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ABSTRACT

ESTIMATING INSTRUMENTATION DATA ACQUIRED DURING FLIGHT

TEST FROM A HELICOPTER ENGINE USING PREDICTOR MODELS

Barış Coşkun

M.Sc., Department of Computer Engineering

Supervisor : BURKAY GENÇ

June 2021, 57 pages

Flight test of a helicopter is the most dangerous phase of its development project. Any

minor mistake or miscalculation during a test could lead to a catastrophic accident.

In order to protect the health of a helicopter during a test, lots of sensors are placed

on critical parts and equipment of the helicopter. Data acquired from these sensors

are monitored by the experts from different fields through the test and in any kind of

unexpected or out of limit data, these experts interfere with the test procedure. Acqu-

iring miscalibrated sensor data or even losing the sensor completely would increase

the potential risk and delay the test although there is no problem on helicopter. Also

having miscalibrated or no data from a sensor makes a part of the helicopter invisible

for analysis. Due to all these reasons, we propose a hybrid system composed of deci-

sion tree that calculates the noise ratio of the sensor readings and neural network that

replaces miscalibrated ones with accurate predictions based on the other sensor re-

adings. In this paper, we present the models and how we construct them, test them on
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semi-synthetic data and show that these models can be used in production and testing

systems in real life.

Keywords: Helicopter, Flight Test, Instrumentation, Data Confidence, Data Predic-
tion
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ÖZET

HELİKOPTER MOTORUNDAN TOPLANAN UÇUŞ TEST

ENSTRÜMANTASYON VERİLERİNİN ÖNGÖRÜCÜ MODELLERLE TAHMİN

EDİLMESİ

Barış Coşkun

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : BURKAY GENÇ

Haziran 2021, 57 sayfa

Helikopter tasarım sürecinin en tehlikeli kısmı uçuş test aşamasıdır. Testler sırasında

yapılacak en ufak hata veya yanlış hesaplamalar ciddi kazalara sebep olabilir. Bu se-

beple uçuş testleri sırasında helikopterin sağlık durumunun takip edilebilmesi için

özellikle kritik bölgeler olmak üzere helikopterin çoğu parçası algılayıcılarla enst-

rümante edilir. Algılayıcılardan toplanan veriler anlık olarak yer istasyonuna iletilip

alanlarında uzman kişiler tarafından yorumlanarak beklenmedik bir durumun önce-

den fark edilmesi sağlanır. Ancak algılayıcı veya veri toplama ünitelerinde oluşacak

bir arıza sonucunda toplanan verinin güvenilirliği kalmaz. Bu gibi durumlarda veri

analiz ekipleri tarafından gelen veri yanlış yorumlanarak gereksiz yere testin kesil-

mesine veya öngörülebilecek bir kazanın fark edilmemesi gibi ciddi sonuçlara yol

açabilir. Bu tez kapsamında oluşturulan hibrit sistemde Karar Ağacı modeli kullanı-

larak verideki bozulma miktarı ve Yapay Sinir Ağı kullanılarak da olması gereken

iii



verinin tahmini gerçekleştirilmektedir. Oluşturulan bu sistem TUSAŞ envanterinde

bulunan bir helikopterin uçuş testleri sırasında motorundan toplanan sıcaklık verileri

üstünde eğitilip test edilmiştir.

Anahtar Kelimeler: Helikopter, Uçuş Test, Enstrümantasyon, Veri Güvenilirliği, Veri
Tahmini
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SECTION 1

INTRODUCTION

Helicopter is an aircraft that uses rotationary wings to provide lifting power to vehicle.

Main rotor on top of the aircraft generates torque required for flight and tail rotor ge-

nerates thrust against the torque generated by main rotor for controllability. By using

these two rotationary wings, it is possible for helicopter to fly in all three direction

(horizontal, vertical, lateral) and even hover which means hang in air with zero speed.

Although helicopters are not capable of flying as fast as planes, due to their maneuver

capability, they are widely used for both civilian and military purposes [1].

Figure 1.1: Basic principle of helicopter
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As expected, designing a helicopter is a challenging task for engineers since there are

numerous dynamic, rotational and electronic system that shall run in synchronously.

All possible analysis and simulations are conducted in digital environment in order to

make the design as perfect as possible. However, at the end of the day, actual flight test

of a prototype is unavoidable to evaluate the design due to the production tolerances

or unexpected systems interface problems [2].

Flight test campaign of an aircraft is a step-by-step process due to unpredictable

risks caused by system or interface problems. So that, testing process starts from

the most possible safe scenario while monitoring the helicopter by flight test inst-

rumentation(FTI). Flight test instrumentation includes analog sensors that converts

the physical magnitudes such as vibration, displacement, temperature etc to voltage

which could be measured by data acquisition units and digitized with Analog to Di-

gital Converters. Also FTI systems are capable of collecting digital messages such as

Ethernet, RS232/422, Arinc429, Mil-Std-1553 which are generated by avionic devi-

ces on helicopter to maintain the communication between each equipment and also

between pilot to aircraft [3]. In order to monitor the aircraft during any flight test, the

data gathered by FTI system is transmitted to a ground station with telemetry by RF

technology [4]. Field experts are monitoring the data transmitted from the aircraft in

real time in the ground station in order to predict any kind of unexpected accident and

interfere the test beforehand.

Figure 1.2: Helicopter crash during flight test
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It is common to have maintenance or modifications frequently on prototype helicop-

ters in flight test phase. During these activities, it is highly possible that any sensor

gets damaged, dislocated or even miscalibrated without notice, because sensors are

generally small compared to other parts of helicopter and unguarded since they are

located at the surface. This kind of unexpected modification on sensor could lead to

noisy or even completely meaningless data. The consequences of altered data could

be catastrophic like reconducting the test which is expensive or even misinterpret the

helicopter design.

Thanks to the latest developments in last decades, predictive models are capable of re-

generating the missing and noisy data with high accuracy. However, for each system,

the models shall be trained in a unique way to make them work as expected and provi-

des a fresh challenge. In this thesis, we focused for temperature data from an aircraft

produced by Turkish Aerospace. Two independent flight test data used in this thesis

where helicopter configuration and test contents are equal. By training the model on

one flight test and test them on another flight test data, we showed that it is possible to

detect and correct different types of fault. We implement different predictive models

such as Artificial Neural Network [5] and Decision Tree [6] for these prediction tasks

and wide range of noise levels which indicates any kind of unexpected alternation on

sensors could be detected.

In this thesis, we aimed to implement a predictive system that recovers the invalid

data gathered by instrumentation on helicopter during flight test. For proof of concept,

temperature measurements on helicopter engine is considered. In a scenario where a

thermocouple is damaged, temperature readings from this sensor would be misleading

and as a result, either the test would be cancelled which is waste of time and money or

engine would be invisible for analysis which could make a possible accident invisible.

In these kind of situations, field experts try to reproduce the data either using linear

assumption or thermal model of engine using other measurements. These models are

dependent to the complexity of implementation. Also there are some architectures in

literature that uses predictive models in this purpose that are explained in Literature

Search section in detail. The proposed models generally use one specific predictive

model and test it on synthetic data. In the proposed architecture, the overall system

is divided into two subsystems, one for predicting the amount of noise on selected
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measurement and the other one for predicting actual value. For each model different

kind of predictive models with optimal hyperparameters are designed and tested on

actual flight test data with all possible noise cases.
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SECTION 2

LITERATURE SEARCH

Predictive models are widely used in both academic and industrial projects. Predicting

or classifying any data from the remaining information is valuable for both time and

money saving. One of the most exciting studies was conducted by NASA in 1991

[7]. It is stated by inflight sensor group of NASA, dynamics of a propulsion system

of a Space Shuttle is complicated is not well-known. In order to monitor the system,

numerous instrumentation devices are applied which is generally more than it should

be. Also, for some critical cases, more than one measurements is required to identify

the sensor health by controlling the consistency between sensors.

