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Abstract: Natural hazards have a great number of influencing factors. Machine-learning approaches
have been employed to understand the individual and joint relations of these factors. However, it is
a challenging process for a machine learning algorithm to learn the relations of a large parameter
space. In this circumstance, the success of the model is highly dependent on the applied parameter
reduction procedure. As a state-of-the-art neural network model, representative learning assumes full
responsibility of learning from feature extraction to prediction. In this study, a representative learning
technique, recurrent neural network (RNN), was applied to a natural hazard problem. To that end,
it aimed to assess the landslide problem by two objectives: Landslide susceptibility and inventory.
Regarding the first objective, an empirical study was performed to explore the most convenient
parameter set. In landslide inventory studies, the capability of the implemented RNN on predicting
the subsequent landslides based on the events before a certain time was investigated respecting
the resulting parameter set of the first objective. To evaluate the behavior of implemented neural
models, receiver operating characteristic analysis was performed. Precision, recall, f-measure, and
accuracy values were additionally measured by changing the classification threshold. Here, it was
proposed that recall metric be utilized for an evaluation of landslide mapping. Results showed that
the implemented RNN achieves a high estimation capability for landslide susceptibility. By increasing
the network complexity, the model started to predict the exact label of the corresponding landslide
initiation point instead of estimating the susceptibility level.

Keywords: natural hazard assessment; landslide mapping; deep learning; recurrent neural networks

1. Introduction

Natural hazards such as earthquakes, landslides, tsunamis, and volcanic activities that all
have serious effects on human beings have a great number of influencing factors. The individual
and joint effects of these factors are not always fully understood since each factor introduces a
potentially large degree of uncertainty into any quantitative analysis [1]. Additionally, the data
acquired from observations are usually sparse and lack accuracy and completeness, which is another
kind of uncertainty [1]. To reduce these uncertainties, machine learning (ML) algorithms have been
implemented, particularly for the last decade (Table 1).
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Recently, ML techniques have become popular in spatial prediction of natural hazards studies
such as wildfire [2], sinkhole [3], groundwater and flood [4–6], drought [7], gully erosion [8,9],
earthquake [10], land/ground subsidence [11], and landslide studies [12–20]. ML is a subdivision
of artificial intelligence (AI) that uses computer techniques to analyze and forecast information by
learning from training data. ML algorithms that have been used for landslide prediction include
support vector machine [21,22], artificial neural network [23,24], decision trees [24], etc. Ensemble
models have been used in landslide susceptibility mapping due to their novelty and their ability to
comprehensively assess landslide-related parameters for discrete classes of independent factors [25,26].
Additionally, different performance metrics were used to evaluate the prediction capacities of ML
models, and depending on the natural hazard problem as well as the algorithm, different results were
acquired (as shown in Table 1).

The classification performance of an ML algorithm is affected by the complexity of the
corresponding problem. Complex problems have a high dimensional parameter space where
ML algorithms start to suffer from a serious problem called the curse of dimensionality [27,28].
In these circumstances: (i) Possible patterns in data increase; (ii) it becomes difficult to identify
the relation between model parameters and the output during training iterations; and (iii) the cost
of the training process increases. Additionally, this problem causes over-fitting, which misleads
the prediction performance during model evaluation. The effects and limitations of the curse of
dimensionality problem on conventional ML algorithms seem unavoidable in such high dimensional
parameter spaces [28]. Therefore, these algorithms require a successful feature extractor to reduce
the dimensionality and increase the quality of the parameter space. The accuracy of classification
depends on the success of the feature extractor used as well as the accuracy of the ML algorithm in the
background. At this point, deep learning becomes a powerful alternative since it learns the important
features during training and still has a high approximation capability against the complex problems
which are particularly in image or text.

As mentioned before, natural hazard assessment has been investigated by conventional ML
approaches and promising results have been achieved [29]. Yet the success of these models has not
attained enough maturity. Some of the reasons for this issue are: The model cannot handle a large
parameter space [18]; the landmarks in the terrain affect each other as a nature of hazard assessment;
and the model may not consider this effect properly [30,31]. In this study, one of the natural hazards, the
landslide problem, was evaluated with a deep learning approach (recurrent neural networks (RNNs))
in an experimental manner regarding the parameter space with a large parameter space containing
several topographic, hydro-topographic, hydrologic, anthropogenic, vegetation, and lithology factors.

Utilizing aerial or satellite images, deep learning has entered into the field of geoscience regarding
classification [32–34], analysis [35,36], and damage prediction [37–39]. Surely there exist some
comprehensive deep learning solutions for natural hazards as well [37–39]. This study differs from
existing studies in literature in two aspects: (i) Previous studies based on deep learning rely on images,
and (ii) they aim to predict disaster areas after the occurrence of natural hazards. Here, utilized data
contains several characteristic features of landslide initiation points obtained by field measurements,
and the goal is detecting the hazardous areas from these features without tending to assume that the
majority of the terrain is hazardous (or unstable), but only the exact susceptible areas as much as
possible. Addressing this approach, the possibility of using deep learning in a different data type with
complex parameter space (other than image) has been investigated in this study. A methodological
deep learning solution was proposed for the problems with complex parameter sets in the field
of geoscience.

In this study, the landmarks of the terrain were determined by sequences. By this approach,
the information of previously processed landslide initiation points were utilized to predict the
probability of landslide in the subsequent initiations. In these circumstances, recurrent neural network
(RNN) was applied, since this kind of deep neural network architecture is the most proper solution for
sequence modeling [40,41].
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The landslide problem was taken into account in two aspects. First, it was treated as a landslide
susceptibility mapping problem. Here, an empirical approach was applied to investigate the parameter
sensitivity. This investigation aims to explore the effect of individual and joint parameters on the
model accuracy and observe the behavior of a deep learning approach against the parameter set
becoming more complex. The second aspect of the landslide problem was handled as landslide
inventory mapping. In the literature, this task covers documenting the distribution of landslides, and
investigating the types and recurrence of slope failures to determine landslide susceptibility, hazard,
and risk [42].

Table 1. Recent studies rely on machine learning on different natural hazard problems .

Machine Learning Algorithm Ref. Year Natural Hazard Model Performance

Logistic Tegression [43] 2018
Earthquake;
Geological
susceptibility

NA

Multilayer Perceptron (MLP);
Cascade Forward Neural Network
(CFNN)

[14] 2015 Landslide;
Susceptibility

For MLP model AUC = 70.90–81.11;
For CFNN model 70.91–81.62

Neural Networks (NN);
Support Vector Machines (SVM);
Evolutionary Algorithm (EA)

[44] 2017 Earthquake;
Trigger mechanism

For NN model Error = 0.14% and
Sensitivity = 99.94%
For SVM model Error = 0.27% and
Sensitivity = 99.78%
For EA model Error = 0.34% and
Sensitivity = 99.86%

Self Organizing Maps (SOM) [45] 2017 Coastal Hazards;
Risk index NA

Extreme Learning Adaptive
Neuro-Fuzzy
Inference system (ELANFIS)

[46] 2017
Landslide;
Displacement
prediction

For ELANFIS Coefficient of
Correlation (R) = 0.9796–0.9945

Adaptive Neuro-Fuzzy Inference
Systems (ANFIS);
Ant Colony Optimization (ACO);
Genetic Algorithm (GA);
Particle Swarm Optimization (PSO);

[47] 2018 Flood;
Susceptibility

For ANFIS-ACO model Area Under
ROC Curve (AUC) = 0.918;
For ANFIS-GA model
(AUC) = 0.926;
For ANFIS-PSO model
(AUC) = 0.945

Genetic Programming (GP) [48] 2018
Coastal inundation;
Total and infragravity
swash elevations

For total swash RMSE = 0.272;
For infragravity RMSE = 0.216;
Compared with the formulation
of [49];
For total swash RMSE = 0.570;
For infragravity RMSE = 0.334;

Decision Tree (DT) [31] 2017 Flood;
Mapping

For DT model Average
Accuracy = 67%

Classification and regression trees;
Random Forests (RF) [50] 2018

Lightning;
Distinguishing
nonlightning and
lightning days

For RF model Hit Rate (HR) = 0.92

Random Forest (RF) [51] 2016
Storm;
Forest damage
prediction

Storm-damaged timber (RF model)
was evaluated as a function
of maximum gust speed classes
(Least Squares Boosting model
R20.99) of Lothar

Random Forest (RF) [52] 2015 Flood;
Susceptibility

For RF model error rate of 5-fold
cross-validation using
5000 samples and 10,000
classification trees = 8.76
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Table 1. Cont.

