
 
 

AUTOMATIC GENERATION OF SCIENTIFIC 

TERMINOLOGY WITH DEEP LEARNING 

 

 

DERİN ÖĞRENME İLE OTOMATİK BİLİM TERİMLERİ 

SÖZLÜĞÜ OLUŞTURULMASI 

 

 

 

İPEK NUR KARAMAN 

 

 

 

PROF. DR İLYAS ÇİÇEKLİ 

Supervisor 

 

 

Submitted to 

Graduate School of Science and Engineering of Hacettepe University 

as a Partial Fulfillment to the Requirements 

fort he Award of the Degree of Master of Science 

In Computer Engineering. 

 

 

2021 



ÖZET

DERİN ÖĞRENME İLE OTOMATİK BİLİM TERİMLERİ

SÖZLÜĞÜ OLUŞTURULMASI

İpek Nur KARAMAN

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Danışmanı: Prof. Dr. İlyas ÇİÇEKLİ

Eş danışman: Dr. Gönenç ERCAN

Haziran 2021, 62 sayfa

Otomatik terim çıkarımı, doğal dil işlemede önemli bir görevdir. Bu tezde, otomatik ter­
minoloji çıkarımı üzerinde iki amaç için çalışılmıştır. Birinci amacımız, farklı bilim alan­
ları için bilimsel terminolojinin tutarsızlığını ölçmektir. Bilimsel yazılarda terminoloji
tutarlılığı, bilimsel bilginin araştırmacılar arasında yayılması açısından önemlidir. Bu
tezde, terminoloji tutarsızlığını ölçen bir metrik önerilmekte ve otomatik terim çıkarımı
ile istatistiksel makine çevirisi kullanılarak farklı bilim alanları için terminoloji tutarsızlığı
ölçülmektedir. Sonuçlarımız, terminolojideki tutarsızlığa göre bilimsel grupların sırala­
masının: PHY (Fizik Bilimleri ve Mühendislik)> SOC (Sosyal ve Davranış Bilimleri)>
LIF (Yaşam Bilimleri) olduğunu göstermiştir. Ayrıca sonuçların doğrulanması için anket
çalışması yapılmış ve anket sonuçları elde ettiğimiz sonuçları desteklemiştir. Bu tezin ik­
inci amacı, dizi etiketleme ile derin öğrenme yöntemlerine dayalı ortak çok dilli öğrenme
ile çok dillilikten faydalanmak ve İngilizce verileri kullanarak Türkçe terminoloji çıkarımı
performansını iyileştirmektir. Derin öğrenme ile otomatik terim çıkarımı, yeterli eğitim
verisi bulunduğunda umut verici sonuçlar elde etmektedir. Ne yazık ki, bazı diller için

i



bazı bilim alanları eğitim verisi için gerekli olan kaynaklardan yoksun olabilir ve veri
eksikliği yetersiz uyum nedeniyle otomatik terim çıkarımında düşük performansa neden
olabilmektedir. Bu tez çalışmasında, metinlerden otomatik olarak terimleri çıkarmak için
dizi etiketlemeli, çok dilli veriler üzerinde eğitilmiş ve bu sorunu çözmek için hizalan­
mış kelime temsilleri ile ortak çok dilli derin öğrenme modeli önerilmektedir. Değer­
lendirme sonuçlarımıza göre, çok dilli bir model, sınırlı eğitim verileriyle eğitilmiş tek
dilli bir modelle karşılaştırıldığında, otomatik terim çıkarımında performans iyileştirmesi
sağlamıştır. İyileştirme oranı bilim alanı ve verinin boyutuna göre değişmekle birlikte,
değerlendirmemiz F1 puanındaki en yüksek gelişmenin Bilgisayar Bilimleri alanında 10,1
%, en az iyileştirmenin ise Elektronik Mühendisliği alanında 7,6 % olduğunu göstermek­
tedir. Ayrıca çok dilli modelimiz, yeterli eğitim verisi ile eğitilmiş tek dilli bir modelle
karşılaştırıldığında rekabetçi sonuçlar elde etmektedir.

AnahtarKelimeler: Otomatik terim çıkarımı, terminoloji çevirisi, birlikte çok dilli öğrenme,
sinirsel dizi etiketleme, derin öğrenme, iki yönlü uzun­kısa vadeli bellek, istatistiksel
makine çevirisi

ii



ABSTRACT

AUTOMATIC GENERATION OF SCIENTIFIC TERMINOLOGY

WITH DEEP LEARNING

İpek Nur KARAMAN

Master of Science, Department of Computer Engineering

Supervisor: Prof. Dr. İlyas ÇİÇEKLİ

Co­Supervisor: Dr. Gönenç ERCAN

June 2021, 62 pages

Automatic term extraction is an essential task in natural language processing. In this the­
sis, we work on terminology extraction for two purposes. The first aim is to measure
inconsistency of scientific terminology for different scientific disciplines. Terminology
consistency in scientific writing is important for the dissemination of scientific informa­
tion among researchers. In this thesis, we propose a metric that measures terminology in­
consistency and we measure terminology inconsistency for different scientific disciplines
by using automatic term extraction and statistical machine translation. Our results showed
that the order of scientific groups by inconsistency in terminology is: PHY (Physical Sci­
ences and Engineering) > SOC (Social and Behavioral Sciences) > LIF (Life Sciences).
We also survey for verification of the results and survey results support our study. The
second aim of this thesis is to leverage multilinguality with joint multilingual learning
based on deep learning methods with sequence labeling and improve terminology extrac­
tion performance in Turkish by utilizing English data. Automatic term extraction using
deep learning achieves promising results if sufficient training data exists. Unfortunately,

iii



some languages may lack these resources in some scientific domains causing poor perfor­
mance due to under­fitting. In this thesis, we propose a joint multilingual deep learning
model with sequence labeling to extract terms, trained on multilingual data and aligned
word embeddings to tackle this problem. Our evaluation results demonstrate that the mul­
tilingual model provides an improvement for automatic term extraction task when it is
compared with a monolingual model trained with limited training data. Although the im­
provement rate varies according to domain and the size of the data, our evaluation shows
that the highest improvement in F1­score is 10.1 % in the domain of Computer Science,
the least improvement is 7.6 % in the domain of Electronic Engineering. Our multilingual
model also achieves competitive results when it is compared with a monolingual model
trained with sufficient training data.

Keywords: Automatic term extraction, terminology translation, joint multilingual learn­
ing, neural sequence labeling, deep learning, bidirectional long short­term memory, sta­
tistical machine translation

iv



ACKNOWLEDGEMENT

I would like to thank my thesis supervisor Prof. Dr. İlyas ÇİÇEKLİ and my co­advisor Dr.
Gönenç ERCAN for their guidance, efforts and continued support throughout this thesis.

I would finally like to thank my family for their endless love, support, help and patience.

v



CONTENTS

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Inconsistency of Scientific Terminology . . . . . . . . . . . . . . . . . 1
1.2. Automatic Term Extraction with Joint Multilingual Learning . . . . . . 2
1.3. Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . 5
2.1. Automatic Term Extraction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Pipeline of Term Extraction . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Automatic Term Extraction Methods . . . . . . . . . . . . . . . 8

2.2. Statistical Machine Translation . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1. Word Alignment Models . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. Word Alignment Tools . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1. FastText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Deep Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 15
2.4.1. Long Short­Term Memory Networks . . . . . . . . . . . . . . . 15
2.4.2. Bidirectional Long Short Term Memory Networks . . . . . . . 17

2.5. Sequence Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



2.6. Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7. Joint Multilingual Learning . . . . . . . . . . . . . . . . . . . . . . . . 19

3. DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1. Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Grouping Thesis Abstracts . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Parallel Corpora Construction . . . . . . . . . . . . . . . . . . . . . . . 21

4. BILINGUAL AUTOMATIC TERM EXTRACTION . . . . . . . . . . . . . 23
4.1. Automatic Terminology Extraction . . . . . . . . . . . . . . . . . . . . 23

4.1.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2. Term Candidate Selection . . . . . . . . . . . . . . . . . . . . . 25
4.1.3. Term Candidate Scoring . . . . . . . . . . . . . . . . . . . . . 27
4.1.4. Term Candidate Ranking . . . . . . . . . . . . . . . . . . . . . 28

4.2. Terminology Translation . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1. Word Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2. Generation of Translation Dictionaries . . . . . . . . . . . . . . 29
4.2.3. Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3. Scientific Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. MEASURING TERMINOLOGY INCONSISTENCY . . . . . . . . . . . . . 34
5.1. Terminology Inconsistency Metric . . . . . . . . . . . . . . . . . . . . 34
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. TERM EXTRACTION WITH JOINT LEARNING . . . . . . . . . . . . . . 37
6.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3. Terminology Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5. Terminology Tag Decoding . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6.1. Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6.2. Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6.3. F1­Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.7. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



FIGURES

2.1. The traditional pipeline of automatic term extraction . . . . . . . . . . . 6
2.2. Scoring methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Example of word alignment . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. LSTM unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. POS tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6. A shared word embedding space between Turkish and English . . . . . 19

4.1. The pipeline of term extraction task . . . . . . . . . . . . . . . . . . . 24
4.2. Word segmentation and case folding . . . . . . . . . . . . . . . . . . . 25
4.3. 2­gram extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Example of one­to­many alignment . . . . . . . . . . . . . . . . . . . . 29
4.5. Example of consecutive alignments . . . . . . . . . . . . . . . . . . . . 30

6.1. Example sentences for terminology labeling . . . . . . . . . . . . . . . 40
6.2. The structure of the model . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3. Pipeline of the deep learning system . . . . . . . . . . . . . . . . . . . 46
6.4. Terminology tag decoding . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5. Comparison of monolingual and multilingual models . . . . . . . . . . 51
6.6. Performance comparison of multilingual models by different number of

sentences in English in the field of Computer Science . . . . . . . . . . 54

ix



TABLES

2.1. POS tags in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1. Scientific Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. The number of sentences for each scientific field . . . . . . . . . . . . . 22

4.1. POS tags of the tokens of an example sentence . . . . . . . . . . . . . . 25
4.2. Examples of accepted and not expected term candidates . . . . . . . . . 26
4.3. Term candidates and their Weirdness scores . . . . . . . . . . . . . . . 27
4.4. Top 10 term candidates in Computer Science . . . . . . . . . . . . . . . 28
4.5. Sample term candidates with POS tag filtering . . . . . . . . . . . . . . 31
4.6. Example suffixes of the word ”bilgisayar” . . . . . . . . . . . . . . . . 31
4.7. Examples of suffix removal . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8. Sample Electrical and Electronics Engineering terms and translations . . 32
4.9. Sample Computer Science terms and translations . . . . . . . . . . . . 33

5.1. Inconsistency values of scientific fields . . . . . . . . . . . . . . . . . . 35
5.2. Interpretation of kappa ranges . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. Fleiss’ kappa scores for scientific fields . . . . . . . . . . . . . . . . . 36

6.1. The number of gold terms for scientific fields . . . . . . . . . . . . . . 39
6.2. Term annotation schema . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3. The numbers of annotated terms . . . . . . . . . . . . . . . . . . . . . 41
6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5. The error rates of subset term extraction . . . . . . . . . . . . . . . . . 53
6.6. Results in the field of Computer Science . . . . . . . . . . . . . . . . . 54

x



ABBREVIATIONS

Abbreviations
NLP Natural Language Processing
TF Term Frequency
ATF Average Term Frequency
TF­IDF Term Frequency­Inverse Document Frequency
CBOW Continuous Bag of Words
POS Part Of Speech
RNN Recurrent Neural Network
LSTM Long Short­term Memory
BiLSTM BiDirectional Long Short­term Memory
HMM Hidden Markov Model
CRF Conditional Random Fields
ReLU Rectified Linear Unit
LIF Life Sciences
PHY Physical Sciences and Engineering
SOC Social and Behavioral Sciences
SMT Statistical Machine Translation

xi



1. INTRODUCTION

Terms are domain­specific words or word groups referring to domain specific entities or
concepts. Automatic terminology extraction (also known as term extraction, term recog­
nition) is an automatic text analysis method for identifying word or phrases that meet the
criteria for terms. The goal of automatic terminology extraction is to extract terms from
a given corpus automatically. Extracted terms can be used in other natural language pro­
cessing tasks such as ontology learning, machine translation [1, 2]. Due to the importance
of handling terminologies, different extraction methods have been proposed.

