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Abstract
Bathtub failure rate shape is widely used in industrial and medical applications. In this paper, a three-parameter lifetime 
distribution, so-called the generalized Weibull uniform distribution that extends the Weibull distribution, is proposed and 
studied. This distribution has bathtub-shaped or decreasing failure rate function which enables it to fit real lifetime data sets. 
Various structural properties of the new distribution are derived, including explicit expressions for the quantile function, 
moments, moment-generating function and order statistics. Parameter estimations are provided by a maximum likelihood 
estimation, and the performance of the maximum likelihood estimation is evaluated using a simulation study. An application 
to real-life data demonstrates that the proposed distribution can be very useful in fitting real data.
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Introduction

In recent years, many classical distributions have been gen-
eralized by adding more shape parameters since numerous 
application in the field of engineering, financial, biomedical 
and environmental sciences indicated that classical distribu-
tions are not suitable to explain the data sets. Hence, there 
is continual need for the extension of these distributions to 
make effective progress in the application of these areas. 
The Weibull distribution with two parameters is a flexible 

distribution to model different types for lifetime data that 
exhibit monotone-shaped failure rates. The Weibull distri-
bution can be specified through its cumulative distribution 
function (cdf) given by

where �,� refer to the scale and shape parameters, respec-
tively. According to Eq. (1), the probability density function 
(pdf) of the Weibull distribution is given as follows:

From (1) and (2), the failure rate function (FRF) is obtained 
as

Indeed, when 𝜔 > 1 , the FRF is increasing, whereas 𝜔 < 1 , 
it is decreasing, and when � = 1 , it is constant. The Weibull 
distribution, on the other hand, is incapable to model data 
that exhibit bathtub-shaped or unimodal-shaped FRFs. The 
later can be considered as a common situation in industrial 
and medical applications, for example, electric machine life 
cycles, human mortality, life cycle of cancer patients, etc. 
Furthermore, the Weibull distribution may not be a suit-
able distribution for many of the engineering applications 
requiring load-bearing capability in the area of material sci-
ence like strength of brittle materials which include most 

(1)G(Z) = 1 − e−𝜐Z
𝜔

, Z, 𝜐,𝜔 > 0.

(2)g(Z) = ��Z�−1e−�Z
�

.

(3)h(Z) = ��Z�−1.
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ceramics, glass, optical fiber and some polymers, and in 
other numerous applications. However, the strength values 
are limited where the Weibull distribution requires an unlim-
ited value. Therefore, it is necessary to find generalizations 
of the Weibull distribution. Several trials have been con-
ducted to define new generalizations of the Weibull distri-
bution by adding several additional shape parameter(s), for 
instance, see [7, 13, 15, 19]. Broadly speaking, for bring-
ing more flexibility to baseline distribution can be added an 
extra parameter, so it can be more benefit in exploring tail 
properties and exhibiting bathtub-shaped failure rate func-
tion. Some models for bathtub and unimodal-shaped FRFs 
are summarized in Table 1.

Note that the generalization is also complex and causes esti-
mation problems, especially when the number of parameters 
is four or more. In this study, the main purpose is to obtain the 
more flexible distribution with a few parameters. Recently, a 
family of distributions has been proposed by Bourguignon [3] 
called as the Weibull-G “W-G” family by using the Weibull 
distribution as in (1) and replacing the argument t with G(t;�)

Ḡ(t;�)
 , 

where Ḡ(t;�)) = 1 − G(t;�)) . Its cdf is defined as

where G(t;�) refers to a parent cdf, which relies on a param-
eter vector � . The corresponding pdf to (4) is

(4)
F(t;𝜐,𝜔, �) = 1 − e

−𝜐
[

G(t;�)

Ḡ(t;�)

]𝜔

, t ∈  ⊆ ; 𝜐,𝜔 > 0,

(5)f (t;𝜐,𝜔, �) = 𝜐𝜔g(t;�)

[

G(t;�)𝜔−1

Ḡ(t;�)𝜔+1

]

e
−𝜐

[

G(t;�)

Ḡ(t;�)

]𝜔

.