Figure 2.1: Space shuttle propulsion system’s schematic

Even though there are numerous measurements as a precaution, an engine failure

happened during simulation and virtually the space shuttle was destroyed. More so-
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lemnly, there were numerous incidents during actual test of space shuttle where tem-

perature readings were failed which caused component damage or unnecessary test

cancellations. In order to improve the reliability of measurements, Kalman Filter was

already used for detecting and isolating the sensor failures. By this research, a super-

vised predictive model, Neural Network is designed and tested that could replace the

Kalman Filter for detecting and predicting feature.

As it could be seen from Figure 2.1, there are several subsystems in a propulsion

system that shall be monitored. That requires high amount of measurements with

different characteristics such as temperature, flow , pressure etc Figure 2.2. In order

to decrease the complexity of the problem, the most critical subset of measurements

are considered. Moreover by analysis and dynamic model of the propulsion system

an "influence map" of measurements was constructed Figure 2.3.

Figure 2.2: Selected measurements
Figure 2.3: Influence map of selected sen-
sors

For detecting the failure of a sensor, a feed forward fully connected neural network

with two hidden layers each with 30 hidden nodes designed. The neural network

generates a vector of ten outputs where each of them is the confidence metric for a

measurement between 0 and 1, 0 being failure of the sensor and 1 is fully confident

measurement.

In this study it was assumed that only one measurement would be failed and the

second neural network is responsible for recovering the failed sensor’s value from

the remaining ones. Since the failed sensor could be detected by first neural network,

second neural network takes remaining 9 measurements as an input set and generate
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the output corresponding the the recovered measurement. For this purpose, neural

network with two hidden layers with 30 hidden nodes per each trained.

For training the networks, start up of the propulsion system as chosen as training set

which is around 4 seconds with 1 second steady state at the beginning. The 3 seconds

of measurements with 50 Hz sample rate is enough for the networks to be trained

since it is nearly covers all the operational points. During this training phase, one

of the 10 selected data is selected randomly and Gaussian Noise with 0 mean and

standard deviation of 1.5× "valid range of sensor" is applied. This "valid range of

sensor" is defined by field experts and historical data of the sensor itself. By using the

approach described, first neural networks is trained for detecting sensor failure with

the Error vs Iteration graph as in Figure 2.4.

Figure 2.4: Training error of first neural network

At the same time, one of the selected 10 sensor measurements is selected and second

neural network is trained in a way to predict the selected measurement from remaining

9 of them. This neural networks are tested in digital simulation environment for two

cases where in case-1, HPFTP speed sensor is failed at T = 7 and case-2 MCC

Pressure Sensor failed at T = 8. The results are demonstrated in Figure 2.5 and

Figure 2.6.
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Figure 2.5: Test case-1 results
Figure 2.6: Test case-2 results

Another experiment about temperature reading validation and correction on a Rocket

engine was conducted by Ezhilrajan et al at 2020 [8]. Cryogenic Propulsion System

of Rocket Engine has its own controller for adjusting the mixture ratio and thrust

which are vital for engine operation. Two temperature readings are acquired from

Main Pump Delivery with a certain protruding length that are used together for certa-

inty and used as feedback for control system. In case of invalid temperature readings

at the sensors, controller may supply less propellant than required which decreases the

payload and even in some cases, unpredictable mixture ratio may lead to catastrophic

accidents.

There are mainly 3 types of sensor data validation and correction methods. First mo-

del is online parameter identification techniques which are called model based fault

diagnosis. Second model is rule based which depends on heuristic algorithms and

expert knowledge. Last model is Neural Networks that are trained with proper set of

data. Ezhilrajan et al proposed a more intelligent hybrid algorithm which uses fuzzy

logic and neural networks together called Adaptive Neuro Fuzzy Inference System

(ANFIS). ANFIS is basically a feed forward neural network with supervised learning

algorithms. In order to train the network, one of the most popular training algorithm

of neural networks, Gradient Descent is used. Since, gradient descent algorithm has

a tendency to get stuck in local minima, it is combined with one of the hybrid lear-

ning algorithm, least square type method. The architecture of ANFIS is visualized in

Figure 2.7.
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Figure 2.7: ANFIS architecture

There are 5 layers in ANFIS architecture and each of them has individual specific

task. First layer is responsible for mapping the input to relative membership function.

Second layer is responsible for firing strength using T-norm operation in order not to

be trapped in local minima. Third layer normalizes the effect of firing from second

layer. Fourth layer applies the determined rules and in the last layer the output is

computed.

This hybrid approach is applied for the case where temperature reading is inconsistent

for first 60 seconds. To create a Temperature Sensor Data Validation (TSDV) model,

the procedure defined by block diagram in Figure 2.8

Figure 2.8: Block diagram of TSDV model procedure

In order to select proper inputs for ANFIS TSDV model, influence map is generated
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as in Figure 2.9. From the influence map and dynamic analysis of models, 4 linearly

dependent parameters to LOX Main Pump Delivery Temperature (TOPD) which is

the ouput of the model have selected. These 4 parameters are; Main Turbo Pump

Outlet Temperature (MTPOT), LOX Booster Pump Outlet Temperature (LBPOT),

LOX Main Turbo Pump Delivery Pressure (LMPDP) and Chamber Pressure (PC).

To train the ANFIS, 800 data pairs are provided to model to develop a Fuzzy Inter-

ference System (FIS) and ANFIS generated 900 parameter where 876 of them are

linear and remaining 24 of them are nonlinear. With the 193 nodes in neural network

state and 81 linguistic rules generated by back propagation algorithm, overall model

looked like in Figure 2.10.

Figure 2.9: Influence map

Figure 2.10: ANFIS structure

In the testing scenario, temperature reading is 4.5 K higher than the actual value and

it takes 60 to come to acceptable error range. This indicates the wrong assembly of

the sensor with inappropriate protruding length. The actual measured, expected and

predicted temperature and Mixture Ratio by model is illustrated in Figure 2.11 and

Figure 2.12.
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Figure 2.11: Temperature comparison
Figure 2.12: Mixture ratio comparison

Ogaji et al increases the complexity of fault detection of an engine using Neural Net-

works [9]. It is stated that engine components are more reliable than instrumentation

although any fault on an engine component requires more time to recover. In order

to predict fault beforehand, a system consist of different neural networks is designed.

The aim of the system is detecting single or dual sensor failure and single, dual or

multiple component fails. The architecture is designed as in Figure 2.13.

Figure 2.13: Diagnose architecture

In the diagnose path in Figure 2.13, CLASS1 corresponds to the first classification

of fault or not fault. If a fault detected on the system CLASS2 detects the cause of
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fault like sensor or component fault. AUTOASSOC1 responsible for determining the

amount of noise or bias in sensors. CLASS3 networks detects the number of faulty

components if the reason is component fault. CLASS4 detect the faulty component

among 3 possible options; Compressor, Compressor Turbine and Power Turbine.

