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ABSTRACT 

 

ONLINE TIME DELAY AND DISTURBANCE COMPENSATION FOR 

LINEAR NON MINIMUM PHASE SYSTEMS 

 

 

Özlem DEMİRTAŞ 

 

 

Master of Science, Department of Computer Engineering 

Supervisor: Prof. Dr. Mehmet Önder EFE 

July 2021, 67 pages 

 

Disturbances often occur in real systems and this has a negative effect on system 

stability and performance. In the past, a number of remedies have been proposed to 

enhance the stability and performance characteristics of feedback control systems. 

The classical disturbance observer estimates disturbances acting on the system utilizing 

a proper inverse model and eliminates the disturbance from the control channel. 

However, the model inversion for non minimum phase systems leads to unstable control 

loops, which require a special treatment for the right half plane zeros. This undesired 

situation narrows down both the simplicity and the capabilities of disturbance observer. 

Although researchers try to make the system robust by using more complex controllers 

due to restrictive effect of classical disturbance observers, the designed controllers often 

achieve one control target, making the system robust against disturbances yet sacrificing 

other control objectives.  

In addition to external disturbances, inherent time delays are also inevitable facts 

observed in dynamic systems, and similar to disturbances, they disrupt the system’s 

stability and deteriorate its operation. Smith predictor is often used to restore the 
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stability of such systems. In this approach, negative feedback is made from the 

controller output to input by using delay time model and the delay becomes a multiplier 

of the delay free closed loop transfer function. However, in order to design the delay 

time model, the actual delay time must be measured precisely, which is usually not 

possible in practice. 

In this study, both the disturbance observer for non minimum phase systems and the 

adaptive Smith predictor design for systems with time delay are proposed to eliminate 

the negative effects of disturbances and time delays, concurrently. According to the 

results, it is seen that the controller alone is not capable of maintaining the stability 

under time delay and disturbances. On the other hand, for non minimum phase and time 

delay systems, the response of the system is stable and it resembles the nominal system 

behavior with proposed time delay and disturbance estimation methods. 

Keywords: Disturbance Observer, Recursive Least Squares, Smith Predictor, Non 

Minimum Phase Systems, Time Delay. 
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ÖZET 

 

MİNİMUM FAZ OLMAYAN DOĞRUSAL SİSTEMLER İÇİN ÇEVRİMİÇİ 

GECİKME VE BOZUNUM TELAFİSİ 

 

 

Özlem DEMİRTAŞ 

 

 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Mehmet Önder EFE 

Haziran 2021, 67 sayfa 

 

Gerçek sistemlerde genellikle bozunumlar görülür ve bunlar sistem kararlılığı ile 

performansı üzerinde olumsuz etkilere sahiptir. Geçmişten bu yana, geri beslemeli 

kontrol sistemlerinin kararlılık ve performans karakterini iyileştirmek üzere bazı 

çözümler üretilmektedir. 

Klasik bozunum gözlemcileri sisteme etkiyen bozunumları uygun bir ters modelden 

faydalanarak kestirmekte ve kontrol edilen kanaldan temizlemektedir. Lakin, minimum-

fazda olmayan sistemlerde modelin tersini alma, sağ yarı-düzlem sıfırlarının özel olarak 

ele alınmasını gerektiren kararsız kontrol döngülerine neden olmaktadır. Bu arzu 

edilmeyen durum, bozunum gözlemcilerinin hem sadeliğini hem de kabiliyetlerini 

sınırlandırmaktadır. 

Araştırmacılar, klasik bozunum gözlemcilerinin yetersizliğinden dolayı, daha karmaşık 

kontrolcüler kullanarak sistemi gürbüz hale getirmesine rağmen; tasarlanan kontrolcüler 

genellikle tek amaç doğrultusunda sadece sistemi gürbüz hale getirmekle kalmakta ve 

diğer tasarım hedeflerinden feragat etmektedir. 
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Harici bozunumlara ek olarak, zaman gecikmeleri de dinamik sistemlerin doğasında var 

olmakta ve bozunumlara benzer bir şekilde sistem kararlılığı ve operasyonunu 

zedelemektedir. Bu gibi durumlarda sistem kararlılığını geri kazanabilmek için sıklıkla 

Smith tahmincileri kullanılmaktadır. Bu yaklaşımda, kontrolcü çıktısından girdisine bir 

negatif geri besleme ile zaman gecikmesi modeli kullanılmakta ve bu gecikme ise 

gecikmesiz kapalı döngü transfer fonksiyonunun bir çarpanı haline gelmektedir. Ancak, 

böyle bir zaman gecikmesi modeli tasarımı için, pratikte pek de mümkün olmayan, 

gerçek gecikme değerinin hassas bir şekilde ölçümünün yapılabiliyor olması 

gerekmektedir. 

Bu çalışmada bozunum ve zaman gecikmelerinin olumsuz etkilerini eşzamanlı olarak 

ortadan kaldırmaya yönelik, minimum-fazda olmayan gecikmeli sistemler için bozunum 

gözlemcisi ve adaptif Smith tahmincisi tasarımları öne sürülmektedir. Elde edilen 

sonuçlara göre, kontrolcü tek başına zaman gecikmesi ve bozunumlar altında sistem 

kararlılığını sağlatmakta güçlük çekmektedir. Öte yandan öne sürülmekte olan gecikme 

ve bozunum kestirimi yöntemleri ile minimum-fazda olmayan ve gecikmeli sistemlerde, 

sistem cevabı kararlılığını korumakta ve nominali yansıtacak şekilde davranmaktadır. 

Anahtar Kelimeler: Bozunum Gözlemcisi, Özyinelemeli En Küçük Kareler, Smith 

Öngörücü, Minimum Faz Olmayan Sistemler, Zaman Gecikmesi. 
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1 INTRODUCTION 

 

1.1 Motivation 

Internal and external disturbances in the dynamic systems affect the system response 

negatively by disrupting the operation of the system. For this purpose, developers have 

turned to additional designs that will eliminate these disturbances affecting the system 

when the system controller is not sufficient. Although these designs cannot completely 

eliminate disturbances of all magnitudes and frequencies, they improve the system 

response. 

DOB is an effective structure that improves system response by estimating disturbances 

affecting the system. Although it was first presented in 1983 by Ohnishi [1], it has an 

ongoing development process since the mid-1960s. The classical DOB design is shown 

in the Figure 1.1. As can be seen from the figure, the control signal subject to 

disturbance enters the plant via the control channel. The output signal enters to the 

nominal system dynamics and Q-filter, respectively, and the estimated value of the 

disturbance is obtained. Then, estimated disturbance is eliminated from the control 

signal. 

 

Figure 1.1. Classical DOB structure. 
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There are two criteria that determine the performance of classical DOB design: 

selection of Q-filter coefficients and inversion of the plant. Generally, to eliminate 

disturbances, Q-filter is chosen as 1 at low frequencies and 0 at high frequencies [2]. Q-

filter selection is made not only depending on the frequency of disturbance, but also 

according to other performance constraints of system. In [3] and [4], different Q filter 

designs that ensure system stability are proposed. The difficulty in reversing the system 

arises if the system to be taken is NMP. The inverse of NMP systems causes instability 

[5]. Therefore, different methods have been developed to apply the classical DOB 

design to NMP systems. Generally, these methods are divided into two parts. In the first 

type of method, the system is enabled to show MP behavior by designing a parallel 

filter to the NMP system. In the second type of method, MP system approximation of 

the NMP system is estimated by using optimization methods. 

In addition to the disturbances affecting the system, the time delay problem also 

negatively affects the system instability and disrupts the system response. Therefore, in 

addition to the system controller, different designs are developed and the negative effect 

of the time delay on the response is tried to be eliminated. SP is often used to restore the 

stability of such systems. The classic SP design is shown in Figure 1.2. In this approach, 

negative feedback is made from the controller output to input by using delay time model 

and the delay becomes a multiplier of the delay free closed loop transfer function. 

However, in order to design the delay time model, the actual delay time must be 

measured precisely, which is usually not possible in practice. In addition, if the 

disturbances affecting the system are not eliminated, the SP design is also negatively 

affected, and the time delay on the system cannot be compensated. The CDOB, which is 

a modified version of the classical DOB, is also used for time delay elimination. This 

design reduces the negative effect of the time delay on the response by accepting the 

delay as a disturbance affecting the system. However, although it can operate without 

the need for measurement of delay value, this design requires the inverse of the nominal 

system model, as in the classical DOB design, and this situation creates a constraint for 

NMP systems [6]. 
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Figure 1.2. SP structure. 

 

In summary, in cases where the system controller is not sufficient, an additional control 

structure is needed to provide both time delay and disturbance elimination in linear 

NMP systems. Although DOB provides disturbance elimination, the fact that classical 

DOB design cannot be used for NMP systems poses a major constraint. Similarly, 

although SP provides simple and effective delay compensation, the need for precise 

measurement of the delay value affects the flexibility of the design. 