Assuming that the parent distribution is uniform in the inter-
val (0,�) , 𝜑 > 0 , then, the cdf is given by

Then, the corresponding pdf becomes

Inserting (6) in (4) yields a three-parameter Weibull uniform 
(WU) distribution with the cdf given by

This distribution is also known as the Kies distribution [8]. 
The pdf of the WU distribution is given by

More recently, Cordeiro et al. [6] proposed a generalized 
Weibull-G “GW-G” family of distributions by substituting the 
argument t with − loge{1 − G(t;�)} in Eq. (1) and defined the 
cdf of their family of distributions by

Then, the pdf of the GW-G family is given by

(6)G(t;𝜑) =
t

𝜑
, 0 < t < 𝜑 < ∞.

(7)g(t;𝜑) =
1

𝜑
, 0 < t < 𝜑 < ∞.

(8)

F(t) = 1 − exp

[

− 𝜐

(

t

𝜑 − t

)𝜔]

, 0 < t < 𝜑 < ∞, 𝜐,𝜔 > 0.

(9)f (t) =
���

(� − t)2

(

t

� − t

)�−1

exp

[

− �

(

t

� − t

)�]

.

(10)
F(t;𝜐,𝜔, �) = 1 − e−𝜐[− loge{1−G(t;�)}]

𝜔

, t ∈  ⊆ ; 𝜐,𝜔 > 0.

Table 1   Some models for bathtub-shaped or unimodal-shaped FRFs

Distribution Distribution function, F(t) Failure rate function, h(t)

Weibull uniform (WU), Kies [8]
1 − exp

[

− 𝜐
(

t

𝜑−t

)𝜔]

, 0 < t < 𝜑 ���

(�−t)2

{

t

�−t

}�−1

Exponentiated Weibull (EW), Mudholkar and Srivastava [11] (

1 − e
−𝜐t𝜔

)𝜆
, t > 0 ���t�−1e−�t

�
(1−e−�t

�
)�−1

1−(1−e−�t
�
)�

Additive Weibull (AW), Xie and Lai [18] 1 − e
−(𝜐t𝜔+𝛾t𝜆), t > 0 ��t�−1 + ��t�−1

Modified Weibull (MW), Lai et al. [9] 1 − e
−𝜐t𝜔e𝜆t , t > 0 �(� + �t)t�−1e�t

Odd Weibull (OW), Cooray [4]
1 −

[

1 +
(

e
𝜐t𝜔 − 1

)𝜆
]−1

, t > 0
���t�−1e�t

�
(e�t

�
− 1)�−1

×
[

1 + (e�t
�
− 1)�

]−1

Flexible Weibull (FW), Bebbington et al. [2] 1 − e
−e

𝜐t−
𝜔
t , t > 0

(

� +
�

t2

)

e
�t−

�

t

SZModified Weibull (SZMW), Sarhan and Zaindin [14] 1 − e
−𝜐t𝜔−𝛾t, t > 0 ��t�−1 + �

Kumaraswamy Weibull (KwW), Cordeiro et al. [5]
1 −

[

1 −
(

1 − e
−𝜐t𝜔

)𝜆
]𝛾

, t > 0
����t�−1e−�t

�
(1−e−�t

�
)�−1

1−(1−e�t
�
)�

Weibull Pareto (WP), Alzaatreh et al. [1]
1 − e

−𝜐
[

log
e

(

t

𝜑

)]𝜔

, t > 𝜑 > 0
��

t

[

� log
e

(

t

�

)]�−1

New Weibull Pareto (NWP), Tahir et al. [17]
1 − e

−

[(

t

𝜑

)𝜐

−1
]𝜔

, t > 𝜑 > 0
��t�−1

��

[(

t

�

)�

− 1
]�−1

Weibull power (WPo), Tahir et al. [16]
1 − e

−𝜐
[

t
𝜆

𝜑𝜆−t𝜆

]𝜔

, 0 < t < 𝜑
�����

t
��−1

[��−t�]�+1

[

t
�

��−t�

]�
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In this study, a generalization of the WU distribution, 
referred as a generalized Weibull uniform (GWU) distribu-
tion, is obtained. The aim of this generalization is to provide 
a flexible extension of WU distribution which helps practi-
tioners to model data for different fields. The outline of this 
work is organized as follows: In Sect. 2, statistical properties 
of the GWU distribution are obtained including the shapes 
of the pdf and FRF, quantile function (qf), moments and 
the moment-generating function. In Sect. 3, the pdf of the 
order statistics is expressed. In Sect. 4, the parameters of 
the GWU distribution are estimated by using the method of 
maximum likelihood estimation (MLE). In Sect. 5, different 
sample sizes are used to simulate for testing the performance 
of the MLE, while in Sect. 6, an application real data set 
is conducted to the GWU distribution where its results are 
compared with peers of distributions existing in the litera-
ture. Finally, Sect. 7 gives concluding remarks.