For each CLASS defined in diagnose path, an individual probabilistic neural network

trained. PNN networks could train itself in less than 2 minutes which could be consi-

dered as "no training required". The accuracy of each CLASS is defined in Tab 2.1

Network Results (%)
CLASS1 NF 100 F 99.9
CLASS2 SF 100 CF 99.7
CLASS3 SCF 99.1 DCF 90.1 MCF 76.3
CLASS4 C 100 CT 100 PT 100
CLASS5 C & CT 98.6 C & PT 96.8 CT & PT 97.2

Table 2.1: Accuracy of networks for each CLASS

All classification accuracy values are satisfying except CLASS3 where DCFs are

misclassified as SCF or MCF. This is because the affect of these faults on instru-

mentation data is similar to each other. In order to overcome this problem, Neural

Network with 6 − 35 − 35 − 3 architecture is trained with resilient backpropogation

and tan sigmoid transfer function on all nodes. The accuracy for CLASS3 increases

to 98.85 for SCF, 95 for DCF and 90.44 for MCF.

Instead of a path of diagnosis method, authors proposes a single neural network called

CLASSΩ as in Figure 2.14. The classification accuracy values are; 100 for NF, 99.62

for SF, 99.82 for C, 98.42 for CT, 98.42 for PT 89.06 for C & CT, 87.76 for C &

PT, 86.72 for CT & PT, 76.02 for MCF. These classification results are similar to

previous architecture (Tab 2.1). Optimal neural network architectures are used for

each APPROX and they are defined in Tab 2.2
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Figure 2.14: Single CLASS architecture

Network Design Size MSE
(Training)

MSE
(Test)

APPROX1 RB 6-15-15-2 0.009 0.01
APPROX2 RB 6-10-10-2 0.003 0.003
APPROX3 RB 6-10-10-2 0.002 0.003
APPROX4 RB 6-30-30-4 0.032 0.032
APPROX5 RB 6-35-35-4 0.018 0.018
APPROX6 RB 6-30-30-4 0.018 0.018
APPROX7 RB 6-40-40-6 0.137 0.146

Table 2.2: Details of APPROX neural networks

The authors summarized the paper by explaining the pros and cons for each method.

Gas Path Diagnosis Path is open to improvement by adding expert decision or fuzzy

logic between steps. On the other hand single and complex neural network could

use other data sources such as vibration or oil consumption which could increase the

accuracy.

Sensor failure detection and data recovery is essential for almost all part of aircraft.

Napolitano et al designed a Sensor Failure Detection, Identification and Accommo-

dation (SFDIA) system for flight control systems [10]. The overall architecture of

SFDIA is give in Figure 2.15. Flight Control System is a closed loop system con-

sist of actuators, components and sensors where the vulnerable part of whole system

is sensors. Any failure in the sensor would lead to failure of control system so that

researches on SFDIA become more and more important. In the paper, failures are

categorized into 2 types, hard and soft failures. Hard failures are basically complete

destruction of sensors which are easy to detect and directly downs the whole flight

control system. Soft failures are drift or bias in data from sensors which could not be

detected easily and would lead to catastrophic accidents. Napolitano et al proposed
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two models for SFDIA, Kalman Filter and Neural Network based.

Figure 2.15: SFDIA architecture

It is proven that Neural Networks have numerous advantages for regenerating the

data. It is possible that Neural Networks could be trained online to estimate the data

afterwards. Also it is possible for neural network to learn nonlinear relation of data

no matter number of input and outputs even for a single hidden layer network. Due

to its modularity and parallel architecture, neural networks could be embedded into a

hardware easily with fault tolerant and high speed implementation.

Unfortunately, designing a neural network is a challenging task especially for the ca-

ses where network should train itself and predict values in real time. Tradition Neural

Network design with Hidden Nodes with sigmoid activation functions and Gradient

Decent back propagation algorithms could not compete in real time. So that authors

make the each hidden node capable of rearrange the slope of sigmoid function which

increases the training rate for specific hidden node. This algorithm called extended

back propagation and make the real time training possible. Also during the training

phase, authors defined a threshold for error rate between actual sensor reading and ne-

ural network prediction. If the error rate exceeds the threshold, neural network stops

training itself and replaces the sensor reading with the prediction. If the real time

training is burden to system, the sample rate would be decreased for training and

previous test data are used for pretraining the neural network.
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Kalman Filter is one of the most popular and robust mechanism for predicting up-

coming data using state transition matrices. Since Kalman Filter are relying on li-

near matrices, for nonlinear relations, extended Kalman Filters are required where

the errors are linearized. However, these extensions on Kalman Filters decreases the

processing speed and lead to unbiasity so that only linear dynamic conditions are

considered for Neural Network and Kalman Filter comparison.

For testing these two models, high altitude unmanned aircraft used by NASA for

Mission to Planet Earth program is used. For a sensor of pitch rate gyro, aircraft is

simulated and two models are trained in real time. In the simulation, at t = 29, sensor

failed and the response of models are demonstrated at Figure 2.16.

Figure 2.16: Kalman Filter vs Neural Network

Authors tried 6 different failure types; small/large instantaneous bias, small/large bias

with small/large ramp with 5 configurations according to the linearity level caused by

measurement noises and discrepancies between simulation and actual aircraft. The

detailed results are provided in paper and as a results authors stated that Kalman Fil-

ter provides more robust results than Neural Network. However, for the cases when
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linearity in system decreases by the noises and discrepancies, Neural Networks be-

come superior. Also for linear noises such as ramp failures, Kalman Filters could not

detect while Neural Network could realize the failure with not a perfect accuracy.

In literature, predictive models are not only used for fault in system. Huang et al used

Neural Network for vibration diagnosis of a motor [11]. Airplane engine’s physical

models are generally high order (25000th) finite element models. Any undesired mass

on turbine motors generates unbalance during the rotation which could be located and

identified by using vibration analysis and engine model. However, in order to describe

the model clearly, authors defines a 2nd order vibration model with rotational disk as

in Figure 2.17.

Figure 2.17: Simple model for vibration analysis

A neural network with a single hidden layer is trained by data calculated by physical

formula of simple model. The mass location remained fixed during training and neural
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network is trained to determine the amount of mass using frequency response from

the measurements. The test error is within 0.001 inch-ounce which encourage to more

complex experiment.

For more realistic experiment, authors used MSC/NASTRAN model of an turbine

motor with approximately 26000 degrees of freedom. As a experiment, one ounce-

inch unbalance mass located on 3 different locations; fan, turbine stage 1 and turbine

stage 5. Frequency responses are calculated from 3 different measurement points; be-

aring 1 near to fan, inner shaft bearing and bearing 6 near turbine. In order to predict

the amount of unbalance mass, 3 different learning methods are used; back propaga-

tion, Extended Kalman Filter(EKM) and Support Vector Machines(SVM). Each mo-

del is trained with data from digital model in order to predict the source and amount of

unbalance map. The training dataset consist of 250 frequency bins from 0.2Hz−50Hz

for each location with 6 different mass value 0.0, 0.2, 0.6, 1.0, 1.4and1.8inch− ounce.

The networks structures and error for mass values are represented in Tab 2.3. SVM

and EKF models shows promising results although required time for training or tes-

ting for these models are higher than BP.

Network Architecture Learning Method Training Error Range Testing Error Range
1500-30-3 BP 0.07 0.07
1500-30-3 EKF 0.05 0.05
1500-30-3 SVM 0.03 0.05

Table 2.3: Results for 3 different model

Neural networks are used for increasing the sensor confidentiality for almost all kind

of experiments. Yang et al used Radial Basis Function (RBF) Neural Network to inc-

rease the accuracy of motion control by using regressing several measurements [12].