 

1.2 Aims of Proposed Research 

In the proposed thesis, it is provided to combine the classical DOB and SP by 

eliminating their design constraints. 

In the first step, the design of a DOB for NMP systems is performed. The MP 

approximation of the system is found by using a constrained optimization approach, and 

the inverse of the system is obtained by using this approximation. Then, artificial 

disturbances are fed to the system and the effect of the DOB on the system performance 

is observed. In the second step, the adaptive SP design using RLSWF method is 

proposed as shown in Figure 1.3. In this phase, it is assumed that the nominal model of 

the system is known and the real system dynamics with delay are estimated using 

RLSWF. In this way the disruptive effect of delay on the system is eliminated in an 

online manner without the need for precise measurement of the time delay. 
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Figure 1.3. Novel adaptive SP design. 

 

In the last phase, the studies done in the previous steps are combined to observe how the 

system stability is maintained for cases where the disturbance and delay are effective 

simultaneously. Then the closed loop system with uncertain elements is investigated 

with and without the presence of combination of proposed methods. As a result of the 

study, three practical and up-to-date designs that can be used both independently from 

each other and in combination presented to the developers to eliminate disturbance and 

delay in system. 

 

1.3 Originality and Main Idea of the Proposed Research 

The proposed research consists of three different parts. 

In the first part, DOB design was created for NMP systems, and the limitation of 

classical DOB design for these systems was removed. When the studies in the literature 

are examined, it is seen that generally two different types of methods are used in NMP-

DOB design. In the first type of method, a filter parallel to the NMP system is designed 

to ensure that the system shows MP behavior [7][8][9]. The process of reversing the 

system in the DOB design is performed through the combination of the NMP system 

and the parallel filter, preventing the DOB from exhibiting an unstable performance. 
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The design steps of this structure are shown in the Figure 1.4. and Figure 1.5., 

respectively [9]. In the figures, C is the system controller, P is the actual system, Pn is 

the nominal system, Q is the low-pass filter, R is the reference signal, Y is the output 

signal, d is the input disturbance, 𝜎 is the measurement noise and V is the parallel filter. 

 

 

Figure 1.4. Classical DOB design in closed loop system. 

 

 

Figure 1.5. Proposed control design with parallel filter and DOB. 

 

Although this type of method eliminates the limitation of DOB for NMP systems by 

providing a filter parallel to the real system, it has two disadvantages: 1) The parallel 
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filter design required to make the system MP requires deeper robustness analysis [2]. 2) 

The design is carried out by assuming that the disturbance affecting the actual system 

also affects the input of the parallel filter at the same time. However, at runtime this 

disturbance only affects the control signal. Therefore, this situation leads to uncertainty 

in the high frequency range [9]. In the second type of method, using constrained 

optimization and system identification methods, MP approaches of NMP systems are 

calculated and DOB design is carried out through these approaches [2][5]. However, in 

this type of method, the performance of the DOB design is directly dependent on the 

performance of the optimization method used, and an approach with a high error rate 

affects the DOB performance and fidelity of the simulation negatively. Within the scope 

of the proposed research, an approach has been developed to eliminate the 

disadvantages of both types of methods. For this purpose, the optimization method 

which is the second method type and specified in [2] has been used by modifying the 

cost function. In this way, an offline NMP-DOB design, which is both practical and has 

a low error rate due to optimization, has been presented to the developers. 

In the second part of the proposed research, a new design has been developed in order to 

eliminate the negative effect of time delay in dynamic systems. Although the SP is a 

simple and effective method, the need for precise measurement of the delay value 

creates a disadvantage for the flexibility of the design [10]. Also the CDOB design, 

which can perform delay elimination without the need for delay value, causes unstable 

control loops in NMP systems as in the classical DOB structure [11]. For this purpose, a 

new design has been developed that combines the simplicity of the SP and the 

flexibility of the CDOB. This novel adaptive SP design performs real-time 

identification of the delayed system, enabling delay elimination without the need for 

delay measurement. 

In the third and final part of the research, both designs are combined to present a new 

control structure that provides disturbance and time delay elimination in NMP systems. 

However, in systems with time delay, the modified NMP - DOB design is used. 

Therefore, after the constraint optimization method given in [2] is modified and the 

inverse of the nominal NMP system without delay is found, the new DOB structure 

shown in Figure 1.6 is used [12]. 
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Figure 1.6. DOB structure for the systems with time delay. 

 

As a result, the following features in the presented study are superior to other studies in 

the literature: 

• A novel, simple and reliable DOB design has been created for NMP systems. 

• By making the SP design adaptive, time delay elimination is realized without the 

need for actual time delay measurement. Unlike the CDOB design, it can work 

for NMP systems without the need for extra design costs. 

• NMP-DOB design is modified for delayed systems and can be easily integrated 

into these systems. 

• By combining the new adaptive SP and NMP-DOB design for time delayed 

systems, both delay and disturbance elimination is provided. 

• Both designs can be used both separately and in combination. 

 

1.4 Layout of Thesis 

This thesis is organized as follows. 
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In Chapter 2, the background about types of DOB is provided. It contains literature 

review of classical DOB, NMP-DOB and CDOB. Then, what problems are best suited 

to different types of DOB, the differences between them, their advantages and 

disadvantages are proposed. 

In Chapter 3, the important examples of SP in the literature are given. Then SP types 

and their designs are explained. 

In Chapter 4, literature examples and background about types of RLS is provided. Then 

LS, RLS and RLSWF algorithms are explained. 

In Chapter 5, the NMP-DOB design used, its differences from the original solution, the 

NMP system where the test is carried out and the controller used are explained. Then, 

the behaviors of the NMP system under different disturbances in both the presence of 

the controller and the presence of the new NMP-DOB design are shown. 

In Chapter 6 how SP design and RLSWF algorithms are combined is explained. Then, 

the performance of new adaptive SP design under different constant and varying time 

delays are shown. 

In Chapter 7 information about how novel adaptive SP and NMP-DOB designs are 

combined is provided. Then, the performance of new design under different time delays 

and disturbances are shown. 

Finally in Chapter 8, the results obtained from the research and what will be studied in 

the future works is explained. 
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2 BACKGROUND AND LITERATURE REVIEW OF 

DISTURBANCE OBSERVERS 

 

2.1 Introduction 

Disturbances often occur in real systems and this has a negative effect on system 

stability and performance. In the past, a number of remedies have been proposed to 

enhance the stability and performance characteristics of feedback control systems. 

The classical DOB estimates disturbances acting on the system utilizing a proper 

inverse model and eliminates the disturbance from the control channel. However, the 

model inversion for NMP systems leads to unstable control loops, which require a 

special treatment for the RHP zeros [13]. This undesired situation narrows down both 

the simplicity and the capabilities of DOB. For this reason, considering that most of the 

real systems are NMP systems, different methods have been developed to eliminate this 

constraint of the classical DOBs. In addition to external disturbances, inherent time 

delays are also inevitable facts observed in dynamic systems, and similar to 

disturbances, they disrupt the system’s stability and deteriorate its operation. CDOB is a 

different type of classical DOB which provides delay compensation without the need 

for the actual delay value. In CDOB time delay is treated like disturbance and it is 

compensated through estimation [6]. 

Although researchers try to make the system robust by using more complex controllers 

due to some restrictive effects of DOBs and its types, the designed controllers often 

achieve one control target, making the system robust against disturbances yet sacrificing 

other control objectives [8].  

This chapter is organized as follows. In Section 2 information about types of DOBs is 

provided. It contains background and literature review of classical DOB, NMP-DOB 

and CDOB. In Section 3 what problems are best suited to different types of DOB, the 

differences between them, their advantages and disadvantages are given. Finally, the 

chapter is summarized in Section 4. 
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2.2 Disturbance Observers 

Although the origin of DOB dates back to the mid-1960s, the use of DOB-based robust 

controllers gained popularity in the 1990s, drawing the attention of control designers. In 

1991, Komada et al. [14] presented a method of acceleration-dependent force control 

and utilized a DOB design that works in conjunction with acceleration control to 

improve the performance of the proposed method. In 1993, Murakami et al. [15] 

introduced sensorless torque control in a multidegree-of-freedom manipulator, 

increasing the robustness of the manipulator with the estimated disturbance feedback 

provided by the DOB. In 1994, Kawamura et al. [16] combined the DOB and SMC 

designs to create a robust controller with less chattering. In 1996, Lee and Tomizuka 

[17] used DOB in velocity control of a motion control system and compared this new 

control design with two different digital tracking controllers. In 1998, Tomita et al. [18] 

presented sensorless position and velocity control for brushless DC motors using the 

DOB design and demonstrated the effectiveness of DOB. In the same year, Eom et al. 