In this thesis, we work on terminology extraction with different problems and methods.
We handle two different problems. The first problem is to measure inconsistency of sci­
entific terminology for different scientific disciplines. The second problem is to leverage
multilinguality with joint multilingual learning based on deep learning methods with se­
quence labeling and improve terminology extraction performance in Turkish by utilizing
English data.

1.1. Inconsistency of Scientific Terminology

Scientific studies are generally published in English. However, publications in the native
language are important for the dissemination of scientific knowledge among researchers.
Scientific studies contain a large number of terms and new terms are constantly being
added in continuously developing science fields such as Computer science, which are
often translated differently by different researchers. This poses a discrepancy problem
and makes it difficult to achieve unity in terminology. The most essential cause of the
problem is the polyphony in both languages when translating scientific terms from one
language to another.

Terminology consistency in scientific writing is important for the dissemination of sci­
entific information among researchers. The reasons for terminology inconsistency in
translations have been investigated in many studies for different languages and domains
[3, 4, 5, 6]. However, no research has been conducted to measure inconsistency in termi­
nology for scientific fields using bilingual texts and using NLP techniques. Also, to the

1



best of our knowledge, there is no previous study to compare the degree of terminology
inconsistency for different scientific disciplines.

In this thesis, we measure terminology inconsistency for different scientific disciplines by
using automatic term extraction and statistical machine translation. We propose a metric
for measuring terminology inconsistency. We aim to reveal how terminology inconsis­
tency varies for different scientific disciplines. For this, we apply both automatic termi­
nology extraction and statistical machine translation methods in our bilingual (English­
Turkish) source. Also, we support our work with a survey. The results of the survey
support our study such that our proposed metric is a valid metric for measuring terminol­
ogy inconsistency.

1.2. Automatic Term Extraction with Joint Multilingual Learning

Neural sequence labeling is one of the successfully used methods for keyword extraction
[7, 8]. Since keyword extraction and term extraction are similar tasks, automatic term
extraction task can also be treated as a sequence labeling problem and deep neural models
are suitable for use. Although deep neural network models are state­of­the­art techniques
for sequence labeling, they require sufficient data for training in order to obtain successful
results [9]. However, some languages may have low resources for some domains and the
lack of data causes underfitting for deep neural models [9].

Joint multilingual learning is an approach to enable to use natural language processing
(NLP) techniques for low­resource languages. Joint multilingual learning enables to train
a single model with mixed data in languages with rich resources and low resources. In
order to share data and parameters, multilingual embeddings are used. The word vectors
of different languages share the same word vector space. If the meanings of two different
words in different languages are similar, their word vectors are close to each other in the
vector space.

The motivation for our study is the question of whether it is possible to tackle the problem
of the lack of data by using data in another language for automatic term extraction task.
If it is possible, it is very beneficial for languages with limited resources. So, in this
study, we utilize joint multilingual learning for automatic term extraction task. We trained

2



a single multilingual model on a mixed dataset in English and Turkish. In this way, it
enables data and model parameter sharing. We used a shared word vector space as the
primary language representation so that two similar words in English and Turkish will be
close to each other in the vector space. To the best of our knowledge, there is no previous
research that trains a multilingual neural model for automatic term extraction using joint
multilingual learning approach. Also, there are no automatic term extraction studies with
neural sequence labeling and deep learning in Turkish.

1.3. Thesis Goals

In this thesis, we have several goals:

• To perform bilingual terminology extraction with using the traditional pipeline of
the terminology extraction and statistical machine translation methods to generate
scientific terminology for different scientific disciplines.

• To measure terminology inconsistency by terminology inconsistency metric for dif­
ferent scientific disciplines and compare them in terms of terminology inconsistency

• To perform terminology extraction using deep learning with sequence labeling.

• To train monolingual and multilingual deep neural models for automatic term ex­
traction task using word embeddings in Turkish and English.

• To improve terminology extraction performance in Turkish with joint multilingual
learning by utilizing English data.

• To compare trained monolingual and multilingual deep learning models in terms of
performance for different scientific disciplines.

• To discuss the reasons of the performance gap between trained monolingual and
multilingual models.

3



1.4. Thesis Contributions

The main contributions of the thesis are follows:

• We proposed a metric to measure terminology inconsistency for scientific fields by
using automatic term extraction and statistical machine translation.

• We revealed how the degree of terminology inconsistency varies for different sci­
entific disciplines for English­Turkish language pairs.

• We proposed automatic term extraction method based on deep joint learning.

• We proved that automatic term extraction in one language can be improved by using
a different language data in the same domain.

1.5. Thesis Outline

The structure of the thesis is given as follows:

• Chapter 2 presents the background and related work.

• Chapter 3 explains the dataset.

• Chapter 4 explains the bilingual automatic term extraction methodology in this
study.

• Chapter 5 presents the method for measuring terminology inconsistency and discuss
the differences between different scientific fields in terms of terminology inconsis­
tency.

• Chapter 6 explains the multilingual term extraction with joint learning methodology
in this thesis and discusses the results.

• Chapter 7 concludes this thesis with remarks.

4



2. BACKGROUND AND RELATEDWORK

2.1. Automatic Term Extraction

Terms are domain­specific words or words groups such that they refer to entities that
belong to a specific domain. Automatic term extraction is the task of identification of
domain­specific words or phrases (i.e., terms) from text documents. Extracted terms can
be used for further operations such as ontology learning, machine translation, etc. In
literature, lots of term extraction methods are proposed until today. In this chapter, the
general pipeline of term extraction is explained and also the proposed term extraction
methods are discussed.

2.1.1. Pipeline of Term Extraction

Term extraction methods generally consist of four steps:

• Preprocessing

• Term candidates selection

• Term candidates scoring

• Term candidates ranking

, respectively [10], as shown in Figure 2.1.

Preprocessing Step

In the preprocessing step, some operations are performed on input texts such as sentence
segmentation, word segmentation, and POS tagging to make input text ready for further
steps. Sentence segmentation is basically converting input text into sentences. Generally,
punctuations are used for splitting the input text. Word segmentation (Tokenization) is the
process of dividing sentences into their component words. Words are usually separated
by spaces for many languages using Latin alphabet.

5



Fig. 2.1. The traditional pipeline of automatic term extraction

Part­of­speech tagging (POS tagging) is the marking operation of words in source texts
with considering definition of words and their context. It basically assigns part of speech
tags to words. For example, a token may be a verb or a noun. So, each token in a sentence
is applied a tag. Predefined POS tag sets are used for POS tagging. For example, the most
popular POS tag set for English is the Penn tag set [11]. For English, tag sets have 9 core
parts of speech tags: noun, verb, article, adjective, adverb, interjection, preposition, pro­
noun, and conjunction. However, certainly, there are more categories and subcategories.
For example, nouns have part of speech tags as plural, possessive, etc. Also, verbs have
tense forms. Widely used POS tags of Penn tag set are given in Table 2.1.

It is useful to determine POS tags of words in a sentence for automatic term extraction task
because grammatical properties of words give information about whether they are terms
or not. For example, generally, terms are nouns or noun phrases. Therefore, detected POS

6



Table 2.1. POS tags in English

POS tag Name Examples
JJ Adjective old, green
NN Noun car, apple
NNs Noun Plural cars, apples
DT Determiner a/an, the
VB Verb visit, hide
IN Preposition of, on
CC Conjunction and, but, yet

tags can be used in the further steps for automatic term extraction.

Term Candidate Selection

Term candidate selection is the selection of term candidates according to predefined rules.
These rules are categorized into two groups: linguistic and statistical. For instance, it
can be the rule such that only nouns can be term candidates. Such rules are entirely gen­
erated based on language linguistic features. Also, POS tags which are determined in
preprocessing step are used for applying linguistic rules. Naturally, the rules can be more
complicated such that consider the combinations of POS tags. For this purpose, a regex
that represents the accepted POS pattern can be used for filtering term candidates.

The other type of rules is statistical. Rare words can be filtered out. The minimum occur­
rence count is defined, and the term candidates are filtered out by using this predefined
value. In addition, stop words, most common words in a language, are filtered out be­
cause they do not belong to terminology. The stop word removal is performed by using a
predefined set of stop words.

Term Candidate Scoring

After term candidate selection, the next step is candidate scoring which is the most im­
portant step. The primary purpose of this step is to assign scores to term candidates. The
score of a term candidate simply represents the possibility of being a term. Therefore, a
higher score for a term candidate means higher term probability.

7



There are a variety of techniques for term candidates scoring. Generally, they depend on
statistical methods. The statistical methods are given in the next subsection.

Term Candidate Ranking

The final step is the candidate ranking step which simply ranks by the calculated scores in
the previous step and extracts the top predefined number of candidates. If only one term
scoringmethod is used, then the candidates can be ranked by that score. Most of the studies
use only one scoring method, and they rank the term candidates by the calculated score.
In addition, some works use multiple scoring methods and they use linear combination
of the multiple scores for ranking. Also, the multiple scores can be used as inputs for a
supervised machine learning method [12].

2.1.2. Automatic Term Extraction Methods

Generally, most of the researchers use linguistic and statistical methods for extracting
terms from text collections. Scoring methods of term candidates are generally based on
statistical approaches. Their essential assumption that terms appear commonly in domain­
specific texts [13, 14, 15]. On the other hand, modern approaches use linguistic methods
only in the step of selection of term candidates. In addition, neural methods have also been
used recently for term extraction. Thus, automatic term extraction methods are grouped
as linguistic methods, statistical methods, and neural methods.

Linguistic Methods

Linguistic information is necessary for term extraction task as well as in other NLP tasks.
The usage of linguistic methods for term extraction is based on defined rules. For ex­
ample, terms are mostly noun phrases [16]. Linguistic methods attempt to identify word
combinations which match certain syntactical and morphological patterns for identifying
terms. For this purpose, morphological analyser and part­of­speech taggers are mostly
used.

8



Linguistic features are totally language­dependent so that it is not possible to generate
general rules for all languages. It requires knowledge of morphology and syntax infor­
mation of the language. Also, word ambiguity, some words have more than one meaning
and their meanings depend on the context, is a considerable problem for identification
of terms. Although earlier studies applied only linguistic methods, using only linguistic
features are not sufficient to identify terms. Generally, modern methods used linguistic
features for term candidate selection only.

Statistical Methods

Statistical methods, as the name suggests, identify terms using statistical information.
These methods are used for scoring term candidates. We can divide these methods into 3
groups:

• methods based on frequency,

• methods based on context,

• methods based on reference corpora,

Many methods perform terminology extraction by determining frequently used words and
phrases from domain­specific texts. Methods based on term frequency contain Term fre­
quency (TF), Average Term Frequency (ATF) [17], TF­IDF [15], Residual IDF (RIDF),
C­Value [13], Basic [18], and ComboBasic [19].

Term Frequency is simply the measure of the number of occurrences of term candidates
in the text. If term frequency is normalized by the number of documents containing term
candidates, then we have ATF. TF­IDF stands for term frequency and inverse document
frequency and it is often used for text mining. TF implies that if a word occurs multiple
times in a document then it must bemoremeaningful than other words. However, if a word
is a frequent word in all documents then it is not relevant and meaningful. So, IDF part of
TF­IDF implies that so common words in documents must not be considered. TF­IDF is

9



Fig. 2.2. Scoring methods

defined as :

TF­IDFt,d = (t ft) · log
N
d ft

(2.1)

where N is a total number of document in the collection, t ft is term frequency of term
candidate t, and d ft is a number of documents containing term candidate t.

Residual IDF is an alternative to IDF and it is defined as the difference between the logs
of document frequency and document frequency predicted by Poisson distribution. The
other method based on occurrence frequency is C­Value [13]. It promotes term candidates

10



that have high frequency. At the same time, it promotes term candidates which are not as
parts of other term candidates. So, it is sensitive to nested terms. Also, there are term
scoring methods such as NC­Value [13] and DomainCoherence [18] which extract terms
based on the importance of the context in which the terms are used.

