YÜKSEK GÜÇ UYGULAMALARI İÇİN GALYUM NİTRÜR TEMELLİ YÜKSEK ELEKTRON HAREKETLİLİKLİ TRANSİSTÖR TASARIMI, FABRİKASYONU VE KARAKTERİZASYONU

DESIGN, FABRICATION AND CHARACTERIZATION OF GALLIUM NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTORS FOR HIGH POWER APPLICATION

AHMET TOPRAK

PROF. DR. ŞADAN ÖZCAN Tez Danışmanı

Hacettepe Üniversitesi Lisansüstü Eğitim – Öğretim ve Sınav Yönetmeliğinin NANOTEKNOLOJİ ve NANOTIP Anabilim Dalı İçin Öngördüğü DOKTORA TEZİ olarak hazırlanmıştır.

2020

Güven ve desteğini hiç esirgemeyen eşim **Tuğba**'ya ve gülücükleri ile ruhumu ısıtan kızım **Karen**'e

ÖZET

YÜKSEK GÜÇ UYGULAMALARI İÇİN GALYUM NİTRÜR TEMELLİ YÜKSEK ELEKTRON HAREKETLİLİKLİ TRANSİSTÖR TASARIMI, FABRİKASYONU VE KARAKTERİZASYONU

Ahmet TOPRAK

Doktora, Nanoteknoloji ve Nanotıp Anabilimdalı Tez Danışmanı: Prof. Dr. Şadan Özcan Temmuz 2020, 206 sayfa

Bu çalışmada, yüksek güç uygulamaları için yeni epitaksiyel yapılar, Metal Organik Kimyasal Buhar Biriktirme (MOCVD) yöntemi ile büyütüldü. Büyütülen bu yapıların elektriksel ve yapısal incelemeleri için Fotolüminesans (PL) Ölçüm Sistemi, Atomik Kuvvet Mikroskobu (AFM), X-lşını Kırınımı (XRD), Hall Etkisi Ölçüm Sistemi, Diferansiyel Girişim Kontrast (DIC) Mikroskobu ve Mekanik Profilometre kullanıldı. Büyütülen bu epitaksiyel yapılar üzerinde yüksek elektron hareketlilikli transistör (HEMT) aygıt fabrikasyonu yapıldı. DC I-V ve RF (Radyo Frekans) güç ölçümleri alınarak yüksek güç uygulamaları için deneysel yollarla en uygun epitaksiyel yapı belirlendi. Belirlenen bu epitaksiyel yapı üzerinde Silvaco ATLAS programı kullanılarak X-bant aralığında (8-12 GHz) çalışacak yüksek güçlü HEMT aygıtlar için aygıt yapısı simülasyon çalışmaları yapıldı. Yapılan simülasyon çalışmalarında; gate (kapı) uzunluğu (L_G), 300 nm olmak üzere gate-kaynak (source) arası mesafe (L_{GS}) artıkça maksimum doyum akımının (I_{DSS}), geçiş iletkenliğinin (g_m) ve maksimum DC çıkış

gücünün ($P_{DC \text{ max}}$) azaldığı ve akaç (drain)-kaynak arası mesafe (L_{DS}) arttıkça I_{DSS} , g_m ve kırılma geriliminin (V_{br}) de çok değişmediği görüldü. Simülasyon çalışmaları sonucunda L_G 300 nm olmak üzere L_{GS} ve L_{DS} için optimum değerler, ardışık olarak 800 nm ve 3 µm olarak belirlendi. Bu değerler kullanılarak Alan Levhalı I-gate, Si₃N₄ Üzerinde Duran Gama (Γ)-Gate ve Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)-Gate yapılı HEMT aygıtlar simüle edildi ve bu gate tipleri için optimum değerler belirlendi. Optimum simülasyon sonuçları kullanılarak I-gate (Tip-1), Alan Levhalı I-gate (Tip-2), Si₃N₄ Üzerinde Duran Gama (Γ)-Gate (Tip-3), Oyuklu (Recessed) Gama (Γ)-Gate (Tip-4) ve Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Г)-Gate (Tip-5) tipleri için HEMT aygıt fabrikasyonları yapıldı. Değişik gate yapıları içeren bu aygıtlar için; maksimum doyum akımı (I_{DSS}) , geçiş iletkenliği (g_m) , eşik voltaj (V_{th}) , akım kazancı kesilim frekansı (f_T) , maksimum salınım frekansı (f_{max}) ve 8 GHz'de küçük-sinyal kazancı ve RF çıkış gücü (P_{out}) karşılaştırması yapıldı. RF çıkış gücü (P_{out}) ; gate yapısı, alan levhalı yapıdan gama gate'li yapıya dönüştürüldüğünde 1 dB artmaktadır. V_{th} , g_m , f_T ve f_{max} değerleri; gate ayağı ile başı arasındaki dielektrik tabakasının kalınlığı minimize edildiğinde maksimum olmaktadır. Gate için oyuk (recess) oluşturmak, I_{DSS} değerini düşürmekte ancak P_{out} değerini arttırmaktadır.

Anahtar Kelimeler: GaN, HEMT, Transistör, Gate, MOCVD, PL, XRD, AFM, DIC Mikroskobu, Mekanik Profilometre, Hall Etkisi, Silvaco ATLAS, SiN, Alan Levhası, Gama Gate, Oyuklu-Gate, Kırılma Gerilimi, Geçiş İletkenliği, Doyum Akımı.

ABSTRACT

DESIGN, FABRICATION AND CHARACTERIZATION OF GALLIUM NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTORS FOR HIGH POWER APPLICATION

Ahmet TOPRAK

Doctor of Philosophy, Department of Nanotechnology and Nanomedicine Supervisor: Prof. Dr. Şadan Özcan July 2020, 206 pages

In this study, novel epitaxial structures for high power applications have been grown by using Metal-Organic Chemical Vapour Deposition (MOCVD) technique. Photoluminescence (PL), Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD), Hall Effect Measurement Systems, Differential Interference Contrast (DIC) Microscopy and Mechanical Profilometer were used for electrical and structural analysis of the grown epitaxial samples. High electron mobility transistor (HEMT) device fabrication was performed on these epitaxial samples. DC I-V and RF (Radio Frequency) power characterization were carried out and the most suitable structure was determined by experimental methods for high power applications. Device structure simulation studies were performed on the suitable structure for high power HEMT devices operating in the X-band range (8-12 GHz) by using the Silvaco ATLAS program. In the simulation studies when the gate length (L_G) is 300 nm, It was seen that as the gate-source distance (L_{GS}) increases, the maximum saturation current (I_{DSS}), the

transconductance (g_m) and the maximum DC output power $(P_{DC \max})$ decrease and I_{DSS} , g_m and breakdown voltage (V_{br}) do not change much as the distance between drain and source (L_{DS}) increases. As a result of the simulation studies, optimum values for L_G , L_{GS} ve L_{DS} were determined as 300 nm, 800 nm and 3 µm respectively. HEMT devices with an I-gate with a Field Plate, a Standing Gamma (Γ)-Gate on Si₃N₄ and a Gamma (Γ)-Gate, Partially Embedded in Si₃N₄ and Partially Standing in the Air were simulated by using these values. HEMT device fabrication was performed for gate types such as Igate (Type-1), I-gate with a field plate (Type-2), a Standing Gamma (Γ)-Gate on Si₃N₄ (Type-3), Recessed Gamma (Γ)-Gate (Type-4), a Gamma (Γ)-Gate, Partially Embedded in Si₃N₄ and Partially Standing in the Air (Type-5) by using the optimized simulation results. The maximum saturation current (I_{DSS}) , transconductance (g_m) , pinch-off voltage (V_{th}) , current-gain cutoff frequency (f_T) , maximum oscillation frequency (f_{max}) and RF characteristics of the devices in terms of the small-signal gain and RF output power (P_{out}) at 8 GHz were investigated. The results showed that the output power is increased 1 dB when the gate structure changed from field plate to gamma gate. The V_{th} , g_m , f_T and f_{max} values are maximized when the thickness of the passivation layer between the gate foot and the gate head is minimized. I_{DSS} is decreased and $\ensuremath{P_{out}}$ is increased, respectively, when the gate recess etching process is performed.

Keywords: GaN, HEMT, Transistor, MOCVD, PL, XRD, AFM, DIC Microscopy, Mechanical Profilometer, Hall Effect, Silvaco ATLAS, SiN, Field Plate, Gamma Gate, Recessed Gate, Breakdown Voltage, Transconductance, Saturation Current.

TEŞEKKÜR

Bu tezin oluşmasında hiçbir konuda desteklerini ve yardımlarını esirgemeyen tez danışmanım sayın Prof. Dr. Şadan Özcan'a,

Prof. Dr. M. Recai Ellialtıoğlu'na ve Doç. Dr. Emre Taşcı'ya,

Bu çalışma kapsamında kullanılan örneklerin büyütülmesinin ve karakterizasyonunun yapılmasına olanak sağlayan, Bilkent Üniversitesi Nanoteknoloji Araştırma Merkezi'nin tüm olanaklarını cömertçe sunduğu, destek ve yardımları için sayın Prof. Dr. Ekmel Özbay'a,

HEMT epitaksiyel yapılarının üretilmesi ve karakterizasyonu kapsamında bilgilerini benimle paylaşmaktan asla sakınmayan Mustafa Öztürk, Sertaç Ural ve Ömer Ahmet Kayal'a

HEMT aygıt karakterizasyonu kapsamında engin bilgileri ile bütün sorularımı içtenlikle cevaplayan ve yardımlarını asla esirgemeyen Dr. Özlem Şen'e, Ömer Cengiz'e, Sinan Osmanoğlu'na ve Berkay Bozok'a

Aygıt fabrikasyonu konusunda yardımlarını esirgemeyen Doğan Yılmaz'a, Burak Turhan'a, Gökhan Kurt'a ve Yıldırım Durmuş'a

Her türlü yardıma her zaman hazır olan tüm Nanotam ve AB MikroNano çalışanlarına,

Hayat yoldaşım ve dayanak noktam eşim Tuğba'ya,

Hayatıma güzellik ve anlam katan kızım Karen'e,

en içten teşekkürü bir borç bilirim.

Ahmet TOPRAK

Temmuz 2020, Ankara

İÇİNDEKİLER

ÖZET	. iii
ABSTRACT	iiiii
TEŞEKKÜR	v
İÇİNDEKİLER	. vi
ŞEKİLLER DİZİNİ	. ix
ÇİZELGELER DİZİNİx	viii
SİMGELER VE KISALTMALAR	xx
1. GİRİŞ	1
2. GaN MALZEME SİSTEMİ	6
2.1. GaN Malzeme Özellikleri	6
2.2.GaN Kristal Yapısı	10
2.3. AlGaN/GaN Heteroyapılarda 2-DEG Oluşumu	14
2.4. AlGaN/GaN HEMT Çalışma Prensibi	21
2.5. GaN Temelli HEMT Epitaksiyel Yapı	29
2.5.1. Alttaş	29
2.5.2. Çekirdeklenme Tabakası	30
2.5.3. Tampon/Kanal Tabakası	31
2.5.4. Ara Katman	31
2.5.5. Bariyer Tabakası	31
2.5.6. Kep Tabakası	32
3. MOCVD YÖNTEMİ VE KARAKTERİZASYON TEKNİKLERİ	33
3.1. MOCVD (Metal Organik Kimyasal Buhar Birikimi) Yöntemi	33
3.2. Fotolüminesans	36
3.3. Atomik Kuvvet Mikroskobu (AFM)	37
3.4. X-İşını Kırınımı (XRD)	38
3.5. Hall Etkisi Ölçümü	41
3.6. Diferansiyel Girişim Kontrast (DIC) Mikroskobu	44
3.7. Mekanik Profilometre	45
4. GaN TEMELLİ HEMT EPİTAKSİYEL YAPILARIN MOCVD YÖNTEMİYLE	
BÜYÜTÜLMESİ VE KARAKTERİZASYONU	47

4.1. Alttaş Hazırlığı	47
4.2. Yüksek Güçlü HEMT Epitaksiyel Tasarımlar ve Karakterizasyon	
Sonuçları	51
4.3. Sonuç	64
5. HEMT AYGIT ÜRETİM VE KARAKTERİZASYON TEKNİKLERİ	65
5.1. Fotolitografi	65
5.2. Elektron Demeti Litografisi (EBL)	74
5.3. Kuru Aşındırma	77
5.4. Yüzey Pasivasyonu	
5.5. Elektron Demeti ile Buhar Biriktirme Yöntemi	93
5.5.1. Schottky Eklem	97
5.5.2. Ohmik Eklem	106
5.5.3. İletim Hattı Modeli	110
5.5.4. DC I-V Ölçüm Sistemi	113
5.5.5. Güç Ölçüm Sistemi	117
6. HEMT AYGIT FABRİKASYONU	119
6.1. Örnek Kesimi ve Temizlik Adımı	120
6.2. Aygıt Adacığı Aşındırma Adımı	120
6.3. Ohmik Eklem (Akaç-Kaynak Kontak) Oluşturma Adımı	124
6.4. Schottky Eklem (Gate Kontak) Oluşturma Adımı	127
6.5. Birinci Bağlantı Metali Oluşturma Adımı	129
6.6. Dielektrik Kaplama Adımı	130
6.7. Dielektrik Açıklığı Oluşturma Adımı	134
6.8. Köprü Desteği Oluşturma Adımı	136
6.9. İkinci Bağlantı Metali Oluşturma Adımı	137
7. HEMT AYGIT KARAKTERİZASYONU	141
7.1. Sonuç	142
8. GATE TASARIMI VE AYGIT PERFORMANSINA ETKİSİ	143
8.1. Aygıt Simülasyonları	144
8.1.1. Gate Uzunluğu	145
8.1.2. Gate Konumu	146
8.1.3. Alan Levhalı I-gate Optimizasyonu	151
8.1.4. Si₃N₄ Üzerinde Duran Gama (Γ)-Gate Optimizasyonu	154

8.1.5. Bir Kısmı Si $_3$ N $_4$ İçine Gömülü ve Bir Kısmı da Havada Duran Gama
(Γ)-Gate Optimizasyonu158
8.2. Sonuç161
9. TASARLANAN AYGITLARIN MİKROFABRİKASYONU163
9.1. I-Gate (Tip-1) HEMT Aygıt Mikrofabrikasyonu
9.2. Alan Levhalı I-Gate (Tip-2) HEMT Aygıt Mikrofabrikasyonu163
9.3. Si₃N₄ Üzerinde Duran Gama Gate (Tip-3) HEMT Aygıt Mikrofabrikasyonu
9.4. Oyuklu (Recessed) Gama Gate (Tip-4) HEMT Aygıt Mikrofabrikasyonu169
9.5. Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama Gate
(Tip-5) HEMT Aygıt Mikrofabrikasyonu172
10. MİKROFABRİKASYONU YAPILAN GATE TASARIMLARININ DC VE RF
KARAKTERİZASYONU175
11. SONUÇ VE ÖNERİLER183
11.1. Ana Sonuçlar183
11.2. İleri Araştırmalar için Öneriler188
KAYNAKLAR
EKLER
EK 1 – Tezden Türetilmiş Yayınlar203
EK 2 – Tez Çalışması Orjinallik Raporu204
ÖZGEÇMİŞ205

ŞEKİLLER DİZİNİ

Şekil 1.1.	John Bardeen ve Walter Brattain tarafından icat edilen (a) ilk
	transistör ve (b) şematik görüntüsü1
Şekil 1.2.	GaN temelli HEMT uygulama alanları4
Şekil 2.1.	GaN malzemesinin Si ve GaAs'a göre üstünlüğü
Şekil 2.2.	Çeşitli malzemeler için kırılma gerilimine karşı teorik R_{on} direnç
	değeri değişimi
Şekil 2.3.	GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan
	bazı malzemeler için çalışma frekansına bağlı ortalama çıkış
	gücü grafiği 10
Şekil 2.4.	(a) Wurtzite, (b) Sfalerit ve (c) Kaya-tuzu kristal yapıları 10
Şekil 2.5.	Wurtzite birim hücresine sahip GaN kristal yapısı 11
Şekil 2.6.	Wurtzite kristal yapısında Ga-yüz ve N-yüz GaN'ın şematik çizimi
	ve doğal kutuplanma vektör yönleri12
Şekil 2.7.	Ga-yüzlü GaN ve AlGaN için doğal kutuplanma alanı ve yüzey
	yükü oluşumu 13
Şekil 2.8.	Wurtzite yapısında Ga-yüzlü GaN üzerinde büyütülen AlGaN için
	sıkışma gerginliği nedeniyle oluşan piezoelektrik kutuplanma
	alanı ve yüzey yükü oluşumu13
Şekil 2.9.	Wurtzite yapısında (a) Ga yüz ve (b) N-yüz AlGaN/GaN
	heteroyapılar için doğal ve piezoelektrik kutuplanma alanları 14
Şekil 2.10.	Wurtzite yapısında (a) Ga-yüz AlGaN/GaN, (b) N-yüz
	AlGaN/GaN ve (c) Ga-yüz AlGaN/N-yüz GaN heteroyapılar için
	doğal ve piezoelektrik kutuplanma alanları 17
Şekil 2.11.	Ga-yüz AlGaN/GaN heteroyapı için enerji bant diyagramı 18
Şekil 2.12.	Al _x Ga _{1-x} N bariyer tabakasındaki Al mol oranına bağlı, çeşitli
	AlGaN bariyer kalınlıklarında teorik 2-DEG taşıyıcı
	konsantrasyonu20
Şekil 2.13.	AlGaN/GaN HEMT aygıt şematik çizimi 21
Şekil 2.14.	Farklı gate gerilimlerinde AlGaN/GaN HEMT iletim bandı
	diyagramı22

Şekil 2.15.	AlGaN/GaN HEMT aygıtlar için tipik bir DC-IV karakteristiği 23
Şekil 2.16.	AlGaN/GaN heteroyapının çeşitli parametrelere bağlı bant
0 1 1 0 1 7	
Şekil 2.17.	(a) HEMT aygıtlar ıçın kesit görünümlü küçük sinyal devre esleniği (b) iç (intrinsic) ve diş (extrinsic) elemanlı küçük sinyal
	devre esleniăi ve (c) DC I-V grafiăi örneăi ile birlikte basit bir
	devre modeli 28
Sekil 2 18	GaN temelli HEMT epitaksivel vapısı 29
Şekil 3 1	(a) Bilkent Üniversitesi Nanoteknoloji Arastırma Merkezi
ÇCKII U. I.	(NANOTAM)'nde kurulu olan AIXTRON 200/4 RE S MOCVD
	sistemi ve (b) MOCVD reaktörü sematik cizimi 34
Sekil 3.2	(a) AIXTRON 200/4 RE S MOCVD sisteminde ver alan optik
çonı o.z.	reflektometre sistemi sematik cizimi ve (b) Epitaksivel tabakava
	delen-vansıyan ısınların sematik cizimi
Sekil 3.3	MOCVD sisteminde epitaksivel tabakaların büyütülmesi
Çokii 0.0.	esnasında ölcümlenen tinik bir reflektans grafiği örneği 36
Sekil 3.4	(a) Horiba Jobin Yvon Triax 550 CCD 266pm-325pm HeCd Lazer
çonı o. r.	Kavnaklı Fotolüminesans Sistemi ve (b) Fotolüminesans ölcüm
	sistemi calısma prensibi
Sekil 3.5.	(a) VEECO CPII Atomik Kuvvet Mikroskobu (AFM) ve (b) AFM
3	sematik cizimi
Sekil 3.6.	(a) RIGAKU Smartlab X-Isını difraktometresi (3 kW. Cu
3	anot K α 1, 1.544 Å). (b) XRD sistemi hareket eksenleri sematik
	cizimi ve (c) X-ısınlarının atohmik düzlemlerden kırınımı
Şekil 3.7.	(a) Hekzagonal yapılarda düzlemler ve (b) Kristal yapılarda
3	oluşan çizgisel kusurlar
Şekil 3.8.	(a) Van der Pauw kontak yerleştirme konfigürasyonları ve (b)
-	Van der Pauw ölçüm tekniği
Şekil 3.9.	Hall Etkisi ölçümü şematik çizimi
- Şekil 3.10.	Ecopia HMS 3000 model Hall ölçüm sistemi
Şekil 3.11.	Nomarski Mikroskobu çalışma prensibi
Şekil 3.12.	(a) Veeco marka Dektak 150 model profilometre cihazı ve (b)
	Sistemde ölçüm alınmasını sağlayan iğne 46

Şekil 4.1.	Farklı alttaşlar üzerinde GaN temelli HEMT aygıtlar için $V_{DS}-$
	I_{DS} simülasyon grafiği
Şekil 4.2.	İki ayrı firmaya ait SiC alttaş için AFM görüntüsü. (a)'da ortalama
	yüzey pürüzlülüğü değeri (RMS) 1,2 nm ve (b)'de ortalama yüzey
	pürüzlülüğü değeri (RMS) 0,8 nm'dir
Şekil 4.3.	Çeşitli kusurlar içeren alttaşlar üzerinde büyütülen HEMT
	epitaksiyel yapılar 49
Şekil 4.4.	(a) Fotodirenç kaplanmış ve ardından da aseton >>> alkol >>>
	DI su organik temizliği işlemi yapılmış örnek yüzeyi AFM
	görüntüsü. Ortalama yüzey pürüzlülüğü değeri (RMS) 1,1 nm ve
	(b) Hiçbir işlem görmemiş örnek yüzeyi AFM görüntüsü.
	Ortalama yüzey pürüzlülüğü değeri (RMS) 0,3 nm 50
Şekil 4.5.	Büyütülen tasarımlar için XRD sisteminden alınmış w/20'ya
	karşılık şiddet grafiği55
Şekil 4.6.	Büyütülen HEMT tasarımları için AFM ile alınmış yüzey
	görüntüleri
Şekil 4.7.	Büyütülen HEMT tasarımları için mekanik profilometre cihazı ile
	alınmış yüzey pürüzlülüğü görüntüleri61
Şekil 4.8.	Büyütülen tasarımların yüzeylerinden alınmış Nomarski
	mikroskop görüntüleri
Şekil 5.1.	Bilkent Üniversitesi NANOTAM'da bulunan Suss Microtec MA6
	maske hizalama cihazı 65
Şekil 5.2.	Bilkent Üniversitesi NANOTAM'da bulunan (a) Ratalab spin
	kaplama sistemi ve sıcak plaka ve (b) DISCO DAD3220 yonga
	kesme sistemi
Şekil 5.3.	Ornek yüzeyine fotorezistin kaplanması adımlarını gösteren
	şematik resim 69
Şekil 5.4.	Pozitif ve negatif fotorezist kullanarak örnek yüzeyinde desen
	oluşturulması şematik görüntüsü
Şekil 5.5.	Pozitif fotorezist ile yapılan bir fotolitografinin reaksiyon süreci. 70
Şekil 5.6.	Negatif fotorezistin morötesi ışık ile reaksiyon süreci
Şekil 5.7.	Maske hizalama cihazında yapılabilecek üç tip baskılama işlemi
	ve elde edilebilecek çözünürlükler 72

- Şekil 5.9. Fotolitografi yöntemi ile desenlenmiş bir örnek yüzeyi için (a) yüzey aşındırma ve (b) metal kaplama adımı şematik görüntüsü. 74

- Şekil 5.17.Schottky eklem oluşmadan önce metal ve n-tipi yarıiletken için
bant yapısı.98
- Şekil 5.18. Metal ve n-tipi yarıiletken birleştikten sonraki eklem görüntüsünü.
- Şekil 5.19. Termal denge durumunda Schottky eklem için enerji bant diyagramı......100
- Şekil 5.20. Denge durumunda metal-yarıiletken eklem boyunca taşıyıcıların hareket yolları.
 Şekil 5.21. İleri besleme durumunda Schottky eklemin enerji bant diyagramı.
- Şekil 5.22. Geri besleme durumunda Schottky eklemin enerji bant diyagramı.....104

