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ABSTRACT 

 

A TIME-BASED INTUITIVE PATH PLANNING ON LARGE-SCALE CROWD 

SIMULATION MODELS 

 

Berk ECER 

 

 

Master of Science, Department of Computer Engineering 

Supervisor: Prof. Dr. Ebru AKÇAPINAR SEZER 

May 2021, 121 pages 

 

 

Traditional management models of intersections, such as no-light intersections or 

signalized intersection, are not the most effective way of passing the intersections if the 

vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection 

control model called Autonomous Intersection Management (AIM). In the AIM 

simulation, examining the problem from a multi-agent perspective, demonstrating that 

intelligent intersection control can be made more efficient than existing control 

mechanisms. In this study, autonomous intersection management has investigated. We 

extend their works and added a potential-based lane organization layer. In order to 

distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes 

and they change their lane if other lanes have advantage. We can observe this behavior in 

real life such as drivers change their lane by considering their intuitions. Basic intuition 

on selecting correct lane for traffic is selecting less crowded lane in order to reduce delay. 

We model that behavior without any change in AIM workflow. Experiment results shows 

us that intersection performance is directly connected with the vehicle distribution in 

lanes of roads of intersections We see the advantage of handling lane management with 

a potential approach in performance metrics such as average delay of intersection and 
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average travel time. Therefore, lane management and intersection management are 

problems that needs to be handled together. This study shows us that, the lane through 

which vehicles enter the intersection is an effective parameter for intersection 

management. Our study draws attention to this parameter and suggested a solution for it. 

We observed that the regulation of AIM inputs, which are vehicles in lanes, was as 

effective as contributing to aim intersection management. PLO-AIM model outperform 

AIM in evaluation metrics such as average delay of intersection and average travel time 

for reasonable traffic rates which is in between 600 vehicle/hour per lane to 1300 

vehicle/hour per lane. Proposed model reduced the average travel time reduced in 

between %0.2 - %17.3 and reduced average delay of intersection in between %1.6 - 

%17.1 for 4-lane and 6-lane scenarios. 

 

Keywords: AIM project, Autonomous intersection management, Lane organization, 

Potential-based approach 
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ÖZET 

 

GENİŞ ÇAPLI KALABALIK BENZETİMİNDE ZAMAN ODAKLI SEZGİSEL 

YOL PLANLAMA 

 

Berk ECER 

 

 

Yüksek lisans, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Ebru AKÇAPINAR SEZER 

Nisan 2021, 121 sayfa 

 

Araçların akıllı olması durumunda, ışıksız kavşaklar veya sinyalize kavşaklar gibi 

geleneksel kavşak yönetim modelleri, kavşakları geçmenin en etkili yolu değildir. Bu 

amaçla, Dresner ve Stone, Otonom Kavşak Yönetimi (AIM) adı verilen yeni bir kavşak 

kontrol modeli önerdi. AIM simülasyonunda, problemi çok ajanlı bir perspektiften 

inceleyerek, akıllı kavşak kontrolünün mevcut kontrol mekanizmalarından daha verimli 

hale getirilebileceğini gösterir. Önerilen model üzerinde yapılan deneyler ve gözlemler 

sonucunda araçların kavşağa hangi şertitten girdiklerinin kavşak performansına doğrudan 

etkisi olduğunu gördük. Bu çalışmada, Stone ve Dresner’in sunduğu AIM modeli ile 

otonom kavşak yönetimi ele alınmış ve kavşak performansının arttırılması hedeflenmiştir. 

Yapılan geliştirmeler ve deneyler sonucunda Stone ve Dresner’in sundukları AIM 

modelini genişlettik ve potansiyele dayalı bir şerit organizasyon katmanı ekledik. Araçları 

her bir şeride eşit olarak dağıtmak için, bu katman araçları yakın şeritleri analiz etmeleri 

için tetikler ve diğer şeritlerin avantajı varsa şeritlerini değiştirirler. Sürücülerin 

sezgilerini dikkate alarak şerit değiştirmesi gibi gerçek hayatta da bu davranışı 

gözlemleyebiliriz. Trafik için doğru şeridi seçmenin temel sezgisi, gecikmeyi azaltmak 

için daha az kalabalık şeridi seçmektir. Bu davranışı AIM iş akışında herhangi bir 

değişiklik olmadan modelliyoruz. Deney sonuçları bize, kavşak performansının, kavşak 
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yollarının şeritlerinde araç dağılımı ile doğrudan bağlantılı olduğunu göstermektedir. 

Ortalama kavşak gecikmesi ve ortalama seyahat süresi gibi performans ölçümlerinde 

potansiyel bir yaklaşımla şerit yönetimini ele almanın avantajını görüyoruz. Bu nedenle, 

şerit yönetimi ve kavşak yönetimi birlikte ele alınması gereken sorunlardır. Bu çalışma 

bize, araçların kavşağa girdiği şeridin kavşak yönetimi için etkili bir parametre olduğunu 

göstermektedir. Çalışmamız bu parametreye dikkat çekmekte ve bunun için bir çözüm 

önermektedir. Şeritlerdeki araçlar olan AIM girdilerinin düzenlenmesinin amaç kavşak 

yönetimine katkı sağlayacak kadar etkili olduğunu gözlemledik. PLO-AIM modeli, şerit 

başına 600 araç / saat ila şerit başına 1300 araç / saat arasındaki makul trafik oranları için 

ortalama kavşak gecikmesi ve ortalama seyahat süresi gibi değerlendirme ölçütlerinde 

AIM'den daha iyi performans gösterir. Önerilen model, 4 şeritli ve 6 şeritli senaryolarda 

ortalama seyahat süresini %0,2 - %17,3 arasında azaltmış ve ortalama kavşak 

gecikmesini% 1,6 -% 17,1 arasında azaltmıştır. 

 

 

Anahtar Kelimeler: AIM project, Autonomous intersection management, Lane 

organization, Potential-based approach 
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1. INTRODUCTION 

 

In today’s world, there are several problems that is affecting the World such as 

environmental pollution. One of the biggest reasons that the world is getting polluted is 

the traffic jams caused by millions of vehicles that we used to go to work, go to schools, 

shopping, holidays and etc. Mankind is trying to save the world by reducing pollution 

that is created by vehicles with the ways like electric powered vehicles which is not 

producing any pollution. In order to serve this purpose, vehicle usage could transform to 

a smarter and efficient version which eliminates the extra time spending on travelling by 

just increasing the traffic performance.  

 

In this purpose, with the power of growing computer technology autonomous vehicles 

can be used to transform our well-known transportation sector into a more intelligent,  

safer, and more efficient version. With this transformation, the autonomous vehicles and 

autonomous transportation could reduce the pollution of the vehicles by just increasing 

vehicle performance during travelling. Autonomous vehicles could also decrease the 

travelling time with the control of autonomous systems. Therefore, the pollution and the 

vehicle usage could be decreased because there won’t be unnecessary movements and 

traffics.  For this purpose, this study presents a new model for increasing autonomous 

vehicles performance in autonomous intersections. In order to understand the problem, 

history of transportation must be investigated.   

 

Transportation is a problem that humanity has tried to solve throughout history and has 

produced different solutions about this issue and still tries to produce. The solutions and 

ideas produced by humanity on this subject have developed very rapidly from the past to 

the present. The transportation problem was tried to be solved by the invention of the 

wheel in the early ages and by developing mobile vehicles. Later, these vehicles are 

transformed into the tools we use today with the developing technology. 
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During this transformation, the transportation technologies we currently use have 

changed and developed over the years. Humanity has produced countless different 

vehicles for transportation and transportation. It has produced sophisticated vehicles such 

as vehicles, trains, ships, and airplanes that can be reached by air, land and sea. Humanity 

has had to improve itself in transportation in order to keep up with the developing 

technology and the requirements of the age. As a result of these developments, different 

types of transportation vehicles started to be produced from different sources. With the 

production of these vehicles, a problem arose before mankind, such as maintaining 

control and order during the transportation of these vehicles. 

 

Today, cats are one of the most accessible and popular ways of transportation. In our daily 

life, we need to reach somewhere for our business and social life. They are land 

transportation vehicles developed for carrying passengers or cargo in cars. When we look 

at the development of cars, in the early days, machines were able to convert the energy in 

fuels into motion energy, that is, wheeled vehicles that move with motors. 

 

Most of the vehicles are used in our age have become complex systems that can offer 

different technologies and functions, pay attention to consumption efficiency and 

environmental cleanliness, can be produced in different ways according to the passenger 

or load profile they carry, and carry security measures, with computers that can have their 

own system. Transportation to meet the needs of people is one of the giant sectors with 

many sub-topics such as the production, control and security of vehicles, technical 

maintenance, part production and technology research to further develop these vehicles. 

This sector, which we can call the transportation sector, has been affected by other sectors 

developed in our age and it looks like it will continue to be affected. 

 

With the development of computers and technology, the technologies used on vehicles 

have also developed. Computers are now integrated into most of the vehicles. With this 

partnership, both the capabilities of the vehicles can be expanded, and the capabilities and 

possibilities that the vehicles can offer to their users and to the jobs they can do in line 

with their purposes can also be increased. For example, some of the vehicles that can park 
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themselves, some of the vehicle systems that can follow lanes, GPS features that can be 

used to track the position of the vehicles, and the ability to detect the vehicle's 

environment and their own physical movements have gained many different functions. 

 

Today, transportation vehicles, which are now called smart vehicles, are started to be used 

and developed. Smart vehicles are vehicles that have sensors that can perceive their 

movement and physical changes around them, and technologies that can communicate 

with other smart tools and systems like themselves. These tools have been developed and 

adapted to our age with the development of computer technology and its transformation 

into more portable small technological units. In other words, with the developments in 

many different sectors, vehicles can also be affected by these developments and have 

become structures that can offer more performance, comfort, and confidence to their 

users. 

 

Thanks to the variety of functions and capabilities of smart vehicles, these vehicles can 

act on their own in today's technology. In fact, unmanned vehicles that can go beyond 

this movement and use it for many purposes are produced. Unmanned vehicles are 

vehicles that are managed by smart computer systems and can serve their users without 

requiring any manpower, with features such as direction finding, route planning and 

communication with other smart systems. These vehicles can be used in many areas such 

as transportation, military, trade, and health. Human beings assign smart vehicles to 

places that are dangerous for people to go to, jobs that need to be done with machine 

precision, or jobs that do not require manpower with developing technology. 

 

One of the most important features of smart vehicles to operate are being aware of their 

environment, gathering information from their environment about their physical 

movements, processing and interpreting this information and acting as a result of this 

interpretation. Thanks to these features, smart vehicles are becoming capable of 

functioning on their own. 
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If we limit the smart vehicles to the transportation sector, for example, when we think of 

smart cars with land vehicles, they can plan routes according to their starting and ending 

points or follow their determined routes, can detect obstacles and other objects they 

encounter during their journey, so that they can travel without collision, on the route they 

will follow during their journey We can explain it as a smart system that can follow its 

lanes and change lanes, and receive information from other systems thanks to the 

communication technologies it contains. 

 

With the rapidly spreading smart vehicles, concepts such as autonomous cars, 

autonomous driving, autonomous intersection, and road systems should be emerged 

today. Autonomous vehicles are one of the intelligent transportation units that offer a 

safe, comfortable and performance drive without the need for any driver. These vehicles 

should have different sensor systems that enable them to perceive their surroundings, for 

example, infrared, radar, or direct analysis through visual data.  

 

By using the sensor systems, vehicles can perceive what is happening around them during 

their travels and can detect obstacles or objects that they encounter. These vehicles should 

able to access basic information about their physical movements such as speed, 

acceleration, and direction, thanks to their detective sensors. These tools, which can 

perceive their movement as well as their movements and positions in their surrounding 

objects, have the knowledge to model movements in the real world. As a result of these 

models, the vehicles have gained the ability to decide on their own actions and actions 

and update these decisions against instant situations. 

 

Using these models, vehicles can estimate the positions of themselves and the objects 

around them over time, and using this position information, they can define the most 

appropriate route for them with physical information such as acceleration, speed, and 

direction. Autonomous driving can be expressed as the autonomous vehicles traveling on 

their own without human input. Autonomous driving can also be seen as a type of travel 

managed and maintained by smart vehicles. Due to the increase in the number of smart 

vehicles and the development of their usability, they are getting more popular. 



 

 

 

5 

The existence of vehicles that can travel on their own naturally created a need for smart 

systems for the control and management of these vehicles. In order to meet this need, 

smart intersection, and lane management mechanisms, which have smart management 

units, should be emerged. Thanks to these mechanisms, it has been ensured that many 

smart vehicles that can complete the travel task on their own are coordinated with each 

other and with these management systems throughout their travels, in other words, the 

travels of these vehicles are organized by individual vehicle agents or by intelligent 

management units that are a higher control unit. Smart intersections can be counted 

among these management units. 

 

Smart intersections should provide a layout and management system for smart vehicles 

to pass through the intersection by communicating with them as they approach. This 

queuing problem, which can be solved with different approaches, can be handled by the 

smart intersection manager on the intersection. They can create a ranking structure for 

vehicles approaching the intersection and should allow the vehicles to pass through the 

intersection without colliding with other vehicles in this sequence. Intelligent intersection 

management can also be done by using a general manager such as the intersection 

manager or by enabling vehicles to individually follow certain protocols. Communication 

between objects plays an important role in both approaches. Coordination between 

vehicles can be provided by using vehicle-vehicle and vehicle-structure communications 

in smart traffic. 

 

Developing technology and rapidly spreading smart traffic systems show us that in the 

future, the transportation sector could be changed completely and new transportation 

methods, where unmanned approaches are intense. For this reason, many studies are 

carried out around the world to make smart vehicles and smart traffic units more efficient, 

environmentally friendly, and more advantageous for the user. The development of the 

unmanned transportation concept in the future with the knowledge that develops with 

these studies is very important both environmentally and will help to create a better 

transportation sector with the decrease in the energy and time people spend for 

transportation. 
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Today, intersections are one of the most critical traffic points where vehicles lose the most 

time in traffic and generate fuel waste and environmental pollution. When intersections 

are managed with protocols such as intersections with lights or intersections with no 

lights, which are traditional intersection management methods, they show lower 

performance under the rate of heavy traffic. Considering the developing smart vehicle 

technology with this situation, the need for smart intersection management units could be 

increased.  

 

This thesis is about intelligent intersection management. It aims to increase the 

performance of smart intersection management mechanisms. The structure presented in 

this thesis aims to reduce the amount of time and energy spent on transportation by 

reducing the delay that vehicles experience due to waiting times at intersections, in other 

words, due to junctions. As a natural result of saving time and energy, it aims to be 

effective in reducing nature pollution such as noise, air and water caused by traffic. 

 

In order to increase the intersection performance, proposed model triggers the vehicles 

which are arriving to an intersection starts to check other possible lanes which may be 

more advantageous. For example, if a vehicle should change its lane to less crowded lanes 

it will arrive the intersection faster. Therefore, it will send its reservation request to the 

intersection manager sooner. As a result of this earlier registration to intersection queue, 

vehicles are served by intersection earlier. Therefore, the waiting time spending for the 

queue of the intersection will be decreased for this specific autonomous vehicle. 

