion V1 network [29] on ImageNet dataset. First two 3D convolution outputs are pooled in

only spatial dimension, temporal dimension is not reduced. Each convolution and fully con-

nected layer outputs are normalized with 3D Batch Normalization layer, C3D [27] does not

consist of batch normalization layers. Optic flows are computed with TV-L1 [30] algorithm.

TSM (Temporal Shift Module) [31] uses 2D convolutional neural networks for each frame

unlike I3D and C3D networks. Processing temporal knowledge is achieved by shifting part

of channels to next adjacent frame’s network. 1/4 of channels are shifted in forward and

backward direction, 1/8 of channels forward, 1/8 channels backward. Each temporal shift

in network doubles receptive field. Predictions of each 2D network are averaged to get final

predictions for clip. TSM achieves better accuracy than I3D in Kinetics dataset [32].

CSN (Channel-Separated Convolutional Networks) [33] action recognition model reduces

computation cost in training and testing phase. I3D and C3D use dense 3D convolution

operations, all channels in input are used in generating output of dense convolutions. Mo-

bilenet [22] reduces computation cost of convolution blocks by replacing dense convolutions

with depth-wise separable convolutions, as we mentioned before. Similarly CSN uses 3D

separated convolution operations which 3 x 3 x 3 channel-wise convolution follows 1 x 1

x 1 convolution filter which provides information shuffle between channels. Proposed two

type channel separated bottleneck blocks differ in interaction strategy between channels.

Interaction-reduced channel-separated bottleneck block removes 1 x 1 x 1 convolution filter

positioned front of 3 x 3 x 3 depth-wise convolution. Data flow in Interaction-preserved

7



channel-separated bottleneck block is 1 x 1 x 1 dense convolution then 3 x 3 x 3 depth-

wise convolution. Interaction preserved CSN achieves better score than interaction reduced

CSN. Pretrained model on IG-65M dataset [34] achieves 3% more accuracy in Kinetics-400

[32] dataset. IG-65M action recognition dataset consists of 65 million videos labeled in

video-level. Depth-wise separable convolution gains better regularization opposed to dense

3D convolution, since CSN training accuracy is less than dense 3D convolution network but

higher higher test accuracy

R(2+1)D [35] splits spatio-temporal convolution to spatial convolution and temporal con-

volution. 2D convolutions operate on static images in clip without using temporal knowl-

edge. 1D convolutions follow 2D convolutions in each block to process temporal informa-

tion. Since activation functions follows 1D and 2D convolutions, dividing spatio-temporal

convolution into two parts doubles non-linearity. Unlike I3D, R(2+1)D use stride to down-

sample features.

2.3. Temporal Action Localization

Localizing action segments in temporal space on untrimmed long videos provides meaning-

ful information. Temporal action localization models accept consecutive frames and outputs

action class or background class label for each frame. The models are build on action recog-

nition models. Since long range temporal information processing is necessary, temporal

convolutions or recurrent neural networks (RNN) are used to extend the receptive field of

action recognition model.

TCN (Temporal Convolutional Network) [36] utilizes 1D convolutions over temporal space

to segments and classify action in time. The proposed architecture processes all time entries

together, unlike recurrent neural networks which processes time by time. Temporal con-

volutions operate on extracted spatio-temporal features extracted across time from a video.

Encoder-Decoder TCN (ED-TCN) one of the proposed two architectures consists of tem-

poral convolutions which output same size with input and maxpool layers. Maxpool layers

halve time dimension to process efficiently. Upsampling time dimension in decoder part is

8



achieved by repeating time entry twice. ED-TCN achieves better score than Bi-LSTM [37].

Second architecture Dilated TCN does not use max pool to down sample feature. Efficiency

is accomplished by dilated temporal convolutions. Dilation rate of convolution layers are

calculated with 2LayerOrder formula. Increased dilation rate along layer order provides large

receptive field. Some studies [38, 39] evaluates performance of the method with frame-wise

metrics as in video anomaly detection methods. Segment-wise metric is proposed by the

method.

TCN Stage

TCN Stage

TCN Stage

Figure 2.2. Multi-Stage Temporal Convolutional Network (Inside of stage image is taken from [3])

MS-TCN (Multi-Stage Temporal Convolutional Network) [40] consists of multiple stages

which refine output of previous one as in Figure 2.2. Spatio-temporal features are feed for-

warded to predict action segments in temporal space. Following stages refines by accepting

output of previous stage. Each stage is criticised with ground-truth. Calculated stage er-

rors are summed to back propagate together. Dilated temporal convolutions with increased

dilation rate comprise stages of MS-TCN. Proposed loss function has Mean Squared Error

(MSE) loss as classification loss and a smoothing loss. Smoothing loss forces to reduce

difference between consecutive frames.
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TAL-Net [41] follows two stage architecture in object detection similar to Faster R-CNN

[42]. In first stage, segment proposals are generated, second stage classifies segment propos-

als. Segment proposal network outputs proposals for each anchors. Since predefined anchor

widths operates on different temporal span, receptive fields of anchors are different. Segment

proposal of TAL-Net benefits from anchor specific proposal networks names as multi-tower

network. Each anchor specific proposal network has receptive field with similar width to

anchor. Fixed size segment proposal features are obtained with 1D RoI Pool (SoI Pool). In

proposal generation and proposal classification phase rgb features and optic flow feature are

used in two branches. Outputs of branches are fused lately to get better result, like I3D [28].

2.4. Transformer

Figure 2.3. Transformer model architecture (Image is taken from [4])
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A Sequence to sequence model Transformer [4] consists of encoder part and decoder part.

Input sequence is accepted by encoder and the sequence is encoded in one pass. Memory

encoded in encoder flows to decoder layers to generate output sequence. Transformer is

proposed solution to a sequence to sequence problem machine translation. The problem is

that translating a text from source language to target language. Encoder part of Transformer

consists of stacked encoder layers which have self-attention layer and feed forward neural

network. Words in input sentence are represented with word embedding vectors. In order to

specify position of word embedding vectors are summed with positional vectors calculated

with Formula 1.

PE(pos, i) =


sin(pos/1000i/dmodel), if i mod 2 = 0

sin(pos/1000(i−1)/dmodel), if i mod 2 = 1

(1)

Query, Key and Value vectors comprise attention mechanism. Each query vector in the

sequence is multiplied with all key k vectors in same sequence to compute weight of corre-

sponding value v vectors. Obtained weights are multiplied with relevant value vector, then

weighted value vectors are summed to get vector for the query. Query, key and value vectors

are calculated from input vectors as in Formula 2.

Q = WQ ∗X

V = W V ∗X

K = WK ∗X

(2)

Calculated weights from query and key vectors are normalized with softmax function so that

their sum is one as in Formula 3 . Before normalization weights are divided to dmodel which

is length of input vector.