Instead of using the measurement data blindly, they implement a RBF neural network

that calculates the regression weight of sensors from their attributes as it is sketch in

Figure 2.18. By using the fused data for motion controller instead of measurements,

they eliminated the possible errors that could be caused by measurements or sensor

itself.
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Figure 2.18: Proposed network

Before the weighting operation, all measurements are calibrated according to a me-

asurement from a laser interferometer with nanometer resolution. In this paper, it is

proposed that instead of linear calibration, a RBF neural network could be used for

weighting the measurements by considering the measurement and the noise level as

selectors. Since RBF neural networks are able to map the inputs to a output, it could

be easily trained in a way to calibrate the sensors according to the pivot measurements

from laser interferometer.

As a test setup, an analog velocity sensor and magnetic encoder are attached to a DC

motor. As it is known that analog sensors have infinite resolution although their sen-

sitivity is limited. So that, for lower velocities, it is expected that analog sensor have

higher weight while for higher speeds digital magnetic encoder is going to be more

accurate. The calculated weights for different noise levels and different velocities are

provided where k1 being the weight for analog velocity sensor and k2 is for digital

magnetic encoder.

Figure 2.19: Weights for analog velocity
measurements

Figure 2.20: Weights for digital magnetic
encoder

More testing scenarios are explained in detail by changing other possible parameters

in test setup. To sum up it is stated that using a RBF Neural Network to fuse different

measurements into single generates more accurate result than any other sensor could
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achieve independently.

Mese et al also worked on a controller for a motor using neural network [13]. Different

from [12], they designed a Artificial Neural Network that could predict the position

of a motor from not linearly correlated measurements like flux linkage and current.

By using sufficient enough data, an ANN could predict the position of motor from

flux and current without the actual position sensor. Having a ANN instead of position

sensors would be more advantageous in terms of money and accuracy.

By using the actual motor with position sensor, enough data collected for training

the ANN. The optimal hyperparameters are found by trial-and-error method and one

hidden layer with 10 hidden neuron found to be good balance between accuracy and

complexity. The training results are demonstrated in Figure 2.21.

Figure 2.21: Training ANN for position estimation from flux linkage and current

However, for electrical purposes, flux measurements is not accurate enough. So that,

authors designed another ANN with one hidden layer includes five hidden neurons

for flux prediction from given current and position. The difference between actual and

predicted flux is occurred due to the error in position estimation. This error could be

used for correcting the position estimation as a feedback in control loop. The decrease

in prediction errors are shown in Figure 2.22.
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Figure 2.22: Prediction error before and after modification

This proposed method have tested in both real-time prediction by designing a circuit

that includes the ANN parameters as lookup table and in digital environment using

simulation tools such as MatLab. The experiments showed that the error is bounded

on [−5◦,+5◦] but mostly around [−2◦,+2◦].

It is also possible to detect sensor failure using other algorithms in literature. Alippi

et al propose Hidden Markov Model for sensor failure detection with Cognitive Layer

for classification for sensor networks [14]. Authors stated that HMM is able to detect

the anomaly in a distributed sensor network. HMM mines the relation between any

given set of values and generates a relation function between them. If any data not

acceptable by learned function generates an alarm in system. These alarms are oc-

curred due to 3 main reasons; model bias, change in environment and sensor failure.

The models in literature designed with HMM are assumed model bias is negligible

and not able to differentiate whether the alarm generated by change in environment or

sensor failure. In this research, authors propose and additional Cognitive Layer above

HMM for error classification as in Figure 2.23.
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Figure 2.23: Proposed architecture

Cognitive Layer is responsible for classification of sensor failure and environment

change. Basically, if any of HMM generates an error detection, Cognitive Layer cont-

rols other HMM models related to the detection and decides according to the likeli-

hood of error by considering all HMM model on network. This proposed architecture

is tested in various real sensor networks. The detailed results for all experiments are

provided in paper.

Sensor fault detection algorithms are widely used in many diverse areas. Liao et al

studied sensor fault detection and recovery (FDR) for automated driving system [15].

For FDR, authors designed a Multitask One-dimensional Convolutional Neural Ne-

twork (MONN) as in Figure 2.24. Firstly encoder architecture used for information

extraction from input data. FR-Subnet used for data recovery and decoder used for

fault detection. These subsystems are unique Convolutional Neural Networks that

details and optimizations are described in detail in paper. From digital simulation

program called CarSim used for gathering training data and used for training MONN.

Figure 2.24: MONN architecture
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Authors compared their MONN architecture with other state-of-art designs in litera-

ture. The detailed Fault Detection accuracy values are described in Tab 2.4 and speed

of processing results are in Figure 2.25. MONN architecture clearly bests other base

models. In addition to these results, authors tries their model with different imple-

mentations and also under different testing conditions.

Model F1 Score F2 Score F0.5 Score AUC
IF 0.71 0.753 0.672 0.704

IF (PCA) 0.796 0.795 0.797 0.85
OCSVM 0.817 0.757 0.874 0.851

OCSVM (PCA) 0.747 0.803 0.697 0.819
LOF 0.88 0.851 0.915 0.92
AE 0.882 0.859 0.881 0.905
ICS 0.842 0.855 0.885 0.89

DSVDD 0.86 0.833 0.897 0.896
ALOCC 0.764 0.681 0.87 0.844
MONN 0.906 0.885 0.928 0.93

Table 2.4: Comparsion of FDR models

Figure 2.25: Time consumption for 2000 observations during test
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SECTION 3

DATASET

Supervised predicted models are capable of recognising and predicting data according

to their experience during training phase so that, it is essential to have confirmed

data to train the models. Training algorithms are designed in a way to extract the

information on the training dataset and adjust the model to recognise or predict any

missing data from the information left. For this purpose, two identical flight test data

from a helicopter produced by Turkish Aerospace is utilized where one of them is

used for training while the other one is used for testing the trained model to measure

its performance.

It is not feasible to train models that is able to predict any data gathered by FTI since

there are thousands of parameter in an FTI system with different characteristics. Also

it is predictable that not all the data in the system are informative about each other

since there are different subsystems on helicopter. Due to these reasons, a subsystem

of helicopter, an engine was selected and all the temperature data collected from the

engine is used as dataset.

3.1 Thermocouples

As it is explained in introduction section, analog sensors are used for converting any

kind of physical magnitude to voltage values which could be measured and converted

into digital formats using FTI data acquisitions units with Analog-to-Digital Conver-

ters. For temperature readings, temperature-sensitive cable pairs are used which is

called thermocouples [16]. According to the temperature sensitive cable type used

within thermocouples, there are different types such as chromel-alumel pair used in
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K type thermocouples.

Figure 3.1: Thermocouple working principle.

Due to the Seebeck principle, each type of metal generates different voltage according

to the level of temperature it is exposed as in Tab 3.1. Since the voltage generated by

temperature difference could be calculated mathematically, it is possible to tabulate

the measured voltage corresponding to temperature [17]. This tabulation is embedded

into FTI data acquisition units and the measured voltage is converted into temperature

value in real time.