Machine Learning Algorithm Ref. Year Natural Hazard Model Performance

Random Forest (RF) [53] 2013 Wildfire;
Spatial interpolation

For RF model Relative Root Mean
Square Error (RRMSE) = 25%

Weighted Random Forest (WRF) [54] 2016 Sinkhole;
Extraction For WRF model Accuracy = 73.96%

Random Forest (RF);
Boosted Regression Tree (BRT) [13] 2012

Shallow translational
landslide;
Susceptibility;
Analyzing driving
forces

For the models RF and BRT AUC0.9

Random Forest (RF);
Support Vector Machine (SVM) [30] 2015 Landslide;

Detection

For RF model Accuracy = 79.43–91%
For SVM model Accuracy =
78.37–87.34%

Support Vector Machine (SVM) [55] 2015 Flood;
Susceptibility

For SVM model with different
kernel types
area values under prediction rate
curves = 81.88-84.97%

Support Vector Machine (SVM) [12] 2008 Landslide;
Susceptibility

For two-class and one class SVM
models success rate
curve evaluations

Support Vector Machine (SVM);
Artificial Neural Network (ANN) [15] 2018

Colluvial landslide;
Rockfall;
Susceptibility

For colluvial landslide SVM model
Area Under ROC Curve
(AUC) = 0.917;
ANN model AUC = 0.852;
For rockfall SVM model
AUC = 0.932;
ANN model AUC = 0.906

Support Vector Regression (SVR);
Multilayer Perceptron (MLP) [56] 2009

Climate;
Temperature;
Temperature
inversion mapping

For SVR model RMSE = 0.47;
For MLP model RMSE = 0.46

Mutilayer Perceptron (MLP) [57] 2019 Landslide;
Susceptibility AUC = 0.90

Logistic Regression (LR);
Random Forests (RF);
Artificial Neural Network (ANN)

[58] 2019 Landslide;
Susceptibility

AUC for LR = 0.76;
AUC for RF = 0.95;
AUC for ANN = 0.84

2. General Characteristics of the Study Area

The Buyukkoy catchment area, with an area of 87.6 km2 in Cayeli district of Rize located to the
Eastern Black Sea Region of Turkey in which shallow landslides frequently occur in residual soils,
was selected as the experimental test site of this study (Figure 1). The Eastern Black Sea Region is the
rainiest region in Turkey. Annual mean precipitation in the period from 1971 to 2000 is about 2189 mm
(DMI, 2008). Because of the extreme climate and the geological and geomorphologic properties,
landslides and flood events repeatedly happen in the region. The Eastern Black Sea Region is a region
that is experiencing frequent incidents of the fatal landslides in Turkey. A total of 252 deaths and
2585 structural demolitions occurred in the region since 1970 [59].

In the catchment area, different lithological units cropped out from Cretaceous to
Quaternary [60,61]. The landslides typically take place in the residual soils of the Upper Cretaceous
and Lower-Middle Eocene-aged volcanic rocks and Palaeocene-aged granite intrusions). The region
in which the experimental site is located in a mountainous region. The topographic elevations vary
between 15 and 1470 m. The mean slope gradient in the region is 0.50 rad (±0.18 rad) (28°).
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Figure 1. (a) Location map of the study area representing the general location of the region on Earth;
(b) the Buyukkoy catchment area with the settlements.

3. Data

The source data of this experimental work was published by Nefeslioglu et al. [62]. There are
251 shallow landslide initiation points of which characteristics were already reported in the study
area (Figure 2) [62]. The mean volume of the displaced material of these failures was determined to
be below 2000 m3. Additionally, depending on the magnitude of the events, runout distances varied
in the range from 5 to 500 m throughout the catchment, with a mean value of 77 m. The instabilities
first start with a circular failure, not deeper than ~5 m, and then continue as flow at the toe of the
slides. Therefore, the dominant failure mode can be defined as shallow landslide. As mentioned, these
rapid-very rapid shallow failures occurred in residual soils decomposed from the magmatic rocks that
cropped out in the catchment. Since the characteristics of the soil formed from different lithology will
be different, the lithology map is able to represent the spatial change of soil properties.

In this study, six topographic parameters, three hydro-topographic parameters, two hydrologic
parameters, three anthropogenic parameters, vegetation cover, and six lithology variables considered to
control the occurrences of shallow landslides were evaluated (Tables 2 and 3) because these parameters
have been determined as conditioning parameters by Nefeslioglu et al. in [62]. The spatial resolution of
the grid data implemented in this study is 25× 25 m2. The dataset contains 875,816 data lines, including
21 independent variables described here and shallow landslide initiation information expressed as the
dependent variable.
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Table 2. Descriptive statistics of the continuous parameters for shallow landslides [62].

Parameter Group Parameter Name and Abbreviation Min. Max Mean Std.Dev. Variance

Topographic
Parameters

Topographic altitude (m) 49.460 540.314 246.325 102.059 10,415.977
Slope gradient (rad) 0.146 0.875 0.514 0.131 0.017
Annual solar radiation (ASR) (In[Rad]) 0.430 1.040 0.827 0.161 0.026
Plan slope curvature (100−1 m) −0.088 0.048 0.000 0.016 0.000
Profile slope curvature (100−1 m) −0.057 0.083 0.002 0.019 0.000
Convergence index −27.324 27.794 −0.993 8.749 76.540

Hydro-Topographic
Parameters

Topographic wetness index (TWI) 3.168 10.271 5.008 0.985 0.971
Stream power index (SPI) 2.047 678.376 67.985 84.738 7180.525
Sediment transport capacity index (LS) 2.460 53.807 22.398 8.967 80.405

Hydrologic
Parameters

Distance to drainage (m) 1.104 372.853 103.324 69.048 4767.674
Drainage density (km−1) 0.150 13.230 4.874 2.914 8.491

Anthropogenic
Parameters

Distance to road (m) 1.103 233.653 49.678 37.466 1403.710
Road density (km−1) 1.110 10.220 5.745 1.814 3.290
Building density (km−2) 10.760 160.050 87.796 34.381 1182.057

Vegetation Normalized Difference Vegetation Index (NDVI) 0.074 0.710 0.556 0.088 0.008

Table 3. Shallow landslide distribution for the discrete parameters [62].

Discrete Parameters # of Grid Cells # of Grid Cells with
Shallow Landslides

Alluvium (alv) 24,833 0
Andesite-basalt lava and pyroclastics (ablp) 81,565 37
Kackar granitoids (g) 135,320 63
Basalt-andesite lava and pyroclastics (balp) 434,879 151
Rhyodacite, dacite lava and pyroclastics (rdlp) 127,346 0
Basalt-andesite lava and pyroclastics with
sandstone, clayey limestone and siltstone alternations (balp-scs) 71,873 0

4. Methodological Background

A fundamental assumption of conventional neural networks is that inputs are independent.
While relatively successful predictions have been achieved by adhering to this assumption and
updating the weights of these independently handled inputs by conventional neural networks,
this approach may not be sufficient for many problems in nature. In fact previously learned information
is crucial for producing a successful prediction model. This is where Recurrent Neural Networks
(RNNs) are needed.

RNNs are neural sequence models that achieve remarkable prediction performance basically for
challenging tasks based on sequential data, the data of which all lines present a sequence of ordered
events. The theoretical background of the method can be found in Goodfellow’s comprehensive book
in [63]. The common use of RNNs contains language modeling, document classification, machine
translation, speech recognition, image captioning, and time series analysis [41]. According to their
sequential characteristics as well as their complex feature space, RNNs are highly compatible with the
data used in these problems. However, RNN applications should not be limited to these data types
because there are different problems in nature, which can be evaluated as a set of sequences as well.