Methods based on Reference Corpus Methods such as DomainPertinence [20] and Weird­
ness [14] compare general­purpose reference corporawith domain­specific corpora. Weird­
ness simply compares the frequency information of term candidates in general­purpose
reference corpora with domain­specific corpora. The assumption is that terms are domain­
specific so they occur frequently in domain­specific texts. In addition, a term candidate
appears few in the reference corpora, the more likely it is to be a term. We can measure
Weirdness scores of term candidates. The Weirdness score of a term is calculated as:

Weirdness(t) =
NTFdomain(t)

NTFre f erence(t)
(2.2)

where NTFdomain(t) and NTFre f erence(t) are frequencies of the term which is normalized
by the sizes of domain­specific and general­purpose reference corpora.

Neural Network Methods

As mentioned before, the general pipeline of term extraction consists of pre­processing,
selection of term candidates, scoring of term candidates, and ranking of term candidates,
respectively [10]. One of the problems of the traditional pipeline is that it has difficulty
recognizing rare terms. In fact, words with less than a predefined occurrence frequency are
generally eliminated in the term candidate selection step. The other problem is that linguis­
tic features used in the filtering step are language­specific so that it is a problem to gener­
alize linguistic methods for all languages. In order to solve these problems, deep learning
methods are recently used for automatic term extraction. In TermEval 2020 shared task, a
deep learning methodology achieves the highest scores [21]. The advantage of deep neu­
ral network models is that they learn linguistic features from data itself. There is no need
to use a filtering step such as stop word removal, POS tag filtering, etc. Also, statistical
features such as occurrence count are not necessary.

11



Recently, automatic term extraction task is treated as a sequence labeling problem with
deep learning [22, 23, 24, 25]. Sequence labeling is the task of assigning categorical la­
bels to each element in a sequence. Words are sequence elements for texts and assigning
categorical labels to component words is the task of sequence labeling. Sequence labeling
algorithms are generally based on statistical inference. Hidden Markov Model (HMM)
[26] and conditional random fields (CRFs) [27] are two of the most common models used
for sequence labeling. Deep learning methods are recently in use for sequence labeling
task and effectively yielding the state­of­the­art performances for tasks such as named
entity recognition, text chunking, etc. Also, there are some studies that use neural se­
quence labeling for automatic term extraction with deep learning. Generally, the stud­
ies use Gated Recurrent Unit (GRU), Long Short­Term Memory (LSTM), Convolutional
Neural Network (CNN), Bidirectional Long Short­Term Memory (BiLSTM), and Condi­
tional Random Field (CRF) layers.

Kuzca et al. [22] built a monolingual term extraction system to identify terms with se­
quence labelingwith BILOU scheme. They usedGloveword embeddings [28] andworked
with the following kinds of recurrent neural networks: Unidirectional LSTM, Unidirec­
tional GRU, Bidirectional LSTM, Bidirectional GRU, Multilayer LSTM. They performed
their experiments with GENIA [29] andACLRD­TEC corpus [30] in English. In addition,
adding a CRF [27] layer also improved the performance in some studies. For instance, a
study proposed a BiLSTM­CRFmodel with Transformers (BERT) [24]. Their deep neural
model is trained on Lithuanian Corpus in cybersecurity domain. Another study proposed
a CNN­BiLSTM­CRF model and they used computer field papers in Chinese [23].

In short, there are some studies in the literature that propose a monolingual neural model
for automatic term extraction task in different languages with sequence labeling. In this
thesis, instead of a monolingual model, we propose a multilingual model with joint mul­
tilingual learning. Our method utilizes the sequence labeling and deep learning methods.
The multilingual model we propose operates at a performance close to the monolingual
model.

12



2.2. Statistical Machine Translation

Statistical Machine Translation learns how to translate by analyzing manually formed
translations. SMTmodels are trained using a bilingual corpus. Given sentence f in source
language, the goal is to find most likely translation e in target language. In statistical ma­
chine translation, alignment models are used to determine translations of the words and
phrases in two sentences with same meaning in two languages. Alignment can be at sen­
tence level or word level. Sentence alignment can be provided by the corpus or obtained by
Gale­Church alignment algorithm [31]. However, in order to learn the translation model,
there is need to know which words aligned with each other in source­target sentence pair.
In a parallel text, the words in one language are aligned with the words in the other lan­
guage. The example of word alignment is given in Figure 2.3. In order to align words,
one of the solutions is the IBM­Models.

Fig. 2.3. Example of word alignment

2.2.1. Word Alignment Models

IBM alignment models [7] are widely used in Statistical Machine Translation to train an
alignment model. There are five IBM alignment models. The sequence of the five models
can be summarized as:

• Model 1: only uses lexical translation

• Model 2: additional absolute alignment model

• Model 3: adds fertility model

• Model 4: adds relative alignment model

• Model 5: fixes deficiency problem.

13



IBM Model 1 is based on only lexical translation. The problem of IBM Model 1 is the
weakness of reordering, adding and dropping words. Generally, words in translations have
a different order after translation. However, IBM Model 1 handles all types of reorder­
ing as equally as possible. IBM Model 2 adds a model of alignment to IBM Model 1.
Therefore, after lexical translation step, there is one more step as the alignment step. IBM
Model 3 adds fertility model to solve fertility problem. Fertility is the one of the problems
while aligning words. Fertility problem means that some words can be translated to mul­
tiple words or translated no words at all. IBM Model 4 consider the surrounding words.
Therefore, each word is dependent on the word that previously aligned. IBM Model 5
enhancing the alignment model in order to overcome deficiency [32].

2.2.2. Word Alignment Tools

There are some tools that implements IBMalignmentmodels such asGIZA++ [33], FastAl­
ign [34], etc. GIZA++ is an open­source statistical machine translation tool and it is used
to train IBM Model 1, IBM Model 2, IBM Model 3, IBM Model 4 and IBM Model 5.
Also, it uses an HMM word alignment model.

FastAlign is a simple, fast, unsupervised word aligner tool. It uses log­linear reparame­
terization of IBM Model 2 [35].

2.3. Word Embeddings

There are various approaches to represent words in NLP. As an example, one­hot encoding
and bag­of­words models are widely used. However, they do not capture information
about a word’s meaning and context. In contrast, word embeddings consider surrounding
words of a word so that it captures its meaning and context. Word embeddings are simply
vector representations of words in a vector space. They are fundamental and commonly
used for various NLP tasks. Each word is mapped to one vector and similar words have
similar vector representations.

14



2.3.1. FastText

FastText is an open­source library for learning of word embeddings developed by Face­
book in 2015. It is an extension of word2vec model but it treats each word as a composed
of character n­grams. This allows to build vectors even for misspelled words or concate­
nation of words. Since it consider sub­words, it also generates words embeddings for rare
words. Furthermore, it can produce the vectors of out of vocabulary words. Even if a
word doesn’t appear in corpus, it can construct the vector of the unknown word from its
character n­grams.

It is possible to use the FastText library for learning vector representations of words from
any dataset. In addition, they distribute pre­trained multilingual word vectors for 157
different languages which are trained on CommonCrawl andWikipedia [36]. They trained
thesemodels using CBOWwith position­weights. The dimension of thesemodels are 300.
Further, they published alignedword vectors for 44 languages. These alignedword vectors
are based on pre­trained vectors. These pre­trained vecters are computed on Wikipedia
[37, 38]. RCSLS method [39] is used to align word vectors.

2.4. Deep Recurrent Neural Networks

Long short­term memory networks (LSTM) and its variations are broadly used neural net­
work architecture in the field of deep learning. Since LSTM networks are well­suited to
time series data, they are used for various NLP tasks such as keyword extraction, lan­
guage modeling, sequence labeling, etc. In this section, LSTM and BILSTM networks
are explained.

2.4.1. Long Short­Term Memory Networks

Long short­term memory (LSTM) is an architecture [40] used in deep learning. It was
proposed by SeppHochreiter and Jürgen Schmidhuber. It is basically an artificial recurrent
neural network (RNN) architecture. It is a speacial kind of RNN architecture such that it
solves the vanishing gradient problem of RNNs.

15



An LSTM unit consists of a cell, an input gate, a forget gate and an output gate. The
structure of a LSTM unit is given in Figure 2.4. The equations for output gate, output gate
and forget gate are given respectively in following equations.

Fig. 2.4. LSTM unit

it = σ(wi[ht−1, xt] + bi) (2.3)

ft = σ(w f [ht−1, xt] + b f ) (2.4)

ot = σ(wo[ht−1, xt] + bo) (2.5)

where σ is the sigmoid function, wx is weight for the gate neurons, ht−1 is the output of
the previous lstm block, xt is the input at current timestamp, and bx is the biases for gates.

The forget gate decides which information needs and which can be ignored. The infor­
mation from the current input xt and hidden state ht−1 are passed through the sigmoid
function and sigmoid fuction generates values between 0 and 1 (Equation 2.4).

The input gate of an LSTM unit determines what new information will be stored in the cell
state. The input gate performs the following operations to update the cell status. Firstly,
the current state xt and previously hidden state h(t­1) are passed into the second sigmoid
function (Equation 2.3). So, the values are transformed between 0 and 1. Then, the tanh

16



function creates a vector c̃t with all the possible values between ­1 and 1. The equation
for c̃t is given in Equation 2.6.

c̃t = tanh(Wc[ht−1, xt] + bc) (2.6)

It is enough to form new cell state using the information from the forget gate and also
from the input gate. Here, the previous cell state ct−1 multiplied with forget vector ft.
The outcome can be 0, then values are released in the cell state. Then, the output value
of the input vector it is taken and performs point by point addition, so the cell state is
updated. The new cell state ct is given in Equation 2.7.

ct = ft ∗ ct−1 + it ∗ c̃t (2.7)

The function of the output gate is to determine the value of the next hidden state. Here, next
hidden state contains information about previous inputs.Firstly, the values of the current
state and previous hidden state are passed into sigmoid function (Equation 2.5. Then the
new cell state generated from the cell state is passed through the tanh function. So, the
output of the LSTM at time t is given in following equation.

ht = ot ∗ tanh(ct) (2.8)

To sum up, the forget gate determines which information from the prior steps is necessary.
The input gate decides what information can be added using the current step, and the output
gates determines the next hidden state.

2.4.2. Bidirectional Long Short Term Memory Networks

Bi­directional LSTM (BiLSTM) is the bidirectional version of LSTM. Here, bidirectional
means the signal propagates backward as well as forward in time. Bidirectional recurrent
neural networks basically consist of two independent LSTMs together. In this way, it
allows the networks to have both backward and forward information about the sequence.
The transmission of information is from the past to the future and also from the future

17



to the past. Thefore, BiLSTMs can understand the context better than LSTMs. BiLSTM
is actually two separate LSTM network layers. Two layers of the BiLSTM generate two
different context vectors for each time, and then these vectors are joined to create the final
vector.

2.5. Sequence Labeling

Sequence labeling is the operation of assigning categorical labels to each element in a
sequence. Words are sequence elements for a sentence and assigning categorical labels
to words is a task of sequence labeling. POS tagging is a common example of sequence
labeling task. POS tagging operation for an example sentence is given in the Figure 2.5.

Fig. 2.5. POS tagging

Sequence labeling algorithms are generally based on statistical inference. HiddenMarkov
Model (HMM) [26] is one of the most common models used for sequence labeling. Also,
conditional random fields is in use. Recently, deep learning methods are in use for se­
quence labeling task and effectively yielding the state­of­the­art performances for tasks
such as named entity recognition, text chunking.

2.6. Conditional Random Fields

Conditional Random Fields is a discriminative sequence labeling model which is used for
predicting sequences. They use contextual information and it considers the state of the
neighbors in the context. To consider neighbors, the prediction is modeled as a graphical
model, which implements dependencies between the predictions. CRF has NLP applica­
tions such that part of speech tagging, named entity recognition etc.