Şekil 5.23.	Schottky eklem için ileri ve geri besleme durumunda I-V
	karakteristiği105
Şekil 5.24.	Ohmik eklem için kontak öncesi ve sonrası enerji bant diyagramı.
Şekil 5.25.	Ohmik eklem oluşturmak amacıyla kaplanan metaller arasındaki
	reaksiyonlar110
Şekil 5.26.	TLM test deseninin şematik diyagramı110
Şekil 5.27.	Ada aşındırması yapılmış ve yapılmamış TLM deseni için akım
	akışının şematik diyagramı111
Şekil 5.28.	Pedler arasındaki L mesafesi değişimine bağlı olarak toplam
	direnç değişimi grafiği112
Şekil 5.29.	TLM ölçüm düzeneği ve ölçümlerde kullanılan TLM test deseni.
Şekil 5.30.	(a) DC I-V ölçüm düzeneği. Düzenekte HEMT aygıtların gate'ine
	SMU1 ve akaç kısmına da SMU2 bağlantısı bağlanmaktadır. (b)
	Örnek bir HEMT aygıt görüntüsü ve (c) Örnek bir HEMT aygıt için
	gate ve akaç-kaynak aralık boyutları114
Şekil 5.31.	B1505 cihazında oluşturulan DC I-V ölçüm konfigürasyonu ve
	tipik bir I-V ölçüm çıktısı115
Şekil 5.32.	B1505 cihazında oluşturulan geçiş iletkenliği $\left(g_{m} ight)$ ölçüm
	konfigürasyonu ve tipik bir g_m ölçüm çıktısı116
Şekil 5.33.	B1505 cihazında oluşturulan kaçak akım ölçüm konfigürasyonu
	ve tipik bir kaçak akım ölçümü çıktısı117
Şekil 5.34.	(a) HEMT aygıtların güç ölçümlerinde kullanılan ölçüm düzeneği
-	ve (b) ölçüm konfigürasyonu118
Şekil 6.1.	Mikrofabrikasyonu gerçekleştirilen HEMT aygıtların fotomaskede
	ver alan cizimi
Sekil 6.2.	(a) Avgıt adacığı olusturma adımı kesit görüntüsü ve (b) kuru
3	asındırma sonrası vüzev üzerinden optik mikroskop vardımıvla
	vukarıdan cekilmis iki adet avaıt icin adacık bölgeleri görüntüsü
	120

- Şekil 6.11. Mekanik profilometre cihazı yardımıyla kaplanan Si₃N₄ için ölçülen tipik bir stres ölçüm grafiği......135
- Şekil 6.13. (a) Köprü desteği oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü ve (b) ikinci metal kontak oluşturma adımı sonrası köprü

	desteği için oluşturulan fotorezistin temizlenmesi sonrası oluşan
	köprü desteğinin SEM görüntüsü137
Şekil 6.14.	İkinci bağlantı metali oluşturma adımı sonrası optik mikroskop
	yardımıyla yukarıdan çekilmiş tipik bir GaN HEMT aygıt
	görüntüsü139
Şekil 8.1.	Aygıt simülasyon çalışmalarında kullanılan gate tiplerinin şematik
	görüntüsü. (a) I-Gate, (b) Alan Levhalı I-gate, (c) Si ₃ N ₄ Üzerinde
	Duran Gama (Γ)-Gate, (d) Bir Kısmı Si ₃ N ₄ İçine Gömülü ve Bir
	Kismi da Havada Duran Gama (I)-Gate145
Şekil 8.2.	Gate-kaynak arası (L_{GS}) mesafe değişiminin maksimum doyum
	akımına (I_{DSS}) etkisi147
Şekil 8.3.	Gate-kaynak arası (L_{GS}) mesafe değişiminin kırılma gerilimine
	(<i>V_{br}</i>) etkisi147
Şekil 8.4.	Gate-kaynak arası (L_{GS}) mesafe değişiminin geçiş iletkenliğine
	(g_m) etkisi148
Şekil 8.5.	Gate-kaynak arası (L_{GS}) mesafe değişiminin maksimum DC
	çıkış gücüne (P_{DC_max}) etkisi148
Şekil 8.6.	Akaç-kaynak arası (L_{DS}) mesafe değişiminin maksimum doyum
	akımına (I_{DSS}) etkisi149
Şekil 8.7.	Akaç-kaynak arası (L_{DS}) mesafe değişiminin kırılma gerilimine
	(<i>V_{br}</i>) etkisi150
Şekil 8.8.	Akaç-kaynak arası (L_{DS}) mesafe değişiminin geçiş iletkenliğine
	(g_m) etkisi150
Şekil 8.9.	Alan levhasının gate-akaç sınırında elektrik alan dağılımı
	üzerindeki etkisi151
Şekil 8.10.	l-gate alan levhası (L_{AL}) uzunluğunun maksimum doyum
	akımına (I_{DSS}) etkisi152
Şekil 8.11.	l-gate alan levhası (L_{AL}) uzunluğunun kırılma gerilimine (V_{br})
	etkisi153

Şekil 8.12.	l-gate alan levhası (L_{AL}) uzunluğunun geçiş iletkenliğine (g_m) etkisi
Şekil 8.13.	Si $_3N_4$ Üzerinde Duran Gama (Г)-Gate şematik çizimi154
Şekil 8.14.	L_{AL_S} değişiminin maksimum doyum akımına (I_{DSS}) etkisi155
Şekil 8.15.	L_{AL_S} değişiminin kırılma gerilimine (V_{br}) etkisi155
Şekil 8.16.	L_{AL_S} değişiminin geçiş iletkenliğine (g_m) etkisi
Şekil 8.17.	L_{AL_D} değişiminin maksimum doyum akımına (I_{DSS}) etkisi157
Şekil 8.18.	L_{AL_D} değişiminin kırılma gerilimine (V_{br}) etkisi157
Şekil 8.19.	L_{AL_D} değişiminin geçiş iletkenliğine (g_m) etkisi158
Şekil 8.20.	Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)-Gate şematik çizimi158
Şekil 8.21.	L_h değişiminin maksimum doyum akımına (I_{DSS}) etkisi159
Şekil 8.22.	L_h değişiminin kırılma gerilimine (V_{br}) etkisi
Şekil 8.23.	L_h değişiminin geçiş iletkenliğine $\left(g_m ight)$ etkisi160
Şekil 9.1.	I-Gate (Tip-1) HEMT aygıt yapısı şematik görünümü163
Şekil 9.2.	Alan levhalı I-gate (Tip-2) HEMT aygıt yapısı şematik görünümü.
Şekil 9.3.	Alan levhalı I-gate (Tip-2) için SEM görüntüsü165
Şekil 9.4.	Si ₃ N₄ üzerinde duran gama gate (Tip-3) HEMT aygıt yapısı şematik görünümü166
Şekil 9.5.	Si ₃ N ₄ üzerinde duran gama gate (Tip-3) için SEM görüntüsü169
Şekil 9.6.	Oyuklu (recessed) gama gate (Tip-4) HEMT aygıt yapısı şematik görünümü169
Şekil 9.7.	Oyuklu gama gate (Tip-4) için SEM görüntüsü172
Şekil 9.8.	Bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama
	gate (Tip-5) HEMT aygıt yapısı şematik görünümü172
Şekil 9.9.	Bir kısmı Si $_3N_4$ içine gömülü ve bir kısmı da havada duran gama
	gate (Tip-5) için SEM görüntüsü174
Şekil 9.10.	Mikrofabrikasyon sonrasında elde edilen 0,3µm×8×125µm
	AlGaN/GaN HEMT aygıtların optik mikroskop görüntüsü174

Şekil 10.1.	AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı eşik voltaj
	(V_{th}) karşılaştırma grafiği175
Şekil 10.2.	AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı $I_{DS}-V_{DS}$
	karakteristiği. Gate besleme gerilimi, -6V'tan 1V'a kadar 1 V
	aralıklarla tarandı176
Şekil 10.3.	AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı $g_m - V_{GS}$
	karakteristiği177
Şekil 10.4.	AlGaN/GaN HEMT aygıtlar için V_{DS} = 25 V ve I_{DS} = 100 mA/mm
	değerlerinde gate yapısına bağlı akım kazancı ($ { m h_{21}} $) grafiği. 178
Şekil 10.5.	AlGaN/GaN HEMT aygıtlar için V_{DS} = 25 V ve I_{DS} = 100 mA/mm
	değerlerinde gate yapısına bağlı güç kazancı ($ \mathrm{U}_{\mathrm{G}} $) grafiği179
Şekil 10.6.	Tip-1 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8
	GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç
	karakteristiği180
Şekil 10.7.	Tip-2 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8
	GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç
	karakteristiği180
Şekil 10.8.	Tip-3 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8
	GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç
	karakteristiği181
Şekil 10.9.	Tip-4 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8
	GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç
	karakteristiği181
Şekil 10.10.	Tip-5 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8
	GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç
	karakteristiği182

ÇİZELGELER DİZİNİ

Çizelge 2.1.	GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan
	bazı malzemeler için karşılaştırmalı elektriksel ve mekanik
	özellikler6
Çizelge 2.2.	GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan
	bazı malzemeler için başarım katsayıları (figures of merit) 9
Çizelge 2.3.	GaN ve AIN kristalleri için örgü parametreleri, piezoelektrik
	sabitler, elastik sabitler ve doğal kutuplanma alanları
Çizelge 2.4.	III-Nitrür büyütmeleri için uygun olan alttaşlar için bazı özellikler
Çizelge 4.1.	Alttaş kimyasal temizlik prosedürü 50
Çizelge 4.2.	GaN temelli yüksek güçlü HEMT aygıt üretimi kapsamında
	tasarlanan epitaksiyel tasarımlar51
Çizelge 4.3.	GaN temelli yüksek güçlü HEMT aygıt üretimi kapsamında
	tasarlanan epitaksiyel tasarımlar için büyütme parametreleri ve
	işlem adımları 56
Çizelge 4.4.	Büyütülen tasarımlar için XRD pik konumları ve Al yüzdeleri 57
Çizelge 4.5.	Büyütülen tasarımlar için GaN ve AlN simetrik ve asimetrik
	düzlemleri için elde edilen XRD döndürme eğrisi ölçüm
	sonuçları58
Çizelge 4.6.	Büyütülen tasarımlar için Al _x Ga _{1-x} N bariyer tabakası
	fotolüminesans ölçüm sonuçları 60
Çizelge 4.7.	Büyütülen tasarımlar için AFM ile alınmış yüzey pürüzlülüğü
	(RMS) değerleri 61
Çizelge 4.8.	Büyütülen tasarımlar için mekanik profilometre cihazı ile alınmış
	geniş alan yüzey pürüzlülüğü değerleri62
Çizelge 4.9.	Büyütülen tasarımlar ve ticari olarak satılan bir HEMT
	epitaksiyel yapısı (E0) için 300K'de alınan Hall etkisi ölçüm
	sonuçları64

Çizelge 4.10.	Büyütülen tasarımlar ve ticari olarak satılan bir HEMT
	epitaksiyel yapısı (E0) için $n_s \cdot \mu$ çarpımı ve tabaka direnci
	karşılaştırması
Çizelge 5.1.	Fotolitografi öncesi örnek temizliği prosedürü
Çizelge 5.2.	Ark ve parıltılı deşarj plazma tipleri için karşılaştırmalı tablo 81
Çizelge 5.3.	PECVD plazma parametre değişimlerinin film kalite
	parametrelerine etkisi
Çizelge 5.4.	0ºC (273.15K)'de bazı gazlar için λ x P değerleri
Çizelge 5.5.	n-GaN için doğrultma amaçlı kullanılan çeşitli metaller için
	ölçülen bariyer yükseklikleri ve termal dayanımları106
Çizelge 6.1.	Aygıt adacığı aşındırma prosedürü121
Çizelge 6.2.	Ohmik eklem oluşturma prosedürü125
Çizelge 6.3.	Ohmik eklem oluşturma prosedürü sonrası, büyütülen ve ticari
	olarak satılan HEMT epitaksiyel yapılar için elde edilen TLM
	ölçüm verileri126
Çizelge 6.4.	Schottky eklem oluşturma prosedürü128
Çizelge 6.5.	Birinci bağlantı metali oluşturma prosedürü130
Çizelge 6.6.	Dielektrik kaplama prosedürü132
Çizelge 6.7.	Dielektrik açıklığı oluşturma prosedürü136
Çizelge 6.8.	Köprü desteği oluşturma prosedürü138
Çizelge 6.9.	İkinci bağlantı metali oluşturma adımı prosedürü139
Çizelge 7.1.	Büyütülen tasarımlar ve ticari olarak satılan bir epitaksiyel yapı
	için HEMT aygıtlar üzerinden ölçülen DC I-V ve RF güç ölçüm
	sonuçları141
Çizelge 8.1.	Çeşitli gate tipleri için Silvaco ATLAS simülasyon programı
	yardımıyla elde edilmiş optimum veriler162
Çizelge 9.1.	Alan levhası oluşturma prosedürü164
Çizelge 9.2.	Si ₃ N ₄ üzerinde duran gama gate oluşturma prosedürü167
Çizelge 9.3.	Oyuklu (recessed) gama gate (Tip-4) oluşturma prosedürü170
Çizelge 10.1.	Farklı gate yapılarına sahip AlGaN/GaN HEMT aygıtlar için
	performans karşılaştırma tablosu182

SİMGELER VE KISALTMALAR

Simgeler

E_g	Bant genişliği enerjisi
E _{br}	Kırılma elektrik alanı
\mathcal{E}_r	Bağıl dielektrik geçirgenlik
ε_0	Vakum dielektrik geçirgenlik
κ	Isıl iletkenlik
n_i	Öz taşıyıcı konsantrasyonu
μ_n	Elektron hareketliliği
v_{sat}	Doymuş elektron sürüklenme hızı
V _{br}	Kırılma gerilimi
e _{ij}	Yönelime bağlı piezoelektrik katsayılar
ε _j	Gerginlik
C_{ij}	Elastik sabitler
P _{SP}	Doğal kutuplanma alanı
P_{PE}	Piezoelektrik kutuplanma alanı
σ_p	Kutuplanma kaynaklı yüzey yük yoğunluğu
n_s	2-DEG taşıyıcı konsantrasyonu
I _{DS}	Akaç-kaynak Akımı
V _{GS}	Gate voltaji
V _{th}	Eşik voltaj
V _{DS}	Akaç gerilimi
V _{knee}	Bükülme voltajı
I _{DSS}	Maksimum doyum (satürasyon) akımı
C_{2BEG}	Gate-kanal arası kapasitansı
σ	2-DEG kanal iletkenliği

μ	Kanaldaki elektronların hareketliliği
q	Elektron yükü
W_G	Gate genişliği
L _G	Gate uzunluğu
C _G	Gate kapasitansı
g_m	Geçiş İletkenliği
f_T	Akım Kazancı Kesilim Frekansı
f _{max}	Maksimum salınım frekansı
P _{max}	Aygıtın maksimum DC çıkış gücü
P _{out}	Aygıtın RF çıkış gücü
L _G	Gate uzunluğu
C _{GS}	Gate-Kaynak Kapasitansı
C _{GD}	Gate-Akaç Kapasitansı
R _G	Gate Direnci
ε	Elektriksel Geçirgenlik
J	Akım Yoğunluğu
Ε	Elektrik Alan
Т	Sıcaklık
k _B	Boltzmann sabiti
ϕ_n	n-tipi Yarıiletkenin İş Fonksiyonu
ϕ_m	Metalin İş Fonksiyonu
E_F	Fermi Enerji Düzeyi
V ₀	Kontak Potansiyeli
ϕ_B	Schottky Bariyer Yüksekliği
E _c	İletim Bandı Enerji Seviyesi
Xn	Elektron İlgisi
W_D	Yayılım Bölgesinin Genişliği
E_m	Yayılım Bölgesi Boyunca Elektrik Alan

$ ho_C$	Spesifik Kontak Direnci
J _t	Tünelleme Akım Yoğunluğu
R _C	Kontak Direnci
R _{sh}	Tabaka Direnci
ρ	Gate Metal Direnci
W _{gu}	Birim Gate Genişliği
h	Gate Metal Kalınlığı
L _{GS}	Gate-kaynak arası mesafe
L _{GD}	Gate-akaç arası mesafe
L _{DS}	Akaç-kaynak arası mesafe
L _B	Gate Başının Uzunluğu
L_{AL}	Alan Levhası Uzunluğu
L _{AL_S}	Si₃N₄ Üzerinde Duran Gama (Γ)-Gate'in kaynak tarafına bakan kanadın uzunluğu
L _{AL_D}	Si ₃ N ₄ Üzerinde Duran Gama (Γ)-Gate'in akaç tarafına bakan kanadın uzunluğu
L _h	Si_3N_4 içine gömülü ve bir kısmı da havada duran gama ($\Gamma)$ -
	gate'in havada duran kısmın uzunluğu
Г	Gama
C _{GO}	İçsel gate kapasitansı
C_{GF}	Saçak kapasitansı

Kısaltmalar	
-------------	--

HEMT	High	Electron	Mobility	Transistor	(Yüksek	elektron
	harek	etlilikli trans	sistör)			
2-DEG	2-Boy	utlu Elektro	on Gazı			
GaN	Galyu	m Nitrür				
AlGaN	Alümir	nyum Galy	um Nitrür			
SiC	Silisyu	ım Karbür				
XRD	X-lşın	ı Kırınımı				

AFM	Atomik Kuvvet Mikroskobu
MMIC	Monolithic Microwave Integrated Circuit
MAG	Maksimum Elde Edilebilir Kazanç
NF _{min}	Minimum Gürültü Çarpanı
FTIR	Fourier Dönüşümlü Infrared Spektrofotometre
SEM	Taramalı Elektron Mikroskobu
RTP	Hızlı Tavlama Sistemi
TLM	İletim Hattı Modeli
Si ₃ N ₄	Silisyum Nitrür
DI Su	Deiyonize Su
NMP	N-Methyl-2-pyrrolidone
IPA	İsopropanol Alkol
MIBK	Metil İzobütil Keton
Ge	Germanyum
H_2O_2	Hidrojen Peroksit
PAE	Power-Added Efficiency (Güç Katılmış Verimlilik)

1. GİRİŞ

1920'li yıllarda kuantum mekaniğinin gelişimi ve buna bağlı olarak elektronik bant yapısının ortaya konması ile metaller, yalıtkanlar ve yarıiletken malzemeler arasındaki farklar kısa sürede anlaşılmış ve katıların kuantum teorisinin geliştirilmesi ile de katı hal fiziği alanında önemli atılımların yaşanması sağlanmıştır. 1926 yılında Julius Edgar Lilienfeld tarafından ilk defa alan etkili transistör (FET) kavramı ortaya atılarak patentlenmiştir [1]. 1947 yılında Bell laboratuvarlarında John Bardeen ve Walter Brattain tarafından, germanyum yüzey fiziği üzerine yapılan çalışmalar sonucunda ilk katı hal transistör icat edilerek teknolojide bir devrim yaratılmıştır [2,3]. Şekil 1.1'de John Bardeen ve Walter Brattain tarafından icat edilen ilk transistör ve şematik görüntüsü yer almaktadır.

Şekil 1.1. John Bardeen ve Walter Brattain tarafından icat edilen (a) ilk transistör [2] ve (b) şematik görüntüsü [3].

1954 yılında yine Bell laboratuvarlarında Morris Tanenbaum tarafından n ve p katkılamaya dayalı çalışan ilk silikon transistörler üretildi. Aynı yıl ise Texas Instruments'ten Gordon Teal tarafından ticari ilk silikon transistörler üretilmiştir. Silikonun oldukça iyi bilinen bir malzeme olması ve tümleşik devre üretim teknolojisinin de (CMOS) gelişmesi ile silikon temelli transistör teknolojisi, bu tarihten sonra yarı iletken aygıt endüstrisine egemen olacak şekilde ilerlemesine devam etmiştir. Ancak son zamanlarda silikon malzemesinin teorik limitlerine dayanmış olması ve silikon malzemesinin sahip olduğu sınırlı elektron hareketliliği, düşük bant aralığı (düşük kırılma gerilimi), düşük çalışma sıcaklığı gibi kısıtlamaları, onu, yüksek çalışma frekansı, yüksek çıkış gücü ve yüksek çalışma voltajı gibi isterler gerektiren modern güç elektroniği uygulamalarında yetersiz bırakmaktadır.

Silikona göre oldukça üstün elektriksel özelliklere sahip geniş bant aralıklı malzeme grubu, modern güç elektroniği gereksinimlerini karşılamak amacıyla iyi bir çözüm sunmaktadır. Galyum nitrür (GaN) malzemesi de bu malzemeler içerisinde sahip olduğu yüksek enerji bant aralığı, yüksek elektron hareketliliği, yüksek kırılma elektrik alan şiddeti gibi özellikleri nedeniyle ön plana çıkmaktadır.

GaN malzemesi ilk defa 1932 yılında Johnson ve arkadasları tarafından yüksek sıcaklıklarda sıvı galyum (Ga) içerisinden amonyak (NH₃) geçirilerek sentezlenmiştir [4]. 1969 yılında Maruska ve Tietjen tarafından Hidrit Buhar Fazı Epitaksi (HVPE) yöntemi kullanılarak ilk defa safir alttaş üzerinde GaN tabakaları büyütülmüştür [5]. 1971 yılında ise Manasevit ve arkadasları tarafından günümüzde oldukça yaygın bir epitaksi büyütme yöntemi olan Metal Organik Kimyasal Buhar Biriktirme (MOCVD) yöntemi kullanılarak bu yöntemle ilk defa GaN büyütmüşlerdir [6]. 1971 yılında Pankove ve arkadaşları tarafından ise ilk GaN LED'ler [7,8] ve 1972 yılında da ilk defa HVPE tekniği kullanarak 430 nm dalga boyunda ışıma yapan magnezyum (Mg) katkılanmış p-tipi GaN LED'ler üretilmiştir [9].

Ancak gerek HVPE gerekse de MOCVD yöntemleriyle büyütülen ilk GaN ince film tabakalarının çatlak, safsızlık ve kusurlar içermesi ve bu problemlerin de uzun süre aşılamaması nedeniyle 1986 yılına kadar bu alanda kayda değer bir çalışma yapılamamıştır. Ancak 1986 yılında Amano ve arkadaşları tarafından MOCVD yöntemi kullanarak yüzey morfolojisi, optik ve elektriksel özellikleri oldukça iyi olan GaN ince filmler üretmeyi başarmaları süreci tamamiyle değiştirmiştir [10]. Örgü uyumsuzluklarını azaltarak çatlak ve kusurların oluşmasını engellemek amacıyla safir alttaş ile GaN tabakası arasına AlN tampon tabakası büyüterek gerçekleştirdikleri bu çalışma, GaN temelli aygıt çalışmalarına olan ilgiyi tekrardan canlandırmıştır. Bu tarihten sonra 1989 yılında Amano ve arkadaşları tarafından Mg katkılı p-tipi iletken GaN filmler üretilmiştir [11]. 1993 yılında Nakamura ve arkadaşları tarafından yüksek parlaklığa sahip mavi GaN LED'ler [12] ve 1996 yılında da ilk sürekli dalga mavi GaN lazer diyotlar üretilmiştir [13]. GaN temelli aygıt üretiminin optoelektronik ayağındaki gelişmeler bu şekilde ilerlemeye devam ederken transistör ayağındaki gelişmeler de aynı dönemlerde hız kazanmıştır. Özellikle p ve n katkılamaya dayalı transistör teknolojisinin limitlerine dayanmış olması ve buna bağlı olarak da modern güç elektroniği uygulamalarında gerekli yüksek güç, yüksek frekans ve yüksek kırılma voltajı gibi gereksinimleri karşılayamaması yeni bir teknolojinin ortaya çıkmasını sağlamıştır.

P ve n katkılamaya dayalı geleneksel transistör teknolojisinde elektronların yarıiletken boyuncaki hareketleri, katkı atomlarıyla meydana gelen çarpışma ve saçılmalar nedeniyle sınırlandırılmakta, bu da elektonların hızlarının ve enerjilerinin azalarak aygıt performansının düşmesine neden olmaktadır. 1979 yılında Fujitsu laboratuarlarında Takashi Mimura tarafından ilk GaAs tabanlı yüksek elektron hareketlilikli transistör (HEMT) teknolojisinin bulunması [14], katkılamaya gerek duymayan yeni nesil bir transistör teknolojisinin ortaya çıkmasını sağlamıştır. Yüksek elektron hareketlilikli transistör (HEMT) teknolojisi, geleneksel transistör teknolojisinden farklı olarak katkılamaya gerek duymaksızın bant aralıkları farklı iki malzemenin üst üste büyütülerek bu iki tip malzemenin birleştiği sınır bölgede iki boyutlu bir kuantum kuyusunun ve bu kuyunun içinde de iki boyutlu bir elektron gazının (2-DEG) oluşturulması ve bu 2-DEG'in de kontrolü esasına dayanmaktadır. HEMT aygıt teknolojisinde katkılama olmaması, iki boyuta sıkıştırılmış elektronların (2-DEG) bir yüzey boyunca daha hızlı ve daha enerjik hareket etmeleri dolayısıyla da aygıtların çok daha yüksek performanslarda çalışabileceği anlamına gelmektedir.