Y = Softmax(
Q ∗KT

√
dmodel)

) ∗ V (3)
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Decoder generates target sequence by encoded memory and previous state of target sequence.

After N encoder layers K key and V value vectors as memory are passed to each decoder

layers. Decoder layers involves two attention layers and one feed forward neural network.

First attention is self-attention layer, which applies attention on already predicted sequence

words’ embedding vectors. Second attention is encoder-decoder attention layer, Q vectors

are calculated from already predicted sequence words’ embedding vectors, K key and V

value vectors are calculated from memory comes from encoder. After N decoder layers,

output vector of last element in sequence is forwarded to linear layer to predict next word.

Prediction starts with [CLS] token, after prediction each element in sequence, predicted se-

quence is accepted by decoder to predict next element until get [EOS] token.

2.5. Finetuning Pretrained Transformers

Before training model on a dataset, training on different and usually larger dataset from

the dataset is named as pre-training. After pre-training the model can be fine-tuned for the

dataset with less effort or little data. Also better score can be achieved by pre-training on

large dataset and fine-tuning on the dataset as in [33, 34, 43–47]. BERT [5] using the strategy

is pre-trained on a large unlabeled dataset to learn the language representation. Pre-trained

model can be fine-tuned in other language tasks without model modification. BERT accepts

two sentences and outputs two sentences, input and output sentences concatenated to get

one sequence. [SEP] token is in between sentences to indicate the end of first sentence.

Difference between transformer and BERT is that BERT consists of only encoder part.

Two pre-training methods are performed to teach learn language representation to BERT.

First method is masked language modelling model that predicting masked WordPiece [48]

tokens which selected randomly with 15% probability. The second strategy is guessing

whether the next sentence is the actual or replaced sentence. Predictions are taken from

the corresponding output from the [CLS] token in the input queue. BookCorpus [49] dataset

and extracted texts from English Wikipedia is used during training.
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BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 2.4. BERT is pre-trained on unlabelled dataset to learn language representation, then pre-
trained model is fine-tuned on NLP tasks without modification on model (Image is taken
from [5])

In order to prove success of the method BERT is fine-tuned on GLUE [50] Natural Language

Processing Tasks. For each task pre-trained BERT is fine-tuned for 3 epochs. The tasks are

Multi-Genre Natural Language Inference (MNLI) [51], Quora Question Pairs (QQP), Ques-

tion Natural Language Inference (QNLI) [50], The Stanford Sentiment Treebank (SST-2)

[52], The Corpus of Linguistic Acceptability (CoLA) [53], The Semantic Textual Similarity

Benchmark (STS-B) [54], Microsoft Research Paraphrase Corpus (MRPC) [55], Recogniz-

ing Textual Entailment (RTE) [56], Winograd NLI (WNLI) [57]

Also BERT is finetuned on The Stanford Question Answering Dataset (SQuAD v1.1) [58]

for 3 epochs wit 5e-5 learning rate and The Situations With Adversarial Generations(SWAG)

[59] dataset for 3 epochs with 2e-5 learning rate.

2.6. Object Detection

Faster R-CNN [42] method outputs class and bounding box of objects that exists in image.

The object detector has two stages, Region Proposal Network (RPN) is first stage of the

method. Second stage is that predicting bounding box and class of object proposal. Fast R-

CNN [60] generates object proposals with unshared network expensively. In contrast to Fast

R-CNN, Region Proposal Network in Faster R-CNN shares backbone network (e.g. Resnet)
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with bounding box and class label prediction. For reason of that, the computation becomes

cheaper than Fast R-CNN. Classification and bounding box regression layers accept fixed

size features, but proposal sizes are not fixed. RoI Pool operation proposed by Girshick et al.

[60] yields same size features for each proposal.

2.7. Image Captioning

Image captioning methods provides natural language description (caption) about given im-

age. The description includes relations between objects, background definition, actions rec-

ognizable from static image. The task flows information extracted from computer vision

area to natural language processing area. Herdade et al. [61] propose transformer [4] based

method to generate captions. Before forwarding features to encoder, objects in image are

detected by Faster R-CNN which pre-trained [62] on Visual Genome [63] object detection

dataset. Object features flows over box attention layer and fully connected layer. Box atten-

tion layer is modified attention layer of transformer [4]. In order to consider spatial relations

between objects in weighting features, relative position of an object to another object is cal-

culated with Formula 4. The spatial relation feature is upsampled to 512d from 4d feature

vector with linear embedding layer in Formula 5. Multiplication WG matrix with produced

embedding gives object relation weight. The final weight is obtained by summing the object

relationship weight and the weight calculated from the attributes. Attention output of the

vector is calculated with Formula 7.

λ(a, b) = (log(
|xa − xb|
wa

), log(
|ya − yb|
ha

), log(
wb

wa

), log(
hb
ha

)) (4)

obj_rel(a, b) = ReLU(Emb(λ(a, b)WG)) (5)

wab =
obj_rel(a, b) + exp(

qa∗kTb√
dmodel

)∑N
l=1 obj_rel(a, l) + exp(

qa∗kTb√
dmodel

)
(6)
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Ya =
N∑
l=1

wal ∗ vl (7)
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3. RELATED WORKS

In this chapter we review related works from anomaly detection. Video anomaly detection

datasets are briefly reviewed in the chapter.

3.1. Video Anomaly Detection Datasets

There are limited number of datasets on anomaly detection in the literature, (eg. UMN,

UCSD etc.). Most of these datasets have small amounts of data and specific anomaly cases

which are not applicable to real world scenarios. UCF crime is the first dataset to contain

comprehensive real-life anomalies. In this section, we will briefly explain these dataset.

(a) Normal (b) Abnormal (c) Normal (d) Abnormal

Figure 3.1. UMN [6] Dataset sample images

UMN [6] dataset consists of 11 videos and 7739 frames, including 1 indoor and 2 outdoor

scenes. Images are 320×240 resolution. Each video starts with normal behavior and ends

with panic abnormal behavior.

(a) Normal (b) Abnormal (c) Abnormal (d) Mask of Abnormal Case

Figure 3.2. UCSD [7] Dataset sample images

UCSD [7] dataset consists of two different scenarios, Pad1 and Pad2. Pad1 has 34 training

and 36 test video samples, while Pad2 has 16 training and 12 test image samples. Abnormal
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events here are caused by cyclists, skaters or small cars circulating on the walking paths. Ab-

normal events in the videos are quite simple and do not reflect real life anomalous scenarios.

(a) Normal (b) Abnormal (c) Abnormal

Figure 3.3. Avenue [8] Dataset sample images

Avenue [8] dataset consists of 16 training and 21 test video examples. Video durations are

approximately two minutes. While normal scenes consist of people walking on stairs and

subway entrances, abnormal events consist of situations such as approaching the camera,

people running/walking in the opposite direction.