18



Lafferty, McCallum and Pereira [27] define a CRF on observations X and random vari­
ables Y as follows: It assumes G = (V, E) be a graph and t Y = (Yv)v∈V . Then, (X, Y)

is a conditional random field when the random variables Yv, conditioned on X, obey the
Markov property with respect to the graph: p(Yv|X, Yw, w ̸= v) = p(Yv|X, Yw, w ∼ v).
Here, w ∼ v means that w and v are neighbors in the graph G.

2.7. Joint Multilingual Learning

Natural language processing (NLP) techniques have several different layers such that
morphological analysis, syntactic analysis, semantic analysis, etc. Languages with low
resources suffer from the inability to applied standard NLP techniques because NLP tech­
niques require linguistic knowledge developed by experts. Also, a lot of labeled data is
required for NLP techniques and it is expensive to generate labels.

Jointmultilingual learning is an approach to enable to useNLP techniques for low­resource
languages. In this approach, a single multilingual model is trained on multilingual dataset.
In order to share data and parameters, multilingual embeddings are used. The word vec­
tors of different languages share the same word vector space. If the meaning of two words
in different languages are similar, their word vectors are close to each other in the vec­
tor space. For example, a shared word embedding space between Turkish and English is
given in Figure 2.6.

Fig. 2.6. A shared embedding space between Turkish and English

It is possible to learn a linear transformation from one language to another with using
dictionaries and monolingual embeddings [41]. In order to learn a shared embedding

19



space for words in multiple languages, the resources can be :

• Dictionaries

• Word­level aligned data

• Sentence­level aligned data

• Document­level aligned data

There are supervised [37] and unsupervised [42, 43] embedding alignment studies in lit­
erature. For example, bilingual dictionaries and monolingual embeddings can be used for
learning bilingual mappings [41, 44]. Also, small seed bilingual dictionary can be used in
unsupervised methods [45].

20



3. DATASET

English and Turkish thesis abstracts are collected from YÖK Thesis Center 1 which is a
domain­specific bilingual source that includes theses in different scientific disciplines. It
includes an English and a Turkish abstract for each thesis.

3.1. Cleaning

Our input texts, thesis abstracts, had accented characters such as the acute (é), grave (è),
and circumflex (â, î). They are converted to ASCII format characters. Since we aim to
obtain parallel sentences, we choose theses that do not have inconsistency in the number
of sentences in the Turkish abstracts and English abstracts of them. Naturally, the number
of sentences may not be exactly the same depending on the language. However, we limit
the sentence number difference to take up to 5 sentences with the purpose of improving
quality of our system.

3.2. Grouping Thesis Abstracts

We grouped the thesis abstracts into three scientific groups using taxonomy of scientific
fields: LIF (Life Sciences), PHY (Physical Sciences and Engineering), SOC (Social and
Behavioral Sciences) [46]. The numbers of thesis abstracts for each scientific field are
indicated in Table 3.1.

3.3. Parallel Corpora Construction

In most of the thesis abstracts, the sentences are parallel. Even so, we apply sentence
alignment methods in order to improve translation quality. Sentence alignment is used to
identify correspondences between sentences of bilingual sources. Thus, it enables con­
structing parallel corpora to be obtained from bilingual sources. In this work, LFAligner
tool 2, one of the sentence alignment tools, is used to align sentences of our bilingual source

1YÖK Tez, (https://tez.yok.gov.tr/UlusalTezMerkezi)
2LFAligner, (https://sourceforge.net/p/aligner/wiki)

21



Table 3.1. Scientific Fields

Scientific Field Scientific Group Abstract Count
Biology LIF 7267
Food Science LIF 3807
Agriculture LIF 13243
Electrical and Electronics Engineering PHY 10686
Chemistry PHY 14730
Computer Science PHY 7145
Economics SOC 7071
History SOC 5679
Business Administration / Management SOC 17611

i.e. thesis abstracts. LFAligner is simply based on Hunalign [47] and it uses Gale­Church
algorithm which is based on sentence length information [31] in order to align sentences.
The number of sentences for each scientific field and language are given in Table 3.2.

Table 3.2. The number of sentences for each scientific field

Scientific Field Language Sentences

Biology TR 70767
EN 73839

Food Science TR 42800
EN 44810

Agriculture TR 57025
EN 56923

Electrical and Electronics Engineering TR 102933
EN 105460

Chemistry TR 142533
EN 147008

Computer Science TR 68969
EN 69813

Economics TR 34255
EN 34151

History TR 47452
EN 46154

Business Administration / Management TR 156349
EN 158149

22



4. BILINGUAL AUTOMATIC TERM EXTRACTION

Bilingual Automatic Term Extraction is the automatic extraction of bilingual term pairs
from both source and target languages. In this study, the steps for this task has following
two steps:

• Monolingual term extraction for English.

• Terminology translation phase where Turkish translation candidates of extracted
English terms are detected.

The above­mentioned steps are performed separately for each scientific field. Therefore,
we aim to obtain separate terminology for each scientific field.

4.1. Automatic Terminology Extraction

In this work, automatic term extraction was performed in English. The pipeline of our
work consists of four steps:

• Preprocessing

• Term candidates selection

• Term candidates scoring with Weirdness method

• Term candidates ranking

respectively, as shown in Figure 4.1. To perform these steps, we used ATR4S library [10].

4.1.1. Preprocessing

Preproccessing step is the first step in our automatic term extraction pipeline. In the pre­
processing step, the following preprocessing tasks are performed, respectively:

• Sentence Segmentation: It is the operation of splitting texts into sentences. Our
input texts are segmented into sentences by determining sentence boundaries using

23



Fig. 4.1. The pipeline of term extraction task

punctuations.

• Tokenization (Word Segmentation): It is basically the operation of splitting sen­
tences into their component words. Our sentences are tokenized into words by
white­space characters. Then, punctuations are removed from tokens, and all to­
kens are converted to lower case in order to normalize words into the same form
in case. Word segmentation and case­folding operation for an example sentence is
given in the Figure 4.2.

• POS tagging : POS tags are determined for each word in sentences. POS tags of
the tokens of the example sentence are given in Table 4.1.

24



Fig. 4.2. Word Segmentation and Case Folding

Table 4.1. POS tags of the tokens of an example sentence

Token POS tag
the Determiner, DT
effects Noun, NNS
of Preposition , IN
temperature Noun, NN
ph Noun, NNP
some Determiner, DT
organic Adjective, JJ
solvents Noun, NNS
detergents Noun, NNS
and Conjunction, CC
chemicals Noun, NNS
on Preposition , IN
bacteriocin Noun, NN
activity Noun, NN
were Verb, VBD
investigated Verb, VBN

4.1.2. Term Candidate Selection

The next step of the pipeline is term candidates selection step. Firstly, n­grams are ex­
tracted. N­gram extraction is the operation of extraction of consecutive words from text.
In this study, we extracted unigrams, bigrams, trigrams, and four­grams. 2­gram extrac­
tion of an example sentence is given in the Figure 4.3.

After n­gram extraction, following filtering operations are performed:

25



Fig. 4.3. 2­gram extraction.

• Stop Words Removal: Most common words such as “a”,”the” etc. are filtered out
in order to reduce noise. For this purpose, a predefined stop word list for English is
used.

• Occurence Filter: Since we aim to reduce noise, candidates occurring rarer than
100 times are filtered out.

• POS Tags Filter: Only candidates that match the following POS tags pattern are
accepted:

(NN(S)?|J J|NNP|NN(S?)IN) ∗ (NN(S)?) (4.1)

A few example of accepted and not expected term candidates are given in the Table
4.2.

Table 4.2. Examples of accepted and not expected term candidates

Candidate POS tags Status
bacteriocin activity NN NN Accepted
were investigated VBD VBN Not Accepted
chemicals on NN IN Not Accepted
effects of temperature NNS IN NN Accepted
organic solvents JJ NNS Accepted

26



4.1.3. Term Candidate Scoring

In the next step, we use Weirdness scoring method [14] for term candidate scoring. As
we already mentioned in Section 2, Weirdness simply compares the occurrence frequency
of words and word groups in general­purpose reference corpora with those in domain­
specific corpora. Terms are domain­specific so that terms occur frequently in domain­
specific texts. In addition, the less a word or phrase appears in the reference corpora, the
more likely it is to be a term. If these two ideas are combined, we canmeasure weirdness of
term candidates. In short, the more frequently a word appears in domain­specific corpora,
and the less it occurs in reference corpora, the higher the Weirdness score. The Weirdness
score of a term is calculated as:

Weirdness(t) =
NTFdomain(t)

NTFre f erence(t)
(4.2)

where NTFdomain(t) and NTFre f erence(t) are frequencies of the term which is normalized
by the sizes of domain­specific and general­purpose reference corpora.

Randomly selected 10 term candidates in the field of Computer Science and their Weird­
ness scores are given in Table 4.3.

Table 4.3. Term candidates and their Weirdness scores

Term candidate Weirdness Score
data mining 0.394
decision tree 0.106
computing 0.293
cloud 0.137
web service 0.206
management system 0.200
authentication 0.185
social network 0.119
semantic web 0.101
data 4.737

27



4.1.4. Term Candidate Ranking

The final step is the ranking step of term candidates. We rank term candidates by Weird­
ness score. Then, we take the top 2000 candidates to construct terminology. Top 10 term
candidates sorted by Weirdness score in Computer Science field are given in Table 4.4

Table 4.4. Top 10 term candidates in Computer Science

Term candidate Weirdness Score
system 5.481
data 4.737
method 4.024
algorithm 3.856
network 3.140
application 2.999
model 2.647
information 2.189
software 2.143
user 2.071

4.2. Terminology Translation

The second step of bilingual term extraction is extracting Turkish translations for extracted
English terms. This step consists of following substeps:

• Alignment of words

• Generation of translation dictionaries

• Operations on translation candidates

Abovementioned steps are performed to generate scientific terminology for each scientific
field.

4.2.1. Word Alignment

We apply statistical machine translation methods on our bilingual source at word level
in order to obtain translation candidates. Word alignment is the problem of matching

28



translational correspondences at the word level for parallel sentences. By using sentences
aligned at the previous phase, we used FastAlign tool [34] that is an unsupervised word
aligner using log­linear reparameterization of IBM Model 2 [35]. It should be noted that
IBM Model 2 is an extension to IBM Model 1 such that IBM Model 2 adds a model of
alignment to IBM Model 1.

By using FastAlign tool on our bilingual source, both target­source (Turkish ­ English)
and source­target (English­Turkish) alignments are generated and these alignments are
symmetrized with the help of the tool which applies a variety of symmetrization heuristics.

4.2.2. Generation of Translation Dictionaries

After word alignment phase, the next phase is generation of translation dictionaries. The
purpose of this step is to obtain Turkish translation candidates for each recognized English
term. In this step, we form separate dictionaries for 1­grams, 2­grams, 3­grams, and 4­
grams. These dictionaries have terms and their translation candidates.

It is a fact that word alignments may be one­to­one, where each target word is aligned
with one source word. In this situation, a term has simply the exact matching translation
candidate. In addition, one­to­many alignments are possible where the target word is
aligned with more source words. We concatenate consecutive alignments for one­to­many
alignments.

Fig. 4.4. Example of one­to­many alignment

For example, assume a term ”authentication” is aligned with multiple words ”kimlik” and
”doğrulama”. Then, if these alignments are consecutive, then they are concatenated. Thus,
”authentication” term has a translation candidate as ”kimlik doğrulama”. The illustration
of the example is given in 4.4.

29



Fig. 4.5. Example of consecutive alignments

Also, if word alignments of 2­gram, 3­gram, and 4­gram target words are consecutive,
they are concatenated. As an example, assume that a sentence has the term ”open­source
software”. If the word ”open­source” is aligned with ”açık kaynak” and the word ”soft­
ware” is aligned with ”yazılımı”. Then, since we concatenate consecutive words, entry in
the translation dictionary becomes ”open­source software : açık kaynak yazılımı”. The
illustration of the example is given in 4.5.

We generate the translation dictionaries for each scientific field separately, by consider­
ing the conditions mentioned above. It should also be noted that dictionaries we formed
also have occurrence information. Therefore, if a term has multiple translations, then we
know about frequency information that indicates howmany times the translation candidate
occurs.

