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DİL VE GÖRMEYİ KULLANARAK SEZGİSEL FİZİĞİ
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ABSTRACT

TOWARDS UNDERSTANDING INTUITIVE PHYSICS WITH
LANGUAGE AND VISION

Tayfun Ateş

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. Mehmet Erkut Erdem

Co-Supervisor: Assoc. Prof. Dr. İbrahim Aykut Erdem
January 2021, 64 pages

Visual question answering (VQA) is one of the difficult tasks in multimodal machine rea-

soning. VQA requires machines to provide correct answers to questions about an image or

a video. Here, the machine should perceive the scene and infer true judgements on the rela-

tionships between different entities. Recent benchmarks on VQA have been mostly proposed

for static images and they only question spatial reasoning capabilities of artificial models. In

other words, it is not a requirement for the machines to learn the physical properties of ob-

jects and understand different physical relationships among them. Hence, it is not possible to

evaluate whether the models have intuitive physics or causal and temporal reasoning capabil-

ities using these datasets. This thesis proposes a new benchmark, CRAFT, which is designed

to evaluate these capabilities of artificial intelligence models. In particular, it comprises of

38K video and question pairs that are automatically generated from 3K videos of dynamic

scenes. These scenes are synthetically created using a physics engine by considering ten dif-

ferent two-dimensional scene layouts containing variable number of dynamic objects. While

generating the questions in CRAFT, we consider five different categories, two of those (de-

scriptive and counterfactual) have been investigated in earlier works. However, in our work,
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we have introduced three new question categories (cause, enable, and prevent) which are pro-

posed inspired by the representations of causal relationships in cognitive science. A special

attention has been given to data generation process to focus on creating questions which are

easy to solve by humans, but difficult for machines. In order to support this claim, CRAFT

questions are asked to both artificial models and 12 adult participants. Our experimental

results demonstrate that although the tasks seem intuitive for human participants, there is a

large gap between them and the most successful artificial model.

Keywords: Deep Learning, Computer Vision, Natural Language Processing, Cognitive Sci-

ence, Visual Question Answering, Intuitive Physics, Causal and Temporal Reasoning
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ÖZET

DİL VE GÖRMEYİ KULLANARAK SEZGİSEL FİZİĞİ ANLAMAYA
ÇALIŞMAK

Tayfun Ates

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Mehmet Erkut Erdem

Yardımcı Danışman: Doç. Dr. İbrahim Aykut Erdem
Ocak 2021, 64 sayfa

Çok kipli yapay muhakeme görevlerinin en zorlularından biri de görsel soru cevaplamadır.

Bu problemde makinenin verilen bir görüntü ya da video hakkında sorulan soruya doğru ce-

vap vermesi beklenmektedir. Soruya doğru cevap verebilmesi için, makinenin sahneyi iyi

anlaması, sahnedeki varlıklar ve varlıklar arası ilişkiler hakkında doğru yargılara varması

gerekmektedir. Görsel soru cevaplama üzerine çıkmış yapay veri kümeleri genellikle sabit

görüntüler üzerinedir ve sadece modellerin uzamsal muhakeme yeteneklerini ölçmektedir.

Bu tarz sabit sahnelerde ise makine, soruya doğru cevap vermek için sahnedeki varlıkların

fiziksel özelliklerini öğrenmek zorunda değildir. Öte yandan, bu veri kümelerini kulla-

narak modellerin sezgisel fizik ya da zamansal ve nedensel muhakeme yeteneklerinin olup

olmadığını ölçmek mümkün değildir. Bu tez kapsamında, bu yetenekleri de ölçebilmek

adına; soruları ve görselleri, yapay ve otomatik yollarla elde edilmiş, CRAFT adında yeni

bir veri kümesi oluşturulmuştur. CRAFT içindeki yaklaşık 38000 adet soru ve video çifti,

yine yaklaşık olarak 3000 adet hareketli sahne videolarından oluşturulmuştur. Bu video-

lar, farklı sayıda hareketli varlık içeren on farklı iki-boyutlu sahne düzeninden sentetik bir

biçimde oluşturulmuştur. CRAFT soruları hazırlanırken ise daha önce de çalışılmış iki adet
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soru kategorisinin (betimsel ve karşıolgusal) yanında bilişsel bilimlerdeki nedensel ilişkilerin

temsillerinden de ilham alınarak daha önce çalışılmamış yeni soru kategorileri (sebebiyet,

kolaylaştırma ve engelleme) de eklenerek toplam beş adet soru kategorisi yaratılmıştır. Bu

video ve soru çiftleri hazırlanırken özellikle insanlar için kolay ama makineler için zor ol-

masına dikkat edilmiştir. Bu iddiayı savunmak için de CRAFT soruları hem seçilmiş ya-

pay modellere hem de 12 yetişkin katılımcıya sorulmuştur. Deneysel sonuçlarda ise video-

larla ilgili soruların insanlar tarafından kolayca cevaplanabilmesi ve yapay modellerin benzer

sezgisel fizik yeteneğine kolayca erişememesi gözlemlenmiştir.

Anahtar Kelimeler: Derin Öğrenme, Bilgisayarla Görme, Doğal Dil İşleme, Bilişsel Bilim,

Görsel Soru Cevaplama, Sezgisel Fizik, Nedensel ve Zamansal Sorgulama
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GENİŞLETİLMİŞ ÖZET

Son yıllarda yapay öğrenme alanındaki gelişmeler sayesinde bir görüntü içinde hangi varlıkla-

rın olduğunu [1–3], o varlıkları çevreleyen kutuların hangileri olduğunu [4–6] ya da bu

varlıkların tam olarak sınırlarının hangi pikseller olduğunu söyleyebilen modellere sahibiz

[7–9]. Daha da ötesinde, bir görüntü [10, 11] ya da video [12, 13] içindeki hareketleri

sınıflandırabilen modeller de var. Çok kısa bir süredir, veriyi anlamanın yanında, verinin ken-

disini üretebilen modellerde de büyük gelişmeler oldu. Örneğin, daha önce hiç varolmamış

insan yüzleri yaratabilen modeller geliştirildi [14]. Bu gelişmeler elbette bizi çok mutlu

etse de, henüz yapay zekânın insan zekâsına yaklaşamadığı noktalar da mevcut. Bunlar-

dan biri insanların sağduyuya dayalı akıl yürütme yeteneğidir (commonsense reasoning).

Bu yeteneğimiz günlük hayatta karşılaştığımız olay ve durumlarla ilgili diğer insanlarla or-

tak bir şekilde vardığımız yargılardan oluşmaktadır. Örneğin, hepimiz bir yumurtayı bi-

raz yüksekten bıraktığımızda, yere düşünce kırılıp dağılacağını tahmin edip kafamızda can-

landırabiliyoruz. Sezgisel fizik ise bu yeteneğimizin bir alt yeteneği olarak düşünülebilir.

Örnek vermek gerekirse, hacim sahibi iki varlığın birbirine çarpacağını gördüğümüzde, daha

ağır olarak hayal ettiğimiz varlığın diğerine göre bu çarpışmadan daha az etkileneceğini

gözümüzde canlandırabiliyoruz. İnsanoğlunun bu yeteneği, yapay öğrenme ve bilişsel bilim

alanındaki araştırmacılara, yapay yollarla üretilmiş bir zekânın benzer kabiliyetleri olabilir

mi sorusunu sorduruyor. Bu tezin amaçlarından biri de yapay zekâlara gözlemledikleri fizik-

sel olaylarla ilgili zamansal ve nedensel muhakeme yeteneği kazandırılmasına yardımcı ol-

maktır.

İnsanların gerçekleşmekte olan olaylarla ilgili zamansal ve nedensel muhakeme yetenek-

leri dışında, gerçekleşecek olan olaylarla ilgili karşıolgusal değerlendirme yetenekleri de

bulunmaktadır. Bir sahnede gerçekleşecek olay ile ilgili sahnede basit bir değişikliğe gidile-

cek ise (yeni bir varlığın eklenmesi, bir varlığın çıkarılması, dış bir kuvvet uygulanması

vs.), bu değişikliğin sonuçlarını olay gerçekleşmeden kafamızda resmedebilme ve yeni olası

olaylarla ilgili yargıya varma yeteneğine sahibiz. Bahsedilmesi gereken önemli bir nokta
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ise, robotların bu tarz fiziksel muhakeme yeteneklerini geliştirmek onları bulundakları fizik-

sel ortamda gerçekleştirdikleri hareketin sorumluluğunu almasında yardımcı olacaktır. Bir

hareketi gerçekleştirmeden önce, olası sonuçlar ile ilgili tahminde bulunmaya başlayacaklar-

dır. Yapay öğrenme alanındaki güncel çalışmalardan güzel bir örnek olarak Jenga oynayan

robotu söyleyebiliriz [15].

Sezgisel fiziğin yapay yollarla öğrenilmesi yeni bir araştırma problemi olmasına rağmen,

bazı problemler araştırmacılar tarafından çalışılmaya başlandı. Örneğin, bu çalışmalardan

birinde yazarlar 3-boyutlu küplerden oluşan bir yığının sabit mi yoksa yıkılmak üzerine mi

olduğunu anlamaya çalıştı [16]. Bir diğer çalışma ise eğer yıkılmak üzere ise bu küplerin ner-

eye düşeceğini tahmin etmeye odaklandı [17]. Bazıları ise probleme tersten bakıp planlama

algoritması kullanarak küplerden sabit bir yığın oluşturma üzerine çalıştılar [18]. Tek bir

görüntüye bakarak bir ya da daha fazla kuvvete maruz kalacağı gözüken bir objenin hareke-

tinin nasıl olacağını tahmin etmeye çalışan yapan modeller de mevcut [16]. Son olarak ise,

temsil edilen fiziksel varlığın sadece katı bir varlık olmayabileceğini düşünen ve sıvıların

temsilini yapay öğrenme ile sağlamaya çalışan yöntemler de mevcut [19]. Bunlar bütün

çalışmaları kapsamasa bile, bu tez hakkında fikir vermesi açısından başarılı örnekler olarak

sayılabilirler.

