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Abstract

Let R be a ring and M be an R-module. In this paper we inves-
tigate modules M such that every (simple) cosingular R-module is
M -projective. We prove that every simple cosingular module is M -
projective if and only if for N ≤ T ≤ M , whenever T/N is simple
cosingular, then N is a direct summand of T . We show that every
simple cosingular right R-module is projective if and only if R is a
right GV -ring. It is also shown that for a right perfect ring R, every
cosingular right R-module is projective if and only if R is a right GV -
ring. In addition, we prove that if every δ-cosingular right R-module
is semisimple, then Z(M) is a direct summand of M for every right

R-module M if and only if Zδ(M) is a direct summand of M for every
right R-module M .

Keywords: projective module, cosingular module, δ-cosingular module, GV -
ring.
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1. Introduction

All rings considered in this paper will be associative with an identity element
and all modules will be unitary right modules unless otherwise stated. Let R be a
ring and M an R-module. An R-module N is generated by M (or M -generated)
if there exists an epimorphism f : M (A) → N for some index set A. An R-module
N is said to be subgenerated by M if N is isomorphic to a submodule of an M -
generated module. We denote by σ[M ] the full subcategory of the right R-modules
whose objects are all right R-modules subgenerated by M (see [?]). A submodule
L of M is essential in M denoted by L ≤e M , if for every nonzero submodule K of
M , L ∩K 6= 0. As a dual concept, a submodule N of a module M is called small
in M (denoted by N � M), if for every proper submodule L of M , N + L 6= M .
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As a generalization of small submodules, a submodule K of M is δ-small in M , in
case M = K + L with M/L singular implies that M = L. A module M is called
hollow if every proper submodule of M is small in M .

A module N is said to be (δ-)M -small if there exists a module L ∈ σ[M ]
such that (N �δ L) N � L. It is well-known that N is (δ-)M -small if and

only if (N �δ N̂) N � N̂ , where N̂ is injective envelope of N in σ[M ] (for
the δ-case see [?]). Note that “(δ-)R-small” means “(δ-)small”. Let N and L
be submodules of M . N is called a supplement of L in M if it is minimal with
respect to the property M = N + L, equivalently, M = N + L and N ∩ L � N .
M is called supplemented (resp., weakly supplemented) if for each submodule A
of M , there exists a submodule B of M such that M = A + B and A ∩ B � B
(resp., A ∩ B � M). Any module M is called amply supplemented if for any two
submodules A and B with M = A + B, A contains a supplement of B in M .
Recall that M is called H-supplemented provided for every submodule N of M ,
there exists a direct summand D of M such that N+D

N � M
N and N+D

D � M
D .

Also M is called ⊕-supplemented in case for every N ≤ M , there exists a direct
summand K of M such that M = N + K and N ∩ K � K. Let us call an
R-module N small projective if Hom(N,−) is exact with respect to the exact
sequences 0 → K → L → M → 0 in Mod-R with K small in L and for each
R-module M (see [?, 19.10(8) and 23.9 Exercises]). Also N is small M -projective
if Hom(N,−) is exact with respect to the exact sequences 0→ K →M → L→ 0
in Mod-R with K small in M .

The singular submodule Z(M) of a module M is the set of m ∈ M such that,
mI = 0 for some essential right ideal I of R. Let M and N be two R-modules.
In [?], Talebi and Vanaja defined ZM (N) as a dual of singular submodule as
follows: ZM (N) =

⋂
{Kerf | f : N → U,U ∈ S} where S denotes the class of all

M -small modules. They called N an M -cosingular (non-M -cosingular) module
if ZM (N) = 0 (ZM (N) = N). Clearly every M -small module is M -cosingular.
We should note that ”cosingular and noncosingular” means ”R-cosingular and
non-R-cosingular”. In [?], the author defined a new submodule of a module N
as: ZδM (N) =

⋂
{Kerg | g : N → D,D ∈ δ − S}. Here δ-S shows the class

of all δ-M small modules. Following [?], N is called δ-M -cosingular (non-δ-M -
cosingular) provided that ZδM (N) = 0 (ZδM (N) = N). It is not hard to check
that ZδM (N) ⊆ ZM (N). So, every M -cosingular R-module is δ-M -cosingular and
every non-δ-M -cosingular R-module is non-M -cosingular. It is obvious that last
statements hold for (non)cosingular and (non-)δ-cosingular modules.
Rad(M), Soc(M) and E(M) denote the radical, the socle and the injective

envelope of a module M , respectively, and J(R) denotes the Jacobson radical of
a ring R. Let M be a module. The notations N ≤M and N ≤⊕ M will denote a
submodule and a direct summand of M , respectively.