4.2.3. Operations

After generation of translation dictionaries for each scientific field, we have translation
candidates in Turkish for each recognized English term. However, it is not optimal to use
translation candidates directly because of the noise factor. For this reason, the following
operations are applied on the translation candidates:

Filtering operations

• Stop Word Removal: Most common words such as “bir”,”ve” etc. are eliminated.
For this purpose, a predefined stop word list for Turkish is used.

• Occurence Filter: We only keep translation candidates that occurred more than 2
times.

30



• Pos Tag Filtering: We obtain POS tags by using Zemberek framework [48]. Then,
POS tags filtering is applied such that only candidates that match the following POS
tags pattern are accepted:

NN|((NN|J J) + (IN)?(J J) ∗ NN) (4.3)

A few examples of term candidates which are accepted or not accepted are given in
Table 4.5.

Table 4.5. Sample term candidates with POS tag filtering

Candidate POS tags Status
sistem NN Accepted
doğrulanmak VB Not Accepted
çoklu JJ Not Accepted
sistem tasarımı NN NN Accepted
geliştirilen sistem JJ NN Accepted
hacimli veri iletişimi JJ NN NN Accepted
ile tanımlanmıştır CC VB Not Accepted

Inflectional Suffix Removal

Since Turkish is an agglutinative language, translation candidates may have suffixes. For
example, the term ”bilgisayar” can occur with suffixed forms as shown in Table 4.6.

Table 4.6. Example suffixes of the word ”bilgisayar”

Suffixed Form Suffix
bilgisayarlar Plural Suffix
bilgisayarı Accusative Case Ending
bilgisayarın Genitive Case Ending
bilgisayara Dative Case Ending
bilgisayardan Ablative Case Ending
bilgisayarların Plural Suffix + Genitive Case Ending

We analyze the morphology of translation candidates by using Zemberek framework [48].
As much as possible, we remove noun inflectional suffixes such as plural, case endings,
suffix of possession, etc. The examples of the forms of the words after suffix removal are
given in Table 4.7.

31



Table 4.7. Examples of suffix removal

Word with Suffix After Suffix Removal
sistemi sistem
platformu platform
destek sisteminin destek sistemi
destek sistemi ayrıntılarıyla destek sistemi ayrıntıları
haberleşme cihazını haberleşme cihazı
işletim dizgesinde işletim dizgesi

4.3. Scientific Terminology

After monolingual term extraction in English and terminology translation phase, we ac­
quired terms in English and their translations in Turkish. Consequently, we finally ob­
tained scientific terminology for each scientific field. Several terms and their translations
in Electrical and Electronics Engineering field are given in the Table 4.8. Several terms
and their translations in Computer Science are given in the Table 4.9.

Table 4.8. Sample Electrical and Electronics Engineering terms and trans­
lations

Term Translations
sampling örneklem
power line güç hattı, enerji hattı
motion estimation hareket kestirimi, hareket tahmini
beamforming huzme şekillendirme, huzme oluşturma
integrated circuit tümdevre, entegre devre, tümleşik devre
detection algorithm bulma algoritması, tespit algoritması, belirleme algoritması

As seen from the table, a term can have one or multiple translations. Also, it should
be noted that the same term may have different translations for different scientific fields
because the data is different for each scientific field and we formed translation dictionaries
separately for each scientific field.

32



Table 4.9. Sample Computer Science terms and translations

Term Translations
authentication kimlik doğrulama
support vector machine destek vektör makinesi
text processing metin işleme
relational database ilişkisel veritabanı
artificial neural network yapay sinir ağı
cloud computing bulut bilişim
binary search ikili arama
sentiment analysis duygu analizi
natural language processing doğal dil işleme

33



5. MEASURING TERMINOLOGY INCONSISTENCY

5.1. Terminology Inconsistency Metric

We use Shannon Entropy [49] intending to measure terminology inconsistency. We as­
sume each term as a random variable. If a term T has N translations, each of translations
has a probability p(ni). Formally,

p(ni) =
Number o f Translations as ni

Total Number o f Translations
(5.1)

where ∑N
i=1 p(ni) = 1.

The translation entropy of a term is a measure of inconsistency in translations of a term.
Using the probability distribution, the translation entropy for a term can be calculated as :

E(T) = −
N

∑
i=1

p(ni) log p(ni) (5.2)

It is obvious that if a term has only one translation, then the translation entropy of it is
zero.

Since we aim to measure terminology inconsistency for a scientific field, we need to join
the entropies of all terms in the scientific field. We use the Joint Entropy in order to
measure the uncertainty for the set of terms. Since translation diversity of each term is
independent of each other, we can calculate Joint Entropy for a scientific field as the av­
erage of individual entropies of the terms in that scientific field. Assume S is a scientific
field, and it contains K terms. Then the entropy of S can be calculated as:

J(S) =
K

∑
i=1

E(Ti)

K
(5.3)

When we calculate entropy for a scientific group, we can use the same Joint Entropy
metric. If G is a scientific group which has W scientific fields, then the entropy of G can

34



be calculated as:

J(G) =
W

∑
i=1

E(Ti)

W
(5.4)

5.2. Results

We measured translation inconsistency for scientific fields and groups by our metric. The
results are given in Table 5.1.

Table 5.1. Inconsistency values of scientific fields

Scientific Field Scientific Group Term Count Inconsistency Group Inconsistency
Biology

LIF
854 0.389

0.403Food Science 707 0.391
Agriculture 1599 0.428
Electrical/Electronics
Engineering PHY

1282 0.475
0.432

Chemistry 1800 0.377
Computer Science 856 0.446
Economics

SOC
832 0.412

0.414History 539 0.425
Business Administra­
tion/Management

1668 0.407

As expected, in the fields of Computer Science and Electrical and Electronics Engineering,
where new terms are constantly added, the inconsistency of terminology is higher than the
others. On the other hand, the most consistent scientific field in terminology is Chemistry.
It is not surprising that the terminology of Chemistry is consistent, as it has a history dating
back to ancient times.

According to the results, the terminology of LIF (Life Sciences) is more consistent than
SOC (Social and Behavioral Sciences) and PHY (Physical Sciences and Engineering). On
the other hand, PHY is the most inconsistent scientific group in terminology according
to our results. If we sort scientific groups by terminology inconsistency, it is as follows:

35



PHY > SOC > LIF. It makes sense because it is natural that terminology is inconsistent
in relatively new disciplines.

We conduct a survey to verify that our metric is a valid metric for measuring translation
inconsistency. The survey consists of randomly selected 50 terms from three scientific
field: History, Computer Science and Food Science. It should be noted that the survey
for each scientific field is conducted separately. For each English scientific term, we have
4 options such that 3 Turkish translations found by the system and the Other option. We
asked people to choose the translation they most prefer to use in the academic language
for each scientific term.

We measure Fleiss’ kappa [50] for each scientific field. In short, it is a way to measure
agreement between raters. It ranges from 0 to 1. 0 means no agreement and 1 is perfect
agreement. Interpretation of kappa ranges is given in the Table 5.2.

Table 5.2. Interpretation of kappa ranges

Fleiss’ kappa Interpretation
<0 Poor agreement
0.01 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 1.00 Almost perfect agreement

The calculated kappa values for each scientific field are given in the Table 5.3. According
to kappa scores for scientific fields, Food science has a higher agreement rate than others.
If we sort scientific fields by agreement rate, it is as follows: Food Science > History >
Computer Science. It makes sense because Computer Science is a relatively new discipline
than others. As a result, survey results support our study such that our metric is a valid
metric for measuring terminology inconsistency.

Table 5.3. Fleiss’ kappa scores for scientific fields

Scientific Field Fleiss’ kappa Interpretation
Computer Science 0.57 Moderate aggreement
Food Science 0.61 Substantial aggrement
History 0.58 Moderate aggreement

36



6. TERM EXTRACTIONWITH JOINT LEARNING

In this part of the thesis, automatic term extraction task is treated as a sequence labeling
problem. We utilize joint multilingual learning. Joint multilingual learning enables to
train a single model with mixed data in languages with rich resources and low resources.
We train a single multilingual model on a mixed dataset in English and Turkish. In this
way, it enables data and model parameter sharing.

We collect thesis abstracts from YÖK Thesis Center 1. The steps in our pipeline are as
follows:

• Preprocessing step on dataset.

• Manually labeling our dataset by using terminology dictionaries.

• Train deep multilingual neural models with training data of four domains. For com­
parison, we also train monolingual models for each domain.

• Tag decoding operation is performed such that converting predicted tags to terms.

• Finally, test the models on test data and evaluate the models.

6.1. Dataset

English and Turkish thesis abstracts are collected from YÖK Thesis Center which is a
domain­specific bilingual source that includes theses in different scientific disciplines. It
includes an English and a Turkish abstract for each thesis. In this study, without loss of
generality we utilize data from four scientific fields: Chemistry, Food Science, Computer
Science, and Electronic Engineering.

We randomly select Turkish sentences up to 40,000 and English sentences for up to 20,000
for different training experiments for each domain. For validation, 10% of training sen­
tences are used. For testing, we select 4000 Turkish sentences for each domain.

1YÖK Tez, Ulusal Tez Merkezi [online] Website https://tez.yok.gov.tr/UlusalTezMerkezi [accessed 05
2021]

37



Since each thesis has an abstract in English and an abstract in Turkish, we have parallel
texts. While selecting sentences, we ensured that the sentences belonging to the same
thesis are included in the same set (training set, validation set or test set) so that no bias
occurs.

6.2. Preprocessing

In the preprocessing step, the following tasks are performed, respectively: sentence seg­
mentation, word segmentation, padding operation, and language suffix addition. First,
our input texts are segmented into sentences by determining sentence boundaries using
punctuations. Then, the sentences are segmented into words such that splitting sentences
into their component words. The sentences are tokenized into words by white­space char­
acters. Then, punctuations are removed from tokens. Since some terms can have the
hyphen (­) to join words, we do not remove hyphen marks from tokens. Then, all tokens
are converted to lower case in order to normalize words into the same form in case.

When sentence and word segmentation are performed, we have a list of words for each
sentence. Then, we perform the padding operation. Sequences are padded with a special
token to match the maximum sentence length. Then, we added < SOS > tag to the
beginning of the sentences and < EOS > tag to the end of the sentences in order to
indicate the beginning and end of the sentence. In addition, we added language suffixes
< TR > and < EN > at the end of the words to avoid confusing the words written in
the same way in both Turkish and English.

6.3. Terminology Labeling

We need to have labeled data for supervised learning. Our dataset does not include an­
notated terms. Therefore, we need to annotate terms on both Turkish and English data
manually by using a terminology dictionary. We used TÜBA Turkish Science Terms Dic­
tionary 2 as the gold term source. TÜBA dictionary contains both Turkish and English
terms for various scientific fields. The number of gold terms for each domain used in this

2TÜBA Turkish Science Terms Dictionary [online] Website http://www.tubaterim.gov.tr [accessed 04
2021]

38



study is given in Table 6.1. It should be noted that the reason for the difference between
the number of English terms and the number of Turkish terms in the dictionary is that
some terms have more than one translation.

Table 6.1. The number of gold terms for scientific fields

Domain Language Gold Term Count

Chemistry TR 2566
EN 3124

Food Science TR 1552
EN 2077

Computer Science TR 2853
EN 3831

Electronic Engineering TR 3422
EN 4673

We marked up tokens of the dataset using BILOU tag scheme [51]. BILOU tag scheme
stands for : (B)eginning, (I)nside, (L)ast, (O)utside, (U)nit. Our usage format of BILOU
tag scheme is given in Table 6.2. To clarify, single­word terms are marked with a ”U” tag.
For multiple­word terms, it starts with a ”B” tag and continues for each inside token with
an ”I” tag, then ends with an ”L” tag. For example, 2­word terms are annotated with ”B
, L”. For 3­word terms are annotated with ”B , I , L”. Non­terms tokens are annotated
with the ”O” tag. Also, < SOS >, < EOS > and padding tokens are annotated with the
”O” tag because they are non­terms. Also, it should be noted that a term is labeled in all
sentences where it appears so that a term can be labeled more than once.