Main properties of generalized Weibull 
uniform distribution

Inserting (6) in (10) yields the three-parameter generalized 
Weibull uniform (GWU) distribution with the cdf given by

By means of derivation the cdf of T in (12) with respect 
to T, the pdf of T is found and given in (13)

A random variable T for the pdf in Eq. (13) is defined by 
T ∼ GWU(�,�,�) . R(t), defined by 1 − F(t) , refers to the 
probability of an item not failing prior to some time t. For 
the GWU distribution, R(t) takes the following form:

Shapes of density function

Here, the shapes of the pdf and FRF of the GWU distribu-
tion are discussed. The derivative loge f (t) with respect to t 
is given by

(11)
f (t;�,�, �) =

��g(t;�)

1 − G(t;�)

{

− loge{1 − G(t;�)}
}�−1

× e−�[− loge{1−G(t;�)}]
�

.

(12)
F(t;𝜐,𝜔,𝜑) = 1 − e

−v
{

− loge

(

1−
t

𝜑

)}𝜔

, 0 < t < 𝜑 < ∞, 𝜐,𝜔 > 0.

(13)

f (t;�,�,�) =
��

�
(

1 −
t

�

)

{

− loge

(

1 −
t

�

)}�−1

e
−v

{

− loge

(

1−
t

�

)}�

.

(14)
R(t;𝜐,𝜔,𝜑) = e

−v
{

− loge

(

1−
t

𝜑

)}𝜔

, 0 < t < 𝜑 < ∞, 𝜐,𝜔 > 0.

So, the roots of Eq. (15) represent the critical points of the 
pdf as follows:

Herein, there may be more than one root of Eq. (16). If t = t0 
that is a point of inflexion, a local maximum or a local mini-

mum relying on whether  d
2

dt2
loge f (t;�,�,�) = 0  , 

d
2

dt2
loge f (t;𝜐,𝜔,𝜑) < 0 ,  d

2

dt2
loge f (t;𝜐,𝜔,𝜑) > 0 ,  where 

d
2

dt2
loge f (t;�,�,�) is given by

It is difficult to determine the behavior of the density func-
tion from Eq. (16); despite this, in Fig. 1, some of the possible 
shapes are illustrated of the pdf when � = 2.5 and for differ-
ent values of � and � . For fixed 𝜔 < 1 , the density is always 
U-shaped, and as � tends to 0 (∞) , the density function f(t) 
tends to J (reversed-J) shape, for fixed 𝜔 > 1 , the right (left)-
skewed increases as � decreases (increases), and when � = 1 , 
the density function is monotonically decreasing if 𝜐 > 1 , 
constant if � = 1 and monotonically increasing if 𝜐 < 1 . Some 
calculation indicates the limiting behaviors of the pdf, and the 
limit of the f (t;�,�,�) as T → �− is 0. Further, the limit of 
f(t) as T → 0+ is given by

Shape of failure rate function

Based on Eq. (14), the cumulative hazard function H(t) is sim-
ply given by

(15)

log
e

f (t;�,�,�)

= log
e

(

��

�

)

− log
e

(

1 −
t

�

)

+ (� − 1) log
e

{

− log
e

(

1 −
t

�

)}

− �

{

− log
e

(

1 −
t

�

)}�

d

dt
log

e
f (t;�,�,�) =

[

log
e

(

1 −
t

�

)

+ (� − 1) + ��
{

− log
e

(

1 −
t

�

)}�]

�
(

log
e

(

1 −
t

�

))

log
e

(

log
e

(

1 −
t

�

))

(16)
��

{

− loge

(

1 −
t

�

)}�

+ loge

(

1 −
t

�

)

+ (� − 1) = 0.