Keskin and Tribak in [?], introduced and studied modules M such that every
M -cosingular module is projective in σ[M ]. They called such modules COSP .
They investigated some general properties of COSP -modules. They also char-
acterized COSP -modules when every injective module in σ[M ] is amply supple-
mented. Finally they obtained that a COSP -module is Artinian if and only if
every submodule has finite hollow dimension.
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In a recent work [?], the authors defined and studied rings for which the cosin-
gular submodule of every module is a direct summand. They called this property
as (P ). It is shown that a commutative perfect ring R has (P ) if and only if R is
semisimple.

Inspiring by [?] and [?], in this paper we study modules M such that every
(simple) cosingular R-module is M -projective. We investigate rings for which
every (simple) cosingular R-module is projective. We realize that these concepts
are closely related to known rings, namely, Generalized V -rings (GV -rings for
short).

In Section 2, we investigate modules M such that every (simple) cosingular
R-module is M -projective. We investigate some of their properties. It is shown
that the class of these modules is closed under submodules, factor modules and
finite direct sums. It is proved that any locally injective module M such that every
cosingular module is M -projective is noncosingular (Theorem ??). We also give
an equivalent condition for a module M having the property that every simple
cosingular module is M -projective (Theorem ??).

Sections 3 is devoted to study rings for which every (simple) cosingular module
is projective. We show that for a ring R, every simple cosingular R-module is
projective if and only if every simple δ-cosingular R-module is projective if and
only if R is a GV -ring (Theorem ??). It is proved that for a ring R with all
δ-cosingular R-modules semisimple, the following are equivalent:

(1) Every δ-cosingular R-module is projective;
(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective;
(5) For every R-module M , Zδ(M) is a direct summand of M ;
(6) R has (P ). (Theorem ??).

We also consider some assumptions for an Artinian serial ring with J(R)2 = 0
having the property that every cosingular R-module is projective.

2. ModulesM such that Every Cosingular Module isM-Projective

In this section we investigate modules M such that every (simple) cosingular
module is M -projective. It is clear that any simple module has the stated property.
Hence by the next proposition, every finitely generated semisimple module has the
property, too.

2.1. Proposition. The following hold.

(1) Let M be a module and N ≤ M such that every cosingular R-module is
M -projective. Then every cosingular R-module is N -projective and M/N -
projective.

(2) Let M =
⊕n

i=1Mi be a module. Then every cosingular R-module is M -
projective if and only if every cosingular R-module is Mi-projective for
each i ∈ {1, . . . , n}.

Proof. (1) is clear from [?, Proposition 4.31] and (2) holds by [?, Proposition
4.33]. �
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2.2. Proposition. Let M be a module such that every cosingular module is M -
projective. Then the following hold.

(1) Every small submodule of M is semisimple.
(2) Rad(M) ⊆ Soc(M).
(3) Rad(M)�M .

Proof. (1) Let N �M and L be an arbitrary submodule of N . To prove that N
is semisimple, we observe that L is a direct summand of N . Since N/L � M/L,
it is cosingular. Now, by assumption, N/L is M -projective and so N -projective
by Proposition ??(1). It follows that L is a direct summand of N .
(2) It is known that Rad(M) is the sum of all small submodules of M . By (1),
each small submodule is semisimple. So Rad(M) is a semisimple submodule of M ,
which must be contained in Soc(M).
(3) Suppose that Rad(M) is not small in M . So, there exists a proper submodule
L of M such that Rad(M) + L = M . Now by (2), we have Soc(M) + L = M .
Since M/L ∼= Soc(M)/(Soc(M)∩L) is semisimple, M/L has at least one maximal
submodule N/L. Therefore, N is a maximal submodule of M containing L. It
follows that, M = Rad(M) + L ⊆ N , a contradiction. �

2.3. Corollary. If every cosingular module is R-projective, then J(R) is nilpotent
with nilpotency index 2.

Proof. It is known that Soc(RR)J(R) = 0. By Proposition ??, J(R) ⊆ Soc(RR).
This implies that J(R)2 = 0. �

The following example introduces some modules M such that not every cosin-
gular module is M -projective.