Table 6.2. Term annotation schema

Tag Annotation Format
B The first token of a term
I An inner token of a term
L The final token of a term
O A non­term token
U A single­token term

Since a word can only be assigned one label at a time, we do not handle nested terms such
that subsets of the multi­word terms are also terms. For example, let the dictionary has
the terms ”bilgi”, ”bilgi işleme”, and ”bilgi işleme tekniği”. If the term ”bilgi işleme
tekniği” appears in the text, we annotate it with ”B, I, L”. Here, we do not handle subsets
of the term, we ignore them because one label can be assigned to a word at a time.

39



In addition, we do not annotate the inflectional forms of the terms. We label the exact
cases as in the terminology dictionary. For instance, we do not annotate the words ’bil­
gisayarı’, ”bilgisayarın’, and ”bilgisayarlar” since they have a suffix. On the other hand,
we annotate the word ”bilgisayar” as a single­token term with a ”U” label.

Fig. 6.1. Example sentences for terminology labeling

The example sentences of terminology labeling operation are given in Figure 6.1. In the
English sentence, the term ”artificial neural networks” is labeled with ”B, I, L” and the
term ”information processing” is labeled with ”B, L”. In the Turkish sentence, the term
”yapay sinir ağları” are labeled with ”B, I, L” and the term ”bilgi işleme” is labeled with
”B, L”. Remaining words that are not found in the dictionary are tagged with the ’O’ tag,
but for simplicity, the figure does not include these tags.

Terminology labeling operation is performed for each domain with different data sizes.
The total numbers of annotated terms for each data size and each domain are given in
Table 6.3. It should be noted that the values in the table are the numbers of annotated
unique terms.

6.4. Model

We trained two kinds of deep neural networkmodels for each domain dataset: monolingual
and multilingual. Monolingual models are trained with only Turkish data. Multilingual

40



Table 6.3. The numbers of annotated terms

Domain Language Sentences Annotated Terms

Chemistry

TR

20,000 995
25,000 1048
30,000 1083
35,000 1109
40,000 1141

EN

5,000 962
10,000 1200
15,000 1337
20,000 1438

Food Science

TR

20,000 465
25,000 484
30,000 500
35,000 516
40,000 527

EN

5,000 426
10,000 510
15,000 572
20,000 608

Computer Science

TR

20,000 588
25,000 624
30,000 650
35,000 674
40,000 689

EN

5,000 690
10,000 903
15,000 1038
20,000 1133

Electronic Engineering

TR

20,000 678
25,000 732
30,000 771
35,000 807
40,000 850

EN

5,000 832
10,000 1123
15,000 1283
20,000 1403

models are trained with both Turkish and English data. For both of them, our neural
network model consists of four layers:

41



• Embedding Layer

• Word­level Bidirectional LSTM

• Time Distributed Dense Layer

• CRF Layer

The structure of the model is given in Figure 6.2.

The training data consists of samples such that each sample consists of a padded sentence
and target labels. These sentences are fed into the network and target labels are used to
compare to the prediction and calculate an error. Since the network is a recurrent network,
the input is one word at a time and the output is one label at a time. First, we need to
vectorize words to feed into the network. So, we start with a one­hot representation for
each word. We convert all words to one­hot vector format such that the dimension is the
number of unique words, that is, vocabulary size.

In neural network models, words are generally represented by using word embeddings.
Word embeddings are vector representations of words in a vector space. In our model
architecture, the first layer is the embedding layer. It accepts the one­hot representation
of one word at a time and turns indexes of the word into dense vectors of fixed size 300
and then feeds it into the BiLSTM layer. Since we start with a one­hot representation
for each word, we can look up the words in the embeddings space. We used FastText
pre­trained word embeddings. FastText distributes pre­trained multilingual word vectors
in dimension 300. They are trained on Wikipedia and Common Crawl [36]. Further,
they published aligned word vectors for 44 languages based on the pre­trained vectors
computed on Wikipedia [37, 38]. Since we train two kinds of models in this study: mono­
lingual and multilingual, there is a difference in utilization of word embeddings according
to the model type. Monolingual models are trained with only Turkish data by using Turk­
ish word embeddings. Multilingual models are trained with both Turkish and English
data in the same domain by using aligned word embeddings. For short, we used Turkish
word embeddings for monolingual models. Besides, aligned word embeddings of English
and Turkish are used together for multilingual models. Additionally, we generate random
embedding vectors for unknown words which are not included in the pre­trained vectors.
Also, it should be noted that the weights of the embedding layer are not updated during

42



Fig. 6.2. The structure of the model

43



training because we set the embedding matrix to be frozen.

As an example of the inputs and outputs of the embedding layer, let there are n words in a
sentence, then n­words are converted to one­hot representation to obtain sparse vectors and
these vectors are the inputs. Then, the output of the embedding layer is 300­dimensional
dense word vectors of n words.

The second layer of the network is word­level BiLSTM with 200 cells. This layer accepts
word embeddings and generates outputs for each word in order to feed into the dense layer.
BiLSTM is a special kind of RNN. Recurrent neural networks (RNN) [52] are a type of
artificial neural network which are designed to recognize patterns in sequences. Long
Short­Term Memory (LSTM) [40] is a special kind of RNN and they were developed to
deal with RNN’s the vanishing gradient problem. Bidirectional LSTM (BiLSTM) is the
bidirectional version of LSTM. BiLSTM is actually two separate LSTM network layers.
One of the layers, the forward LSTM layer, feeds the sentence beginning to the end. The
other layer, the backward LSTM, feeds the sentence from the end to the beginning. Thus,
BiLSTM processes the sentences in both the forward and the reverse. In this layer of our
network, two layers of the BiLSTM generate two different context vectors for each time,
and then these vectors are joined to create the final vector. Subsequently, the final vector
is fed to the dense layer.

The third layer of the network is Time Distributed Dense layer. Time Distributed Dense
layer is used for mapping to the five output classes of BILOU encoding. Here, time dis­
tributed means that we apply the same dense function to every time step. Since we want
to generate a tag for each word in a sentence, we need to apply the same dense function
for each word. This layer accepts the word­level bidirectional LSTM layer’s output as
input and generates the probabilities for classification using ReLU (Rectified Linear Unit)
activation function [53]. Therefore, the probabilities of five output classes are generated
for one word at a time.

The final layer of the model is Conditional random fields (CRF) layer. CRF is a commonly
used method to take advantage of the surrounding context for sequence labeling task [27].
It is important to highlight that the relationship between labels is remarkable. Some rules
can be simply derived. For example, a ’B’ label can not be followed by another ’B’ tag.
An ’I’ tag can not proceed by a ’B’ tag, also an ’L’ tag can not be followed by a ’I’ tag.

44



For this reason, we add a CRF layer to the model in order to consider neighboring labels.
Therefore, we take dependencies between tags into account by adding a CRF layer to our
model. The input of this layer is the probabilities of five classes of BILOU encoding. The
output of this layer is the recalculated probabilities, taking into account the dependencies
between tags. In short, the final prediction is made for each word in this layer.

To mention hyperparameters of the network:

• We use 50 as batch size so that the weights of the model are updated after each batch
is fed to the model.

• We use 50 as the number of epochs.

• We use Adam as optimizer function for training with the learning rate 0.001. Adam
optimization [54] is based on stochastic gradient descent method and it is efficient
in terms of computation time and memory. So, since our data is large and to reduce
the training time, we prefer to use Adam optimizer.

The reason for selecting above mentioned hyperparameters is that we obtained the opti­
mum results with these parameters and also we considered computation time and memory
requirement in our experiments.

We train our network architecture with the back­propagation algorithm [55]. So, the pur­
pose is to minimize the loss of CRF, that is, the difference between the predicted output
of the network with the target output. Here, the target output is the tags we previously
formed for each word in a sentence, in terminology labeling phase. On the other hand, the
predicted output is the tags that the system predicts for that sentence.

We train our models with different data sizes. In that way, we measured the effects of
the addition of the data both in English and Turkish. We keep constant 20,000 Turkish
sentences for both monolingual and multilingual models. We gradually add 5000 Turkish
sentences to the monolingual model and 5000 English sentences to the multilingual model
up to 20,000 sentences.

45



6.5. Terminology Tag Decoding

Terminology tag decoding is the process of converting tags to terms. Our neural network
model predicts tags for given sentences. The pipeline of the system is given in Figure 6.3.
Since our model predicts a tag for each word in an input sentence, we need to convert
predicted tags to words, in order to obtain predicted terms.

Fig. 6.3. Pipeline of the system

Basically, tag decoding operation is needed to obtain terms. We extract words and word
groups by usingword indices. The term decoder takes two inputs: a sentence and predicted
tags for the sentence. Then, it uses word index information to extract terms. Finally, it

46



returns the extracted terms of the given sentence. For instance, a sentence and predicted
tags for the sentence are given in Figure 6.4. The output of the terminology decoding
operation is obviously a set of terms for each given sentence. Certainly, for sentences that
do not contain any terms, the output of the terminology decoding operation is the empty
set.

Fig. 6.4. Terminology tag decoding

6.6. Evaluation Metrics

Predicted terms is the set of extracted terms by the model on test data. The actual terms
are the set of terms which are actually present on test data. We use commonly­used infor­
mation retrieval metrics:

• Precision

• Recall

• F1­score

47



6.6.1. Precision

It attempts to answer the question that what proportion of predicted terms was actually
correct.

Precision is defined as follows:

Precision =
|{Predicted Terms} ∩ {Actual Terms}|

|{Predicted Terms}| (6.1)

Very low precision means that a lot of predictions are actually not terms. It implies that
the prediction set has a lot of some non­term members.

6.6.2. Recall

It is not only important for amodel to extract the correct terms but also how comprehensive
it is. The question here is that what percentage of actual terms was extracted by the model.

Recall attempts to answer the question that what proportion of actual terms was extracted.

Recall is defined as follows:

Recall =
|{Predicted Terms} ∩ {Actual Terms}|

|{Actual Terms}| (6.2)

6.6.3. F1­Score

When evaluating a model, it is beneficial to consider Precision and Recall together. F1­
Score is a measure that combines precision and recall. Precision and recall are evenly
weighted.

Mathematically, F1­Score is defined as follows:

F1­score = 2 · Precision ∗ Recall
Precision + Recall

(6.3)

48



6.7. Results

In this subsection, we will discuss the experimental results. We tested both monolingual
and multilingual models trained with different data sizes on fixed­size Turkish test data. It
should be noted that the test phase of each domain is totally independent from each other.
We calculate the Recall, Precision, and F1­score as we defined in the previous section.
The results for each data size and each domain are given in Table 6.4.