GaAs temelli HEMT aygıtların kısa zamanda performans limitlerine dayanması, 1991 yılında Khan ve arkadaşları tarafından ilk defa AlGaN/GaN yapılarda 2-DEG oluşumunu göstermeleri [15], yine Khan ve arkadaşları tarafından 1993 yılında ilk GaN metal yarıiletken alan etkili transistör (MESFET) [16] ve 1994 yılında da ilk GaN temelli HEMT yapıları üretmeleri [17] geniş bant aralıklı malzeme grubu içerisinde oldukça üstün özelliklere sahip GaN malzemesinin ön plana çıkmasını ve HEMT aygıt teknolojisinde GaN devrinin başlamasını sağlamıştır. Şekil 1.2'de GaN temelli HEMT uygulama alanları görülmektedir.

Kablosuz Baz Istasyonları: Yüksek güç amplifikatörleri

Radar ve Uzay Uygulamalan

Şekil 1.2. GaN temelli HEMT uygulama alanları [18].

HEMT epitaksiyel yapı, aygıt performansını belirleyen en önemli parametrelerden birisi olup bu tez çalışması kapsamında yüksek güç ve yüksek frekans uygulamalarına dönük yüksek performanslı bir HEMT aygıt üretimi için kendi özgün epitaksiyel yapımız üretildi. Silvaco ATLAS simülasyon programı kullanılarak X-bant aralığında (8-12 GHz) çalışacak yüksek güçlü HEMT aygıtlar için farklı bir çok gate tipi için ilk defa karşılaştırmalı aygıt yapısı simülasyon çalışmaları yapılarak her bir gate tipi için optimum parametreler belirlendi.

Belirlenen bu optimum paramatreler kullanılarak simülasyonu yapılan farklı gate tipleri için ayrı ayrı HEMT aygıt fabrikasyonu yapılarak farklı gate tipleri içeren HEMT aygıtların ilk defa aynı koşullarda maksimum doyum akımı (I_{DSS}), geçiş iletkenliği (g_m), eşik voltaj (V_{th}), akım kazancı kesilim frekansı (f_T), maksimum salınım frekansı (f_{max}) ve 8 GHz'de küçük-sinyal kazancı ve RF çıkış gücü (P_{out}) karşılaştırması yapıldı. Yapılan bu çalışma ile HEMT aygıt üretiminde aygıtın yüksek frekanslarda, yüksek güçlerde ya da her ikisinin tercih edilerek çalıştırılacağı durumlarda ne tip bir gate yapısının tercih edilmesi gerektiği ile ilgili gate özellikleri gösterildi.

2. GaN MALZEME SİSTEMİ

2.1. GaN Malzeme Özellikleri

GaN, sahip olduğu yüksek elektriksel ve mekanik özellikler nedeniyle optoelektronik, yüksek güç ve yüksek frekans aygıt uygulamalarında ön plana çıkan önemli bir malzemedir. GaN, yaygın olarak kullanılan yarıiletkenlerle kıyaslandığında sahip olduğu yüksek bant genişliği enerjisi, yüksek doymuş elektron sürüklenme hızı ve yüksek kırılma elektrik alanı nedeniyle, elektronik aygıt uygulamalarında büyük avantaj sağlamaktadır. Çizelge 2.1'de GaN ve diğer yarıiletkenler için elektronik aygıt uygulamalarının önemli bazı parametrelerinin karşılaştırıldığı tablo görülmektedir.

Çizelge 2.1. GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan bazı malzemeler için karşılaştırmalı elektriksel ve mekanik özellikler [19,20].

Yarıiletkenler		Si	GaAs	4H-SiC	6H-SiC	GaN	
Karakteristik	Birim						
Bant Genişliği Enerjisi, E _g	eV	1,1	1,4	3,3	3,0	3,4	
Kırılma Elektrik Alanı, E _{br}	MV/cm	0,3	0,4	2	2,4	3,3	
Bağıl Dielektrik Geçirgenlik, ε _r	-	12	13	10	9,7	9,0	
lsıl İletkenlik, κ	W/cm.K	1,5	0,5	4,5	4,5	1,3	
Öz Taşıyıcı Konsantrasyonu, n _i	cm⁻³	1,5 x10 ¹⁰	1,8 x10 ⁶	8,2x10 ⁻⁹	2,3x10 ⁻⁶	1,9x10 ⁻¹⁰	
Elektron Hareketliliği, μ_n	cm²/V.s	1350	8500	650	370	900	
Doymuş Elektron Sürüklenme Hızı, <i>v_{sat}</i>	x10 ⁷ cm/s	1	2	2	2	2,5	
Erime Noktası	К	1415	1238	3103	3103	2791	
Yoğunluk	g/cm³	2,33	5,32	3,21	3,21	6,15	

Yüksek bant genişliği enerjisi ve buna bağlı olarak da yüksek kırılma elektrik alanı bir aygıtın yüksek voltaj uygulamalarına uygunluğunu göstermektedir. Yüksek bağıl dielektrik geçirgenlik, bir transistörün ve pasif bileşenin kapasitif yüklenmesinin iyi olduğunun bir göstergesidir. Isıl iletkenliğin iyi olması, ısının malzemeden daha kolav atılabileceği vüksek ve aygıtın sıcaklık uygulamalarındaki dayanıklılığının bir göstergesidir. Yüksek doymuş elektron sürüklenme hızı, yüksek akım ve yüksek frekans uygulamaları için önemli bir parametredir. Öz taşıyıcı konsantrasyonun az olması ise, aygıtların maksimum çalışma sıcaklığının yüksek ve kaçak akımlarının ise az olacağı anlamına gelmektedir.

Çizelge 2.1 incelendiğinde GaN'ın elektronik devre uygulamalarında oldukça avantajlı bir noktada olduğu görülmektedir. Şekil 2.1'de ise GaN'ın Si ve GaAs'a göre üstünlüğü, net bir şekilde ortaya konmaktadır.

Şekil 2.1. GaN malzemesinin Si ve GaAs'a göre üstünlüğü [21].

 R_{on} direnci, bir aygıtın çalışması esnasında meydana gelen iletim kayıplarını tanımlayan önemli bir parametre olup, aygıtların yüksek güç kapasitelerinin ve verimliliklerinin bir ölçütü olarak kullanılmaktadır. Bu değerin aygıt performansı açısından minimum değerde olması istenmektedir. R_{on} direnci, aygıtların yapıldığı malzemenin parametreleri ile direk ilintili olup şu şekilde ifade edilmektedir:

$$R_{on} = \frac{4V_{br}}{\varepsilon_r \mu_n E_c^3}$$
(2.1)

Şekil 2.2'de çeşitli malzemeler için kırılma gerilimine karşı teorik R_{on} direnç değeri değişimi görülmektedir.

Şekil 2.2. Çeşitli malzemeler için kırılma gerilimine karşı teorik R_{on} direnç değeri değişimi [22,23].

Şekil 2.2 incelendiğinde aynı kırılma gerilimi değerlerinde GaN malzemesinin oldukça düşük R_{on} direnç değerlerine sahip olduğu ve diğer malzemelere göre oldukça avantajlı bir konumda olduğu görülmektedir.

Yarıiletken malzemelerin güç elektroniği alanındaki potansiyellerini belirlemek amacıyla her malzeme için ayrı ayrı hesaplanan "başarım katsayıları (figures of merit)" tanımlanmıştır. Yüksek güç ve yüksek frekans aygıt uygulamaları için Johnson, Keyes, Baliga ve Baliga HF olmak üzere dört önemli "başarım katsayısı" vardır. Johnson başarım katsayısı; elektrik alan tarafından taşıyıcılara aktarılacak enerjinin maksimum kapasitesini, Keves basarım katsayısı; yüksek frekanslarda anahtarlama davranışının termal sınır kapasitesini, Baliga başarım katsayısı; DC işlemlerde minimum iletim kayıplarını ve Baliga HF başarım katsayısı; yüksek frekans işlemlerinde minimum iletim kayıplarını tanımlamaktadır [24]. Bir yarıiletkende maksimum verim için bu başarım katsayılarının olabildiğince büyük olması istenmektedir. Çizelge 2.2'de GaN ve diğer yarıiletkenler için silikon malzemesine göre normalize edilen "başarım katsayıları" görülmektedir.

Çizelge 2.2. GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan bazı malzemeler için başarım katsayıları (figures of merit) [19].

Malzeme	Johnson [(E _{br} .υ _d /π) ²]	Keyes [κ.(υ _d / ε _r) ^{1/2}]	Baliga [ε _r . μ _n .Ε _{br} ³]	Baliga HF [µ _n .E _{br} ²]
Si	1	1	1	1
GaAs	7,1	0,45	15,6	10,8
4H-SiC	180	4,61	130	22,9
6H-SiC	260	4,68	110	16,9
GaN	760	1,6	650	77,8

Şekil 2.3'te GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan bazı malzemeler için çalışma frekansına bağlı ortalama çıkış gücü grafiği görülmektedir. Gerek Çizelge 2.2, gerekse de Şekil 2.3 incelendiğinde GaN'ın hem yüksek güç hem de yüksek frekans uygulamalarında oldukça büyük bir potansiyele sahip olduğu görülmektedir.

Şekil 2.3. GaN ve yarıiletken aygıt teknolojisinde yaygın olarak kullanılan bazı malzemeler için çalışma frekansına bağlı ortalama çıkış gücü grafiği [25].

2.2. GaN Kristal Yapısı

III-Nitrür malzemeler genel olarak wurtzite, sfalerit (zinc-blend) ve kaya-tuzu (rock-salt) olmak üzere üç farklı kristal yapıda bulunabilirler. Şekil 2.4'te üç farklı kristal yapısı görülmektedir.

Şekil 2.4. (a) Wurtzite, (b) Sfalerit ve (c) Kaya-tuzu kristal yapıları [26].

Wurtzite kristal yapısı, GaN malzemesi için termodinamik açıdan daha kararlı ve daha güçlü bir kutuplanma özelliğine sahiptir [27]. Wurtzite kristal yapısı, birim hücresi iç içe geçmiş iki hekzagonal sıkı paket yapıdan oluşmakta olup a_0 (3,18 Å) ve c_0 (5,18 Å) olmak üzere iki örgü sabitine sahiptir [28]. Şekil 2.5'te wurtzite birim hücresine sahip GaN kristal yapısı görülmektedir.

Şekil 2.5. Wurtzite birim hücresine sahip GaN kristal yapısı.

Wurtzite birim hücresine her atom, diğer tipteki dört atomla kovalent bağlarla tetrahedral (dörtyüzlü) olacak şekilde bağlanır. Ancak Ga (galyum) ve N (azot) atomlarının elektronegatiflikleri arasındaki büyük fark hücrede iyonik bir bağ kuvvetinin de oluşmasını sağlar. Wurtzite yapısında [0001] yönünde (c₀ ekseni) ters simetri özelliği yoktur. Bu da (x, y, z) konumunda yer alan bir atomun ters simetrisi alındığında (-x, -y, -z) konumunda yer alamayacağı ve Wurtzite kristal yapısında aynı düzlemde yer alan atomların aynı tür atomlar olacağı anlamına gelmektedir. Sonuç olarak bu da tepede Ga'nın ya da N'in büyümesine bağlı olarak GaN kristalinin Ga-yüz (0001) ve N-yüz (000) olmak üzere iki farklı şekilde yönlenebileceği anlamına gelmektedir. Şekil 2.6'da Wurtzite kristal yapısında Ga-yüz ve N-yüz GaN'ın şematik çizimi görülmektedir.

Şekil 2.6. Wurtzite kristal yapısında Ga-yüz ve N-yüz GaN'ın şematik çizimi ve doğal kutuplanma vektör yönleri [24].

Azot atomlarının güçlü elektronegatiflik etkisi, GaN kristali içerisinde kovalent bağlar arasında güçlü etkileşmelerin ortaya çıkmasını sağlar. GaN kristali içerisinde elektron bulutu, N tarafına kayarak güçlü bir iyonik kuvvet oluşturur. Bu da kristal yapının bir yüzünde net bir negatif yükün, diğer yüzünde de net bir pozitif yükün birikmesine neden olur. Sonuçta c₀ ekseni boyunca net bir polarizasyon oluşur. Kristale herhangi bir stres ve gerilme uygulanmadan yapıda kendiliğinden oluşan bu polarizasyona *doğal kutuplanma* (**P**_{SP}) denir. III-Nitrürlerde meydana gelen bu doğal kutuplanma alanı, III-V yarıiletkenlere göre 5 kat daha güçlüdür [29].

Doğal kutuplanma kuvveti, kristalin asimetrik yapısına bağlıdır ve c_0/a_0 oranı bu konuda oldukça önemli bir rol oynar. İdeal bir Wurtzite kristalinde c_0/a_0 oranı 1,633 olarak ifade edilir ve c_0/a_0 oranının azalması kristal asimetrisinin azalması ve \mathbf{P}_{SP} 'nin artması anlamına gelir. Farklı metal katyonlarından dolayı GaN, AIN ve InN malzemelerinde katyon-anyon bağ uzunlukları, c_0/a_0 oranı ve bunlara bağlı olarak da P_{SP} değerleri birbirlerinden farklıdır. Örneğin 1,6336 c_0/a_0 oranına sahip GaN kristalinde \mathbf{P}_{SP} değeri -0,029 C/m², 1,6190 c_0/a_0 oranına sahip AIN kristalinde -0,081 C/m² ve 1,6270 c_0/a_0 oranına sahip InN kristalinde -0.032 C/m²'dir [29]. Şekil 2.7'de Ga-yüzlü GaN ve bunun üzerine büyütülmüş AlGaN için doğal kutuplanma alanı ve yüzey yükü oluşumu görülmektedir.

Şekil 2.7. Ga-yüzlü GaN ve AlGaN için doğal kutuplanma alanı ve yüzey yükü oluşumu [30].

Üst üst üste büyütülen iki malzemenin (AlGaN/GaN) örgü parametreleri ve termal genleşme katsayıları arasındaki farklılıklar gibi dış etkenlerin yaratacağı sıkışma ve gerilme gerginlikleri kristal yapının idealitesini ve c₀/a₀ oranını değiştirerek net polarizasyonu değiştirebilir. Kristalde stres ve gerilmeler nedeniyle oluşan bu polarizasyon tipine *piezoelektrik kutuplanma* (**P**_{PE}) denir. Şekil 2.8'de Wurtzite yapısında Ga-yüzlü GaN üzerinde büyütülen AlGaN için piezoelektrik kutuplanma alanı ve yüzey yükü oluşumu görülmektedir.

Şekil 2.8. Wurtzite yapısında Ga-yüzlü GaN üzerinde büyütülen AlGaN için sıkışma gerginliği nedeniyle oluşan piezoelektrik kutuplanma alanı ve yüzey yükü oluşumu [30]. III-Nitrürlerde meydana gelen sıkışma gerginlikleri ve buna bağlı olarak da meydana gelen piezoelektrik kutuplanma alanı, geleneksel III-V ve II-VI yarıiletkenlere göre 10 kat daha büyüktür [29]. Piezoelektrik kutuplanma alanı, AlGaN/GaN heteroyapılarda *2-boyutlu bir elektron gazının (2-DEG)* oluşmasında önemli bir rol oynamaktadır.

2.3. AIGaN/GaN Heteroyapılarda 2-DEG Oluşumu

III-Nitrürlerde malzemenin kendi içsel özellikleri nedeniyle ortaya çıkan güçlü doğal kutuplanma alanı ve üst üste büyütülen AlGaN/GaN gibi heteroyapılarda örgü uyuşmazlıklarının oluşturduğu gerilmeler nedeniyle oluşan güçlü piezoelektrik kutuplanma alanı, bu tip heteroyapıların birleştiği sınır bölgede katkılamaya gerek duymaksızın *2-boyutlu bir elektron gazının (2-DEG)* kendiliğinden oluşmasını sağlamaktadır. Bu da yük taşıyıcı elektronların, katkı atomları olmaksızın var olmasını sağlamaktadır. Katkı atomlarının olmaması da Coulomb saçılmasının oldukça az olması anlamına gelmektedir. Bu ise bu tip aygıtların daha hızlı ve daha yüksek güçlerde çalışması anlamına gelmektedir. Şekil 2.9'da Wurtzite yapısında Ga-yüz ve N-yüz AlGaN/GaN heteroyapılar için doğal ve piezoelektrik kutuplanma alanları gösterilmektedir.

Şekil 2.9. Wurtzite yapısında (a) Ga-yüz ve (b) N-yüz AlGaN/GaN heteroyapılar için doğal ve piezoelektrik kutuplanma alanları [31].

Piezoelektik kutuplanma alanı (P_{PE}); e_{33} ve e_{31} piezoelektrik katsayılar, $\varepsilon_z = (c - c_0)/c_0$ c-ekseni boyunca gerilme, $\varepsilon_x = \varepsilon_y = (a - a_0)/a_0$ x ve y düzlemleri boyunca gerilmeler, c_0 ve a_0 denge durumunda örgü parametreleri olmak üzere şu şekilde ifade edilir:

$$P_{PE} = e_{33} \cdot \varepsilon_z + e_{31} \cdot (\varepsilon_x + \varepsilon_y)$$
(2.2)

a ve *c* örgü sabitleri arasındaki ilişki, C_{13} ve C_{33} elastik sabitler olmak üzere şu şekilde ifade edilir:

$$\frac{c-c_0}{c_0} = -2\frac{\zeta_{13}}{\zeta_{33}} \cdot \frac{a-a_0}{a_0}$$
(2.3)

Eş. 2.3, Eş. 2.2'de yerine konulduğunda c-ekseni yönündeki piezoelektrik kutuplanma alanı,

$$P_{PE} = 2 \frac{a - a_0}{a_0} \left[e_{31} - e_{33} \frac{\zeta_{13}}{\zeta_{33}} \right]$$
(2.4)

şeklinde ifade edilir. Çizelge 2.3'te GaN ve AlN için örgü parametreleri, piezoelektrik sabitler, elastik sabitler ve doğal kutuplanma alanları gösterilmektedir.

Çizelge 2.3. GaN ve AIN kristalleri için örgü parametreleri, piezoelektrik sabitler, elastik sabitler ve doğal kutuplanma alanları [29,31].

Parametre	a ₀ (nm)	<i>e</i> ₃₁ (C/m ²)	e ₃₃ (C/m²)	<i>C</i> ₁₃ (GPa)	<i>C</i> 33(GPa)	<i>P_{SP}</i> (C/m ²)
AIN	0,3112	-0,60	1.46	108	373	-0,081
GaN	0,3189	-0,49	0,73	103	405	-0,029

Eş. 2.4 incelendiğinde eşitlikte yer alan $\left[e_{31} - e_{33}\frac{c_{13}}{c_{33}}\right]$ ifadesinin Al_xGa_{1-x}N bariyer tabakasının alaşım kompozisyonundan bağımsız olduğu ve her zaman negatif değerler aldığı görülmektedir. Bu durumda $a > a_0$ çekme gerilimi (tensile

strain) durumunda piezoelektrik kutuplanma alanı negatif ve $a < a_0$ baskı gerilimi (compressive strain) durumunda ise pozitif olacaktır. Ga-yüz heteroyapılarda GaN'nın doğal kutuplanma vektör yönü alttaşa doğru (negatif) ve N-yüz heteroyapılarda ise alttaştan uzaklaşacak (pozitif) şekilde ters yöndedir. Bu nedenle doğal ve piezoelektrik kutuplanmalar arasındaki yönelim, çekme gerilimi durumunda paralel ve baskı gerilimi durumunda ise antiparalel olacaktır [24].

Üst üste büyütülen AlGaN ve GaN tabakaları arasındaki kutuplanma (*P*) farklılığı bu iki tabakanın birleştiği sınır bölgede bir gradyent ve buna bağlı olarak da bir tabaka yük yoğunluğunun oluşmasına neden olur. Q_P ve σ_P , AlGaN/GaN birleşme sınırında kutuplanma kaynaklı yük ve yük yoğunluğu (S yüzey alanı olmak üzere, $\sigma_P = Q_P/S$ şeklinde tanımlanır) ve **n** silindirik kapalı bir yüzeyden yüzeye dik olacak şekilde yönlenen bir vektör olmak üzere kutuplanma kaynaklı yük yoğunluğu şekilde ifade edilir:

$$\boldsymbol{\nabla} \cdot \boldsymbol{P} = -\sigma_P = -Q_P / S \tag{2.5}$$

$$\oint \mathbf{P} \cdot d\mathbf{S} = \oint (\mathbf{P} \cdot \mathbf{n}) dS = -Q_P \tag{2.6}$$

$$\sigma_P = Q_P / S = -\frac{1}{S} \oint (\boldsymbol{P} \cdot \boldsymbol{n}) dS$$
(2.7)

Şekil 2.10'da Eş. 2.7'yi çözmek amacıyla silindirik kapalı bir yüzey ve bu yüzeye dik olacak şekilde yönlenen birim vektör n tanımlanmıştır. Şekil 2.10'da GaN ve AlGaN'nın değişik büyütme durumlarına bağlı olarak doğal ve piezoelektrik kutuplanma alanları gösterilmektedir.

Şekil 2.10. Wurtzite yapısında (a) Ga-yüz AlGaN/GaN, (b) N-yüz AlGaN/GaN ve (c) Ga-yüz AlGaN/N-yüz GaN heteroyapılar için doğal ve piezoelektrik kutuplanma alanları [23].

Ga-yüz AlGaN/GaN heteroyapı [Şekil 2.10 (a)] için kutuplanma kaynaklı yüzey yük yoğunluğu;

$$\sigma_p = -\frac{1}{S} \oint (\boldsymbol{P} \cdot \boldsymbol{n}) dS \Rightarrow \sigma_1 = \left[P_{PE,AlGaN} + P_{SP,AlGaN} \right] - \left[P_{SP,GaN} \right] > 0$$
(2.8)

N-yüz AlGaN/GaN heteroyapı [Şekil 2.10 (b)] için kutuplanma kaynaklı yüzey yük yoğunluğu;

$$\sigma_p = -\frac{1}{S} \oint (\boldsymbol{P} \cdot \boldsymbol{n}) dS \Rightarrow \sigma_2 = \left[P_{SP,GaN} \right] - \left[P_{PE,AlGaN} + P_{SP,AlGaN} \right] < 0$$
(2.9)

Ga-yüz AlGaN/N-yüz GaN heteroyapı [Şekil 2.10 (c)] için kutuplanma kaynaklı yüzey yük yoğunluğu;

$$\sigma_p = -\frac{1}{S} \oint (\boldsymbol{P} \cdot \boldsymbol{n}) dS \Rightarrow \sigma_3 = \left[P_{PE,AlGaN} + P_{SP,AlGaN} \right] + \left[P_{SP,GaN} \right] > 0$$
(2.10)

şeklinde bulunur.

Kutuplanma kaynaklı yüzey yük yoğunluğunun $\sigma_p>0$ olması durumunda; pozitif kutuplanma yükü elektronlar tarafından, $\sigma_p<0$ olması durumunda ise negatif kutuplanma yükü boşluklar (hole) tarafından dengelenir.

x ifadesi AlGaN tabakasındaki Al mol oranı olmak üzere Wurtzite yapısında Gayüz AlGaN/GaN heteroyapı için örgü parametresi, piezoelektrik sabitler, elastik sabitler ve doğal kutuplanma alanları cinsinden yüzey yük yoğunluğu, Eş. 2.11'de görüldüğü gibi ifade edilir.

$$\sigma_P = \left[P_{SP}(x) + 2 \frac{a(0) - a(x)}{a(x)} \left(e_{31}(x) - e_{33}(x) \cdot \frac{\zeta_{13}(x)}{\zeta_{33}(x)} \right) \right] - \left[P_{SP}(0) \right]$$
(2.11)

Kutuplanma kaynaklı yüzey yük yoğunluğunun $\sigma_p>0$ olması durumunda; elektronlar, bu pozitif kutuplanma yükünü dengelemek için AlGaN/GaN arayüzeyinde taban enerji seviyesi, Fermi enerji düzeyi E_F 'nin altında olacak şekilde üçgen bir kuantum kuyusuna doğru haraket ederek 2-DEG oluştururlar. AlGaN tabakasındaki toplam kutuplanma alanı, GaN tampon tabakasından daha büyük olması nedeniyle 2-DEG, AlGaN/GaN arayüzeyinin altında oluşur. Şekil 2.11'de Ga-yüz AlGaN/GaN heteroyapı için enerji bant diyagramı görülmektedir.