 

All of the vehicles perform this evaluation by potential calculation to the neighboring 

lanes and their current lane. The potential calculation based on the vehicle counts which 

are in front of the subject vehicle. The less potential valued lane means that it is the less 

crowded lane because potential calculation depends on the vehicle counts. This 

calculation is repeated until the arrival of intersection with 1 second interval. If vehicle 

finds a lane which is less crowded it changes its lanes.   

 



 

 

 

7 

When this behavior performed by all of the autonomous vehicles which are arriving to 

the intersection, all of them will try to reach to intersection in the most advantageous lane 

for them. In conclusion, this behavior provides earlier registrations to IM. The delay 

caused by the intersection will be decreased. This performance update will reduce the 

delay of intersection and average travel times which are performance metrics of 

autonomous intersection management systems.    

 

In the advanced parts of the thesis, concepts such as smart traffic management systems, 

smart vehicles, road planning, collision-free traffic, lane management will be explained 

respectively in the second part and field information is given about these subjects. In the 

third part, a summarized field literature about the solutions produced about these issues 

covered by the thesis study is presented. In the fourth chapter, the potential-based lane 

management system for smart traffic management systems developed within the scope of 

the thesis study will be explained and the experiments performed will be shared. Finally, 

the results obtained in the thesis will be summarized, these results will be rocked with 

other studies and the implications that can be made from these results and comparisons 

are discussed.
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2. BACKGROUND  

 

2.1. Autonomous Vehicles 

Autonomous vehicles are getting popular every day. They are used for military purposes 

such as field explorations, or civilian purposes such as traffic and transportation. 

Autonomous vehicles can used for anywhere that is dangerous for humans or does not 

require humans to operate. With the help of the computers,  autonomous vehicles can 

serve the humanity and eliminate human responsibility in some of the routines for 

transportation such as travelling to work, schools, or houses.  

 

Autonomous vehicles (AV), also known as self-driving cars is a vehicle that has ability 

to driving without any human who operates the vehicles through ability to sense its 

surroundings. Autonomous vehicles don’t need any human drivers for travelling between 

the start and destination points of the travel. Also, they don’t require even any passenger 

in it. They can be used for commercial transportation.  Autonomous vehicles can travel 

wherever a conventional vehicle goes and can do anything an experienced human driver 

does without any human touch[1]. 

 

An automated vehicle system can only be termed as an “autonomous” system, when all 

the dynamic driving tasks, at all driving environment, can be performed by the vehicle’s 

automated system. In order to, evaluate autonomous systems, SAE has presented the 

levels of automation. Throughout this paper, the term autonomous vehicle (AV) refers to 

the levels higher than 3 in levels of automation table described in the next chapter. 
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2.1.1. Models of Automation 

Society of Automotive Engineers (SAE) presented the 5-level of automation in 2014 [1]. 

understanding Autonomous vehicles are separated into a six category by looking the level 

of automation. No driving automation is the level 0 of the categories which is the vehicles 

that is used manually. Level 0 vehicles contain automated systems such as breaking, or 

cruise control. The vehicles which has driver assistance is the level 1 of the categories.  

 

Level 1 vehicles contain automated driving assisted systems such as lane control or cruise 

control which adapts the external changes. At level 3, vehicles contain partial automation 

such as accelerate, break or steering. At level 4, vehicles are highly automated. They 

contain self-driving mode which is not like fully autonomous vehicles. Because of the 

legislation and infrastructure which are not as advanced as the vehicles automated 

vehicles which can be seen in the real life are less than other vehicles.  

 

Last level of automation is the full automation. At this level, vehicles are fully automated, 

and they are capable of handling all of the responsibilities during travel which is taken by 

the drivers. 

 

 

Figure 2.1.1 SAE J3016 levels of driving automation [1] 
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2.1.2. Abilities  

Autonomous vehicles are the vehicles can operate and travel safe by sensing its 

surroundings and provide functions to operate the vehicle without any other human 

interaction.  This type of vehicle requires different types of ability in order to operate 

independently. They need to sense the environment which they are in, they need to detect 

the obstacles before they reach in their way by using sensor, in order to achieve self-

driving, firstly vehicle needs sensors[2]. 

 

Self-driving vehicles uses different types of sensors in order to perceive their 

surroundings, such as lidar, sonar, GPS, odometry and internal measurement systems. 

Sensed data is used for detecting the environment or obstacles are processed with for 

example computer vision techniques and as a result of this processing the vehicle know 

about its surrounding and obstacles. Vehicles use this knowledge to plan their path and 

actions during travelling in this path. 

 

Sensor systems is the critical part of the autonomous vehicles because if the vehicles face 

with an obstacle or any other vehicle, it must be detected by the sensor systems. The 

environmental changes must also be detected such as traffic lights. Basically, sensor 

systems are the eyes and the ears of the autonomous vehicles. The detected data gathered 

from sensors are processed in the vehicle’s computer systems such as driver agent and 

trajectory planning systems. 

 

In an example scenario, autonomous vehicles detects the change by using its sensors, it 

uses the data for computation of trajectories and determine that if it keeps on its movement 

or if it needs a change in its movement such at decelerating or accelerating. Therefore, 

autonomous vehicles must have a reasoning ability which is used with the data gathered 

from sensors in order to move independently by itself. 

 

Autonomous vehicles must have a control system which is responsible for following the 

commands of the computation and decision-making systems. Converting the commands 
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in the real-life actions such as breaking or turning is the job of the low-level control 

systems.   

Autonomous vehicles must have a communication ability in order to share and collect the 

information about surroundings. The communication is one of the critical abilities that 

autonomous vehicles have. The communication is used to interact with the environment 

such that intelligent intersection managers and the other autonomous vehicles. 

 

To sum up, an autonomous vehicle is the vehicle which can travel without collision and 

does not need any other human interaction rather than its decisions. In general, 

autonomous vehicles has sensors which provides the data, which is used to understand 

the environment, computation center which use the data, understands the environment, 

and calculate and plan the actions.  They have communication ability to gather more 

information about surroundings. By using all of these abilities, autonomous vehicles can 

travel by their own. 

 

2.2. Navigation of Autonomous Vehicles 

Navigation of an autonomous vehicle is one of the biggest problems in this area. 

Navigation is a field that investigates, monitors and controls of the motion of a vehicle 

during their travels from their start point to their destination point[3]. All of the navigation 

methods use navigators’ position and the known locations or patterns. 

 

Due to the versatility of the environment, which is the real life basically, navigation of 

the vehicles becomes harder. In order to achieve that autonomous vehicle navigation, the 

data obtained by the sensor systems must processed because environmental changes are 

directly affecting the path and also effect the navigation. 

 

In generally, navigation is determined by the roads because traffic infrastructure does not 

allow free movement. Vehicles must follow the lanes and roads and junctions. Therefore, 

navigation of the autonomous vehicles is determined by the path planning.  Path planning 

methods are using the connections of the roads and intersections and applies specific path 

planning algorithms to generate a list of paths must be followed by vehicles. 
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2.2.1. Path Planning 

The definition of the path planning problem can be defined as searching for a collision-

free motion between start and end points within a specified environment. The simplest 

situation is when the path is to be planned in a static and known environment; however, 

more generally, the path planning problem can be formulated for any robotic system 

subject to kinematic constraints, in a dynamic and unknown environment[4]. The change 

in the environment directly effects that path planning because static path planning is not 

covering real time environment. 

 

Autonomous vehicles must have collision-free path plan in order to travel safe. Path 

planning algorithms can be diverse but in the end collision-free path must be achieved by 

the path planning process. Traffic is a real life subject which actors and obstacles can 

change any time. Therefore, path planning methods that is used for autonomous vehicles 

must also work real time and must update the path by looking the environmental objects 

or situations such as other vehicles or traffic lights.  

 

Because of the changing environment, path planning algorithm must be dynamic and 

every new event which has been captured by the sensors of the vehicles, must affect the 

dynamic path plan. For example, the planned path can be changed the road regulations or 

different events such that accidents, pedestrians, or obstacles must be considered by the 

path planning system in order to achieve collision-free path. 

  

2.2.2. Collision-free Movement  

Collision-free movement can be defined as travelling between the start and end points 

without any physical interaction with other objects and the autonomous vehicle [5]. 

Vehicles detect and sense their path with objects on top of it. 

 

The other biggest problems in autonomous vehicles is the collision-free movement. 

Because of the safety issues, vehicles have to avoid from the collisions. Collision can be 

happening because of several factors such as other vehicles, obstacles, pedestrian, and 
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other environmental objects. In order to prevent from the collisions, vehicles have to 

detect their roads and the other objects in their roads.  

 

Detecting the environment is the first part of providing collision-free movement. In order 

to act about the environmental changes, first vehicle must sense or detect the 

environmental changes by using its sensor system such that cameras, radars, lidars and 

etc. When, vehicle detects a change in the environment, path planning and trajectory 

planning systems must immediately act and calculate the future position of the vehicle 

and the obstacles which can be mobile such that other vehicles or pedestrians or static 

such that infrastructural buildings.  

 

Trajectory planning is the key to the collision-free movement. Which can be defined as 

calculating the future space-time occupancies of environmental objects and the vehicle 

itself [6].  Sensor systems provides the physical data about the movement or position of 

both environmental objects and the autonomous vehicles. Therefore, trajectory planning 

can be performed as simulation because system got definitions of the movements such 

that position, speed, acceleration, or deceleration. 

 

By using this physical data about the movement, system can calculate the future positions 

of the objects. The system also calculates the future position of the autonomous vehicle. 

Therefore, if any of this calculated space-time trajectories collide, it means that if 

autonomous vehicle keeps the same movement, in the future it will collide with the object 

whose space-time trajectory intersects with the vehicle’s trajectory. 

 

Collisions can be detected by the sensors and trajectory planning, after that vehicles must 

act with the information gathered from trajectory calculations. If the system, detects a 

collision by comparing the space-time trajectories, the system must alter their movement 

such that stop, accelerate, decelerate. 

 

Trajectory planning can be performed by the autonomous intersection managers as well 

as the the autonomous vehicles. In this case, all of the objects in the intersections such 
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that autonomous vehicles desire to use the intersection shared their movement 

information to the intersection manager. Intersection manager calculated the trajectory 

plans for every object and provides a collision-free movement for every vehicle. If any 

future collision is detected by the intersection manager, intersection manager alters one 

of the vehicles which will have a future collision. For example, intersection manager stops 

on vehicle and let the other vehicle to pass. In general, the vehicle, which is arrived the 

intersection first, gets the transition priority. Therefore, intersection managers use queue 

mechanisms to handle transition priority problem. 

 

2.3. Autonomous Intersection Management 

Intersection management is the subject which can be described as the management of 

vehicles in the intersection whose will use the intersection. Traditional intersection 

management protocols such that traffic lights or no-light intersection protocol are used 

for controlling and scheduling the vehicles which need to travel through the intersection. 

 

Traffic lights controls the roads of the intersection and with the configurated interval it 

allows the vehicles to enter the intersection. Traffic lights control the intersection by 

letting the vehicles of the roads in an order. In each light step, flow of the some of the 

roads stops and flow of some of the roads that will not create a collision starts. With this 

interval-controlled mechanism, vehicles can enter the intersection with road-based order. 

 

No light intersection protocol is the way that vehicles that needs to use the intersection 

follow some rules and stop signs. For example, the vehicles must wait the other vehicles 

who is inside of the intersection. First comes first goes method is used and if two vehicles 

arrive to the intersection same time. Stop signs are used to manage lane priorities. If a 

vehicle in the road with stop sign in no light intersection, other lanes which have not stop 

sign have priority to use the intersection.  With this protocol, vehicles are free to use 

intersection with following all of these rules. 

 

With the growing technology and autonomous vehicle industry, new intersection 

management policies are appeared. Traditional models of intersection management  are 



 

 15 

not really efficient  when autonomous vehicles are in actors. Autonomous intersection 

management can be described as managing the intersection of autonomous vehicles 

without any human interaction.  

 

When intersection protocols begin to be controlled by computer systems such that 

autonomous intersection managers,  the flow of autonomous vehicles don’t need to be 

stopped like traffic light protocol and no-light protocol. The continuous flow will be 

achieved because of the intersection manager or autonomous vehicles calculates the 

future space-time trajectories of their and other vehicles in order to avoid collisions. 

 

This study investigates autonomous intersection management and aims to improve the 

intersection performance. The performance of the autonomous intersection management  

can be measured by calculation the average travel time or delay of intersection values. In 

this study, on top of the autonomous intersection management, a new lane management 

model is proposed. Experiments revealed that the distribution of the vehicles in lanes of 

roads are directly affect the performance of the intersection. Therefore, proposed model 

provides a new potential based lane organization method which will be described in next 

chapters. 

 

2.3.1. Actors  

Smart and autonomous vehicles are the main actor of the autonomous traffic. 

Autonomous vehicles are the mobile part of the autonomous traffic. They are responsible 

for traveling through their entrance and destination points without any human effort. 

Autonomous vehicles are referred as connected which means that  vehicle can 

communicate between other vehicles or other infrastructures such that intersection 

managers. Agents of autonomous traffics are directly connected to each other in order to 

achieve collision-free travel.  

 

Static members of autonomous traffic are the stationary parts such that intersection 

manager systems. The intersection managers are in responsible for controlling the 
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autonomous intersection usage. Autonomous vehicles communicate with the intersection 

managers in order to share their physical information about their movement.  

 

Intersection manager uses the collected information shared by each autonomous vehicle 

and calculate space-time trajectories therefore, it will allow or reject the request of each 

vehicle. Intersection manager provides collision-free continuous flow of autonomous 

vehicles through intersection. 

 

2.3.2. Communication Methods 

Autonomous intersection management can be performed by different models and 

solutions. These models differ by their communication types. Vehicle-to-vehicle 

communication and vehicle-to-infrastructure communication methods are used in widely. 

Autonomous vehicles can be managed by themselves alone in the intersections by using 

vehicle-to-vehicle communication.  

 

Vehicle-to-vehicle (V2V) communication means that all of the intelligent vehicles has 

communication systems in order to share physical information about their movement. 

With this information share, all of the autonomous vehicles can calculate both their 

position in future and other vehicles positions. With this calculation, and a queue 

mechanism such that first comes first served, autonomous vehicles can manage their 

intersection behaviors. 

 

Vehicle-to-Infrastructure (V2I) communication means that all of the intelligent vehicles 

can communicate with the smart intersection manager (IM) of the intersection. In this 

case, calculation and collision-free movement are guaranteed by the intersection manager. 

Vehicles send their movement information and to the intersection manager. Intersection 

manager uses the information such that speed, acceleration, start point and destination to 

calculate future positions of all the vehicles in the intersection.  Then intersection manager 

accepts or rejects the requests of the vehicles by looking calculations and the order of the 

vehicle arrivals.  