Table 6.4. Results

Domain Model Training
Sentences

Actual
Terms

Predicted
Terms Precision Recall F1­score

Chemistry

Monolingual

20,000 TR

569

613 0.693 0.747 0.719
25,000 TR 557 0.785 0.768 0.776
30,000 TR 623 0.742 0.812 0.775
35,000 TR 601 0.797 0.842 0.819
40,000 TR 542 0.871 0.830 0.850

Multilingual

20,000 TR + 5,000 EN 604 0.735 0.780 0.757
20,000 TR + 10,000 EN 571 0.806 0.806 0.806
20,000 TR + 15,000 EN 594 0.778 0.812 0.794
20,000 TR + 20,000 EN 529 0.849 0.789 0.818

Food Science

Monolingual

20,000 TR

247

285 0.660 0.761 0.707
25,000 TR 271 0.716 0.785 0.749
30,000 TR 284 0.708 0.814 0.757
35,000 TR 307 0.674 0.838 0.747
40,000 TR 247 0.838 0.838 0.838

Multilingual

20,000 TR + 5000 EN 267 0.738 0.798 0.767
20,000 TR + 10,000 EN 207 0.884 0.741 0.806
20,000 TR + 15,000 EN 279 0.706 0.798 0.749
20,000 TR + 20,000 EN 251 0.765 0.777 0.771

Computer Science

Monolingual

20,000 TR

308

334 0.659 0.714 0.685
25,000 TR 324 0.701 0.737 0.718
30,000 TR 312 0.731 0.740 0.735
35,000 TR 313 0.760 0.773 0.767
40,000 TR 352 0.710 0.812 0.758

Multilingual

20,000 TR + 5000 EN 325 0.708 0.747 0.727
20,000 TR + 10,000 EN 262 0.817 0.695 0.751
20,000 TR + 15,000 EN 277 0.830 0.747 0.786
20,000 TR + 20,000 EN 334 0.671 0.727 0.698

Electronic Engineering

Monolingual

20,000 TR

352

340 0.594 0.574 0.584
25,000 TR 276 0.725 0.568 0.637
30,000 TR 285 0.73 0.594 0.656
35,000 TR 369 0.591 0.619 0.605
40,000 TR 314 0.745 0.665 0.703

Multilingual

20,000 TR + 5000 EN 283 0.703 0.565 0.627
20,000 TR + 10,000 EN 297 0.677 0.571 0.619
20,000 TR + 15,000 EN 290 0.731 0.602 0.660
20,000 TR + 20,000 EN 289 0.727 0.597 0.655

From these results, it is clear that if we have only 20,000 Turkish sentences, then us­
ing multilingual models with additional English data improves the term extraction per­
formance. The improvement is achieved in both Precision and Recall. If we examine

49



the results, for Chemistry, the monolingual model trained with 20,000 Turkish sentences
achieves 0.719 in F1­score. On the other hand, the multilingual model trained with 20,000
Turkish and 20,000 English sentences achieves 0.818 in F1­score. Although the results
show that adding English data and using a multilingual model provide an improvement,
the improvement rate varies according to domain and the size of the additional data. For
example, the highest improvement in F1­score for Computer Science is 10.1 % by the
multilingual model trained with additional 15,000 English sentences. Besides, the highest
improvement for Chemistry is 9.9 % by the multilingual model trained with additional
20,000 English sentences. When we compare the highest improvement rates in F1­score
for each domain, the domain with the highest improvement in performance is Computer
Science by 10.1 %, and the domain with the least improvement is Electronic Engineering
by 7.6 %.

When we examine the extracted terms by the monolingual model and the multilingual
model, we noticed that there are some terms recognized by the multilingual model and
not detected by the monolingual model. For instance, the term ”deniz tuzu” does not
appear in Turkish training data in Chemistry, but the multilingual model recognizes this
term on test data. Here, we noticed that ”sea salt” appears on English training data.
Another example, for the domain of Electronic Engineering, the term ”besleme gerilimi”
appears only one time in Turkish training data. Since the frequency of the term is low, the
monolingual model can not detect this term, although it exists in the test data. Conversely,
the multilingual model detects the term, because the term ”supply vector” appears 7 times
in English training data. From these examples, it is apparent that there is an effect such that
a translation of a Turkish term appears in English training data. This affects the training of
the model, hereby there is an improvement by exchanging information between the data
in English and the data in Turkish. Certainly, it is achieved by using the shared parameters
and the shared word vector space on the single joint multilingual model.

On the other hand, we noticed that monolingual models outperform multilingual models
trained with the same data size. So, the question here is that what is the difference in terms
of performance between adding Turkish data and adding English data. So, we compare
the performance of monolingual and multilingual models trained with the same data size.
The comparison of monolingual and multilingual models by data size is given for each
domain in Figure 6.5.

50



Fig. 6.5. Comparison of monolingual and multilingual models

Comparisons revealed that the monolingual model generally outperforms the multilingual
model with the same data size for all domains. From here, we see that multilingual models
have some shortcomings. We noticed two reasons for the gap between the monolingual
and the multilingual models. The first reason is the frequency factor. Obviously, adding
data in the same language and domain amplifies the frequencies of the terms. This af­
fects the training of the models. As a result of this, there are some terms recognized by
the monolingual models but not by the multilingual models on test data. For example, if
we consider the two models for Chemistry: monolingual model with 40,000 Turkish sen­
tences and the multilingual model with 20,000 Turkish and 20,000 English sentences, the
term ”iridyum” never occurs in 20,000 Turkish training sentences. However, the addi­
tion of 20,000 sentences amplifies the frequency as 2 times so that the monolingual model
recognizes the term on test data whereas the multilingual model does not.

The second reason is the problem of identifying nested terms. There are incorrectly de­
tected words that are part of a gold term. To give an example of this situation, the terms
”oturum açma”, ”oturum anahtarı”, and ”oturum katmanı” exist in Computer Science

51



terminology dictionary. On the test data, not all these terms appear, but similar terms like
”oturum başlatma” appear. Additionally, the word ”oturum” appears alone on test sen­
tences. In this case, the multilingual model detects the word ”oturum” as a single­token
term. Here, whether the subsets of multi­word terms can be considered terms is a matter of
debate. There are also errors by monolingual models due to the same situation. However,
we noticed that the error rates of subset term extraction for monolingual models are less
than the multilingual models for some domains. The error rates of subset term extraction
for both monolingual and multilingual models are given for each domain and data size in
Table 6.5.

We also conduct another experiment for Computer Science to answer the question that as
more English sentences are included for training, does the performance improve continu­
ously or is there no improvement after a certain point for the multilingual model. Another
question is that does it cause noise after a certain point. We keep the number of Turkish
sentences constant as 20,000 and increased the number of English sentences up to 50,000
for training. The results of the experiment for each data size are given in Table 6.6.

According to results of the experiment, if we take the performance of the monolingual
model trained with 20,000 Turkish sentences as a baseline (0.685), the multilingual mod­
els trained with 5,000 to 15,000 English sentences constantly improves the performance.
The F1­scores for these models are 0.727, 0.751, 0.786, respectively. However, the multi­
lingual model trained with 20,000 English sentences reduces the F1­score to 0.698. In the
range of the sentences between 25,000 and 50,000, whether there is improvement and the
rate of improvement varies. On the other hand, the highest F1­Score is achieved by the
multilingual model trained with 45,000 English sentences. But in general, there is no big
performance difference between adding 15,000 English sentences and adding 50,000 En­
glish sentences. Actually, more than 15,000 English sentences no longer provide a major
performance improvement. It can even be seen that some data sizes cause performance
degradation due to noise. The performance comparison multilingual models trained by
different number of English sentences in the field of Computer Science is given in Fig
6.6.

52



Table 6.5. The error rates of subset term extraction

Domain Data Size Model Error

Chemistry

25,000 Monolingual 0.142
Multilingual 0.250

30,000 Monolingual 0.112
Multilingual 0.171

35,000 Monolingual 0.050
Multilingual 0.182

40,000 Monolingual 0.143
Multilingual 0.200

Food Science

25,000 Monolingual 0.091
Multilingual 0.157

30,000 Monolingual 0.108
Multilingual 0.291

35,000 Monolingual 0.170
Multilingual 0.121

40,000 Monolingual 0.150
Multilingual 0.102

Computer Science

25,000 Monolingual 0.124
Multilingual 0.168

30,000 Monolingual 0.083
Multilingual 0.125

35,000 Monolingual 0.147
Multilingual 0.191

40,000 Monolingual 0.157
Multilingual 0.280

Electronic Engineering

25,000 Monolingual 0.223
Multilingual 0.167

30,000 Monolingual 0.276
Multilingual 0.302

35,000 Monolingual 0.331
Multilingual 0.269

40,000 Monolingual 0.300
Multilingual 0.165

53



Table 6.6. Results in the field of Computer Science

Domain Model Training
Sentences

Actual
Terms

Predicted
Terms Precision Recall F1­score

Computer Science

Monolingual

20,000 TR

308

334 0.659 0.714 0.685
25,000 TR 324 0.701 0.737 0.718
30,000 TR 312 0.731 0.740 0.735
35,000 TR 313 0.760 0.773 0.767
40,000 TR 352 0.710 0.812 0.758

Multilingual

20,000 TR + 5000 EN 325 0.708 0.747 0.727
20,000 TR + 10,000 EN 262 0.817 0.695 0.751
20,000 TR + 15,000 EN 277 0.830 0.747 0.786
20,000 TR + 20,000 EN 334 0.671 0.727 0.698
20,000 TR + 25,000 EN 276 0.833 0.747 0.788
20,000 TR + 30,000 EN 330 0.739 0.792 0.765
20,000 TR + 35,000 EN 318 0.730 0.753 0.741
20,000 TR + 40,000 EN 325 0.674 0.711 0.692
20,000 TR + 45,000 EN 291 0.821 0.776 0.798
20,000 TR + 50,000 EN 298 0.802 0.776 0.789

Fig. 6.6. Performance comparison of multilingual models by different num­
ber of sentences in English in the field of Computer Science

54



7. CONCLUSION

Automatic term extraction is a useful starting point for ontology learning, machine trans­
lation, etc. In this thesis, within the scope of automatic term extraction, we focused on two
different problems. The first problem is to measure inconsistency of scientific terminol­
ogy for different scientific disciplines. The second problem is to overcome the difficulties
of traditional term extraction methods and leverage multilingual with joint multilingual
learning based on deep learning methods with sequence labeling.

The first part of the thesis is the study of measuring terminology inconsistency. Termi­
nology consistency is an important factor for the dissemination of scientific information
among researchers. Scientific fields vary in terms of terminology consistency. Transla­
tions for scientific terms are more consistent for some of the scientific fields than others.
In this thesis, we proposed a valid metric for terminology inconsistency and measured
terminology inconsistency of scientific groups by our metric. Our results showed that the
order of scientific groups by inconsistency in terminology is: PHY (Physical Sciences and
Engineering) > SOC (Social and Behavioral Sciences) > LIF (Life Sciences). We also
surveyed for verification of our metric and results.

The second part of the thesis is the study of automatic term extraction with joint multi­
lingual learning. Deep learning approaches for automatic term extraction give promising
results with sufficient data. It is the fact that having enough data allows the deep neural
models to improve. Conversely, some domains may have limited data in some languages.
At this point, we try to improve automatic term extraction by using data in another lan­
guage in the same domain. In this thesis, we proposed a joint multilingual model for
automatic term extraction with neural sequence labeling and deep learning. It is a single
model in two languages: Turkish and English. This model enables data and word embed­
dings sharing. In this way, it is possible to tackle the problems of lack of data in some
domains.

Our results demonstrated that adding English data and using a multilingual model pro­
vide an improvement for automatic term extraction task, considering that we only have a
limited number of Turkish sentences. Our evaluation shows that the highest improvement
in F1­score is 10.1 % in Computer Science, the least improvement is 7.6 % in Electronic

55



Engineering. Also, extensive results carried out show that the multilingual model operates
at a performance close to the monolingual model trained with sufficient data. This proves
that term extraction performance can be improved by using data from another language
with using a joint multilingual model. In this study, we also compared the monolingual
and multilingual models. We explained the reasons for the gap between the monolingual
and multilingual models in terms of performance. Although the multilingual model has
its shortcomings, we concluded that it can be utilized with sources in another language in
case of lack of data.

56



REFERENCES

[1] K. Kageura, B. Umino, Methods of automatic term recognition: A review, Termi­
nology. International Journal of Theoretical and Applied Issues in Specialized Com­
munication 3 (2) (1996) 259–289. doi:10.1075/term.3.2.03kag.

[2] H. Costa, A. Zaretskaya, G. Corpas Pastor, M. Seghiri Domínguez, Nine terminology
extraction tools: Are they useful for translators? (2016).

[3] M. A. Saraireh, Inconsistency in technical terminology: A problem for standardiza­
tion in arabic, Babel 47 (1) (2001) 10–21. doi:10.1075/babel.47.1.03sar.

[4] A. Schindler, Terminology in speech pathology: Old problem, new solutions,
Advances in Speech Language Pathology 7 (2) (2005) 84–86. doi:10.1080/
14417040500125327.

[5] G. Tan, G. Fang, On terminology consistency in english translations of zhuangyi
texts, Journal of Contemporary Educational Research 4 (07 2020). doi:10.26689/
jcer.v4i7.1362.

[6] A. Morshedi Tonekaboni, M. Abianeh², An investigation about the english ­persian
translation of terminology in biology university textbook, 2020.

[7] F. Mu, Z. Yu, L. Wang, Y. Wang, Q. Yin, Y. Sun, L. Liu, T. Ma, J. Tang,
X. Zhou, Keyphrase extraction with span­based feature representations, CoRR
abs/2002.05407 (2020). arXiv:2002.05407.