2.4. Example. By Proposition ??(3), every radical module M can not have the
property that every cosingular module is M -projective. In particular, Q, Q/Z and
Zp∞ as Z-modules do not have the stated property.

The following is one of the useful results to characterize cosingular modules
which are M -projective for a module M .

2.5. Lemma. Let M be a module such that every cosingular module is M -projective.
Then Z(M) is a direct summand of M . In this case Z(M) is the largest noncosin-
gular submodule of M .

Proof. Since M/Z(M) is a cosingular module, it is M -projective. This implies
that M has a decomposition M = Z(M) ⊕ L for some submodule L of M . Note
that L is cosingular. �

2.6. Proposition. Let M be a module such that every cosingular module is M -
projective. If M is amply supplemented and cosingular, then the following hold.

(1) Every homomorphic image of M is cosingular.
(2) M is semisimple.

Proof. (1) Let M be amply supplemented cosingular and N ≤ M . Consider

the natural epimorphism π : M −→ M/N . By [?, Theorem 3.5], π(Z
2
(M)) =

Z
2
(M/N). By Proposition ??(1), every cosingular module is M/N -projective.
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Now, by Lemma ??, Z
2
(M/N) = Z(M/N) and Z

2
(M) = Z(M) = 0. So,

Z(M/N) = 0. It follows that M/N is cosingular.
(2) Let N be a submodule of M . Then M/N is cosingular by (1). Also, the hy-
pothesis implies that M/N is M -projective. Hence N is a direct summand of M .
Therefore M is semisimple. �

Recall from [?] that, a module M is locally injective if, for every submodule N
of M , which is not essential in M , there exists a nonzero injective submodule K of
M with N ∩K = 0. Every direct summand of a locally injective module is locally
injective. Note that for a module M with every nonzero homomorphic image of
M non-small, all homomorphisms from M to a small module is zero. In this case
Z(M) = M .

2.7. Theorem. Let M be a module such that every cosingular module is M -
projective. If M is locally injective, then M is noncosingular.

Proof. It is enough to show that every nonzero homomorphic image of M is non-
small. Let X < M and M

X be a small module. By assumption M
X is M -projective.

So X is a direct summand of M . Let M = X ⊕X ′ where X ′ ≤M . It follows that
X is non-essential. Since M is locally injective, there exists a nonzero injective
direct summand Q of M such that Q∩X = 0. Let M = Q⊕Q′ for some Q′ ≤M .

Since M
X = Q+X

X + Q′+X
X and Q+X

X
∼= Q

Q∩X
∼= Q

0
∼= Q, we get that Q+X

X is a direct

summand of M/X. On the other hand, Q+X
X is small as a submodule of the small

module M/X. Therefore Q + X = X, so Q ⊆ X. It implies that Q = 0. This is
a contradiction. Thus for every X < M , the module M/X can not be small. It
follows that M is noncosingular. �

In the sequel we give some conditions under which the converse statement of
Proposition ?? holds.

2.8. Theorem. Let M be a noncosingular weakly supplemented R-module such
that Rad(M) is semisimple. If the class of cosingular R-modules is closed under
taking homomorphic images (e.g. R is right perfect with (P ) (see [?, Lemma 3.1])),
then every cosingular R-module is M -projective.

Proof. Let L be a cosingular R-module. We show that L is small M -projective.
Let N be a small submodule of M . Let f : L −→ M/N be an R-homomorphism
and π : M −→M/N be the natural epimorphism. Consider the following diagram

L

f

��
M

π // M
N

// 0.

Suppose Imf = K/N for some K ≤ M . Since L is cosingular, by assumption
K/N is cosingular. We show that K/N � M/N . Let K/N + T/N = M/N .

Since K/N
K/N∩T/N

∼= M/N
T/N

∼= M
T , M is noncosingular and K/N is cosingular, we

have T = M . So K/N � M/N . Since N � M , we conclude that K � M . By
assumption K is semisimple. Hence K = N ⊕ N ′ and so there exists a natural
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isomorphism h : K/N −→ N ′. Consider the sequence L
f→ K/N

h→ N ′
j→ M .

Then πojohof = f .