Material mV at 100 °C mV at 200 °C
Alumel -1.29 -2.17

Chromel 2.81 5.96
Constantan -3.51 -7.45

Copper 0.76 1.83
Iron 1.89 1.44

Table 3.1: Seebeck effect on different type of materials

3.2 Instrumentation

Engines of helicopters are instrumented in order to keep track of vibration and tempe-

rature levels during flight tests. In this thesis, we focus on temperature readings from

11 independent thermocouples on an engine. All these thermocouples are located on

critical parts of the engine. However, the locations could not be revealed and names

of the sensors are replaced with generic names for confidentiality purposes. Sensors

will be referred to as TX where X is just the index of the sensor in the dataset.

Dataset Test Length Number of Measurements Number of Observations
Training Dataset 2 hours 11 105342

Test Dataset 2 hours 11 113826
Table 3.2: Dataset Statistics
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Figure 3.2: Temperature readings from 11 thermocouples at 16Hz for a period of 2
hours

Temperature values acquired from 11 independent thermocouples are visualized in

Figure 3.2. Y axis corresponds to temperature values in °C measured by each thermo-

couple while X axis corresponds to timestamp. It is possible for FTI system to sample

sensors at different rates which means how many observations are going to be collec-

ted within a second. Sample rates are decided according to the analysis requirement

where if any high speed physical behaviour are occurred on the place sensor located,

the sample rate shall be at least two times higher then aimed movement according to

the Nyquist Criteria [18]. Due to the characteristic of temperature, 16 Hz is chosen

as sample rate for thermocouples and as it can be seen in Figure 3.2, there are 120K

observations for 2 hours flight test.

By looking Figure 3.2 only, it is possible to understand the general behavior of ther-

mocouples. In the beginning of test, it could be seen that all TX values are around 15

°C which is the outside air temperature during flight test. Around the 18000th. time

stamp, all TX readings increase tremendously. This is the point where ignition started

at that engine. However, T10 have completely different pattern. This is because the
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location of thermocouple related to T10 is away from combustion chamber of engine.

After the transient ignition state, it could be stated that all the TX values are indepen-

dent from each other since thermal effects such as cooling or heating is not identical

on each part of engine.

Instead of repeating the similar observations for each sensor one-by-one, we chose

T9 as a pivot data for visualization and detailed explanation. Since the sensors are not

trivially related to each other, Figure 3.3 shows how the sensors arbitrary behave with

respect to T9.

Figure 3.3: T9 vs. other sensors

As expected, readings are related between from 20 °C to 50 °C which corresponds

to beginning of the test to end of ignition phase. After the ignition, when the engine

starts working stably, there is no correlation between temperature readings due to

thermal model of engine itself.

3.3 Noise Generation

Supervised predictive models are trained according to previous experiences which is

training dataset. However, in order to train models to be responsive for misreadings,
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it is essential to have invalid readings with label in the dataset. Since the dataset we

are using is from an actual flight test of a helicopter in Turkish Aerospace, it is known

that data is valid. In order to generate invalid temperature readings, we add noise to

sensors synthetically and label them according to the noise ratio.

There are many source that could alter the analog sensor reading from actual physical

magnitude which could be divided into two groups according to their relative effect

on data itself. First and most common one are noises generated by other sources such

as EMI/EMC, Electrical Gaussian Noise etc. These kind of noises have completely

random characteristic due to their nature. Fortunately, their signal level are either so

low or they are instant spikes which could be easily detected or neglected [19]. In the

second group, there are misreadings not caused by outside effects but caused by har-

dware malfunctioning on sensor or data acquisition units. These kind of misreadings

alternates the data significantly and could lead to catastrophic results. This kind of

misreading could make the evaluation during real time monitoring invalid which wo-

uld stop the flight test needlessly which is expensive in terms of money and time.

More seriously, altered data could lead to misinterpretation by analysis experts and

makes the upcoming potential accident invisible.

In this thesis, we aimed to design a sequential system that could understand how much

data is corrupted and recover it by using remaining data. This system would generate

a confidence metric for data itself to prevent misinterpretation and make the test data

usable for analysis even in sensor failure in reality.

We mainly focus on single point of failure during flight test where only one tempe-

rature reading is invalid. In order to create supervised predicted models for each 11

temperature reading, we modify the raw dataset 11 times, such that each single sensor

reading is synthetically corrupted according to the following equation:

T ′X = (1 + ν)TX, ν ∈ [−1,+1] (3.1)

where, v represents the applied rate of noise with respect to the actual reading. By

using v value between -1 to +1, nearly all possible misreading scenarios are covered

where from T ′X = 0 which is equivalent to complete destruction of sensor or data
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acquisition unit itself to T ′X = 2 × TX which is corresponds to serious miscalibration

or dislocation of sensor.

Figure 3.4: Applied noise ratio pattern. Figure 3.5: T9 vs T ′9

In order to have a homogeneous distribution of noise over data, ν has been systema-

tically shifted in the range from -1 to +1 with a step size of 0.01 as demonstrated in

Figure 3.4 and the generated data is shown in Figure 3.5 for T9. Both figures show

the data in a limited time window for better presentation purposes. By using this no-

ise generation principle, models could be trained in a way to recognise all level of

misreadings without any bias.
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SECTION 4

METHODOLOGY

The main aim of this thesis composed of two sequential task. Firstly, the amount of

noise for a single TX from given set of data is going to be predicted. After that, actual

value of the TX is going to be predicted using set of data and noise ratio predicted

by previous system. Since there are eleven independent TX in dataset and the main

assumption is there would be single point of failure where only one thermocouple

produce faulty reading at once, there are eleven individual predictive model respon-

sible for each TX for each task and this array of predictive models are called ’system’.

Figure 4.1: Overall Architecture

Whole proposed architecture is described in Figure 4.1. For each observation, noise

value according to ν is applied on TX that is symbolized as T ′X. System-1 is res-

ponsible for predicting ν from observations for each 11 independent measurements

including T ′X instead of TX. System-2 is trained for predicting TX using observations

of measurements and predicted noise from System-1.

29



4.1 System-1 - Noise Ratio Prediction

The first aim of this thesis is predicting the amount of noise of a single TX in given

set of data assuming that remaining TX values are valid. In order to train predictive

models to be capable of extracting noise ratio of a TX from given set of data, training

dataset shall include noisy data with proper labeling. As explained in Section 3.3,

flight test data which is valid for sure, is synthetically modified for each TX and used

for training the predictive model responsible for corresponding TX.

4.1.1 Model-1 - Artificial Neural Network

Artificial Neural Networks are one of the most popular supervised predictive model

in recent years. Due to their high capacity of information extraction, they are widely

used for almost any case. Also, Neural Networks are able deal with complicated tasks

since they are scalable and capable of learning both linear and nonlinear relations.

However, training a neural network is expensive task in terms of processing power

and time to tune all the hyperparameters in network. Another most common problem

of neural networks is overfitting, which means instead of learning the relation in the

training dataset, neural networks could memorize it if they are trained more than

enough.

In order to design fully connected neural networks for each TX, one of the most com-

mon framework of Python Programming Language [20] in literature, Keras [21] is

used. Single architecture is designed and used for each TX for the sake of objecti-

veness. All possible hyperparameters are tuned to make the networks as simple and

accurate as possible. For tuning process, all TX considered equally to find the optimal

design.