 



 

 17 

If a vehicle won’t face with another vehicle in the intersection, in other words will have 

collision-free space and time trajectory in the intersection, IM will accept and let it move. 

If two space-time trajectory collides which means two vehicles will have collision if they 

keep moving, intersection manager will reject one of them and let the first arrived vehicle 

to use the intersection.  

 

In both methods, the information which defines the movement of the vehicles must be 

shared between the actors of intersection. In both methods, continuous flow of the 

autonomous vehicles is succeeded. Proposed model in this study can be applied in both 

methods of autonomous intersection managements because the lane distribution effects 

the order of the vehicles which needs to use the intersection and eliminate unnecessary 

latencies generated by randomized traffic of autonomous vehicles. 

 

2.3.3. Systems Design 

Intersections are the most common source of traffic delays and accidents in traditional 

transportation systems. In order to ensure safety and collision-free transportation the 

intersection systems must be evolved to be intelligent for autonomous vehicles.  

 

Traditional intersection control systems can be investigated in three categories. First layer 

is the coordination layer which is used for coordination between multiple intersections. 

This layer controls the flow of the roads between intersection. Maximization of the green 

band is very common application of this layer [8]. Second layer is the intersection 

management and trajectory planning layer which controls and organize the vehicle flow 

in the intersection. This layer can also be used for autonomous intersection management 

which will provide efficiency for transportation of autonomous vehicles.  

 

Second layer in autonomous intersection management provides trajectory planning in 

order prevent collisions. Main goal of this trajectory planning is separation of the conflict 

movements of the vehicles. Third layer is the vehicle control layer which aims to motion 

control for each individual vehicle. Vehicle control can be managed by humans or in 
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autonomous vehicles the control system is already operates the vehicle without any 

human interaction. 

 

 

Figure 2.3.3.1 Intersection control layer [7] 

 

Autonomous intersection management systems are more efficient and safer when it is 

compared with the traditional intersections. By using the properties of being intelligent 

and autonomous, new intersection management systems can be improved. Stone and 

Dresner noticed that when the subject of the transportation is autonomous and intelligent, 

traditional intersection management systems are not very effective [8]. 

 

Autonomous intersection management systems generally contain two individuals but 

communicating part. First of them is the driver agent which controls the vehicle and 

communicate with the environmental objects such as other vehicle agents or intersection 

manager agents. When the vehicles arrive to the intersection, driver agent starts to 

communicate and sends a reservation request in order to use the intersection. This process 

can be handled by communicating other autonomous vehicles.  

 

The other individual part is the intersection manager (IM). This system controls the 

vehicle flow through the intersection and organize and manages the vehicle travels during 

the intersection. IM is responsible for deciding weather a vehicle enter or wait for the 

intersection. IM controls and operates the vehicle by calculation of the trajectory plans of 

each vehicle. By looking these plans, IM decides actions for each vehicle which has 
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requested. In general, IM uses queue mechanisms to determine which vehicle will go first 

in conflicted vehicle movements. 

 

Figure 2.3.3.2 Intersection control layer [9] 

 

Intersection management systems can be categorized in two as centralized and 

decentralized intersection managements. In centralized architecture, all of the intelligent 

vehicles are communicating with the central manager such that intersection manager 

which is an intelligent traffic infrastructure. In decentralized architecture, all of the 

autonomous vehicles are communicating with each other directly and plan their 

movement by regarding the information shared [10]. 

 

 

Figure 2.3.3.3 Centralized – Decentralized Architecture[10] 
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2.3.4. Performance Criteria  

Performance criteria of autonomous intersections are directly related with the time spent 

during the travel through intersection. In this study, delay of intersection is used to 

determine intersection efficiency and performance. Delay of intersection can be described 

as the delay which is created by the intersection on the vehicles due to traffic 

management. 

 

In order to evaluate efficiency, Stone and Dresner measured the delay of intersection, 

which can be described as the additional travel time caused by a vehicle as a result of 

passing through the intersection [8]. Delay of intersection (DOI) can be calculated as the 

time difference between travel times of the vehicle travelling without any other vehicles 

and vehicle travelling in traffic load. 

 

Other performance metric which is investigated in this study is the average travel time 

(ATT). Average travel time can measure by taking the average of the travel times of each 

vehicle. Travel time is measured as time difference between entrance and exit of vehicles. 

Average travel time indicates that each vehicle can complete their travel through 

intersection on average travel time value. 

 

2.4. Lane Management 

Lane management can be described as organizing the vehicles in the lanes of roads 

therefore all of the lanes in roads shared equally distributed load. In other words, lane 

management can refer as traffic load balancer on lanes of roads. In general, lane 

management is used for big traffic networks or freeways in order to equalize the 

randomized traffic.  

 

Lane management can be used for autonomous intersections to eliminate the jams created 

by randomized traffic. By organizing the vehicles at the entrance lanes of intersection, 

input lanes of intersection,  provides a fully and evenly distributed intersection reservation 

line.  
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In this study, lane management model has used for improving autonomous intersection 

performance by prevent vehicles from piling up in a single lane due to randomized traffic. 

Lane management has proven its success on autonomous intersections in the experiments 

which is a part of this study. With the light of this study, it is seen that the lane 

management directly effect the performance of the autonomous intersection as same as 

traffic level. Therefore, in order to achieve lane management in autonomous intersections, 

potential based lane organization model is proposed in this study. 

 

2.5. Path Planning Methods 

Path planning is one of the complex problems in the autonomous vehicles. Every vehicle 

must have calculated collision-free path plan in order to follow through the intersection. 

Path planning is an important subject because of the meaning of autonomous vehicles 

refers travelling between destinations without any human interaction therefore, it requires 

autonomous path planning.  

 

Path finding is the first part of the path planning which can be described as finding all of 

the possible paths between the points. Path finding provides all the possible paths to the 

path planning part. Path planning uses the paths and tries to determine the optimal path 

between start and end points from all of the paths provided by path finding operations 

[11]. 

 

Path planning can be described as generating a geometric path between start point and 

end point without any collisions. There are several types of path planning methods which 

can be categorized in three method [4].  

 

Firstly, the roadmap techniques can be used for path planning which can be defined as 

union of curves in connected points between start and end points in free space. The 

roadmap is generated by a set of paths where every path is connected and collision-free 

area. The cell decomposition method is the second type of the path planning methods. In 

this method the area which is used to for path planning is divided with the adjacent cells. 
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The continuous path between cells is generated by considering obstacles. The potential 

filed method is the third type. In this case, goal point has attractive potential and the 

obstacles have a repulsive potential. Agents plan their path by this potential filed value 

[12].  

 

 



 

 23 

3. RELATED WORKS 

 

Intersections are the most common point of accidents in the traffic. With the help of the 

autonomous vehicles and other intelligent infrastructures, this critical accident cause may 

be safer and more efficient. Autonomous intersection management is a major problem 

about travelling with autonomous vehicles. Also, these two topics triggers each other. 

Developments in intelligent vehicles causes new developments in management systems 

of intelligent vehicles.   

 

As the vehicles are getting smarter, the management systems are also getting smarter. 

Because of that different solutions from multiple disciplines can be applied for this topic. 

This study investigates that the effects of doing lane organization by using potential 

approach on autonomous intersection management. Therefore, autonomous intersection 

management models have been investigated in this study.  

 

The most relevant studies about autonomous intersection management are listed in four 

different categories. Relevant studies have been investigated under these four main topics. 

Space-Time reservation and priority determination is the key elements of the autonomous 

intersection management  which is handled by trajectory planning. Third category is the 

centralization which can be centralized and decentralized. Centralization basically defines 

the communication and management method. In the fourth category, the studies, and 

developments about vehicle control for autonomous intersection management is 

presented. Lastly, AIM project will be described in detail. 

 

 

 

 

 

 



 

 24 

3.1. Space-Time Reservation 

 

Trajectory planning which is directly connected with the Space-Time reservation is a 

method which is used to determine rotation and future positions of the vehicles. By 

calculation this trajectory, the management units of autonomous traffic such as 

intersection managers can predict weather a collision will arise or not. 

 

Trajectories and conflict points determined by finding the intersections between trajectory 

plans of each vehicle is presented in the figure below. In autonomous intersection 

management this trajectory planning is performed at vehicle level. Trajectory planning is 

executed for each individual autonomous vehicle [7]. 

 

 

Figure 3.1 Trajectory and conflict points [7] 

 

These trajectory plans are used for collision-free autonomous driving. In autonomous 

intersections all of the vehicles are planning their usage of intersection by reservation-

based methods which are determining which vehicle will move first in case of conflict 

points.  
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There are four different reservation methods in order to solve conflicts in AIM. First of 

them is the intersection-based reservation [13] which allows one and only one vehicle 

within an intersection in order to prevent from collisions. Secondly tile-based reservation 

[9] is the method that free space is divided into a grid of tiles. Manager rejects if two 

vehicles occupy the same tile at the same time which means a collision. In some of the 

studies these ties can be grouped into bigger regions in order to decrease the computation 

load and complexities for reservation [14]. 

 

Thirdly conflict point-based reservation [15] which is performed by conflict point 

determination by using  all of the space in the intersection. The last one is vehicle-based 

reservation [16] system which guides and manages all of the autonomous vehicles within 

an intersection space without any collision. The vehicle-based reservation method is 

required computational expense in order to solve collision avoidance constraints. 

 

 

Figure 3.2 Reservation Models [7] 
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3.2. Priority Determination 

All of the autonomous intersection management systems requires a priority policy due to 

decide which vehicle will move first when a collision or trajectory intersection occurs. In 

AIM, as well as the trajectory planning, priority determination is performed for each 

individual vehicle [7]. 

 

Firstly, autonomous intersection management systems are using first-come-first-serve 

(FCFS) policy which is fair as it’s in the real-life queues. Although vehicles are 

autonomous, equality is an issue for everything. Therefore, this real-life behavior of 

humans is applied on most the AIM research.  

 

Secondly, system-optimal policy is the second most common policy. In the system-

optimal policy, vehicle queues are determined based on system-level performance 

therefore, intersection manager always try to do the best when it comes to intersection 

performance. It will not consider the order of the vehicle arrivals. In the system-optimal 

policy, the priority is determined by considering system evaluation metrics such as overall 

delay, vehicle throughput and travel times. 

 

There are several other priority policies which have been tried and experimented on 

priority determination in autonomous intersection management systems such as longest-

queue-first policy [17]. In the longest-queue-first policy the order of priority is 

determined by considering the longest queues in the intersections. Vehicle type-based 

policy [18] is used by Dresner and Stone in order to give higher priority to the important 

or special vehicles during emergencies. 

 

Custom-priority score-based policy[19] determines the priority by regarding the scores 

which is generated by other previous vehicles in order to provide a fair and efficient 

priority. The last one is the auction-based policy [20] which determines priority with 

auctions. Auctions are used to determine which vehicle should enter the intersection next. 

First vehicles of each lane are the participants of the auctions because no other vehicle in 

their lane can move before of them.  
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The other vehicles which are not participants, they bid on the first vehicle on their lane. 

Therefore, the waiting vehicles back of the first vehicle add value to the first vehicles bid. 

All of the vehicles in the same lanes are working together to get the priority. 

 

Game theoretic priority policy [21, 22] is one of the most common method among the 

heuristic methods. In some of the research, platoon-based performance evaluators [23, 

24] which are also one of the heuristic methods are used to determine priority.  

 

The FCFS is investigated in many of research about autonomous intersection 

management. In this policy the arrival times of the vehicles are the first important point 

of determining the order of the vehicles which is about to use the intersection. Therefore, 

the intersection manager uses the time which a vehicle start communication to the 

manager. The vehicles which are in front of the lanes send communication request earlier 

to the other vehicles which are behind.  

 

The second important point of determining the order is the intersection rules which is 

defined for traditional intersection management method named stop signs policy. These 

rules are working when more than one vehicle arrive and communicate with the IM at the 

same time. At this point,  the vehicle on the right-off-lane has the priority.  

 

Stone and Dresner proposed an enhanced version of FCFS which considers the 

emergency vehicles such as ambulances and firetrucks. Proposed FIFS-EMERG model 

increase the priority of the special vehicles[18]. Proposed model tries to decrease average 

delay of the emergency vehicles. 

 

In the system-optimal priority policies, the system considers the over all performance of 

the intersection. FCFS policy produce fair priority but it is not the optimal solution for 

prioritizing the order of the vehicles. It is not optimizing the global intersection 

performance[25].  
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In the work of Lee and Park [26], a trajectory management layer for all intersection is 

added in order to decrease the load of FCFS policy. In the proposed model, all of the 

vehicles whose trajectories are conflicting are assigned individual trajectory in order to 

reduce the overlapping trajectories. 

 

3.3. Type of Centralization  

Centralization is the structure of the autonomous intersection management which 

determines how the organization is. The organization of the AIM determines the 

communication schemes as well as the operation. Three types of centralization method 

have been used in autonomous intersection management[7]. 

 

Centralized autonomous intersection management has one main coordinator which 

generally named as intersection manager. Vehicles are sharing their information to the 

one manager and the manager use this information for decision making about intersection 

processes. In general, autonomous intersection management models are rely on central 

coordinator but this method is expensive to built and operate and there are several 

bottlenecks like communication performance[27]. 

 

Figure 3.3.1 Centralized Communication  AIM [7] 
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Decentralized autonomous intersection management has multiple group coordinators in 

the intersection system. The information is shared to all of the nodes and also the 

processing load is decentralized between nodes. In the platoon-based autonomous 

intersection managements [23, 24] platoon leader acts like a decentralized coordinator 

node which communicate the intersection manager except all of the vehicles. 

 

 

Figure 3.3.2 Decentralized Communication AIM [7] 

 

Distributed autonomous intersection management is the extended version of 

decentralization which means all of node are making decisions for their own behaviors. 

All of the nodes are communicating with each other in order to gather information for 

decision making.  

 

In Hassan and Rakha’s work [27] fully distributed model is proposed. In their work 

vehicles are categorized in four label which are out, last, mid, and head in order to reduce 

the communication load of distributed system. 
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Figure 3.3.3 Distributed Communication AIM [7] 

 

3.4. Significant Works 

 

In the study of C Yu, W Sun and X Yang, a reservation-based method with simple 

policies, such as First-come-first-served Service (FCFS), has been proposed in the 

literature to manage connected automated vehicles (CAV) at isolated intersections, but 

there is a comprehensive analysis of intersection capacity and vehicle delays in FCFS 

[28]. In order to solve the problem of lack of underlying control, especially in high traffic 

demand situation, to solve this problem, adopt queuing theory to analytically show that 

this method cannot meet the high demand where traffic flow overlaps, and provide 

optimal service. Proposed an optimization model for CAV reaching the intersection to 

minimize delay.  

 

This study compares the performance of the predicted optimization-based control at 

various demand levels for conventional vehicle drive control and reservation-based 

control. It shows the best performance in the proposed optimization and has a noticeable 
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advantage over the other two controls. The advantages of reservation-based control are 

insignificant over demanding vehicle operation control.  