[8] R. Alzaidy, C. Caragea, C. L. Giles, Bi­lstm­crf sequence labeling for keyphrase
extraction from scholarly documents, in: The World Wide Web Conference, WWW
’19, Association for Computing Machinery, New York, NY, USA, 2019, p. 2551–
2557. doi:10.1145/3308558.3313642.

[9] P. Domingos, A few useful things to know about machine learning, Commun. ACM
55 (10) (2012) 78–87. doi:10.1145/2347736.2347755.

[10] N. Astrakhantsev, ATR4S: Toolkit with state­of­the­art automatic terms recognition
methods in Scala, arXiv preprint arXiv:1611.07804 (2016).

57

https://doi.org/10.1075/term.3.2.03kag
https://doi.org/10.1075/babel.47.1.03sar
https://doi.org/10.1080/14417040500125327
https://doi.org/10.1080/14417040500125327
https://doi.org/10.26689/jcer.v4i7.1362
https://doi.org/10.26689/jcer.v4i7.1362
http://arxiv.org/abs/2002.05407
https://doi.org/10.1145/3308558.3313642
https://doi.org/10.1145/2347736.2347755


[11] M. P. Marcus, B. Santorini, M. A. Marcinkiewicz, Building a large annotated corpus
of English: The Penn Treebank, Computational Linguistics 19 (2) (1993) 313–330.

[12] N. Astrakhantsev, D. Fedorenko, D. Turdakov, Methods for automatic term recog­
nition in domain­specific text collections: A survey, Programming and Computer
Software 41 (2015) 336–349. doi:10.1134/S036176881506002X.

[13] K. Frantzi, S. Ananiadou, H.Mima, Automatic recognition of multi­word terms: The
c­value/ nc­value method, Int. J. on Digital Libraries 3 (2000) 115–130.

[14] K. Ahmad, L. Gillam, L. Tostevin, University of surrey participation in TREC8:
Weirdness Indexing for Logical Document Extrapolation and Retrieval (WILDER),
in: Proceedings of The Eighth Text REtrieval Conference, 1999.

[15] D. A. Evans, R. G. Lefferts, Clarit­trec experiments, Information Processsing and
Management 31 (3) (1995) 385–395.

[16] L. L. Earl, Experiments in automatic extracting and indexing, Information Storage
and Retrieval 6 (4) (1970) 313–330. doi:10.1016/0020-0271(70)90025-2.

[17] Z. Zhang, J. Gao, F. Ciravegna, JATE 2.0: Java automatic term extraction with
Apache Solr, in: Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), European Language Resources Association
(ELRA), Portorož, Slovenia, 2016, pp. 2262–2269.

[18] G. Bordea, P. Buitelaara, T. Polajnara, Domain­independent term extraction through
domain modelling, in: the 10th International Conference on Terminology and Arti­
ficial Intelligence (TIA 2013), 2013.

[19] N. Astrakhantsev, Methods and software for terminology extraction from domain­
specific text collection, Ph. D. thesis, Institute for System Programming of Russian
Academy of Sciences (2015).

[20] K. Meijer, F. Frasincar, F. Hogenboom, A semantic approach for extracting domain
taxonomies from text, Decision Support Systems 62 (2014) 78–93.

[21] A. Rigouts Terryn, V. Hoste, P. Drouin, E. Lefever, TermEval 2020: Shared task on

58

https://doi.org/10.1134/S036176881506002X
https://doi.org/10.1016/0020-0271(70)90025-2


automatic term extraction using the annotated corpora for term extraction research
(ACTER) dataset, in: Proceedings of the 6th International Workshop on Computa­
tional Terminology, European Language Resources Association, Marseille, France,
2020, pp. 85–94.

[22] M. Kucza, J. Niehues, T. Zenkel, A. Waibel, S. Stüker, Term extraction via neu­
ral sequence labeling a comparative evaluation of strategies using recurrent neural
networks, 2018, pp. 2072–2076. doi:10.21437/Interspeech.2018-2017.

[23] X. Han, L. Xu, F. Qiao, Cnn­bilstm­crf model for term extraction in chinese corpus,
in: X. Meng, R. Li, K. Wang, B. Niu, X. Wang, G. Zhao (Eds.), Web Information
Systems and Applications, Springer International Publishing, Cham, 2018, pp. 267–
274.

[24] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre­training of deep bidirectional
transformers for language understanding, CoRR abs/1810.04805 (2018). arXiv:
1810.04805.

[25] R. Wang, W. Liu, C. McDonald, Featureless domain­specific term extraction with
minimal labelled data, in: Proceedings of the Australasian Language Technology
Association Workshop 2016, Melbourne, Australia, 2016, pp. 103–112.

[26] L. Rabiner, B. Juang, An introduction to hidden markov models, IEEE ASSP Mag­
azine 3 (1) (1986) 4–16. doi:10.1109/MASSP.1986.1165342.

[27] J. D. Lafferty, A. McCallum, F. C. N. Pereira, Conditional random fields: Probabilis­
tic models for segmenting and labeling sequence data, in: Proceedings of the Eigh­
teenth International Conference on Machine Learning, ICML ’01, Morgan Kauf­
mann Publishers Inc., San Francisco, CA, USA, 2001, p. 282–289.

[28] J. Pennington, R. Socher, C. Manning, GloVe: Global vectors for word represen­
tation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguistics, Doha,
Qatar, 2014, pp. 1532–1543. doi:10.3115/v1/D14-1162.

[29] J.­D. Kim, T. Ohta, Y. Tateisi, J. Tsujii, GENIA corpus—a semantically annotated

59

https://doi.org/10.21437/Interspeech.2018-2017
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.3115/v1/D14-1162


corpus for bio­textmining, Bioinformatics 19 (2003) i180–i182. doi:10.1093/
bioinformatics/btg1023.

[30] B. QasemiZadeh, A.­K. Schumann, The ACL RD­TEC 2.0: A language resource for
evaluating term extraction and entity recognition methods, in: Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16),
European Language Resources Association (ELRA), Portorož, Slovenia, 2016, pp.
1862–1868.

[31] W. A. Gale, K. W. Church, A program for aligning sentences in bilingual corpora,
Computational Linguistics 19 (1) (1993) 75–102.

[32] K. Knight, A statistical mt tutorial workbook, 2003.

[33] F. J. Och, H. Ney, A systematic comparison of various statistical alignment models,
Computational Linguistics 29 (1) (2003) 19–51.

[34] C. Dyer, V. Chahuneau, N. A. Smith, A simple, fast, and effective reparameterization
of ibm model 2, in: Proceedings of NAACL, 2013.

[35] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, R. L. Mercer, The mathematics
of statistical machine translation: Parameter estimation, Computational Linguistics
19 (2) (1993) 263–311.

[36] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, T. Mikolov, Learning word vectors
for 157 languages, in: Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018), 2018.

[37] A. Joulin, P. Bojanowski, T. Mikolov, H. Jégou, E. Grave, Loss in translation: Learn­
ing bilingual word mapping with a retrieval criterion, in: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, 2018.

[38] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with sub­
word information, Transactions of the Association for Computational Linguistics 5
(2017) 135–146.

[39] A. Joulin, P. Bojanowski, T. Mikolov, E. Grave, Improving supervised bilingual

60

https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023


mapping of word embeddings, CoRR abs/1804.07745 (2018). arXiv:1804.07745.

[40] S. Hochreiter, J. Schmidhuber, Long short­term memory, Neural computation 9
(1997) 1735–80. doi:10.1162/neco.1997.9.8.1735.

[41] T. Mikolov, Q. V. Le, I. Sutskever, Exploiting similarities among languages for ma­
chine translation (2013). arXiv:1309.4168.

[42] J. Alaux, E. Grave, M. Cuturi, A. Joulin, Unsupervised hyperalignment for multilin­
gual word embeddings, arXiv preprint arXiv:1811.01124 (2018).

[43] E. Grave, A. Joulin, Q. Berthet, Unsupervised alignment of embeddings with wasser­
stein procrustes, arXiv preprint arXiv:1805.11222 (2018).

[44] P. Jawanpuria, A. Balgovind, A. Kunchukuttan, B. Mishra, Learning multilingual
word embeddings in latent metric space: A geometric approach, Transactions of the
Association for Computational Linguistics 7 (2019) 107–120. doi:10.1162/tacl_
a_00257.

[45] M.Artetxe, G. Labaka, E. Agirre, Learning bilingual word embeddings with (almost)
no bilingual data, in: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Association for Compu­
tational Linguistics, Vancouver, Canada, 2017, pp. 451–462. doi:10.18653/v1/
P17-1042.

[46] N. R. Council, Assessing Research­Doctorate Programs: AMethodology Study, The
National Academies Press, Washington, DC, 2003.

[47] D. Varga, L. Németh, P. Halácsy, A. Kornai, V. Trón, V. Nagy, Parallel corpora for
medium density languages, In Proceedings of the RANLP 2005 (2005) 590–596.

[48] A. A. Akın, M. D. Akın, Zemberek, an open source nlp framework for turkic lan­
guages, Structure 10 (2007) 1–5.

[49] C. E. Shannon, Amathematical theory of communication, TheBell SystemTechnical
Journal (1948).

61

http://arxiv.org/abs/1804.07745
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1309.4168
https://doi.org/10.1162/tacl_a_00257
https://doi.org/10.1162/tacl_a_00257
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042


[50] J. R. Landis, G. G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977) 159–174.

[51] L. Ratinov, D. Roth, Design challenges and misconceptions in named entity recog­
nition, in: Proceedings of the Thirteenth Conference on Computational Natural Lan­
guage Learning (CoNLL­2009), Association for Computational Linguistics, Boul­
der, Colorado, 2009, pp. 147–155.

[52] J. L. Elman, Finding structure in time, Cognitive Science 14 (2) (1990) 179–211.
doi:10.1016/0364-0213(90)90002-E.

[53] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. Douglas, H. Seung, Digital selection
and analogue amplification coexist in a cortex­inspired silicon circuit, Nature 405
(2000) 947–51. doi:10.1038/35016072.

[54] D. Kingma, J. Ba, Adam: A method for stochastic optimization, International Con­
ference on Learning Representations (12 2014).

[55] Hecht­Nielsen, Theory of the backpropagation neural network, in: International
1989 Joint Conference on Neural Networks, 1989, pp. 593–605 vol.1. doi:10.
1109/IJCNN.1989.118638.

62

https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1038/35016072
https://doi.org/10.1109/IJCNN.1989.118638
https://doi.org/10.1109/IJCNN.1989.118638

	ÖZET
	ABSTRACT
	ACKNOWLEDGEMENT
	CONTENTS
	FIGURES
	TABLES
	ABBREVIATIONS
	INTRODUCTION
	Inconsistency of Scientific Terminology
	Automatic Term Extraction with Joint Multilingual Learning
	Thesis Goals
	Thesis Contributions
	Thesis Outline

	BACKGROUND AND RELATED WORK
	Automatic Term Extraction
	Pipeline of Term Extraction
	Automatic Term Extraction Methods

	Statistical Machine Translation
	Word Alignment Models
	Word Alignment Tools

	Word Embeddings
	FastText

	Deep Recurrent Neural Networks
	Long Short-Term Memory Networks
	Bidirectional Long Short Term Memory Networks

	Sequence Labeling
	Conditional Random Fields
	Joint Multilingual Learning

	DATASET
	Cleaning
	Grouping Thesis Abstracts
	Parallel Corpora Construction

	BILINGUAL AUTOMATIC TERM EXTRACTION
	Automatic Terminology Extraction
	Preprocessing
	Term Candidate Selection
	Term Candidate Scoring
	 Term Candidate Ranking

	Terminology Translation
	Word Alignment
	Generation of Translation Dictionaries
	Operations

	Scientific Terminology

	MEASURING TERMINOLOGY INCONSISTENCY
	Terminology Inconsistency Metric
	Results

	TERM EXTRACTION WITH JOINT LEARNING
	Dataset
	Preprocessing
	Terminology Labeling
	Model
	Terminology Tag Decoding
	Evaluation Metrics
	Precision
	Recall
	F1-Score

	Results

	CONCLUSION
	REFERENCES
	CV