The main design parameters in neural networks are number of hidden layers and

number of nodes in a layer. From the experiments, it is stated that one hidden layer

is enough for our task due to low complexity in dataset. Also as demonstrated in

Figure 4.2 which shows how mean absolute error changes with respect to number of

node in the hidden layer for each optimizer.
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Figure 4.2: System 1 ANN optimization

Activation functions are defined for each layer which corresponds to functionality in

hidden node. There are several predefined activation functions such as tanh, sig, relu

[22] which are widely used for in literature. For regression tasks, the most popular

combination is linear activation output layer for regression and relu [23] for hidden

layer in order to extract nonlinear information from dataset. Our experiments are also

end up in similar condition where the most accurate results are acquired with this

combination. For training procedure, there are numerous different defined algorithms

for tuning the parameters for Neural Networks such as Adam [24], Adadelta [25],

Stochastic Gradient Decent [26] etc. For regression tasks, Adam is the most suitable

and accurate one according to the experiments we have conducted. Besides, the opti-

mization results we obtained are parallel as documented in the literature [27] [28]. To

sum up, one hidden layer with 20 nodes and relu activation is optimum with Adam

optimizer for training process.

Neural Networks are tend to over-learn the training dataset unless there is a stopping

mechanism in the training procedure. To teach the relation within the training dataset

instead of memorising, validation and early stopping mechanisms are implemented in

training procedure. The training dataset is shuffled and 20% of it used for validation

the training algorithms to differentiate the point models start overfitting where the
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mean absolute error on validation set started to increase.

In the dataset, there are 11 TX columns corresponding to 11 independent thermoco-

uple readings. For each TX, a neural network model with the architecture explained

above is trained for many different ν values by modifying the dataset as explained in

Section 3.3. For testing the trained networks, test dataset is modified with a fixed ν

value according to the Eq 3.1. Most of the ν span is tested by using ν = −1 to +1 with

the 0.01 step. An example of test input where T9 is modified by ν = 0.5 to generate

noisy T ′9 demonstrated in Figure 4.3.

Figure 4.3: T9 and T ′9 (with ν = 0.5).

In order to predict the ν value, the neural network model responsible for the corres-

ponding TX as trained by training dataset as explained is used.

4.1.2 Model-2 - Decision Tree

Decision Tree is another commonly used supervised predictive model where there is

a nonlinear relation in dataset. Although it is known that Decision Tree models are

not as capable as other complex models, they are fast and capable of extracting the

pattern of data especially for the cases where the dataset is huge. This is why Decision
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Tree could be a competitive against Neural Network for our case.

Decision Tree consist of nodes where each node splits the set into two groups accor-

ding to a logical expression. In the training process, logical expressions in the nodes

are tuned in a way to split the dataset as pure as possible. By using most suitable set

of logical expression to split the dataset, Decision Trees are capable of extracting the

systematic relation in dataset whether it is linear or not.

The most important hyperparameter in a Decision Tree is tree depth which indicates

the number of logical split operation in decision tree. As it is valid for Neural Ne-

twork, higher tree depths could lead to overfitted model where model could not be

generalized and usable for any data other than training dataset.

As we did in Neural Network architecture, an optimal Decision Tree structure is built

and used for all TX. We implemented Decision Tree with several different maximum

tree depth number and test for all possible noise ratio as its done for Neural Network

and found out that 10 is sufficient enough for accurate noise ratio prediction as in

Figure 4.4.

Figure 4.4: System-1 Model-2 Decision Tree optimization.

33



4.2 System-2 - Data Prediction

We tried to predict the noise ratio of a T ′X from given set of data by using two su-

pervised prediction models; Artificial Neural Network and Decision Tree. Noisy data

could lead to misinterpretation of the helicopter during real time data monitoring and

cancelling the test unnecessarily. Fortunately, using System-1, it could be possible to

understand whether the data is valid or not in order to neglect. Although knowing the

data noisy, helicopter will be invisible for analysis without the actual data. It could

lead to reconducting the test which would be expensive or more solemnly, make the

any possible accident unnoticeable. Therefore, recovering the data could be vital for

both real time data monitoring and data analysis.

4.2.1 Model-1 - Linear Model

System-1 able to predict the ν for any T ′X using a supervised predictor model. Since

the noise function is known from Section 3.3, TX could be recalculated from T ′X and

predicted ν by using the inverse of noise function as follows;

TX =
T ′X

1 + ν
(4.1)

Clearly, this approach transfers the error from System-1 directly in prediction since

there is only a linear operation. Also, there is no learning procedure or hyperparameter

in this approach so that no further testing or optimization is required.

4.2.2 Model-2 - Artificial Neural Network

As a second approach, Artificial Neural Network is used for data prediction. In this

case, neural networks are trained to predict the TX value for a given set of data where

TX is modified to T ′X according to the noise generation principle in Section 3.3. In

addition to that, predicted ν by System-1 is also provided to network as an input.

Same design approach in System-1 also applied for this case, 11 independent neural

networks are trained for each TX. Same hyperparameter tuning experiments are also
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conducted and as expected similar results are obtained. Linear activation function

used output layer and Relu is used for hidden layer for non-linearity. Adam optimizer

is used as training algorithm and in order to avoid overfitting, 20% of dataset is used

for validation for early stopping mechanism. Different number of nodes in hidden

layer are tried and it is stated that 20 nodes with Adam optimizer is sufficient for

accurate data prediction as its shown in Figure 4.5.

Figure 4.5: System-2 ANN optimization

In Figure 4.5, different from Figure 4.2, Y axis indicated the Mean Absolute Percen-

tage Error because there is no boundary for output in System-2 since the temperature

value could be from 15 °C to 120 °C as in can be seen in Figure 3.2 and Mean Ab-

solute Error would be misleading for System-2. However, in System-1, the expected

output is in the range of -1 to +1 and Mean Absolute Error is valid since it is forced

to be in that range by our Noise Generation Principle defined in Section 3.3.

4.2.3 Model-3 - Decision Tree

As a last model, Decision Tree employed for System-2 as it is done and successful

in System-1. We use similar training and testing approach in System-1. From the

optimization experiment, it could be seen from the training error pattern in Figure 4.6,
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10 depth is the optimal point for Decision Tree algorithm.

Figure 4.6: System-2 Decision Tree optimization

Decision Tree algorithm tries to classify data by the logical expressions which would

also works accurately for the regression tasks if the output has limited output range

like in System-1. However, Decision Tree’s training error is higher than Artificial

Neural Network for System-2 since the output is unlimited.
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SECTION 5

RESULTS

In this thesis, a sequential system consist of 2 subsystems that one of them responsible

for predicting noise ratio of a TX from any given set of data and the next system tries

to regenerate the actual data from given dataset and predicted noise ratio. In the Sec-

tion 4, different architecture designs are proposed. These proposed design composed

of predictive models are going to be tested with a separate set of data which contains

same temperature reading from another flight test of the helicopter with same test

configuration on a computer with 16GB RAM, Intel i7-10750H CPU with 2.6Ghz

and NVDIA GeForce GTX 1650ti GPU.

In this section, each individual model of two systems are going to be tested in the

whole range of expected noise ratio from −1 to +1 with 0.1 increment. All 11 TX are

going to be tested one by one in order to evaluate the model’s performance in detail.

We demonstrate the results with a cross plot where Y axis for corresponding error for

each TX to X axis for Noise Ratio ν. The Y axis of resulting plots are scaled to same

level within each system to make the comparison easier.