 

M Khayatian and M Mehrabian proposed a time and space sensitive technique for 

managing the intersections of autonomous vehicles that are rugged against external 

disturbances and model mismatches in their study about RIM [29]. In their method, IM 

is responsible for assigning the oncoming vehicles safe Time of Arrival (TOA) and 

Arrival Speed (VOA) without any conflict, and vehicles are responsible for selecting and 

following a trajectory to reach the intersection and driving in VOA. Since the vehicles 

follow a position trajectory, the effect of limited pattern mismatch and external 

disturbances can be compensated. Also, vehicles that want to turn at the intersection do 

not need to drive at low speed before entering the intersection. Results from experiments 

show that improvements shorten the average times. 

 

In the article of B Liu, Q Shi, Z Song and A El Kamel a collaborative timing mechanism 

for autonomous vehicles passing through an intersection called TP-AIM has been 

proposed [19]. The main purpose of this research is to ensure safe driving while 

minimizing delay at an intersection without traffic lights. First, an intersection 

management system used as an information gathering-editing center assigns reasonable 

priorities for all available vehicles and thus plans their trajectories. Secondly, a window 

search algorithm is performed to find backup windows as well as an input window that 

can create a collision-free trajectory with minimal delay. 

 

 Finally, vehicles can individually edit their trajectories by applying dynamic 

programming to calculate the speed profile to pass the intersection. MATLAB / Simulink 

and SUMO based simulations are created between three types of traffic mechanisms with 

different traffic flows. The results show that the proposed TP-AIM mechanism 

significantly reduced the average evacuation time and increased efficiency by over 20% . 

The article also explores delay, which can be reduced to less than 10% compared to 

conventional light management systems. Both safety and efficiency can be guaranteed in 

the proposed mechanism. 
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In the study of R Chen, J Hu, MW Levin and D Rey, they propose an autonomous 

intersection management algorithm called AIM-pad that considers both vehicles and 

pedestrians to provide optimal efficiency when combined with maximum pressure control 

[30].This study analyzes the stability properties of the algorithm based on a simpler 

version of AIM-pad, the conflict zone model of autonomous intersection management. 

To apply the proposed algorithm in the simulation, this study the maximum pressure 

control current trajectory optimization algorithm to calculate optimal vehicle trajectories. 

Simulations were conducted to test the effects of pedestrian demand on intersection 

efficiency. The simulation results show that the delays of pedestrians and vehicles are 

negatively correlated, and the proposed algorithm can adapt to the change in pedestrian 

demand and enable conflicting trajectory vehicle movements.  

 

Y Wu, H Chen and F Zhu modeled CAVs as Markov Decision Processes (MAMDPs), 

using communication and computational technologies, in which sequential movements 

of vehicles from intersection points work together to minimize deceleration of vehicle 

factors with non-collision constraints in their study DCL-AIM [17]. From the structural 

features of the AIM problem and using a decentralized coordinated multi-factor learning 

approach (DCL), it is divided into an independent part and a coordinated part. AIM) is 

recommended to solve the problem efficiently by leveraging both global and localized 

agent coordination requirements in AIM. The main feature of the proposed approach is 

to clearly identify the coordination needs of representatives in the learning process and 

adapt them dynamically, so that the dimensional and non-stationary problems of the 

environment can be alleviated while learning with more than one tool.  

 

The effectiveness of the proposed method has been demonstrated under various traffic 

conditions. Comparative analysis is based on the LQFAIM guide (Longest Queue-First) 

and Webster’s method (Signal) between DCL-AIM and first-come-first-service-based 

AIM (FCFSAIM). as comparison. Experimental results show that DCL-AIM’s sequential 

decisions outperform other control directives.  
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3.5. AIM Project 

 

Developments in autonomous vehicles and smart transportation systems point to a rapidly 

approaching future where smart vehicles can automatically manage the travel process, 

become aware of their environment, make decisions with this awareness, and implement 

the decisions they make. When K Dresner and P Stone consider the increasing traffic and 

number of active vehicles, they saw that smart solutions will need to be implemented in 

the field of transportation. In order to increase the efficiency of transportation 

infrastructure, more intelligent traffic control mechanisms that work hand in hand with 

smart vehicles are needed to include into our lives.  

 

To this end, Dresner and Stone proposed a new junction control mechanism called 

Autonomous Intersection Management (AIM), and in the simulation, examining the 

problem from a multi-agent perspective, it showed that intersection control could be made 

more efficient than existing control mechanisms such as traffic signals or stop signs [8]. 

AIM is an open-source intersection management framework that generates an intersection 

model based on simulation configurations. AIM also generate vehicles, drivers, and 

operate them during intersections. All of the vehicles can turn left and right or keep 

moving forward after the intersection.  

 

This multi-agent systems-based intersection management strategy, introduced by Dresner 

and Stone, follows a protocol for reservation for every vehicle. Arriving vehicles to the 

intersection will inform the Intersection Manager (IM) agent. The IM is responsible for 

controlling that intersection by reserving a trajectory for vehicles through intersection 

space-time. The IM process every reservation request and determines requests whether 

confirm or reject by regarding intersection control policy [8].  
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General communication between vehicles and intersection manager is ordered below.  

 

(a) The vehicle approaching the intersection informs the intersection manager that it is 

approaching along with required information such as vehicle size, estimated time of 

arrival, speed, acceleration, the lane it is in and the lane it wants to pass.  

(b) The intersection manager simulates the road that the vehicle will follow inside the 

intersection using the information shared by the vehicle. The IM checks whether the road 

that the previous vehicles will follow at the intersection and the road that the new vehicle 

wants to follow does not conflict.  

(c) The intersection manager confirms a reservation if there is no interference with the 

path in times the vehicles will use. After this point, it becomes the vehicle’s task to reach 

the intersection and pass through the intersection.  

(d) Vehicles must receive their successful reservation message from IM, in order to use 

intersection and pass to their desired lanes. 

 

 

Figure 3.2 AIM workflow [9] 

 

After the response of the intersection manager, vehicle performs the IM decision or wait 

and re-sent reservation request for successful message. It is vehicles’ duty to move as the 

intersection manager accepted. 
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Figure 3.3 Successful and rejected situations in simulation [9] 

 

M Hausknecht, TC Au and P Stone extended the work of Stone and Dresner beyond the 

situation of a single intersection and examine the unique consequences and capabilities 

of using AIM-based agents to control an interconnected network of intersections [8]. 

They explore various navigation rules that autonomous vehicles can use to dynamically 

change their planned routes, observe an example of the Braess Paradox, and explore the 

new possibility of dynamically reversing traffic flow across lanes in response to minute-

by-minute traffic conditions. By examining this multi-agent system in simulation, they 

measure the significant efficiency improvements that can be achieved with this tool-based 

traffic control methods. 
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4. POTENTIAL-BASED LANE MANAGEMENT SYSTEM 

 

The aim of this study is to improve autonomous intersection management performance 

by decreasing average travel time of vehicles and delay of the intersection. In order to 

achieve this goal, proposed model enables vehicles to adjust their lanes in order to arrive 

earlier to the intersection and as a result of this vehicle sends the intersection reservation 

earlier. This lane adjustment uses potential based approach in order to select the most 

advantageous lane for every vehicle. 

 

Proposed model is a potential based lane organization module which triggers the vehicles 

to reconsider their lanes and analyze neighboring lanes. When the vehicles pass through 

the beginning data collection line, lane organization module is triggered. Once vehicle is 

triggered, it calculates potential values for its current lane and neighboring left and right 

lanes. When the vehicle has potential values of its own lane and neighboring lanes, it 

compares the results and select the lowest potential lane which means most advantageous 

lane. Then vehicle change its own current lane in order to reach the intersection earlier. 

 

Vehicles calculate the lane potentials by looking frontier vehicles of each lane. In another 

words, calculated lane potentials are based on vehicle counts in front of the current vehicle 

in each lane.  Therefore, the lowest potential lane will be the less crowded lane for the 

vehicle. 

 

This approach and potential calculation triggering occur on every vehicle that enters the 

simulation. Therefore, all of the vehicles are trying to change their lanes to the lowest 

potential lane which refers as less crowded lane. Also, when a vehicle triggered to 

calculate potential, it repeats that calculation and decision making for every 1 second until 

they stop or arrived at the intersection. This behavior is performed by every other vehicle 

in the system.  
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This common behavior provides benefits for the system and for each single vehicle. In 

the perspective of the vehicle, vehicle will be arrived earlier to the intersection therefore 

its total travel time and delay of intersection is decreased. In the system perspective, all 

of the vehicles are trying to change their lane to the less crowded lanes therefore, 

problems caused by randomized traffic such as single lane jams or lane blockings will be 

reduced and eliminated. With this common behavior, it is ensured that the vehicles are 

evenly distributed to the lanes on the roads. 

 

Potential approach was used in Cumhur Y. Ozcan’s path-based study of crowd simulation 

for path planning [31]. They proposed a system using the Reciprocal Speed Barriers [32] 

(RVO) model as the basic routing algorithm, which provides macro information 

computed by a modified A * algorithm.  

 

The main feature of the proposed system is the modification of cost function of the A * 

algorithm to consider the current and possible future positions of other agents and path 

calculations. For this purpose, after a path calculation is made for an agent, they store the 

information about the calculated path (ie potential value) on the grid that other agents will 

use when determining their paths. Cumhur Y. Ozcan used potential approach in 

comparison with machine learning methods in his time-based global path planning study 

[33].  

 

These studies show that the potential approach can compete with machine learning 

approaches. Because, in fact, moving in the crowd and driving in the crowd as a very 

similar problem are actions based on learned reflexes that people perform with their 

intuition. For this reason, it is very plausible that heuristic algorithms modeling human 

intuition are successful.  

 

In addition, collecting the volume and variety of data required by machine learning is a 

research problem in itself. While collecting even this data, data must be collected from 

intersections where there are intuitive approaches to actually reflect the context, because 

people drive intuitively. For this reason, we cannot collect data as if all drivers behave in 
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the same way because we do not drive our cars that way. In order for machine learning 

data to work, it must be based on real life. In real life, people are already driving 

intuitively.  

 

People actually predict who will turn, who will not turn, and which vehicle will turn where 

even if it does not signal. This is a very important issue because we choose the most 

advantageous lane according to these estimates. What we are trying to do with potential 

is to be able to model this intuitive behavior and prediction that people exhibit. 

 

In this study, crowd management problem is investigated, and proposed model uses 

potential base crowd navigation by calculating position potentials of each agent. Lane 

management of autonomous vehicle agents as sharing the same problem as the crowd 

management of Cumhur Y. Özcan. All of the agents in this case vehicles add potential to 

the positions which they will arrive in their path. Navigation system uses this potential 

information for calculating possible paths.  

 

With the help of the potential information enhanced A Star Algorithm calculate the 

optimal path for the agents. The proposed A Star algorithm considers the potential 

information as well as the standard A * algorithm [33]. Therefore, it considers both the 

path and the potential which is generated individual values by the crowd. 

 

In this study, potential based method is used to organize vehicle positions in the lanes of 

roads. Autonomous vehicles are the agents that calculate potential information for their 

current and neighboring lanes. Each vehicle adds potential value to its current lane. 

Therefore, vehicles can determine the least potential lane by calculating the potentials of 

the lanes.  

 

After that point, vehicle can change their lane in order to be in a lane which is more 

advantageous or if the current lane of the vehicles is the most advantageous, the vehicle 

will keep its movement on that lane. All of the autonomous vehicles are triggered to 

potential calculation and the following lane change consideration. When the process is 



 

 39 

triggered, every vehicle which is triggered for lane management starts to calculate 

potential values for lanes. After the calculation complete, they compare the potential their 

lane and the others, and they decide weather change the lane or not. This procedure is 

repeated at a specified time interval which is 1 second in this study.  

 

 

Figure 4.1 PLO-Layer Areas 

 

PLO layer is triggering the vehicles when they intersect with the data collection lines and 

they perform potential calculation until they arrive the intersection. The area which is 

shown in the Figure 4.1 is representing the PLO layer operation region. 
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Every vehicle which enters the systems, evaluate the neighboring lanes of it in every 1 

second by using potential approach. With the procedure executed several times, all of the 

vehicles adjust their lanes to the most advantageous one for them.  

 

 

Figure 4.2 Lane changing vehicles 

 

Vehicles in the Figure 4.2 are performing lane changes depending on the comparison of 

the potential values of the neighboring lanes and their current lane. After the potential 

calculation, the vehicles know that which lane has lowest potential value. As a result of 

this, the vehicles are performing lane changes. 
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5. EXPERIMENTS 

5.1. Experimental Setup 

This study uses AIM open source software for autonomous intersection management 

system and AIM simulation tool for experimenting and observations. AIM contains a 

built-in simulator which can be used for testing and visualizing traffic motion. We used 

this simulator in order to analyze AIM performance. After that, proposed model has been 

applied to the AIM source code without changing the flow of AIM. Proposed model 

which can be denoted as PLO-AIM has been tested and performance metrics has been 

gathered by using this simulation tool. 

 

 

Figure 5.1.1 AIM configuration panel 
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AIM simulator has several options in it. In the configuration part of simulator, required 

traffic parameters such as traffic rate, lane counts, etc. can be set. Different models of 

intersection can be simulated. By using this configuration panel, complex systems of 

intersection can also be simulated.  

 

In the configuration panel, user can select intersection management protocol as the first 

parameter. Protocol can be set on of the three pre-defined protocols such that standard 

traffic light protocol, no light protocol and finally AIM protocol which is directly design 

for autonomous intersection management. In this AIM protocol, autonomous vehicles and 

autonomous intersection manager organize vehicle flow inside the intersection. This 

study uses AIM protocol in order to experiment and develop new model for autonomous 

intersection management. 

 

Speed limit parameter can be set in this configuration. Which directly controls the speed 

limit of autonomous vehicles. In this study, 25 meters/second speed (90 km/h) has used 

in all experiments. Speed limit is fixed for the entire experiment in order to eliminate the 

effects of the parameter differences. 

 

Stopping Distance Before Intersection is one of the other configuration parameters. It 

defines the distance that vehicles should stop before entering the intersection. This 

parameter is fixed as 1 meter same as default configuration of AIM. Same stopping 

distance is used for entire experiment. 

 

In the configuration panel, user can set number of roads in North-South direction and 

East-West direction. This parameter defines the number of roads which contains lanes 

that enters the intersections. In this experiment, 4-way intersection model has been used, 

in order to simulate this Number of North-bound/South-bound roads parameter and 

Number of East-bound/West-bound roads parameter kept 1 as the default. 
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Figure 5.1.2 Single intersection and Multiple intersection systems 

 

Last parameter is the Number of Lanes per Road which defines the lane count of each 

road contains. In this experiment, AIM and proposed model PLO-AIM has been analyzed, 

tested for both 4 lanes per road and 6 lanes per road. Therefore, this parameter takes 

values either 4 or 6. 