{

log
e

(

1 −
t

�

)}{

log
e

(

1 −
t

�

)

− (� − 1)

}

− ��

{

− log
e

(

1 −
t

�

)}�

×

{

log
e

(

1 −
t

�

)

+ (� − 1)

}

− (� − 1)

�2

(

1 −
t

�

)2{

log
e

(

�−t

�

)}2

lim
t→0+

f (t;𝜐,𝜔,𝜑) =

⎧

⎪

⎨

⎪

⎩

∞ if 0 < 𝜔 < 1

0 if 𝜔 > 1
𝜐

𝜑
if 𝜔 = 1
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The FRF has other important system’s quantity character-
izing life phenomena and characteristic of interest of a random 
variable defined by

h(t) of the GWU distribution takes the following form:

O b v i o u s ly,  b e c a u s e  t h r o u g h  t h e  t e r m 
{

− loge

(

1 −
t

�

)}�−1

 , the shape of FRF relies only on the 
parameter � , also there is no direct effect on the shapes by the 
remaining two parameters. In order to discuss the shapes of 
h(t), with respect to t, the derivative of loge h(t) is given by

So, the roots of Eq. (18) represent the critical points of the 
FRF as follows:

One can obtain the turning point of the FRF t0 by solving 
Eq. (19) as follows:

It can be shown from Eq. (17) that when � ≥ 1 , h(t) tends 
to increase in t, and when 0 < 𝜔 < 1 , h(t) tends to decrease for 
t < t0 and increase for t > t0 . This implies a bathtub shape for 
the FRF. However, at a minimum value t = t0 for the h(t), the 
value of t0 decreases as � increases, and h(t0) can be obtained 
after simplification using Eqs. (17) and (20) as

Although bathtub-shaped FRF are common in reliability 
and survival analysis, these properties are related to several 
lifetime distributions, as the GWU distribution.

The limiting behaviors of the FRF can be easily shown from 
Eq. (17), while the limit of the as h(t) as T → �− is ∞ . Further, 
the limit of h(t) as T → 0+ is given by

H(t;�,�,�) = �

{

− loge

(

1 −
t

�

)}�

.

h(t;�,�,�) =
f (t;�,�,�)

R(t;�,�,�)
,

(17)

h(t;�,�,�) =
d

dt
H(t;�,�,�) =

��

�
(

1 −
t

�

)

{

− loge

(

1 −
t

�

)}�−1

.

(18)
d

dt
loge h(t;�,�,�) =

1

�
�

1 −
t

�

�

⎡

⎢

⎢

⎢

⎣

1 −
� − 1

loge

�

1 −
t

�

�

⎤

⎥

⎥

⎥

⎦

.

(19)loge

(

1 −
t

�

)

− (� − 1) = 0

(20)t0 = �
[

1 − e�−1
]

h(t0;�,�,�) =
��(1 − �)�−1

�e�−1
.

Fig. 1   Plots of f(t) for selected parameter values of GWU distribution



109Mathematical Sciences (2019) 13:105–114	

1 3

Figure  2 displays several of the possible shapes of 
h(t;�,�,�) for selected values of (�,�,�).

Figure 2 reveals that the proposed distribution can produce 
flexible FRF shapes such as increasing, decreasing, bathtub, 
J, snf reversed-J. This fact implies that the GWU distribution 
can be very useful to fit different data sets with various shapes.

Transformation

The random variable T = �
[

1 − e−Z
]

, when a random vari-
able Z is Weibull-distributed with scale parameter 𝜐 > 0 and 
shape parameter 𝜔 > 0 , follows the GWU(v,w,�) distribution 
that helps us to simulate the random variable T in easy way 
by first simulating the random variable Z and then calculate 
T = �

[

1 − e−Z
]

 which has the GWU distribution.

Moment

Assume Z is a random variable possessing the moment-gener-
ating function (mgf) MZ(s) = E(esZ) . One can express MZ(s) 
in a Maclaurin series expansion as

so that �′
v
 is the coefficient of s

v

v!
 in expansion (21).

lim
t→0+

h(t;𝜐,𝜔,𝜑) =

⎧

⎪

⎨

⎪

⎩

∞ if 0 < 𝜔 < 1

0 if 𝜔 > 1
𝜐

𝜑
if 𝜔 = 1

(21)MZ(s) =

∞
∑

v=0

sv��
v

v!