Şekil 2.11. Ga-yüz AlGaN/GaN heteroyapı için enerji bant diyagramı [23].

GaN kristal yapısının Ga-yüz veya N-yüz olması büyütme koşullarına sıkı sıkıya bağlı olup polaritenin değişimi alttaş üzerine büyütülen AIN çekirdeklenme kalınlığı ile değiştirilebilmektedir. Ancak aygıt performansı tabakasının Ga-yüz ve N-yüz HEMT arasında ciddi bir farklılıklar açısından bulunmamaktadır [32]. Bu tez kapsamında da Si-yüz SiC alttaş üzerine ince AIN çekirdeklenme tabakası kullanılarak büyütülen Ga-yüz AlGaN/GaN HEMT yapılar üzerinde çalışılacaktır. Bu nedenle bu tez kapsamında 2-DEG için yapılacak tüm açıklamalar bundan sonra Ga-yüz AlGaN/GaN heteroyapılar için olacaktır.

AlGaN/GaN heteroeklemde kutuplanma alanı tarafından oluşturulan bağlı tabaka yük yoğunluğu σ_p , metal/AlGaN kontağında oluşan Schottky bariyer yüksekliği $Ø_B$, GaN iletim bant sınırına göre heteroeklemin Fermi enerji düzeyi ΔE_i , AlGaN/GaN arayüzeyinde iletim bandı ofset değeri ΔE_C , bağıl dielektrik geçirgenlik ε_{AlGaN} , elektron yükü q, vakum dielektrik geçirgenlik ε_0 , AlGaN kalınlığı d_{AlGaN} ve AlGaN bariyer tabakasındaki Al mol oranı x olmak üzere AlGaN/GaN arayüzeyinde oluşan 2-DEG'in etkin tabaka yük konsantrasyonu n_s , şu şekilde ifade edilir [33]:

$$n_{s}(x) = \frac{\sigma_{p}}{q} - \left[\frac{\varepsilon_{0}\varepsilon_{AlGaN}(x)}{d_{AlGaN}q^{2}}\right] \cdot \left[q\phi_{B}(x) + \Delta E_{i}(x) - \Delta E_{C}(x)\right] \quad (2.12)$$

Eş. 2.12'den görüldüğü üzere kutuplanma tabaka yük yoğunluğu tarafından oluşturulan tabaka taşıyıcı konsantrasyonu, AlGaN bariyer tabakasındaki Al mol oranı χ 'in bir fonksiyonu olarak değişmektedir.

Eş. 2.12'de;

 $\varepsilon_{AlGaN}(x) = -0.5x + 9.5$ [31.34]

 $q\phi_B(x) = (1,3x + 0,84)$ eV [31,34]

 $\Delta E_i(x) = E_0(x) + [\pi \hbar^2 n_s(x)]/m^*(x) \quad [31], \text{ bu eşitlikte } E_0(x) \quad 2\text{-DEG'in}$ taban altbant seviyesi olup şu şekilde ifade edilir,

$$E_0(x) = \left\{9\pi\hbar e^2 / \left[8\varepsilon_0 \sqrt{8m_{AlGaN}^*(x)}\right] \cdot n_s(x) / \varepsilon_{AlGaN}(x)\right\}^{2/3} [31]$$

 $\Delta E_C(x) = 0,7[E_g(x) - E_g(0)]$ [31,35,36] eşitliğini ifade eder. Bu eşitlikte $E_g(x)$ Al konsantrasyonu cinsinden AlGaN'ın yasak bant aralığını ifade eder ve Vegard yasası olarak bilinir.

$$E_g(x) = xE_{g,AlN} + (1-x)E_{g,GaN} - bx(1-x) \text{ eV}, \qquad (2.13)$$

Eş. 2.13'te $E_{g,AlN} = 6,13 \text{ eV}, E_{g,GaN} = 3,42 \text{ eV}$ ve *b* eV cinsinden bant eğilme (band bowing) parametresini ifade eder ve genelde 1 *e*V civarında kabul edilir [37].

 m_e elektronun durgun kütlesi olmak üzere $m_{AlN}^* = 0,48m_e$ ve $m_{GaN}^* = 0,2m_e$ olmak üzere $m_{AlGaN}^*(x) = (0,28x + 0,2)m_e$ şeklinde ifade edilir [38,39].

Şekil 2.12'de Al_xGa_{1-x}N bariyer tabakasındaki Al mol oranına bağlı olarak çeşitli AlGaN bariyer kalınlıklarındaki teorik 2-DEG taşıyıcı konsantrasyonu (n_s) grafiği görülmektedir.

Şekil 2.12. Al_xGa_{1-x}N bariyer tabakasındaki Al mol oranına bağlı, çeşitli AlGaN bariyer kalınlıklarında teorik 2-DEG taşıyıcı konsantrasyonu [31].

2.4. AIGaN/GaN HEMT Çalışma Prensibi

HEMT'ler üç terminalli aktif devre elemanları olup bu aygıtlarda akım, 2-DEG boyunca kaynak (source)-akaç (drain) adı verilen ohmik kontaklar arasında gate (kapı) elektrodu (Schottky kontak) vasıtasıyla kontrol edilmektedir. Şekil 2.13'te AlGaN/GaN HEMT aygıt şematik çizimi görülmektedir. Akaç'a pozitif bir gerilim (V_{DS}) uygulanması durumunda akaç-kaynak arasındaki potansiyel düşerek 2-DEG boyunca elektronlar ve dolayısıyla da akım akmaya başlamaktadır. Bu akımın kontrolü gate elektroduna uygulanan V_{GS} voltajı ile kontrol edilmektedir. Şekil 2.14'te farklı gate gerilimlerinde AlGaN/GaN HEMT iletim bandı diyagramı görülmektedir.

 $V_{GS} = 0V$ durumunda (Şekil 2.14 a); kuantum kuyusunun altbant enerji düzeylerinde, Fermi enerji düzeyinin (E_F) altında olacak şekilde 2-DEG elektronlarının yerleşeceği enerji düzeyleri bulunur ve bu durumda iken aygıt, yüksek tabaka taşıyıcı konsantrasyonuna sahip olacak şekilde iletim (on-state) durumundadır.

Şekil 2.13. AlGaN/GaN HEMT aygıt şematik çizimi.

Şekil 2.14. Farklı gate gerilimlerinde AlGaN/GaN HEMT iletim bandı diyagramı [24].

 $V_{GS} > 0$ V durumunda (Şekil 2.14 b); Fermi enerji seviyesi yükselir. İletim bandında, Fermi enerji düzeyi altında bulunacak izin verilen durum yoğunluğu (density of state) artar ve buna bağlı olarak da kuantum kuyusu içindeki 2-DEG tabaka taşıyıcı konsantrasyonu artar.

 $V_{GS} < 0$ V durumunda (Şekil 2.14 c); Fermi enerji seviyesi düşer. Fermi enerji seviyesi, kuantum kuyusunun altına düşer. Altbant enerji düzeylerinde 2-DEG tabaka taşıyıcı konsantrasyonu artık ihmal edilebilir bir düzeye ulaşır. Bu durumda aygıt, artık kapalı (off-state) durumda olup akaç-kaynak arasında bir akım (I_{DS}) akmaz.

 V_{GS} değerini negatif yönde arttırmak, gate altındaki kanalı tüketerek (depleted) kaynak ile akaç arasındaki I_{DS} akımının azalmasına neden olur. Gate altındaki kanalda, tabaka yük yoğunluğunu sıfır yaparak akaç-kaynak arasındaki akımı kısan (pinch off) minimum voltaj değeri, eşik voltaj (threshold voltage) olarak isimlendirilir ve V_{th} olarak gösterilir.

Gate voltajının (V_{GS}), eşik voltaj (V_{th}) üzerinde olması durumunda, kaynak ile akaç arasına uygulanacak bir V_{DS} potansiyel farkı aracılığıyla akım, 2-DEG boyunca akmaya başlar. Akaç gerilimi (V_{DS}) arttırıldıkça kanaldan akan akım, belli bir değere kadar doğrusal olarak artar. Bu değerden sonra ise kanal içinden akan akım, doyuma (satüre) ulaşır. Aygıtın doyuma girdiği minimum voltaj değeri, bükülme voltajı olarak isimlendirilir ve V_{knee} olarak gösterilir. Maksimum doyum (satürasyon) akımı, I_{DSS} olarak ifade edilir. Şekil 2.15'te tipik AlGaN/GaN HEMT aygıtlar için çeşitli gate voltajları (V_{GS}) için akaç gerilimine (V_{DS}) bağlı kanaldan akan akımın (I_{DS}) değişimi grafiği görülmektedir. Kanaldan akabilecek maksimum doyum (satürasyon) akımı I_{DSS} , kanalın n_S tabaka taşıyıcı konsantrasyonuna bağlıdır.

Şekil 2.16'da da AlGaN/GaN heteroyapı için çeşitli parametrelere bağlı bant diyagramı görülmektedir.

Şekil 2.15. AlGaN/GaN HEMT aygıtlar için tipik bir DC-IV karakteristiği örneği.

Şekil 2.16. AlGaN/GaN heteroyapının çeşitli parametrelere bağlı bant diyagramı [41].

Kaynak ve akacın dış seri dirençlerinin ihmal edilmesi durumunda n_s , V_{GS} ve V_{th} arasındaki ilişki şu şekilde ifade edilir: AlGaN tabakasının iletim bandı potansiyeli V_2 olmak üzere, Şekil 2.15'te z = 0 için V(z) = 0 ve z = -d için $V(z) = -V_2$ olacaktır. Kanal içindeki yüke bağlı olarak bu kanaldaki potansiyeli bulmak için Poisson denklemi çözülürse;

$$\frac{d^2 V(z)}{dz^2} = -\frac{\sigma_p(z)}{\varepsilon_0 \varepsilon_{AlGaN}}$$
(2.14)

$$V_2 = -F \cdot d + \frac{\sigma_p d}{\varepsilon_0 \varepsilon_{AlGaN}}$$
(2.15)

F heteroeklem yüzeyindeki elektrik alanı ifade etmek üzere 2-DEG'deki taşıyıcı konsantrasyonu n_s ile F arasındaki ilişki Gauss yasası kullanılarak çözülürse;

$$\oint \mathbf{F} \cdot d\mathbf{S} = \frac{q_{net}}{\varepsilon_0 \varepsilon_{AlGaN}} = \frac{q n_s S}{\varepsilon_0 \varepsilon_{AlGaN}} \Rightarrow F \varepsilon_0 \varepsilon_{AlGaN} = q n_s \tag{2.16}$$

Eşitliği elde edilir. Eş. 2.16, Eş. 2.15'te yerine yazılırsa,

$$n_{S} = \frac{\varepsilon_{0}\varepsilon_{AlGaN}}{qd} \left\{ V_{GS} - \left(\phi_{B} - \frac{\Delta \varepsilon_{C}}{q} - \frac{\sigma_{p}d}{\varepsilon_{0}\varepsilon_{AlGaN}} + \frac{\Delta \varepsilon_{i}}{q} \right) \right\}$$
(2.17)

Eş. 2.17'de
$$V_{th} = Ø_B - \frac{\Delta E_C}{q} - \frac{\sigma_p d}{\varepsilon_0 \varepsilon_{AlGaN}} + \frac{\Delta E_i}{q}$$
 olmak üzere

$$n_{S} = \frac{\varepsilon_{0}\varepsilon_{AlGaN}}{qd} \left(V_{GS} - V_{th} \right)$$
(2.18)

Eşitliği elde edilir. Eş. 2.18'de ($\varepsilon_0 \varepsilon_{AlGaN}/qd$) ifadesi, gate-kanal arası kapasitansı (C_{2BEG}) ifade etmektedir.

Eş. 2.18 incelendiğinde; V_{GS} 'nin pozitif değerleri için tabaka taşıyıcı konsantrasyonu n_s 'nin ve buna bağlı olarak da I_{DS} 'nin artacağı, V_{GS} 'nin negatif değerleri için ise n_s 'nin ve buna bağlı olarak da I_{DS} 'nin azalacağı görülmektedir. Ayrıca aynı eşitlikte, eşik voltaj (threshold voltage) değerini ifade eden V_{th} 'ın kanalın tabaka taşıyıcı konsantrasyonunu ifade eden n_s 'yi sıfır yapan minimum negatif voltaj değeri olduğu da açık bir şekilde görülmektedir.

2-DEG için kanal iletkenliği, σ ; n_s , kanal tabaka taşıyıcı konsantrasyonu ve μ , kanaldaki elektronların hareketliliği (mobilite) olmak üzere şu şekilde ifade edilir:

$$\sigma = q \cdot n_s \cdot \mu \tag{2.19}$$

 W_G kanalı kontrol eden gate genişliği, E kanal içindeki elektrik alan ve V(x) kanal içindeki potansiyel olmak üzere akaç-kaynak arasında 2-DEG boyunca akan akım I_{DS} şu şekildeifade edilir:

$$I_{DS} = W_G \cdot \sigma \cdot E = W_G \cdot \sigma \cdot \frac{\partial V(x)}{\partial x}$$
(2.20)

Eş. 2.19, Eş. 2.20'de yerine yazılırsa,

$$I_{DS} = W_G \cdot q \cdot n_s \cdot \mu \cdot \frac{\partial V(x)}{\partial x}$$
(2.21)

Eşitliği elde edilir.

Bir dış gerilim altında Eş. 2.18,

$$n_{S} = \frac{\varepsilon_{0}\varepsilon_{AlGaN}}{qd} \left[V_{GS} - V_{th} - V(x) \right]$$
(2.22)

Şeklinde ifade edilir. Bu durumda; Eş. 2.22, Eş. 2.21'de yerine yazılırsa,

$$I_{DS} = W_G \cdot q \cdot \frac{\varepsilon_0 \varepsilon_{AlGaN}}{qd} \left[V_{GS} - V_{th} - V(x) \right] \cdot \mu \cdot \frac{\partial V(x)}{\partial x}$$
(2.23)

$$\int_0^{L_G} I_{DS} \cdot dx = W_G \cdot \frac{\varepsilon_0 \varepsilon_{AlGaN}}{d} \cdot \mu \cdot \int_{V_S}^{V_D} [V_{GS} - V_{th} - V(x)] dV(x) \quad (2.24)$$

$$I_{DS} \cdot L_G = W_G \cdot \frac{\varepsilon_0 \varepsilon_{AlGaN}}{d} \cdot \mu \cdot \left[V_{GS} - V_{th} - \frac{V_{DS}^2}{2} \right] V_{DS}$$
(2.25)

Eşitliği elde edilir. Eş. 2.25'te I_{DS} akımı, V_{DS} 'nin belli bir kritik değerinden sonra artık doyuma (saturasyon) ulaşacak ve artmayacaktır, bu noktada V_{DS} , V_{DSS} ve I_{DS} akımı da I_{DSS} olarak isimlendirilir. Doyum noktasında I_{DS} akımının V_{DS} 'ye göre türevi sıfır olacaktır. Bu durumda Eş. 2.25 için şu eşitlik yazılabilir;

$$\frac{dI_{DS}}{dV_{DS}} = W_G \cdot \frac{\varepsilon_0 \varepsilon_{AlGaN}}{L_G d} \cdot \mu \cdot [V_{GS} - V_{th} - V_{DS}] = 0$$
(2.26)

Eş. 2.26'dan doyum (saturasyon) voltajı için,

$$V_{DSS} = V_{GS} - V_{th} \tag{2.27}$$

Eşitliği elde edilir. Bu eşitlik Eş. 2.25'te yerine yazılırsa doyum (saturasyon) akımı için,

$$I_{DSS} = \frac{1}{2} \cdot \frac{W_G \mu \varepsilon_0 \varepsilon_{AlGaN}}{L_G d} \cdot (V_{GS} - V_{th})^2$$
(2.28)

Eşitliği elde edilir. Elde edilen bu eşitlik, kanal içindeki düşük elektrik alanın varlığına bağlı elektriksel taşınımın olduğu $L_G > 10 \,\mu\text{m}$ durumları için geçerlidir. Düşük L_G uzunluklarında elektriksel taşınım, yüksek elektrik alan içinde gerçekleşir. Bu durumda elektrik alan yoğunluğu belli bir kritik değeri geçerse, 2-DEG içindeki elektronların hızı doyuma ulaşmaya başlar ve doyum akımı, doygun hız modeli (saturation velocity model) ile belirlenir (Eş. 2.29). Doygun hız modeline göre I_{DSS} şu şekilde ifade edilir;

$$I_{DSS} = q \cdot n_s \cdot v_{sat} \tag{2.29}$$

Gate kapasitansı ise basit bir ifade ile şu şekilde yazılabilir,

$$C_G = \varepsilon_0 \varepsilon_{AlGaN} \frac{L_G W_G}{d_{AlGaN}}$$
(2.30)

2-DEG için geçiş iletkenliği (g_m) , sabit bir akaç-kaynak voltajında gate voltajı değişimine karşılık akaç-kaynak arasındaki akımın (I_{DS}) değişimini ifade etmek üzere,

$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}}\Big|_{V_{DS=sabit}}$$
(2.31)

Şeklinde ifade edilir. Geçiş iletkenliği ayrıca gate uzunluğu, gate kapasitansı ve doygun elektron hızı cinsinden basit olarak şu şekilde de ifade edilebilir,

$$g_m \approx \frac{1}{L_G} C_G v_{sat} \tag{2.32}$$

2-DEG elektronlarının gate altındaki kanaldan geçiş zamanı au olmak üzere akım kazancı kesilim frekansı (f_T),

$$f_T = \frac{1}{2\pi\tau} = \frac{v_{sat}}{2\pi L_G} = \frac{g_m}{2\pi C_G}$$
(2.33)

 R_L aygıtın çıkışındaki yük direnci ve R_{in} aygıtın girişindeki direnç olmak üzere güç kazancı kesilim frekansı ya da maksimum salınım frekansı f_{max} ,

$$f_{max} = \frac{f_T}{2} \cdot \sqrt{\left(\frac{R_L}{4R_{in}}\right)} \tag{2.34}$$

Ve aygıtın maksimum DC çıkış gücü (P_{max}), kırılma gerilimi değeri (V_{br}) olmak üzere,

$$P_{max} \approx \frac{I_{DSS} \cdot (V_{br} - V_{knee})}{8}$$
(2.35)

Eşitlikleri ile verilir. Şekil 2.17 (a)'da HEMT aygıtlar için kesit görünümlü küçük sinyal devre eşleniği, (b)'de iç (intrinsic) ve dış (extrinsic) elemanlı küçük sinyal devre eşleniği ve (c)'de DC I-V grafiği örneği ile birlikte basit bir devre modeli görülmektedir.

Şekil 2.17. (a) HEMT aygıtlar için kesit görünümlü küçük sinyal devre eşleniği,
(b) iç (intrinsic) ve dış (extrinsic) elemanlı küçük sinyal devre eşleniği [42] ve (c) DC I-V grafiği örneği ile birlikte basit bir devre modeli [43].

2.5. GaN Temelli HEMT Epitaksiyel Yapı

HEMT aygıtlar, depletion mod (azaltıcı mod, kanal ayarlamalı) ve enhancement mod (çoğaltıcı mod, kanal oluşturmalı) olmak üzere iki şekilde çalıştırılabilir. HEMT aygıtların hangi modta çalışacağı epitaksiyel yapıya ve uygulanan fabrikasyon tekniklerine bağlı olarak belirlenir [44]. Bu tez kapsamında depletion modta (azaltıcı mod, kanal ayarlamalı) çalışan HEMT epitaksiyel yapılar üzerinde çalışılacaktır. Şekil 2.18'de GaN temelli HEMT epitaksiyel yapısı görülmektedir.

<mark>Kaynak</mark>	Gate	Akaç					
GaN ~1-5nm	(Kep Tabakası)						
Al _x Ga _(1-x) N ~20-30 nm	(Bariyer Tabakası)						
AIN ~1-2 nm	(Ara Katma	n)					
HR-GaN/i-GaN ~1-2 μm (Tampon/Kanal Tabakas							
AIN/AIGaN/GaN ~10-20 nm (Çekirdeklenme Tabakası)							
SiC/Al ₂ O ₃ /Si	(Alttaş)	(Alttaş)					

Şekil 2.18. GaN temelli HEMT epitaksiyel yapısı.

2.5.1. Alttaş

HEMT epitaksiyel yapısının üzerinde büyütüleceği alttaş, aygıt performansını etkileyen önemli parametrelerden birisidir ve aygıtın uygulama alanı göz önünde bulundurularak seçilir. Çizelge 2.4'te III-Nitrür büyütmeleri için uygun olan alttaşlar için bazı özellikler görülmektedir. Çizelge incelendiğinde GaN ve AlN'ın, oldukça düşük örgü uyumsuzluğu nedeniyle alttaş için en uygun malzemeler olduğu görülmektedir. Ancak gerek GaN gerekse de AlN alttaşların üretim zorluğuna bağlı yüksek üretim maliyetleri ve yüksek kusur yoğunlukları, bu tip alttaşların hala ticari olarak yaygınlaşamamasına neden olmaktadır [49-50]. Si ve Safir alttaşlar ise her ne kadar düşük maliyetli olsalar da sahip oldukları zayıf termal iletkenlik ve GaN malzemesi ile olan yüksek örgü uyumsuzlukları nedeniyle dezavantaj oluşturmaktadır. SiC alttaş ise; yüksek maliyetli olmasına

rağmen sahip olduğu yüksek termal iletkenlik, yüksek erime sıcaklığı, düşük örgü uyumsuzluğu ve diğer alttaşlarla büyütülenlere göre çok daha yüksek HEMT aygıt performansına olanak sağlaması nedeniyle tercih edilmektedir [51]. Bu tez çalışması kapsamında da yüksek güçlü HEMT aygıtlar üretmek amacıyla, GaN temelli HEMT epitaksiyel yapılar, 6H-SiC alttaş üzerinde büyütüldü.

	Örgü Sabiti			Isıl Genleşme			Isıl	Erime
Alttaş	(Å)	Uyuşmazlık (%)		(10 ⁻⁶ K ⁻¹)	Uyuşmazlık (%)		İletkenlik (Wcm ⁻¹ K ⁻¹)	Noktası (K)
		GaN	AIN		GaN	AIN		
GaN	a=3,189	-	2,4	5,6	-	25,7	4,1	2791
	c=5,185	-	3,9	3,2	-	-66,2		
AIN	a=3,112	-2,5	-	4,2	-34,7	-	5,9	3487
	c=4,982	-4,1	-	5,3	39,9	-		
Safir (Al ₂ O ₃)	a=4,759	-16	-13	7,3	23,4	43,2	0,41	2303
	c=12,99			8,5				
6H-SiC	a=3,081	-3,5	-1,0	4,5	-25,3	7	4.9	3102
	c=15,12			4,2			.,0	
Si (111)	a ₁₁₁ =3,84	17	19	2,6	-115	-60	1,3	1412

Çizelge 2.4. III-Nitrür büyütmeleri için uygun olan alttaşlar için bazı özellikler [45-48].

2.5.2. Çekirdeklenme Tabakası

Çekirdeklenme tabakası, alttaş ile bunun üzerinde büyütülecek tampon/kanal tabakası arasındaki stres ve örgü uyumsuzluklarını azaltmak amacıyla büyütülür [52]. Çekirdeklenme tabakasının tercihi, alttaş malzemesine ve epitaksiyel büyütme tekniğine bağlı olarak değişir. Genelde çok ince AIN, AlGaN ya da GaN tabakası tercih edilir. 6H-SiC alttaş ile bunun üzerinde büyütülecek GaN tampon/kanal tabakası arasındaki örgü uyumsuzluğu AIN'a göre daha fazla olduğundan (Bakınız Çizelge 2.4), düşük yüzey pürüzlülüğüne sahip yüksek kalitede bir kristal yapısı elde etmek amacıyla, bu tez çalışması çekirdeklenme %1 kapsamında, tabakası olarak 6H-SiC ile örgü uyumsuzluğuna sahip AIN büyütüldü.