        

Figure 5.1.3 4-lane and 6-lane intersection models 

 

To sum up, in this study all of the configuration parameters kept as what is set in AIM as 

default except traffic level and number of lanes per road. The effects of the traffic level 

are investigated by increasing the values from 600 veh/hour to 200 veh/hour by 200. Also, 

the effects of lane count of road are investigated by changing value either 4 or 6. 
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In order to extract data from simulation, AIM has data collection lines at the beginning 

and end of all roads. Data required for this study, is gathered by modifying these data 

collection lines. Added a timestamp collector in order to get when the vehicle enter the 

system and when they left the system of intersection.  

 

Every vehicle pass through this data collection lines twice in the system. First pass 

happens when they have entered the system and second pass happens when they exit the 

system. Each time, with the modified data collection line, timestamp and vehicles 

identifier is stored and exported to the database.  

 

 

Figure 5.1.4 Data collection line. 

 

In this study, these entering and exiting timestamps of vehicle data has been used for 

calculating metrics such as delay of intersection (DOI) and average travel time (ATT) as 

performance evaluators. This part will be present with more detail in following section. 
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5.2. Measurement Data 

In order to determine efficiency, Dresner and Stone measured delay of intersection, which 

can be presented as the additional travel time caused by a vehicle as a result of passing 

through the intersection. Delay of intersection can be denoted as the time difference 

between travel times of the vehicle passing through the same intersection without any 

other cars and vehicle passing through the intersection with in traffic load.  

 

In this study, delay of intersection and average travel time is measured by using the 

timestamps that is gathered by data collection lines. After the simulation ends, the 

timestamp data is exported to a database table in order to prepare calculations.  

 

Exported data contains vehicle identifiers which is denoted as vehicle identifier and 

timestamps. Therefore, for each vehicle, two different timestamps have collected from 

simulation. One timestamp is for entrance and second timestamp for the exit. By using 

these timestamps, we can calculate the time difference between entrance and exit of each 

vehicle. Calculated difference refers total travel time of vehicle. 

 

By using this difference method, travel time of every vehicle is calculated. After these 

calculations, vehicle identifiers and total travel times are inserted to different database 

table which is used for determining DOI and ATT.  Average of total travel time values 

will reveal average travel time(ATT) which is one of the performance metrics that this 

study investigates. 

 

Second performance metric that this study investigates is delay of intersection(DOI). In 

order to calculate this metric, calculations have designed as Stone and Dresner 

description. Therefore, in order to calculate additional travel time caused by a vehicle as 

a result of passing through the intersection, firstly the time spent for travelling between 

data collection lines without traffic is measured. This measurement is performed by just 

spawning one vehicle at once. Therefore, spawned vehicle will arrive their destination 

without any delay cause by traffic and intersection.  
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At this point, total travel times of each vehicle has calculated, and the time required for 

travel without any traffic has measured. By using Stone and Dresner description, the 

difference calculation between total travel time and time without traffic provides the delay 

that intersection cause on the vehicles which is main performance metric that this study 

investigates. The calculation results which is delay of intersection values are inserted in 

the same database table near the total travel time values. The average value of delay of 

intersections provides us average delay of intersection value. 

 

These ATT and DOI calculations have done for every vehicle in every simulation for five 

times. Also, this procedure has completed for each configuration setup for both AIM and 

proposed model PLO-AIM. Results of this measurements and comparison between AIM 

and PLO-AIM will be presented in the next section. 
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 5.3. AIM and PLO-AIM Experiments 

In this study, several of experiments has done for both base AIM system in order to 

analyze and measure AIM performance. After AIM experiments has completed, proposed 

model has been implemented without changing workflow of base AIM. Then, same 

experiments that has been investigated with base AIM product, has executed again for 

proposed PLO-AIM model. 

 

In this section of this study, all the experiments has done for five times for each 

configuration for both AIM and proposed PLO-AIM model, in order to calculate average 

total travel time and average delay of intersection, this five experiment results has been 

used. In each time, data collection and extracting, ATT and DOI calculation is repeated. 

Therefore, for each experiment, five result has been calculated. In the end, the average 

value of these five results is calculated for ATT and DOI. The results are the average 

travel time and average delay of intersection is the performance metrics for that 

experiment. 

 

This procedure of ATT and DOI calculation has been performed for all of the different 

simulation configurations which is described in Experimental Setup section has 

performed. This procedures and experiments have performed for base AIM product in 

order to analyze its performance and results of AIM is the base performance value that 

proposed model must improve. After the proposed model PLO-AIM has implemented, 

all the performance evaluation procedure has repeated for PLO-AIM. The results of this 

PLO-AIM experiments are used to measure the PLO-AIM results and compare it with 

base AIM product.  

 

This study aims to improve autonomous intersection management performance by 

reducing travel time and delay of intersections. In order to achieve this, potential based 

lane management system that is described in the third section, has been implemented on 

top the AIM product. In the following sections, the results of ATT and DOI calculations 

will be presented for every simulation configuration. All the parameters except lane count 

and traffic level has kept default as AIM predefined. In each experiment, traffic level is 
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increasing by 200 from 600 veh/hour to 200 veh/hour. All of these different traffic level 

scenarios has been tested and measured for both 4 lane and 6 lane intersections.  

 

5.3.1. 4 Lane Experiments 

In this study, two different intersection model has been investigated. All of the 

experiments have been performed for both 4 lane intersections and 6 lane intersections. 

Number of lanes in roads parameter, directly effects the vehicle count that intersection 

manager must handle. Therefore, in this study, first the 4-lane intersection model has been 

tested.  

 

Figure 5.3.1 4-lane intersection 

 

In this infrastructure, intersection is created by 4-way roads which all roads contain four 

lanes. Therefore, intersection has 16 lanes as input lanes which provide vehicle flow to 

the intersection and it also has 16 lanes which vehicle exits the intersection and travel to 

the out of the intersection. 

In the following sections, the average travel time(ATT) and delay of intersection(DOI) 

calculations has been presented for both AIM product and proposed model PLO-AIM. 
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Presented results has been achieved by performing every simulation five times. All of the 

simulation results will be described in detailed for both models.  

In this study, second configuration parameter is the traffic rate. Traffic rate means that 

the vehicle spawn rate of each lane. Traffic rate parameter is changing between 600 and 

2000 by 200. In another words, 600 veh/hour means that in every lane 600 vehicles will 

be spawned in one hour. By changing this parameter, the effects of the increasing traffic 

rate is observed for both AIM and PLO-AIM. 

 

5.3.1.1. 600 veh/hour  

First, AIM model and PLO-AIM model is used to simulate 4 lane intersection model with 

600 veh/hour vehicle spawn rate. Measurements are gathered and ATT and DOI 

calculations has performed for five times.  

 

Table 5.3.1.1. ATT and DOI calculations for 4 lane 600 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 18.039 4.549  15.525 4.396 

2 19.671 6.181  15.191 4.062 

3 17.966 4.476  15.795 4.666 

4 19.191 5.701  16.954 5.825 

5 19.183 5.693  14.987 3.858 

 

 

After performing the same simulation for five times with both AIM and proposed PLO-

AIM model, calculated average travel times and delay of intersections presented above. 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup. 
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5.3.1.2. 800 veh/hour  

In this experiment, traffic level is increased by 200 to 800 veh/hour. Calculation results 

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane 

intersection model with 800 veh/hour vehicle spawn rate. 

 

Table 5.3.1.2. ATT and DOI calculations for 4 lane 800 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 27.796 14.306  24.968 13.839 

2 31.954 18.464  24.902 13.773 

3 33.210 19.720  28.149 17.020 

4 29.597 16.107  24.661 13.532 

5 31.050 17.560  24.318 13.189 

 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup. PLO-AIM model has decreased the delay of intersection and average 

travel times for all the experiments.  

 

5.3.1.3. 1000 veh/hour  

In this experiment, traffic level is increased by 200 to 1000 veh/hour. Calculation results 

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane 

intersection model with 1000 veh/hour vehicle spawn rate. 

 

At this traffic rate, the intersection begins to get full due to increased level of traffic. 

Therefore, the effect of the lane management system begins to decrease. When we 

examine the difference between, AIM and PLO-AIM, the effect of lane management still 

can be seen. 
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Table 5.3.1.3. ATT and DOI calculations for 4 lane 1000 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 52.907 39.417  43.285 32.156 

2 45.498 32.008  49.485 38.356 

3 47.247 33.757  42.845 31.716 

4 53.044 39.554  41.803 30.674 

5 48.656 35.166  37.399 26.270 

 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup. Above table show us that, the performance improvement of the 

proposed model still observed in the performance metrics. 

 

5.3.1.4. 1200 veh/hour  

In this experiment, traffic level is increased by 200 to 1200 veh/hour. Calculation results 

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane 

intersection model with 1200 veh/hour vehicle spawn rate. 

 

By increasing the traffic level, intersection begins to get full faster. In case of intersection 

gets full, the effect of lane management module will decrease because there will be no 

advantage between the lanes. When all of the lanes are fully occupied, lane management 

is not making change between the lanes because all of the lanes are equally full. 
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Table 5.3.1.4. ATT and DOI calculations for 4 lane 1200 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 69.764 56.274  65.630 54.501 

2 70.190 56.700  61.295 50.166 

3 57.403 43.913  58.933 47.804 

4 64.579 51.089  66.409 55.280 

5 73.202 59.712  66.762 55.633 

 

Propsed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup. 

 

5.3.1.5. 1400 veh/hour  

In this experiment, traffic level is increased to 1400 veh/hour.  After this point of 1300 

veh/hour, intersection becomes fully occupied more rapidly. Therefore, no other lane has 

advantage to any other lane because every lane of intersection is full.  

 

Table 5.3.1.5. ATT and DOI calculations for 4 lane 1400 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 85.552 72.062  84.106 72.977 

2 82.860 69.370  83.461 72.332 

3 85.906 72.416  81.072 69.943 

4 75.981 62.491  79.574 68.445 

5 82.379 68.889  82.513 71.384 
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When the intersection is full, lane management does not produce any advantage. 

Therefore, the calculation results are now similar with the base AIM product. The 

decrease of the effect of lane management can be seen in the table above. 

 

5.3.1.6. 1600 veh/hour  

In this experiment, traffic level is increased to 1600 veh/hour. Calculation results are 

presented below table. 

 

Table 5.3.1.6. ATT and DOI calculations for 4 lane 1600 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 90.451 76.961  89.947 78.818 

2 92.696 79.206  92.183 81.054 

3 90.275 76.785  97.846 86.717 

4 96.262 82.772  85.671 74.542 

5 96.510 83.020  95.472 84.343 

 

When the traffic level reaches the 1600 veh / hour, as well as the other traffic levels which 

are greater than 1300, the lanes of intersections are getting full in a short period of time. 

Therefore, the lane change is not providing any advantage.  

 

Because of the input of the intersection and lane is huge, the lane management module 

works for a short period of time until the lanes are full. But in this case, lane changing 

can be expensive if the vehicle which is about to change their lane has lots of other 

vehicles waiting for it. In this case, the lane changing is not providing any advantage.  
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5.3.1.7. 1800 veh/hour  

In this experiment, traffic level is increased to 1800 veh/hour. Calculation results are 

presented below table. 

 

Table 5.3.1.7. ATT and DOI calculations for 4 lane 1800 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 98.572 85.082  97.218 86.089 

2 98.701 85.211  103.745 92.616 

3 99.618 86.128  103.141 92.012 

4 100.556 87.066  95.914 84.785 

5 99.186 85.696  102.436 91.307 

 

5.3.1.8. 2000 veh/hour  

In this experiment, traffic level is increased to 1200 veh/hour. Calculation results are 

presented below table. 

 

Table 5.3.1.8. ATT and DOI calculations for 4 lane 2000 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 102.241 88.751  104.405 93.276 

2 104.722 91.232  106.892 95.763 

3 108.735 95.245  101.356 90.227 

4 103.855 90.365  108.958 97.829 

5 103.196 89.706  99.840 88.711 
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5.3.2. 6 Lane Experiments 

In this infrastructure, intersection is created by 4-way roads which all roads contain six 

lanes. Therefore, intersection has 24 lanes as input lanes which provide vehicle flow to 

the intersection and it also has 24 lanes which vehicle exits the intersection and travel to 

the out of the intersection. 

 

In the following sections, the average travel time(ATT) and delay of intersection(DOI) 

calculations has been presented for both AIM product and proposed model PLO-AIM. 

Presented results has been achieved by performing every simulation five times. All of the 

simulation results will be described in detailed for both models.  

 

In this study, second configuration parameter is the traffic rate. Traffic rate means that 

the vehicle spawn rate of each lane. Traffic rate parameter is changing between 600 and 

2000 by 200. In another words, 600 veh/hour means that in every lane 600 vehicles will 

be spawned in one hour. By changing this parameter, the effects of the increasing traffic 

rate is observed for both AIM and PLO-AIM. 

 

 

Figure 5.3.2 6-lane intersection 
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5.3.2.1. 600 veh/hour  

First, AIM model and PLO-AIM model is used to simulate 6 lane intersection model with 

600 veh/hour vehicle spawn rate. Measurements are gathered and ATT and DOI 

calculations has performed for five times.  

 

Table 5.3.2.1. ATT and DOI calculations for 6 lane 600 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 25.159 11.669  19.552 8.423 

2 25.222 11.732  22.288 11.159 

3 23.621 10.131  18.732 7.603 

4 26.272 12.782  21.171 10.042 

5 27.569 14.079  23.943 12.814 

 

After performing the same simulation for five times with both AIM and proposed PLO-

AIM model, calculated average travel times and delay of intersections presented above. 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup. 

 

5.3.2.2. 800 veh/hour  

In this experiment, traffic level is increased by 200 to 800 veh/hour. Calculation results 

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane 

intersection model with 800 veh/hour vehicle spawn rate. 
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Table 5.3.2.2. ATT and DOI calculations for 6 lane 800 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 38.006 24.516  36.140 25.011 

2 39.168 25.678  38.184 27.055 

3 38.455 24.965  34.351 23.222 

4 33.489 19.999  30.910 19.781 

5 47.862 34.372  38.310 27.181 

 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup.  

 

5.3.2.3. 1000 veh/hour  

In this experiment, traffic level is increased by 200 to 1000 veh/hour. Calculation results 

are presented below.  

 

Table 5.3.2.3. ATT and DOI calculations for 6 lane 1000 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 61.911 48.421  56.116 44.987 

2 63.795 50.305  58.417 47.288 

3 57.891 44.401  51.865 40.736 

4 54.095 40.605  59.360 48.231 

5 61.304 47.814  56.590 45.461 
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At this traffic rate, the intersection begins to get full due to increased level of traffic. 

Therefore, the effect of the lane management system begins to decrease. When we 

examine the difference between, AIM and PLO-AIM, the effect of lane management still 

can be seen. 

 

5.3.2.4. 1200 veh/hour  

In this experiment, traffic level is increased by 200 to 1200 veh/hour. Calculation results 

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane 

intersection model with 1200 veh/hour vehicle spawn rate. 