[19] used DOB to estimate the force without a force sensor and show that robust force 

control can be achieved without sensor. In 1999, Kempf and Kobayashi [20] used the 

discrete-time DOB and removed low frequency disturbances impacting a discrete time 

tracking controller.     

In the 2000s, the stability and performance of the DOB were improved and it was used 

in different control areas such as adaptive control and nonlinear observers. In 2000, 

Chen et al. [21] demonstrated the change of system stability depending on design 

parameters by using nonlinear DOBs in robot manipulators. In 2004, Chen 

[22]introduced a more flexible design procedure, separating the nonlinear DOB design 

phase from controller design. In 2013, Chen and Ge [23] presented a direct adaptive 

neural control design for nonlinear systems that are subject to time varying disturbance 

and uncertainty, and benefited from DOB in this design. In 2014, Park and Sul [24] 

developed a frequency-based adaptive DOB design to obtain higher precision rotor 

angle estimation in permanent magnet synchronous motor systems. In 2015, Li et al. 

[25] presented state and output feedback controllers combining fuzzy approximation 

and DOB and performed performance tests under external disturbances.  
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In addition to the above studies, DOB design is widely used in NMP and time delayed 

systems. In the following sections, studies in these areas will be explained in more 

detail. 

 

2.2.1 Classical Disturbance Observers 

The structure of classical DOB is shown in Figure 2.1, where P(s) is the real system, 

Pn(s) is the nominal model of the system, C(s) is the system controller and Q(s) is a low 

pass filter. The performance and stability of a closed loop system with a DOB depends 

tightly on the design of Q filter and inversion of the plant. In [26], a design procedure, 

which always guarantees the closed loop stability of the Q filter, is proposed. However, 

the use of inverse system dynamics in the design of DOB also requires some special 

considerations for NMP systems as the inverse of the nominal plant is unstable. 

 

 

Figure 2.1. Classical DOB structure. 

 

If the stability condition is examined for the inner loop in which the classical DOB is 

located (See Figure 2.1), we have the following transfer functions from r to y in (2-1) 

and from d to y in (2-2). The measurement noise is denoted by 𝜎  and the transfer 

function from 𝜎 to y is given in (2-3). 
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Pry(s) = 
P(s)Pn(s)

Pn(s)+(P(s)- Pn(s))Q(s)
  

 

(2-1) 

Pdy(s) = 
P(s)Pn(s)(1-Q(s))

Pn(s)+(P(s)- Pn(s))Q(s)
 

 

(2-2) 

Pσy(s) = 
P(s)Q(s)

Pn(s)+(P(s)-Pn(s))Q(s)
 

 

(2-3) 

If P = Pn(1+∆), i.e. the uncertainty model is multiplicative, the characteristic equation of 

the closed loop system is as given in (2-4). 

Pn(s)+(P(s)-Pn(s))Q(s) = 0 

Pn(s)(1+∆(s)Q(s)) = 0 

 

(2-4) 

If (2-3) and (2-4) are combined, below transfer function is obtained. 

Pσy(s) = 
(P

n
(s)+(1+ ∆(s)))Q(s)

Pn(s)(1+∆(s)Q(s))
 

 

(2-5) 

In (2-5) P, Q and ∆ are can be expressed as the ratio of polynomials such that Pn= NPn
/ 

DPn
, Q= NQ/ DQ and ∆ = N∆/ D∆. Rearranging (2-5) with these variables yields 

Pσy(s) = 
(P

n
(s)+(1+ ∆(s)))Q(s)

Pn(s)(1+∆(s)Q(s))
 

 

(2-6) 

In order to fulfill the internal loop stability condition, the denominator polynomial 

NPn
(D∆DQ+ N∆NQ) specified in (2-6) must be Hurwitz. In this case, the nominal system 

must be MP because NPn
 stands for the numerator of the nominal system. 

 

2.2.2 Non Minimum Phase Disturbance Observers 

Although it provides ease of use and effective disturbance compensation, the fact that 

classical DOBs only provide the stability condition for MP systems has forced control 

engineers to develop DOB designs that can also compatible with NMP systems. In 

2004, Chen, Zhai and Fukuda [27] used the LS method to find the MP approximation of 

the NMP system and incorporated it to the design of the classical DOB. In 2007, Son et 
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al. [7] showed that for a NMP system, a parallel filter which made the system MP can 

be designed using the transfer function of the controller. In 2008 Shim et al. [8] 

introduced a parallel Q-filter design method using the 𝐻∞ control design which makes 

the classical DOB applicable for NMP systems. In 2010, using the same technique, they 

[9] included a robust controller to the closed loop system and showed that without the 

proposed DOB design, the controller can only achieve one design goal under 

disturbance. In 2013, Sarıyıldız and Ohnishi [2] estimated the MP equivalents by 

running an optimization method for the RHP zero(s) in the system and presented a study 

on which constraints should be considered when designing Q-filter for such systems. In 

2019, Lee and Jung [5] combined RLS and APF, enabling real-time inversion of NMP 

systems, thereby introducing an adaptive DOB design method. 

When the studies mentioned above are examined, it is seen that generally two types of 

design methods and their variants are used. In the first type of method, it is ensured that 

the system shows MP behavior by designing a parallel filter to the NMP system 

[7][8][9]. For example, the parallel filter design steps specified in [8] are shown in 

Figure 2.2 and Figure 2.3, respectively. In the figures, C is the system controller, P is 

the actual system, Pn is the nominal system, Q is the low-pass filter, R is the reference 

signal, Y is the output signal, d is the input disturbance, 𝜎 is measurement noise and V is 

the parallel filter. Classical DOB design is constructed by assuming that the plant is P + 

V. The difficulty of this method is due to the design of the V filter. Assuming 𝜗 = 1 / V 

in the presented NMP-DOB design, the equations for the new method are obtained as in 

(2-7), (2-8), (2-9) and (2-10). 

𝑌(𝑠) =  Pry(s)R(s) + Pdy(s)d(s) - Pσy(s)σ(s)    

(2-7) 

Pry(s) = 
(Pn(s)ϑ(s) + 1)P(s)C(s)

1 + P(s)C(s) + (1 + Pn(s)C(s))P(s)ϑ(s) 
  

  

(2-8) 

Pdy(s) = 
P(s)

1 + P(s)C(s) + (1 + Pn(s)C(s))P(s)ϑ(s)  
 

  

(2-9) 

Pσy(s) = 
P(s)C(s) + (1 + Pn(s)C(s))P(s)ϑ(s)

1 + P(s)C(s) + (1 + Pn(s)C(s))P(s)ϑ(s) 
 

 

(2-10) 
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The aim here is to reduce the negative effect of disturbance on the system by keeping 

the Pdy(s) value small. Also, the measurement noise in the low frequency range is 

considered to be close to zero. Based on these assumptions, it is desired to obtain 𝜗 that 

satisfies the conditions given in (2-11), (2-12) and (2-13). 

Pry(s) ≈ 
Pn(s)C(s)

1 + Pn(s)C(s) 
  

  

(2-11) 

Pdy(s) ≈ 0 (2-12) 

Pσy(s) ≈ 1  (2-13) 

Using the 𝐻∞ design method, the problem is modified as follows: If L, S and T are 

defined as Pn(s)ϑ(s), (1/1 + Pn(s)ϑ(s)) and (Pn(s)ϑ(s) / 1 + Pn(s)ϑ(s)), (2-14) and (2-15) 

are obtained. They are called performance recovery condition and robust stability 

condition, respectively. By solving these equations, ϑ(s)  which achieves conditions 

given in (2-11), (2-12) and (2-13), is calculated. 

‖
W1

1+L
‖

∞

 < 1 
 

(2-14) 

‖|W2S|+|W3T|‖∞< 1  (2-15) 

Although this design provides the applicability of the classic DOB design for NMP 

systems, it has two drawbacks: 1) the input disturbance affecting the system is not 

injected the input of the V filter at runtime. For this reason, this situation leads to a small 

uncertainty in the design [8]. 2) In order to calculate the V filter, a deep robust stability 

analysis is required [2]. 
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Figure 2.2. Classical DOB design in closed loop system. 

 

 

Figure 2.3. Proposed control design with parallel filter and DOB. 

 

In the second type of method, the MP approximation of the NMP system is estimated by 

using the MP conditions, with the help of the constrained optimization technique [2][5]. 