The simplified definition of landslide, which is one of these, is defined as the slope downward
movement of rock, soil, or debris material under the influence of gravity [64]. This natural phenomenon
that develops on natural slopes is a complex problem. Landslides that occur as products of local
geological, hydrological and topographic conditions affected by vegetation, land use and human
activities are controlled by the frequency of precipitation and seismic events [65]. To reduce the
damage caused by the natural phenomenon, it is necessary to map the existing landslides and identify
the landslide areas likely to occur in the future [66]. The modeling of shallow landslides rapidly
developing in residual soils, where the area related to the displaced material is narrow and the volume
of the wasting material is low, is a very challenging problem because in such complex geological
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environments, ground material properties and groundwater conditions contain high uncertainties.
This situation makes it particularly difficult to predict the failures with conventional techniques.
Additionally, these shallow landslides that occur within the residual layers are quickly erased from
the terrain. Hence, it is not always possible to completely prepare the event inventories of shallow
landslides that occur after a rainy period. For this reason, it is important to evaluate the high capacity
prediction algorithms in the assessment of such type of natural hazard problems.

Figure 2. (a) Shallow landslide inventory map of the Buyukkoy catchment area [62]; (b) example views
of the shallow landslides in the catchment area; (c) a view of a damaged two-floor house; the second
floor of the house was destroyed by a shallow landslide that occurred behind the house.

In this study, landslide data were evaluated as a set of sequences of which each raw corresponds
to a grid cell defining a shallow landslide initiation on the terrain. Here, the fundamental discussion
in handling the data into a set of sequences is "whether previously processed information of former
landslide initiations may be used to correctly predict the likelihood of occurrence of a landslide of
current location?”. RNN is a suitable method to clarify this discussion. Here, what is expected from an
RNN is utilizing the previous predictions of former locations as an additional property to the features
of the current landslide initiation to precisely classify it.

During the implementation detailed in Section 5, RNN architecture contains one input layer,
one hidden layer with the changing number of RNN cells, and one output cell used to finalize class
label identification based on probabilities. Each cell in RNN is a Long Short-Term Memory (LSTM) cell
based on [41]. Please note that LSTM is a special kind of RNNs which is capable of avoiding long-term
dependency problem introduced in [67]. In an LSTM cell, the model decides what to remember and
what to forget by additional neural networks cooperating with each other.

5. Landslide Mapping

In this study, the natural hazard problem was handled by two approaches: (i) landslide
susceptibility mapping, (ii) landslide inventory mapping. The term ’landslide inventory mapping’ is
used to define the spatial locations of the recent shallow landslides. Briefly, in landslide susceptibility
mapping, parameters’ sensitivity and the effect on susceptibility maps were investigated to explore the
most influential parameter set for this problem. Considering the selected parameter set, the landslide



ISPRS Int. J. Geo-Inf. 2019, 8, 578 8 of 21

inventory mapping problem was then investigated by feeding the deep learning algorithm with the
limited information of previous shallow landslide initiations.

5.1. Landslide Susceptibility Mapping

5.1.1. Objective

(i) To observe the effect of changing parameter complexity against the model accuracy and stability.
(ii) To explore the most convenient parameter set, which maximizes the model performance.

Note that determining this parameter set is valuable not only for the corresponding deep learning
method, but also for the accuracy of any ML algorithm which desperately desires a feature extractor.

5.1.2. Stratified Sampling

Regarding the points with no landslide records, the entire terrain was divided into 600 strata,
and the parameter values of a randomly chosen point were inserted into the training set. Two-hundred
randomly chosen points that encountered landslide were inserted into the set as well. Therefore,
the training set contains 200 positive (points with landslide record) and 600 (points without landslide
record) negative cases. For testing, on the other hand, all-terrain with 875,816 points (with 251 reported
landslide initiations) was considered to obtain the susceptibility maps.

5.1.3. Implementation

To observe the parameter effect on susceptibility, an incremental approach was employed by
considering the six topographic parameters and adding the other parameters individually. Table 4 is
a representation of this incremental approach, where the nth parameter set is abbreviated as Sn for
simplicity. Here, Sn+1 is the concatenation of Sn and the corresponding additional parameter. The basic
parameters of applied RNN are listed below:

• RNN cell: LSTM
• Loss function: Softmax cross-entropy
• Optimizer: Gradient descent algorithm
• Batch-size: 32
• Learning rate: 0.01
• Implementation: Tensorflow

Running on a device with Intel(R) Core(TM) i7-8700 CPU, 32.0 GB RAM and NVIDIA GeForce
RTX 2070, training of RNN with 256 neurons required around 246 s for 1 million iterations when the
largest parameter set was considered.

Besides the utilized deep learning model, an artificial neural network (ANN) with a gradient
descent backpropagation algorithm was also employed for comparison. The ANN was a shallow
multilayer perceptron (MLP) containing three layers with m, 2 ∗ m + 1 and 1 neurons, where m is
the number of parameters in the corresponding parameter set. The learning rate was 0.001 and the
maximum number of iterations was 1 million. The properties mentioned earlier of RNN and ANN
were adapted similarly in inventory mapping detailed in Section 5.2.
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Table 4. Candidate parameter sets.

Parameter
Set ID Containing Parameters

S1 Topographic parameters
S2 S1 AND TWI
S3 S2 AND SPI
S4 S3 AND LS
S5 S4 AND Distance to drainage
S6 S5 AND Drainage density
S7 S6 AND Distance to road
S8 S7 AND Road density
S9 S8 AND Building density
S10 S9 AND NDVI
S11 S10 AND Lithology

5.1.4. Results

Receiver operating characteristic (ROC) analysis was employed to understand the model’s success
on susceptibility analysis. The area under the curve (AUC) values are presented in Table 5 for training
and in Table 6 for testing the model. The left part of these tables contains RNN results, while the
last column gives a brief understanding of ANN behaviors. In Table 6, the maximum value on the
horizontal axis was shown in bold and italic text regarding each model with changing the number of
neurons, and the maximum value on the vertical axis was underlined. Here, the test set contains all of
the points in the study area to obtain maps of the entire terrain. The experiments were repeated by
changing the number of neurons in the inner layer of RNN and increasing the number of iterations
during training. From Tables 5 and 6, it can be emphasized that the increase in the number of
iterations has a serious effect on the AUC values both for training and testing. However, a significant
improvement does not exist when the RNN contains more neurons in the inner layer. As a consequence,
considering the testing performance in Table 6, 256-neuron RNN with 1 million training iterations
seems like the best model. When Table 6 is examined on the horizontal axis, it can be understood
that the best parameter set which maximizes all of the AUC values is S10 (containing topographic,
hydro-topographic, hydrologic, anthropogenic parameters, and vegetation, and excluding the lithology
variable).

The main reason for this peculiarity can be explained as follows: The parameters defined as
lithology variables in the test field are magmatic rock types except for alluvium. However, the shallow
landslides observed in the study area are developed in the residual layers decomposed form these
magmatic rocks. In other words, the shallow landslide occurrence in the region is controlled by
the thickness of the residual soils developed on these units, rather than the magmatic rock types
defined under the lithology variables [68]. Therefore, because of the lack of knowledge of residual soil
thickness, lithology variables remain redundant parameters in estimating shallow landslide occurrence
in the model.

As a second approach to the landslide susceptibility problem, the selected parameter set (S10)
was more experimented by keeping the number of neurons constant at 256 and increasing the number
of iterations in model training. Figure 3 shows the training and testing results based on ROC-AUC
values. After 5-million training iterations, the model reaches saturation and classifies all of the training
data accurately (AUC = 1). It does not mean that the system starts to have an over-fitting problem
because, regarding the testing performance on the points of the whole terrain, the AUC values keep
rising (reach around 0.93). In other words, the model can generalize very well from the training data
to the unseen data points of the terrain.
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Table 5. Training results for landslide susceptibility experiments based on receiver operating
characteristic (ROC)–area under the curve (AUC) analysis (ROC-AUC).