2.5.3. Tampon/Kanal Tabakası

Bariyer tabakasından daha düşük bir bant aralığına sahip olan tampon/kanal tabakası, 2-DEG oluşturmak amacıyla yüksek dirençli (yarı yalıtkan), düşük kusur yoğunluklu ve düzgün bir yüzey yapısına sahip olacak şekilde oldukça yüksek kalitede büyütülür. Aksi halde tampon tabakasının hemen altında oluşan 2-DEG elektronları tuzaklanarak tampon akım kaçaklarına ve akaç akım çökmelerine yol açarak kanalın kontrol edilmesini zorlaştırıp HEMT aygıttan yüksek çıkış gücü ve yüksek kırılma gerilimleri elde edilmesini engeller. Tampon tabakası, iyi bir 2-DEG hareketliliği ve tabaka taşıyıcı konsantrasyonu elde etmek amacıyla genelde 1-2 µm kalınlıkta olacak şekilde büyütülür [53,54].

2.5.4. Ara Katman

Ara katman, tampon tabakası ile bariyer tabakası arasında yer alan oldukça hassas kalınlığa sahip bir tabakadır. Genelde 1-2 nm kalınlığa sahip AIN malzemesi olacak şekilde büyütülen bu tabaka, arayüzey pürüzlülük saçılmalarını azaltarak ve alaşım bozukluğu saçılmalarını de engelleyerek tabaka taşıyıcı konsantrasyonunun artmasını sağlar. Bununla birlikte 2-DEG elektronları ile bunların bariyer tabakasında yer alan iyonize halindeki ana atomları arasındaki Coulomb saçılmalarını azaltarak yüksek taşıyıcı hareketliliğinin elde edilmesine de olanak sağlar [55-57].

2.5.5. Bariyer Tabakası

Tampon tabakasından daha büyük bir bant genişiliğine sahip olacak şekilde büyütülen AlGaN bariyer tabakası, sahip olduğu yüksek piezoelektrik kutuplanma özelliği nedeniyle 2-DEG'in oluşmasında çok önemli bir rol oynamaktadır. AlGaN bariyer tabakasının kalınlığı ve Al konsantrasyonu 2-DEG için kritik bir rol oynamakta olup bariyer tabakasının belli bir kritik kalınlığına kadar 2-DEG oluşmaz. AlGaN bariyer tabakasındaki Al konsantrasyonun az olması 2-DEG'teki taşıyıcı yoğunluğunun az olmasına, belli bir kritik değerin üstünde olması ise ara yüzeyde kusur ve gerilmelerin artmasına ve 2-DEG elektronlarının arayüzey pürüzlülük ve alaşım saçılmalarına daha fazla maruz kalmasına neden olur [58,59].

2.5.6. Kep Tabakası

Kep tabakası, gate kaçaklarını azaltmak, Schottky bariyer yüksekliğini arttırmak, yüzeyin oksitlenmesini engellemek, pürüzsüz bir yüzey morfolojisi ve düşük tabaka direnci elde etmek amacıyla çok ince (1-5 nm) bir tabaka olacak şekilde büyütülür [18,60].

Sonuç olarak yukarıdaki açıklamalar ışığında yüksek güç ve yüksek frekans uygulamalarına dönük yüksek performanslı bir HEMT aygıt üretimi için şu parametrelerin göz önünde bulundurulması gerektiği söylenebilir [61]:

- Minimum tampon kaçağı için; düşük kaçak akıma ve düşük kusur yoğunlukluğa sahip yüksek dirençli bir tampon tabakası eldesi
- Yüksek kırılma gerilimi için; yüksek kalitede malzeme büyütülmesi, düzgün yüzey pasivasyonu ve düşük tampon kaçak akımlarının eldesi
- Yüksek tabaka yük yoğunluğu için; stres ve gerilmelere neden olmayacak şekilde doğal ve piezoelektrik kutuplanmaları arttıracak yüksek Al konsantrasyonuna sahip bariyer tabakası eldesi
- Yüksek elektron hızı için; gate uzunluğu optimizasyonu
- Yüksek elektron hareketliliği için; eklem arayüzeyinde arayüzey pürüzlülük saçılması, alaşım saçılması ve dislokasyonlar nedeniyle oluşan saçılmaların engellenmesi
- Termal iletkenlik için; çalışma esnasında oluşacak yüksek ısının atılması amacıyla uygun alttaşın seçimi
- Kısa kanal etkisinin (short-channel effect) minimize edilmesi
- Kanal iletkenliğinin (σ) maksimize edilmesi

3. MOCVD YÖNTEMİ VE KARAKTERİZASYON TEKNİKLERİ

Bu bölümde öncelikle HEMT epitaksiyel yapıların üretiminde yaygın olarak kullanılan MOCVD (Metal Organik Kimyasal Buhar Birikimi) büyütme yöntemi hakkında bilgi verilecektir. Ardından yüksek kalitede HEMT epitaksiyel yapılar elde etmek amacıyla büyütme esnasında ve büyütme sonrasında epitaksiyel yapının karakterizasyonu amacıyla kullanılan reflektometre, fotolüminesans, X-ışını kırınımı (XRD), atomik kuvvet mikroskobu (AFM), Hall etkisi ölçümü, diferansiyel girişim kontrast (DIC) mikroskobu ve mekanik profilometre ölçüm teknikleri hakkında bilgi verilecektir.

3.1. MOCVD (Metal Organik Kimyasal Buhar Birikimi) Yöntemi

Metal Organik Kimyasal Buhar Biriktirme (MOCVD) yöntemi, bir alttaş üzerine yüksek kalitede ve yüksek saflıkta tek kristal yarıiletken tabakaların büyütülmesinde (epitaksi) yaygın olarak kullanılan bir yöntemdir. Şekil 3.1 (a)'da Bilkent Üniversitesi Nanoteknoloji Araştırma Merkezi (NANOTAM)'nde kurulu olan AIXTRON 200/4 RF S MOCVD sistemi genel görüntüsü ve (b)'de MOCVD reaktörü şematik çizimi görülmektedir.

MOCVD yönteminde, belli bir sıcaklıkta tutulan alttaş üzerine organometalik gazlar gönderilerek bu gazların yüzey üzerinde sıcaklığın etkisiyle organikmetalik atom bağlarının kırılması ve bunların da yüzey üzerinde birikerek kristalleşip ince film oluşturması sağlanmaktadır. III-Nitrür epitaksiyel film büyütmelerinde, III-grubu Alkiller ve V-grubu Hidrürler kimyasal reaktant olarak kullanılmaktadır. Alttaş üzerinde gerçekleşen piroliz reaksiyonu (yüksek sıcaklıklarda ayrıştırma) için genel denklem; R organik radikal, M III-grubu metal, E V-grubu ametal, R_3M III-grubu alkil ve EH_3 de V-grubu hidrür olmak üzere şu şekilde ifade edilir:

$$R_3 M_{(g)} + E H_{3(g)} \to M E_{(k)} + 3R H_{(g)}$$
 (3.1)

NH₃; amonyak, $(CH_3)_3Ga_{(g)}$; trimetil galyum (TMGa), $(CH_3)_3Al_{(g)}$; trimetil aluminyum (TMAI) ve taşıyıcı gaz hidrojen gazı (H₂) olmak üzere bu tez

kapsamında büyütülen HEMT epitaksiyel yapıların AIN, AlGaN ve GaN tabakaları için reaksiyon denklemleri şu şekilde yazılır:

$$(CH_3)_3 Al_{(g)} + NH_{3(g)} \to AlN_{(k)} + 3CH_{4(g)}$$
 (3.2)

$$(x)(CH_3)_3Al_{(g)} + (1-x)(CH_3)_3Ga_{(g)} + NH_{3(g)} \rightarrow Al_xGa_{(1-x)}N_{(k)} + 3CH_{4(g)}$$
(3.3)

$$(CH_3)_3Ga_{(g)} + NH_{3(g)} \to GaN_{(k)} + 3CH_{4(g)}$$
 (3.4)

Şekil 3.1. (a) Bilkent Üniversitesi Nanoteknoloji Araştırma Merkezi (NANOTAM)'nde kurulu olan AIXTRON 200/4 RF S MOCVD sistemi ve (b) MOCVD reaktörü şematik çizimi [62].

Kimyasal reaksiyonlar etrafında şekillenen ve oluşturulan HEMT epitaksiyel yapının kontrolü, reaktör içerisinde yer alan ve tabakaların büyütme anındaki hızlarının ve kalınlıklarının yüksek doğrulukla ölçülmesini sağlayan bir optik reflektometre aracılığıyla yapılmaktadır. Şekil 3.2 (a)'da MOCVD sisteminde yer alan optik reflektometre sistemi şematik çizimi ve (b)'de epitaksiyel tabakaya gelen-yansıyan ışınların şematik çizimi görülmektedir.

Şekil 3.2. (a) AIXTRON 200/4 RF S MOCVD sisteminde yer alan optik reflektometre sistemi şematik çizimi ve (b) Epitaksiyel tabakaya gelen-yansıyan ışınların şematik çizimi [62].

Büyütme esnasında reflektometre sisteminden çıkan ışınlar, büyütülmekte olan epitaksiyel tabakanın yüzeyinden yansıyarak tekrardan reflektometre sistemi tarafından yakalanır. Büyütülmekte olan tabaka ile bu tabakanın altındaki tabaka arasındaki kırıcılık indisi (*n*) farkı, gelen ve yansıyan ışınlar arasında bir faz farkı yaratarak, yansıyan ışığın yoğunluğunda yapıcı ve yıkıcı girişim desenleri oluşturacak şekilde modülasyonlara neden olur. Yansıyan ışığın girişimi nedeniyle, toplam reflektans (gönderilen ve yansıyan ışık yoğunluğu arasındaki oran) yoğunluğunda meydana gelen bu değişimler, Fabry-Perot osilasyonları olarak bilinmektedir. Şekil 3.3'te MOCVD sisteminde, epitaksiyel tabakaların büyütülmesi esnasında ölçümlenen tipik bir reflektans grafiği örneği görülmektedir. Fabry-Perot osilasyon periyodu Δt , kullanılan ışığın dalga boyu λ , epitaksiyel tabaka kalınlığı *d* ve büyüme hızı da μ_{gr} olmak üzere büyütülen tabaka kalınlığı ve büyütme hızı için şu eşitlikler yazılabilir [63],

$$d = \lambda/(2n) \tag{3.5}$$

$$\mu_{gr} = \lambda / (2n\Delta t) \tag{3.6}$$

Fabry-Perot osilasyon genliklerinden yola çıkarak aynı zamanda epitaksiyel tabaka içeriği ve yüzey pürüzlülüğü hakkında da bilgi alınabilmektedir [62].

Şekil 3.3. MOCVD sisteminde epitaksiyel tabakaların büyütülmesi esnasında ölçümlenen tipik bir reflektans grafiği örneği [63].

3.2. Fotolüminesans

Fotolüminesans, bir malzemenin kendi yasak enerji aralığından daha yüksek enerjili bir ışık ile etkileşmesi sonucu karakteristik bir ışın yaymasıdır. Bu karakterizasyon yönteminde, malzemenin optik özelliklerini belirlemek amacıyla malzemeye yasak enerji aralığından daha yüksek enerjide (UV lazer) bir ışın gönderilerek malzeme uyarılır. Uyarılan malzemenin elektronları, valans bandından iletim bandına geçer ancak, elektronlar burada kararsız olduklarından tekrardan valans bandına dönerken malzemenin yasak enerji aralığına (E_g) denk olacak şekilde karakteristik bir ışın yayarlar (İnceleyiniz Eş. 3.7) .

$$(h \cdot c)/\lambda = E_q \tag{3.7}$$

Eş. 3.7'de $h \approx 6.62 \text{x} 10^{-34} \text{J.s}$ değeri ile Planck sabiti, $c \approx 2.99 \text{x} 10^8 \text{ m/s}$ değeri ile ışık hızını ve λ da gönderilen ışının metre birimi cinsinden dalga boyunu ifade etmektedir.

Bu ışının spektral analizi, yarıiletken bir malzemenin yasak enerji aralığı, kristal kalitesi, safsızlıklar, kusurlar ve gerilmeler hakkında bilgi verir. Şekil 3.4 (a)'da NANOTAM'da kurulu Horiba Jobin Yvon Triax 550 CCD 266-325 nm Lazer Kaynaklı Fotolüminesans Sistemi ve (b)'de Fotolüminesans ölçüm sistemi çalışma prensibi görülmektedir.

Şekil 3.4. (a) Horiba Jobin Yvon Triax 550 CCD 266nm-325nm HeCd Lazer Kaynaklı Fotolüminesans Sistemi ve (b) Fotolüminesans ölçüm sistemi çalışma prensibi [64].

3.3. Atomik Kuvvet Mikroskobu (AFM)

AFM, örnek yüzeylerini atomik ölçekli çözünürlükle analiz etmek ve örneklerin yüzey pürüzlülüğünü ölçmek amacıyla kullanılan bir yöntemdir. Bu yöntemde esnek bir manivela üzerine monte edilmiş nanometre mertebesinde sivri bir uç, yüzeyi sabit bir kuvvet ile tarar. Tarama hareketi, yüzey ile sivri uç arasındaki mekanik temas kuvvetlerinin değişimi incelenerek piezoelektrik bir devre tarafından kontrol edilir. Tarama hareketi esnasında manivela üzerine sürekli olarak bir lazer ışını gönderilir ve yansıyan ışının konumu bir fotodedektör aracılığıyla kaydedilir. Yüzey morfolojisine bağlı olarak manivelada meydana gelen sapma ya da osilasyon genliğindeki değişimler, yüzey morfolojisinin belirlenmesini sağlar. Şekil 3.5 (a)'da NANOTAM'da bulunan VEECO CPII Atomik Kuvvet Mikroskobu (AFM) ve (b)'de AFM şematik çizimi görülmektedir.

Şekil 3.5. (a) VEECO CPII Atomik Kuvvet Mikroskobu (AFM) ve (b) AFM şematik çizimi [65].

3.4. X-lşını Kırınımı (XRD)

XRD, belli bir dalga boyundaki X-ışını demetlerinin kristal yapı üzerine gönderilerek kırınıma uğratılması ve kırınıma uğrayan ışınların da dedekte edilerek yorumlanması esasına dayanır. Her kristal yapıya özgün olacak şekilde kırınıma uğrayan ışınlar, malzemenin kristal sabitleri, içeriği, katman yönelimi, gerginliği ve dislokasyon yoğunluğu hakkında bilgi verir. Bir kristalle etkileşen X-ışınları, Bragg yasasına uygun olacak şekilde kırınıma uğrarlar. Kristal düzlemleri arasındaki mesafe d_{hkl} , gönderilen X-ışınının dalga boyu λ , kırınım yoğunluğun maksimum olduğu Bragg açısı θ_B , *n* bir tam sayı ve iki düzlemlerden yansıyan ışınları oluşturacağı yapıcı girişim desenleri Bragg yasasına göre şu şekilde ifade edilir,

$$2d_{hkl}\sin\theta_B = n\lambda, n = 0, 1, 2, 3...$$
(3.8)

Hekzagonal bir kristalde, düzlemler arasındaki mesafe d_{hkl} ; *a* ve *c* kristal sabitleri ve *hkl* Miller indisleri (birim hücrede düzlemler) olmak üzere şu şekilde ifade edilir,

$$d_{hkl} = \frac{1}{\sqrt{\frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2}\right) + \frac{l^2}{c^2}}}$$
(3.9)

Şekil 3.6 (a)'da NANOTAM'da bulunan RIGAKU Smartlab X-lşını difraktometresi (3 kW, Cu anot_Kα1, 1,544 Å), (b)'de XRD sistemi hareket eksenleri şematik çizimi ve (c)'de X-ışınlarının atomik düzlemlerden kırınımı görülmektedir.

Şekil 3.6. (a) RIGAKU Smartlab X-lşını difraktometresi (3 kW, Cu anot_Kα1, 1,544 Å), (b) XRD sistemi hareket eksenleri şematik çizimi [66] ve
 (c) X-ışınlarının atomik düzlemlerden kırınımı.

XRD sistemi temel olarak; X-ışını kaynağı, X-ışını giriş optiği, alıcı optik (monokromatör), dedektör ve örnek tutucudan oluşmaktadır. Örneklerin yapısal analizi için, iki tip tarama yapılarak ölçüm alınabilmektedir. Birinci taramada; Xışını kaynağının açısı (w) ve dedektör açısı (2 θ) değiştirilerek, 2 θ 'ya karşılık dedekte edilen sinyalin şiddeti ölçülür. Bu ölçüm ile örneğin katman bilgisi, katman kalınlığı ve alaşım oranları gibi bilgilerine ulaşılır. İkinci taramada ise; Xışını kaynağının geliş açısı (w), Bragg kırınım koşulunu sağlayan 2θ değerinin yarısına ve dedektör konumu da beklenen maksimum yansıma şiddeti açısına getirilerek sabit tutulur. Daha sonra belli bir açıda eğik tutulan örnek, belli bir χ açısı kadar (örneğin $\pm 1^0$) hareket ettirilir. Bu ikinci tarama ile örneğin simetrik ve asimetrik düzlemleri için döndürme eğrileri (rocking curve) elde edilerek tabakaların çizgisel kusurları (dislokasyonlar) ve kristal kalitesi hakkında bilgi alınmaktadır. Her iki tarama tipinde de ölçümlerin yorumlanması, yansıma şiddetinin FWHM (Full Width at Half Maximum=Yarı Yükseklikteki Tam Genişlik) değerinin analiz edilmesi ile yapılır. FWHM değeri, yansıma şiddeti eğrisinde şiddetin yarıya indiği noktada eğrinin tam genişliğini ifade eder. Yansıma şiddetinin keskin bir pike sahip olması, FWHM değerinin küçük olması anlamına gelir. Bu da kristalin düşük kusurlu iyi bir kristal kalitesine sahip olduğunu gösterir.

Simetrik düzlemler, yüzey normaline paralel örgü düzlemleri olup bu düzlemler için Miller indisleri, h = k = 0 ve $l \neq 0$ [örneğin (002)] şeklinde ifade edilir. Asimetrik düzlemler ise, yüzey normaline paralel olmayan örgü düzlemleri olup bu düzlemler için ise Miller indisleri, $h \neq l \neq 0$ ve k = 0 [örneğin (102)] şeklinde ifade edilir. Simetrik ve asimetrik düzlemler, kristal yapıda çizgisel kusurların (kristaldeki atom dizilişlerinde bir çizgi boyunca meydana gelen bozuklar) bulunması açısından önemlidir.

Çizgisel kusurlar, kenar dislokasyonu ve vida dislokasyonu olmak üzere ikiye ayrılır. Çizgisel kusurlar, belirli kristalografik düzlemlerde oluşabildiklerinden ilgili düzlemlerin X-ışını analizi, çizgisel kusur tiplerinin belirlenmesine olanak sağlar. Örneğin; kenar dislokasyonları, düzlemsel gerginliğe sahiptir ve simetrik düzlemler üzerinde bozulma oluşturamazlar. Bu da simetrik döndürme

40

eğrilerinin [örneğin (002) düzlemlerinden alınan ölçümlerde] kenar dislokasyonları hakkında bilgi vermeyeceği anlamına gelir. Ancak kenar dislokasyonları, asimetrik düzlemlerde [örneğin (102) düzlemi] bozulma oluşturur. Bununla birlikte vida dislokasyonları tüm düzlemleri etkileyen bozulmalar oluşturur. Bu da simetrik döndürme eğrilerinin sadece vida dislokasyonları ve asimetrik döndürme eğrilerinin de hem kenar hem de vida dislokasyonları hakkında bilgi vereceği anlamına gelir [67-69].

Şekil 3.7 (a)'da Hekzagonal yapılar için düzlemlerin şematik çizimive (b)'de kristal yapılarda oluşan çizgisel kusurların şematik çizimi görülmektedir.

Şekil 3.7. (a) Hekzagonal yapılarda düzlemler [70] ve (b) Kristal yapılarda oluşan çizgisel kusurlar.

3.5. Hall Etkisi Ölçümü

Hall Etkisi; malzemelerin taşıyıcı yoğunluğu, taşıyıcı hareketliliği, tabaka direnci gibi elektriksel özelliklerini belirlemek amacıyla kullanılan bir yöntemdir. Hall etkisi ölçümlerinde, Van der Pauw ölçüm tekniği olarak bilinen ve incelenmek istenen örneğin dört köşesine konulan ohmik kontaklara uygulanan sabit akıma/akımlara karşılık indüklenen potansiyel/potansiyeller ölçülür ve analiz edilir. Şekil 3.8 (a)'da Hall Etkisi ölçümlerinde kullanılan Van der Pauw kontak

yerleştirme konfigürasyonları ve (b)'de Van der Pauw ölçüm tekniği görülmektedir.

Şekil 3.8. (a) Van der Pauw kontak yerleştirme konfigürasyonları ve (b) Van der Pauw ölçüm tekniği [71].

 R_A ve R_B karakteristik dirençler ve R_S tabaka direnci olmak üzere Van der Pauw eşitliği şu şekilde yazılır,

$$e^{-\frac{\pi R_A}{R_S}} + e^{-\frac{\pi R_B}{R_S}} = 1$$
(3.10)

Eş. 3.10'ın nümerik çözümünden; n_s , 2-DEG tabaka taşıyıcı yoğunluğu ve μ_n , elektron hareketliliği olmak üzere,

$$R_s = \frac{1}{q n_s \mu_n} \tag{3.11}$$

$$\mu_n = \frac{1}{q n_s R_s} \tag{3.12}$$

eşitlikleri elde edilir.

2-DEG tabaka taşıyıcı yoğunluğunu (n_s) bulmak için; bir manyetik alan altında hareket eden elektronların Lorentz kuvveti etkisi ile sapması prensibi kullanılabilir. Şekil 3.9'da Hall Etkisi ölçümü şematik çizimi görülmektedir.

Şekil 3.9. Hall Etkisi ölçümü şematik çizimi [71].

Bir malzemeye x-yönünde sabit bir I akımı ve z-yönünde de sabit bir B manyetik alanı uygulanması durumunda y-yönünde kendiliğinden bir Hall voltajı indüklenir. F_E elektriksel kuvvet ve F_B manyetik kuvvet olmak üzere oluşan Hall voltajı (V_H) şu şekilde ifade edilir:

$$F_E = F_B \implies -qE = -qv_{sat}B \Rightarrow \frac{V_H}{w} = \frac{I}{wdnq}B \Longrightarrow V_H = \frac{I}{dnq}B \Longrightarrow$$

2-DEG tabaka taşıyıcı yoğunluğu $n_s = nd$ olmak üzere,

$$V_H = \frac{IB}{qn_s} \tag{3.13}$$

Eş. 3.13'ten 2-DEG tabaka taşıyıcı yoğunluğu n_s için ise şu ifade yazılabilir,

$$n_s = \frac{IB}{qV_H} \tag{3.14}$$

Tez kapsamında Hall etkisi ölçümleri için, NANOTAM'da bulunan Ecopia HMS 3000 model Hall etkisi ölçüm sistemi kullanıldı (bakınız Şekil 3.10). Tez kapsamında tüm örneklerin ölçümleri,1 mA'lik I sabit akımı ve 0,57 T'lık sabit bir B manyetik alanı kullanılarak yapıldı.

Şekil 3.10. Ecopia HMS 3000 model Hall ölçüm sistemi.

3.6. Diferansiyel Girişim Kontrast (DIC) Mikroskobu

1952 yılında Polonyalı fizikçi Georges Nomarski tarafından bulunduğu için Nomarski Girişim Kontrast (DIC) Mikroskobu ya da Nomarski Mikroskobu olarak bilinen bu görüntüleme yönteminde, yüzey üzerinde elde edilen optik gradyantlar aracılığıyla yüzey morfolojisinin daha geniş alanlarda incelenmesi mümkün olmaktadır. Bu da yüzey üzerinde yer alan kusurlar ve yüzey pürüzlülüğü hakkında daha geniş çapta bilgi alınmasına olanak sağlamaktadır. Şekil 3.11'de Nomarski Mikroskobu çalışma prensibi görülmektedir.