Bu tezin temel amacı; yapay öğrenme modellerinin bir sahnede yer alan hareketli varlıkları

ve fiziksel ilişkileri anlamasına ve sahne ile ilgili muhakeme yeteneği kazanmasına yardımcı

olmaktır. Bunu yapmak için, tez kapsamında literatüre CRAFT isminde yeni bir görsel soru

cevaplama (visual question answering) veri kümesi sunulmuştur. Bu veri kümesi yaklaşık

3000 adet videodan oluşturulan yaklaşık 38000 adet soru-video çifti içermektedir. Videolar

10 farklı 2-boyutlu sahneden otomatik ve yapay yollarla (Box2D [20] motoru kullanılarak)

üretilmiştir. Soru üretimi için 65 adet şablon soru hazırlanmıştır. 65 adet şablon 5 farklı

kategoride sunulmuştur (betimsel, karşıolgusal, sebebiyet, kolaylaştırma ve engelleme). Bu

şablonların içi videodaki sahnenin içeriğine göre otomatik olarak doldurulmuş ve bu şekilde

soru-video çiftleri yaratılmıştır. Veri kümesi ile birlikte referans doğru cevapların hazırlanma-

sı için video yaratılırken objeler ve olaylarla ilgili bilgiler kaydedilmiştir. Doğru cevabı

otomatik bulmak için gereken tüm bilgiler veri kümesi ile birlikte paylaşılmıştır.
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Sadece uzaysal muhakeme yetenekleri sorgulatan güncel görsel soru cevaplama çalışmaları-

nın aksine [21], CRAFT sorularına doğru cevap verebilmek için modellerin kuvvetli za-

mansal ve nedensel muhakeme yeteneklerinin olması gerekmektedir. Ayrıca, sorulara yüksek

oranda doğru cevaplar verebilmek için modellerin karışık fiziksel olaylar için de temsil

yeteneğinin kuvvetli olması gerekmektedir. Bu tezin çoğunluğunu veri kümesinin nasıl

oluşturulduğuna ayrılmıştır. Ayrıca, bu tez içinde güncel yapay modellerin CRAFT üzerinde

nasıl çalıştığını görmek için yapılan deneyler hakkında bilgiler de mevcuttur. Yaptığımız bu

deneyler, veri kümesindeki cevap sıklıklarını inceleyen kolay modelleri içerdiği gibi, daha

karışık derin öğrenmeye dayalı modelleri de içermektedir. CRAFT’ı oluştururken temel

amacımız insanlar için kolay; ama yapay zekâlar için zor bir veri kümesi oluşturmaktı. Bu

amacımızı gerçekleştirdiğimize yönelik iddiamızı desteklemek için 12 adet yetişkin katılımcı

ile bir deney daha gerçekleştirdik. CRAFT içerisinden rastgele seçtiğimiz soruları katılımcıla-

ra sorduk. Tezin sonunda, katılımcıların gösterdiği performans ile eğittimiz temel mod-

eller arasında en başarılı olan modelin performansı arasında geniş bir fark olduğunu rapor-

ladık. Bu fark bize bu tarz yeteneklerin yapay yollarla kazanılması için daha çok çalışılması

gerektiğini göstermiştir.

Sonuç olarak, CRAFT adlı veri kümemizi ve bu veri kümesini yaratırken kullandığımız

araçları literatüre sunarak, bu tezin, yapay zekâların insan zekâsına yaklaşması yolunda

ufak bir basamak olacağına inanmaktayız. CRAFT üzerinde eğitilecek daha başarımlı mod-

ellerin ortaya çıkmasını ve CRAFT’ın değinmediği yerlere değinen yeni veri kümelerinin

yaratılmasını hedeflemekteyiz.
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1. INTRODUCTION

Imagine yourself playing bowling with some of your friends and the turn is yours. Your aim

is to knock the pins ahead of you, possibly with a strike. Regardless of your experience in

the game, you can estimate whether it will be a good hit or not just after you bowl using

your intuitions about the environment. You may consider the direction, speed or spin of the

ball and current positions of the pins to do the estimation. Your estimations are all based on

approximate predictions. You do not try to use Newtonian physics exactly in your estimations

in this very short period of time. The ability of humans to understand and make approximate

predictions about the physical environments consisting of different objects that are in steady

state or in motion is known as intuitive physics [29]. Humans gain the collection of these

type abilities starting from their birth. Cognitive scientists extensively studied which factors

affect infants’ or adults’ ability of physical reasoning [30–33]. Some of these abilities are

also studied for chicks (Gallus gallus) as well [34].

Recent advances in machine learning systems have enabled computers to understand what

is the object in a specified image [1–3], which rectangle best wraps that object [4–6], what

is its exact boundaries [7–9]. Some of these systems tried to understand what is happening

in a single image [10, 11] or in a video [12, 13]. More recent systems started to generate

new collections of data (such as human faces [14] or art samples [35]) by incorporating real

existing data. Although, these artificial systems have been amazing us for decades, there are

areas in which artificial systems are far from performing as humans do. One of these areas

includes the humans’ capability reasoning about physical actions of the objects by sensing

the environment. This is a new recent research direction for which cognitive and machine

learning scientists are working jointly to bring similar capabilities to the artificially intelligent

robots so that they generate similar intuitions and understand their environment more. One

crucial point that is worth mentioning here is that improving physical reasoning capabilities

can make them responsible for their actions in their physical environments. They can gain

abilities to consider counterfactual actions without actually performing the actions. They can
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estimate what will happen if they perform a specific action. One of the recent example in

this research is the robot playing the game Jenga [15].

The research on understanding intuitive physics has started very recently, hence there are

only a few studies that focus on this task. For instance, some current methods of intuitive

physics in artificial intelligence tried to estimate whether a scene of objects are in stable con-

figuration or not [16] while the other tried to predict where the objects fall after a simulation

if the configuration is not stable [17]. Other methods tried to estimate a motion trajectory

of a query object under different forces in an image [16]. Some other tried to build a stack

configuration of the objects from scratch through a planning algorithm [18]. Some other

researchers have recently extended the notion of the objects by considering them as a collec-

tion of particles to represent the fluids and deformable objects [19]. These are not only but

some examples of teaching physics to deep neural networks.

1.1. Scope of the Thesis

The main aim of this thesis is to help machine learning models to understand and reason

about physical relationships between dynamic objects in a scene. We propose a new visual

question answering (VQA) task that requires understanding complex physical reasoning to

be able to score high. VQA tasks require machine learning models to answer a question or

questions about a visual which may be video or image according to the definition of the task

(Figure 1.1.). Models are needed to be trained with multimodal datasets which contain visual

and textual information to correctly answer the question. The performance of the model then

can be calculated by the ratio between the number of correctly answered questions and all

questions.

By making use of the experience gained for visual question answering tasks, a new virtual

dataset named CRAFT (Causal Reasoning About Forces and inTeractions), is created [36].

The dataset contains virtually generated 2-dimensional videos as well as questions regarding

those videos. The most prominent properties of CRAFT dataset are that it contains visu-

als which include complex physical interactions between objects and tasks which question
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Figure 1.1. Visual Question Answering (image taken from [22]).

strong reasoning capabilities. For example, understanding the relations and detecting the ob-

ject or objects which are causing, enabling or preventing certain events from happening are

some of these capabilities. Moreover, understanding what would have happened if a slight

change in the visual is created is also one of them. Most of this thesis is dedicated to our

efforts in creating this dataset. Furthermore, some neural baseline and human study results

are also provided to demonstrate that there is still more way to go for the current AI systems.

We believe that the dataset will lead to the generation of more novel systems on the path of

approaching human intelligence for physical reasoning.

1.2. Contribution

The contributions of this thesis can be listed as follows:

1. A new benchmark with a new virtual dataset (CRAFT) is proposed to the literature to

improve causal and temporal judgements of the machine learning systems.

2. Simulators for creating new CRAFT visuals and questions are provided to extend the

dataset further.

Implementations of the video simulator, the question generator, and baseline models will be

publicly available to the community.
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1.3. Organization

The rest of this thesis is organized as follows:

In Chapter 2, we provide detailed background information to fully grasp the rest of the thesis.

Then, in Chapter 3, we briefly review the related works from the literature. In Chapter 4, we

provide details of the proposed CRAFT dataset. We continue with the baseline models and

experiments conducted on CRAFT with their results in Chapter 5. Finally, in Chapter 6,

we conclude this thesis by providing some remarks about shortcomings of our baselines and

some possible future research directions.
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2. BACKGROUND

In this section, some background information about the related concepts required to under-

stand this thesis comprehensively will be provided. Firstly, we present the formal definitions

of intuitive physics, physical reasoning and common sense and some of the research contro-

versies among cognitive science researchers. Advances in cognitive science and understand-

ing the researchers’ way of thinking can be very useful for developing machine learning

models which do not only recognize patterns. Secondly, we provide some information about

visual question answering studies in general. Then, we introduce the physics simulator that

is used to create CRAFT. Moreover, we give some background information in automatic

question generation before ending this section with details of the backbone models used in

our baselines.