RNN ANN

64 neurons 128 neurons 256 neurons

100 k 300 k 500 k 1 m 100 k 300 k 500 k 1 m 100 k 300 k 500 k 1 m

S1 0.583 0.597 0.625 0.582 0.549 0.522 0.610 0.636 0.528 0.562 0.533 0.628 0.799
S2 0.677 0.675 0.693 0.670 0.667 0.670 0.677 0.684 0.621 0.649 0.670 0.685 0.819
S3 0.674 0.690 0.690 0.698 0.665 0.680 0.698 0.699 0.637 0.674 0.684 0.694 0.838
S4 0.690 0.686 0.691 0.705 0.684 0.686 0.708 0.691 0.676 0.698 0.701 0.731 0.849
S5 0.623 0.648 0.675 0.668 0.665 0.694 0.707 0.705 0.663 0.713 0.708 0.720 0.839
S6 0.644 0.640 0.690 0.723 0.646 0.674 0.705 0.708 0.667 0.686 0.706 0.746 0.853
S7 0.746 0.778 0.738 0.801 0.749 0.747 0.784 0.824 0.754 0.788 0.822 0.827 0.850
S8 0.763 0.787 0.789 0.808 0.715 0.783 0.800 0.817 0.680 0.785 0.805 0.841 0.873
S9 0.771 0.791 0.805 0.828 0.787 0.790 0.812 0.875 0.711 0.830 0.813 0.865 0.870
S10 0.783 0.800 0.808 0.805 0.779 0.797 0.820 0.831 0.792 0.810 0.830 0.851 0.877
S11 0.745 0.785 0.794 0.806 0.759 0.776 0.792 0.828 0.773 0.787 0.794 0.781 0.881

Table 6. Testing results for landslide susceptibility experiments based on ROC-AUC.

RNN ANN

64 neurons 128 neurons 256 neurons

100 k 300 k 500 k 1 m 100 k 300 k 500 k 1 m 100 k 300 k 500 k 1 m

S1 0.591 0.548 0.595 0.616 0.522 0.532 0.551 0.605 0.506 0.566 0.588 0.582 0.777
S2 0.659 0.668 0.674 0.673 0.663 0.673 0.669 0.674 0.624 0.647 0.674 0.675 0.791
S3 0.664 0.690 0.697 0.701 0.660 0.694 0.692 0.704 0.656 0.676 0.700 0.709 0.814
S4 0.694 0.708 0.712 0.709 0.674 0.708 0.706 0.712 0.690 0.705 0.703 0.713 0.817
S5 0.653 0.679 0.683 0.696 0.650 0.646 0.695 0.670 0.609 0.717 0.702 0.681 0.818
S6 0.672 0.679 0.700 0.721 0.666 0.702 0.725 0.736 0.677 0.689 0.715 0.742 0.828
S7 0.694 0.729 0.749 0.797 0.742 0.759 0.776 0.792 0.737 0.767 0.771 0.803 0.825
S8 0.748 0.758 0.775 0.801 0.745 0.759 0.788 0.798 0.697 0.762 0.763 0.804 0.843
S9 0.742 0.792 0.793 0.834 0.739 0.811 0.799 0.838 0.761 0.783 0.833 0.835 0.857
S10 0.795 0.800 0.811 0.833 0.799 0.807 0.819 0.829 0.785 0.815 0.802 0.846 0.850
S11 0.766 0.772 0.776 0.783 0.769 0.790 0.792 0.814 0.773 0.792 0.800 0.815 0.855

The only use of ROC-AUC based model evaluation may be debatable and even inefficient for
the landslide susceptibility problem as well as any classification task. The textural properties of the
predicted classes on the maps should be evaluated as well. In such an assessment, artificial zones
on the map texture or patterns that do not correspond to any natural process or structure are not
desired. It is expected that the landslides present in the area will be within the limits of high and very
high susceptibility classes. Additionally, the spatial distributions of the high and very high landslide
susceptibility classes should be minimal [69]. To observe these points, some of the contributing maps
were produced and presented in Figure 4 to support performance evaluation measures. In Figure 4,
the resultant maps of six scenarios were presented, and the implementation details of these maps
were presented individually. The first three sub-figures show the effect of the number of neurons
in the inner layer of RNN for landslide susceptibility mapping. Here, the number of iterations is
constant, which is 1.0 × 106. Subsequently, the model was forced to increase the number of iterations
for training to decrease the cross-entropy loss value as much as possible. In this study, when all
these six maps produced are evaluated from the textural point of view, it can be seen that when the
number of iterations is kept constant at 1 million iterations, the spatial distributions of low and very
low susceptibility classes are unchanged depending on the increasing number of neurons (Figure 4).
However, in these circumstances, the moderate susceptibility class shows a transition to high and
very high susceptibility classes. As a consequence, it is observed that the predictive capacities of the
resultant maps are significantly increased in the test evaluations of the model. The textural variation
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of this peculiarity can be observed in Figure 4 while quantification of this result can also be seen in
Table 6. On the other hand, when the number of neurons is kept constant at 256, and the number of
iterations is increased, it is observed that the resultant maps are divided into 2 classes, which are very
low and very high susceptibility classes. When this result is evaluated together with the number of
iterations and ROC-AUC values given in Figure 3, it is understood that the results up to 1 million
iterations can be expressed as landslide susceptibility. However, after 5 million iterations, the results
obtained directly correspond to the shallow landslide rupture zones. In this case, another research
question arises: “Can the high-capacity deep learning algorithm (the number of neurons ≥ 256 and
the number of iterations > 5 million) be used for landslide inventory mapping?”.

Figure 3. Effect of changing the number of iterations in ROC-AUC values of the landslide susceptibility
mapping problem, utilizing 256 neuron-RNN with a selected parameter set containing topographic,
hydrologic, hydro-topographic, hydrologic, and anthropogenic parameters and vegetation; K:
Thousand; M: Million.

Figure 4. Model results of landslide susceptibility and inventory evaluations on parameter set S10

concerning changing the number of hidden neurons and training iterations.
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5.2. Landslide Inventory Mapping

5.2.1. Objectives

(i) To observe the capability of deep learning approach on estimating subsequent landslides based
on the occurred events before a certain year. (ii) To discuss the ability of deep learning in landslide
inventory mapping; to find out the exact areas with high possibility of landslide, and avoid to assign a
large portion of the terrain as unstable.

5.2.2. Time-Based Sampling

Besides the main dataset containing independent variables, the utilized data repository also
includes landslide information representing 251 landslide initiation points. Each of these points
corresponds to rupture zone of a shallow landslide (ci) that occurred between year the 1955 and 2007,
and they were handled by triplets as ci = [latitudei, longitudei, yeari]. The year 2005 was used as a
threshold for separating the training and testing data. In the corresponding dataset, the number
of landslides that occurred before 2005 is 232 (yeari < 2005), and the remaining 19 landslides that
occurred in 2005 and after (yeari ≥ 2005).

Similar to the sampling strategy of the landslide susceptibility problem (detailed in Section 5.1.2),
negative 600 cases (points without a landslide record) were selected by stratified sampling. However,
200 positive cases (points with a landslide record) were randomly selected from the set of landslides
that occurred before 2005. Therefore the training dataset contains 800 lines of data. For testing, on the
other hand, all-terrain with 875,816 points (with 251 reported landslides) was considered to obtain the
susceptibility maps, and 19 landslides occurred in 2005 and after (yeari ≥ 2005) was also evaluated to
observe how much capable the resulting model is for predicting the exact landslide points.

5.2.3. Implementation

Experiments are repeated for changing the number of neurons in the inner layer of RNN
and the number of its training iterations. The RNN parameters were the same as the landslide
susceptibility mapping part of this study (Section 5.1). Here, the parameter set is constant (topographic,
hydro-topographic, hydrologic, anthropogenic parameters and vegetation) which was empirically
evaluated in landslide susceptibility mapping.