Figure 3.4. Subway [9] Dataset sample images

Subway [9] dataset consists of two subsets, input and output. The entrance door scenario

is 96 minutes and the exit door is 43 minutes. Image resolutions are 512 x 384 pixels. In

the entry scenario, there are abnormal events such as people moving in the wrong direction,

stopping suddenly or running. In the exit scenario, there are some abnormal events such as

people moving in the wrong direction and walking around near the exit door.
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UCF-Crime [1] dataset contains 13 real world abnormal cases and normal cases. The covered

anomalies are Abuse, Arrest, Arson, Assault, Accident, Burglary, Explosion, Fighting, Rob-

bery, Shooting, Stealing, Shoplifting, and Vandalism. 800 normal and 810 abnormal videos

constitutes training split of UCF-Crime. Test split consists of 150 normal and 140 abnormal

videos. Training set is annotated video-level labels, but test set is annotated temporarily.

Sample images of UCF Crime dataset can be seen in Figure 4.6.

3.2. Anomaly Detection in Computer Vision

Reconstruction methods learn a model or dictionary from normal videos to reconstruct given

image with small errors. Abnormal inputs which contain unseen objects, actions or attributes

can not be reconstructed with learned model successfully. The error between input and recon-

struction reveals abnormal cases. An anomaly detection with reconstruction is proposed by

Lu et al. [8]. Proposed model uses dictionary learned from normal videos. Firstly, scaled im-

ages to three sizes are divided to regions. For each region a relevant dictionary learned from

normal videos to reconstruct region feature with dictionary elements. The region feature is

extracted from ordered frame sequence in the region. L2 distance between reconstructed

feature and extracted feature from region gives error rate. High error rate in a region of the

image reveals anomaly in the scene. Proposed method decreases computation time during

test.

Anomaly detection method by sparse coding model is proposed by Luo et al. [10]. The

method aims to increase sparse code similarity between close frames in temporal space.

Proposed Temporally-coherent Sparse Coding (TSC) objective is used in sparse coding and

proposed stacked Recurrent Neural Network (sRNN) optimization. RNN works as auto-

encoder to reconstruct input feature xt at time t. Output of tth time is forwarded to hidden

states of t + 1 th state. Also distance calculated by proposed formula between xt and xt−1

feature vectors are passed to hidden state. In inference phase, after calculation reconstruction

error for all frames in a video, errors are normalized with defined formula.
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Alternative reconstruction method to sparse coding is deep neural networks. Hasan et al.

[11] propose that reconstructing image and HOG+HOF features to detect reconstruction er-

ror. Regularity of reconstruction error in temporal space is provided by HOG+HOF fea-

tures extracted along with trajectory information. Two branch of the network reconstruct

HOG+HOF features and input image with encoder-decoder architecture. Local appearance

and motion features are encoded to HOG and HOF descriptors. One branch of the network

accepts concatenated HOG and HOF descriptors to reconstruct HOG+HOF feature vector.

Due to the data scarcity, data augmentation is made on temporal dimension.

Nguyen et al. [12] propose encoder-decoder convolutional neural network to detect anomaly

in scene and localize it. RGB Image and optic flow map is reconstructed from RGB input

image by appearance convolutional auto-encoder. The model has one encoder that encode

RGB image to lower dimension feature, two decoders which reconstruct RGB image and

optic flow from encoded feature. Training is performed on normal videos for a scene. Re-

construction of abnormal input is divided to patches, comparison between corresponding

input patch and output patch with proposed formula gives score of abnormality. Patch by

patch comparison provides spatial localization. Proposed model can not be used as global

anomaly detection in all scenes, since not seen objects or actions in scene will be classified

as anomaly, e.g. change of lighting in train.

Discriminate predicted next frame by using generative model U-Net is another anomaly de-

tection method proposed by Liu et al. [13]. U-Net [64] consists of convolution and trans-

posed convolution layers to generate output with input shape. Proposed method predicts

optic flow map from generated next frame and current frame. Predicted optic flows are

criticised with ground truth next frame and current frame, in order to include motion knowl-

edge. Anomaly is detected by discriminator which accepts predicted next frame and real

next frame. Discriminator loss is calculated patch by patch by patch base loss in discrim-

inator after prediction. Gradient, illumination difference in prediction, and discriminator

output comprise generator objective. Generative adversarial learning schedule [65] is used

by the proposed method. While generator is being trained, discriminator weights are fixed.

Similarly generator weights are fixed during training discriminator.
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Ravanbakhsh et al. [14] propose method to learn normal scenes with Generative Adversar-

ial Network (GAN) architecture. The network consists of two generator sub-networks to

generate optic flow map from image and generate image from real optic flow map. Differ-

ence between image output and corresponding input is calculated with feature extracted from

AlexNet [18] network, in training phase. In test phase, Anomaly is detected by computing

local differences between reconstructed outputs and inputs, computation between images is

done directly from the image, not with features extracted from AlexNet as in training phase.

Differences of optic flow maps and images come together to produce anomaly map.

Anomaly detection with using high level information (object, motion, attribute) is achieved

by Hinami et al. [15]. Multi-task object detector has been trained on object detection

datasets. The detector predicts object class, action and attribute from object proposal re-

gions. Backbone network is AlexNet and RoI Pooling operation [60] is applied to feature

map to get same size features for each object proposal. The distribution of classification

scores is modeled for each category in target environment during training. In test stage, den-

sity of predicted category triplet is estimated by kernel density estimation (KDE). Estimated

density is used as anomaly score.

Sultani et al. [1] propose anomaly detection method trained by multiple instance learning

(MIL) method. In training stage, each video is split to fix number segments. If a video is

annotated as abnormal, segments are put to positive bag, else they are put to negative bag.

Spatio-temporal features of segments are extracted by C3D network. Maximum scored ab-

normal segment in positive bag is enforced to higher than maximum scored normal segment

by modified hinge loss. Also modified hinge loss enforces difference in scores of neighbour

segment to become less. The method is trained and tested on published UCF-Crime dataset.
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4. ANOMALY LOCALIZATION WITH TEMPORAL

CONVOLUTIONS

Video

Clip Clip Clip Clip Clip Clip

Window Window

Figure 4.1. Video, video clip, window

In this section we introduce Anomaly Detection Network (ADNet) for anomaly detection and

segmentation in temporal space. Input to ADNet is a set of features x1:C = (x1, x2, ..., xC)

extracted using a spatio-temporal CNN for each clip of given video, where C is number of

clips for a video. A video clip consists of a number of consecutive frames of video, as in Fig-

ure 4.1. Number of frames in a video clip and frame shape are determined according to pre-

trained spatio-temporal CNN. ADNet outputs anomaly probabilities y1:C = (y1, y2, ..., yC)

for each clip, where yt ∈ [0, 1]. Target values are a1:C = (a1, a2, ..., aC) where a ∈ {0, 1}.