For example in [2], in order to invert the transfer function of the NMP system, MP 

equivalents of the RHP zeros in the numerator of the nominal system are found for a 

certain frequency range. Suppose that the NMP causal system which we want to invert 

contains RHP zeros and NP represents the polynomial consists of only RHP zeros. Also 

the non-causal, MP transfer function that we calculated as the equivalent of NP at the 
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end of optimization is Napprox / Dapprox. In this case, the error polynomial can be defined 

as in (2-16). 

e:= NP - 
Napprox

Dapprox

 
 

(2-16) 

With this definition, the optimization problem can be cast as 

minimize  

E = xamp|e(jw)|2+xphase(arg(e(jw)))
2
 

subject to: 

E1: Napprox and Dapprox are Hurwitz polynomials.  

E2: 0 ≤ w ≤ min(Re(zRHP)) 

 

 

 

 

 

 

(2-17) 

xamp  and xphase  represent magnitude and phase weights. In the minimization of the 

problem specified in (2-17), numerical solution can be implemented by using any 

optimization technique. The solution is realized for frequency points up to the smallest 

of the RHP zeros. 

 

2.2.3 Communication Disturbance Observers 

With the spread of network-based control systems and other network-based 

applications, developers designed methods to overcome the negative effects of time 

delay on the system. Although simple but effective control methods (e.g. SP) are 

developed to provide time delay compensation the need for precise measurement of 

time delay in these designs reduces the effectiveness of the methods. As an updated 

DOB type, CDOB is designed to perform delay compensation without the exact 

measurement of time delay. 

In 2006, Kato et al. [12] presented a method that can compensate the time delay in 

motion control systems without the need for a delay value by combining SP and DOB. 

In 2008, Natori and Ohnishi [28] carried out stability analysis using ND and CDOB for 

systems with constant delay and derived the design conditions through the relationship 

between the poles of CDOB and ND. In the same year, Natori et al. [29] performed a 
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practical stability analysis based on design parameters using the Nyquist diagrams for 

the delay compensation design created using CDOB. Then, they performed tests for 

1DOF inertial system and 2DOF manipulator and showed that the design works 

efficiently. In 2010, Natori et al. [30] combined ND and CDOB concepts for time-

varying delays, performed delay compensation and compared it with SP. According to 

the experimental results, they showed that CDOB design works more effectively than 

SP for time-varying delays. Although the CDOB design does not require an actual delay 

model, the observer's model uncertainties negatively affect the robustness of the control 

system and this situation leads to the need for a delay model. For this reason, in 2010, 

Rahman and Ohnishi [31] used the delayed input signal in the delay estimation to 

eliminate the erroneous delay estimation caused by the model uncertainty. In 2012, 

Natori [32] estimated the approximate polar values of the system using Pade 

approximation and implemented the CDOB design based on these values. 

In CDOB, delay compensation is done by handling the time delay as disturbance. A 

system with time delay in input and output signals is shown in Figure 2.4. In the figure, 

𝜏𝑖  and 𝜏𝑜  represent the time delay values in the input and output of the system, 

respectively. Therefore, the total time delay value affecting the system is calculated 

as  𝜏 = 𝜏𝑖 + 𝜏𝑜 . In this case, the relationship between the system's input and output 

signals is as follows: 

Y(s)

R(s)
 = e-τi  P(s)e-τo=P(s)e-τs 

 

(2-18) 

In Figure 2.5, the time delay model is connected in series with the nominal system. 

Considering the relationship between input and output signals, the time delay can be 

given to the system as disturbance affecting only the input signal, without loss 

generality. In this case, ND is obtained as follows: 

ND = U(s)-U(s)e-τs (2-19) 

CDOB provides time delay compensation by estimating ND. Figure 2.6 shows delay 

compensation using CDOB for a system with time delay in input and output signals. In 

the ideal case where the Q-filter value is considered infinite, CDOB ensures that the 

negative effect of the delay is completely removed from the system. 
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Figure 2.4. Closed loop system with time delay. 

 

 

Figure 2.5. Closed loop system with ND. 

 

 

Figure 2.6. Time delay compensation using CDOB. 

 



 

 

 

19 

Although the CDOB provides delay elimination without the need for actual delay 

measurement, the constraints of the classical DOB design also apply to the CDOB. 

Therefore, it is not possible to use the classical CDOB design directly in NMP systems. 

 

2.3 Summary 

Although DOB is an effective and simple method, it also has important limitations. In 

particular, the fact that it cannot be used directly for NMP systems draws the attention 

of developers and leads to the creation of different DOB designs. However, these DOB 

designs developed for NMP systems also have some deficiencies.  

CDOB, which is an updated version of the DOB design, is used for time delay 

elimination. However, although it provides delay compensation without relying on 

measurement of actual time delay, it cannot be used directly in NMP systems, as in the 

classical DOB design. 
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3 BACKGROUND AND LITERATURE REVIEW OF SMITH 

PREDICTORS 

 

3.1 Introduction 

SP is a simple yet effective design that ensures a stable response from a closed loop 

system when time delay is available in the loop. In this design, the accurately known 

delay term of the system is removed perfectly from the system’s characteristic equation 

and the negative effect of the delay on the response is eliminated. Although it provides 

ease of design and eliminates the negative effect of time delay, the need for exact time 

delay value and minimum model uncertainty limits the use of the method. Therefore, 

the designers try to eliminate these limitations of SP or use designs which this 

restriction is already eliminated [33]. 

This chapter is organized as follows. In the Section 2, the important examples of SP in 

the literature are given. In the same section, SP types, their structures and literature 

examples are explained. In Section 3, different types of SP are compared. Finally, the 

chapter is summarized in Section 4. 

 

3.2 Smith Predictors 

After SP was developed by Otto J. M. Smith [34] in 1957, it has been used in many 

different areas to eliminate time delay problems. In 1977, Donoghue [35] compared SP 

with optimal control design for time delay systems, demonstrating that SP is more 

successful in the presence of external disturbance. In 1983, Bahill [36] developed an 

adaptive controller and combined it with SP to overcome the differences between the 

model and the plant. In 1994, Astrom et al. [37] proposed a new SP design that can 

work for systems with integral mode by separating the set point and load responses. SP 

studies conducted in recent years are generally on reducing model uncertainties or 

making more precise time delay measurements. In 2007, Xiaojun and Fengdeng [38] 

used fast converging genetic algorithm in modeling of nominal system to reduce 

uncertainty and make SP adaptive. . In 2008, Lai et al. [39] proposed an adaptive SP 

design that can perform effective time delay compensation for systems that have time-



 

 

 

21 

varying delay by making real-time delay measurement. In 2010, Zheng and Fan [40] 

developed the MRA-SP, minimizing model uncertainties and improving the 

performance of the control system. 

When the examples given above are examined, it is seen that the performance of SP has 

been tried to be improved by using system identification methods. Because performance 

of SP is directly dependent on the uncertainty of the system model and a high-fidelity 

model improves the performance of SP as well. Adaptive system identification methods 

are also capable of reducing this uncertainty by detecting changes on the system in real 

time. 

 

3.2.1 Classical Smith Predictors 

Classical SP structure is illustrated in Figure 3.1. As shown in the figure, the delay that 

adversely affects the closed loop system is compensated using the predictor transfer 

function P (1- e-τs).  

 

 

Figure 3.1. Classical SP structure. 

 

If the system structure is expressed using the following equations, then 

U

E
= 

C

1+PC(1-e-τs)
 

 

(3-1) 

Y

R
=

U
E

 
Y
U

1+
U
E

 
Y
U

=

PCe-τs

1+PC(1-e-τs)

1+ 
PCe-τs

1+PC(1-e-τs)

=
PCe-τs

1+ PC
 

 

 



 

 

 

22 

(3-2) 

are obtained. Equation (3-2) expresses the ideal design expected in the presence of 

controller and SP. However, in real systems, SP efficiency depends tightly on the exact 

measurement of delay and correct modeling of the real system. These are rather 

restrictive conditions for a successful application of SP. 

 

3.2.2 Smith Predictors by Modeling System Parameters 

In Figure 3.2, the delayed real system P(s) e-τs is modeled and Pref(s) e
-τrefs is obtained. 

Then the SP design is studied on this new block structure. The transfer function of the 

new SP design is obtained as follows: 

Y

R
= 

PCe-τs

1+PrefC(1- e-τrefs)

1+ 
PCe-τs

1+PrefC(1- e-τrefs)

  

 

 

(3-3) 

Y

R
=

PCe-τs

1+PrefC+C(Pe-τs- Prefe
-τrefs)

  
 

(3-4) 

 

 

Figure 3.2. SP structure by modeling real system and delay. 

 

As can be understood from (3-4), if the modeling error of the real system with delay is 

minimized and a sufficient level of fidelity is achieved, the ideal SP design expressed in 

(3-2) is obtained by assuming  (Pe-τs- Prefe
-τrefs) ≈ 0. 
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3.2.3 Adaptive Smith Predictors 

As can be seen from (3-4), the efficiency of SP depends on the exact measurement of 

the time delay value and the uncertainty of model. Therefore, the performance of SP 

decreases when the time delay or the system is time-varying. Developers make adaptive 

SP designs to maintain SP performance by tracking these changes in system or time 

delay. Generally three types of adaptive SP designs are used [41]. 