Running on a device with Intel(R) Core(TM) i7-8700 CPU, 32.0 GB RAM and NVIDIA GeForce
RTX 2070, training of RNN with 256 neurons required around 1386 s for 5 million iterations.

5.2.4. Results

The model evaluation of the landslide inventory mapping problem was performed by the objective
basis determined in Section 5.2.1.

Regarding the first objective, the main expectation from the proposed RNN is having a high
estimation capability of landslides that occurred in 2005 and after. As already mentioned, there are
19 landslides to be estimated, and the testing dataset contains only these lines of data. Since the dataset
contains only positive instances, the model evaluation was performed by recall metric which is the
ratio of the number of true-positives (TP) to the number of all positive instances (including TPs and
false-negatives (FNs)) as seen in Equation (1), and equals the accuracy metric for corresponding dataset.

Obtained results from the first objective is presented in Figure 5. Each differently colored bar
represents a different classification threshold used to calculate the recall value. Here, there are two
points to be considered. First, the estimation capability of the conventional neural network model
is very low compared to the corresponding RNNs. Its approximation capacity is not efficient for a
distinct classification since its outputs are around the value 0.5, which is the most ambiguous output
for a classification task. On the other hand, RNNs can distinguish the cases in the testing dataset with
much less ambiguity.
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Figure 5. Effect of changing the number of iterations and neurons in the landslide inventory problem
with the parameter set containing topographic, hydrologic, hydro-topographic, and anthropogenic
parameters and vegetation. It is related to the first objective defined in Section 5.2.1. Recall values are
given for the landslides that occurred in 2005 and after.

The second inference of Figure 5 is the effect of changing the modeling parameters of RNNs. In the
early stages of training, the model tends to learn the positive instances, then it starts to concentrate on
finding a certain balance that can handle all of the positive and negative samples as much as possible.
This situation causes oscillation, while the number of iterations increases. To ensure this hypothesis,
it is surely crucial to observe the behaviors of these RNNs against the entire terrain. At this point,
landslide inventory mapping based on a time-base sampling was investigated regarding the second
objective defined in Section 5.2.1.

The main expectation from the implemented deep learning model is to find out the exact area
of landslides; the true-positive rate (TPs) should be high. Therefore, recall values and the number
of TPs should be paid more attention during the performance evaluation of the inventory mapping
problem. Yet, there is another significant point in model evaluation which is: Avoiding extrapolating
that a large portion of the terrain includes landslide. In other words, the model should not incorrectly
classify the points without a landslide record as ’unstable’, i.e., the number of false-positives (FPs)
should be low. Therefore, precision metric (Equation (2)) was also utilized as minor support to recall,
and as a combination of them, f-measure (the harmonic mean of precision and recall in Equation (4))
was investigated as well.

The obtained results show that the precision values are very low for each model, and it pulls
down the value of f-measure intrinsically. This situation is because of the nature of utilized imbalance
data containing only the origin points of landslides (251 unstable points with landslide occurrence
in 875,816 points in the entire terrain). In these circumstances, the model predicts a landslide area
beside the origin of the corresponding landslide. Therefore, it causes a great increase in the number of
FPs, and the resulting precision values become very low. A similar outcome occurs in the accuracy
metric. In the corresponding problem, the model is highly accurate if it labels all of the points in the
area as stable. Therefore precision, f-measure, and accuracy metrics may trigger misunderstanding in
performance evaluation and the main attention was paid on recall values.

Recall(R) =
TP

TP + FN
(1)

Precision(P) =
TP

TP + FP
(2)

Accuracy(A) =
TP + TN

TP + FP + TN + FN
(3)
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F − measure(F) = 2.
Precision.Recall

Precision + Recall
(4)

Regarding the ROC-AUC based model evaluation, Table 7 presents them on the testing dataset
which contains the points of the entire terrain. Here it seems that the conventional neural network
model performs better than RNN in some cases. To examine this conflict more deeply, the models are
also assessed by using the confusion matrix. In Table 7 the number of true-positive (TP), true-negative
(TN), false-positive (FP) and false-negative (TN) instances are presented. Recall (Equation (1)),
precision (Equation (2)), and f-measure (Equation (4)), and accuracy (Equation (3)) values were also
calculated. Just like the aforementioned model evaluation approach, these values were reconsidered
by changing the classification threshold. Here, the conventional neural network tends to estimate the
instances as negative (stable points with no landslide occurrence). Since the majority of the instances
in the testing dataset does not have landslide occurrence, the accuracy and ROC-AUC values of this
model are high. However, the correctly predicted landslide points (TPs) are really low, e.g., TP = 18
for the case in which the classification threshold is 0.7, AUC is 0.83, and accuracy is 0.99. Because of
this contradiction and possible incorrect assessment of the artificial models, attention should still be
paid to the recall values.

To represent the values in Table 7 more clearly, recall, precision, and ROC-AUC values were
restructured as bar charts in Figure 6. Here, it can be observed that the increase in model complexity
(which corresponds to the number of neurons in the hidden layer in this case) has a great effect on both
precision and recall. There is not a remarkable difference in ROC-AUC values. The number of training
iterations improves the model estimation capability with regards to precision, recall, and ROC-AUC.
However, according to the results given in Figure 6, particularly considering recall values, it is revealed
that the conventional artificial neural network (i.e., ANN with 2n + 1 neurons in the inner layer
where n represents the number of inputs) has no capability to be used in landslide inventory problem.
The main reason for this peculiarity can be explained as follows: Whether it is landslide susceptibility
mapping models or landslide inventory mapping models, accurate prediction of instances shows
the actual performance. Since the probable instances are searched for within the existing negatives
(the stable points) in landslide susceptibility mapping models, the evaluation of the metrics using the
estimation performance of negatives as a criterion of the model success in the landslide problem is
open to debate. In landslide inventory mapping, it can be expected that the current negatives are
predicted to be negative. However, if the inventory is missing and the model catches the landslides that
have been missed, the limitation expressed here for the negatives again occurs. In other words, there is
no obligation for existing negatives to always be negative in landslide modeling, but it is expected
that the existing positives (unstable points or points with landslide) always be estimated as positive.
Accordingly, the implemented RNN model has a strong prediction power for inventory mapping.
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(a) Precision values for landslide inventory mapping.

(b) Recall values for landslide inventory mapping.

(c) ROC-AUC values for landslide inventory mapping.

Figure 6. Effect of changing the number of iterations and neurons in the landslide inventory problem
with the parameter set containing topographic, hydrologic, hydro-topographic, and anthropogenic
parameters and vegetation. It is related to the second objective in Section 5.2.1, and performance
metrics are given for the entire terrain.
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Table 7. Results for landslide inventory mapping for changing the number of iterations (Iter.) and
classification threshold (Thres.) (related to objective (ii) in Section 5.2.1).