Şekil 3.11. Nomarski Mikroskobu çalışma prensibi [63].

Nomarski mikroskobun ışık kaynağından çıkan ışınlar, polarizör tarafından tek yönde ilerleyecek şekilde birleştirilir. Tek yönde ilerleyen ışınlar, DIC prizma aracılığıyla birbirlerini dik açılarda geçecek şekilde iki faza ayrılır. Bu ışınlar malzeme içinden farklı kırılma noktalarına sahip bölgelerden geçtiklerinde fazlardan biri gecikecektir. Bu ışınlar, DIC kaydırıcı tarafından tekrardan birleştirilerek analizöre geldiğinde bu ışınların yaratacağı girişim etkisi bir kontrast oluşturarak örneğin yüzey morfolojisinin belirlenmesine olanak sağlar.

3.7. Mekanik Profilometre

Mekanik profilometre, bir manivelaya bağlı sivri bir elmas ucun (iğne), yüzey üzerinde hareket ettirilmesi ile yüzey profilinin elde edilmesi esasına dayanır. Manivelaya bağlı uç, yüzey üzerinde hareket ederken yüzey morfolojisine bağlı olarak dikey yönde yapacağı hareketler (girinti ve çıkıntılar nedeniyle dikey yönde meydana gelen yer değiştirmeler) elektro-mekanik dönüştürücüler yardımıyla elektrik sinyaline dönüştürülerek yorumlanır ve bu şekilde de yüzeydeki yükseklik farklılıkları ölçümlenir. Mekanik profilometre yöntemi kullanarak; bir yüzey üzerinde engebelilik, basamak yüksekliği ve yüzey pürüzlülüğü gibi ölçümler alınabilmektedir. Şekil 3.12 (a)'da NANOTAM'da bulunan Veeco marka Dektak 150 model profilometre cihazı ve (b)'de cihazda ölçüm alınmasını sağlayan iğne görülmektedir.

Şekil 3.12. (a) Veeco marka Dektak 150 model profilometre cihazı ve (b) Sistemde ölçüm alınmasını sağlayan iğne.

4. GaN TEMELLİ HEMT EPİTAKSİYEL YAPILARIN MOCVD YÖNTEMİYLE BÜYÜTÜLMESİ VE KARAKTERİZASYONU

Eş. 2.35 $[P_{max} \approx (I_{DSS} \cdot (V_{br} - V_{knee})/8)]$ 'e göre bir HEMT aygıtın çıkış gücünü maksimize etmek; akaç-kaynak arasındaki I_{DSS} akımını ve kırılma voltajını (V_{br}) arttırmak anlamına gelmektedir. Bu ise; elektronların tuzaklanmalarını önleyerek kaçak akımları engelleyecek düşük kusur yoğunluğuna sahip yüksek kalitede kristal yapı büyütülmesini, stres ve gerilmelere neden olmayacak şekilde yüksek Al konsantrasyonuna sahip bariyer tabakası ve yüksek dirençli tampon tabakası büyütülmesini gerekli kılmaktadır.

Bu bölümde; yüksek güçlü HEMT aygıt üretimi kapsamında tasarladığımız kendi özgün GaN temelli HEMT epitaksiyel yapılarımız, MOCVD yöntemi kullanılarak büyütüldü ve büyütülen bu yapıların karakterizasyonları yapıldı.

4.1. Alttaş Hazırlığı

Bu tez kapsamında alttaş olarak, yüksek ısıl iletkenliğe sahip olması Si ve Safir, gibi alttaşlar üzerinde büyütülenlere göre çok daha yüksek HEMT aygıt performansına olanak sağlaması nedeniyle SiC tercih edildi. Şekil 4.1'de çeşitli alttaşlar üzerinde yer alan HEMT yapılar için $V_{DS} - I_{DS}$ simülasyon grafiği görülmektedir.

Epitaksiyel büyütmelerde alttaş türünün tercihi kadar seçilen alttaşın yüzeyinin de büyütme açısından uygun bir morfolojiye sahip olması gerekmektedir. Aksi halde bu alttaş üzerinde büyüyecek epitaksiyel tabakalarda kusurlar oluşması ve bunların da aygıt performansını olumsuz yönde etkilemesi kaçınılmaz olacaktır.

SiC oldukça sert bir malzeme olduğundan yüzeyinin büyütmeler için uygun hale getirilmesi oldukça zordur. Bu konuda firmalar kendi geliştirdikleri teknolojilerini kullanarak çeşitli kalitelerde SiC alttaş üretmektedirler. SiC kalitesi ve buna bağlı olarak da fiyat aralığı yüzey üzerinde yer alan çizik, mikroboru (micropipe) ve çatlak yoğunluğu, yüzey pürüzlülüğü ve kullanılabilir alan gibi parametrelerle
belirlenmektedir. Şekil 4.2'de iki ayrı firmaya ait SiC alttaş için AFM görüntüsü görülmektedir. Şekilden de görülebileceği üzere her ikisi de SiC alttaş olmasına rağmen, yüzey pürüzlülükleri birbirinden oldukça farklıdır.

Şekil 4.1. Farklı alttaşlar üzerinde GaN temelli HEMT aygıtlar için $V_{DS} - I_{DS}$ simülasyon grafiği [51].

Şekil 4.2. İki ayrı firmaya ait SiC alttaş için AFM görüntüsü. (a)'da ortalama yüzey pürüzlülüğü değeri (RMS) 1,2 nm ve (b)'de ortalama yüzey pürüzlülüğü değeri (RMS) 0,8 nm'dir. Şekil 4.3'te çeşitli kusurlar içeren alttaşlar üzerinde büyüttüğümüz HEMT epitaksiyel yapılar görülmektedir. Şekilden de görüldüğü üzere alttaşlar üzerinde yer alan kusurlar nedeniyle epitaksiyel yapılar da kusurlu büyümüştür.

Şekil 4.3. Çeşitli kusurlar içeren alttaşlar üzerinde büyütülen HEMT epitaksiyel yapılar.

Epitaksiyel yapı büyütmelerinde alttaşın kalitesi kadar temizliği de oldukça önemli bir rol oynamaktadır. Özellikle epitaksiyel yapı büyütülecek alttaşların, fotorezist gibi organik bileşiklerle kesinlikle temas etmemesi gerekmektedir. Yaptığımız çalışmalar rezist gibi organik bileşiklerle etkileşen yüzeylerin aseton >>> alkol >>> DI su (deiyonize su) organik temizliği işleminden sonra bile yüzeyde kalıntılar bıraktığını (bakınız Şekil 4.4), O₂ plazma temizliği yapılsa bile bu tip örneklerde 2-DEG oluşumunda problemler yaşandığını göstermiştir.

GaN HEMT epitaksiyel büyütmelerinde alttaş temizliğinden emin olmak ve yüksek kalitedeki alttaş üzerinde daha kaliteli epitaksiyel yapıların büyümesini sağlamak amacıyla Çizelge 4.1'de yer alan temizlik prosedürü, tüm alttaşlara, reaktöre girmeden önce uygulandı.

Şekil 4.4. (a) Fotorezist kaplanmış ve ardından da aseton >>> alkol >>> DI su organik temizliği işlemi yapılmış örnek yüzeyi AFM görüntüsü. Ortalama yüzey pürüzlülüğü değeri (RMS) 1,1 nm ve (b) Hiçbir işlem görmemiş örnek yüzeyi AFM görüntüsü. Ortalama yüzey pürüzlülüğü değeri (RMS) 0,3 nm.

Çizelge 4.1.	Alttaş	kimyasal	temizlik	prosedürü.
3 0	2			

	Kimyasallar: H ₂ O:%30'luk H ₂ O ₂ :%25'lik NH ₄ OH						
Adım 1	Oran : 5:1:1						
	İşlem : Alttaş, hazırlanan çözelti içerisine konularak ultrasonik (ses ötesi)						
	temizleyici içerisinde 1 dk süre ile titreştirildi. Ardından DI su ile banyo edildi.						
	Kimyasallar: H ₂ O:%30'luk H ₂ O ₂ :%40'lık HCl						
A duna D	Oran : 5:1:1						
Adim 2	İşlem : Alttaş, hazırlanan çözelti içerisine konularak ultrasonik temizleyici						
	içerisinde 1 dk süre ile titreştirildi. Ardından DI su ile banyo edildi.						
	Kimyasallar: H ₂ O:%38'lik HF						
Adum 2	Oran : 5:1						
Auim 5	İşlem : Alttaş, hazırlanan çözelti içerisine konularak ultrasonik temizleyici						
	içerisinde 2 dk süre ile titreştirildi. Ardından DI su ile banyo edildi.						
	Kimyasallar: %100 saf Aseton, %100 saf Isopropil alkol						
Adım 4	İşlem : Alttaş, aseton içerisinde 30 s bekletildi. Ardından alkol içine alınarak 30 s						
	bekletildi. Daha sonra DI su ile banyo edilerek N2 ile kurutuldu.						

4.2. Yüksek Güçlü HEMT Epitaksiyel Tasarımlar ve Karakterizasyon Sonuçları

Yüksek güçlü GaN temelli HEMT epitaksiyel yapıların büyütülmesi kapsamında Çizelge 4.2'de yer alan üç özgün yapı tasarlandı. Çizelge 4.2'de "**E**" ifadesi "Epitaksiyel yapı"'yı ifade etmek üzere **E1** birinci tasarımı, **E2** ikinci tasarımı ve **E3** üçüncü tasarımı ifade etmektedir.

Tüm tasarımlarda GaN kep tabakası kalınlığı; Waltereit ve arkadaşları tarafından yapılan "*Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures*" çalışması [72] referans alınarak 3 nm kalınlığında sabit tutuldu. Yapılan bu çalışmada; GaN kep tabakası kalınlığını 0-3 nm aralığında değiştirmenin elektron taşıyıcı yoğunluğunda ve elektron hareketliliğinde bir değişime yol açmadığı ancak, kalınlığı arttırmanın ohmik direnci, akaç ve gate kaçak akımları düşürdüğü, aygıt kazancını ve çıkış gücünü ise arttırdığı gösterilmiştir.

Tabakalar	Tasarlanan E	pitaksiyel Tabaka Ka	lınlıkları (nm)	
iabanalai	E1 (x:%26,8)	E2 (x:%26,8)	E3 (x:%29,2)	
GaN kep	3	3	3	
Al _x Ga _{1-x} N bariyer	20	20	20	
AIN ara katman	1	1	1	
GaN kanal	100	100	110	
GaN tampon (2)	270	175	300	
GaN tampon (1)	1370	1480	1200	
HT-AIN	270	270	270	
çekirdeklenme				
LT-AIN	20	20	20	
çekirdeklenme				
	300.000	300.000	300.000	
SI-SiC	(T firmasına	(N firmasına ait	(T firmasına	
	ait alttaş)	alttaş)	ait alttaş)	

Çizelge 4.2. GaN temelli yüksek güçlü HEMT aygıt üretimi kapsamında tasarlanan epitaksiyel tasarımlar.

AlGaN bariyer kalınlığı; Tilak ve arkadaşları tarafından yapılan "Influence of Barrier Thickness on the High-Power Performance of AlGaN/GaN HEMTs" çalışması [73] referans alınarak 20 nm kalınlığında sabit tutuldu. 10 nm ve 20 nm olmak üzere iki farklı AlGaN bariyer kalınlığı kullanılarak yapılan bu çalışmada bariyer kalınlığını arttırmanın, aygıtın çıkış gücünü arttırdığı gösterilmiştir. Ancak 20 nm'den daha kalın bir bariyer tabakası kullanmanın yüksek frekans uygulamalarında küçük sinyal kazancını düşürdüğünü belirtmişlerdir.

Miyoshi ve arkadaşları tarafından yapılan "Characterization of Different-Al-Content AIGaN/GaN Heterostructures and High-Electron-Mobility Transistors Grown on 100-mm-Diameter Sapphire Substrates by Metalorganic Vapor Phase Epitaxy" çalışmasında [74]; Al konsantrasyonunun (atomik yüzde olarak) %26, %39 ve %52 olacak şekilde değiştirmenin, I_{DS} ve geçiş iletkenliğini (g_m) arttırdığı ancak elektron hareketliliğini azalttığı, yüzey pürüzlülüğünü ve gate kaçak akımlarını ise arttırdığı gösterilmiştir. Yaptığımız çalışmalarda; Al konsantrasyonunu çok arttırmanın ohmik kontak direncini de kötüleştirdiği görüldü. Bu nedenlerle; bu tez kapsamında AlGaN bariyer tabakasındaki Al konsantrasyonunun aygıt performansına olan etkisini görmek amacıyla Al konsantrasyonu; E1 ve E2 tasarımlarında %26,6 ve E3 tasarımında ise %29,2 ayarlandı (Al konsantrasyonu, atomik yüzde olacak şekilde olarak verilmektedir).

Tüm tasarımlarda AIN ara katman kullanıldı ve kalınlık, literatür çalışmaları referans alınarak 1 nm civarında tutuldu. AIN ara katman kullanmak; GaN tampon tabakasındaki yüzey pürüzlülüğünü azaltarak elektron saçılmalarını engellemekte ve bu da yüksek elektron hareketliliğinin elde edilmesine olanak AIN ara katmanı, AlGaN tabakasındaki sağlamaktadır. gevşemeleri engelleyerek toplam kutuplanma alan şiddetini arttırmaktadır. Sahip olduğu yüksek bant aralığı nedeniyle de daha yüksek bir bariyer yüksekliğinin elde edilmesini sağlamaktadır. Sonuç olarak da daha fazla taşıyıcının kanal içinde tuzaklanmasını sağlayarak daha yüksek bir taşıyıcı yoğunluğunun ve eşik voltajın elde edilmesini olanaklı kılmaktadır [75-77].

GaN tampon tabakasının büyütme sıcaklığı ve basıncı ile bunun üzerinde yer alan tabakaların büyütme sıcaklığı ve basıncı arasındaki farkların gerilmelere neden olmaması amacıyla bir geçiş tabakası olarak tüm tasarımlarda, GaN kanal tabakası kullanıldı. GaN kanal tabakası ayrıca, ara yüzeydeki saçılmaları da azaltarak daha yüksek elektron hareketliliğinin elde edilmesine de olanak sağlamaktadır [78]. Bunlara ek olarak; yaptığımız çalışmalar; GaN kanal tabakası kalınlığını arttırmanın, taşıyıcı yoğunluğunu ve eşik voltajı da arttırdığını göstermiştir. Bunun temel nedeninin; GaN kanal tabakasının, GaN tampon tabakası üzerinde büyütülen tabakalardaki gevşemeleri azaltarak toplam kutuplanma alan şiddetini arttırmasından kaynaklandığını düşünüyoruz. Bu etkiyi net bir şekilde görmek amacıyla; GaN kanal kalınlığı, **E1** ve **E2** tasarımlarında literatürle uyumlu olacak şekilde 100 nm [79] ve **E3** tasarımında ise 110 nm olacak şekilde büyütüldü.

Düşük kaçak akımlar, yüksek akım yoğunluğu ve yüksek kırılma gerilimleri için GaN tampon tabakasının hem yüksek kristal kalitesinde hem de yüksek dirençli olacak şekilde büyütülmesi gerekmektedir. GaN tampon tabakasının yüksek dirençli hale getirilmesi için tampon tabakasına demir (Fe) ve karbon (C) katkılama yapılmaktadır. Ancak demir katkılama kristal kalitesini bozarak kusurlara, çatlaklara, yüzey pürüzlülüklerine [80] ve buna bağlı olarak da yüksek kaçak akımlara ve düşük aygıt performanslarına neden olmaktadır. Bu nedenle katkılama için genelde karbon tercih edilmektedir. Karbon katkılama ise; tetrabromometan (CBr₄) gibi harici katkılama ile yapılabileceği gibi in-situ olarak GaN tampon tabakası büyütülürken uygun koşullar oluşturularak, kaynak olarak kullanılan trimetil galyum $(CH_3)_3Ga_{(g)})$ 'daki metil grubu kullanılarak ta yapılabilmektedir. In-situ katkılamada katkı miktarı; düşük V/III oranı, düşük basınç, düşük büyütme oranı ile belirlenmektedir. Ancak bu büyütme parametrelerinde en baskın rolü basınç üstlenmektedir. Basıncın büyük olması C-katkılamanın az olduğu düşük dirençli GaN tampon tabakasının büyüyeceği, basıncın az olması ise C-katkılamanın yüksek olduğu, yüksek dirençli ancak yüksek kusur yoğunluklu düşük kalitede bir GaN tampon tabakasının büyüyeceği anlamına gelmektedir [81,82]. Bu etkiler göz önünde bulundurularak tez kapsamında büyütülen tasarımlarda; hem yüksek dirençli bir tampon tabakası elde ederek yüksek taşıyıcı yoğunluğuna ulaşmak hem de kristal

kalitesinden ödün vermemek amacıyla GaN tampon tabakası iki aşamalı olacak şekilde büyütüldü. GaN tampon (1) aşamasında 50 mbar'lık düşük basınç altında yüksek dirençli GaN tabakası büyütüldü ardından da 200 mbar'lık yüksek basınç altında düşük dirençli ancak yüksek kristal kalitesine sahip GaN tampon (2) tabakası büyütüldü. Tampon tabaka kalınlığı, kırılma gerilimi ve I_{DS} akımını etkilediğinden; yüksek kırılma gerilimi ve I_{DS} akımı elde etmek amacıyla; Fong Lo ve arkadaşları tarafından yapılan "Effect of buffer layer structure on electrical and structural properties of AIGaN/GaN high electron *mobility transistors*" çalışması [83] göz önünde bulundurularak, tüm tasarımlardaki tampon kalınlığı, kristal kalitesini ve epitaksiyel tasarımların performansını etkilemeyecek şekilde düşük kalınlıklarda tutuldu. Tasarımlarda hem iki aşamalı GaN tampon tabaka kalınlığının hem de toplam tampon tabaka kalınlığının aygıt performansına olan etkilerini görmek amacıyla Çizelge 4.2'de görüldüğü üzere HEMT epitaksiyel tasarımlar farklı tampon kalınlıkları içerecek şekilde büyütüldü.

Tüm tasarımlarda AIN çekirdeklenme tabakası, düşük sıcaklık (Low Temperature=LT) AIN ve yüksek sıcaklık (High Temperature=HT) AIN olmak üzere iki aşamalı olacak şekilde büyütüldü. Amano ve arkadaşları tarafından yapılan bir çalışmada [10], AIN çekirdeklenme tabakasının LT-AIN (SiC alttaş için LT < 800°C) ve hemen ardından da HT-AIN (HT >1000°C) olacak şekilde iki aşamalı büyütülmesinin, örgü uyumsuzluklarını ortadan kaldırdığı gösterilmiştir. LT-AIN tabakası, SiC alttaş üzerinde rastgele adacıklar oluşturacak şekilde birinci adımda büyütülmektedir. Bu durumda iken yüzey çok pürüzlüdür. Ardından da HT-AIN tabakası büyütülerek bu adacıkların yüksek sıcaklığın etkisiyle birbirine birleştirilerek kaynaştırılması sağlanmaktadır. Sonuçta bu iki tabakanın etkisi ile pürüzsüz bir yüzey yapısı elde edilmektedir. Bu da alttaş ile bunun üzerinde büyüyecek tampon tabakası arasındaki örgü uyumsuzluklarını ve gerilmeleri ortadan kaldırarak daha kaliteli bir kristal yapısının elde edilmesine olanak sağlamaktadır.

Alttaş, daha önce bahsettiğimiz gibi HEMT aygıt performansını belirleyen önemli etkenlerden birisidir. Bu tez çalışması kapsamında; alttaş pürüzlülüğünün, tasarımların yüzey pürüzlülüğüne etkisini incelemek amacıyla;

kusur yoğunluğu, direnç ve FWHM gibi temel özellikleri aynı, ancak yüzey pürüzlülükleri farklı iki ayrı firmaya ait SiC alttaş kullanıldı. **E1** ve **E3** tasarımlarında **T firmasına** ait ve yüzey pürüzlülüğü ortalama 0,5 nm olan 6H-SiC alttaş ve **E2** tasarımlarında ise **N firmasına** ait ve yüzey pürüzlülüğü ortalama 0,2 nm olan 6H-SiC alttaş kullanıldı.

Çizelge 4.3'te tasarlanan HEMT epitaksiyel yapılar için büyütme parametreleri ve işlem adımları görülmektedir. Tasarımlar, MOCVD sisteminde ayrı ayrı büyütüldü.

Büyütülen tasarımların başlangıç olarak yapısal analizleri için $32^{\circ}-37^{\circ}$ aralığında X-ışını difraktometresi ile $w/2\theta$ taraması yapıldı. Ardından da simetrik (002) ve asimetrik (102) düzleler için XRD döndürme eğrisi ölçümleri alındı. Şekil 4.5'te büyütülen tasarımlar için XRD sisteminden alınmış üst üste çizdirilmiş $w/2\theta$ 'ya karşılık şiddet grafikleri görülmektedir.

Şekil 4.5. Büyütülen tasarımlar için XRD sisteminden alınmış $w/2\theta$ 'ya karşılık şiddet grafiği.

Çizelge 4.3. GaN temelli yüksek güçlü HEMT aygıt üretimi kapsamında tasarlanan epitaksiyel tasarımlar için büyütme parametreleri ve işlem adımları.

İşlem	HEMT epitaksi büyütme parametreleri ve işlem adımları							
Adimi								
1.	Antaş'a buyutme oncesi, çizelge 4.1'de yazılanlara uygun olarak kimyasal							
2.								
	1150°C'de 100 mbar'lık Hidrojen gazı (H ₂) ortamında 10 dakika boyunca tavlandı.							
3.	Desorption (yüzeyden kaldırma) denilen bu tavlama işlemi ileyüzeyin istenmeyen							
	moleküllerden ve kirliliklerden arındırılması sağlandı.							
	Reaktör sıcaklığı 765°C'ye çekilerek 500 sccm'lik NH3 akışı altında 20 saniye							
4.	boyunca nitridasyon işlemi uygulandı. Nitridasyon işlemi ileçekirdeklenme tabakası							
	öncesi pürüzsüz ve kirlilikten arındırılmış bir yüzey elde edilmesi amaçlandı.							
	Nitridasyon işleminden sonra sıcaklık sabit tutularak 50 mbar'da TMAI (III-grubu							
	metal) ve NH ₃ (V-grubu ametal) oranı, V/III: 1707 olacak şekilde 20 nm LT-AIN							
5.	çekirdeklenme tabakası büyütüldü. Ardından da basınç sabit tutularak, sıcaklık							
	1150°C'ye çekildi ve V/III oranı 101 olacak şekilde 270 nm HT-AIN çekirdeklenme							
	tabakası büyütüldü.							
	Reaktör sıcaklığı 1050°C'ye çekilerek 50 mbar'lık sabit basınç altında V/III orar							
	700 olacak şekilde E1 tasarımında 1370 nm, E2 tasarımında 1480 nm ve E3							
6.	tasarımında 1200 nm olacak şekilde GaN tampon (1) tabakası büyütüldü.							
	Ardından sıcaklık 1090°C'ye ve basınç ta 200 mbar'a çekilerek V/III oranı 890							
	olacak şekilde E1 tasarımında 270 nm, E2 tasarımında 175 nm ve E3 tasarımında							
	300 nm olacak şekilde GaN tampon (2) tabakası büyütüldü.							
-	Reaktor sicakligi 1120 °C ye ve basinç ta 350 mbar a çıkarılarak V/III orani 1240							
7.	olacak şekilde E1 ve E2 tasarımlarında 100 nm ve E3 tasarımında ise 110 nm							
	olacak şekilde Gan kanal tabakası buyutuldu.							
0	cronu 202 olocek ockilde tüm teoprimlerde 1 nm kolunlığında AIN ora katman							
0.	orani ooo olacak şekilde tum tasarımlarda i nim kalımığında Alın ara katman							
	Aver sicallik va basina dažarinda V/III. orani 201 alacak sakilda. AlGaN barivar							
	tabakası: kalınlık tüm tasarımlarda 20 nm Al konsantrasyonu ise F1 ve F2							
9.	tasarımlarında %26.6 ve F3 tasarımında ise %29.2 olacak sekilde hüvütüllerek 2-							
	DEG oluşturuldu							
	Son olarak avni sicaklik ve basinc dečerinde V/III orani 758 olacak sekilde							
10.	ortalama 3 nm kalınlığında kontak amaclı GaN ken tabakası büvütüldü							
	or and a new maning man normal and gri Cart hop tabandor buyutulad.							