Now, suppose Z is a random variable having the Weibull 
distribution in Eq. (1) with parameter � and � , the mgf of Z 
is given by

Since the relationship between the random variable Z has 
the Weibull distribution in Eq. (1) and the random variable 
T that follows GWU distribution given by T = �

[

1 − e−Z
]

 , 
the first non-central moment of T is given by

Setting s = − 1 in (22), we have MZ(− 1) , and hence, the first 
non-central moment of T becomes

So, the rth non-central moment of the GWU distribution 
can be obtained directly from Eq. (22) for s = − r as

Further, the central moments �r of T are obtained from 
Eq. (24) as follows:

For r = 2, 3, 4 , Eq. (25) gives �2 , �3 and �4 , which are of 
the most interest because of the relations between variance, 
kurtosis and skewness of the random variables Z. Note that 
��
0
= 1 and ��

1
= � . Table 2 displays the numerical values for 

mean, variance, skewness and kurtosis for several values of 
parameters for the GWU distribution.

Moment‑generating function

The result in (25) can be used in (21) to rewrite the mgf as

For this section, Eq. (26) represents the main result. The 
characteristic function Φ(s) = E

[

eisT
]

 of T can be obtained 
from this equation with is in place of s, where i =

√

− 1.

(22)MZ(s) =

∞
∑

v=0

svΓ
(

1 +
v

�

)

v!�
v

�

��
1
= �

[

1 − E(e−Z)
]

= �E
[

1 −MZ(− 1)
]

(23)

��
1
= �

⎡

⎢

⎢

⎢

⎣

1 −

∞
�

v=0

(− 1)vΓ
�

1 +
v

�

�

v!�
n

�

⎤

⎥

⎥

⎥

⎦

= �

⎡

⎢

⎢

⎢

⎣

∞
�

v=1

(− 1)v+1Γ
�

1 +
v

�

�

v!�
n

�

⎤

⎥

⎥

⎥

⎦

(24)

��
r
= �r

[

1 − E(e−rZ)
]

= �r
[

1 −MZ(−r)
]

= �r

∞
∑

v=1

(− 1)v+1rvΓ
(

1 +
v

�

)

v!�
n

�

.

(25)�r =

r
∑

i=0

(

r

i

)

(− 1)r��
i
�r−i,

(26)MT (s) =

∞
∑

v=0

�vsv

v!

∞
∑

w=1

(− 1)w+1vwΓ
(

1 +
w

�

)

w!�
w

�

Fig. 2   Plots of h(t;�,�,�) for selected parameter values of GWU dis-
tribution
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Quantile function and simulation

The quantile function of the GWU distribution is obtained 
by inverting (12) as

(27)Q(�) = �

[

1 − exp

[

−

{

− loge(1 − �)

�

}�]]

Setting � =
1

2
 in (27) gives the median of the GWU dis-

tribution as follows:

Further, setting � =
1

4
 and � =

3

4
 gives the lower quartile 

and upper quartile, respectively. Simulating the GWU ran-
dom variable is straightforward. If U is a random number 
following a uniform distribution  (0, 1) , then the random 
variable

will follow a GWU distribution with parameters � , � and �.

Order statistics

The pdf fj;n(t) of the jth orders T(j) is given by

Using

and

and substituting (31) and (32) into (30), we get

where f (t;�n,� ,�,�) is the GWU PDF with parameters 
�n,� = (n − j + � + 1)� , � and �.

Therefore, the rth non-central moment of the jth OS of 
GWU distribution is given by

(28)t 1
2

= �

[

1 − exp

[

−

{

− loge(2)

�

}�]]

(29)T = Q(U) = �

[

1 − exp

[

−

{

− loge(1 − u)

�

}�]]

(30)

fj;n(t) = n

(

n − 1

j − 1

)

f (t)F(t)j−1{1 − F(t)}n−j, j = 1, 2,… , n.