L

f

��

johof

��
M

π // M
N

// 0.

So the diagram commutes. It follows that L is small M -projective. Since M is
weakly supplemented, L is M -projective by [?, 17.14]. The proof is completed. �

The following theorem gives an equivalent condition for a module M such that
every simple cosingular module is M -projective.

2.9. Theorem. Let M be a module. Then every simple cosingular module is M -
projective if and only if for every simple cosingular submodule T/N of M/N , N
is a direct summand of T .

Proof. (=⇒) Clear.
(⇐=) Let K be a simple cosingular module. We show that K is M -projective.
Let N be a submodule of M . Let g : K −→ M/N be an R-homomorphism and
π : M −→M/N be the natural epimorphism. Consider the following diagram.

K

g

��
M

π // M
N

// 0.

Suppose Img = T/N for some T ≤ M . Since K is simple cosingular, by as-
sumption N ≤⊕ T . Set T = N ⊕ L for some L ≤ T . Consider the sequence

K
g→ T/N

h→ L
j→ M , where h is the isomorphism between T/N and L induced

by the decomposition of T . Let h = johog. It is easy to see that πoh = g. Now,
we have the following diagram.

K

g

��
h

��
M

π // M
N

// 0.

So the diagram commutes. It follows that K is M -projective. �

2.10. Corollary. Let M be a module. If for every submodule T of M , Soc(T ) +
Z(T ) = T , then every simple cosingular module is M -projective.

Proof. Let N ≤ T ≤ M with T/N simple cosingular. It follows that Z(T ) ⊆ N .

So, by assumption, Soc(T ) + N = T . Now, T
N
∼= Soc(T )

Soc(N) . Hence, Soc(N) ⊕ L =

Soc(T ) for some simple submodule L of T . It follows that L + N = T . Consider
the submodule L ∩ N of L. Since L is simple, L ∩ N = 0 or L ∩ N = L. If
N ∩ L = L, then L ⊆ N . It follows that N = T , a contradiction. So L⊕N = T .
Therefore, by Theorem ??, the result follows. �
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2.11. Corollary. Let R be a ring with every homomorphic image of R cosingular.
Then the following are equivalent.

(1) Every simple module is projective;
(2) Every simple module is R-projective;
(3) R is semisimple.

Proof. (1) =⇒ (2) and (3) =⇒ (1) are obvious.
(2) =⇒ (3) Let I be a maximal right ideal of R. Then R/I is simple. By hypothesis,
R/I is cosingular. Note that if N is a simple module, then it is also cosingular.
By Theorem ??, I is a direct summand of R. Thus R is semisimple. �

3. Rings for which Every (Simple) Cosingular Module is Projec-
tive

Recall from [?] that a ring R is a right V -ring provided every simple R-module
is injective, equivalently R is a right V -ring if and only if for every R-module M ,
Rad(M) = 0 (see [?, Theorem 2.1]). Since the only cosingular module over a right
V -ring is zero, every cosingular module over a right V -ring is projective. Also R
is a right GV -ring if every simple R-module is either projective or injective. It is
known that R is a right GV -ring if and only if every simple singular R-module is
injective. For more information about V -rings and GV -rings we refer the readers
to [?] and [?].

In this section we study rings R for which every (simple) cosingular R-module
is projective. We prove that R is a right GV -ring if and only if every simple
cosingular R-module is projective. We also show that over a right perfect ring R,
every cosingular R-module is projective if and only if R is right GV if and only if
every simple δ-cosingular R-module is projective.

We start this section by investigating rings over which every simple cosingular
module is projective.

3.1. Theorem. Let R be a ring. Then the following statements are equivalent.

(1) Every simple δ-cosingular R-module is projective;
(2) Every simple cosingular R-module is projective;
(3) R is a right GV -ring.

Proof. (1) =⇒ (2) It is obvious since every cosingular R-module is δ-cosingular.
(2) =⇒ (3) Let M be a simple singular R-module. Then M is either small or
injective. If M is small, then M is projective by assumption (2). This yields that
M = 0, a contradiction. So M must be injective. It follows that R is right GV .
(3) =⇒ (1) Let M be a simple δ-cosingular R-module. Then M is either singular
or projective. If M is singular, then by assumption (3) and [?, Theorem 4.1], M
is non-δ-cosingular. Hence M = 0. Now, M must be projective. �

3.2. Corollary. If R is a semisimple ring, then it is right GV . The converse
holds if every simple module is δ-cosingular.