 

By increasing the traffic level, intersection begins to get full faster. In case of intersection 

gets full, the effect of lane management module will decrease because there will be no 

advantage between the lanes. When all of the lanes are fully occupied, lane management 

is not making change between the lanes because all of the lanes are equally full. 

 

Table 5.3.2.4. ATT and DOI calculations for 6 lane 1200 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 86.145 72.655  77.283 66.154 

2 79.446 65.956  82.064 70.935 

3 85.638 72.148  75.917 64.788 

4 76.952 63.462  71.728 60.599 

5 78.520 65.030  77.068 65.939 

 

 

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this 

configuration setup.  
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5.3.2.5. 1400 veh/hour  

In this experiment, traffic level is increased to 1400 veh/hour.  After this point of 1300 

veh/hour, intersection becomes fully occupied more rapidly. Therefore, no other lane has 

advantage to any other lane because every lane of intersection is full.  

 

Table 5.3.2.5. ATT and DOI calculations for 6 lane 1400 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 90.787 77.297  98.910 87.781 

2 98.416 84.926  97.385 86.256 

3 95.200 81.710  93.462 82.333 

4 92.272 78.782  87.479 76.350 

5 93.468 79.978  98.864 87.735 

 

 

When the intersection is full, lane management does not produce any advantage. 

Therefore, the calculation results are now similar with the base AIM product. The 

decrease of the effect of lane management can be seen in the table above. 

 

5.3.2.6. 1600 veh/hour  

In this experiment, traffic level is increased to 1600 veh/hour. Calculation results are 

presented below table. In this case, the traffic load of intersection is getting bigger, all of 

the lane’s spawns 1600 vehicles in hour.  

 

Intersection system suffers from the fully crowded  lanes, all of the lanes gets full very 

rapidly. Lane management system works for a very short time which begins with the 

simulation starts and ends when the intersection is full. 

Table 5.3.2.6. ATT and DOI calculations for 6 lane 1600 veh/hour experiment 
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 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 107.229 93.739  102.634 92.505 

2 110.752 97.262  103.142 93.013 

3 113.268 99.778  107.720 97.591 

4 114.058 100.568  116.066 105.937 

5 106.480 92.990  108.105 97.976 

 

The calculation results are now similar with the base AIM product. The decrease of the 

effect of lane management can be seen in the table above. 

 

5.3.2.7. 1800 veh/hour  

In this experiment, traffic level is increased to 1800 veh/hour. Calculation results are 

presented below table. 

 

Table 5.3.2.7. ATT and DOI calculations for 6 lane 1800 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 118.903 105.413  116.601 105.472 

2 110.288 96.798  117.349 106.220 

3 114.080 100.590  117.578 106.449 

4 115.451 101.961  110.389 99.260 

5 121.323 107.833  117.644 106.515 
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5.3.2.8. 2000 veh/hour  

In this experiment, traffic level is increased to 2000 veh/hour. Calculation results are 

presented below table. 

 

Table 5.3.1.8. ATT and DOI calculations for 6 lane 2000 veh/hour experiment 

 AIM  PLO-AIM   

Experiment 

No 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

1 123.996 110.506  123.663 112.534 

2 120.577 107.087  123.789 112.660 

3 119.517 106.027  123.873 112.744 

4 118.415 104.925  128.998 117.869 

5 122.847 109.357  122.542 111.413 

 

The results of the higher traffic levels, the effect of the lane change is totally vanished. 

Due to high traffic level, the intersection immediately gets full of all of its input lanes.  

After that point, nothing can improve the performance of the intersection because all of 

the lanes in all of the roads are full filled.  

 

At this point, all of the processes are dependent to the queue mechanism which determines 

which vehicle will use the intersection first and the trajectory planning systems. When all 

of the lanes in the all of roads are full, the system acts as a closed-system and all of the 

measurements are getting similar because there is nothing to solve or change. 
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5.4.  Comparison and Results 

In this section present results have been compared and summarized. All of the 

calculations presented in the previous section is used to get following average values of 

each traffic level. Therefore, in the following tables presents the average values of each 

experiment which is performed five times. 

 

Average Travel time and Average Delay of Intersection values are used as performance 

metrics that is used for comparison between AIM and PLO-AIM. 

 

5.4.1 4 Lane Comparison 

Table 5.4.1. ATT and DOI comparisons between AIM and PLO-AIM in 4 lanes 

 AIM  PLO-AIM   

Traffic 

Level 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

600 18.810 5.320  15.690 4.561 

800 30.721 17.231  25.400 14.271 

1000 49.470 35.980  42.963 31.834 

1200 67.028 53.538  63.806 52.677 

1400 82.536 69.046  82.145 71.016 

1600 93.239 79.749  92.224 81.095 

1800 99.327 85.837  100.491 89.362 

2000 104.550 91.060  104.290 93.161 

 

By looking the above comparison between AIM and proposed model PLO-AIM, PLO-

AIM outperformed AIM for reasonable traffic rates which is 600 veh/hour to 1300 

veh/hour. Above this traffic rate intersections gets full very rapidly therefore, there is not 

enough time for lane management. Without lane management, the performance gets  

similar with the AIM. 
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The measurement data of 4-lane delay of intersection for bot AIM and PLO-AIM models 

are displayed in the following figure.  

 

 

Figure 5.4.1.1 4-lane Delay of Intersection Comparison 

 

The measurement data of 4-lane average travel time for bot AIM and PLO-AIM models 

are displayed in the following figure.  

 

 

Figure 5.4.1.2 4-lane Average Travel Time Comparison 
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5.4.2 6 Lane Comparison 

In this chapter, the results of 6 lane experiments are compared with the base AIM product. 

Following table, presents the average values of delay of intersections of each traffic level, 

and presents the average travel time for each traffic level. 

 

These average values of the performance metrics are generated by using all of the five 

trials of each experiment. Therefore, in the below table, performance metrics of 

autonomous intersections such that delay of intersection and average travel times are 

listed for both AIM and proposed PLO-AIM model for 6-lane experiments. 

 

Table 5.4.2. ATT and DOI comparisons between AIM and PLO-AIM in 6 lanes 

 AIM  PLO-AIM   

Traffic 

Level 

Average Travel 

Time 

Delay of 

Intersection 

 Average Travel 

Time 

Delay of 

Intersection 

600 25.569 12.079  21.137 10.008 

800 39.396 25.906  35.579 24.450 

1000 59.799 46.309  56.470 45.341 

1200 81.340 67.850  76.812 65.683 

1400 94.029 80.539  95.220 84.091 

1600 110.357 96.867  107.533 97.404 

1800 116.009 102.519  115.912 104.783 

2000 121.070 107.580  124.573 113.444 

 

4 lane results are repeating themself also in the 6 lane experiments. By looking the 

comparison table, PLO-AIM outperformed AIM for reasonable traffic rates.  Same 

behavior caused by increasing traffic observed also in 6 lane experiments. PLO-AIM 

outperformed AIM for reasonable traffic rates which is 600 veh/hour to 1300 veh/hour. 

After that point, because of intersection being full, lane management does not provide 

any advantage to vehicles. Therefore, results are getting similar with the base AIM. 
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The measurement data of 6-lane delay of intersection for bot AIM and PLO-AIM models 

are displayed in the following figure.  

 

 

Figure 5.4.2.1 6-lane Delay of Intersection Comparison 

 

The measurement data of 4-lane delay of intersection for bot AIM and PLO-AIM models 

are displayed in the following figure.  

 

 

Figure 5.4.2.2 6-lane Average Travel Time Comparison 
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6. RESULTS AND DISCUSSIONS 

After completing experiments about proposed model, organizing the autonomous vehicle 

distribution approaching the intersection in every lane is directly affecting the 

performance of the intersection.  By triggering the autonomous vehicles to adjust their 

lane by looking the potential values regulates the inputs of intersections. This regulation 

provides time savings to each vehicle until they arrive to the intersection. Each vehicle 

changes their lane to most advantageous lane for themselves which means less crowded 

lanes. Therefore, autonomous vehicles arrive intersection earlier. 

 

All of the vehicles try to adjust their lane, with this common behavior, all of the time 

required for vehicles to arrive intersection is decreased. Therefore, managing the lane 

distribution of autonomous vehicles improved the performance of the intersection and 

made the passing through the intersection is more efficient at acceptable traffic densities.  

 

In this study, average intersection delay and average travel time criteria is used to evaluate 

the performance of autonomous intersections. With the vehicles using the potential 

approach to organize their own lanes, traffic flow has been managed in a more balanced 

form. Since the accumulations are balanced on the lanes, it has been observed that both 

the total travel time of the vehicles and the intersection delays have decreased.  

 

PLO-AIM model improves the evaluation metrics such as average delay of intersection 

and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour 

per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel 

time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in 

between %1.6 - %17.1 for 4-lane and 6-lane scenarios for reasonable traffic rates, which 

is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. 
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As a result of the development and experiments were carried out in this study, it is  

observed that lane management is a parameter that directly affects autonomous 

intersection management performance. The solution that is proposed has increased the 

performance of autonomous intersection management compared to the base AIM 

structure for acceptable traffic densities.  

 

Additionally, it is observed that at high traffic densities, the effect of the potential based 

lane arrangement layer gradually diminished. However, this is not a problem with the 

potential approach. Since the intersection reaches its maximum capacity very quickly at 

high traffic rates, no lane has an advantage over other lanes. For this reason, there is no 

benefit in changing lanes. Therefore, the effect of a lane management and potential based 

lane changes can only be observed in a short time until the intersection is full. Since this 

time is too short, the effect of the PLO layer is not be observed at high traffic densities.  

 

By decreasing the travel times and delays, the wasted time and energy for transportation 

will also be decreased. Proposed model will increase the autonomous intersection 

performance therefore, it will decrease the time spent. Intersections are the bottleneck of 

the efficient autonomous transportation. Therefore, increasing the performance of the 

intersections are directly increase the performance of the autonomous transportation. By 

saving time and energy, transportation of autonomous vehicles will be more efficient and 

will reduce the side effects of the transportations such as air pollution and noise pollution.  

 

In future studies, proposed potential based method can be used not only to reorganize the 

lanes, but also to plan all the routes of autonomous vehicles with potential-based intuitive 

choices. With this approach, it is aimed to create a potential-based autonomous vehicle 

management strategy different from the existing methods in the literature.  

 

The scope of decisions taken by autonomous vehicles can be expanded by adding 

additional parameters that will express the different intentions and preferences of the 

vehicles or passengers to the potential calculation is used in this study.  Intentions means 

that each vehicle has destination points in autonomous driving therefore, they have 
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intention to reach their destination. In order to use this intention, additional parameters 

can be added to the potential calculation. By considering the intention, destination 

relevant lane changing can be achieved. Therefore, autonomous vehicles will try to 

change their lane by considering their destinations. The vehicles need to turn right, will 

not go to the left lanes unless there is not a huge advantage difference.  This approach 

will make the potential based lane changing more efficient. 

 

By adding additional parameters to the potential calculation such as representing different 

types of actors such that ambulances, fire trucks and police vehicles can be prioritized in 

lanes. With this concept, real-life intuitive driving will be modeled more accurately by 

autonomous vehicles. 
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7. COMMENTS AND CONCLUSIONS 

In conclusion, autonomous intersection management is one of the popular subjects about 

autonomous vehicles. Also, these two areas trigger each other to expand. Developments 

in intelligent vehicles feeds the developments in management of intelligent vehicles. As 

the vehicles are getting smarter, the management systems are also getting smarter. 

Because of that different solutions from multiple disciplines can be applied for this topic.  

 

This study presents the effects of lane organization by using potential approach in order 

to improve performance of autonomous intersection management. In light of the results 

achieved, managing the lanes of vehicles entering intersections has a significant impact 

on determining autonomous intersection management performance. By managing the 

lanes, intersection delay and travel times of vehicles for specified traffic rates is decreased. 

This study showed that performance of autonomous intersection management is directly 

related with the lane management and by organizing the lanes, the intersection 

performance, output, has increased.  

 

Proposed model allows the vehicles to manage their lanes by potential calculation. There 

is no central moderator, but as the vehicles switched the most advantageous lane for 

themselves as a result of potential-based decisions. Therefore, proposed model can be 

applied to all of the autonomous vehicles which will eventually use the intersection. 

 

The proposed model does not even require an intersection. Lane management can be used 

in free ways or long roads. Therefore, lane management ability can be used for every 

where during the autonomous travels because proposed model gave the ability to vehicles 

not a central moderator. 

 

With the increasing traffic rate, intersections are getting crowded faster than ever. This 

study also showed that, lane management in the fully crowded intersections does not 

provide any performance benefits because no other lane has advantage to each other. 

Therefore, vehicles must follow their lane to the intersection.  
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APPENDIX 

EK 1 – Tezden Türetilmiş Bildiriler 

 
 

PLO-AIM: Potential-based Lane Organization in 

Autonomous Intersection Management 
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Abstract—Traditional management models of intersections, such as no-light 

intersections or signalized intersection, are not the most effective way of passing the 

intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a 

new intersection control model called Autonomous Intersection Management(AIM).In 

the AIM simulation, they were examining the problem from a multi-agent perspective, 

demonstrating that intelligent intersection control can be made more efficient than 

existing control mechanisms. In this study, autonomous intersection management has 

been investigated. We extended their works and added a potential-based lane organization 

layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to 

analyze near lanes, and they change their lane if other lanes have an advantage. We can 

observe this behavior in real life, such as drivers, change their lane by considering their 

intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less 

crowded lane in order to reduce delay. We model that behavior without any change in the 

AIM workflow. Experiment results show us that intersection performance is directly 

connected with the vehicle distribution in lanes of roads of intersections. We see the 

advantage of handling lane management with a potential approach in performance metrics 

such as average delay of intersection and average travel time. Therefore, lane 

management and intersection management are problems that need to be handled together. 

This study shows us that the lane through which vehicles enter the intersection is an 

effective parameter for intersection management. Our study draws attention to this 

parameter and suggested a solution for it. We observed that the regulation of AIM inputs, 

which are vehicles in lanes, was as effective as contributing to aim intersection 

management. PLO-AIM model outperforms AIM in evaluation metrics such as average 

delay of intersection and average travel time for reasonable traffic rates, which is in 

between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model 

reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average 

delay of intersection in between %1.6 %17.1 for 4-lane and 6-lane scenarios.  

 

Keywords— AIM project, Autonomous intersection management, Lane organization, 

Potential-based approach 
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I. INTRODUCTION 

 

In this study, research and developments and experiments have been made on models 

related to intersection management of autonomous vehicles. The basis of our problem is 

to ensure that autonomous vehicles pass through intersections collision-free and with as 

little delay as possible. 