5.1 System-1

System-1 is responsible for predicting the ν value for any desired TX from given set

of data. The supervised predictive model is proposed: Artificial Neural Network and

Decision Tree as explained in Section 4.1. Mean Absolute Error is chosen as Error

Metric for System-1 since MAE represents the error accurately for the cases where

the error is bounded in a close range like we have ν in the range of −1 to +1. Each

proposed model is going to be evaluated one by one in following sections.
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5.1.1 Model-1

The first proposed model for System-1 was Artificial Neural Network. For each TX,

a separate model with a optimal architecture is trained using training data set as it is

explained in Section 4.1.1 in detail. Test set is modified for each TX by a constant ν

value from −1 to +1 with 0.1 step size repetitively and compared with the predicted

results by the corresponding model from the array of trained models. The calculated

MAE vs ν values for each TX are demonstrated in the cross plot in Figure 5.1.

Figure 5.1: System-1 ANN result

It could be seen from Figure 5.1, error curve of all TX are convex with the valley

point at around ν = 0. It states that there is a negative correlation between prediction

accuracy and Error Rate ν which is intuitively expected. It could be claimed that any

noise ratio could be predicted with and average of 0.15 error although, there are some

sensors that could be predicted more difficult than the others such as T2 and T3 that

could be happened due to the location of corresponding thermocouple on engine.

Also, error curve of T10 is different from remaining ones which is expected since it’s

characteristic is different than the other ones as it could be seen in Figure 3.2.
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5.1.2 Model-2

The second proposed model for System-1 is Decision Tree algorithm. Same testing

approach is applied where all TX values are modified one by one and corresponding

trained model is used for predicting ν value. MAE vs ν cross plot is provided in

Figure 5.2.

Figure 5.2: System-1 Decision Tree result

The error curves of Decision Tree algorithm is completely different than Neural Net-

work. While Neural Network’s error curves are mostly convex shape, Decision Tree

algorithm has almost linear graph with a bending around ν = 0.5. Another interesting

observation is Decision Tree worked perfectly for the cases where ν = −1 which in-

dicates the success of Decision Tree algorithm’s extracting the systematic pattern of

dataset as it is explained in Section 4.1.2. TX = 0 is possible only when ν = 0 and

small TX values are possible when ν is closer to −1. This systematic could be easily

learned by Decision Tree. Besides, as expected, T10 which could be considered as

outlier in dataset has different error curve.

Surprisingly, when we compare Model-1 with Model-2, it is seen that Decision Tree

algorithm predicts noise ratio more accurately than Artificial Neural Network. Alt-
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hough the average MAE for Model-1 is 0.15, Model-2 bests it with 0.1 MAE which

makes the Decision Tree algorithm as winner for System-1.

5.2 System-2

System-2 is aimed to predicting the actual TX from given dataset and ν value predicted

by System-1 which is vital and crucial for the flight test scenarios since when a tem-

perature reading is invalid, helicopter become invisible for analysis. Three approach

is proposed for System-2 that are explained in following sections in detail. Different

from System-1, MAE would be misleading for evaluating the System-2 since the out-

put is no longer bounded. Furthermore, Mean Absolute Percentage Error (MAPE)

would be used as Error Metric for testing the proposed models.

5.2.1 Model-1

As a first model, linear transformation is proposed. Since the ν value could be pre-

dicted by System-1, it is possible to recalculate the TX since both T ′X and ν is known

according to the inverse of noise function as in Equation 4.1.

We have perfectly accurate System-1 for ν = 0 due to the success of Decision Tree

algorithm for classifying the systematic within dataset. However, in the Equation 4.1,

when we substitute νwith −1, the equation goes to infinity so that Model-1 of System-

2 could not recover the data even though its accurately labeled. Furthermore, for

Model-1, the test scenario where ν = −1 is omitted. Also for the following models,

the accuracy without ν = 0 is going to be calculated for fair comparison. The average

MAPE for Model-1 is calculated to be 11.35%. The detailed results are demonstrated

in Figure 5.3
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Figure 5.3: System-2 Linear Model results

All the result plots are demonstrated in same Y axis scale for comparison. It could be

seen from Figure 5.3, Model-1 could predict TX values with same accuracy indepen-

dent from TX and ν values. However, as expected T10 have higher and unrelated curve

graph compared to other ones.

5.2.2 Model-2

As an alternative supervised predictive model, our third model is a again Artificial

Neural Network. As it is explained in Section 4.2.3, a unique and optimal ANN is

trained for each TX using training dataset and tested for different level of noise ratio

values. The average MAPE for Model-3 is computed as 8.28% which is significantly

better than other benchmark Linear Model and Decision Tree algorithm. The results

for each TX and ν values are provided in Figure 5.4.
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Figure 5.4: System-2 ANN results

Again T10 behaves differently from the other TX since it is considered as outlier in

dataset due to corresponding thermocouple’s location on engine. However, not only

having the lowest error rates among the other models, ANN provides even more stable

results than Linear Model which makes the Model-3 the most accurate and reliable

proposal for System-2.

5.2.3 Model-3

The second proposed model for System-2 is winner of the System-1, Decision Tree

algorithm. The most optimal Decision Tree model was trained on training dataset and

tested for different level of ν values for each TX. The average MAPE for Model-2 is

calculated as 19.12% (14.84% without ν = 0) which is surprisingly even worse than

simple Linear Model described in Model-1. Decision Tree algorithm failed since it

tends to classify the outputs instead of regressing which worked perfectly for System-

1. The resulting graph is provided in Figure 5.5.
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Figure 5.5: System-2 Decision Tree results

As it could be seen from Figure 5.5, In addition to low accuracy of predicting TX

values, Decision Tree algorithm could not provide stable results too. There are une-

xplainable high error values in T1 and T11 error curves and even more than 100% error

rates for ν = 0 which makes the model unreliable.

5.3 Further Testing

Although the system designed with the assumption of single point of failure where

only one sensor could be corrupted during test, it would be interesting the analyse the

proposed system’s performance if two or more sensor readings are invalid. In order to

test this scenario, two sensor readings are corrupted with uniform noise distribution

for each observation. This synthetically manipulated dataset is used for testing the

models for predicting one of the corrupted reading. The detailed results for Noise

Prediction and Data Prediction are shown in Figure 5.6 and Figure 5.7.
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Figure 5.6: Noise prediction results for double sensor failure

Figure 5.7: Data prediction results for double sensor failure
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Before the testing Double Sensor Failure case in each System, corresponding TX is

corrupted with ν value for with uniform distribution between −1 to +1 according to

Equation 3.1 for each data observation. In addition to the aimed TX reading, another

reading from dataset is corrupted with same principle which defined in X axis and

MAE for ν prediction or MAPE for data prediction is calculated as in Y axis in Fi-

gure 5.6 and Figure 5.7. For example, in Figure 5.6, the pink line indicates the MAE

of ν prediction for T7. The intersection point of X = T4 and the pink line indicates the

MAE of ν prediction for T7 in the scenario where both T7 and T4 are corrupted with

uniform random ν value.

The error rates are mostly stable expect for one or two spikes for different TX values.

These spikes are occurred in different data index for each TX reading which shows

the correlation of TX reading in dataset. For example, T7 is highly correlated with

T4 so that the noise ratio error for ν prediction for T7 increased tremendously when

T4 is corrupted in Figure 5.6. Also in Figure 5.7, it could be seen that T3 is highly

correlated with T8 in data prediction case.

It is also interesting to investigate the performance of the system in multiple sensor

failure cases. In order to test this phenomena, targeted TX is synthetically corrupted

with uniform ν value and other sensor readings are manipulated one by one in order.