Proof. The first assertion is obvious. Let R be a right GV -ring. Assume that
every simple module is δ-cosingular. Let I be a maximal right ideal of R. Then
R/I is simple, and so it is δ-cosingular. By Theorem ??, R/I is projective. Hence
I is a direct summand of R. Thus R is semisimple. �
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The following result is an immediate consequence of [?, Corollaries 1.10 and
2.9], [?, Theorem 4.1] and Theorem ??.

3.3. Corollary. The following statements are equivalent for a ring R.

(1) R is a right GV -ring;
(2) Every (δ-)small R-module is projective;
(3) Every singular R-module is non(-δ-)cosingular;
(4) Every simple (δ-)cosingular R-module is projective.

We next show that if every cosingular R-module is projective, then for a cosin-
gular module M , being lifting, discrete, H-supplemented, ⊕-supplemented, amply
supplemented and supplemented are all equivalent.

3.4. Proposition. Let R be a ring such that every cosingular R-module is pro-
jective. Then the following statements are equivalent.

(1) Every cosingular R-module is discrete;
(2) Every cosingular R-module is lifting;
(3) Every cosingular R-module is H-supplemented;
(4) Every cosingular R-module is ⊕-supplemented;
(5) Every cosingular R-module is amply supplemented;
(6) Every cosingular R-module is supplemented.

Proof. The result follows from the fact that for a projective module M , M is lifting
if and only if M is H-supplemented if and only if M is ⊕-supplemented if and only
if M is amply supplemented if and only if M is supplemented (see [?, Proposition
4.39]). �

In [?, Theorem 3.5 and Corollary 3.9], it is shown that if every M -cosingular
module in σ[M ] is projective in σ[M ] and every injective module in σ[M ] is amply
supplemented, then the class of M -cosingular modules is closed under homomor-
phic images.

3.5. Proposition. Let R be a right GV -ring such that every cosingular R-module
is amply supplemented. Then the class of cosingular R-modules is closed under
homomorphic images. In particular over a right perfect right GV -ring, every ho-
momorphic image of a cosingular module is cosingular.

Proof. Let 0 6= M be a cosingular R-module, 0 6= x ∈ M and K be a maxi-
mal submodule of xR. Then xR/K is simple. If xR/K is singular, then it is
noncosingular by Corollary ??(3). Consider the natural epimorphism π : xR →
xR/K. By assumption, xR is amply supplemented. Then, by [?, Theorem 3.5],

0 = π(Z
2
(xR)) = Z

2
(xR/K) = Z(xR/K) = xR/K, a contradiction. Hence the

simple module xR/K must be projective. Thus K ≤⊕ xR, and so xR is semisim-
ple. Therefore M is semisimple. It follows that every homomorphic image of M
is isomorphic to a submodule of M . This completes the proof. �

Let R be a ring. It is known by Proposition ?? that every cosingular R-module
is projective if and only if every cosingular R-module is projective relative to every
injective R-module. If a ring R has a radical module, then R can not have the
property that every cosingular module is projective. Since Q is radical as a Z-
module, Z can not have the property (since Z is not a field (see Proposition ??)).
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It is known by Theorem ?? that if every cosingular R-module is projective, then
R is a right GV -ring.

3.6. Proposition. Let f : R −→ S be a ring epimorphism. If every cosingular
R-module is projective, then every cosingular S-module is projective.

Proof. Let M be a cosingular S-module. Since ZR(M) ⊆ ZS(M), then M is a
cosingular R-module. So by assumption M is a projective R-module. It is not
hard to check that M is a projective S-module, as required. �

The following is an analogue of [?, Proposition 2.8], for the rings for which every
cosingular module is projective.

3.7. Proposition. Let R = R1⊕R2 be a ring decomposition. Then every cosingu-
lar R-module is projective if and only if every cosingular Ri-module Mi is projective
for i = 1, 2.