The two design types of SP are shown in Figure 3.3 and Figure 3.4, respectively. In the 

first design type, the plant is modeled in real time in order to follow the parameter 

changes. In the second design type the delay model is obtained in real time and the 

changes in the delay are tracked instantaneously. In the last design type, both models 

are estimated in real time in order to follow the changes in both time delay and system 

parameters. This design type of SP is shown in Figure 3.5. 

 

 

Figure 3.3. Adaptive SP using online parameter estimator. 
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Figure 3.4. Adaptive SP using online time delay estimator. 

 

 

Figure 3.5. Adaptive SP using both parameter and time delay estimator. 

 

The performance of adaptive SP design is directly dependent on the performance of the 

estimator. For this reason, the estimator to be used should be the identification 

algorithm that has a low error rate and can track changes quickly. 

 

3.3 Summary 

In this section, by giving information about SP, which has important usages in the 

literature, how to create different SP types and their advantages are explained. 
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4 BACKGROUND AND LITERATURE REVIEW OF ONLINE 

TIME-DOMAIN IDENTIFICATION TECHNIQUE: 

RECURSIVE LEAST SQUARES 

 

4.1 Introduction 

RLS algorithm is an iterative implementation of LS regression algorithm. The method 

allows the LS algorithm to be dynamically applied to time series obtained in real time. 

Algorithm is a member of KF family and exhibits an adaptive mechanism in terms of 

execution method. In addition, it is adjustable according to time-varying input data and 

it has a fast convergence rate. In this respect, it clearly shows a better performance than 

the LS algorithm [42]. 

This chapter is organized as follows. In Section 2, important examples about RLS in the 

literature are given. In Section 3; LS, RLS and RLSWF algorithms, their advantages 

and disadvantages are explained. Finally, the chapter is summarized in Section 4. 

 

4.2 Literature Review 

Due to its efficient performance in online system identification, RLS and its variants is 

used in many different fields in the literature. In 2010, Underwood and Husain [43] 

developed adaptive current and torque controllers for permanent-magnet synchronous 

machines by performing online parameter estimation with RLS. In 2012, Rajami et al. 

[44] used RLS to estimate the slip-slope used in the measurement of friction coefficient 

in vehicles and showed that estimation can be done with high accuracy. In 2014, Alonge 

et al. [45] estimated the speed in the motion control system by using RLS and calculated 

the rotor flow using 4th order KF instead of using 6th order EKF. In 2015, Badoni et al. 

[46] presented the control algorithm that predicts the the power components of the load 

current with RLSWVF for more efficient operation of the distributed static 

compensator. In 2016, Reichbach and Kuperman [47] used RLS for online estimation of 

supercapacitor parameters. In 2018, Shen et al. [48] estimated the capacity and 

maximum power of lithium-ion batteries used in electric vehicles with RLS and 

increased the accuracy of state estimation using EKF. In 2019, Song et al. [49] used the 
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RLSWVF to calculate the remaining electrical energy in lithium-ion batteries and they 

showed that the method is more robust than RLSWF. In the same year, Feng et al. [50] 

used the RLSWF algorithm to identify the electro-hydraulic proportional system model 

with high accuracy and speed. 

When the studies in the literature are examined, it is seen that three different variants of 

the RLS algorithm are frequently used: RLS, RLSWF and RLSWVF. Although the 

basic operating principles of these algorithms are similar, their convergence rate and 

tracking capabilities differ. In the following sections; RLS, RLSWF algorithms and 

differences between them are explained. 

 

4.3 Background 

 

4.3.1 Least Squares Estimation 

The basis of the LS algorithm is the identification of the linear model with unknown 

parameter values by minimizing the square of the difference between the real and 

estimated system outputs. This situation can be defined as optimizing the cost function 

specified in (4-1). In this equation, T is the sampling time, y is real system output, x is 

identification input and w is the vector of linear system parameters we want to obtain at 

the end of the identification. 

 ϵ(w)=
1

2
∑ (xT(iT)w-y(iT))

2

m

i=1

 
 

(4-1) 

If closed form solution is developed, then 

dϵ

dw
(w)= ∑ x(iT)(xT(iT)w-y(iT))

m

i=1

 = 0 
 

(4-2) 

∑(x(iT)xT(iT)w-x(iT)y(iT)) = 0

m

i=1

 
 

(4-3) 

 w ∑(x(iT)xT(iT))-

m

i=1

∑(x(iT)y(iT))

m

i=1

= 0  
 

(4-4) 
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 w = ∑(x(iT)xT(iT))
-1

∑(x(iT)y(iT))

m

i=1

m

i=1

 
 

(4-5) 

is obtained. 

 

4.3.2 Recursive Least Squares Estimation 

In the RLS algorithm, it is aimed to recursively update the equation given in (4-5) as the 

real-time data are obtained. If  A(mT)= ∑ (x(iT)xT(iT))m
i=1  and  B(mT) = 

∑ (x(iT)y(iT))m
i=1 , then 

w(mT) = A
-1

(mT)B(mT) (4-6) 

is obtained. The aim is to calculate the value of w(mT) using the data we have obtained 

at time (m-1)T. In this case, the value of  w((m-1)T) is obtained as 

 w((m-1)T) = A
-1

((m-1)T)B((m-1)T) (4-7) 

If the values of A(mT) and  B(mT) are also calculated using  A((m-1)T) and  B((m-1)T), 

then 

 A(mT) = A((m-1)T)+x(mT)xT(mT) (4-8) 

 B(mT) = B((m-1)T)+x(mT)y(mT) (4-9) 

are obtained. However, as specified in (4-6), A
-1

(mT) is needed to obtain the 

 w(mT) value. From the matrix inversion formula, 

A
-1(mT)=A

-1
((m-1)T)-

A
-1((m-1)T)x(mT)xT(mT)A

-1
((m-1)T)

1+ xT(mT)A
-1

((m-1)T)x(mT)
 

(4-10) 

is obtained. If the covariance matrix  P(mT)  and Kalman gain L(mT) are  shown as 

A
-1

(mT)  and  P((m-1)T)x(mT)(1+xT(mT)P((m-1)T)x(mT))
-1

 respectively, P(mT)  can 

also be expressed as 

 P(mT)=(I-L(mT)xT(mT))P((m-1)T) (4-11) 

In this case, to find the value of w(mT) recursively, the following equations are used: 
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 w(mT)=P(mT)B(mT) 

 =P(mT) (A((m-1)T)w((m-1)T)+x(mT)y(mT)) 

=P(mT) ((A(mT)-x(mT)xT(mT))w((m-1)T)+x(mT)y(mT)) 

=w((m-1)T)-P(mT)x(mT)xT(mT)w((m-1)T)+P(mT)x(mT)y(mT) 

=w((m-1)T)+L(mT)(y(mT)-xT(mT)w((m-1)T))  

 

 

 

 

 

 

(4-12) 

The algorithm structure used for RLS is similar to the one used in many recursive 

estimation algorithms. Differences between algorithms are mostly achieved by changing 

the Kalman gain. 

 

4.3.3 Recursive Least Squares Estimation with Forgetting Factor 

In cases where the linear system parameters are time-varying, the RLS algorithm alone 

may not be sufficient. In this case, the forgetting factor, which is a more effective and 

heuristic approach, is used with RLS. This method allows more focus on recently 

observed data by reducing the weighting of old data points used during identification. In 

this case, the cost function used in the RLS algorithm, the covariance matrix P and the 

Kalman gain L are updated in the RLSWF algorithm respectively as follows [51]: 

ϵ(w) = 
1

2
∑ λ

m-i
(xT(iT)w-y(iT))

2

m

i=1

 
 

(4-13) 

 P(mT) = (
1

λ
)(I-L(mT)xT(mT))P((m-1)T) 

 

(4-14) 

 L(mT) = P((m-1)T)x(mT)(λ+xT(mT)P((m-1)T)x(mT))
-1

 
 

(4-15) 

The forgetting factor (𝜆) value varies in between 0 and 1, and this value provides a 

compromise between the stability and tracking performances of the algorithm. As this 

value approaches 0, the tracking capability of the algorithm is improved, but negatively 

affects stability. 
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4.4 Summary 

The RLS algorithm has a fast convergence rate.  For this reason, it is a very commonly 

used method in online system identification. Different variants such as RLSWF, 

RLSWVF have been developed in order to improve the algorithm and increase its 

tracking capability. In these variants, using the forgetting factor coefficient, it can be 

adjusted how the algorithm will follow the changes in the system. 