Autonomous intersection management systems are systems established to manage the 

passage of connected and autonomous vehicles (CAV) through intersections without 

collision. For this purpose, different approaches have been adopted. Intersection 

management is provided by the communication between smart vehicles or with a central 

moderator. In this approach, smart vehicles coming to the intersection share physical 

parameters such as speed, position, acceleration, direction, source, target with each other 

and become aware of each other. As a result of the calculations made with these data 

defining the movement, they enable them to pass through the intersection without 

collision. Another approach is in the structures where these smart vehicles communicate 

with an intersection manager or moderator placed on the intersection and plan their 

passage through the intersection. There are approaches that create learning models over 

the movements of vehicles using machine learning or even more complex systems using 

fuzzy logic with machine learning to make decision to move together or individually. 

One of the most outstanding studies in this field is AIM, the autonomous intersection 

management system presented by Stone and Dresner in 2004 and developed in 2008 with 

a multi-agent approach [1]. AIM offers a multi-agent model and simulator that 

communicates with an intersection manager of autonomous vehicles to pass the 

intersection without collision. There are many successful studies in the literature based 

on this AIM simulator developed by Stone and Dresner. In our study, we used this AIM 

simulator to implement our own approach. In studies on this subject, approaches are 

generally seen with the movements of the vehicles. 

 

During our experiments on AIM, we saw that how the vehicles approach the intersection 

and which lane they go from have a significant effect on the delay values caused by the 
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intersection. We said that the vehicles do not proceed to the intersection randomly, after 

a control mechanism and evaluation mechanism calculate which lane is more 

advantageous for them and enter the intersection over that lane. In this way, we reduce 

the delay applied by the intersection, namely the delay of Intersection. This means 

reducing the time spent by vehicles at intersections. 

 

About this problem, we aim to enable autonomous vehicles to change the lanes from 

which they enter intersections to be the most advantageous lane for them. With this 

approach, it is aimed that vehicles can overcome the accumulation of random traffic. It is 

aimed to reduce the travel time of vehicles and reduce intersection delays by enabling 

them to approach the intersection from the most suitable lane. In our study, instead of 

dealing with the movements of the vehicles, we ensure that the filling of intersections is 

out of randomness and filled in a balanced way by determining the most appropriate lane 

in which the vehicles can move. While doing this, we ensure that the vehicles calculate 

the potential values for their own and adjacent lanes, and according to these potential 

values, they switch to the most convenient and most advantageous lane. 

 

As a result, we have shown that the lane from which the vehicles enter the intersections 

and the delays that the intersections cause on autonomous vehicles are interrelated. We 

will present with our experimental results that this delay can be reduced by a correct lane 

management. Lane management will increase the performance of autonomous 

intersections and reduce the duration of autonomous travels. As a natural consequence of 

this, traffic created by autonomous vehicles will decrease in the final case. While 

supporting the positive environmental changes that occur with the decrease in traffic, it 

will save energy and time when evaluated specifically for autonomous vehicles. 

 

 

 

II. LITERATURE SUMMARY 

 



 

 76 

Autonomous intersection management is a common problem about autonomous vehicles. 

Also, these two topics triggers each other. Developments in intelligent vehicles feeds the 

developments in management of intelligent vehicles. As the vehicles are getting smarter, 

the management systems are also getting smarter. Because of that different solutions from 

multiple disciplines can be applied for this topic. This study investigates that the effects 

of doing lane organization by using potential approach on autonomous intersection 

management. Therefore, we researched about autonomous intersection management. The 

most relevant studies have listed in the table below. 

 

In the study of C Yu, W Sun and X Yang, a reservation-based method with simple 

policies, such as First-come-first-served Service (FCFS), has been proposed in the 

literature to manage connected automated vehicles (CAV) at isolated intersections, but 

there is a comprehensive analysis of intersection capacity and vehicle delays in FCFS [2]. 

In order to solve the problem of lack of underlying control, especially in high traffic 

demand situation, to solve this problem, adopt queuing theory to analytically show that 

this method cannot meet the high demand where traffic flow overlaps, and provide 

optimal service. Proposed an optimization model for CAV reaching the intersection to 

minimize delay. This study compares the performance of the predicted optimization-

based control at various demand levels for conventional vehicle drive control and 

reservation-based control. It shows the best performance in the proposed optimization and 

has a noticeable advantage over the other two controls. The advantages of reservation-

based control are insignificant over demanding vehicle operation control. 

 

M Khayatian and M Mehrabian proposed a time and space sensitive technique for 

managing the intersections of autonomous vehicles that are rugged against external 

disturbances and model mismatches in their study about RIM [3]. In their method, IM is 

responsible for assigning the oncoming vehicles safe Time of Arrival (TOA) and Arrival 

Speed (VOA) without any conflict, and vehicles are responsible for selecting and 

following a trajectory to reach the intersection and driving in VOA. Since the vehicles 

follow a position trajectory, the effect of limited pattern mismatch and external 

disturbances can be compensated. Also, vehicles that want to turn at the intersection do 
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not need to drive at low speed before entering the intersection. Results from experiments 

show that improvements shorten the average times. 

 

In the article of B Liu, Q Shi, Z Song and A El Kamel a collaborative timing mechanism 

for autonomous vehicles passing through an intersection called TP-AIM has been 

proposed [4]. The main purpose of this research is to ensure safe driving while minimizing 

delay at an intersection without traffic lights. First, an intersection management system 

used as an information gathering-editing center assigns reasonable priorities for all 

available vehicles and thus plans their trajectories. Secondly, a window search algorithm 

is performed to find backup windows as well as an input window that can create a 

collision-free trajectory with minimal delay. Finally, vehicles can individually edit their 

trajectories by applying dynamic programming to calculate the speed profile to pass the 

intersection. MATLAB / Simulink and SUMO based simulations are created between 

three types of traffic mechanisms with different traffic flows. The results show that the 

proposed TP-AIM mechanism significantly reduced the average evacuation time and 

increased efficiency by over 20% . The article also explores delay, which can be reduced 

to less than 10% compared to conventional light management systems. Both safety and 

efficiency can be guaranteed in the proposed mechanism. 

 

In the study of R Chen, J Hu, MW Levin and D Rey, they propose an autonomous 

intersection management algorithm called AIM-pad that considers both vehicles and 

pedestrians to provide optimal efficiency when combined with maximum pressure control 

[5].This study analyzes the stability properties of the algorithm based on a simpler version 

of AIM-pad, the conflict zone model of autonomous intersection management. To apply 

the proposed algorithm in the simulation, this study the maximum pressure control current 

trajectory optimization algorithm to calculate optimal vehicle trajectories. Simulations 

were conducted to test the effects of pedestrian demand on intersection efficiency. The 

simulation results show that the delays of pedestrians and vehicles are negatively 

correlated, and the proposed algorithm can adapt to the change in pedestrian demand and 

enable conflicting trajectory vehicle movements. 
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Y Wu, H Chen and F Zhu modeled CAVs as Markov Decision Processes (MAMDPs), 

using communication and computational technologies, in which sequential movements of 

vehicles from intersection points work together to minimize deceleration of vehicle 

factors with non-collision constraints in their study DCL-AIM [6]. From the structural 

features of the AIM problem and using a decentralized coordinated multi-factor learning 

approach (DCL), it is divided into an independent part and a coordinated part. AIM) is 

recommended to solve the problem efficiently by leveraging both global and localized 

agent coordination requirements in AIM.  

 

The main feature of the proposed approach is to clearly identify the coordination needs 

of representatives in the learning process and adapt them dynamically, so that the 

dimensional and non-stationary problems of the environment can be alleviated while 

learning with more than one tool. The effectiveness of the proposed method has been 

demonstrated under various traffic conditions. Comparative analysis is based on the LQF-

AIM guide (Longest Queue-First) and Webster's method (Signal) between DCL-AIM and 

first-come-first-service-based AIM (FCFS-AIM). as comparison. Experimental results 

show that DCL-AIM's sequential decisions outperform other control directives. 

 

Developments in autonomous vehicles and smart transportation systems point to a rapidly 

approaching future where smart vehicles can automatically manage the travel process, 

become aware of their environment, make decisions with this awareness and implement 

the decisions they make. When K Dresner and P Stone consider the increasing traffic and 

number of active vehicles, they saw that smart solutions will need to be implemented in 

the field of transportation. In order to increase the efficiency of transportation 

infrastructure, more intelligent traffic control mechanisms that work hand in hand with 

smart vehicles are needed to include into our lives. 

 

To this end, Dresner and Stone proposed a new junction control mechanism called 

Autonomous Intersection Management (AIM), and in the simulation, examining the 

problem from a multi-agent perspective, it showed that intersection control could be made 

more efficient than existing control mechanisms such as traffic signals or stop signs [1]. 

AIM is a open source intersection management framework that generates an intersection 
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model based on simulation configurations. AIM also generate vehicles, drivers, and 

operate them during intersections. 

 

This multi-agent systems-based intersection management strategy, introduced by Dresner 

and Stone, follows a protocol for reservation for every vehicle. Arriving vehicles to the 

intersection will inform the Intersection Manager (IM) agent. The IM is responsible for 

controlling that intersection by reserving a trajectory for vehicles through intersection 

space-time. The IM process every reservation request and determines requests whether 

confirm or reject by regarding intersection control policy [1]. 

 

General communication between vehicles and intersection manager is ordered below. 

(a) The vehicle approaching the intersection informs the intersection manager that it is 
approaching along with required information such as vehicle size, estimated time of 
arrival, speed, acceleration, the lane it is in and the lane it wants to pass. 

(b) The intersection manager simulates the road that the vehicle will follow inside the 
intersection using the information shared by the vehicle. The IM checks whether the 
road that the previous vehicles will follow at the intersection and the road that the 
new vehicle wants to follow does not conflict. 

(c) The intersection manager confirms a reservation if there is no interference with the 
path in times the vehicles will use. After this point, it becomes the vehicle’s task to 
reach the intersection and pass through the intersection. 

(d) Vehicles must receive their successful reservation message from IM, in order to use 
intersection and pass to their desired lanes. 

 

 

Fig. 1. Diagram of Intersection workflow. 

 

After the response of the intersection manager, vehicle performs the IM decision or wait 

and re-sent reservation request for successful message. 
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Fig. 2. Successful and rejected situations in simulation. 

 

M Hausknecht, TC Au and P Stone extended the work of Stone and Dresner beyond the 

situation of a single intersection and examine the unique consequences and capabilities 

of using AIM-based agents to control an interconnected network of intersections [7]. They 

explore various navigation rules that autonomous vehicles can use to dynamically change 

their planned routes, observe an example of the Braess Paradox, and explore the new 

possibility of dynamically reversing traffic flow across lanes in response to minute-by-

minute traffic conditions. By examining this multi-agent system in simulation, they 

measure the significant efficiency improvements that can be achieved with this tool-based 

traffic control methods. 

 

III. METHOD 

 

The main problem that we focus on this study is to reduce the intersection delays and the 

maximum travel time by reorganizing the lane distributions of autonomous vehicles in 

autonomous intersection management. We have observed in our experiments that 

reorganizing the lanes from which vehicles enter the intersections to the density of their 

neighboring lanes and allowing the vehicles to move to the less dense lanes from their 

own lanes, reduces the delays that the vehicles are exposed to. 

 

To this end, the solution we proposed is to create a lane management line that will trigger 

autonomous vehicles to evaluate other lanes in order to change their lanes to the most 

advantageous lane. Vehicles change their lanes by making assessment according to the 



 

 81 

condition of the neighbor lanes repeatedly at a certain interval. Vehicles uses potential 

approach for evaluation of the other lanes. 

 

At this point, we are managing autonomous intersections using the AIM project presented 

by Stone and Dresner [1]. AIM is a simulation tool for autonomous intersection 

management. AIM creates a intersection or system of intersections using preselected 

parameters in configuration panel. Then, it starts to produce vehicles at the rate 

determined by the configuration parameters. These vehicles begin to move from the lane 

they spawned to the intersection. When vehicles enter the intersection, zone determined 

dynamically by IM, if they are the first vehicle in their lane, they send a reservation 

request to IM. 

 

Reservation requests thrown by the foremost vehicle of all lanes are kept in a queue 

structure. Vehicles whose turn is in the queue enter the intersection for turning and are 

removed from the queue. The first vehicle just behind the vehicle that has entered the 

intersection and started the turning process, as it is now the first in that lane, sends a 

reservation request to IM and is included in the queue structure. In this way, vehicles cross 

the intersection with the principle of first come, first out. 

 

For vehicles that send reservation requests, the intersection manager runs a simulation 

and calculates the space-time trajectory of these vehicles. As long as the results of the 

calculation do not intersect with the space-time trajectory of the vehicles at the 

intersection, the intersection manager sends permission to pass these vehicles. If there is 

an intersection, the intersection manager sends a rejection response and triggers the 

vehicle to request a reservation again. In this way, all vehicles complete the intersection 

crossing within a queue structure without collision. 

 

With the traffic density parameter selected during configuration, vehicles begin to spawn 

from all lanes and move towards the intersection. At this point, we can observe the 

situation that we consider as a problem. Since the vehicles are moving in the lanes they 

are formed, they are not stacked in a balanced way on the intersection. This means that 
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instead of entering the intersection from an emptier lane and queuing up and out faster, 

they only have to wait for the vehicles in front of them because they comes from the lane 

they were created in. This increases the intersection delay and total travel time, which are 

our evaluation criteria. 

 

Our solution is to use the potential approach to move vehicles into the lane that is most 

advantageous for them. As a natural consequence of this, vehicles will enter the 

intersection in the least crowded lane and the distribution of vehicles at the intersection 

on the lanes will be balanced. Ultimately, the efforts of vehicles to reach the intersection 

in the most advantageous lane based on lane density will reduce their junction delay and 

overall travel time. 

 

Potential approach was used in Cumhur Y. Ozcan’s path-based study of crowd simulation 

for path planning [8]. They proposed a system using the Reciprocal Speed Barriers [9] 

(RVO) model as the basic routing algorithm, which provides macro information 

computed by a modified A * algorithm. 

 

The main feature of the proposed system is the modification of cost function of the A * 

algorithm to consider the current and possible future positions of other agents and path 

calculations. For this purpose, after a path calculation is made for an agent, they store the 

information about the calculated path (ie potential value) on the grid that other agents will 

use when determining their paths. Cumhur Y. Ozcan used potential approach in 

comparison with machine learning methods in his time-based global path planning study 

[10]. 

 

These studies show that the potential approach can compete with machine learning 

approaches. Because, in fact, moving in the crowd and driving in the crowd as a very 

similar problem are actions based on learned reflexes that people perform with their 

intuition. For this reason, it is very plausible that heuristic algorithms modeling human 

intuition are successful. 
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In addition, collecting the volume and variety of data required by machine learning is a 

research problem in itself. While collecting even this data, data must be collected from 

intersections where there are intuitive approaches to actually reflect the context, because 

people drive intuitively. For this reason, we cannot collect data as if all drivers behave in 

the same way because we do not drive our cars that way. In order for machine learning 

data to work, it must be based on real life. In real life, people are already driving 

intuitively. 

 

People actually predict who will turn, who will not turn, and which vehicle will turn where 

even if it does not signal. This is a very important issue because we choose the most 

advantageous lane according to these estimates. What we are trying to do with potential 

is to be able to model this intuitive behavior and prediction that people exhibit. 