0 and 1 indicates normal and abnormal classes, respectively. Labels are generated from out-

put probabilities by applying 0.5 threshold value, which can be changed in inference time to

adjust the model for different anomaly conditions.

We describe ADNet in Section 4.1. Then we explain Temporal Sliding Window in Section

4.2.. At the end of method section, we discuss the proposed loss in Section 4.3.

4.1. Temporal Anomaly Detection Network

To predict anomalies in a timeline by using temporal information, we adapt and improve

MS-TCN [40] model which makes classification and temporal segmentation. We input all
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clip features of a video without splitting to small parts.

MS-TCN defines a sequence of stages, which has a series of blocks that consists of convo-

lutional layers as in Figure 2.2. Each stage outputs anomaly scores, yt, for each video clip

features, xt. Input of next stage is the output of previous stage, except the first stage. In the

first stage, input video clip features are shrunk to DH channel-size with 1x1 convolutions,

where DH is the number of channels of features used in hidden layers of stages. After down-

sampling, each video clip feature is represented with H dimensional feature vector. In rest

of the stages, dilated 1D convolution operation is done on T downsampled clip features over

temporal dimension. Except the first layer and last layer in the stages, input and output shapes

of layers are same, this is achieved with padding. Dilation rate of convolutions is calculated

with 2l formula, where l is order of the layer in stage (i.e. 0, 1, 2, .., L). Dilated convolutions

increase receptive field of network with small kernel size. ReLU activation function which

follows 1x1 convolution provides non-linearity. Residual connections between before and

after convolutions in a block avoids gradient vanishing problem. Output of a stage is defined

as follows:

Y s = Sigmoid(W ∗ V + b) (8)

where ∗ is the convolution operation, W is filter kernel and b is bias value of kernel, Y s ∈

R1xT is the vector of anomaly scores outputted by sth stage.

We input the output of previous stage, Y s−1, to the next stage, Y s. At the start of the stage,

1x1 convolution is applied to increase channel size from 1 to DH .

4.2. Temporal Sliding Window

In the previous section, the model accepts the whole video clip features (x1, ..., xT ) of a

video to the network. We split consecutive clip features to windows to augment data. Data

augmentation provides better generalization. Each window contains W consecutive clip fea-

tures, (x1, x2, ..., xW ). If a video has less clip features than window width, T < W , we pad

window with empty clip features x0, which is filled with 0 values. Let x = (x1, x2, x0, ..., x0)
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ADNet

(a)

ADNet
ADNet

ADNet

(b)

Figure 4.2. Temporal convolutional networks (a) accepts clip features xi which are presented with
blue circles. Instead of convolving over clip features of a video as in (a), clip features are
divided to equal windows to pass ADNet (b). Windows intersect with previous windows,
output scores in overlapped parts are averaged to get final output scores. Abnormal re-
sults are presented with red colour.

be an input andm = (1, 1, 0, ...0) be the mask for x, where x ∈ RD0∗W andm ∈ R1∗W . Infor-

mation flow from padded empty clip features is blocked by masking outputs of convolutions

as follows:

V l = (W2 ∗ReLU(W1 ∗ V l−1 + b1) + b2) ·m (9)

where V l is the output of lth layer, (W1,W2, b1, b2) are parameters of convolution, · is dot

product.

Temporal window approach makes also online anomaly detection and segmentation possible,

while online detection is impossible in the network that accepts whole clip features as input.

The window step size is set to half of the window size for smoother inference results, this

increases the number of training clip windows as well. In other words, we augment data

with by splitting videos to windows and using half stride windows during training. Start

position of window i is calculated with wstart
i = W/2 ∗ (i − 1), end position formula is

wend
i = W +W/2 ∗ (i − 1). We use same window size for a network in both train and test

stages. In the inference, we average anomaly scores of overlapping windows, as in Figure

4.2.(b)

Each layer in a stage except the last layer outputs V T∗DH , where dimension of output is same

for the convolutions. To match input dimension with output dimension, we pad input P ,
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where P = bK/2c ∗ 2L, P < W , K is kernel size. If padding P is equal to input size of

windowW , more than half of the inputs of convolution would be padding elements. Window

width can not be more than the receptive field, whereReceptiveF ield = 2l+1−1. Therefore,

to avoid information loss, we determine maximum number of layers for a window width W

as follows:

L =

⌈
log2

W

bK/2c

⌉
(10)

4.3. AD Loss

-1.0

-0.5

-0.0

Figure 4.3. AD Loss increases distance between nearest opposite pair in manner of anomaly score
for each clip. Red circles represent abnormal clips, white circles represent normal clips

Intuition behind ADLoss is similar to VSE++ [66], increasing distance between hard pairs.

Hard pair of a normal video clip is abnormal video clip which has closest anomaly score to

the normal video clip. Similarly hard pair of an abnormal video clip is normal video clip with

closest anomaly score as in Figure 4.3. Since scores of the video clips are not same between

iterations, hard pairs of the video clips change in each of step of training. ADLoss aims to

increase distance between each hard pair to α value with Formula 12. Combination of LMSE

mean squared error loss and LAD anomaly detection loss produces the final loss value for

sth stage as in Formula 11. Contribution of LAD is controlled with 0 < λ < 1 parameter in

Formula 11. LAD is calculated as in Formula 12, where yA is score of abnormal input, yHN

hard normal of the abnormal input, yN is score of normal input, and yHA hard abnormal of

the normal input.
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Ls = LMSE + λ ∗ LAD (11)

LAD = max(−
∑
A

(yA − yHN − α)−
∑
N

(yHA − yN − α), 0) (12)

Final loss is summation of each stage losses which are produced from each stage anomaly

probabilities. We calculate loss for each stage output as in Formula 13. Final loss is mini-

mized during training.

L =
∑
s

Ls (13)

4.4. Implementation Details

We extract clip features from I3D[28] by applying average pooling to activations before

classification layer. Video clips for I3D are generated with 16 frame temporal slide. We

chose 16 temporal slide instead of 1 to decrease inference time. TSM[31] is the second

feature extractor used in our study. We use Adam [67] optimizer with 5e-4 learning rate

in all experiments. We trained and tested our models on PyTorch [68] framework. Kernel

size and channel size of ADNet are 3 and 64 respectively in all settings. Labels of clips are

determined by distribution of normal and abnormal classes.