Şekil 4.5'de yer alan XRD grafiği incelendiğinde büyüttüğümüz tabakaların beklenen açı değerlerinde çıktığı görülmektedir (Büyütülen tabakalar için JCPDS-ICDD =Joint Committee on Powder Diffraction Standards-The International Centre for Diffraction Data = Toz Kırma Standartları Ortak Komitesi-Kırılma Verileri Uluslararası Merkezi kart numaraları GaN için: 02-1078, 6H-SiC için: 29-1128 ve AlN için: 25-1133 olarak verilmektedir). Bu da büyütmeyi hedeflediğimiz tabakaların düzgün bir şekilde büyütüldüğünü göstermektedir.

Büyüttüğümüz tasarımlardaki Al_xGa_{1-x}N tabakasındaki Al konsantrasyonu, XRD grafiğinden yola çıkarak Eş. 4.1 kullanılarak bulunabilir.

$$x = \frac{\Delta\theta}{\Delta\theta_0} \tag{4.1}$$

Eş. 4.1'de x ifadesi Al konsantrasyonunu, $\Delta \theta$ ifadesi AlGaN piki ile GaN piki arasındaki açı farkını ve $\Delta \theta_0$ ise AlN piki ile GaN piki arasındaki açı farkını ifade etmektedir. Bu eşitlikten yola çıkarak hesaplanan Al konsantrasyonu yüzdesi, Çizelge 4.4'te görülmektedir.

Çizelge 4.4. Büyütülen tasarımla	ır için XRD pik ko	numları ve Al yüzdeleri.
----------------------------------	--------------------	--------------------------

Tabaka	XRD pik konumu (derece)				Al yüzdesi (9 $x = \frac{\Delta \theta}{\Delta \theta_0}$	%)
	E1	E2	E3	E1	E2	E3
GaN	34,56	34,54	34,54	%26.6	%26.6	%29.2
AIN	35,99	35,93	35,98			
6H-SiC	35,61	35,50	35,54	/020,0	/020,0	7020,2
AlGaN	34,94	34,91	34,96			

Büyütülen tasarımlar için GaN ve AIN simetrik ve asimetrik düzlemler için elde edilen XRD döndürme eğrisi ölçüm sonuçları Çizelge 4.5'te görülmektedir.

Çizelgede, XRD döndürme eğrilerinden elde edilen FWHM değerlerinin açı ve arksekant birimi cinsinden değerleri ve literatürde geçen [84-88] değerler görülmektedir. FWHM değeri, çizgisel kusur yoğunluğu ile ilintili olup bu değer, ne kadar küçükse çizgisel kusur yoğunluğu o derecede düşük ve kristal kalitesi de o derecede yüksek demektir [89].

Çizelge 4.5'te AIN tabakası simetrik ve asimetrik düzlemler için FWHM değerleri incelendiğinde bunların literatürde belirtilen aralık içinde olduğu ve tasarımlar arasında çok ciddi farkların olmadığı görülmektedir. Bu da ortalama olarak tüm tasarımlarda AIN tabakalarının aynı kalitede büyüdüğünü göstermektedir. Tasarımlardaki çok küçük kusur farklılıkları ise; tasarımlardaki tüm AIN tabakalarının aynı koşullarda büyütüldüğü, MOCVD sistemi büyütme koşullarının oldukça stabil olduğu ancak SiC alttaşın büyütme zorluğu ve buna bağlı olarak da büyütülen her SiC alttaşın aynı kristal kalitesinde ve homojenitede büyütülmesinin de zorluğu hesaba katıldığında, bu kusur farklılıklarının, alttaş kaynaklı kusurlar nedeniyle oluştuğunu söyleyebiliriz.

Çizelge 4.5. Büyütülen tasarımlar için GaN ve AIN simetrik ve asimetrik düzlemleri için elde edilen XRD döndürme eğrisi ölçüm sonuçları.

	FWł	IM değe (derece	erleri :)	FWH (A	IM değ Arkseka	erleri ant)	Literatürde [85-89] geçen FWHM
Tabaka	E1	E2	E3	E1	E2	E3	değerleri (Arksekant)
GaN (102)	0,157	0,173	0,178	566	623	641	200-650
GaN (002)	0,055	0,071	0,077	198	256	277	100-400
AIN (102)	0,210	0,212	0,230	756	763	828	>900
AIN (002)	0,092	0,102	0,105	331	367	378	200-600

GaN tampon tabakası simetrik ve asimetrik düzlemler için FWHM değerleri incelendiğinde bunların da literatürde belirtilen aralıklar içinde olduğu ve tasarımlar arasında çok ciddi farklılıkların olmadığı görülmektedir. Ancak yine

de **E1** tasarımından **E3** tasarımına gidildikçe FWHM değerinin ve buna bağlı olarak da kusur yoğunluğunun arttığı görülmektedir. GaN tampon (1) tabakası yüksek dirençli olması amacıyla karbon katkılandığından (düşük basınçta büyütüldüğünden) bu tabakada kristal yapısının kötü ve kusur yoğunluğunun da fazla olmasını bekliyoruz. Bu tabakanın üzerine büyütülen GaN tampon (2) tabakası ise daha düzgün bir yüzey morfolojisi elde etmek amacıyla yüksek kristal kalitesine sahip olacak şekilde (yüksek basınçta) büyütüldü. Bu açıklamalar ışığında baktığımızda GaN tampon tabakası için kusur yoğunluğunun baskın olarak GaN tampon (1) tabakası tarafından belirlendiğini söyleyebiliriz. Üç tasarıma, kusur yoğunluğu açısından baktığımızda ise; GaN tampon (1) kalınlığının ne çok yüksek kalınlıkta olduğu ne de çok düşük kalınlıkta olduğu E1 tasarımda en iyi değere sahip olduğunu görmekteyiz. Yani GaN tampon (1) tabakası kalınlığını çok arttırmak ya da çok azaltmak, kusur yoğunluğunu arttırmaktadır. Bu da bize; GaN tampon (1) tabakası için belli bir kalınlığa kadar kusur yoğunluğunun azaldığı ancak daha sonra doyum bölgesine ulaşıldığını ve bu noktadan sonra ise kalınlığı tekrardan arttırmanın kusur yoğunluğunu arttırdığını göstermektedir.

AlGaN bariyer tabakası için her üç tasarımdan alınan fotolüminesans ölçüm sonuçları, Çizelge 4.6'da görülmektedir. Çizelgede görüldüğü üzere fotolüminesans ölçümlerine dayanarak elde edilen Al konsantrasyonu ile XRD verilerinden yola çıkılarak elde edilen değerler uyumludur. Fotolüminesans pik konumları da literatürde [90,91] belirtilen aralıklar içerisinde yer almaktadır. FWHM değerleri ise beklenildiği gibi Al konsantrasyonları aynı olduğundan **E1** ve **E2** tasarımlarında aynı çıkmıştır. **E3** tasarımında ise, Al konsantrasyonu miktarının artmasına bağlı olarak kristal yapıda meydana gelen alaşım bozulması nedeniyle [92] diğer tasarımlara göre FWHM değeri, daha yüksek çıkmıştır.

Çizelge 4.6. Büyütülen tasarımlar için Al_xGa_{1-x}N bariyer tabakası fotolüminesans ölçüm sonuçları.

Tabaka	Fotol pik	lümine konu (nm)	sans mu	Fotolüminesans pik konumu (eV)		%AI konsantrasyonu Eş. 2.13'ten			FWHM değerleri (nm)			
	E1	E2	E3	E1	E2	E3	E1	E2	E3	E1	E2	E3
AlGaN	314	314	309	3,94	3,94	4,0	26,3	26,3	29	10,7	10,7	13,6

Büyütülen tasarımların yüzeylerinden AFM ile alınmış yüzey görüntüleri Şekil 4.6'da görülmektedir. HEMT epitaksiyel yapılar için literatürde AFM ile alınmış RMS değeri için 0,2 nm ile 0,6 nm aralığında [93,94] değerler verilmektedir. Çizelge 4.7 incelendiğinde tüm HEMT tasarımları için yüzey pürüzlülüğünün bu değerler aralığında olduğu görülmektedir. Bu da tüm tasarımlarda yüzeyin iyi kalitede olduğunu göstermektedir.

Şekil 4.6. Büyütülen HEMT tasarımları için AFM ile alınmış yüzey görüntüleri.

Çizelge 4.7. Büyütülen tasarımlar için AFM ile alınmış yüzey pürüzlülüğü (RMS) değerleri.

Tasarımlar	E1	E2	E3	
RMS (nm)	0,3366	0,3078	0,3364	

Entegre devre üretiminde hem aktif hem de pasif elemanlar, birbirleriyle iletişimde olacak şekilde, epitaksiyel yapıların geniş yüzeylerinde (µm² boyutundaki alanlarda) aynı anda üretildiklerinden tüm elemanların sorunsuz çalışması için yüzey pürüzlülüğünün makroskobik anlamda da ölçülmesi önem taşımaktadır. Yüzey pürüzlülüğü arttıkça yüzeydeki yük miktarı artarak kaçak akımların artmasına ve aygıtların aşırı ısınmasına yol açarak aygıt performansının düşmesine neden olmaktadır. Tasarlanan epitaksiyel yapıların 400 µm'lik geniş yüzey alanlarından mekanik profilometre cihazı kullanılarak alınan yüzey pürüzlülüğü görüntüleri, Şekil 4.7'de ve ölçülen ortalama pürüzlülük değerleri ise Çizelge 4.8'de görülmektedir.

Şekil 4.7. Büyütülen HEMT tasarımları için mekanik profilometre cihazı ile alınmış yüzey pürüzlülüğü görüntüleri. Çizelge 4.8. Büyütülen tasarımlar için mekanik profilometre cihazı ile alınmış geniş alan yüzey pürüzlülüğü değerleri.

Tasarımlar	E1	E2	E3
Geniş alan yüzey pürüzlülüğü (nm)	10,0	6,84	7,17

Cam yüzey üzerinden mekanik profilometre cihazı kullanılarak alınan yüzey pürüzlülüğü değerinin 5-6 nm civarında olduğu göz önünde bulundurulduğunda büyütülen tasarımlar için geniş alan yüzey pürüzlülüğü değerlerinin oldukça iyi değerlerde olduğu görülmektedir.

Büyütülen tasarımların yüzeylerinden alınmış Nomarski mikroskop görüntüleri Şekil 4.8'de görülmektedir.

Şekil 4.8. Büyütülen tasarımların yüzeylerinden alınmış Nomarski mikroskop görüntüleri.

Büyüttüğümüz tasarımlarda yüzey pürüzlülüğünün etkin olarak GaN tampon (2) tabakası tarafından belirlenmesini beklerdik. Ancak yüzey pürüzlülüğü ölçümleri incelendiğinde; GaN tampon (1) tabakasının en kalın ve GaN tampon (2) tabakasının ise en ince olduğu **E2** tasarımında yüzey pürüzlülüğü değerinin en düşük olduğu görülmektedir. Bu da bize epitaksiyel yapıların yüzey pürüzlülüğünün belirlenmesinde alttaşın pürüzlülüğünün de oldukça önemli bir rol oynadığını göstermektedir. Her ne kadar aynı firmaya ait alttaşa sahip **E1** ve **E3** tasarımlarında AFM ile alınmış yüzey pürüzlülüğü değerleri aynı olsa da gerek mekanik profilometre cihazı ile alınmış geniş alan yüzey pürüzlülüğü

değerleri gerekse de epitaksiyel yapıların yüzeyinden alınmış Nomarski mikroskop görüntüleri, **E1** ve **E3** tasarımlarında yüzey morfolojisinin aynı olmadığını göstermektedir. Bu da bize özellikle entegre devre üretiminde, AFM ile alınmış yüzey pürüzlülüğü değerinin yeterli bir veri sağlamadığını, buna ek olarak mekanik profilometre ve Nomarski mikroskop cihazları yardımıyla, geniş alan yüzey pürüzlülüğü analizinin de yapılması gerektiğini göstermektedir.

Aynı firmaya ait alttaşa sahip E1 ve E3 tasarımlarının, geniş alan yüzey pürüzlülüğü değerleri ve Nomarski mikroskop görüntüleri incelendiğinde; E1 tasarımında daha pürüzlü bir yüzey yapısının oluştuğu görülmektedir. Bunun nedeni; E1 tasarımındaki GaN tampon (2) tabakasının yeterli kalınlığa sahip olmamasından kaynaklanmaktadır. Alttaş kaynaklı pürüzlülük ile **E2** tasarımından nispeten daha kalın bir GaN tampon (1) tabakasının yarattığı daha yüksek pürüzlülüğün yarattığı toplam pürüzlülük, E1 tasarımındaki GaN tabakasının yeterli kalınlığa sahip olmamasından dolayı tampon (2) kapatılamamaktadır. Bu da E1 tasarımındaki geniş alan yüzey pürüzlülüğünün, E2 tasarımına göre daha yüksek olmasına neden olmaktadır. Bu sonuçlar göz önünde bulundurularak; gerek alttaş kaynaklı gerekse de GaN tampon (1) tabakasının yaratacağı geniş alan yüzey pürüzlülüklerinin, yeterli kalınlığa sahip GaN tampon (2) tabakasının büyütülmesi ile giderilebileceğini söyleyebiliriz.

Büyütülen tasarımlar ve ticari olarak satılan bir HEMT epitaksiyel yapısı (**E0**) için 300K'de alınan Hall etkisi ölçüm sonuçları Çizelge 4.9'da görülmektedir. Çizelge 4.9 incelendiğinde büyütülen tasarımların ticari olarak satılan bir HEMT epitaksiyel yapısı (**E0**) ile kıyaslandığında çok iyi kalitede oldukları görülmektedir. **E2** tasarımında; GaN tampon (2) tabakası, GaN tampon (1) tabakasının yarattığı pürüzlülüğü örtecek yeterli kalınlığa sahip olmadığından, ara yüzey pürüzlülüğü saçılma mekanizması etkin olup, elektron hareketliliğinin ve 2-DEG taşıyıcı konsantrasyonunun, **E1** tasarımına göre daha düşük olmasına neden olmuştur. 2-DEG tabaka direnci, 2-DEG taşıyıcı yoğunluğu ve elektron hareketliliği ile ters ilintili olduğundan [95,96], **E1** tasarımında, beklenildiği gibi tabaka direncinin, **E2** tasarımına göre daha düşük çıkmasına neden olmuştur. **E3** tasarımı ise; diğer tasarımlara göre daha yüksek Al konsantrasyonu içerdiğinden, **E3** tasarımının 2-DEG taşıyıcı yoğunluğu, diğer

tasarımlara göre daha yüksek çıkmıştır. Yüksek Al konsantrasyonu, alaşım saçılması mekanizmasının daha baskın olmasına neden olduğundan, beklenildiği gibi **E3** tasarımında elektron hareketliliğinin daha düşük olmasına neden olmuştur. Ancak yüksek Al konsantrasyonu, **E3** tasarımında, diğer tasarımlara göre çok daha düşük bir 2-DEG tabaka direncinin elde edilmesine olanak sağlamıştır.

Çizelge 4.9.	Büyütülen tasarımlar ve ticari olarak satılan bir HEMT epitaksiyel
	yapısı (E0) için 300K'de alınan Hall etkisi ölçüm sonuçları.

Tasarımlar	E0	E1	E2	E3
2-DEG taşıyıcı yoğunluğu (cm ⁻²)	1,031x10 ¹³	1,024x10 ¹³	1,001x10 ¹³	1,270x10 ¹³
Elektron Hareketliliği (cm²/V.s)	1916	1990	1980	1877
Tabaka Direnci (Ω/sq)	316	306	315	262

4.3. Sonuç

Yapılan epitaksiyel karakterizasyon sonuçları gözönünde bulundurulduğunda; her üç tasarımın da ticari olarak satılan bir HEMT epitaksiyel yapısı ile kıyaslanabilecek kalitede olduğu görüldü. Bununla birlikte yüksek güçlü ve yüksek hızlı bir HEMT aygıt performansı için $n_s \cdot \mu$ çarpının yüksek ve bununla ters ilintili olan 2-DEG tabaka direncinin ise düşük olması istendiğinden, tasarımlar içerisinde, HEMT aygıt fabrikasyonu için en uygun yapının **E3** tasarımında elde edildiği görüldü (Çizelge 4.10'u inceleyiniz).

Çizelge 4.10. Büyütülen tasarımlar ve ticari olarak satılan bir HEMT epitaksiyel yapısı (**E0**) için $n_s \cdot \mu$ çarpımı ve tabaka direnci karşılaştırması.

Tasarımlar	E0	E1	E2	E3
$n_s\cdot\mu$ (x10 ¹³ V ⁻¹ .s ⁻¹)	1975	2038	1982	2384
Tabaka Direnci (Ω/sq)	316	306	315	262

5. HEMT AYGIT ÜRETİM VE KARAKTERİZASYON TEKNİKLERİ

Bu bölümde; HEMT aygıt üretiminde yaygın olarak kullanılan fabrikasyon yöntemleri, kontak türleri ve aygıt karakterizasyonunda kullanılan DC I-V ve güç ölçüm sistemleri hakkında bilgi verilecektir.

5.1. Fotolitografi

Litografi kelimesi; Yunanca'da taş anlamına gelen "litos" ve yazmak anlamına gelen "grapho" kelimelerinden türemiş olup "taş üzerine yazmak" anlamına gelmektedir. Fotolitografi, optik litografi ya da diğer adıyla ultraviyole (morötesi) (UV) litografi ise; morötesi (UV) ışık kullanarak, bir fotomaske üzerinde yer alan geometrik şekillerin, ışığa duyarlı bir fotorezist ile kaplanmış bir yüzey üzerine desenlenmesi işlemidir. Fotolitografi işleminde; desenlerin işleneceği yüzey ile fotomaske, maske hizalayıcı adı verilen bir cihaz yardımıyla paralel hale getirilir ve ardından pozlama işlemi gerçekleştirilir. Şekil 5.1'de Bilkent Üniversitesi NANOTAM'da bulunan Suss Microtec MA6 maske hizalama cihazı görülmektedir.

Şekil 5.1. Bilkent Üniversitesi NANOTAM'da bulunan Suss Microtec MA6 maske hizalama cihazı.

Fotolitografi işlemi temel olarak şu adımlardan oluşmaktadır:

1. Örnek temizliği: Bu işlem adımı ile örneğin yüzeyinin organik ve inorganik kirliliklerden arındırılması ve fotorezist (ışığa duyarlı karmaşık hidrokarbon zincirlerinden oluşan polimer) ile örnek yüzeyi arasındaki yapışma kuvvetinin (adezyon, adhezyon) güçlendirilmesi amaçlanmaktadır.

HEMT aygıt fabrikasyon işlemlerinde; wafer (bir hammaddenin, yuvarlak bir plaka şeklinde hazırlanmış hali yada kısaca yuvarlak plaka) boyutunda çalışılacak ise, temizlik işlemine gerek yoktur. Çünkü büyütme sonrası MOCVD cihazından çıkan waferlar, en temiz halde bulunurlar. Ancak daha küçük boyutlarda çalışılacak ise; örneklerin istenen boyutta kestirilmesi gerekmektedir. Bu tez kapsamında 12x12mm²'lik örnek boyutları ile çalışıldı.

Kesim işlemi esnasında epitaksiyel HEMT yapısının bulunduğu waferın ön yüzeyinin kirlenmemesi ve zarar görmemesi için ön yüzey, fotorezist ile kaplanır. Bu tez kapsamında fotorezist olarak AZ-5214E fotorezisti kullanıldı. Fotorezist kaplama işlemi, spin kaplama sisteminde (spin coater) yapılır. Wafer, spin kaplama sistemine yerleştirildikten sonra, fotoresist, waferın ön yüzeyini tamamen kaplayacak şekilde damlatılır. Ardından wafer, 2000 rpm'lik hıza 4 saniyede ulaşacak şekilde 40 saniye döndürülerek, fotorezistin waferın ön yüzeyine düzgün dağılarak kaplanması sağlanır. Daha sonra fotorezist kaplı wafer, hot plate adı verilen sıcak plaka üzerine konularak 50°C'de 5 dakika pişirilir. Ardından wafer, yonga kesme sistemi kullanılarak istenen boyutta parçalara ayrılır. Şekil 5.2'de Bilkent Üniversitesi NANOTAM'da bulunan (a) spin kaplama sistemi ve sıcak plaka (b)'de ise DISCO DAD3220 yonga kesme sistemi genel görüntüsü görülmektedir.

Kesim işlemi tamamlandıktan sonra örnekler için, fotolitografi öncesi, Çizelge 5.1'de yer alan temizlik prosedürü uygulanır.

Şekil 5.2. Bilkent Üniversitesi NANOTAM'da bulunan (a) Ratalab spin kaplama sistemi ve sıcak plaka ve (b) DISCO DAD3220 yonga kesme sistemi.

Cizelae 5.1.	Fotolitografi	öncesi örnek	temizliăi	prosedürü.
3				

Adım 1	Örnek, ön yüzeylerinde yer alan fotorezist tabakasının temizliği amacıyla aseton
	ile yıkandıktan hemen sonra 50°C'ye ayarlanmış ultrasonik banyo içerisinde yer
	alan içinde Aseton bulunan cam petri kap içerisine konarak 1 dk boyunca %100
	güç ile titreştirilir.
	Aseton dolu petri kabından çıkarılan örnek, hemen 50°C'ye ayarlanmış
Adım 2	ultrasonik banyo içerisinde yer alan içinde İsopropanol Alkol bulunan cam petri
	kabı içerisine konarak 1 dk boyunca %100 güç ile titreştirilir.
	İsopropanol alkol dolu petri kabı içerisinden alınan örnek, Deiyonize su (DI su)
Auim 3	dolu petri kap içerisine konarak 2 dk bekletilir.
	Deiyonize su dolu kap içerisinden alınan örnek, azot tabancası yardımıyla
	kurutulur ve akabinde de örneğin optik mikroskop kontrolleri yapılır. Örnek
	yüzeyinde kirlilik tespit edilmesi durumunda, örnek, oda sıcaklığında aseton dolu
	cam petri kap içerisinde swab (% 100 polyester bez uçlu çubuk) yardımıyla
	temizlenir. Ardından örnek, petri kabından çıkarılmadan ultrasonik banyo
Adım 4	içerisinde 5 saniye boyunca %100 güç ile titreştirilir. Daha sonra örnek, aseton
	ile yıkanıp, 50°C'ye ayarlanmış sıcak plaka üzerinde duran içinde İsopropanol
	Alkol bulunan cam petri kabı içerisine konarak 1 dk boyunca bekletilir. Ardından
	oda sıcaklığında duran icinde DI su bulunan cam petri kap icerisine konarak 2
	dk boyunca bekletilir. Bu sürenin sonunda örnek, azot tabancası vardımıvla
	,

	kurutularak optik mikroskop kontrolü yapılır. Örnek yüzeyinde kirlilik tespit							
	edilmesi durumunda Adım 4'teki işlemler tekrar edilir. Örnek yüzeyinde kirlilik							
	tespit edilmemesi durumunda Adım 5'ten devam edilir. Aşağıda temiz ve kirli bir							
	örnek yüzeyi için görüntüler, temizlik amacıyla kullanılan aseton, isopropanol							
	pisetleri, swab ve ultrasonik titreştirici genel görüntüleri yer almaktadır.							
	KIRLI ÖRNEK YÜZEYINE AİT							
	MIRROSKOP GORUNTUSU							
	and the second second second							
	and the second second second							
	and the second second second							
	NB							
	Örnek, 80°C'ye ayarlanmış sıcak plaka üzerinde duran içinde AZ100							
	remover@MicroChemicals (icerik: <%30 1-Aminopropan-2-ol ve >%70							
	Dipropylene glycol methyl ether) bulunan vezin kabi icerisine konarak 5 dk							
Adım 5	bovunca bekletilir. Ardından oda sıcaklığında duran icinde DI su bulunan cam							
	petri kap icerisine konarak 5dk boyunca bekletilir. Daha sonra azot tabancasi							
	vardımıyla kurutularak optik mikroskop kontrolü yapılır. Örnek yüzevinde kirlilik							
	tespit edilmesi durumunda Adım 4'ten devam edilir							
	Örnek vüzevinde DI su kalıntısının temizlenmesi ve rezist ile örnek vüzevi							
	arasındaki yapışma kuyyetinin arttırılması amacıyla örnek 200°C'ye ayarlanmış							
Adım 6	sıcak plaka üzerinde 5 dk boyunca bekletilir (debidrasyon taylama islemi)							
	Ardından sıcak plaka üzərindən alınan örnək, oda sıcaklığında 5 dk bekletilerek.							
	Arunuan sicak piaka uzennuen ainan omek, oua sicaknyinda 5 dk bekielilerek							

2. Fotorezist kaplama: Örnek yüzeyinde oluşturulmak istenen desenlerin boyutuna ve yapılacak işlem adımına (aşındırma, metal kaplama gibi) bağlı olarak seçilen fotorezist, örnek yüzeyine, spin kaplama sistemi yardımıyla homojen olarak kaplanır. Şekil 5.3'te örnek yüzeyine fotorezistin kaplanması adımları gösterilmektedir. Fotorezistler için spin kaplama parametreleri, örnek yüzeyine işlenecek desenlenlerin boyutuna ve örnek yüzeyine uygulanacak işlem adımına bağlı olarak değişir. Bir spin kaplama sisteminde örnek yüzeyine

soğutulur.

kaplanacak rezistin kalınlığı (t); C, fotorezistin viskozitesine bağlı bir sabit ve w, dönme açısal hızı olmak üzere genel olarak şu denklem ile ifade edilir:

$$t \propto C/_{\sqrt{W}}$$
(5.1)

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

$$i \propto C/_{\sqrt{W}}$$

yüzeyden atılır

yayılması için

beklenir

kalınlıkta homojen olarak

kaplanır

Fotorezistler temel olarak üç bileşenden oluşurlar: Reçine, çözücü ve fotoaktif bileşik. Reçine; plastik ya da tutkal benzeri katı ya da yarı akışkan bir yapıda olan polimer bir malzemedir. Çözücü; reçinenin çözünmesini sağlayarak sıvı fazda kullanılmasına olanak sağlayan kimyasal bir maddedir. Fotoaktif bileşik ise; bir geliştirici (developer) solüsyon içerisinde reçinenin çözünmesini engellemek ya da daha arttırmak amacıyla kullanılan bir malzemedir.