In this section, these algorithms and their basic working principles are explained. 
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5 DISTURBANCE OBSERVER DESIGN FOR NON MINIMUM 

PHASE UNMANNED AERIAL VEHICLE 

 

5.1 Introduction 

Linear dynamical systems are separated into two classes: MP and NMP systems. 

Systems with all zeros in the LHP are called MP systems. MP systems and their 

inverses are causal and stable. On the other hand, systems which have zero(s) in the 

RHP are called as NMP systems. Although these systems are causal and stable, their 

inverses are unstable. In addition, the presence of a time delay in the system also leads 

the system to be NMP [52]. 

In classical DOB design, the inverse of system dynamics is needed to construct the 

DOB. Therefore, the fact that the actual system is NMP causes instability in DOB 

design. Different system inversion methods are presented to eliminate this restrictive 

effect in classical DOB design. Two types of design methods are frequently used in 

studies in the literature. In the first design type, a filter parallel to the actual system is 

designed and the NMP system is transformed into a MP system. Then, DOB design is 

carried out over this MP system [7][8][9]. In the second design type, constrained 

optimization methods are used considering the conditions of being MP and the closest 

MP equivalent of the NMP system is found. These methods can be used offline or 

online depending on the cost of the algorithm [2][5]. Details of the instability of 

traditional DOB designs on NMP systems and DOB designs developed for NMP 

systems can be found in Chapter II. 

This chapter is organized as follows. In Section 2 the NMP-DOB design used, its 

differences from the original solution, the NMP system where the test is carried out and 

the controller used are explained. In Section 3, the behaviors of the NMP system under 

different disturbances in both the presence of the controller and the presence of the new 

NMP-DOB design are shown. Finally, the chapter is summarized in Section 4. 

 

5.2 Experiment Setup 
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5.2.1 Plant Model 

The Tower Trainer 60 autopilot design problem [53] is used to test the new NMP-DOB 

design. The nominal transfer function of the system takes the elevator angle as input and 

provides altitude control. This transfer function’s denominator degree is 5 and it has 3 

zeros in total. One of these zeros is in the RHP and its value is approximately 

12.449088. The transfer function coefficients are shown in (5-1). 

 Pn(s) = 
h(s)

δe(s)
 = 

-34.16s3-144.4s2+7047s+557.2

s5+13.18s4+95.93s3+14.61s2+31.94s
 

 

(5-1) 

5.2.2 Controller 

𝐻∞ synthesis technique is used in the design of system controller. In this controller 

design type, a closed loop weighted transfer function is obtained by using the system's 

sensitivity and complementary sensitivity. Then, the optimal transfer function 

minimizing the 𝐻∞ norm of this weighted transfer function is used as system controller. 

When the closed loop system indicated in the Figure 5.1 is examined, the sensitivity S 

and complementary sensitivity T of the system are obtained as in (5-2) and (5-3), 

respectively. 

 R→E: S=(I+PC)-1 (5-2) 

 R→Y: T=(I+PC)-1PC  (5-3) 

S+T=I (5-4) 

S and T functions of the closed loop system are shaped using weights. The weight of the 

S function, 𝑊𝑆, determines the system performance, and it should be chosen large for 

better tracking performance inside the control bandwidth. Similarly, the 𝑊𝑇  weight 

shapes the T function, and for more robust performance, a larger value should be chosen 

outside the control bandwidth [54]. These weights are used to create an augmented plant 

which is specified in Figure 5.2. In this way, the problem turns into finding the 

controller that ensures that the 𝐻∞ norm of 𝑃𝑧𝑤 =  [
𝑊𝑆𝑆
𝑊𝑇𝑇

] is less than 1. 
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Figure 5.1. Closed loop system. 

 

 

Figure 5.2. Augmented plant. 

 

As mentioned before, the 𝐻∞ design method was used when designing the controller for 

the unmanned aerial vehicle model which used as a plant. For this purpose, the 

weighting method given in [9] is used in the control design. Values of weights are given 

in (5-5). 

WS(s) =  
s2+1.84s+0.846

0.001s3+1.002s2+1.84s+1.84e-06
 

WT(s) =  
s

5
* 

s

s - 0.001
 

 

 

(5-5) 

The Nyquist diagram of the nominal system is shown in Figure 5.3. The gain and phase 

margins of the system are calculated as 38.5 dB and 76.1 deg, respectively. Then 100 

MC runs are executed with 10% uncertainty and the Nyquist diagrams are obtained as 

seen in Figure 5.4. 
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Figure 5.3. The Nyquist diagram of the nominal system. 

 

 

Figure 5.4. The Nyquist diagrams of MC runs with 10% uncertainty. 
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5.3 Inverse Approximation of Unmanned Aerial Vehicle 

The optimization method given in [2] has been used in the NMP-DOB design with 

some modifications in the cost function. In this method, it is aimed to find the MP 

approximation of RHP zeros for a certain frequency range. For this reason, the cost 

function specified in (5-6) is minimized under the specified constraints in the original 

solution. Detailed information about this solution can be found in Chapter II. 

minimize  

 E = xamp|e(jw)|2+xphase(arg(e(jw)))
2
 

subject to: 

E1: Napprox and Dapprox are Hurwitz polynomials.  

E2: 0 ≤ w ≤ min(Re(zRHP)) 

 

 

 

 

 

 

(5-6) 

Unlike the original cost function given in (5-6), the magnitude and phase coefficients 

𝑥𝑎𝑚𝑝 and 𝑥𝑝ℎ𝑎𝑠𝑒 are defined frequency-dependent in the modified cost function which 

is given in (5-7). Using this new cost function for the second order NMP system used in 

the test of the original solution, the MP system approximation was found and the 

inverse of the obtained MP system was taken. During the tests, it was observed that the 

use of frequency-dependent coefficients is more effective in finding the MP system 

approximation. For this reason, this new cost function has also been used for different 

NMP systems where tests are carried out. The results regarding the effectiveness of the 

new cost function are presented in Section 3. 

minimize  

 E = xamp(𝒘)|e(jw)|2+xphase(𝒘)(arg(e(jw)))
2
 

subject to: 

E1: Napprox and Dapprox are Hurwitz polynomials.  

E2: 0 ≤ w ≤ min(Re(zRHP)) 

 

 

 

 

 

 

(5-7) 
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In the minimization of the problem specified in (5-7), numerical solution is 

implemented by using the off-the-shelf interior point method. Details on optimization 

methods can be found in [55]. 

After the controller design of the closed loop system, the design of NMP-DOB is started 

and the optimization method given at the beginning of the section is used to reverse the 

NMP system. For this purpose, the following error polynomial is defined: 

 e(s) = (s - 12.449088) - 
Napprox

Dapprox

 
 

(5-8) 

Solving the optimization problem in (5-7) with the error polynomial specified in (5-8), 

the MP approximation of the NMP zeros of the transfer function is estimated. xamp(𝑤) 

and xphase(𝑤) are chosen as exp(-10 * w) and 10, respectively. The estimation is realized 

non-causal by selecting the numerator degree 2 and denominator degree 1 of the MP 

transfer function. In order to obtain more accurate results, minimization can be carried 

out for different numerator and denominator degrees by providing the condition of 

being non-causal. Equation (5-9) shows the MP and non-causal transfer function 

obtained as a result of minimization. 

Napprox

Dapprox

= 
-0.183s2-5.486s-72.63

s+6.963
 

 

(5-9) 

In Figure 5.5, the RHP zero polynomial (s - 12.449088), MP approximation and 

symmetric zero polynomial (-s - 12.449088) is compared in Bode diagrams. In this 

figure, Bode diagrams display acceptable similarity up to the RHP zero frequency, 

which is used as the maximum frequency point in MP approximation. This figure also 

shows us that the new DOB design has a bandwidth of 12 rad/sec and system responses 

are acceptable at frequencies below this value [2]. 

 



 

 

 

36 

 

Figure 5.5. Bode diagrams of NMP, approximate MP and symmetric polynomials. 

Blue, red and orange curves indicate NMP, approximate MP and symmetric 

polynomials, respectively. 

 

In the presence of new NMP-DOB, the robustness of the closed loop system is 

investigated. 

As can be seen from the Figure 5.6, the classical DOB structure contains inner and outer 

feedback loops. While the inner loop eliminates the disturbances affecting the system, 

the outer loop fulfills the performance requirements. Open-loop transfer function 

formulas for inner and outer loop are given in (5-10) and (5-11) where P is the real 

system, Pn is the nominal model of the system, C is the system controller and Q is a low 

pass filter [2]. 

Linner =  
PQ

Pn(1-Q)
 

 

(5-10) 

Louter =  
CPPn

Pn(1-Q)+PQ
 

 

(5-11) 

By using the inner loop equation in (5-10), the Nyquist diagram for the DOB with the 

nominal system is examined and the diagram in Figure 5.7 is obtained. The gain and 

phase margins of the system are calculated as infinite and 90 deg, respectively 
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Figure 5.6. Inner and outer loops of classical DOB structure. 