2.1. Intuitive Physics in Cognitive Science

Common sense can be considered as humans’ collection of capabilities to perceive, under-

stand and judge about everyday situations. These senses are also shared by all humans. The

definition of common sense is also philosophically historical originating from the works of

Aristotle. These senses are not required to contain physical activities belonging some ob-

jects. If we hear that doorbell of our house is ringing, we directly understand that someone

has just arrived at our home. Moreover, when we raise our hands in a restaurant, the waiter

understands that we need something. Intuitive physics, on the other hand, is considered as

how people perceives how the physical world changing its state by objects’ dynamism de-

scribing similar common sense beliefs [37]. If we represent the chain of events in a dynamic

environment as a causal graph, the ability to find the reason events of some other events is

titled as physical reasoning.

One of the main controversies among cognitive science researchers is to decide whether

innate ideas have impact on infants’ physical reasoning. While some are claiming that they

are important, some claim that these intuitions can only be gained by experimenting. These
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ideas include cohesion and continuity, which state objects are bounded and connected entities

and objects exists and move continuously in time and space, respectively. Other than these

ideas, the notion of variables is also important. Humans are able to identify different variables

such as height and color of objects to predict the outcome of an event at different ages of

their lives. However, the authors in [31] showed that when these variables are induced to the

infants using proper mediums, they are started to predict the outcomes correctly regardless

of the type of the event and age of theirs. This is somehow correlated to what we are doing

in artificial intelligence systems. The data or the feature may not be significant until you

provide it to the model using a more proper medium.

2.2. Visual Question Answering

Visual question answering (VQA) is a subdiscipline of question answering (QA) which is

building artificial systems that are trying to give answers to the questions given in natural

language. As well as containing natural language questions, VQA tasks consist of visuals for

which the questions are generated. The performance of a model is calculated by the number

of the correctly answered questions. The visuals can be both images or videos according to

the definition of the task.

The datasets generated for visual question answering can be divided into two sub-categories

according to how the visuals are created or collected. The first set of works created ques-

tions for real world images or videos [22, 38–41]. The other set of works used a computer

simulator to generate virtual scenes for the questions [21, 42, 43]. From this perspective, this

work belongs to the second category since we are also using Box2D simulator to generate

our visuals.

Current machine learning models are very successful learning patterns in the datasets. This

makes generating a VQA dataset more difficult because a bias existing in the dataset may lead

the model to cheat answering the question without even considering the features obtained

from the visual. For example, if the question asks the color of a car in the video or the

image, the model may learn to give answer as “red” if most of the cars in the samples are
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“red”. Similarly, model may look at the visual and can answer without even looking at the

question’s natural language representation [44]. Detailed information about how we deal

with certain biases in CRAFT will also be provided in Chapter 4.

Image visual question answering tasks are not able to emphasise dynamic state changes of the

objects which is required to improve intuitive physics capabilities of the models. Although

some of the video question answering works question temporal reasoning capabilities of the

models [45–47], they do not require physical reasoning capabilities to answer the questions.

On the opposite end, works developing models that can learn some sort of physical reasoning

capabilities do not integrate visual question answering in the learning process considering

mostly single physical events. In this sense, our aim is to enable learning physical reasoning

capabilities through a VQA task.

2.3. Physics Simulation

There are plenty of 2-dimensional simulator alternatives on the internet to be used for re-

search purposes freely. From them, we have decided to go with Box2D [20]. The library is

implemented fully in C++ and includes continuous collision detection algorithms and pro-

vide begin, end, pre-solve, post-solve contact callbacks from them we have detected our

events in our physical environments. Box2D’s engine also takes physical quantities like

mass, friction and restitution into account in its calculations. It include complex joint types

such as evolute, prismatic, distance, pulley, gear and mouse joint. Although it also provides

a graphics engine as well as a physics engine, we developed a custom and flexible graphics

engine to visualize our simulations. Finally, it has a nice test application for game developers

and researchers to start coding their own simulations easily (Figure 2.1.).

2.4. Question Generation

As our simulations, our questions and their corresponding answers about the simulations are

generated automatically. There are studies which generate datasets whose questions are an-

notated by humans [22, 38]. Although this is an option, human annotations make expansion
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Figure 2.1. Box2D Test Application Interface.

of the dataset very difficult and expensive. Furthermore, there are synthetic question gener-

ators which depend on the descriptions provided with the visuals [39]. Main idea in these

studies is to convert descriptions, such as the ones in MS-COCO dataset [48], into question

and answer pairs. For example, if the description about the visual is “A man is riding a

horse”, then the question and the answer become “What is the man riding?” and “A horse”,

respectively. One advantage of the method is that if the descriptions are human-like, then

the questions become human-like preserving variability in the language. On the other hand,

one disadvantage of the method is that it depends hardly on the descriptions. This makes

impossible to create a set of questions about a visual containing lots of objects as in our

work.

Recent advances in automatic question generation (CLEVR, [21]) has enabled dataset gen-

erators to create synthetic questions having some sort of formal structures. CLEVR images

are constructed by some set of objects with different attributes. Objects are placed in a scene

creating spatial relationships. A scene represents an image for which some questions are

generated. CLEVR represents each question with a functional program consisting of several
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Figure 2.2. CLEVR World. Left: Object properties and representation of spatial relationships. Mid-
dle: Functional program examples. Right: Filter examples. (image taken from [21])

filters attached to each other as shown in Figure 2.2. Starting from a formal scene representa-

tion, each filter is applied to the output of the previous filter(s) to obtain a single answer by the

last filter of the program. A functional program and a question pair correspond to a specific

task in CLEVR and this task can be varied by the use of side inputs such as shape, material,

size and color. These functional programs inherit the reasoning abilities required to answer a

single question. For example, a program of a question, which has “in front of” preposition,

contains a Relate filter stating that spatial reasoning is required to answer this question. Our

approach in CRAFT is very similar to CLEVR’s approach for which we extend this work to

question temporal and causal reasoning capabilities of the machine learning models. Instead

of static scenes, our scene are dynamic consisting of complex physical interactions between

objects. Details of our dataset generation method can be found in Chapter 4.

2.5. Deep Learning Backbones

Since CRAFT is a new visual question answering dataset, it provides data in both visual

domain and textual domain. Here we provide information about some core models which are
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Figure 2.3. A block skipping 2 layers in ResNet (image taken from [23])

crucial for understanding baseline models which are tested on CRAFT. Detailed information

about these neural baselines will be given in Chapter 4.

Residual Network [23]: Residual Network, aka. ResNet is an artificial neural network

which is mainly used for feature extraction to represent images. This work proposes utilizing

skip connections which leads model to bypass two or more layers. A simple building block

in a ResNet uses input feature map as a residual adding it to the output that it provides as

in Figure 2.3. Using this block in ResNets is shown to be a successful way for avoiding

vanishing gradient problem of deep neural networks. This problem is mostly encountered

when the model is too deep so that the gradients extracted vanish before reaching some or

all layers preventing weight updates for them. Avoiding such a problem enables obtaining

deeper representations of the visuals. Some of our baselines utilize PyTorch implementation

of ResNet-18 which is pretrained on ImageNet 2012 dataset [49].

3D Residual Network [50]: After the huge success of 2D ResNets on image tasks, they are

also integrated to solve some problems receiving video inputs by applying them to individual

frames. On the other hand, using 3D convolutional layers in a residual setup have shown

to be more successful than 2D convolutional layers in action recognition task preserving

spatiotemporal content better. Some of our baselines also use PyTorch implementation of

3D ResNet (r3d-18) which is pretrained on Kinetics-400 dataset [13].

Long Short-term Memory Network [51]: Long Short-term Memory Network, aka. LSTM

is an artificial neural network which is used to represent sequential data such as text or video.

This network is a special type Recurrent Neural Network (RNN). In RNNs, representation

of an individual item in the sequential data does not only depend on the item itself, but also
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it depends on the previous items. This dependency is important for inputs, such as natural

language sentences, for which the meaning of an item (word) should be updated by the mean-

ing of a previous item. LSTMs are designed to overcome the problem of vanishing gradient

problems in naive RNNs enabling extracting features from longer sequences. LSTMs avoid

this problem by proposing the usage of gates which are input, forget, and output gates. These

gates learn whether the information written to the cell state is important or not. Irrelevant

information extracted can be removed from the state and it is not used to update the states of

next items. All of our baselines utilize LSTMs to represent CRAFT questions.
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3. RELATED WORK

This section is provided to give information about the research in cognitive science and

artificial intelligence which have helped this thesis to be created. As in Chapter 2, we begin

by investigating the related work in cognitive science.

3.1. Intuitive Physics in Cognitive Science

Chapter 2 has provided some background information about how cognitive scientists ap-

proach some of the interesting problems intuitive physics. Here, we extend those studies with

some others which are very closely related what we are trying to achieve building CRAFT

dataset in detail.

3.1.1. Causal Reasoning With Forces

Understanding how people perceive events or statements requiring causal reasoning is im-

portant. Causal reasoning may require understanding the intentions of possible multiples of

affectors or patients which apply forces to each other in an environment. The affector may

intend to help the patient to do its task, or it may try to prevent the patient from doing its task.

In such scenarios, patient should have a task to be accomplished. This direction of causal

reasoning is also at the core of the CRAFT. Our questions about the simulations inherit the

task of the patient and also the intention of the affector. Therefore, understanding these is

crucial solving some of the CRAFT tasks.

From cognitive science point of view, researchers have developed several theories how hu-

mans reason about the causal events that consist of affectors and patients. Some of these the-

ories are mental model theory [52] and causal model theory [53] whose units of perceptions

are abstract. Mental model theory states that logical operations are used in sub-relations of

complex compositions to produce a single conclusion, whereas causal model theory is based

on a Bayesian network where the relations are represented probabilistically. In [54], authors
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propose a new theory which they title as force theory for which their first claim is that the

units of perception need not to be abstract as in the previous theories and can resemblance

to real world entities. They represent cause, help, and prevent relations by different config-

urations of the forces appeared in the affector and the patient. Therefore, composition of

sub-relations to obtain the final (possibly more than one) result can be achieved by trans-

ferring or eliminating the forces existing in the relation. In their experiments, they created

physical environments based on 3D simulators and compared participants’ perception results

with the outputs of three models mentioned. They observe that the force theory predicts as

well as or better than the theories which are based on abstract units. They also provide ex-

periment results evaluating abstract causation performances. They compared how close pre-

dictions of force theory to humans when compared to other theories when provided causal

compositions. This time the forces are not real world forces but are approximate influences

of affectors on again patients. They observe a similar pattern in their experiments evaluating

abstract causation. All three models are very successful mimicking human performances

with few mistakes. However, depending on iconic representations, force theory can better

explain how these events might be perceived.