Proof. The necessity follows from Proposition ??. For the sufficiency, let R1 and
R2 have the stated property and M be a cosingular R-module. By [?, Lemma
2.7(1)], M = MR1 ⊕ MR2, where MRi can be regarded as an Ri-module for
i = 1, 2. We also have by [?, Lemma 2.7(3b)], ZRi

(MRi) = ZR(MRi) for i = 1, 2.
It follows thatMR1 is a cosingular R1-module andMR2 is a cosingular R2-module.
By assumption, MRi is a projective Ri-module for i = 1, 2. Note that MRi is also
an R-module with the multiplication mi(r1 + r2) = miri, where rj ∈ Rj (j = 1, 2)
and mi ∈ MRi (i = 1, 2). Now, we prove that MRi is a projective R-module
for i = 1, 2. Consider the following diagram of R-modules where K ≤ N and π
is the canonical R-epimorphism from N onto N/K and g is any R-homomorphism.

MR1

g

��

h1

uu
N = NR1 ⊕NR2

π // N
K = NR1

KR1
⊕ NR2

KR2

// 0

The R-module N is an R1-module by nr1 = n1r1 for n = n1 + n2 ∈ N and
r = r1 + r2 ∈ R = R1 ⊕ R2. Then π(n) = π(n1) + π(n2) = π1(n1) + π2(n2), it
follows that π = π1 ⊕ π2 with π1 is an epimorphism from NR1 onto NR1/KR1

and π2 is an epimorphism from NR2 onto NR2/KR2. Since g is also an R1-
homomorphism, we have g(MR1) ⊆ NR1/KR1. By hypothesis, there exists an
R1-homomorphism h1 : MR1 → NR1 such that g = π1h1 = πh1. Hence MR1

is a projective R-module. A similar proof reveals also that MR2 is a projective
R-module. Therefore M = MR1 ⊕MR2 is a projective R-module. �

3.8. Proposition. Let R be a Dedekind domain. Then the following are equiva-
lent.

(1) Every cosingular R-module is projective;
(2) R is a field;
(3) Every cosingular R-module is projective relative to every injective R-module.

Proof. (1) ⇐⇒ (2) Similar to the proof of [?, Proposition 2.6].
(1) =⇒ (3) Obvious.
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(3) =⇒ (1) Let M be a cosingular module. Consider the following diagram for a
module N and K ≤ N :

M

f

��
N

π //

ι2

��

N/K //

ι1

��

0

E(N)
π1 // E(N)/K // 0.

Since M is projective relative to E(N), there exists a homomorphism g : M →
E(N) such that π1g = ι1f . For any m ∈ M , we have g(m) + K = π1g(m) =
ι1f(m) = f(m) ∈ N/K. This implies that g(m) ∈ N . Hence g(M) ⊆ N . There-
fore M is N -projective. �

3.9. Proposition. Let R be a ring and consider the following conditions.

(1) Every cosingular R-module is projective relative to every free R-module;
(2) Every cosingular R-module is projective relative to every projective R-

module;
(3) Every cosingular R-module is projective relative to every flat R-module;
(4) Every cosingular R-module is R-projective.

Then (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4). Also, all of them are equivalent for finitely
generated modules.

Proof. (3) =⇒ (2) =⇒ (1) =⇒ (4) Obvious.
(1) =⇒ (3) Let M be a cosingular module and N a flat module. Then N is a
homomorphic image of a free module F , say h : F → N is an epimorphism. For
any submodule K of N , consider the following diagram:

M

f

��

g

vv
F

h // N
π // N/K // 0.

By (1), M is F -projective, and so there exists a homomorphism g : M → F such
that πhg = f . Thus M is N -projective due to the homomorphism hg : M → N .
(4) =⇒ (1) Let M be a finitely generated cosingular module and F be a free
module. We may assume that F =

⊕
i∈I Ri where Ri = R for all i ∈ I. Since M

is R-projective, by [?, Proposition 4.35], M is also F -projective. �

The following is a consequence of [?, Theorem 3.3].

3.10. Proposition. Let R be a commutative perfect ring. Then the following are
equivalent.

(1) Every cosingular R-module is projective;
(2) R is GV ;
(3) R is semisimple.
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As a consequence, every cosingular Zn-module is projective if and only if Zn is
GV if and only if n is square-free.

The following theorem, which presents an equivalent condition for a ring R such
that every cosingular R-module is projective, is taken from [?, Corollary 3.9]. We
bring it here for the sake of completeness (Note that corresponded results in [?]
are in σ[M ] and we bring it here in the category of right R-modules).