The results for System-1 and System-2 are demonstrated in Figure 5.8 and Figure 5.9
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Figure 5.8: Noise prediction results for multiple sensor failure

Figure 5.9: Data prediction results for multiple sensor failure
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In Figure 5.8 and Figure 5.9, corresponding TX measurement is corrupted in the be-

ginning and as it is labeled in X axis, additionally one more TX is corrupted in +X

direction.For example, in Figure 5.8, the pink line indicates the MAE of ν prediction

for T7. The intersection point of X = T4 and the pink line indicates the MAE of ν pre-

diction for T7 in the scenario where T7 and [T1,T2,T3,T4] are corrupted with uniform

random ν value.

As expected, noise ratio value increases as we increase the number of corrupted me-

asurements. Also the correlation between measurements could be realized in higher

increments in noise ratio values as it is discussed in Double Point of Failure tests. As

it could be seen from Figure 5.8 and Figure 5.9, T7 is highly correlated with T4 in

Noise Ratio prediction so that when T4 is corrupted, the accumulated error increases

massively. In addition, for Data Prediction, accumulated error rate for T3 jumps when

T8 is corrupted.

5.4 Scenario Testing

During an actual flight test, it is more common to have a constant noise on a me-

asurement for a period of time due to external affects. In order to test the propo-

sed system in a more realistic way, 6 randomly picked different Noise Ratio values

−0.75,−0.5,−0.25, 0.25, 0.5, 0.75 applied on a 6 randomly selected measurement for

short period of time between 40000th − 43000th observations which is demonstrated

in Figure 5.10. In Figures 5.11 to 5.16, the predicted result for these scenarios are

shown where corresponding Noise Ratio applied on a selected measurement.
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Figure 5.10: Distorted portion of data in real life testing scenarios

Figure 5.11: Real life testing scenario 1, -
0.75 ν on T1

Figure 5.12: Real life testing scenario 2, -
0.5 ν on T3
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Figure 5.13: Real life testing scenario 3, -
0.25 ν on T5

Figure 5.14: Real life testing scenario 4,
0.25 ν on T8

Figure 5.15: Real life testing scenario 5,
0.5 ν on T9

Figure 5.16: Real life testing scenario 6,
0.75 ν on T11

As it could be seen from the plots above, System-1 predicts between ±0.25 Noise

Ratio for a ν = 0 measurements which is called acceptable range that is colored like

gray zone in plots. For the observations between 41000th − 42000th where a measure-

ment is corrupted with a given ν, predicted results are not in acceptable range. Even

for ν = ±0.75 and ±0.50, the system could easily identify the noisy measurement.

However when ν = ±0.25 where the applied noise ratio within the acceptable results,

the system predicts some noise ratio values outside of range but could not detect the

noisy measurement successfully. As we realized for all testing procedures, T10 is an

outlier in our dataset that could be ignored.
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Figure 5.17: Data prediction prediction in
real life testing scenario 1

Figure 5.18: Data prediction prediction in
real life testing scenario 2

Figure 5.19: Data prediction prediction in
real life testing scenario 3

Figure 5.20: Data prediction prediction in
real life testing scenario 4

Figure 5.21: Data prediction prediction in
real life testing scenario 5

Figure 5.22: Data prediction prediction in
real life testing scenario 6

For real life testing scenarios, as it could be seen from Figure 5.17 to 5.22, System-

2 could predict the actual value with approximately 0.08 MAE as it is calculated

independent from the noise ratio applied on actual measurement.
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5.5 Analysis

As it is explained in detail in previous sections, the architecture we proposed could

predict the amount of noise on any selected measurement with 0.1 MAE by System-1

using DT model and predict the actual measurement with 0.08 MAPE by System-

2 using ANN. However, around ±0.25ν which is called gray zone, the system is not

accurate due to the error in System-1. Although there is no noise on measurement, the

system predicts a ν value in gray zone. Also for the cases where measurement have

noise value in gray zone, system detects that there is something unexpected in data

although it could not identify the noisy measurement. Also as it is explained in Dataset

section in detail, T10 acts as an outlier since there is no correlation between other

measurements in dataset due to its location on engine. So in order to train the models

properly, measurements shall be selected by their physical relation on helicopter.

Also the architecture is tested on more harsher environment than its trained. The sys-

tems reaction on the scenarios where two or more sensor is corrupted is demonstrated

although system is not trained for these cases. On these scenarios system could be

able to reproduce data for some extent even though its not trained for such cases.

5.6 Future Work

The selected dataset is includes the temperature measurements from an engine of

helicopter. For proof of concept, the architecture is trained for this subset of whole

measurements in helicopter. However, there are other subsystems in helicopters such

as structure, rotor, transmission, avionics etc. and for each of these subsystems, there

are different kind of measurements such as vibration, strain, force, displacement etc.

For each of these subsystem and also for each type of measurement, measurements

from helicopter shall be grouped by their physical relation and correlation and indivi-

dual systems shall be trained for each group in order to cover all measurements from

helicopter.

The FTI measurements from helicopter is time series data through the flight test of

helicopter. ANN and DT are the proposed models for each system. However, these
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predictive models are trained and designed in a way that there is no time relation in

measurement. Instead of using this kind of models, more complex models that also

extracts the time relation such as Long Short Term Memory (LSTM), Convolutional

Neural Network (CNN) could be used which could achieve higher accuracy.

The proposed architecture includes predictive models with most optimize and simple

architecture as possible. Also each model for each measurement could work indepen-

dent from others. During the real time data monitoring in actual flight test, the validity

of critical measurements could be predicted by using System-1. From the predicted ν

values from System-1, corresponding models from System-2 could be used for data

prediction for measurements in interest. So that, instead of using whole models du-

ring real time monitoring, it is possible to select the measurements to process which

would decrease the processing time tremendously.
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SECTION 6

CONCLUSION

Helicopters are one of the most commonly used aircraft for both civilian and military

purposes due to their high maneuver capabilities. However, designing a helicopter

from scratch is a challenging process since there are lots of dynamic and electronic

subsystem that shall run in harmony. Although all possible simulations are conduc-

ted in digital environment, actual testing of a final product is unavoidable. Especially

actual flight tests of newly produced prototypes are dangerous so that helicopters

health status are monitored in real time as much as possible. In order to track any

physical or electronic event during flight test, helicopter is instrumented with analog

sensors using Flight Test Instrumentation Data Acquisition Units which are also ca-

pable of gathering electronic communication on helicopter itself. The data collected

with FTI system are transmitted to a ground station using telemetry and expert fields

are responsible for interpretation of data in order to prevent any possible accidents.

Unfortunately, analog sensors could be easily damaged or miscalibrated on prototype

helicopters since they are generally on the surface and vulnerable to external effects.

Damaged sensors produce meaningless data which could end up serious consequ-

ences such as repeating the test which is enormous time and money waste or even

unforesee upcoming accident. In order to calculate the amount of noise on data and

regenerate the actual data from it, we trained supervised predictive models such as

Decision Tree and Artificial Neural Networks using actual temperature data from an

engine of helicopter during actual flight test. Decision Tree model could predict the

noise level with 0.1 MAE, whereas Artificial Neural Network could regenerate the

actual data with 8.28 MAPE. Furthermore, we propose a hybrid sequential system

with a subsystem that could predict noise ratio with Decision Tree algorithm and Ar-
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tificial Neural Networks is able to reproduce the actual data. This hybrid model could

be used in real time to decide the confidence level of data and reproduced actual data

could be used for flight test data analysis without repeating the flight test saving time

and finances in testing process.
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