3.1.2. Game Engine as an Architecture for Intuitive Physics

As most of the virtual dataset generators, we adopt a game engine to run our simulation. If a

machine learning model can simulate as with our simulator, it would be much easier for the

model to answer the question. It would only require to extract the causal relationships of the

objects whose positions, velocities, rotations etc. are extracted easily. Use of game engines

in intuitive physics research in machine learning is also cognitively important since there are

researches which demonstrate the similarities between the human mental process and a game

engine [55]. This paper investigates the hypothesis that intuitive decisions about physics are

made by the help of a mental engine which has similar characteristics with game physics

engines especially for the young infants. This hypothesis claims that the data structures

in our mind to represent the objects and the events, and the algorithms to simulate have

similar characteristics with those provided by video game industry. One of the facts for
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authors to support their hypothesis is that both mental and game engines are designed to

approximate the complex scenes to a reasonable-looking and human-relevant scale. Other

than the similarities of representing objects and events, bodies and shapes, static and dynamic

objects; resolving the collisions between mental processings and physics engines, they both

fail to identify exact physical situations in some physical illusions because of some simplified

assumptions made by their processes.

3.2. Intuitive Physics in Artificial Intelligence

Besides the research conducted in cognitive science, there are studies which investigate sim-

ilar types of notions in artificial intelligence. Firstly, we provide related work about learning

architectures which are mainly developed to improve physical, temporal and causal reason-

ing capabilities of the machine learning models. Then, we focus on some of the datasets

stating the differences between those and ours.

Naive convolutional neural network (CNN) architectures have proven their worth represent-

ing images or videos with smaller dimensions to be able to solve problems such as classifi-

cation, detection, segmentation. Although they are also used in mostly feature representation

for physical understanding of the models, recent advances get benefit from graph neural

networks (GNN). Furthermore, GNNs, by their nature, are capable of representing objects

(nodes) and complex relationships (edges) between these objects inside in a graph. As oppose

to CNNs which can work on Euclidean space such as images, video or text, GNNs enable

working on non-Euclidean space to ease problems like node classification, edge prediction or

clustering [24]. Figure 3.1. illustrates the difference between Euclidean and non-Euclidean

spaces.

Here, we provide some, but not all, architectures which are developed to understand physics

in different environments. In [56], authors propose to compute interactions and effects be-

tween objects via a relational model, and uses this model to predict how the interactions and

dynamics influence the objects. However, their model did not consider effects of a relation

between two objects on other objects as can be observed for most of the real life scenarios.
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Figure 3.1. Difference between Euclidean and non-Euclidean spaces. Left: Image patches lying on
a Euclidean space. Right: Nodes and edges on a non-Euclidean space. (image taken
from [24])

Therefore, in [57], Li et al. propose Propagation Networks to propagate those effects of in-

teractions in a single time step. When the number of objects gets higher, this propagation

starts to slow down the execution of the network. A possible solution for this problem is

somehow grouping the objects by adding hierarchy to objects in the scene. In [25], Mrowca

et al. uses a hierarchical particle-based object representation for rigid and deformable bodies,

and a hierarchical graph convolution to predict physical dynamics. The idea behind building

this types of hierarchies is visualized in Figure 3.2. Furthermore, Ye et al. built an intuitive

physics model with a focus on interpretability, where specific vectors in the model represent

specific physical parameters like mass, friction and speed [58]. Lastly, some extended under-

standing physics with planning in order to build new configurations of object stacks as well

as understanding physical events occurred [59].

3.2.1. PHYRE: A New Benchmark for Physical Reasoning

Very recently, in [26], Bakhtin et al. created the PHYRE benchmark dataset that consists

of different types 2D-environments. Each environment inherits a task to be completed by

an agent’s smart action (”make green ball touch the blue wall”). An example can be seen

in Figure 3.3. The agent must reason about the scene and predict the possible outcomes

of its move to provide the best possible action completing the task. Authors have set three
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Figure 3.2. The idea behind using hierarchical representations when the number of objects gets high
as in representing fluids. Left: Local propagation between objects of the same level.
Right: Hierarchical propagation between representations of object groups in different
levels. (image taken from[25]).

main goals for PHYRE benchmark. The models must focus on physical reasoning, the mod-

els must perform also well in the scenes that they do not see during training, models must

find the best action with as few attempts as possible. To evaluate the second goal, authors

have separated train and test task templates. Furthermore, to evaluate the last goal, authors

propose an evaluation metric penalizing if the number of attempts get increased. PHYRE

consists of two tiers. First tier requires finding a ball radius and position (3 dimensional) that

would complete the task. The second tier requires finding ball pairs with their radii and posi-

tions (6 dimensional). Each tier consists of 25 templates and each template has many initial

state configurations. Although, there are many similarities between PHYRE and CRAFT

in constructing 2D environments, they are different for the way of aiming to enable the im-

plementation of physical reasoning algorithms for which PHYRE does not consider a VQA

task, as CRAFT does.
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Figure 3.3. A sample task from PHYRE. Left: A task defined in PHYRE. Right: Solution for the
task in left. (image taken from [26]).

3.2.2. Answering Visual What-If Questions: From Actions to Predicted Scene De-

scriptions

Current work for scene understanding and next frame prediction problems in robotics see the

agents as passive observers and do not allow them to manipulate the environment. What-

if question tasks, on the other hand, allow the scene to be manipulated by a hypothetical

action. The main problem to be solved is to describe the outcome of an action on a table

top scenario. To solve their problem, Wagner et al. created a dataset, Table-top Interactions

Visual What-If Questions (TIWIQ), consisting of 3D scenes of realistically textured objects

with interactions [60]. Scenes contained five of eight realistic looking objects such as brick,

banana, softball. They utilize four different actions which are (1.) Push an object in a specific

direction. (2.) Rotate an object clockwise or anti-clockwise. (3.) Remove an object from the

scene. (4.) Drop an object on another object. They gather annotations on top of simulation

rendering videos and ask their model and human baseline to output as similar as possible with

the annotations. Their prediction tool includes a hybrid question answering model for which

they integrate a physics engine. The engine gets input from learning-based components to
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simulate and the result of the simulation is then tried to be expressed as a natural language

output.

3.2.3. CLEVRER: CoLlision Events for Video REpresentation and Reasoning

Yi et al. proposes a new dataset, CoLlision Events for Video REpresentation and Reasoning

(CLEVRER), for evaluating reasoning performance of the models trained for video under-

standing [43]. Besides recognizing visual features inside the video, this dataset challenges

models to understand the dynamics between objects and events and answer to the questions

which require causal analysis to recognize the events and their reasons. The dataset contains

four different question types; descriptive, explanatory, predictive and counterfactual whose

samples are provided below. There are three events which are enter, exit and collision from

them collision is the reason for extracting a causal graph of the events. The dataset objects,

materials, colors are very similar to CLEVR dataset except the fact that authors use a physics

engine to simulate events and a render engine to create videos instead of outputting single

images. A couple of baseline models are trained and evaluated on CLEVRER. While the

overall performance of baseline models are quite low, authors observed that using object

segmentation maps as explicit object representations increases performances. The second

observation that the authors provided is that the dynamics modeling is required as well as ex-

plicit object representations in models to be able to be successful in such datasets requiring

investigation of the causal structure between the events. Therefore, they also train a model

utilizing Propagation Networks (PropNet) and show that the results are better compared to

baselines.

TIWIQ and CLEVRER are two recent VQA datasets questioning intuitive physics capa-

bilities of machine learning models. Compared to CRAFT, both lack of visual variations.

CRAFT contains different types of simulations enlarging the variety in the visual domain as

well. This variety also makes minimizing the dataset biases difficult because of the multi-

plicity in the number of the domains (textual and visual). Although CLEVRER integrates

different types of tasks such as descriptive, predictive, explanatory, and counterfactual; they
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do not directly question cause, enable, and prevent relationships, which are the backbones of

causal reasoning.
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4. CRAFT DATASET

CRAFT is built to evaluate temporal and causal reasoning capabilities of existing algorithms

containing videos of 2D simulations and related questions. It has 37768 question and video

pairs in total that are created from 3000 videos. In order to avoid having same video in more

than one split, CRAFT’s train, validation, and test sets are created by splitting videos with ra-

tios of 0.5, 0.3, and 0.2, respectively. Furthermore, our train, validation, and test sets contain

18806, 11430, and 7750 question and video pairs, respectively. We provide an example set

of questions from CRAFT in Figure 4.1. In this chapter, we mention how we generate visual

scenes, which types of objects and events exist in our visuals and questions, how we rep-

resent our simulations, how we generate questions and the corresponding tasks, and finally,

how we minimize the biases that may occur in visual question answering datasets 1.

4.1. Video Generation

We use Box2D [20] to create our virtual scenes. There are 10 different scenes from them

we extract 10 seconds videos whose resolutions are 256 by 256 pixels. Besides generating

original simulation video, CRAFT scripts also generate variation videos by removing each

object of the same video from the scene. These variation videos help question generation

script to provide answer for certain types of questions.