4.5. Evaluation Metrics

The baseline method [1] and most other studies use AUC metric to measure anomaly detec-

tion performance. Abnormal cases happen in a segment of timeline. AUC metric evaluates

performance of each clip independently, in other words, ignoring the temporal orders of the

clips. For this reason AUC cannot do the necessary punishment when short false positives

arises. An appropriate metric should penalize such false positives because they create ex-

cessive number of alarms in a smart surveillance system. A good metric also should not
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Figure 4.4. First two rows are heatmaps of ground truth, predicted anomaly scores for Assault 10
video from the test set. Last row is graph of anomaly scores which is between 0 and 1.
AUC score is 74.83, F1@25 score is 24.99 for this video

penalize should not penalize minor shifts between predicted segments and ground truth seg-

ments while penalizing over-segmentation errors. However, clip wise AUC metric penalizes

minor shifts. Therefore, we approach to the problem as temporal action localization. We

adapt F1@k metric proposed in [36] for evaluating anomaly detection performance, which

handles the weaknesses of AUC metric better.

Abnormal segments form small part of ground truth in a test sample. For this reason, either

wrong predictions in abnormal segments or small false positives in normal segments do not

sufficiently affect AUC score. Figure 4.4. shows timelines of ground truth and prediction

segmentation for a test video. While AUC score of the test video is 74.83 , F1@25 score is

24.99 . This example shows the robustness of F1@k metric comparing to AUC metric for

this problem.

Intersection

Union

Figure 4.5. IoU between temporal segments

F1@k is calculated by k percentage intersection over union (IoU) between predicted tempo-

ral segments and ground truth temporal segments as in Figure 4.5. However, [36] does not
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include background segments to F1@k metric evaluation. In the anomaly detection problem,

normal segments can be considered as background segments. In order to increase penaliza-

tion for over-segmentation of abnormal segments, we do not consider segments with normal

events as background segments, we include them to evaluation.

As mentioned before, we extract features for each clip from spatio-temporal networks. Let

Ci = (fn∗i, ..., fn∗(i+1)−1) be a clip where fj is jth frame of given video. Since accepted

number of frames from feature extractors can be different, number of clips can be different

for given video with respect the selected feature extractor. To evaluate fairly, we produce

frame level labels or scores from clip level results by copying clip scores yi to frame scores

ŷj of the clip, ŷn∗i,...,n∗(i+1) = yi. In other words, we make evaluation in frame-level instead

of clip level.

4.6. Dataset

UCF Crime V2

Class Train Test Class Train Test Class Train Test

Abuse 48 2 Arrest 45 5 Arson 41 9

Assault 47 3 Protest* 96 8 Burglary 86 13

Explosion 29 21 Fighting 45/33 5 Molotov Bomb* 91 9

Road Accidents 127 23 Robbery 145 5 Shooting 30 23

Stealing 94 5 Vandalism 45 5 Normal 798 159

Table 4.1. Number of videos in training split and testing split of each category. New categories in
UCF Crime dataset are represented with * asterisk character. Since the 33 videos of the
training set of the fighting class consisted of newly collected videos, we presented the
training videos divided by the separator.

For the evaluation of the model, we use UCF Crime data set [1], which consists of 13 anomaly

classes. We have added two different anomaly classes to the data set, which are "Molotov

Bomb" and "Protest" classes. We also have added 33 videos to fighting class. Number of

videos in train and test splits of UCF Crime dataset are in Table 4.1. In total, we have added

216 videos to the training set, 17 videos to the test set. Test set of UCF Crime data set
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(a) abuse (b) arrest (c) arson (d) assault

(e) protest (f) burglary (g) explosion (h) fighting

(i) molotov bomb (j) road accidents (k) robbery (l) shooting

(m) shoplifting (n) stealing (o) vandalism

Figure 4.6. Snapshots from classes of UCF Crime v2 Dataset
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has temporal annotations and classifications. However, training videos of UCF Crime data

set are classified in video-level and temporal annotations are not provided for the training

set. To train models with temporal information, we annotated anomalies of training videos

in temporal domain. In order to annotate efficiently, annotators have used seconds as basis

and assumed that the frames in a second all belong to the same class. Since we extend the

dataset with new anomaly classes and temporal annotations for training videos, we name

new version of the dataset as UCF Crime V2.

Since baseline model has been trained without new anomaly classes, we do not evaluate the

baseline on UCF Crime v2 but we evaluate it on UCF Crime v1. We investigate effects of

window size, number of layer, feature extractor and loss functions on UCF Crime v2 dataset.

4.7. Results

In this section we present and discuss results of evaluation experiments.

4.7.1. Effect of Temporal Sliding Window

Methods
UCF Crime V2

F1@10 F1@25 F1@50

ADNet W32-S3-L5 50.78 43.22 32.05

ADNet W64-S5-L6 58.73 52.38 40.98
ADNet W128-S8-L7 55.61 50.04 36.60

ADNet w/o Window 51.62 43.86 32.30

Table 4.2. Comparison of different window sizes (W: window, S: number of stages, L: number of
layers in a stage). I3D is feature extractor in the experiments. Evaluation results on nor-
mal and abnormal segments together

We start evaluation by showing the effect of temporal sliding window method. We compare

different window widths and without window of ADNet in Table 4.2. Experiments in the

table have been made on UCF Crime V2 dataset. Number of layers in this experiment is set

according to window width in Formula 10. Window size and number of stages might have
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different values, which are experimented in our ablation study. Table 4.2. presents three

window sizes: 32, 64 and 128 clips in a window. Number of stages for each window width

are selected by taking into account the best result of that window. Generally, number of stages

increases in parallel to window width. As we mentioned before, temporal sliding window

augments data during training. Decreasing window size provides better augmentation, but

temporal information is lost. There is a trade-off between data augmentation and temporal

knowledge. Table 4.2. shows that the best result is achieved with 64 temporal window

width. All of the temporal sliding window results are better than straight forward ADNet

(w/o Window) in terms of F1@k scores. This means that temporal sliding window improves

performance of ADNet in UCF Crime v2 dataset.

4.7.2. Effect of Number of Layers

Methods
UCF Crime V2

F1@10 F1@25 F1@50

ADNet W64-S5-L8 53.03 47.03 33.95

ADNet W64-S5-L7 53.82 48.24 34.02

ADNet W64-S5-L6 58.73 52.38 40.98
ADNet W64-S5-L5 48.12 39.95 29.10

ADNet W64-S5-L4 51.35 42.19 28.17

ADNet W128-S8-L9 63.46* 61.78* 53.61*

ADNet W128-S8-L8 53.14 46.03 33.75

ADNet W128-S8-L7 55.61 50.04 36.60
ADNet W128-S8-L6 53.97 46.66 33.54

ADNet W128-S8-L5 63.46* 61.78* 53.61*

Table 4.3. Comparison of number of layers. I3D is feature extractor in the experiments. Evaluation
results on normal and abnormal segments together. Asterisks (*) character present zero
F1 score at abnormal segments.

We have compared window widths where number of layers is calculated with Formula 10.