(31)

F(t)j−1 =

[

1 − e
−�

{

− loge

(

1−
t

�

)}�]j−1

=

j−1
∑

�=0

(

j − 1

�

)

(− 1)�e
−��

{

− loge

(

1−
t

�

)}�

(32){1 − F(t)}n−j = e
−(n−j)�

{

− loge

(

1−
t

�

)}�

(33)

fj;n(t) = n

(

n − 1

j − 1

) j−1
∑

�=0

(−1)�
��

�
(

1 −
t

�

)�

{

− loge

(

1 −
t

�

)}�−1

× e
−�(n−j+�+1)�

{

− loge

(

1−
t

�

)}�

(34)

fj;n(t) = n

(

n − 1

j − 1

) j−1
∑

�=0

(

j − 1

�

)

(− 1)�

(n − j + � + 1)
f (t;�n,� ,�,�)

Table 2   Mean, variance, skewness and kurtosis for some values of � 
and � with � = 1 (*:undefined)

� � Mean Variance Skewness Kurtosis

1.0 1.0 0.500 ∗ ∗ ∗

1.2 1.0 0.454 ∗ ∗ ∗

1.5 1.0 0.400 ∗ ∗ ∗

2.0 1.0 0.333 0.389 ∗ ∗

3.0 1.0 0.250 0.338 0.231 ∗

4.0 1.0 0.200 0.293 0.245 0.232
5.0 1.0 0.167 0.258 0.241 0.240
8.0 1.0 0.111 0.188 0.209 0.226
10.0 1.0 0.091 0.158 0.187 0.210
1.0 1.2 0.512 0.430 ∗ ∗

1.2 1.2 0.471 0.434 ∗ ∗

1.5 1.2 0.422 0.430 0.881 ∗

2.0 1.2 0.361 0.413 0.156 ∗

3.0 1.2 0.284 0.372 0.223 0.199
5.0 1.2 0.203 0.303 0.254 0.242
10.0 1.2 0.123 0.208 0.226 0.242
1.0 1.5 0.527 0.446 − 0.035 0.121
1.2 1.5 0.492 0.450 0.009 0.120
1.5 1.5 0.449 0.449 0.062 0.126
2.0 1.5 0.395 0.439 0.127 0.143
5.0 1.5 0.250 0.355 0.252 0.229
10.0 1.5 0.170 0.271 0.259 0.260
1.0 2.0 0.546 0.460 − 0.061 0.127
1.2 2.0 0.517 0.465 − 0.024 0.123
1.5 2.0 0.482 0.467 0.022 0.123
2.0 2.0 0.438 0.464 0.080 0.131
5.0 2.0 0.313 0.412 0.221 0.197
10.0 2.0 0.237 0.350 0.268 0.247
1.0 5.0 0.592 0.475 − 0.129 0.148
1.5 5.0 0.563 0.484 − 0.090 0.136
2.0 5.0 0.543 0.489 − 0.062 0.130
5.0 5.0 0.480 0.493 0.029 0.126
10.0 5.0 0.435 0.486 0.094 0.137
1.0 10.0 0.611 0.473 − 0.157 0.159
1.5 10.0 0.596 0.479 − 0.138 0.151
2.0 10.0 0.586 0.483 − 0.124 0.146
5.0 10.0 0.553 0.492 − 0.078 0.133
10.0 10.0 0.528 0.496 − 0.042 0.127
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So, the pdf of the largest order statistics T(n) is given by

where f (t;�
�
,�,�) is the pdf of the GWU distribution with 

parameters �
�
= (� + 1)� , � and � , and the pdf of the small-

est order statistics T(1) is given by:

where f (t;�n,�,�) is the pdf of the GWU distribution with 
parameters �n = n� , � and �.