4.2. Objects

There are static scene elements and dynamic objects in our scenes. Each scene includes

variable number of and different type of these elements and objects. There are 6 static scene

elements, namely (ramp, platform, basket, left wall, right wall, ground). These elements

are all drawn in black color in the video sequences. Their attributes such as position or

orientation are decided at the beginning of a simulation and then they are fixed throughout the

1It should be noted that Çağatay YİĞİT and Muhammed Şamil ATEŞOĞLU contributed to this work by
helping us to increase the number of scene layouts and to construct the data splits, respectively.
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Figure 4.1. Example CRAFT questions for a specific scene. There are 65 different tasks divided into
5 distinct categories for 10 different scenes. Besides having tasks questioning descriptive
properties possible needing temporal reasoning, CRAFT proposes challenges including
more complex tasks requiring single or multiple counterfactual analysis or understanding
object intentions for deep causal reasoning.

video sequence. The values of these attributes are assigned randomly from sets of different

intervals which are predefined for each type of scene as in Figure 4.2. The set of the dynamic

objects contains 3 shapes (cube, triangle, circle), 2 sizes (small, large), and 8 colors (gray,

red, blue, green, brown, purple, cyan, yellow). Attributes of dynamic objects, on the other

hand, are in continuous change throughout the sequence due to the gravity or the interactions

that they are subject to, until they rest.

4.3. Events

To represent the dynamism in the simulations formally, we extract different types of events

from our simulations. They are Start, End, Collision, Touch Start, Touch End, and Basket

End Up. Start and End events represent the start and the end of the simulations, respec-

tively. Although we only question Collision events in our tasks, we want from algorithms to

differentiate a collision from a touching event. Therefore, Touch Start, Touch End are also

extracted by our simulations. Finally, Basket End Up event is triggered if the object enters

the one and only basket in our scenes. All events inside a simulation are represented in a

causal graph for the question generator to extract causal relationships easily. Causal graph

is a directed graph where events are represented as nodes. Each edge represent a cause rela-

tion where the source event is considered as the cause of target event because of the shared
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Figure 4.2. Random configurations of static scene element properties for each scene. The opaque
regions show the mean value for that element, whereas the overlayed regions show the
extreme values.

objects between them. Utilization of causal graphs is important since they help finding auto-

matic answers to the questions requiring causal reasoning.

4.4. Simulation Representation

A video simulation sample is represented by three different structures, which are scene rep-

resentation at the start, scene representation at the end, and causal graph of events. Scene

representations hold information regarding attributes of static scene elements and dynamic

objects such as color, position, shape, velocity, etc. at the start and at the end of a simulation.

These structures are described as collections of attributes of objects rather than object graphs

as in CLEVR by [21] since CRAFT does not question spatial relationships of different ob-

jects. On the other hand, the last structure holds causal relationships between events of a

simulation. These structures about a simulation are enough to find the correct answer to a

CRAFT question related to the simulation.
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4.5. Tasks

CRAFT has 65 different question types under 5 different categories which are Descriptive,

Counterfactual, Enable, Cause, Prevent which are listed in Table 4.1. and Table 4.2. Al-

though the names for the last three categories are chosen from the representations of causal

relationships in cognitive science since they directly require understanding these, the tasks in

all categories require some degree of causal reasoning capabilities. Descriptive tasks mainly

require extracting the attributes of objects and some of them, especially those involving

counting, need some temporal analysis as well. CRAFT extends the work CLEVRER by

[43] with different types of events and multiple environments. Counterfactual tasks require

understanding what would happen if one of the objects was removed from the scene. Exclu-

sive to CRAFT, some Counterfactual tasks (”Does the small gray circle enter the basket, if

any other single one of the objects is removed?”) require multiple counterfactual simulations

to be answered. As an extension to Counterfactual tasks, Enable, Cause, Prevent tasks re-

quire grasping what is happening inside both the original video and the counterfactual video.

In other words, models must infer whether an object is causing or enabling an event or pre-

venting it by comparing the input video and the counterfactual video that should be simulated

somehow. Dynamic objects in one of the Enable, Cause, and Prevent tasks can be associated

with two entities, the affector and the patient similar to causal reasoning research in cogni-

tive science. CRAFT questions for these tasks explicitly specify the affector and the patient

objects. Although there is a single affector for each tasks, some questions require multiple

patient objects to be considered.

In order to have a better understanding of the differences between Enable, Cause, and Prevent

questions, one should understand the “intention” of the objects. We identify the intention

in a simulation by examining the initial linear velocity of the corresponding object. If the

magnitude of the velocity is greater than zero, then the object is intended to do the task

specified in the question text, such as entering the basket or colliding with the ground. If the

magnitude of the velocity is zero, then the object is not intended to do the task, even if there is

an external force, such as gravity, upon it at the start of the simulation. Therefore, an affector
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can only enable a patient to do the task if the patient is intended to do it but fails without

the affector. Similarly, an affector can only cause a patient to do the task if the patient is not

intended to do it. Moreover, an affector can only prevent a patient from doing the task if the

patient is intended to do it and succeeds without the affector.

4.6. Question Generation

CRAFT questions are represented with functional programs as in CLEVR. Functional pro-

grams enable finding the answers to questions automatically by parsing the inputs provided

for the scenes or simulations. These programs consist of functional modules which are sim-

ilar to the functions of a programming language having set of inputs and outputs. Input and

output types for CRAFT’s functional modules are listed in Table 4.3.

CRAFT includes input functional modules which provide initial information about our scenes.

These input modules do not receive any inputs. The list of CRAFT’s input modules is pro-

vided in Table 4.4.

Each program ends with a module which has the output type corresponding to the on of the

answer types (e.g. color, shape, boolean) used in CRAFT. These are called output functional

modules and listed in Table 4.5.

A functional program can be considered as a directed acyclic graph where the nodes are all

functional modules residing from input modules to single output module. Other than input

and output modules there are three different types of functional modules. The first type

of modules are object filter functional modules which are used to extract static or dynamic

object attributes. The list of these modules is provided in Table 4.6. Since our scenes are

not static as in CLEVR, we have to extract information about the simulation from events to

find answers to questions requiring temporal and causal reasoning. Therefore, the second

type of modules are event filter functional modules which are listed in Tables 4.7. and 4.8.

Finally, the last type of modules are auxiliary functional modules which consist of some

helper modules such as set operations. They are listed in Table 4.9.
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Table 4.1. CRAFT’s descriptive tasks. Z, C, and S correspond to templates for Size, Color, and
Shape attributes, respectively.

Descriptive Tasks

“What color is the object that the Z C S first collides with?”
“What shape is the object that the Z C S first collides with?”
“What color is the object that the Z C S last collides with?”
“What shape is the object that the Z C S last collides with?”
“How many Ss are moving when the video ends?”
“How many C objects are moving when the video ends?”
“How many Z objects are moving when the video ends?”
“How many objects are moving when the video ends?”
“How many Ss enter the basket?”
“How many C objects enter the basket?”
“How many Z objects enter the basket?”
“How many objects enter the basket?”
“How many Ss fall to the ground?”
“How many C objects fall to the ground?”
“How many Z objects fall to the ground?”
“How many objects fall to the ground?”
“How many Ss collide with the basket?”
“How many C objects collide with the basket?”
“How many Z objects collide with the basket?”
“How many objects collide with the basket?”
“How many objects enter the basket after the Z C S enters the basket?”
“How many objects enter the basket before the Z C S enters the basket?”
“How many objects fall to the ground after the Z C S falls to the ground?”
“How many objects fall to the ground before the Z C S falls to the ground?”
“How many objects collide with the basket after the Z C S collide with the basket?”
“How many objects collide with the basket before the Z C S collide with the basket?”
“After entering the basket, does the Z C S collide with other objects?”
“Before entering the basket, does the Z C S collide with other objects?”
“After falling to the ground, does the Z C S collide with other objects?”
“Before falling to the ground, does the Z C S collide with other objects?”
“After colliding with the basket, does the Z C S collide with other objects?”
“Before colliding with the basket, does the Z C S collide with other objects?”
“Are there any collisions between objects after the Z C S enters the basket?”
“Are there any collisions between objects before the Z C S enters the basket?”
“Are there any collisions between objects after the Z C S falls to the ground?”
“Are there any collisions between objects before the Z C S falls to the ground?”
“Are there any collisions between objects after the Z C S collides with the basket?”
“Are there any collisions between objects before the Z C S collides with the basket?”
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Table 4.2. CRAFT’s other task categories. Z-Z2, C-C2, and S-S2 pairs correspond to templates for
Size, Color, and Shape attributes of two different objects, respectively.

Counterfactual Tasks

“Does the Z2 C2 S2 enter the basket, if the Z C S is removed?”
“Does the Z2 C2 S2 fall to the ground, if the Z C S is removed?”
“Does the Z2 C2 S2 collide with the basket, if the Z C S is removed?”
“How many objects enter the basket, if the Z C S is removed?”
“How many objects fall to the ground, if the Z C S is removed?”
“How many objects collide with the basket, if the Z C S is removed?”
“Does the Z C S enter the basket, if any other single one of the objects is removed?”
“Does the Z C S fall to the ground, if any other single one of the objects is removed?”
“Does the Z C S collide with the basket, if any other single one of the objects is removed?”

Enable Tasks

“Does the Z C S enable the Z2 C2 S2 to fall to the ground?”
“Does the Z C S enable the Z2 C2 S2 to enter the basket?”
“Does the Z C S enable the Z2 C2 S2 to collide with the basket?”
“How many objects does the Z C S enable to fall to the ground?”
“How many objects does the Z C S enable to enter the basket?”
“How many objects does the Z C S enable to collide with the basket?”