In this part we discuss effect of number of layers to performance. Table 4.3. shows results

of experiments with fixed window widths (64 and 128) and number of stages (5 and 8).
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Asterisks (*) character in Table 4.3. means that ADNet produced zero F1 score in abnormal

segments for that setting. In other words, no temporal abnormal segments has detected by

the method. For this reason the results with zero F1 scores are not meaningful and are not

useful for temporal anomaly localization task in a surveillance system. Table 4.3. shows

that ADNet with more layers achieves better results until a point. However, a layer number

more than the layer number calculated by Formula 10 cause information loss as mentioned

in Section 4.2. Thus, accuracy drops when layer number is greater than 6, which is the value

for window size of 64 according to Formula 10. Similarly in experiments with window size

of 128, accuracy drops when layer number is greater than 7 which is the value calculated

with Formula 10.

4.7.3. Effect of Loss function

Methods
UCF Crime V2

Abnormal Segments Normal Segments

F1@10 F1@25 F1@10 F1@25

ADNet (MSE) 29.00 19.33 71.23 66.44
ADNet (MSE+AD) 32.16 20.70 56.34 50.54

Table 4.4. Comparison of loss functions. I3D is feature extractor in the experiments.

We propose the AD loss function, which tries to maximize distance between hard pairs from

opponent classes. Table 4.4. shows results for MSE loss and MSE and anomaly detection

(AD) loss together. In these experiments, window width is 64, number of stages is 5, and

number of layers is 6. The parameters are selected based on the previous experiments. λ

parameter in Formula 12 controls contribution of AD loss to total loss, λ is set to 0.5 in

these experiment. The results show that MSE+AD loss is more successful than MSE loss at

abnormal segments, but MSE+AD loss is worse than MSE loss at normal segments. For this

reason we use MSE loss only in other experiments.
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4.7.4. Effect of Feature Extractor

Methods
UCF Crime V2

Abnormal Segments Normal Segments

F1@10 F1@25 F1@10 F1@25

ADNet [I3D] 29.0 19.33 71.23 66.44
ADNet [TSM] 33.50 22.78 61.71 57.52

Table 4.5. Comparison of different spatio-temporal feature extractors

We have experimented on two different spatio-temporal feature extractors. In the previous

experiments, we used I3D [28] as the feature extractor. Temporal Shift Module (TSM) [31]

is more a efficient action recognition network than I3D network while performance on Ki-

netics [32] dataset is similar. To extract features from video clips, we have used TSM as an

alternative to I3D. Table 4.5. shows the results for I3D and TSM networks, where param-

eters of ADNet are as follows, window width is 64, number of stages is 5 and number of

layers is 6. Although I3D and TSM get different sized input clips and produce outputs in

different formats, this experiment shows us that ADNet can utilize different feature extractor

networks. As a result of this experiment, we observed that I3D features is more useful in

ADNet network for segmenting normal events while TSM features is better for segmenting

abnormal events.

4.7.5. Comparison with State-of-the-Arts

Temporal annotations of training set of UCF Crime data set has not been available until our

study. Baseline model [1] has not been trained on temporarily annotated train set. In or-

der to compare ADNet with models trained on temporarily annotated training set, we have

trained two models. First model is Multi Layer Perceptron (MLP) with 3 layers as in baseline

network [1] which generates predictions clip-wise. MLP Model accepts features extracted

from C3D network as in baseline study. Second model is Encoder Decoder Temporal Con-

volutional Network (ED-TCN) proposed in [36] with temporal sliding window method as
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Methods
UCF Crime v1

Abnormal Segments Normal Segments All Segments

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

Baseline
Network [C3D] [1] 4.13 1.65 0 63.27 56.36 46.54 45.20 39.64 32.32

MLP [C3D] 7.34 1.86 0.65 65.96 63.15 54.75 49.40 44.83 38.15

ED-TCN [I3D] [36] 21.18 12.63 4.88 61.60 53.59 36.71 47.81 39.61 25.85

ADNet [I3D] (Ours) 28.32 18.71 9.44 71.23 66.44 55.48 58.16 51.85 41.29

Table 4.6. Performance comparison of state-of-the art methods

in Section 4.2. ED-TCN model accepts features extracted from I3D network. According to

the results presented in Table 4.6., our proposed model achieves better scores than baseline

network and other models in all categories on UCF Crime v1 test set. While baseline model

achieves 4.13 F1@10 score at abnormal segments, our model achieves 28.32 F1@10 score.

Window width, number of stages and number of layers of ADNet in Table 4.6. are 64, 5, and

6, respectively.
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5. ANOMALY DETECTION BY OBJECT RELATIONS

Feat 
Extraction
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EncoderEncoderEncoderEncoderEncoder

TCN Stages

Figure 5.1. ADOR Architecture

UCF-Crime dataset anomalies are complex circumstances which can not be identified with

only action knowledge. Most of the anomalies are more complex than actions in action recog-

nition datasets. Additionally, temporal action localization videos comprise simpler circum-

stances than anomalies in UCF-Crime dataset. As an anomaly example from UCF-Crime,

robbery of a motorcycle can not be distinguished easily from driving motorcycle by owner.

Objects and object relations in scene are helpful to find some anomalies defined in UCF-

Crime dataset. Also static images are not enough to detect video anomalies in UCF-Crime

dataset. Object relations are obtained by using an image captioning method [61] in which a

transformer network accepts object features extracted from Faster R-CNN. Therefore, in our

proposed ADOR model, information from object relations and spatio-temporal features is

fused with cross-attention layers. ADOR model consists of three parts to localize anomalies

in temporal space, as in Figure 5.1. Spatio-temporal feature extraction from video clips and

object features extraction from center frame of the clip is the first part. Encoding and fusing
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features is the second part. The last is for localizing anomalies from encoded features by

staged temporal convolutions.

We explain parts of ADOR model in rest of the chapter. Feature Extraction is explained

in Section 5.1., Encoding action features and object features with cross connections is ex-

plained in Section 5.2. and Temporal Anomaly Detection is reviewed in Section 5.3. Then

we investigate ADOR model by some ablation studies and share evaluation results on UCF

Crime dataset in Section 5.5.