Model Neuron Iter. AUC Thres. TP TN FP FN P R F A

RNN 64 100 k 0.786 0.5 236 413,201 462,364 15 0.0005 0.940 0.001 0.472
RNN 64 300 k 0.803 0.5 228 477,979 397,586 23 0.0006 0.908 0.001 0.546
RNN 64 500 k 0.809 0.5 219 521,866 353,699 32 0.0006 0.873 0.001 0.596
RNN 64 1 m 0.827 0.5 219 562,888 312,677 32 0.0007 0.873 0.001 0.643
RNN 128 100 k 0.791 0.5 249 335,499 540,066 2 0.0005 0.992 0.001 0.383
RNN 128 300 k 0.789 0.5 247 345,026 530,539 4 0.0006 0.853 0.001 0.607
RNN 128 500 k 0.811 0.5 239 427,786 447,779 12 0.0005 0.952 0.001 0.489
RNN 128 1 m 0.836 0.5 236 519,806 355,759 15 0.0007 0.940 0.001 0.594
RNN 256 100 k 0.790 0.5 251 308,608 566,957 0 0.0004 1.000 0.001 0.353
RNN 256 300 k 0.798 0.5 248 332,697 542,868 3 0.0005 0.988 0.001 0.380
RNN 256 500 k 0.810 0.5 247 350,170 525,395 4 0.0005 0.984 0.001 0.400
RNN 256 1 m 0.825 0.5 246 380,059 495,506 5 0.0005 0.980 0.001 0.434
RNN 256 2.5 m 0.878 0.5 241 592,554 283,011 10 0.0009 0.960 0.002 0.677
RNN 256 5 m 0.914 0.5 230 708,251 167,314 21 0.0014 0.916 0.003 0.809
ANN 2n + 1 5331 0.832 0.5 118 787,234 88,331 133 0.0013 0.470 0.003 0.899

RNN 64 100 k 0.786 0.6 226 471,537 404,028 25 0.0006 0.900 0.001 0.539
RNN 64 300 k 0.803 0.6 206 571,116 304,449 45 0.0007 0.821 0.001 0.652
RNN 64 500 k 0.809 0.6 189 623,118 252,447 62 0.0008 0.753 0.001 0.712
RNN 64 1 m 0.827 0.6 182 657,667 217,898 69 0.0008 0.725 0.002 0.751
RNN 128 100 k 0.791 0.6 243 362,430 513,135 8 0.0005 0.968 0.001 0.414
RNN 128 300 k 0.789 0.6 243 375,956 499,609 8 0.0005 0.968 0.001 0.430
RNN 128 500 k 0.811 0.6 231 482,090 393,475 20 0.0006 0.920 0.001 0.551
RNN 128 1 m 0.836 0.6 215 579,589 295,976 36 0.0007 0.857 0.001 0.662
RNN 256 100 k 0.790 0.6 249 324,497 551,068 2 0.0005 0.992 0.001 0.371
RNN 256 300 k 0.798 0.6 246 355,351 520,214 5 0.0005 0.980 0.001 0.406
RNN 256 500 k 0.810 0.6 245 384,607 490,958 6 0.0005 0.976 0.001 0.439
RNN 256 1 m 0.825 0.6 245 407,583 467,982 6 0.0005 0.976 0.001 0.466
RNN 256 2.5 m 0.878 0.6 234 613,258 262,307 17 0.0009 0.932 0.002 0.700
RNN 256 5 m 0.914 0.6 230 715,214 160,351 21 0.0014 0.916 0.003 0.817
ANN 2n + 1 5331 0.832 0.6 53 842,909 32,656 198 0.0016 0.211 0.003 0.962

RNN 64 100 k 0.786 0.7 200 564,873 310,692 51 0.0006 0.797 0.001 0.645
RNN 64 300 k 0.803 0.7 139 723,638 151,927 112 0.0009 0.554 0.002 0.826
RNN 64 500 k 0.809 0.7 113 763,143 112,422 138 0.0010 0.450 0.002 0.871
RNN 64 1 m 0.827 0.7 103 789,526 86,039 148 0.0012 0.410 0.002 0.902
RNN 128 100 k 0.791 0.7 236 408,812 466,753 15 0.0005 0.940 0.001 0.467
RNN 128 300 k 0.789 0.7 237 429,113 446,452 14 0.0005 0.944 0.001 0.490
RNN 128 500 k 0.811 0.7 211 561,383 314,182 40 0.0007 0.841 0.001 0.641
RNN 128 1 m 0.836 0.7 188 648,074 227,491 63 0.0008 0.749 0.002 0.740
RNN 256 100 k 0.790 0.7 244 349,402 526,163 7 0.0005 0.972 0.001 0.399
RNN 256 300 k 0.798 0.7 241 394,126 481,439 10 0.0005 0.960 0.001 0.450
RNN 256 500 k 0.810 0.7 236 441,312 434,253 15 0.0005 0.940 0.001 0.504
RNN 256 1 m 0.825 0.7 237 445,759 429,806 14 0.0006 0.944 0.001 0.509
RNN 256 2.5 m 0.878 0.7 228 635,234 240,331 23 0.0010 0.908 0.002 0.726
RNN 256 5 m 0.914 0.7 230 722,755 152,810 21 0.0015 0.916 0.003 0.826
ANN 2n + 1 5331 0.832 0.7 18 867,046 8519 233 0.0021 0.072 0.004 0.990

RNN 64 100 k 0.786 0.8 94 765,849 109,716 157 0.0009 0.375 0.002 0.875
RNN 64 300 k 0.803 0.8 0 875,565 0 251 NA NA NA NA
RNN 64 500 k 0.809 0.8 11 870,597 4968 240 0.0022 0.044 0.004 0.994
RNN 64 1 m 0.827 0.8 8 872,902 2663 243 0.0030 0.032 0.005 0.997
RNN 128 100 k 0.791 0.8 216 510,779 364,786 35 0.0006 0.861 0.001 0.583
RNN 128 300 k 0.789 0.8 214 531,536 344,029 37 0.0006 0.853 0.001 0.607
RNN 128 500 k 0.811 0.8 143 718,558 157,007 108 0.0009 0.570 0.002 0.821
RNN 128 1 m 0.836 0.8 153 730,672 144,893 98 0.0011 0.610 0.002 0.834
RNN 256 100 k 0.790 0.8 239 402,748 472,817 12 0.0005 0.952 0.001 0.460
RNN 256 300 k 0.798 0.8 228 485,395 390,170 23 0.0006 0.908 0.001 0.554
RNN 256 500 k 0.810 0.8 216 551,288 324,277 35 0.0007 0.861 0.001 0.630
RNN 256 1 m 0.825 0.8 222 516,727 358,838 29 0.0006 0.884 0.001 0.590
RNN 256 2.5 m 0.878 0.8 222 661,290 214,275 29 0.0010 0.884 0.002 0.755
RNN 256 5 m 0.914 0.8 227 731,787 143,778 24 0.0016 0.904 0.003 0.836
ANN 2n + 1 5331 0.832 0.8 4 873,618 1947 247 0.0021 0.016 0.004 0.997
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Table 7. Cont.

Model Neuron Iter. AUC Thres. TP TN FP FN P R F A

RNN 64 100 k 0.786 0.9 0 875,565 0 251 NA NA NA NA
RNN 64 300 k 0.803 0.9 0 875,565 0 251 NA NA NA NA
RNN 64 500 k 0.809 0.9 0 875,565 0 251 NA NA NA NA
RNN 64 1 m 0.827 0.9 0 875,540 25 251 0.0000 0.000 0.000 1.000
RNN 128 100 k 0.791 0.9 63 814,051 61,514 188 0.0010 0.251 0.002 0.930
RNN 128 300 k 0.789 0.9 69 792,831 82,734 182 0.0008 0.275 0.002 0.905
RNN 128 500 k 0.811 0.9 4 870,381 5184 247 0.0008 0.016 0.001 0.994
RNN 128 1 m 0.836 0.9 63 829,876 45,689 188 0.0014 0.251 0.003 0.948
RNN 256 100 k 0.790 0.9 196 583,535 292,030 55 0.0007 0.781 0.001 0.667
RNN 256 300 k 0.798 0.9 139 705,585 169,980 112 0.0008 0.554 0.002 0.806
RNN 256 500 k 0.810 0.9 110 761,583 113,982 141 0.0010 0.438 0.002 0.870
RNN 256 1 m 0.825 0.9 178 680,053 195,512 73 0.0009 0.709 0.002 0.777
RNN 256 2.5 m 0.878 0.9 199 699,120 176,445 52 0.0011 0.793 0.002 0.798
RNN 256 5 m 0.914 0.9 225 744,796 130,769 26 0.0017 0.896 0.003 0.851
ANN 2n + 1 5331 0.832 0.9 0 875,072 493 251 0.0000 0.000 0.000 0.999