Cause Tasks

“Does the Z C S cause the Z2 C2 S2 to fall to the ground?”
“Does the Z C S cause the Z2 C2 S2 to enter the basket?”
“Does the Z C S cause the Z2 C2 S2 to collide with the basket?”
“How many objects does the Z C S cause to fall to the ground?”
“How many objects does the Z C S cause to enter the basket?”
“How many objects does the Z C S cause to collide with the basket?”

Prevent Tasks
“Does the Z C S prevent the Z2 C2 S2 from falling to the ground?”
“Does the Z C S prevent the Z2 C2 S2 from entering the basket?”
“Does the Z C S prevent the Z2 C2 S2 from colliding with the basket?”
“How many objects does the Z C S prevent from falling to the ground?”
“How many objects does the Z C S prevent from entering the basket?”
“How many objects does the Z C S prevent from colliding with the basket?”

Representing a question with a functional program of modules provides also the information

for the ability that is required to give an answer to a question. An algorithm should be able

to apply filters which are similar to these modules to be able to perform operations of basic

reasoning, such as counting objects satisfying a condition, understanding whether an event
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Table 4.3. Input and output types of functional modules in CRAFT.

Type Description

Object A dictionary holding static and dynamic attributes of an object
ObjectSet A list of unique objects
ObjectSetList A list of ObjectSet
Event A dictionary holding information of a specific event
EventSet A list of unique events
EventSetList A list of EventSet
Size A tag indicating the size of an object
Color A tag indicating the color of an object
Shape A tag indicating the shape of an object
Integer Standard integer type
Bool Standard boolean type
BoolList A list of Bool

Table 4.4. Input functional modules in CRAFT.

Module Description Input Types Output Type

SceneAtStart Returns the attributes of
all objects at the start of
the simulation

None ObjectSet

SceneAtEnd Returns the atttributes
of all objects at the end
of the simulation

None ObjectSet

StartSceneStep Returns 0 None Integer

EndSceneStep Returns -1 None Integer

Events Returns all of the events
happening between the
start and the end of the
simulation

None EventSet

is causing another event etc., as people do. CRAFT includes tasks questioning complex

temporal and causal reasoning capabilities which require understanding physics of the event,

as well as simple visual reasoning capabilities. Creating combinations of different modules

assures more complex questions to be generated leading different types of reasoning abilities

to be questioned with a single question. Furthermore, integration of the functional modules
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Table 4.5. Output functional modules in CRAFT.

Module Description Input Types Output Type

QueryColor Returns the color of the input
object

Object Color

QueryShape Returns the shape of the input
object

Object Shape

Count Returns the size of the input
list

ObjectSet Integer

Exist Returns true if the input list is
not empty

ObjectSet / EventSet Bool

AnyFalse Returns true if there is at least
one false in a boolean list

BoolList Bool

AnyTrue Returns true if there is at least
one true in a boolean list

BoolList Bool

can ease doing detailed analysis about the performances of the algorithms to see whether

they are capable of certain types of reasoning. It would be very difficult to do such detailed

analyses if only natural language questions are provided.

Besides providing the list of modules used in programs, it is also important to observe them

in action, i.e. helping giving answer to a question. Therefore, here, we provide example

functional programs for some of the sample questions provided in Figure 4.1. which are used

to extract the correct answers using our simulation environment. Figures 4.3. to 4.7. provide

functional program samples that are designed for CRAFT descriptive, counterfactual, cause,

enable, and prevent questions, respectively.

4.7. Variations in Natural Language

Language is one of the important key elements in human brain development. It also has an

important role for allowing us to understand, speak, write causal relations between entities.

For example, while reading a text, we are not just grasping the meaning of some ordered
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Table 4.6. Object filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterColor Returns the list of ob-
jects which have a color
same with the input
color

(ObjectSet, Color) ObjectSet

FilterShape Returns the list ofob-
jects which have a
shape same with the
input shape

(ObjectSet, Shape) ObjectSet

FilterSize Returns the list of ob-
jects which have a size
same with the input size

(ObjectSet, Size) ObjectSet

FilterDynamic Returns the list of dy-
namic objects from an
object set

ObjectSet ObjectSet

FilterMoving Returns the list of ob-
jects that are in motion
at the step specified

(ObjectSet, Integer) ObjectSet

FilterStationary Returns the list of ob-
jects that are stationary
at the step specified

(ObjectSet, Integer) ObjectSet

words, their individual or collective representation. We make inferences, judgements con-

necting the ideas, events and states regarding the text we are reading [61]. These capabilities

are developed starting from birth by the help of language development and improved with

the variety. All of these statements are valuable not only for human intelligence but also

artificially created intelligence.

It is crucial to enrich language variety for creating datasets consisting of natural language

components created to empower the artificial models. In order to improve language variety,

CRAFT data generation scripts for questions, first allow multiple paraphrased versions of the

same text to be generated to represent the same task. For a question sample, a paraphrased

version of the corresponding task is chosen randomly filling the object templates. Below, we
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Table 4.7. Event filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterEvents Returns the list of
events about a specific
object from an event
set

(EventSet, Object) EventSet

FilterCollision Returns the list of col-
lision events from an
event set

EventSet EventSet

FilterCollisionWithDynamics Returns the list of col-
lision events involv-
ing dynamic objects

EventSet EventSet

FilterCollideGround Returns the list of col-
lision events involv-
ing the ground

EventSet EventSet

FilterCollideGroundList Returns the list of col-
lision event sets in-
volving the ground

EventSetList EventSetList

FilterCollideBasket Returns the list of col-
lision events involv-
ing the basket

EventSet EventSet

FilterCollideBasketList Returns the list of col-
lision event sets in-
volving the basket

EventSetList EventSetList

FilterEnterBasket Returns the In Basket
events

EventSet EventSet

FilterEnterBasketList Returns the list of In
Basket event sets

EventSetList EventSetList

share three paraphrased question texts belonging to the same Enable task consisting of an

affector and a patient templates.

• Does the Z C S enable the Z2 C2 S2 to fall to the ground?

• Does the Z C S enable the collision between the Z2 C2 S2 and the ground?

• There is a Z C S, does it enable the Z2 C2 S2 to fall to the ground?
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Table 4.8. Event filter functional modules in CRAFT (continued).

Module Description Input Types Output Type

FilterBefore Returns the events
from the input list that
happens before input
event

(EventSet, Event) EventSet

FilterAfter Returns the events
from the input list that
happened after input
event

(EventSet, Event) EventSet

FilterFirst Returns the first event EventSet Event

FilterLast Returns the last event EventSet Event

EventPartner Returns the object in-
teracting with the in-
put object through the
specified event

(Event, Object) Object

FilterObjectsFromEvents Returns the objects
from the specified
events

EventSet ObjectSet

FilterObjectsFromEventsList Returns the list of ob-
ject sets from a list of
event sets

EventSetList ObjectSetList

GetCounterfactEvents Returns the event list
if a specific object
is removed from the
scene

Object EventSet

GetCounterfactEventsList Returns the counter-
factual event list for
all objects in an object
set

ObjectSet EventSetList

Secondly, CRAFT enables synonyms of certain words to be integrated. We choose a base

word and create its synonyms inside the CRAFT context. Similar to question paraphrases,

the base word is replaced by a synonym randomly at run-time. All synonyms including the

base word have equal chance to be in the question text. This replacement is handled by

word suffixes and verb conjugations by preserving English grammar. Below, we share the

synonyms for the base words used for CRAFT dataset.
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Table 4.9. Auxiliary functional modules in CRAFT.

Module Description Input Types Output Type

Unique Returns the single ob-
ject from the input list,
if the list has mul-
tiple elements returns
INVALID

ObjectSet Object

Intersect Applies the set intersec-
tion operation

(ObjectSet, ObjectSet) ObjectSet

IntersectList Intersects an object set
with multiple object
sets

(ObjectSetList, ObjectSet) ObjectSetList

Difference Applies the set differ-
ence operation

(ObjectSet, ObjectSet) ObjectSet

ExistList Applies the Exist oper-
ation to each item in
the input list returning a
boolean list

ObjectSetList / EventSetList BoolList

AsList Returns an object set
containing a single el-
ement specified by the
input object

Object ObjectSet

• Nouns and Adjectives: thing: object; sphere: ball; cube: block; small: tiny;

ground: bottom; basket: container, bucket

• Verbs: prevent: keep, hold, block, hinder; enable: permit, allow; cause: stimulate,

lead, trigger; enter: go into, get into, end up in, fall into; fall to: hit, collide with

4.8. Bias Minimization

Neural networks are very successful at recognizing the patterns in the data provided. Initial

visual question answering studies suffered a lot from this fact. Initial models solving VQA

tasks are found to have cheated by not actually understanding the visuals or questions, but

by taking advantage of nonuniform distributions of the data [44]. Creating a VQA dataset
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Question: ”How many objects fall to the ground?”

Count (
FilterDynamic (

FilterObjectsFromEvents (
FilterCollideGround (

Events ()
)

)
)

)

Question: ”After entering the basket, does the small yellow square collide with other
objects?”

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var SmallYellowCubeEvents = FilterEvents ( Events(), QueryObject )
Exist (

FilterAfter (
FilterCollisionWithDynamics ( SmallYellowCubeEvents ),

FilterFirst (
FilterEnterBasket ( SmallYellowCubeEvents )

)
)

)
)

Figure 4.3. Example programs for descriptive questions.

Question: ”How many objects fall to the ground, if the small yellow box is removed?”

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Count (

FilterObjectsFromEvents (
FilterCollideGround (

GetCounterfactEvents ( QueryObject )
)

)
)

Question: ”Does the small gray box enter the basket, if any other single one of the objects
is removed?”