5.1. Feature Extraction

t. frame
Object 

Detector

Faster R-CNN
Trained on Visual Genome

t. frame
t. frame

t. frame
(t+8). frame16 Frames

3D Conv 
Net

I3D
Trained on Kinetics

7x7

1024

Obj Feat

49 Features

36 Features

7x7

512

1024

Obj Feat

36 Features 512

Figure 5.2. ADOR Input Preperation

In the first step, action features and object features are extracted from a video clip and center

frame of the video clip, respectively. The feature extraction networks are pre-trained on task

specific datasets, these datasets are Visual Genome object detection dataset and Kinetics-

400 action recognition dataset. Pre-trained Spatio-temporal CNN I3D [28] accepts clips of

16 consecutive frames to extract the feature. Object detection and object feature extraction

network Faster R-CNN works on static images. In order to process object relations and action

features together we extract object features from center frame of the clip as in Figure 5.2.
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Action features are extracted from video frames f1:T = (f1, f2, ..., fT ) where T is number of

frames of a video. A video clip ci = (fi∗s−7, ..., fi∗s+8) where i is clip order, s is temporal

stride between video clips, is forwarded to spatio-temporal CNN. Also, center frame of the

clip fi∗s is forwarded to object detection network. The features of objects with an object

classification score higher than 0.2 are pooled with the RoI Pool layer from feature map of

object detector’s backbone. Extracted features, that have same size because of RoI Pooling

layer, are average pooled to generate 2048 dimensional vectors from 7 x 7 x 2048. If number

of objects are higher than 36, low scored objects are eliminated until 36 objects left.

Spatio-temporal features Xst extracted from video clips using I3D have 7 x 7 x 1024 di-

mensions. These features are down-scaled to X∗st with 7 x 7 x 512 shape by learned 1 x

1 convolution. Flattened and transposed video clip features Xaction = X∗st
T with 49 x 512

shape are ready to forward encoder.

5.2. Object Relations and Scene Action Encoding with Cross Attention

[CLS] Obj1 Obj36[CLS] Feat1 Feat49

Q K V Q K VQ K V Q K V

1024d

Q K V Q K V Q K V Q K V

Q K V Q K V

Self Attention
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x3

Cross Attention
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x3

Obj Relational Attention

Feed Forward
x3

Q K V Q K V

Cross Attention

Feed Forward
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Figure 5.3. ADOR Encoder Architecture
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In the second step, anomaly encoder network encodes extracted action and object features.

Each video clip is represented with 1024d feature obtained with ADOR encoder. Action

encoder and object relation encoder constitutes ADOR encoder. The encoders process the

feature sets. Cross-attention layers in the encoders achieve action and object relation knowl-

edge fusion. As we mentioned before, encoders generate output vector for each input vec-

tor in input sequence. To classify video clips we append classification embedding vectors

to front of the extracted feature sets for video clips. As a result, action encoder accepts

(xt[clsa], x
t
action0

, ..., xtaction49
) sequence and outputs (et[clsa], e

t
action0

, ..., etaction49
) sequence. Also

input sequence of object relation encoder is (xt[clso], x
t
obj0

, ..., xtobj36), output sequence of the

encoder is (xt[clso], x
t
obj0

, ..., xtobj36). To obtain 1024d clip feature, we concatenate 512d feature

vectors associated with [CLS] tokens as in Formula 14.

zt = concat(et[clsa], e
t
[clso]) (14)

Positions of action features in sequence are specified with positional encodings as in Formula

1. Positions of object features are stated with relative positions between other objects in

the frame with Formula 4. Obtained embedding with relative position to reference object is

utilized to get attention weight to relative object as we mentioned in section 2.7. Since [CLS]

token is not object like others in the input sequence of object relation encoder, the bounding

box of the token does not exist. In order to use Formula 4 without modification, we can use

imaginary box for [CLS] like as centered on [0, 0] with zero width and height. If we accept

the bounding box of [CLS] token as an artificial box, relations between token and objects

would be differ by Formula 4. Also it would hurts learned embedding matrix. Since spatial

distance between the token and objects do not exist, we do not use relational distance for

[CLS] token in Formula 15.
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wab =



exp(
qa∗kTb√
dmodel

)∑N
l=1 exp(

qa∗kT
b√

dmodel
)
, if [CLS]token

obj_rel(a,b)+exp(
qa∗kTb√
dmodel

)∑N
l=1 obj_rel(a,l)+exp(

qa∗kT
b√

dmodel
)
, if otherwise

(15)

Before fusing features from different sources, encoding features by attention layers in them-

selves are achieved with the first half part of the encoders. Information exchange between

encoders starts at second half of the encoders. Key K and value V vectors are passed from

one encoder to another encoder to apply cross attention as in Formula 16. Cross attention

layers do not use spatial relation between objects as in object relation attention layer, due to

lack of boxes of action features.

Y i+1
action = Softmax(

Qi
action ∗ (K

N/2
obj )

T

√
dmodel)

) ∗ V N/2
obj

Y i+1
obj = Softmax(

Qi
obj ∗ (K

N/2
action)

T

√
dmodel)

) ∗ V N/2
action

(16)

5.3. Temporal Anomaly Localization

Consecutive encoder outputs of a video (z0, z1, ..., zT ) are converted to anomaly score by

Temporal Convolutional Network which is adapted from MS-TCN as in 4.1. To obtain di-

vergence and data augmentation in temporal space videos are split to fixed size intersected

windows. In case of less insufficient outputs in a window, missing clip features are filled with

pad features. Information flow from pad features are avoided with masking encoder outputs

of padded inputs.

5.4. Implementation Details

We implemented ADOR on PyTorch [68] framework. ADOR was trained by Adam opti-

mizer [67] with 5e-5 learning rate. We used Binary Cross Entropy (BCE) loss to criticize the
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model. To produce same results with the hyper parameters random seed of PyTorch was set

to 123. ADOR is trained with video clips windows that size is 128. Total number of stages

in ADOR is 7, we consider the encoder as the first stage, the remaining 6 stages are temporal

convolutional network. Each stage output is criticized with the ground truth except the first

stage encoder output. We trained and tested model on Nvidia GeForce GTX 1080 Ti GPU.

5.5. Results

5.5.1. Effect of Cross Connections

[CLS] Feat1 Feat49

Q K V Q K V

Q K V Q K V
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Feed Forward
x3
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Figure 5.4. Action encoder

[CLS] Obj1 Obj36

Obj Relational Attention
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x3

Q K V Q K V
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x3

Q K V Q K V

Figure 5.5. Object relation encoder

We investigate effect of cross connections between action and object relation encoders. For

this purpose, encoder part of ADOR is replaced with action encoder as in Figure 5.4. and

object relation encoder as in Figure 5.5. separetely. Table 5.1. reveals that fusion of action

and object relation encoders with cross connections provides better temporal segmentation.

The rest of the architecture is the same except for the encoder to compare results fairly.
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Models
UCF Crime V1

Abnormal Normal

F1@25 F1@50 F1@75 F1@25 F1@50 F1@75

Action Encoder 9.52 3.03 0.43 71.04 47.96 18.91

Object Encoder 7.98 0.61 0.61 65.13 51.32 34.52

ADOR 22.99 10.34 3.45 66.43 52.63 37.89

Table 5.1. Experimental results of the model using only action encoder instead of ADOR encoder,
model using only object relation encoder and model with ADOR encoder consisting of
cross-connections

5.5.2. Effect of Window Size

Models
UCF Crime V1

F1@25 F1@50 F1@75

ADOR (64 window width) 50.32 36.83 27.71

ADOR (128 window width) 53.03 39.77 26.84

ADOR (512 window width) 56.68 42.21 29.98

Table 5.2. Scores of ADOR with different window sizes

ADOR utilizes sliding window approach similar to ADNet. Since windows larger than 128

elements do not fit in GPU memory, we cannot train models with windows larger than 128.