Maximum likelihood estimation

Consider a random sample t1, t2,… , tn from GWU(�,�,�) 
distribution, and assume Θ = (�,�,�)T is a vector of the dis-
tribution parameter with known � (since t < 𝜑 ), then the log-
likelihood function denoted by �(Θ) can be written as

Since � is supposed known, the score vector can be defined 
by U(Θ) =

(

�

��
�(Θ),

�

��
�(Θ)

)T

 where the components cor-
responding to the GWU(�,�,�) distribution by differentiating 
Eq. (39) determined the parameters of new model. The ele-
ments of the score model are given by

(35)
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(38)f1;n(t) = f (t;�n,�,�)

(39)
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log
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(�) − log

e
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∑
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log
e

(
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t
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(40)U�(Θ) =
n
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− loge
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U�(Θ) =
n

�
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∑
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log
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− log
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Setting (40) and (41) to zero and simplifying, we obtain

The solution of Eq. (43) represents the MLE �̂ of � . 
The MLE �̂  of � can be found by substituting the estimate 
�̂ in Eq. (42).

The elements of the observed information matrix 
In(Θ) = {Irs} for r;s = �,� are found by

For large n, the bivariate normal distribution with zero 
mean vector 0, and variance-covariance matrix I2(𝚯)−1 can 
be used to approximate the distribution of 

√

n(𝚯̂ − 𝚯) , 
where I(𝚯) = limn→∞ n−1In(𝚯) is the expected. The esti-
mated asymptotic bivar iate normal distr ibution 
N2(0, I(𝚯)−1) of �̂ can be used to construct approximate 
confidence intervals for the distribution parameters. A 
large sample 100(1− �)% confidence intervals for � and � 
are �̂ ± z �

2

√

var(�̂) and �̂ ± z �

2

√

var(�̂) , respectively, where 
the var(⋅) ’s are the diagonal elements of In(𝚯)−1 , and z �

2

 is 
the upper �

2
 th percentile of the standard normal 

distribution.

Simulation study

A simulation study is conducted to examine the perfor-
mance of the MLE method to estimate the GWU distri-
bution parameters. Monte Carlo technique is employed to 
simulate the GWU random number generation depending 
on the inversion method, i.e., varieties of the GWU distribu-
tion are generated using (29). The simulation study is con-
ducted for nine-parameter incorporation, � = 0.5, 1.0, 1.5 and 
� = 0.5, 1.0, 1.5 and consider sample sizes with n = 30, 50 
and 100. The process is repeated 5000 times for each param-
eter incorporation and each sample size.
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The average bias AB =
1

5000

∑5000

i=1
(estimate − actual) and 

mean square error MSE =
1

5000

∑5000

i=1
(estimate − actual)2 of 

the MLEs are used to measure the performance.
It can be observed in Table 3 that for all the different 

sets when we increase n, the bias for � and � decreases. The 
MSEs tend to toward zero when we increase the sample size 
n. The simulation results validate the performance of the 
maximum likelihood estimators.

Application

Voltage data were employed to illustrate the flexibility of 
the GWU distribution, in addition to compare the behav-
ior of the new model with other generalization of Weibull 
distribution. The model selection is achieved by using the 
maximized log-likelihood, Akaike information criterion AIC 
and Bayesian information criterion (BIC) given by:

where (�̂) refers to the log-likelihood function that evalu-
ates at the MLE, while q is the number of parameters and n 
is the sample size.

Voltage data

The data have been obtained from Meeker and Escobar [10]. 
They represent the lifetimes of 30 electronic components 
taken from power-line voltage spikes during electric storms. 
The data have been previously used by Nadarajah et al. [12] 
and Tahir et al. [16] (Table 4).

The total time on test (TTT) transform plot illustrates 
that data set has a bathtub-shaped FRF. So, the GWU dis-
tribution may be suitable for modeling this data set. Table 5 
provides the MLEs of the unknown parameters with cor-
responding standard errors for different distributions. The 
values of these statistics in data sets are smaller for the GWU 

AIC = − 2(�̂) + 2q,

BIC = − 2(�̂) + q ln(n),

Table 3   MLE, bias and MSE 
for various parameter values 
when � = 1

Sample size Actual values Bias MSE

n � � B(𝜐̂) B(𝜔̂) MSE(𝜐̂) MSE(𝜔̂)

30 0.5 0.5 0.01219 0.11761 0.02083 0.01009
1.0 0.5 0.04255 0.03608 0.04569 0.00588
1.5 0.5 0.07695 0.02466 0.10246 0.00624
0.5 1.0 0.00979 0.04648 0.01468 0.02446
1.0 1.0 0.03798 0.04534 0.04540 0.02448
1.5 1.0 0.08354 0.04657 0.10968 0.02503
0.5 1.5 0.01502 0.06757 0.01519 0.05393
1.0 1.5 0.03740 0.07139 0.04537 0.05480
1.5 1.5 0.06931 0.06745 0.10517 0.05508