 

We achieved the lane management using the potential approach to organize AIM inputs 

by keeping the core business logic of AIM. Lane management means regulating the 

distribution of vehicles on a road over lanes. We solved this problem by enabling the 

vehicles to calculate the potential for their lane and neighboring lanes at certain time 

intervals and to choose the most advantageous lane according to these potential values 

and change lanes. 

 

With this potential calculation, we enable vehicles entering from a random lane to 

determine which lane they should be in by evaluating their lane and the density of 

neighboring lanes. During this assessment, vehicles calculate the total potential for the 

right adjacent lane, left adjacent lane and the current lane. While doing this calculation, 

the vehicles give potential values to the vehicles ahead of them, in other words closer to 

the intersection, according to their distance from them. 

 

Vehicles obtains the potential values of the lanes by summing up these potential values 

by lane. With this logic, the lane with the lowest potential means the most advantageous 

lane for that vehicle. If the lane with the lowest potential value is the current lane of the 

vehicle, the vehicles do not change its movement, but if the lane with the lowest potential 
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value is the right and left adjacent lane, the vehicle changes lane. Repeating this process 

every second until they reach the intersection, they enter this intersection in the most 

advantageous lane for them. Since this approach is made by all vehicles, a balanced 

distribution of vehicles on lanes is ensured. This increases the performance of the 

intersection by reducing the intersection delay and travel time, which are performance 

metrics as described in the previous sections. 

 

IV. EXPERIMENTS 

 

In this section, there will be detailed information about what experiments we have done 

for research. We firstly analyze the base AIM system. After that, we implement our lane 

organization layer to distribute vehicles more intuitive with the potential based approach. 

We did all the tests and experiments we did on the base AIM version in this version as 

well in order to comparison of performances. We compared our PLO-AIM version with 

standard AIM version and listed the results. Finally, in the discussion subsection we 

present summary information about findings of this study, strengths and weaknesses of 

our development, and possible future works. 

 

A. Measurement Data 

 

This study aims to decrease the delay of intersection(DOI) and average travel time in 

order to increase the efficiency of intersection. We implement a structure to collect time 

and space data about vehicles. Data collection lines, triggers the measurement methods, 

and outputs every time vehicle passes. Therefore, we can determine the timestamps of 

each vehicle entered and also the timestamps of each vehicle exit the intersection. 

 

Measurement layer produce timestamp data indexed by vehicle identifiers and ready to 

import local database. After we import the data to oracle database, we calculate timestamp 

differences of each vehicles data. This difference corresponds to the time differences 

between the vehicles entering and exiting the intersection. 
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B. Experimental Setup 

 

AIM project has built-in simulator. We used this tool for experimenting base AIM project 

and also experimenting our version of AIM with potential based approach. In this 

simulator you can configure, some key parameters to build and simulate autonomous 

intersection. We can set traffic management protocol (aim, traffic lights, etc.), traffic level 

(vehicles /hour) per lane, vehicle speed(meters/second), stopping distance before 

intersection, number of north-bound/southbound roads, number of east-bound/west-

bound roads, intersection count. In this study, all the configurations kept as default except 

traffic level rate will change by 200 from 600 veh/hour to 2000 veh/hour. Also, we 

execute same scenarios for 4 lane per road and 6 lane per road. 

 

We collect the data from base AIM product and after that we execute the same simulations 

with AIM with potential based approach. In order to evaluate performances of both 

systems, we calculate delay of intersection (DOI) and average travel time as performance 

evaluators. Travel time means that total time of vehicle. We measure this by taking 

timestamps in entering and exiting points of roads. 

 

In order to determine efficiency, Dresner and Stone measured delay of intersection, which 

can be presented as the additional travel time caused by a vehicle as a result of passing 

through the intersection. Delay of intersection can be denoted as the time difference 

between travel times of the vehicle passing through the same intersection without any 

other cars and vehicle passing through the intersection within traffic load. We measured 

the same criteria in order to compare. Results of these calculations and comparisons 

between AIM and PLO-AIM is shared in following section. 

C. Results 

 

In order to analyze and observe base AIM system times, we run five simulation for each 

traffic rate and intersection size. We calculated average delay of intersection (Average 

DOI) and average travel time for each configuration. In this case, our experiments use 
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same configuration, but we use two different intersection model. First one has 4 road entry 

in each direction, we call this 4-lane intersection. Second one has 6 road entry in each 

direction, we call this 6-lane intersection. Also, traffic rate (veh/hour) is changing. We 

defined a wide set of traffic rates in order to extend our research from sparse traffic 

situations to dense traffic situations. Therefore, we observe the performance of AIM in 

crowded or non-crowded traffic situations. 

 

TABLE I 

AIM: AVERAGE TRAVEL TIME - DOI FOR 4-LANES 

Vehicle 

Count 

4-lane Max-Min 

DOI (s) 

4-lane Average 

Travel Time (s) 

4-lane Average 

DOI (s) 

600 1.7052 18.8099 5.3199 

800 5.4143 30.7213 17.2313 

1000 7.546 49.4704 35.9804 

1200 15.7993 67.0275 53.537 

1400 9.9248 82.5357 69.0457 

1600 6.2349 93.2388 79.7488 

1800 1.9842 99.3265 85.8365 

2000 6.494 104.5498 91.0598 

 

In the first table above, we analyze the change of average travel time and average delay 

of intersection for 4-lane intersection. We can see that delay and travel time increases 

while the traffic rate increase. As the data show us, while vehicle rate is increasing, travel 

time and delay will perform logarithmic growths because of the capacity of intersection. 

When all the lanes are full, maximum delay rate achieved. We called this as maximum 

intensity point of intersection. After that point, delay time and travel time convergence 

for same values. 

 

 

 

, 

 



 

 87 

TABLE II 

AIM: AVERAGE TRAVEL TIME - DOI FOR 6-LANES 

Vehicle 

Count 

6-lane Max -Min 

DOI (s) 

6-lane Average 

Travel Time (s) 

6-lane Average 

DOI (s) 

600 3.9486 25.5685 12.0785 

800 14.3727 39.3960 25.9060 

1000 9.7 59.7993 46.3093 

1200 9.1927 81.3401 67.8501 

1400 7.6292 94.0286 80.5386 

1600 7.578 110.3573 96.8673 

1800 11.0349 116.0088 102.5188 

2000 5.5807 121.0703 107.5803 

 

In the 6-lane scenario, average travel time and delay starts with greater values compare to 

4-lane values as expected. Because total vehicle density increased. Also 6-lane statistics 

shows us AIM performs same behavior for 6-lane intersections. Average delay time and 

travel time performs logarithmic growth and they also keep converging. 

 

At this point, we collected enough data for evaluating base AIM system. Then we 

implement our solution in order to organize AIM inputs which are vehicles in lane. In 

order to make comparison between AIM and PLO-AIM, we had repeated the same 

analyzing and data collection process that we done for AIM with PLO-AIM model. 

TABLE III 

PLO-AIM: AVERAGE TRAVEL TIME - DOI FOR 4-LANES 

Vehicle 

Count 

4-lane Max -Min DOI 

(s) 

4-lane Average 

Travel Time (s) 

4-lane Average 

DOI (s) 

600 1.967 15.6904 4.5614 

800 3.831 25.3996 14.2706 

1000 12.08665 42.96333 31.8343 

1200 7.82874 63.80585 52.6768 

1400 4.531592 82.14534 71.0163 

1600 12.175 92.22365 81.0946 

1800 7.830872 100.4908 89.3618 

2000 9.118 104.2902 93.1612 
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Table 3 shows us that, AIM with potential-based lane organization layer performs better 

until the intersection is full. Because it distributes vehicles more evenly to each lane 

vehicles sent reservation to intersection manager faster. Therefore, they act faster. We can 

observe the improvement until the intersection capacity be full. If the traffic rate increase, 

time to full fill the intersection decreases. Therefore, the effect of PLO layer also 

decreases. 

TABLE IV 

PLO-AIM: AVERAGE TRAVEL TIME - DOI FOR 6-LANES 

Vehicle 

Count 

6-lane Max -Min DOI 

(s) 

6-lane Average 

Travel Time (s) 

6-lane Average 

DOI (s) 

600 5.211 21.1372 10.0082 

800 7.4 35.579 24.45 

1000 7.4945 56.4695 45.3405 

1200 10.3359 76.8117 65.6827 

1400 11.4311 95.2200 84.0910 

1600 13.4313 107.5334 97.4044 

1800 7.25450 115.9122 104.7832 

2000 6.456 124.573 113.444 

 

In the 6-lane scenario of PLO-AIM, we observed the same improvement in times in Table 

4. PLO layer decrease times until intersection becomes full and until there is no advantage 

for lane changing. 

 

In both intersection model (4-lane or 6-lane), PLO layer proved its effect on time 

measurements. PLO layer reduce the times for each vehicle by adjusting their lanes to 

less crowded lanes. Results shows us that PLO layer decrease the average travel time and 

average delay of intersection for intersections which lanes are not fully occupied. 

 

We saw that PLO layer is more effective in for acceptable traffice rates. In our vehicle 

traffic rates, PLO layer affects and reduce the measurements until 1300 veh/hour. Above 

that point, intersection becomes full very rapidly because of high traffic rate. 
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TABLE V 

4-LANE ATT - DOI COMPARISON 

Vehicle 

Count 

Base AIM 

ATT(s) 

PLO-AIM 

ATT(s) 

Base AIM 

DOI(s) 

PLO-AIM 

DOI(s) 

600 18.8099 15.6904 5.31992 4.5614 

800 30.7213 25.3996 17.2313 14.2706 

1000 49.4704 42.9633 35.9804 31.8343 

1200 67.0275 63.8058 53.5375 52.6768 

1400 82.5357 82.1453 69.0457 71.0163 

1600 93.2388 92.2236 79.7488 81.0946 

1800 99.3265 100.4908 85.8365 89.3618 

2000 104.5498 104.2902 91.0598 93.1612 

 

 

Table 5 presents the comparison of 4-lane delay of intersection(DOI) and average travel 

time(ATT) data between AIM and PLO-AMI. PLO layer decreases the delay of 

intersection until the intersection is full and or until lanes have no advantage to each other. 

We can observe this effect of PLO layer until the traffic rate reaches to 1300 veh/hour. 

After that point, intersection gets full very rapidly. Therefore, PLO layer works in very 

short duration because of intersection crowdedness which is directly dependent on traffic 

rate. Because of that, average DOI does not decreases after 1300 veh/hour per lane which 

is very high. 

 

Table 5 also shows us that, PLO layer decreases travel times. Because of lane 

organization, vehicles spend less time until they reach intersection. This decreases their 

travel time just like delay of intersection. 
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TABLE VI 

6-LANE ATT - DOI COMPARISON 

Vehicle Count Base AIM 

ATT(s) 

PLO-AIM 

ATT(s) 

Base AIM 

DOI(s) 

PLO-AIM 

DOI(s) 

600 25.5685 21.1372 12.07856 10.0082 

800 39.3960 35.579 25.90602 24.45 

1000 59.7993 56.4695 46.30936 45.34050 

1200 81.3401 76.8117 67.85012 65.6827 

1400 94.0286 95.2200 80.53868 84.09101 

1600 110.3578 107.5334 96.86738 97.40448 

1800 116.0088 115.9122 102.51886 104.7832 

2000 121.0703 124.573 107.58034 113.444 

 

In the table 6, we also can observe the same PLO layer behavior for 6-lane scenario. Delay 

of intersection decreased until we reach 1300 veh/hour traffic level. We observed the 

simular effect of PLO layer when we compare the average travel times for each 

experiment. 

 

Table 6 shows us that, PLO layer decreases travel times also for 6-lane scenario. Because 

of lane organization, vehicles spend less time until they reach intersection. This decreases 

their travel time just like delay of intersection. PLO layer effect can be seen also in 6-lane 

scenario. In the table 6, the decrease of average travel time is presented. 

 

To sum up, PLO-AIM model outperformed base AIM model for traffic density rates less 

then 1300 veh/hour per lane which are denoted as acceptable traffic rates. Proposed PLO-

AIM model reduced the average travel time reduced in between 0.2% - 17.3% and 

reduced average delay of intersection in between 1.6% - 17.1% for 4-lane and 6-lane 

scenarios. 
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D. Discussion 

 

As we observed in our experiments, regulating the distribution of autonomous vehicles 

approaching the intersection on lanes made autonomous intersection crossing more 

efficient at acceptable traffic densities. In this study, we based on average intersection 

delay and average travel time criteria to evaluate the performance of autonomous 

intersections. With the vehicles using the potential approach to organize their own lanes, 

traffic flow has been managed in a more balanced form. Since the accumulations are 

balanced on the lanes, it has been observed that both the total travel time of the vehicles 

and the intersection delays have decreased. 

 

As a result of the development and experiments we carried out in this study, we observed 

that lane management is a parameter that directly affects autonomous intersection 

management performance. The solution we offer has increased the performance of 

autonomous intersection management compared to the base AIM structure for acceptable 

traffic densities. 

 

Additionally, we observed that at high traffic densities, the effect of the potential based 

lane arrangement layer gradually diminished. However, this is not a problem with the 

potential approach. Since the intersection reaches its maximum capacity very quickly at 

high traffic rates, no lane has an advantage over other lanes. For this reason, there is no 

benefit in changing lanes. Therefore, the effect of a lane management and potential based 

lane changes can only be observed in a short time until the intersection is full. Since this 

time is too short, the effect of the PLO layer is not be observed at high traffic densities. 

 

In future studies, we plan to use this approach not only to reorganize the lanes, but also 

to plan all the routes of autonomous vehicles with potential-based intuitive choices. With 

this approach, we aim to create a potential-based autonomous vehicle management 

strategy different from the existing methods in the literature. The scope of decisions taken 

by autonomous vehicles can be expanded by adding additional parameters that will 

express the different intentions and preferences of the vehicles or passengers to the 
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potential calculation we use in this study. With this concept, real-life intuitive driving will 

be modeled more accurately by autonomous vehicles. 

 

V. CONCLUSION 

 

 

In conclusion, autonomous intersection management is one of the popular subjects about 

autonomous vehicles. Also, these two areas trigger each other to expand. Developments 

in intelligent vehicles feeds the developments in management of intelligent vehicles. As 

the vehicles are getting smarter, the management systems are also getting smarter. 

Because of that different solutions from multiple disciplines can be applied for this topic. 

 

This study presents the effects of lane organization by using potential approach in order 

to improve performance of autonomous intersection management. In light of the results 

we have achieved, we have seen that managing the lanes of vehicles entering intersections 

has a significant impact on determining autonomous intersection management 

performance. By managing the lanes, we have managed to decrease intersection delay 

and travel times of vehicles for specified traffic rates. We showed that we increased the 

intersection performance with this decrease in our performance criteria. 

 

We also managed this lane management not by a central moderator, but as the vehicles 

switched the most advantageous lane for themselves as a result of potential-based 

decisions. 
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