However models can infer on different sized windows than training window. In order to

evaluate ADOR with larger windows, we employed the model which is trained with 128

size windows. The results in Table 5.2. show that ADOR produces better results with larger

windows in contrast to ADNet.

40



Models
UCF Crime V1

F1@25 F1@50 F1@75 AUC

ADOR (2 stages) 34.69 24.93 16.81 78.95
ADOR (7 stages) 56.68 42.21 29.98 70.57

Table 5.3. Experiment results on UCF Crime V1 with models which consists of different number of
stages. AUC scores shared to show the impact of clip-by-clip metric inefficiency.

5.5.3. Effect of Temporal Metric

As we mentioned in section 4.5. frame-wise score calculation does not reveal temporal

efficiency of videos. Output that contains disconnected parts of a segment as in Figure 5.6.

is not useful for video understanding. Table 5.3. shows that higher AUC score does not

provides better segment based F1 score. Temporal consistencies of ADOR with 2 stages and

ADOR with 7 stages are shown in Figure 5.6. As we mentioned before, we consider ADOR

encoder as the first stage, the remaining stages are temporal convolutional network stages.

GT:

Pred2-Stage

Pred7-Stage

Figure 5.6. Temporal results of 2-stages ADOR and 7-stages ADOR for Explosion 10 in UCF Crime
Dataset

5.5.4. Class Scores

Performance of models on classes differs, for the reason of that we compare class perfor-

mance by training models on each isolated class data.Since F1 scores in test set are greater

than ADNet experiments in Section 5.5., we calculated F1 scores with higher Intersection

over Union (IoU) percentages to compare results more effectively. In order to evaluate fairly

the experiments was made with same spatio-temporal feature extractor (I3D), same temporal
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resolution and same clip length. Also seed number of random in PyTorch is set to fixed num-

ber in class based model comparison experiments to avoid injustice. ADOR achieves better

score than ADNET in 9 classes in F1@25, 8 classes in F1@50, 7 classes in F1@75 metric

as in Table 5.4.

Classes
UCF Crime V2

ADOR ADNET

F1@25 F1@50 F1@75 F1@25 F1@50 F1@75

Abuse 40.00 20.00 13.33 0.00 0.00 0.00

Arrest 35.71 28.57 7.14 25.29 17.65 0.00

Arson 52.00 26.00 16.00 47.76 29.85 17.91
Assault 47.06 23.53 11.76 58.82 35.29 11.76

Protest 50 40 0 48.28 27.59 6.90
Burglary 42.67 24.00 21.33 38.64 22.73 15.91

Explosion 61.33 49.33 24.00 58.27 47.24 26.77
Fighting 60.00 40.00 33.33 47.06 17.65 11.76

Molotov Bomb 52.17 31.88 20.29 62.50 46.87 18.75

Road Accidents 73.44 57.81 29.69 66.67 54.70 29.06

Robbery 61.11 38.89 16.67 76.92 53.85 30.77
Shooting 52.38 38.10 15.87 57.32 40.24 23.17

Shoplifting 36.97 16.81 6.72 41.03 17.95 7.69
Stealing 57.14 42.86 14.29 40.00 40.00 5.71

Vandalism 45.16 19.35 6.45 48.48 18.18 12.12

Table 5.4. F1 scores of models trained with only that class’s data for each class.

5.5.5. Comparison with State-of-the-Arts

We compare ADOR with ADNet, baseline study [1] and models trained with temporal anno-

tations. As we mentioned in Section 4.7.5., baseline network was not trained with temporal

annotations. For this reason we trained MLP model with C3D features, ED-TCN model with

I3D features to compare our models. The results in Table 5.5. shows that while ADNet

achieves 28.32 F1@10 score on abnormal segments ADOR achieves 33.94 F1@10 score.
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Methods
UCF Crime v1

Abnormal Segments Normal Segments All Segments

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

Baseline
Network [C3D] [1] 4.13 1.65 0 63.27 56.36 46.54 45.20 39.64 32.32

MLP [C3D] 7.34 1.86 0.65 65.96 63.15 54.75 49.40 44.83 38.15

ED-TCN [I3D] [36] 21.18 12.63 4.88 61.60 53.59 36.71 47.81 39.61 25.85

ADNet [I3D] (Ours) 28.32 18.71 9.44 71.23 66.44 55.48 58.16 51.85 41.29

ADOR (Ours) 33.94 26.06 11.52 75.03 68.04 54.20 63.49 56.68 42.21

Table 5.5. Performance comparison of state-of-the art methods
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6. CONCLUSION

We proposed a temporal Anomaly Detection Network (ADNet) and Anomaly Detection Net-

work by Object Relations (ADOR) , which enables to localize anomalies in videos with

temporal convolutions. ADNet utilizes spatio-temporal features extracted from pre-trained

action recognition model, ADOR employs both spatio-temporal features and object features

extracted from pre-trained object detection network. In our knowledge, ADNet is the first

to formulate the video anomaly detection problem as similar to the action localization prob-

lem, is the first approach that utilizes both object relations and action information in video

anomaly detection. We also introduced AD loss function, which enabled to have better de-

tection performance in ADNet for abnormal classes. We evaluated and discussed the effects

of model parameters, which are window width, number of layers, number of stages, feature

extractor, and loss functions for ADNet.

We also extended the UCF Crime anomaly dataset with two additional anomaly classes and

temporal annotations of training videos. Extensive evaluations of the model shows that the

model has promising results on real world anomaly videos. Window based operation of the

model allows processing of online video streams. We also investigated the evaluation metrics

in terms of measuring anomaly detection performance. Since F1@k does not penalize minor

shifts and does punish short false positive temporal segment predictions, we concluded that

F1@k metric is better than AUC metric for measuring anomaly detection performance.

In the future works, scene context information and relations between objects can be utilized

to improve anomaly detection performance. Additionally, associations between action and

object information might improve anomaly detection performance especially in human in-

volved anomalies, such vandalism, fighting, stealing, etc. ADOR use action information ex-

tracted from the whole scene but does not have information about relations between objects

and action information of the objects. ADNet can be studied with different action recogni-

tion methods or with more detailed action information from scenes. Similarly, ADOR can be
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studied with different object detectors, action detectors and its transformer architecture can

be extended further to fuse object and action information better.
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