6. Discussions and Conclusions

In this study, landslide mapping was studied by a deep learning approach (recurrent neural
network), and the reaction of this model on landslide susceptibility and landslide inventory mapping
was investigated. In this sense, one contribution of this study to the investigation of landslide
susceptibility mapping is to enable the elimination of the feature selection stage because of the power
of deep learning to extract the salient features automatically. More importantly, by using a deep
learning algorithm, landslide susceptibility models with high estimation capacity can be produced.
Additionally, a comprehensive literature review was presented to compare the performance of other
state-of-the-art machine learning implementations. Being one of the most commonly used approaches,
the lack of prediction capability of the shallow artificial neural network was revisited in the experiments.
Here, this shallow neural network implementation suffered in predicting the points with landslides
whose number of occurrences is too small for the entire terrain. On the other hand, the implemented
deep learning approach was able to distinguish the landslide areas more precisely that, with a proper
network structure and enough training iterations, the model tended to detect the exact points of
landslides with a very small portion of false-positive predictions. At this point, it was observed that
the resulting model evolved from susceptibility mapping to landslide inventory mapping. In other
words, the high capacity of the deep learning algorithm made it possible to define a transition zone in
terms of capacity and performance of the landslide susceptibility model and the landslide inventory
mapping model. In this study, the results of the implemented deep learning model with 256 neurons
up to 1 million iterations were interpreted as landslide susceptibility, while the results obtained after
5 million iterations were evaluated as the landslide inventory. The zone between 1 million and 5
million iterations is considered as a transition zone.

It was concluded in the empirical observations of this study that high-capacity deep learning
algorithms allow landslide inventory maps to be generated semi-automatically. Such an acquisition
will enable faster and more accurate production of event inventories for landslides occurring during a
rainy season or after an earthquake. In this sense, there are still issues to be investigated. It is necessary
to compare the event inventories to be produced by the deep learning algorithms with the event
inventory maps generated by the object-based classification algorithms frequently used in this area.
As a highly required further investigation, the transition zone defined in this study needs to be deeply
analyzed considering other kinds of deep learning models as well.

Author Contributions: Conceptualization, H.A.N.; methodology, E.A.S.; software, B.M.; validation, B.M., H.A.N.,
and E.A.S.; formal analysis, B.M.; investigation, B.M., H.A.N., and E.A.S.; writing—original draft preparation,
B.M.; writing—review and editing, H.A.N., E.A.S., M.A.A., and C.G.; supervision, E.A.S., M.A.A., and C.G.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2019, 8, 578 18 of 21

References

1. Vogel, K.; Riggelsen, C.; Korup, O.; Scherbaum, F. Bayesian network learning for natural hazard analyses.
Nat. Hazards Earth Syst. Sci. 2014, 14, 2605–2626. [CrossRef]

2. Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy
system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For.
Meteorol. 2019, 266, 198–207. [CrossRef]

3. Taheri, K.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Gutiérrez, F.; Khosravi, K. Sinkhole susceptibility mapping:
A comparison between Bayes-based machine learning algorithms. Land Degrad. Dev. 2019, 30, 730–745.
[CrossRef]

4. Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood
susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS)
and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 2019, 34, 1252–1272.
[CrossRef]

5. Bui, D.T.; Panahi, M.; Shahabi, H.; Singh, V.P.; Shirzadi, A.; Chapi, K.; Khosravi, K.; Chen, W.; Panahi, S.;
Li, S.; et al. Novel hybrid evolutionary algorithms for spatial prediction of floods. Sci. Rep. 2018, 8, 15364.
[CrossRef]

6. Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative
assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern
Iran. Sci. Total Environ. 2018, 627, 744–755. [CrossRef]

7. Roodposhti, M.S.; Safarrad, T.; Shahabi, H. Drought sensitivity mapping using two one-class support vector
machine algorithms. Atmos. Res. 2017, 193, 73–82. [CrossRef]

8. Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling
gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and
maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [CrossRef]

9. Tien Bui, D.; Shahabi, H.; Omidvar, E.; Shirzadi, A.; Geertsema, M.; Clague, J.J.; Khosravi, K.; Pradhan, B.;
Pham, B.T.; Chapi, K.; et al. Shallow landslide prediction using a novel hybrid functional machine learning
algorithm. Remote Sens. 2019, 11, 931. [CrossRef]

10. Alizadeh, M.; Alizadeh, E.; Asadollahpour Kotenaee, S.; Shahabi, H.; Beiranvand Pour, A.; Panahi, M.;
Bin Ahmad, B.; Saro, L. Social vulnerability assessment using artificial neural network (ANN) model for
earthquake hazard in Tabriz city, Iran. Sustainability 2018, 10, 3376. [CrossRef]

11. Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Pradhan, B.; Chen, W.; Khosravi, K.; Panahi, M.;
Bin Ahmad, B.; Saro, L. Land subsidence susceptibility mapping in south korea using machine learning
algorithms. Sensors 2018, 18, 2464. [CrossRef] [PubMed]

12. Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case
study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [CrossRef]

13. Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How can statistical models help to determine driving
factors of landslides? Ecol. Model. 2012, 239, 27–39. [CrossRef]

14. Al-Batah, M.S.; Alkhasawneh, M.S.; Tay, L.T.; Ngah, U.K.; Hj Lateh, H.; Mat Isa, N.A. Landslide Occurrence
Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron. Math. Probl. Eng. 2015,
2015, 512158. [CrossRef]

15. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling
applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China.
Comput. Geosci. 2018, 112, 23–37. [CrossRef]

16. Shirzadi, A.; Soliamani, K.; Habibnejhad, M.; Kavian, A.; Chapi, K.; Shahabi, H.; Chen, W.; Khosravi, K.;
Thai Pham, B.; Pradhan, B.; et al. Novel GIS based machine learning algorithms for shallow landslide
susceptibility mapping. Sensors 2018, 18, 3777. [CrossRef]

17. Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.-T.-T.; Bui, D.T. Landslide susceptibility
modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning
approaches. Catena 2019, 175, 203–218. [CrossRef]

18. Ozer, B.; Mutlu, B.; Nefeslioglu, H.; Sezer, E.; Rouai, M.; Dekayir, A.; Gokceoglu, C. On the use of hierarchical
fuzzy inference systems (HFIS) in expert-based landslide susceptibility mapping: The central part of the Rif
Mountains (Morocco). Bull. Eng. Geol. Environ. 2019, 1–18. [CrossRef]

http://dx.doi.org/10.5194/nhess-14-2605-2014
http://dx.doi.org/10.1016/j.agrformet.2018.12.015
http://dx.doi.org/10.1002/ldr.3255
http://dx.doi.org/10.1080/10106049.2018.1474276
http://dx.doi.org/10.1038/s41598-018-33755-7
http://dx.doi.org/10.1016/j.scitotenv.2018.01.266
http://dx.doi.org/10.1016/j.atmosres.2017.04.017
http://dx.doi.org/10.1016/j.scitotenv.2018.11.235
http://dx.doi.org/10.3390/rs11080931
http://dx.doi.org/10.3390/su10103376
http://dx.doi.org/10.3390/s18082464
http://www.ncbi.nlm.nih.gov/pubmed/30065216
http://dx.doi.org/10.1016/j.geomorph.2008.02.011
http://dx.doi.org/10.1016/j.ecolmodel.2011.12.007
http://dx.doi.org/10.1155/2015/512158
http://dx.doi.org/10.1016/j.cageo.2017.11.019
http://dx.doi.org/10.3390/s18113777
http://dx.doi.org/10.1016/j.catena.2018.12.018
http://dx.doi.org/10.1007/s10064-019-01548-5


ISPRS Int. J. Geo-Inf. 2019, 8, 578 19 of 21

19. Kayastha, P.; Dhital, M.R.; De Smedt, F. Application of the analytical hierarchy process (AHP) for landslide
susceptibility mapping: A case study from the Tinau watershed, west Nepal. Comput. Geosci. 2013,
52, 398–408. [CrossRef]

20. Kayastha, P.; Dhital, M.R.; De Smedt, F. Landslide susceptibility mapping using the weight of evidence
method in the Tinau watershed, Nepal. Nat. Hazards 2012, 63, 479–498. [CrossRef]

21. Dou, J.; Paudel, U.; Oguchi, T.; Uchiyama, S.; Hayakavva, Y.S. Shallow and Deep-Seated Landslide
Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terr. Atmos.
Ocean. Sci. 2015, 26, 227–239. [CrossRef]

22. Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping:
A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: New York, NY, USA, 2019;
pp. 283–301.