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Var OtherDynamicObjects = Difference ( FilterDynamic ( SceneAtStart() ), AsList ( QueryObject ) )
AnyTrue (

ExistList (
IntersectList (

FilterObjectsFromEventsList (
FilterEnterBasketList (

GetCounterfactEventsList ( OtherDynamicObjects )
)

),
AsList (

QueryObject
)

)
)

)

Figure 4.4. Example programs for counterfactual questions.

whose answers are uniformly distributed, is one of the major difficulties when considering

handwritten questions or real world visuals. On the other hand, the problem becomes much

easier for datasets which deal with simulated data since they have the full control of genera-

tion processes as in CLEVR [21] and CLEVRER [43].

Differently from CLEVR and CLEVRER, our dataset consists of video simulations from
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Question: ”Does the small brown sphere cause the tiny yellow box to enter the basket?”

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), \Circle" )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Exist (

FilterStationary (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure 4.5. Example program for cause questions.

Question: ”How many objects does the small gray block enable to enter the basket?”

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Count (

FilterMoving (
Difference (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( AffectorObject )

),
StartSceneStep()

)
)

Figure 4.6. Example program for enable questions.

10 different environments. Since it increases the variety in the visual domain, obtaining a

uniform dataset which minimizes the biases is a more difficult process. Besides having 10

different scenes, CRAFT has 65 different tasks. CRAFT bias minimization scripts take these

650 pairs and prune video-question tuples according to the least observed answer according

to the possible values inside the answer set (true or false for boolean questions). Our aim

is to make it difficult for algorithms to reach high performances by simply recognizing the

simulation identifier without understanding the question text or the task identifier without

extracting any meaning from the visuals. CRAFT enforces models to extract simulation

dynamics inside the videos. While generating pairs with uniform answer distributions, our
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Question: ”Does the small yellow square prevent the tiny brown circle from entering the
basket?”

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), "Circle" )
Exist (

FilterMoving (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure 4.7. Example program for prevent questions.

scripts also try to preserve overall dataset distribution as uniform as possible. This can be

depicted in Figure 4.8. which shows answer distributions of each task category and answer

type for overall dataset.

Figure 4.8. Statistics of the questions in CRAFT dataset. Innermost layer represents the distribution
of the questions for different task categories. Middle layer illustrates the distribution of
the answer types for each task category. Outermost layer represents the distribution of
answers for each answer type.
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5. EXPERIMENTAL ANALYSIS

In this chapter, we provide a detailed analysis on the experiments conducted on CRAFT

dataset. We first introduce the baseline models, and then discuss their results on our dataset.

5.1. Baselines

In this section, we introduce the baseline models for CRAFT 2. In addition to these artificial

baselines, we also conducted a small human study 3 in order to test the claim that CRAFT

is designed to be simple for humans, yet challenging for computers. Below, we share the

details of all created baselines.

MFA: This is a simple model which finds the most frequent answer (MFA) in the training

split of the dataset, and then outputs this answer for all the questions it encounters.

AT-MFA: This is similar to MFA except the fact that it is provided which type of answer

is required to correctly solve the question. It then outputs the most frequent answer in the

training set using this information. For example, it outputs only a single numeric answer

when it encounters a counting question.

LSTM: This is a simple image-blind neural baseline that is trained using CRAFT ques-

tions. Background information about LSTM model is provided in section Deep Learning

Backbones. It encodes the question by using 256 hidden units and initializing word-vector

embeddings randomly. Final question representation is constructed obtaining the last hidden

state of the network by processing each individual word sequentially.

LSTM-CNN: This model integrates both visual and textual cues in the training set. It uses

previous LSTM model to represent the question. It encodes some of the selected frame(s)

2 İlker KESEN implemented MFA, AT-MFA, LSTM, and LSTM-CNN baselines and provided the results
for the experiments conducted on CRAFT using these baselines.

3Mert KOBAŞ prepared web interface for CRAFT human study and provided valuable feedbacks for gen-
erated scenes and simulations.
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using the output of fourth convolutional layer in ResNet-18 model which is trained on Im-

ageNet 2012 dataset without freezing it. The model then concatenates visual and textual

features to represent the video and the question pair and provides it to a linear layer followed

by a tanh activation function. Furthermore, a dropout with a probability of 0.2 is used for

both visual and textual representations.

Adam optimizer [62] is used for the last two simple neural baselines with a learning rate of

0.0001. These two models are also trained for 30 epochs, and the best epoch is selected by

comparing the validation scores of each epoch.

MAC: Memory, Attention, and Composition (MAC) network [27] which is designed to fa-

cilitate explicit and expressive machine reasoning. Originally, it is created to solve a single

task, CLEVR. The model separates memory and control to be able to perform single univer-

sal reasoning operation. When it was first proposed, it set new state-of-the-art results for all

CLEVR tasks.

Figure 5.1. demonstrates the overview of the MAC network. It has an input unit which

extracts representations from image (knowledge base) and the question. Moreover, it has

an output unit which predicts the final answer to the question using question representation

and the final memory state calculated by MAC recurrent network. MAC recurrent network

consists of p MAC cells and it iteratively calculates memory and control states. A MAC cell

is a recurrent cell which is designed to capture the notion of an atomic universal reasoning.

It consist of control, read, and write units. The control unit specifies the reasoning operation

by attending the some part of the question and updating the control state. The read unit

retrieves information from knowledge base (image) that is required to perform a specific

reasoning operation. The write unit updates the memory state (intermediate result) for the

cell by integrating the information retrieved from the read unit with previous memory state

guided by current control state.

Since a single image is used to feed the MAC network, a CRAFT video is represented by

Resnet-18 features of the first or the last frame similar to LSTM-CNN baseline. We trained
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MAC using Adam optimizer with a learning rate of 0.0003 for 100 epochs with a batch size

of 32.

Figure 5.1. Left: Memory, Attention, and Composition model overview. Right: Single MAC cell
architecture. (image taken from [27]).

MAC-V: This model is a video extension of MAC network. Original MAC model represents

images by applying two convolutional layers with d output channels to the result of conv4

features from ResNet101 [23]. Instead of extending the representation in the spatial domain,

MAC-V uses corresponding dimension in order to represent videos with a 3D ResNet [50].

Other than this difference in the representation of visual input, MAC and MAC-V models

are identical. Input videos to MAC-V are sampled at 1 frame per second. We trained it for

40 epochs using a batch size of 24. During training, Adam optimizer with a learning rate of

0.0003 is used.

G-SWM: This model is actually an unsupervised learning algorithm for object-centric state

representation [28]. Originally, it is designed for future state simulation for environments

consisting of multiple dynamic objects. It is one of the recent generative models which con-

sider temporal imagination. The model assumes that each frame in a video can be modeled

using two different latent variables which are for objects and contexts. Contexts variable

represents everything which is non-object related.

G-SWM model has four different submodules which are discovery module, context module,

propagation module, and rendering module, respectively. Except discovery module, which

is used to detect new objects in the simulation, a summary for each submodule is provided

in Figure 5.2. The main aim is to learn context and objects latent variables which also in-

clude some randomness to represent the uncertainty. Object representations are then used to
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Figure 5.2. Upper Left: Objects and Contexts. Upper Right: Versatile Propagation. Lower Mid-
dle: Object-Centric Generation. (image taken from [28])

calculate the exact values of object properties such as appearance, position, presence, and

depth to create foreground frame. Furthermore, background frame is encoded using con-

text latent variable. These two are then combined to obtain a single frame by the rendering

module. Moreover, object specific representations are estimated by using RNNs consider-

ing object-object and object-context relationships by propagation module. Finally, context

module is also implemented with an RNN which assumes dynamic context for generality

(CRAFT contexts are static).

G-SWM is given the initial 10 frames and requested to predict the remaining frames for

100 frame videos in the original experiments that authors conducted. Instead of simulating

possible futures in an unsupervised setting, we adapt G-SWM to solve CRAFT classification

task (VQA task) by providing whole CRAFT videos sampled at 5 frames per second. We

also resize input CRAFT videos so that they have 64 by 64 pixel resolutions as in the original

design of the model. This version of G-SWM concatenates context and objects features to

obtain a single representation for a video. It then concatenates this representation with the

LSTM question representaion similar to LSTM-CNN model to provide an answer to the

question at hand. We trained G-SWM 100 epochs using a batch size of 24 with Adam

optimizer and a learning rate of 0.0001.
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Table 5.1. Performances of baselines mentioned in Section 5.1. on the validation and the test splits
using average accuracy metric are reported. C, CF, D, E and P columns stand for Cause,
Counterfactual, Descriptive, Enable and Prevent tasks, respectively.

Baseline Input Validation
Test

C CF D E P All

MFA Question 27.86 30.50 42.36 21.54 27.31 27.54 28.00
AT-MFA Question 41.29 45.60 47.11 38.14 47.60 44.59 41.48
LSTM Question 44.76 53.77 52.99 39.16 52.77 55.08 44.65
LSTM-CNN Question + First Frame 47.68 44.34 50.34 46.32 52.03 53.77 47.83
LSTM-CNN Question + Last Frame 53.34 50.63 56.71 53.99 52.40 51.48 54.42
MAC Question + First Frame 35.69 39.31 45.49 31.9 29.52 32.13 35.81
MAC Question + Last Frame 33.52 32.08 36.29 32.9 31.37 33.11 33.74
MAC-V Question + Video 31.42 32.39 43.0 26.14 30.63 27.54 31.18
G-SWM Question + Video 47.72 55.35 54.65 42.96 50.92 49.18 47.18
Human Question + Video – 66.67 74.07 93.01 59.09 90.9 85.89

Human: In order to support our thesis stating that CRAFT is designed to be easy for hu-

mans, but difficult for machines, we also conducted a small human study. In this study, we

asked 522 randomly selected CRAFT questions to 12 adults whose native languages were

Turkish. We divided these questions into 5 different parts and asked participants to choose

one or more of them and complete the ones selected. As well as answering the questions,

the participants were allowed to state that the question was not clear enough to understand.