50 0.5 0.5 0.00828 0.10939 0.01239 0.00586
1.0 0.5 0.03238 0.02617 0.02506 0.00318
1.5 0.5 0.04621 0.01424 0.05540 0.00320
0.5 1.0 0.00687 0.02832 0.00904 0.01350
1.0 1.0 0.02107 0.02710 0.02529 0.01335
1.5 1.0 0.05013 0.02772 0.05355 0.01328
0.5 1.5 0.00641 0.03924 0.00943 0.03009
1.0 1.5 0.02259 0.04102 0.02542 0.02978
1.5 1.5 0.04742 0.04072 0.05776 0.03020

100 0.5 0.5 0.01051 0.12317 0.00644 0.00326
1.0 0.5 0.02847 0.02028 0.01220 0.00147
1.5 0.5 0.02957 0.00824 0.02356 0.00152
0.5 1.0 0.00561 0.01289 0.00472 0.00632
1.0 1.0 0.01278 0.01104 0.01197 0.00638
1.5 1.0 0.02433 0.01188 0.02496 0.00616
0.5 1.5 0.00513 0.01681 0.00458 0.01469
1.0 1.5 0.01473 0.01706 0.01194 0.01430
1.5 1.5 0.02716 0.01876 0.02552 0.01429
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Table 4   Lifetimes of 30 
electronic components from 
Meeker and Escobar [10]

275 13 147 23 181 30 65 10 300 173
106 300 300 212 300 300 300 2 261 293
88 247 28 143 300 23 300 80 245 266

Table 5   MLEs of the 
parameters (the standard errors 
are given in parentheses) to the 
voltage data and the values of 
the − log likelihood, AIC and 
BIC statistics

Bold values show the best model which is suggested in this paper

Dist. Estimates − Log AIC BIC

� � � � � likelihood

GWU​ 0.603
(0.037)

0.624
(0.025)

– – 300.03 135.29 274.59 278.79

WU 0.377
(0.102)

0.214
(0.029)

– – 300.03 139.22 282.43 286.63

BW 0.079
(0.030)

0.066
(0.036)

7.936
(0.765)

0.005
(0.001)

– 169.92 347.84 353.44

KuW 0.052
(0.024)

0.229
(0.091)

7.701
(0.219)

0.004
(0.0000)

– 171.33 352.71 358.32

WP 0.772
(0.252)

0.337
(0.057)

2.874 – 300.00 152.58 311.15 315.34

W 1.265
(0.252)

0.006
(0.055)

– – – 184.31 368.63 371.43

Fig. 3   Voltage data set. a TTT- transform plot represents to the voltage data set. b The empirical and estimated cdf of the distribution. c Prob-
ability plots. d The expected and observed number of observations
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distribution compared to those values of other fitted distri-
butions. The approximate 95% two-sided asymptotic confi-
dence interval of the parameters � , � and � , respectively, is: 
(0.391,0.815) , (0.417, 0.831) and (2030.72, 369.34).

It is concluded that the proposed model provides a good-
ness of fit for the given data set, which leads to ability to 
choose the GWU distribution as the best model (Fig. 3).

Conclusion

The GWU distribution was introduced with the new three 
parameters. The new model can have bathtub and increasing 
shapes for the FRF. The new model displays the lifetime data 
on a bathtub shape as a versatility of FRF. Many structural 
properties of the GWU distribution have been studied and 
derived, encompassing the moment, moment-generating 
function and order statistics. The MLE was used to estimate 
the asymptotic interval and point estimates of the param-
eters. One set of real-life data was employed to demonstrate 
the flexibility of GWU distribution. The encourage results 
of new model were compared with the results of the oth-
ers distributions in the literature. Discover revealed that the 
GWU distribution gives us a better fit than the other lifetime 
models. It is expected that the new model can be employed 
in other several sciences.
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tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
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credit to the original author(s) and the source, provide a link to the 
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