3.11. Theorem. Let R be a ring. If every R-module is a direct sum of a non-
cosingular module and a semisimple module, then every cosingular R-module is
projective. The converse holds, if every cosingular R-module is amply supple-
mented.

Proof. (=⇒) Let M be a cosingular R-module. By hypothesis M = U⊕V where U
is noncosingular and V is semisimple. Being M cosingular implies U = 0. So M is
semisimple. Let f : N →M be an epimorphism where N is a projective R-module.
Then, by hypothesis N = K ⊕ T where K is noncosingular and T is semisimple.
Then, f(K) = f(Z(K)) = f(Z(N)) ⊆ Z(M) = 0. It follows that K ⊆ Kerf .
Hence, Kerf = K ⊕ (T ∩ Kerf). Since T is semisimple, T = S ⊕ (T ∩ Kerf)
for a submodule S of T . Therefore, N = K ⊕ (T ∩Kerf) ⊕ S = Kerf ⊕ S. So
Kerf ≤⊕ N . Hence, M is projective.
(⇐=) LetM be anR-module. SinceM/Z(M) is cosingular, by hypothesisM/Z(M)
is projective. Then M = Z(M) ⊕ L, where L is cosingular and Z(M) is non-
cosingular. We show that L is semisimple. To prove this, we show that every
submodule H of L, is a direct summand of L. Consider natural epimorphism

π : L → L/H. Since L is amply supplemented, by [?, Theorem 3.5], π(Z
2
(L)) =

Z
2
(L/H). Hence Z

2
(L/H) = 0 (because L is cosingular). By [?, Proposition

2.1(3)], (L/H)/(Z(L/H)) is cosingular. Now by assumption and [?, Lemma 4.30],

Z(L/H) is a direct summand of L/H. This yields that Z(L/H) = Z
2
(L/H) = 0.

It follows that L/H is cosingular. Therefore, H ≤⊕ L by the fact that every cosin-
gular R-module is projective and [?, Lemma 4.30]. Hence L is semisimple. �

Recall that a ring R is semilocal in case R/J(R) is semisimple. Now let R be
a semilocal ring such that J(R) ⊆ Soc(RR). By [?, Corollary 2.7(1)], Soc(RR) =
Z(RR). Then the ring R

Soc(RR) = R
Z(RR)

is semisimple. If M is a cosingular R-

module, it is not hard to check that M is a cosingular R
Z(RR)

-module. So M is

semisimple as both an R and R
Z(RR)

-module.

3.12. Corollary. Let R be a ring such that every cosingular R-module is semisim-
ple (for example, a semilocal ring R with J(R) ⊆ Soc(RR)). Then R has (P ) if
and only if every cosingular R-module is projective.

Proof. (=⇒) Let M be an R-module. Then M = Z(M)⊕K for a submodule K of
M by the property (P ). It is clear that Z(M) is noncosingular and K is cosingular
and hence semisimple by assumption. Therefore, Theorem ?? yields us the result.
(⇐=) Let M be an R-module. Since M/Z(M) is cosingular, by hypothesis,
M/Z(M) is projective. Hence Z(M) is a direct summand of M . �

3.13. Lemma. If R is a right GV -ring, then every injective R-module is non-
cosingular.
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Proof. Let E be an injective R-module and f : E → U be an R-module homo-
morphism where U is a small R-module. Then E/Kerf is a small R-module and
hence by Corollary ??, E/Kerf is projective. It follows that E = Kerf⊕L where
L is small injective. Clearly L must be zero. So E is noncosingular. �

3.14. Proposition. Let R be an Artinian serial ring with J(R)2 = 0. If every
injective R-module is noncosingular, then every cosingular R-module is projective.

Proof. By assumption, every R-module is a direct sum of an injective module and
a semisimple module. Since every injective R-module is noncosingular, the result
follows from Theorem ??. �

The following example shows that if R is a ring such that every cosingular
R-module is projective, then R need not be a V -ring.

3.15. Example. Let F be a field and R =

[
F F
0 F

]
the ring of 2 × 2 upper

triangular matrices over F . By [?, Example 13.6], every singular (left and right)

R-module is injective. Hence R is a left and right GV -ring. Since J(R) =

[
0 F
0 0

]
,

R can not be a (left and right) V -ring. Also R is (left and right) hereditary Artinian
serial from [?, Example 13.6]. It is easy to check that J(R)2 = 0. Therefore, every
cosingular R-module is projective by Proposition ??.