From 522 questions, responds to 489 questions were recorded.

5.2. Results

This section demonstrates the results obtained by the baselines mentioned in the previous

section. Accuracy metric is used in the evaluations. During training, corresponding model

parameters are selected from the epoch that achieves highest performance on the validation

split. Table 5.1. shows the performances of each baseline on the validation and the test splits.

Task-specific performances of each baseline on the test split is also given in Table 5.1. Input

column is provided to state the type of inputs provided to the baseline models.
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As can be depicted from the results in Table 5.1., there is a large gap (> 30%) between human

subjects and neural baselines. However, we should say that humans had difficulties while

solving Cause and Enable questions. We suspect that one of the reasons why these are found

to be the most difficult categories according to the human study results can be attributed to the

fact that the difference between them (the definition of intention) is not clearly specified to

human subjects before the experiment in order to realize a fair comparison between humans

and neural baselines. We believe that if it had been specified, the gap between them would

have been even much larger.

Performance differences between the validation split and the test split are so small (< 2%) for

all baselines that are used in our experiments, demonstrating that CRAFT’s validation split

is a good representative for its test split. Furthermore, our results show that integrating only

the question features increases the performance by a small margin (3.17%) compared to AT-

MFA model. This shows that in order to achieve higher scores when solving CRAFT, visual

features must be integrated with questions. Although using first video frame features with

textual features together decreases the performances for Cause, Counterfactual, Enable, and

Prevent categories, it increases the overall performance because the amount of Descriptive

questions is much larger compared to other categories (Figure 4.8.). We think that using the

features of the first video frame improves the performance in Descriptive questions simply

because it lets extracting information about different properties such as colors, sizes etc.

from objects which are not specified in the text. On the other hand, the reason why using

first frame features confuses the model in other categories is not very clear. Moreover, this

decrease is not equivalently worrisome for the model that employs last video frame along

with textual features. This is somewhat expected since there are CRAFT questions which

require grasping final state of the corresponding scene. This is also the reason why the

performance in Descriptive questions is increased more. Below, we share such example

questions from CRAFT.

• “How many Ss enter the basket?”

• “How many Ss fall to the ground?”
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Table 5.2. Performance comparisons of LSTM-CNN models using a simple CNN and Resnet-18.
C, CF, D, E and P columns stand for Cause, Counterfactual, Descriptive, Enable and
Prevent tasks, respectively.

Baseline Input Validation
Test

C CF D E P All

LSTM-CNN (Simple CNN) Question + First Frame 46.11 50.00 52.01 43.84 45.76 52.46 46.73
LSTM-CNN (Simple CNN) Question + Last Frame 48.67 48.74 57.20 44.95 53.87 53.77 49.10
LSTM-CNN (Resnet-18) Question + First Frame 47.68 44.34 50.34 46.32 52.03 53.77 47.83
LSTM-CNN (Resnet-18) Question + Last Frame 53.34 50.63 56.71 53.99 52.40 51.48 54.42

While designing LSTM-CNN models, our aim was to specify a lower bound for the perfor-

mances of other models. To be more simplistic, our initial attempts in these models used

a simple 2-dimensional Convolution Neural Network (CNN) instead of ResNet-18. The

performance comparison of using this simple CNN and Resnet-18 models is presented in

Table 5.2. Despite the fact that there are different winners for different categories, the overall

performance is increased when using Resnet-18 in our models. Therefore, we have selected

models integrating Resnet-18 as our neural baselines in our comparisons in Table 5.1.

Another point that is worth mentioning here is that despite being complex models receiving

multiple frames as inputs, MAC-V and G-SWM did not perform well on CRAFT ques-

tions. We believe that this is mostly because these models are not inherently created to solve

CRAFT tasks. For instance, the original MAC model which achieves the state-of-the-art

results on CLEVR, greatly takes advantage of spatial attentions to be able to obtain spatial

reasoning capabilities. Converting this type of attention to temporal attention to represent a

video as in MAC-V did not result in high accuracies. In order to compare extending features

in the spatial domain and in the temporal domain, we also conducted experiments with MAC

network using the first or the last frame features only. Although these models outperform

MAC-V, the results are quite low compared to LSTM-CNN baselines. Furthermore, another

reason why MAC-V fails might be that it is not an object-centric model similar to previous

baselines. We believe that a model should be able to identify different objects and their re-

lationships in order to be more successful when solving CRAFT questions. A model, such

as MAC-V, can easily be transformed to an object centric model by integrating object mask

representations as in [43]. This can be smoothly achieved by concatenating features arriving
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from video frames and segmentation masks of all objects. We did not have the chance to

experiment with such models since current version of CRAFT does not include object seg-

mentation masks. Finally, MAC-V model sometimes fails to specify even the correct answer

type for a question as can be seen from Figure 5.10.

Similarly, G-SWM is designed to learn temporally local relationships in order to predict

future frames with a generative loss. Despite being an object specific model, using features

from full video to train G-SWM for a classification task (CRAFT), did not also result in

high performance. Since its original aim is to generate, it receives full frames instead of

using strong frame representations (ResNet-18) as in the case for LSTM-CNN model. It

would be very interesting to train a version of G-SWM receiving ResNet-18 features in order

to see whether its performance on CRAFT questions increases or not. Furthermore, another

important disadvantage for this version of G-SWM is that it resizes the input video resolution

from 256 by 256 pixels to 64 by 64 pixels which could lead huge amount of information loss

which cannot be neglected.

Our results on CRAFT demonstrate that special attention must be given when designing a

model which has strong causal and temporal reasoning, and intuitive physics capabilities

while having abilities to visualize counterfactual situations specified in the question.

Here, we provide some qualitative results provided by the experiments conducted on our

baselines. Firstly, we compare the results obtained by our LSTM, LSTM-CNN (First Frame),

and LSTM-CNN (Last Frame) models on some of CRAFT video question pairs in Fig-

ures 5.3. and 5.4., respectively. Furthermore, Figures from 5.5., 5.6., 5.7., 5.8., 5.9., 5.10.,

5.11. to 5.12. show correct and wrong predictions produced by other baselines.
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Figure 5.3. Example model predictions. Upper: The cases that LSTM-CNN (First Frame) can cor-
rectly find the answer, whereas LSTM and LSTM-CNN (Last Frame) cannot. Lower:
The cases that LSTM-CNN (Last Frame) can correctly find the answer, whereas LSTM
and LSTM-CNN (First Frame) cannot.

Figure 5.4. Example model predictions showing the cases that LSTM can correctly find the answer
whereas LSTM-CNN (First Frame) and LSTM-CNN (Last Frame) cannot.
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Figure 5.5. Example correct MAC (First Frame) predictions.
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Figure 5.6. Example wrong MAC (First Frame) predictions.
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Figure 5.7. Example correct MAC (Last Frame) predictions.
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Figure 5.8. Example wrong MAC (Last Frame) predictions.
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Figure 5.9. Example correct MAC-V predictions.
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Figure 5.10. Example wrong MAC-V predictions.
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Figure 5.11. Example correct G-SWM predictions.
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Figure 5.12. Example wrong G-SWM predictions.
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6. CONCLUSION

In this thesis, we have presented a new visual question answering dataset, CRAFT, which

is designed to challenge causal and temporal reasoning with strong physics understanding

capabilities of current machine learning algorithms. CRAFT task design is mostly inspired

by the representations of different causal relationships in cognitive science. The tasks require

visual understanding of the force dynamics between different entities and grasping natural

language input to detect exact causal relationships to be extracted. We believe that studying

these two modalities in the causal reasoning context is crucial for artificially intelligent agents

as in human cognition research.

Besides providing detailed information about how this dataset is constructed, we also share

information about the baselines that we use in the experiments along with the results they

obtain. Our baselines consist of models searching frequent answers in the training set, sim-

ple neural models which investigate text or text+frame features, and more complex models

(MAC-V and G-SWM) which are proposed to solve other tasks in the literature. As can

be seen our results, MAC-V and G-SWM do not perform well on our CRAFT tasks. This

may be due to the fact that these models are not originally created to solve CRAFT tasks.

While MAC benefits from spatial attention a lot in CLEVR task, converting it to temporal

attention to use video features as in MAC-V did not lead high performances. On the other

hand, while the original G-SWM is a generative model using a short local region for a single

frame, providing G-SWM a full video and training it for a classification task also did not lead

high performances. These results of our baselines can be considered as a starting point for

more novel architectures because of the fact that although the challenges seem intuitive for

humans, they can be quite difficult for the machines. This is also demonstrated by the gap

(> 30%) between the humans and our most successful neural baseline. As a future work,

both an extensive performance analysis of different artificial models and a more detailed hu-

man study may be conducted in order to fully understand the differences between human

intelligence and artificial intelligence.
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There are some extensions for CRAFT dataset that we would like to consider as a future

work. Firstly, object segmentation masks for each video can be extracted by our simulator

and shared for further use. Secondly, our programs of tasks depend only on the end results

of the simulations to be able to provide correct answers to the questions. Our programs

do not consider local temporal attempts of the objects whether they are trying to cause,

enable, or prevent in a small time interval. Furthermore, there can be multiple patients in our

cause, enable, and prevent tasks. Investigating tasks including multiple affectors would be

interesting. Moreover, we consider events of entering the basket, but our objects are not able

get out of the basket. Allowing such objects would increase the variety in the scenes and in

the questions. In addition to these, material textures as in CLEVR can be used to emphasize

that the objects in the scene have different densities. Not only density, but also other static

properties, such as friction, can also integrated if visually possible.

We believe that by providing a new benchmark, we also propose a new research direction that

will consist of different algorithms solving CRAFT, or different datasets which are extensions

of it.
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