23. Dou, J.; Yamagishi, H.; Zhu, Z.; Yunus, A.; Chen, C. A comparative study of the Binary Logistic Regression
(BLR) and Artificial Neural Network (ANN) models for GIS-based spatial predicting landslides at a regional
scale. In Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools; 2018, Volume 1, pp. 139–151.

24. Shirzadi, A.; Bui, D.T.; Pham, B.T.; Solaimani, K.; Chapi, K.; Kavian, A.; Shahabi, H.; Revhaug, I. Shallow
landslide susceptibility assessment using a novel hybrid intelligence approach. Environ. Earth Sci. 2017,
76, 60. [CrossRef]

25. Nguyen, V.V.; Pham, B.T.; Vu, B.T.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Ba, D.N.; Kumar, R.;
Chatterjee, J.M.; et al. Hybrid machine learning approaches for landslide susceptibility modeling. Forests
2019, 10, 157. [CrossRef]

26. Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive
neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms
for spatial prediction of landslide susceptibility. Catena 2019, 175, 430–445. [CrossRef]

27. Bach, F. Breaking the Curse of Dimensionality with Convex Neural Networks. J. Mach. Learn. Res. 2017, 18,
629–681.

28. Verleysen, M.; D., F.; G., S.; V., W. On the effects of dimensionality on data analysis with neural networks.
In International Work-Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 105–112, doi:10.1007/3-540-44869-1_14.

29. Goswami, S.; Chakraborty, S.; Ghosh, S.; Chakrabarti, A.; Chakraborty, B. A review on application of data
mining techniques to combat natural disasters. Ain Shams Eng. J. 2015, 9, 365–378. [CrossRef]

30. Mezaal, M.R.; Pradhan, B.; Zulhaidi, H.; Shafri, M. Data mining-aided automatic landslide detection using
airborne laser scanning data in densely forested tropical areas. Korean J. Remote Sens. 2015. 34, 45–74.

31. Sava, E.; Clemente-Harding, L.; Cervone, G. Supervised classification of civil air patrol (CAP). Nat. Hazards
2017, 86, 535–556. [CrossRef]

32. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale
Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]

33. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [CrossRef]

34. Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in
Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [CrossRef]

35. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on
Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [CrossRef]

36. Amit, S.N.K.B.; Shiraishi, S.; Inoshita, T.; Aoki, Y. Analysis of satellite images for disaster detection.
In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China,
10–15 July 2016; Volume 2016, pp. 5189–5192. [CrossRef]

37. Fujita, A.; Sakurada, K.; Imaizumi, T. Damage Detection from Aerial Images via Convolutional Neural
Networks. In Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and
Intelligent Computing (IES-KCIC), Nagoya, Japan, 8–12 May 2017; pp. 2–5.

38. Amit, S.N.K.B.; Aoki, Y. Disaster detection from aerial imagery with convolutional neural network. In
Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent
Computing (IES-KCIC), Surabaya, Indonesia, 26–27 September 2017; pp. 239–245. [CrossRef]

39. Rauter, M.; Winkler, D. Predicting Natural Hazards with Neuronal Networks. arXiv 2018, arXiv:1802.07257.

http://dx.doi.org/10.1016/j.cageo.2012.11.003
http://dx.doi.org/10.1007/s11069-012-0163-z
http://dx.doi.org/10.3319/TAO.2014.12.02.07(EOSI)
http://dx.doi.org/10.1007/s12665-016-6374-y
http://dx.doi.org/10.3390/f10020157
http://dx.doi.org/10.1016/j.catena.2018.12.033
http://dx.doi.org/10.1016/j.asej.2016.01.012
http://dx.doi.org/10.1007/s11069-016-2704-3
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.1109/TGRS.2016.2636241
http://dx.doi.org/10.1109/TGRS.2017.2743222
http://dx.doi.org/10.1109/TGRS.2016.2645610
http://dx.doi.org/10.1109/IGARSS.2016.7730352
http://dx.doi.org/10.1109/KCIC.2017.8228593


ISPRS Int. J. Geo-Inf. 2019, 8, 578 20 of 21

40. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning.
arXiv 2015, arXiv:1506.00019.

41. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization. arXiv 2014,
arXiv:1409.2329.

42. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory
maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [CrossRef]

43. Pawley, S.; Schultz, R.; Playter, T.; Corlett, H.; Shipman, T.; Lyster, S.; Hauck, T. The Geological Susceptibility
of Induced Earthquakes in the Duvernay Play. Geophys. Res. Lett. 2018, 45, 1786–1793. [CrossRef]

44. Calvet, L.; Lopeman, M.; De Armas, J.; Franco, G.; Juan, A.A. Statistical and machine learning approaches
for the minimization of trigger errors in parametric earthquake catastrophe bonds. SORT 2017, 41, 373–391.
[CrossRef]

45. Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative Coastal Risk Index (CCRI): A
multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011. [CrossRef]

46. Shihabudheen, K.V.; Peethambaran, B. Landslide displacement prediction technique using improved
neuro-fuzzy system. Arab. J. Geosci. 2017, 10, 502. [CrossRef]

47. Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel
ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018,
615, 438–451. [CrossRef]

48. Passarella, M.; Goldstein, E.B.; De Muro, S.; Coco, G. The use of genetic programming to develop a predictor
of swash excursion on sandy beaches. Nat. Hazards Earth Syst. Sci. 2018, 18, 599–611. [CrossRef]

49. Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and
runup. Coast. Eng. 2006, 53, 573–588. [CrossRef]

50. Bates, B.C.; Dowdy, A.J.; Chandler, R.E. Lightning prediction for Australia using multivariate analyses of
large-scale atmospheric variables. J. Appl. Meteorol. Climatol. 2018, 57, 525–534. [CrossRef]

51. Schindler, D.; Jung, C.; Buchholz, A. Using highly resolved maximum gust speed as predictor for forest
storm damage caused by the high-impact winter storm Lothar in Southwest Germany. Atmos. Sci. Lett. 2016,
17, 462–469. [CrossRef]

52. Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random
forest. J. Hydrol. 2015, 527, 1130–1141. [CrossRef]

53. Sanabria, L.A.; Qin, X.; Li, J.; Cechet, R.P.; Lucas, C. Spatial interpolation of McArthur’s Forest Fire Danger
Index across Australia: Observational study. Environ. Model. Softw. 2013, 50, 37–50. [CrossRef]

54. Zhu, J.; Pierskalla, W.P. Applying a weighted random forests method to extract karst sinkholes from LiDAR
data. J. Hydrol. 2016, 533, 343–352. [CrossRef]

55. Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support
vector machine model with different kernel types. Catena 2015, 125, 91–101. [CrossRef]

56. Pozdnoukhov, A.; Foresti, L.; Kanevski, M. Data-driven topo-climatic mapping with machine learning
methods. Nat. Hazards 2009, 50, 497–518. [CrossRef]

57. Harmouzi, H.; Nefeslioglu, H.A.; Rouai, M.; Sezer, E.A.; Dekayir, A.; Gokceoglu, C. Landslide susceptibility
mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial
neural networks (ANN). Arab. J. Geosci. 2019, 12, 696. [CrossRef]

58. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using
photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random
forest. Sensors 2019, 19, 3940. [CrossRef]

59. Tarhan, F. Dogu Karadeniz heyelanlarina genel bir bakis. 1. Ulusal Heyelan Sempozyumu Bildiriler Kitabi. 1991.
Available online: https://heysemp2018.afad.gov.tr/tr/25678/1-Ulusal-Heyelan-Sempozyumu-Bildiriler-
Kitabi-ve-Sonuc-Bildirgesi (accessed on 11 December 2019).
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