3.16. Proposition. Let R be a right perfect ring such that every noncosingular
R-module is injective. If every cosingular R-module is projective, then R is an
Artinian serial ring with J(R)2 = 0.

Proof. Let M be an R-module. By hypothesis M/Z(M) is projective. There exists
a submodule C of M such that M = Z(M) ⊕ C, where Z(M) is noncosingular
and C is cosingular. Since every cosingular R-module is projective and R is right
perfect, every cosingular R-module is semisimple (see Proposition ??). It follows
that M is a direct sum of an injective and a semisimple module. Hence, by [?,
13.5], R is an Artinian serial ring with J(R)2 = 0. �

Abyzov [?] defined a module to be weakly regular if, whenever N is a submod-
ule of M which is not contained in Rad(M), then N contains a nonzero direct
summand of M .

3.17. Corollary. Let R be a ring such that an R-module M is injective if and
only if it is noncosingular. If R is right perfect, then the following statements are
equivalent.

(1) Every cosingular R-module is projective;
(2) Every R-module is weakly regular;
(3) R is an Artinian serial ring with J(R)2 = 0.

Proof. It follows from Propositions ??, ?? and [?, Theorem 4]. �

3.18. Theorem. Let R be a right perfect ring or a ring such that every δ-
cosingular R-module is semisimple. Then the following statements are equivalent.

(1) Every δ-cosingular R-module is projective;
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(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective.

Proof. We prove the theorem in perfect case. The latter case is similar.
(1) =⇒ (2) It is obvious.
(2)⇐⇒ (3) Follows from Theorem ??.
(3) =⇒ (4) Let M be a cosingular R-module. Since R is a right GV -ring, it follows
from Proposition ?? that M is semisimple. Set M =

⊕
i∈IMi where each Mi is

simple. Since R is right GV , each Mi is projective (because each of them is simple
cosingular). Therefore, M is projective.
(4) =⇒ (3) By Theorem ??.
(3) =⇒ (1) Let M be a δ-cosingular R-module. By a similar argument to Propo-
sition ??, it can be shown that M is semisimple. We set M =

⊕
i∈IMi a direct

sum of simple δ-cosingular R-modules. By (3), every Mi where i ∈ I is projective.
Now the result follows. �

3.19. Theorem. Let R be a ring such that every δ-cosingular R-module is semisim-
ple. Then the following assertions are equivalent.

(1) Every δ-cosingular R-module is projective;
(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective;
(5) For every R-module M , Zδ(M) is a direct summand of M ;
(6) R has (P ).

Proof. (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (4) Follows from Theorem ??.
(1) =⇒ (5) Let M be an R-module. By [?, Proposition 2.5], M/Zδ(M) is δ-
cosingular. Now by (1), M/Zδ(M) is projective. It follows that Zδ(M) is a direct
summand of M .
(5) =⇒ (1) Let M be a δ-cosingular R-module. By assumption, there exists a
decomposition M =

⊕
i∈I Si, such that each Si is simple. By a similar argument

to the first part of the proof of Theorem ??, each Si is projective. Therefore, M
is projective.
(4)⇐⇒ (6) It follows from Corollary ??. �

Let M be an R-module. Recall from [?] that a module M has C∗ property
provided that every submodule N of M contains a direct summand K of M such
that N/K is cosingular.

A ring R is called right C∗ if every R-module has C∗ property. It is shown that
R is right C∗ if and only if every R-module is a direct sum of a cosingular module
and an injective module (see [?, Theorem 2.9]).

3.20. Remark. Let R be a ring. Consider the following statements.

(1) R is right C∗;
(2) R has (P ).

If R is right hereditary, then (1) =⇒ (2) and if every noncosingular R-module is
injective, then (2) =⇒ (1).



14

Proof. (1) =⇒ (2) Let M be an R-module. By (1), there exists a decomposition
M = C ⊕E, where C is cosingular and E is injective. Since R is right hereditary,
E is noncosingular. So Z(M) = Z(E) = E.
(2) =⇒ (1) Since R has (P ), we conclude that M = Z(M) ⊕ C. Then C is
cosingular. Clearly Z(M) is noncosingular and by assumption is injective. So the
result follows from [?, Theorem 2.9]. �
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