 

 

Figure 5.7. The Nyquist diagram of the NMP-DOB. 
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Then 100 MC runs are executed with 10% uncertainty and the Nyquist diagrams are 

obtained as shown in Figure 5.8. 

 

 

Figure 5.8. The Nyquist diagrams of MC runs with 10% uncertainty. 

 

5.4 Simulation Results 

During the tests the reference signal, input disturbances and output disturbances are 

defined as  r(t) = step(t), d(t) =  sin(t) and  σ(t) is the output measurement noise, which 

has uniform distribution in between ±1e-3, respectively. 

In Figure 5.9 the system response obtained in the absence of DOB when input and 

output disturbances affect the closed loop system is shown. As can be seen from the 

figure, when disturbances are active, the controller becomes incapable of alleviating it 

and this causes oscillations in the system response. In Figure 5.10 the system response 

obtained in the presence of controller and DOB is compared with the system responses 

obtained only in the presence of a controller. As can be seen from the figure, the 

proposed DOB design used with the controller makes the system more robust against 

disturbances and provides a response close to the nominal system’s response. 
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Figure 5.9. Closed loop responses of the system. Red and green curves show system 

responses in the presence and absence of both input and output disturbances, 

respectively. 

 

 

Figure 5.10. Closed loop responses of the system. Red and blue curves show system 

responses against input and output disturbances in the absence and presence of DOB, 

respectively. 
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In Figure 5.11, for the problem in [2] , the results of the original solution given in (5-6) 

and the results of the modified solution given in (5-7) are compared. 

The NMP system used for testing in the original solution is given in (5-12). It is stated 

in paper that by using the cost function given in (5-6), the MP approximation of NMP 

system is calculated as in (5-13). 

N

D
= 

-s+25

s2+15s+50
 

 

(5-12) 

(s - 25) ≈ -0.2940
s2 + 100s + 10

s+1
 

 

(5-13) 

In the tests performed by using the modified cost function given in (5-7), the MP 

approximation for the same NMP system is calculated as in (5-14). Then, using the MP 

approximations given in (5-13) and (5-14), the inverse models of the NMP system are 

calculated. As shown in Figure 5.11, when the modified cost function given in (5-7) is 

used, the response of the inverse system is closer to the reference signal. However, this 

improvement depends not only on the cost function but also on the optimization 

method. Since it is not specified which optimization method is used in [2], a comparison 

could not be made over these methods. 

(s - 25) ≈ 
-2.764 s2 - 24.98 s - 0.4944

s + 0.01978
 

 

(5-14) 
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Figure 5.11. Comparison of original and modified methods of NMP-DOB. Red and 

blue curves show system responses using original and modified solutions, respectively. 

 

5.5 Summary 

In this section, the NMP-DOB design for the unmanned aerial vehicle was developed 

and performance tests were carried out under artificial disturbances. According to the 

results, the restriction of DOB for NMP systems was removed and the negative effect of 

the disturbance on the system response was eliminated. 
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6 ADAPTIVE SMITH PREDICTOR DESIGN USING RECURSIVE 

LEAST SQUARES FOR NON MINIMUM PHASE UNMANNED 

AERIAL VEHICLE 

 

6.1 Introduction 

Time delay in dynamic systems affects the operation of the system negatively. For this 

reason, the developers proposed different methods to protect system performance and 

eliminate the negative effects of time delay. SP is a simple and effective method 

designed to eliminate the time delay in the system.  However, although it provides ease 

of design and effective delay compensation, the need for high-accuracy modeling of the 

actual system and precise measurement of the time delay makes the use of the SP design 

difficult. Details on the SP design can be found in Chapter III. 

Unlike SP, CDOB design provides delay compensation without the need for the 

measurement of actual time delay. However, the need for the inverse of the actual 

system makes it difficult to apply the CDOB to NMP systems. Considering that most of 

the dynamic systems are NMP, special inversion methods are required to apply the 

CDOB design to such systems. Details on NMP inversion methods and CDOB design 

can be found in Chapter II. 

For this reason, a design that combines both the flexibility of the SP and the 

independence of the CDOB from the precise time delay measurement was developed. 

This design combines the classical SP with the RLSWF algorithm, allowing delay 

compensation without the need for actual time delay measurement. In addition, by using 

the simple and flexible design structure of the classical SP, it can work for NMP 

systems without any extra design cost. In this respect, the new design provides 

superiority to CDOB. 

This chapter is organized as follows. In Section 2 how SP and RLSWF are combined is 

explained. In Section 3, the performance of new design under different constant time 

delays and varying time delays are shown. Finally, the chapter is summarized in Section 

4. 
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6.2 Combination of Smith Predictor Solution and Recursive Least Squares with 

Forgetting Factor 

In the new adaptive SP design, the classical SP structure is combined with the RLSWF 

algorithm, aiming to eliminate the adverse effect of delay without entailing precise 

delay measurement. The new adaptive SP design steps are given in between Figure 6.1 

and Figure 6.5. Unlike the classical SP shown in Figure 6.1, it is assumed that the 

nominal model of the system is known and only the delayed system is modeled using 

RLSWF. In addition, it is aimed to model only the delayed system by eliminating the 

necessity of modeling the time delay separately. 

 

 

Figure 6.1. Classical SP structure. 

 

The modified SP structure is shown in Figure 6.2. The SP design shown in this figure is 

exactly the same as the classical SP structure in Figure 6.1 and is arranged to explain the 

future design steps more easily. The reference model and the delayed reference model in 

the SP structure in Figure 6.3 are divided into different internal loops. In this way, it is 

ensured that the time delay and the reference model are identified together. Figure 6.4 

shows that the delayed actual system can be modeled with the help of any online model 

estimation. In this structure, model estimation algorithm uses the inputs and outputs of 

the delayed system for identification and yields the error value between the real and the 

estimated system as output. This value is then subtracted from the reference signal. 
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Similarly, the difference between the error signal and the nominal system output is 

given to the system controller as input.  

 

 

Figure 6.2. Modified SP structure. 

 

 

Figure 6.3. SP structure which reference model and delayed reference model are 

separated. 
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Figure 6.4. Adaptive SP structure using model estimation. 

 

In Figure 6.5, online identification of the actual delayed system is performed using the 

RLSWF algorithm. The execution performance of this new solution is directly 

dependent on the performance of the RLSWF algorithm. As specified in (3-4), if the 

modeling of the delayed system is done with a sufficient level of fidelity and (Pe-τs- 

Prefe
-τrefs) ≈ 0 is obtained, the ideal SP design is achieved. Therefore, if the RLSWF 

algorithm also performs high-fidelity identification and obtains the error value between 

the real and the identified delayed systems close to zero, more acceptable delay 

compensation is achieved by approaching the ideal SP design. Details on the RLSWF 

algorithm can be found in Chapter IV. 

 

6.3 Simulation and Results 

In order to compare the new adaptive SP design with the classical SP, the autopilot of 

the Tower Trainer 60 unmanned aerial vehicle is used, in which the DOB design 

presented in the previous section, is also tested. Details about the experiment setup can 

be found in Chapter V. 
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Figure 6.5. Adaptive SP structure using RLSWF algorithm for model estimation. 

 

In Figure 6.6 and Figure 6.7, it is observed how robust the system is against delays in 

the presence of the controller designed using the H synthesis method. Time delay 

values are chosen as τ = 0.1 s and 1 s, respectively. The reference input is a step signal. 

 

 

Figure 6.6. Closed loop responses of the system. Red and green curves show system 

responses in the presence and absence of 𝝉 = 𝟎. 𝟏 𝒔, respectively. 
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Figure 6.7. Closed loop responses of the system. Red and green curves show system 

responses in the presence and absence of 𝝉 = 𝟏 𝒔, respectively. 

 

In Figure 6.8 the responses of nominal and delayed real systems are compared by 

choosing τ = 10 s. As can be seen from the figure, the system response loses its stability 

at high delay values and the controller cannot perform the satisfactory performance. For 

this reason, the adaptive SP design approach created using the RLSWF algorithm is 

added to the closed loop system and responses are examined. 

In Figure 6.9, the response of the closed loop system in which this design is used and 

the response of the system obtained in the presence of the controller only are compared. 

As can be seen from the figure, the new adaptive SP design ensures a stable response 

from the system by eliminating the deteriorating effect of the delay without the need for 

the actual delay information, even at high delay values. 

After the tests with constant time delay, the new adaptive SP design was tested by using 

varying time delays. For this purpose, the varying artificial delay shown in Figure 6.10 

is used. In Figure 6.11, the response of the closed loop system in which this design is 

used and the response of the system obtained in the presence of the controller only are 

compared. As can be seen from the figure, the new design eliminates the negative effect 

of the varying time delay. 
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Figure 6.8. Closed loop responses of the system. Red and green curves show system 

responses in the presence and absence of 𝝉 = 𝟏𝟎 𝒔, respectively. 

 

 

Figure 6.9. Closed loop responses of the system. Red and blue curves show system 

responses when 𝝉 = 𝟏𝟎 𝒔. The loop in the presence (blue) and absence (red) of new SP 

approach produces radically different responses. 
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Figure 6.10. Artificial varying time delay. 

 

 

Figure 6.11. Closed loop responses of the system. Red and blue curves show system 

responses under artificial varying time delay. The loop in the presence (blue) and 

absence (red) of new SP approach produces radically different responses. 

 

6.4 Summary 

This chapter explains the new adaptive SP design developed by combining RLSWF and 

SP. This design eliminates the need for the classical SP design for precise delay 

measurement, eliminating the negative effect of time delay on system response. The 
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results show that the new SP design performs well for both constant and varying time 

delays. 
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7 ONLINE DISTURBANCE AND TIME DELAY 

COMPENSATION DESIGN FOR NON MINIMUM PHASE 

UNMANNED AERIAL VEHICLE 

 

7.1 Introduction 

The time delay problem in dynamic systems negatively affects the system stability and 

response. SP is used in order to eliminate time delay in dynamic systems. Although this 

design is simple and effective, the need for precise measurement of the actual time 

delay value makes it difficult to use the design. Details on SP structure and the different 

types of SP can be found in Chapter III. 

Unlike SP, CDOB provides delay elimination without the need for the actual 

measurement of the time delay. However, the need for the inverse of the real system in 

CDOB creates a constraint for NMP systems as in other DOB designs. Therefore, a new 

SP design was developed by combining the simplicity of the classical SP and the 

flexibility of the CDOB. In this new adaptive SP design, delay elimination is provided 

without the need for actual delay measurement by using the RLSWF algorithm. In 

addition, the fact that it is easily applicable for NMP systems provides superiority to 

CDOB. Details on this new adaptive SP design can be found in Chapter VI. 

Although classical SP can eliminate the time delay in the system, disturbances 

negatively affect the operation of the SP. In 2008, Lee et al. [56] proposed the design 

that could eliminate the negative effect of disturbance and time delay by combining 

classical SP and DOB. Similarly, in 2010, Kim and Son [57] combined NMP-DOB and 

classical SP, and tested the design using time-varying disturbances. Finally, in 2016, 

Ahmadi and Nikravesh [58] made the classical SP design robust against parameter 

variations using the modified DOB.  

In the proposed study, the novel DOB designed for NMP systems and the new adaptive 

SP which is implemented without relying on the actual delay measurement are 

combined to create a new controller design against both time delays and disturbances. 

Unlike other studies in the literature, not needing actual delay measurement by using 

adaptive SP design gives this new design an advantage.  
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This chapter is organized as follows. In Section 2, how novel adaptive SP and NMP-

DOB designs are combined is explained. In Section 3, the performance of new design 

under artificial time delays and disturbances are shown. Finally, the chapter is 

summarized in Section 4. 

 

7.2 Combination of Adaptive Smith Predictor Solution and Non Minimum Phase 

Disturbance Observer Design 

In combining NMP-DOB and adaptive SP designs, the technique specified in [12] is 

used. The structure of this technique is shown in the Figure 7.1. In this structure, the 

classical DOB design is modified for time delayed systems and combined with the 

classical SP structure.  

In the new controller design, the NMP-DOB design given in Chapter V and the adaptive 

SP design given in Chapter VI are combined. However, the NMP-DOB design is used 

in a modified form for time delayed systems as shown in Figure 7.1. 

The design steps of new control structure are shown in Figure 7.2, Figure 7.3 and Figure 

7.4, respectively. Figure 7.2 shows the closed loop system with the NMP plant (𝑃𝑛𝑚𝑝). 

As can be seen from the figure, there is both external disturbance (d) and time delay (𝜏) 

in the system. In Figure 7.3, NMP-DOB design is added to the closed loop in order to 

eliminate external disturbance affecting the system. In this DOB design customized for 

NMP systems, it is provided to find MP approximation of RHP zeros in the plant in a 

certain frequency range. The process of finding the MP approximation is achieved by 

optimization under certain conditions.  Details on this novel NMP-DOB design can be 

found in Chapter V. Although this external disturbance affecting the system can be 

eliminated with the NMP-DOB design, an additional design is required for the time 

delay in the system. For this reason, novel adaptive SP design is added to the closed 

loop system. By utilizing the RLSWF algorithm in this novel SP design, the need for 

actual delay measurement of the classical SP design is eliminated. Details on the design 

can be found in Chapter VI. The system structure formed when two designs are 

combined can be seen in the Figure 7.4. Both designs can be developed and used 

independently, or they can be combined as shown in the figure. 
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Figure 7.1. Modified DOB structure and classical SP design for time delayed systems. 

 

 

Figure 7.2. Closed loop system. 
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Figure 7.3. Closed loop system with the modified NMP-DOB design. 

 

 

Figure 7.4. Proposed control structure. 
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7.3 Simulation and Results 

The Tower Trainer 60 model used in Chapters V and VI is also used to show that the 

new controller structure provides disturbance and time delay compensation. This system 

takes an elevator angle as an input and provides altitude control. The 𝐻∞  synthesis 

technique is used in the design of the system controller. Details about the plant and 

controller can be found in Chapter V. 

By applying the disturbances to the system with time delay, system response in the 

presence of a controller, system response in the presence of adaptive SP design and 

system responses when NMP DOB and adaptive SP are used together are 

compared. R(t) = step (t) is given to the system as a reference input. Artificial input 

disturbance is chosen as d = sin (t).  

Figure 7.5 shows the case where the time delay is τ = 10 s and the input disturbance is 

injected to the control signal of the system. As can be seen from the figure, the 

efficiency of the adaptive SP is tested design under time delay and disturbance. 

Similarly, Figure 7.6 shows system response with the same time delay and disturbance 

value with the presence of new controller structure. As can be seen from the system 

responses, when both designs are used in combination, the system exhibits better 

tracking performance with the presence of time delay and disturbance. 

 

7.4 Summary 

In this chapter, NMP-DOB design is modified for time delayed systems and combined 

with adaptive SP design. Both designs can be used together or they can be used 

separately according to system requirements. The results show that in the presence of 

disturbance and time delay, adaptive SP design alone is not sufficient, but effective time 

delay and disturbance elimination can be achieved when NMP-DOB design is combined 

with adaptive SP. 
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Figure 7.5. Closed loop responses of the system. Blue and red curves show system 

responses in the presence and absence of new adaptive SP design, respectively. 

 

 

Figure 7.6. Closed loop responses of the system. Blue and red curves show system 

responses in the presence and absence of new control structure, respectively. 
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8 CONCLUSION AND FUTURE WORK 

 

8.1 Conclusion 

In the proposed research study, the novel control design that can compensate both 

disturbance and time delay in linear dynamical systems has been developed. However, 

there already exist designs with these abilities in the literature. Therefore, the 

constraints of these designs were eliminated and a new design was presented to the 

developers. 

 

In the first part of the research, disturbance compensation in linear dynamic systems has 

been examined. The classical DOB design improves the closed loop system response by 

providing disturbance compensation when the system controller is not sufficient. 

Although it is a simple and effective design, it is a constraint for NMP systems that the 

DOB structure requires the inverse of the actual system. In order to eliminate this 

constraint, the MP approximation of the NMP system was calculated with the 

constrained optimization method and the DOB design was developed over this MP 

approximation. In the second part of the research, time delay compensation in linear 

dynamic systems has been examined. Although the classical SP design is a frequently 

used method for time delay compensation, the need for precise time delay measurement 

makes the usage of design difficult. For this purpose, by using system identification 

methods, the need for actual time delay measurement of SP design has been eliminated. 

Finally, both designs were combined to create the novel control design that can 

compensate both disturbance and time delay. These two new designs can be used both 

separately and in combination according to the system requirements. 

 

The performance of all three designs has been compared with the performance of the 

system controller. According to the results, in cases where the robust controller 

designed with the H∞ synthesis technique does not provide sufficient disturbance and / 

or time delay compensation, all three designs improve system response. 
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8.2 Future Work 

In the proposed research, although constraint optimization techniques are used to make 

the classical DOB design available for NMP systems, this process is carried out offline. 

Therefore, for time varying dynamical systems, the inverse of the system cannot be 

obtained in real time. This situation can cause the NMP-DOB design to perform less 

efficiently for time varying systems. In future studies, the inverse of the system will be 

obtained in real time and NMP DOB design will be provided to work more efficiently 

for time varying systems. 
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