Pozitif ve negatif olmak üzere iki çeşit fotorezist bulunmaktadır. Pozitif fotorezistler, morötesi ışık ile etkileştiklerinde geliştirici tarafından çözünürler. Negatif fotorezistler ise, morötesi ışık ile etkileştiklerinde geliştirici tarafından çözünmezler. Şekil 5.4'te pozitif ve negatif fotorezist kullanarak örnek yüzeyinde desen oluşturulması şematik görüntüsü görülmektedir.

Şekil 5.4. Pozitif ve negatif fotorezist kullanarak örnek yüzeyinde desen oluşturulması şematik görüntüsü.

Birçok pozitif fotorezist, diazo-kinon (diazoquinones=DQ) içerir. DQ molekülleri normal durumda geliştirici içerisinde çözünmezler. Ancak mor ötesi ışık ile etkileştiklerinde azot molekülleri kırılarak bu molekülleri kararsız hale getirir. Kararsız haldeki molekülleri ise daha kararlı hale getirmek için, halkadaki altı karbon atomundan biri halkadan ayrılır. Bu durumda iken rezist, geliştirici/su karışımı içeren bir solüsyon içerisine bırakıldığında solüsyon içerisindeki OH grupları karbon atomuna tutunarak asit oluşturur. Bu asit ise solüsyon içerisindeki geliştirici ile reaksiyona girerek çözünür. Sonuç olarak da ışık ile etkileşen fotorezist bölgeleri açılmış olur. Şekil 5.5'te pozitif fotorezist ile yapılan bir fotolitografinin reaksiyon süreci görülmektedir.

Şekil 5.5. Pozitif fotorezist ile yapılan bir fotolitografinin reaksiyon süreci.

Negatif fotorezistler ise, fotoetkin madde olarak bis-aryl azide içerirler. Bu fotoetkin madde, morötesi ışık ile etkileştiğinde azot bağları kırılarak oldukça reaktif hale gelir ve fotorezist içinde yer alan reçine (polimer yapı) ile çapraz bağ kurarak yüksek molekül ağırlıklı bir polimer zinciri oluşturur. Sonuç olarak da ışık ile etkileşen bu rezist bölgeleri geliştirici içerisinde çözünmez hale gelir. Şekil 5.6'da negatif fotorezistin, morötesi ışık ile reaksiyon süreci görülmektedir.

Şekil 5.6. Negatif fotorezistin morötesi ışık ile reaksiyon süreci.

3. Pozlama öncesi ön pişirme işlemi: Spin kaplama sistemi kullanarak homojen bir şekilde örnek yüzeyine kaplanan fotorezist içerisinde yer alan çözücünün uzaklaştırılması amacıyla, örnek, sıcak plaka üzerine konularak belli bir süre pişirilir. Pişirme sıcaklığı ve süresi, kullanılan fotorezistin çeşidine bağlı olarak değişir. Pozlama öncesi bu ön pişirme işlemi ile; fotorezistin örnek yüzeyine daha iyi yapışması sağlanarak daha dayanıklı bir rezist profili elde edilir. Ayrıca pozlama esnasında fotorezistten azot gazı çıkışı da engellenerek rezistin köpürmesi, fotolitografi esnasında maskenin kirlenlenmesi ve örneğin maskeye yapışması problemlerinin de önüne geçilmiş olur.

4. Örnek ile maskenin hizalanması ve pozlama işlemi: Fotorezist kaplama ve ön pişirme işlemi tamamlanan örnek, maske hizalama cihazına yerleştirilir. Ardından örnek, cihaz yardımıyla hareket ettirilerek, maske üzerinde yer alan

desenler, örneğin aktif alanı içerisine denk gelecek şekilde hizalanır. Hizalama işlemi tamamlandıktan sonra pozlama işlemi gerçekleştirilir. Elde edilmek istenen desen durumuna bağlı olarak, maske hizalama cihazında üç tip baskı işlemi gerçekleştirilebilir: Örnek ile maskenin birbirine değdirildiği tam temaslı baskı işlemi (contact printing), örnek ile maske arasında belli bir mesafenin bırakıldığı yaklaşarak baskılama işlemi (proximity printing) ve maskede yer alan desenlerin, 4-5 kat küçültülerek örnek yüzeyine işlenmesine olanak sağlayan yansıtarak baskılama işlemi (projection printing). Şekil 5.7'de maske hizalama cihazında yapılabilecek üç tip baskılama işlemi ve elde edilebilecek çözünürlükler (elde edilebilecek minimum desen boyutu) görülmektedir.

5. Pozlama sonrası pişirme işlemi: Pozlama sonrası, 100-130°C aralığında yapılan bu pişirme işlemi ile fotoakfit bileşiğin difüzyonu indüklenerek pozlama kaynaklı duran dalga çıkıntılarının/taraklarının düzleştirilmesi amacıyla yapılır. Duran dalgalar, pozlama esnasında fotorezistten aşağı doğru ilerleyen düzlem dalgalar ile alttabakadan yansıyan dalgalar arasındaki girişimden kaynaklanır. Şekil 5.8'de fotorezistte duran dalga oluşumu ve SEM görüntüsü görülmektedir.

Şekil 5.8. Fotorezistte duran dalga oluşumu ve SEM görüntüsü [97,98].

Pozlama sonrası tavlama işlemi, duran dalga etkisinin ortadan kaldırılması haricinde bazı pozitif fotorezistlerin, negatif fotorezist olarak kullanılabilmesi amacıyla da uygulanır. Bu tez kapsamında çoğu fabrikasyon adımında kullanılan AZ5214E@microchemicals fotorezisti, hem pozitif hem de negatif özellik gösteren bir rezist olup, negatif özellik göstermesi amacıyla, maske kullanılarak yapılan ilk pozlama sonrası yapılan pişirme işlemi ve hemen ardından da maskesiz pozlama işlemi ile negatif özellik gösterecek şekilde kullanılabilmektedir.

6. Geliştirme (Develop) işlemi: Fotomaske yardımıyla fotorezist kaplı örnek yüzeyinde pozlanan ya da pozlanmayan bölgeler, fotorezist türüne bağlı olarak seçilen uygun bir geliştirici içerisine konularak, yine fotorezist türüne bağlı olarak pozlanan ya da pozlanmayan fotorezist bölümlerinin, bu geliştirici içerisinde çözünmesi sağlanır. Sonuç olarak da fotomaskede yer alan desenlerin örnek yüzeyinde oluşturulması sağlanır.

7. Sertleştirme Pişirme işlemi (Hard Bake/Post Bake): 150-200°C aralığında yapılan bu pişirme işlemi ile polimer yapıda çapraz bağ oluşturularak, fotolitografi işlemi ile örnek yüzeyinde oluşturulan rezist desenlerinin kimyasal ve kuru aşındırmalara karşı dayanımı arttırılır. İsteğe bağlı olarak yapılabilecek bu son fotolitografi adımından sonra oluşturulan desenlere bağlı olarak örnek yüzeyinde metal kaplama ya da aşındırma işlemleri gerçekleştirilebilir. Şekil 5.9'da fotolitografi yöntemi ile desenlenmiş bir örnek yüzeyi için yüzey aşındırma ve metal kaplama adımı şematik görüntüsü görülmektedir.

Şekil 5.9. Fotolitografi yöntemi ile desenlenmiş bir örnek yüzeyi için (a)yüzey aşındırma ve (b) metal kaplama adımı şematik görüntüsü.

5.2. Elektron Demeti Litografisi (EBL)

Fotolitografi yöntemi, mikron altı desenleme işlemlerinde oldukça zayıf olup çözünürlük, kullanılan dalga boyu ile sınırlıdır. Ayrıca desenleme için, maske kullanılmak zorunda olması da en büyük dezavantajını oluşturmaktadır. Bu sorunların üstesinden gelmek, yüksek çözünürlüklü mikron altı desenler elde etmek amacıyla EBL, yaygın olarak kullanılan bir yöntemdir. EBL yönteminde fotonlar yerine, elektronların kullanılması 2-5 nm aralığında desenler oluşturulabilmesine olanak sağlamaktadır. EBL yönteminde desenleme işlemi için kullanılacak elektronların dalga boyu, de Broglie dalga denklemine göre belirlenir ve V, elektronların hızlandırma gerilimi olmak üzere şu denklem ile verilir:

$$\lambda = \frac{1.226}{\sqrt{V}} \ (nm) \tag{5.2}$$

EBL yönteminde, fotolitografi yönteminde olduğu gibi örnek yüzeyi, EBL için uygun bir rezist ile kaplanır. PMMA (poli-metil-metakrilat) ve ZEP 520 en yaygın kullanılan pozitif rezistler (uzun zincirli polimer yapılar olup, elektron demeti ile etkileştiklerinde bağlar kırılarak çözünür hale gelirler) ve HSQ (Hidrojen silseskioksan) de en yaygın kullanılan negatif rezisttir (elektron demeti ile etkileştiğinde küçük polimer yapılar çapraz bağ kurarak molekül ağırlığı daha büyük olan ve daha az çözünen polimer yapılar oluşturur). Fotolitografide

olduğu gibi EBL yönteminde de rezist seçimi, elde edilmek istenen deseninin durumuna bağlı olarak seçilir. Rezist seçiminde; duyarlılık ve kontrast oldukça önemlidir. Bir rezistin duyarlılığı, litografi işlemi sonrasında örnek yüzeyinde istenen bir desenin oluşturulabilmesi için gerekli olan minimum doz miktarıdır. EBL yönteminde doz, birim alan başına düşen yük miktarı (µC/cm²) iken fotolitografi işleminde, birim alan başına düşen foton enerjisi (mJ/ cm²) olarak tanımlanır. Bir rezistin kontrastı ise; ışığa maruz kalan ve kalmayan bölümleri arasındaki farkı ortaya koyan ve uygulanan doza bağlı olarak geliştirici içerisinde rezistin kalınlığının ne kadar değiştiğinin bir ölçütüdür. Kontrast, çözünürlüğü ve rezist profilini etkileyen önemli bir parametredir. Keskin profiller elde etmek ve EBL yönteminde yakınlık etkisini azaltmak amacıyla yüksek kontrasta sahip rezistler tercih edilir. Kaplama işlemlerinin işin içine girdiği ve eğimli duvar profilinin elde edilmek istendiği ters litografi gibi işlemlerde ise düşük kontrasta sahip rezistler tercih edilir. Duyarlılık ile kontrast arasında ters ilişki olup, yüksek duyarlılıklı bir rezistin, uygulanan doza tepkisi daha hassas olacağından kontrastı düşük olacaktır [99,100].

EBL yönteminde desenlenmek istenen bölgelere yönlendirilen elektronlar, rezist içinden geçerken saçılmalara uğrayarak (enerjilerini kaybederek) rezistte fizikokimyasal değişimlere neden olacak şekilde iyonizasyon (ikincil elektron üretimi) oluştururlar. Rezistin desenlenmesinde de asıl olarak iyonizasyon sonucu oluşan bu ikincil elektronlar (2-50 eV) rol oynamaktadır. Rezist içerisine giren elektronların oluşturduğu elastik çarpışmalar (ileri yönde saçılmalar/forward scattering), elektron demetinin yönünde sapmaya neden olurken esnek olmayan çarpışmalar, demetin enerjisinin/momentumunun azalmasına yol açar. Rezist içerisinde meydana gelen bu elektron saçılma mekanizmaları nedeniyle, EBL sisteminin spot boyutu birkaç nanometre olmasına rağmen rezist üzerinde desenlenebilen bölgeler daha büyük olmaktadır [100].

Geri yönde saçılmalar (backscattering); desenlenmek istenen rezist bölgelerinden geçerek alttaştan yansıyan elektronların, ilk girdikleri bölgeyi tekrardan pozlamaları sonucu oluşurlar. Bu durum; desenlenmek istenen bölgelerin birbirine çok yakın olması durumunda desenlerin aşırı pozlanarak bozulmasına yol açarak [yakınlık etkisi (proximity effect)] çözünürlüğü olumsuz

yönde etkilemektedir. Geri yönde meydana gelen saçılmalar; elektron demetinin enerjisi, alttaş kalınlığı ve alttaş malzemesinin yapıldığı atom numarası arttıkça artar. İleri yönde saçılmalar ise; rezist kalınlığı arttıkça ve elektron demetinin enerjisi azaldıkça artar [99,100]. Şekil 5.10'da PMMA kaplı silikon örnek için, 10 kV ve 20 kV hızlandırma gerilimlerinde elektron saçılması Monte Carlo simülasyon grafikleri görülmektedir.

Şekil 5.10. PMMA kaplı Silikon örnek için (a) 10 kV ve (b) 20 kV hızlandırma gerilimlerinde elde edilmiş elektron saçılması Monte Carlo simülasyon grafikleri [99].

İleri yönde meydana gelen saçılmalar nedeniyle kısa mesafelerde gerçekleşen demet genişlemesi problemi; ince rezist ve yüksek enerjili elektron demeti kullanılarak aşılabilir. Geri yönde meydana gelen saçılmalar nedeniyle oluşan demet genişlemesi problemi ise; saçılma etkisine bağlı olarak desenlerin boyutlarının ve konumlarının yeniden düzenlenmesi ya da desenlerin farklı dozlarda pozlanması ile aşılabilir.

EBL yönteminde en büyük sorunlardan bir tanesi de yalıtkan rezist ve örnek yüzeyinde negatif yüklerin birikmesi (electrostatic charging) ve bunun da demetin yönünü saptırarak odaklanmasını engellemesi problemidir. Bu sorunun üstesinden gelmek amacıyla rezist kaplandıktan sonra rezist yüzeyine çok ince iletken bir polimer tabaka (aquaSAVE gibi) kaplanmaktadır [99,100].

EBL sistemleri temel olarak şu bölümlerden oluşmaktadır: Elektron kaynağı, elektron optiği, saptırıcı lensler, desen işleyici, lazer interferometre kontrollü örnek taşıyıcı. Desen işleyici ve lazer interferometre kontrollü örnek taşıyıcı haricindeki tüm bölümler, taramalı elektron mikroskobunda (SEM) da mevcut olup bir EBL sistemi aynı zamanda SEM olarak da kullanılabilmektedir. Şekil 5.11'de SEM şematik görünümü ve Bilkent Üniversitesi NANOTAM'da bulunan Raith EBL sistemi görülmektedir.

Bir SEM cihazı, örnek yüzeyine gönderilen yüksek enerjili elektronlar tarafından uyarılan atomlardan kopan ikincil elektronların toplanması ve bunların, örneğin yüzey morfolojisini belirleyecek şekilde yüksek çözünürlüklü bir görüntüye dönüştürülmesi esasına göre çalışır.

5.3. Kuru Aşındırma

Aşındırma, örnek yüzeyinden atomların uzaklaştırılması işlemidir. HEMT aygıt üretiminde aşındırma işlemi, aygıtların elektriksel izolasyonu ve tüm yüzeyin pasivasyon kaplaması sonrasında kontak açıklıklarının oluşturulması amacıyla yapılır. Aşındırma işlemi, ıslak ve kuru aşındırma yöntemi olmak üzere ikiye ayrılır. GaN malzemesinin de dahil olduğu III-Nitrürlerde bağ enerjisinin oldukça güçlü olması ve buna bağlı olarak da ıslak aşındırma yönteminin düşük aşındırma hızı, pürüzlü yüzey ve yan duvar profili ve homojen olmayan derinlik ve negatif eğim gibi olumsuzlukları nedeniyle III-Nitrürlerde ıslak aşındırma yöntemi yerine kuru aşındırma yöntemi tercih edilmektedir [101,102]. Yüksek yoğunluklu plazma aşındırma sistemlerinden biri olan indüktif olarak eşleşmiş plazma reaktif iyon aşındırma (ICP-RIE= Inductively Coupled Plasma- Reactive lon Etching) sistemi, III-Nitrürlerin kuru aşındırmasında yaygın olarak kullanılmaktadır. Şekil 5.12'de ICP-RIE şematik çizimi ve NANOTAM'da bulunan Sentech SI 500 ICP-RIE sistemi görülmektedir.

Şekil 5.11. SEM şematik görünümü ve Bilkent Üniversitesi NANOTAM'da bulunan Raith EBL sistemi.

Şekil 5.12. ICP-RIE şematik çizimi ve Bilkent Üniversitesi NANOTAM'da bulunan Sentech SI 500 ICP-RIE sistemi.

ICP-RIE sisteminde plazma, genelde 13,56 MHz'lik özel bir radyo frekansına sahip ve istenen güçte RF uygulanmasına olanak tanıyan bir bobin ile çevrelenmiş dielektrik bir kabin içinde oluşturulur. Kabinin tepesinde bulunan bobinler arasındaki alternatif elektrik alan, kabinin ortasında elektronları tutan ve eşit yoğunluk ve enerji dağılımı ile daha güçlü bir plazma üretilmesine olanak tanıyan güçlü bir alternatif manyetik alan oluşturur.

Plazma, makroskobik açıdan bakıldığında elektriksel olarak nötr olacak şekilde içerisinde eşit sayıda pozitif ve negatif yükler içeren (elektronlar, iyonlar, nötr atomlar, radikaller, moleküller, foton salan uyarılmış düzeyde bulunan atom ve moleküller) iyonize gaz olarak tanımlanır. Elektron yoğunluğu ve iyon yoğunluğu birbirine eşit olup her ikisi de plazma yoğunluğunu tanımlamak için kullanılır. Aşındırma işlemini gerçekleştirecek gazların bulunduğu kabin içerisinde, elektrotlar arasına belli bir güçte radyo frekansı (RF) uygulandığında elektronlar, RF gücü tarafından oluşturulan elektrik alan vasıtasıyla hızlanmaya başlar ve belli bir kinetik enerji kazanırlar. Atom ya da moleküllerin dış kabuğunda yer alan elektronların kinetik enerjisi, iyonlaşma enerjisinden büyükse bu elektronlar koparak atom ve moleküllerden ayrılır. Kopan bu elektronlar, elektrik alanın etkisi ile çevredeki diğer atom ve moleküllere çarparak, enerjilerinin durumuna bağlı olarak elektron kopartır ya da atom ve molekülleri uyararak

plazma oluşumuna katılırlar [103]. Yüksek enerjili elektronlar tarafından uyarılan atom ve moleküllerin tekrardan kararlı duruma geçerken yayımladıkları ışınlar, plazma renginin kaynağını oluşturur. İki tip plazma vardır. Birincisi, güçlü iyonize edilmiş plazma olan ark deşarj plazması, diğeri ise zayıf iyonize edilmiş parıltı (glow) deşarj plazmasıdır [104-105]. ICP RIE sistemleri, parıltılı deşarj plazma sistemleri olup bu sistemler; elektron sıcaklığı (T_e) ile gaz sıcaklığı (T_g) arasında termal bir denge olmaması durumu ile karakterize edilir. Bir elektronun sıcaklığı kinetik enerjisine karşılık gelir ve şu şekilde ifade edilir:

$$\frac{1}{2}m_e v_e^2 = \frac{3}{2}kT_e \tag{5.3}$$

Eş. 5.3'te m_e elektron kütlesi, v_e elektron hızı ve k Boltzmann sabitini ifade etmektedir. Parıltılı deşarj plazma sistemlerinde elektron enerjisi birkaç elektron-volt civarındadır. Elektron enerjisi 2 eV kabul edilirse, $k \approx 8,6x10^{-5}eV/K$ olmak üzere Eş. 5.3'e göre elektron sıcaklığı (T_e) 15.500K civarında olduğu hesaplanır. Buna karşın nötr atomların ve moleküllerin sıcaklığını ifade eden gaz sıcaklığı (T_g) ise oda sıcaklığı (293 K) civarındadır. Elektron sıcaklığı ile gaz sıcaklığı termal denge durumunda olmayıp her ne kadar elektron sıcaklığı çok yüksek olsa da aşındırmanın gerçekleştirildiği kabin ve aşındırılan örnek, düşük sıcaklıktadır. Bunun nedeni ise; elektronların kütlesinin oldukça az olmasından kaynaklanmaktadır.

Çizelge 5.2'de ark ve parıltılı deşarj plazma tipleri için karşılaştırmalı tablo görülmektedir.

Çizelge 5.2.	Ark ve parıltılı	deşarj	plazma	tipleri	için	karşılaştırmalı	tablo	[104-
	105].							

	Plazma Tipi	Elektron sıcaklığı <i>T_e</i> (K)	Plazma yoğunluğu (cm ⁻³)	İyon sıcaklığı T _i (K)	Gaz sıcaklığı T _g (K)
Ark deşarj	Güçlü iyonize edilmiş plazma (yüksek sıcaklık plazması)	>10 ¹⁴	6000	6000	6000
Parıltılı deşarj	Zayıf iyonize edilmiş plazma (düşük sıcaklık plazması)	10 ⁹ -10 ¹²	≈10⁴	300- 1000	300

Plazma esnasında oluşabilecek önemli reaksiyonlar şu şekilde özetlenebilir:

• Elektronla etkileşme reaksiyonları

Uyarma (dönme, titreşimsel veya elektronik)

$$e + A_2 \rightarrow A_2^* + e \rightarrow A_2 + e + hv$$

 $e + A \rightarrow A^* + e \rightarrow A + e + hv$

o Ayrışma

$$e + AB \rightarrow A + B + e$$

 $e + A_2 \rightarrow A^- + A$
 $e + A_2 \rightarrow A^- + A^*$

 \circ İyonizasyon

$$e + A \rightarrow A^+ + 2e$$

 $e + A_2 \rightarrow A^+ + A + 2e$

• Ağır parçacıklar arasında inelastik çarpışma reaksiyonları

o Ayrışma

$$B^* + A_2 \to 2\mathbf{A} + B$$

 \circ İyonizasyon

$$B^* + A_2 \to A_2^+ + B + e$$

o Yük transferi

$$B^+ + A_2 \to A_2^+ + B$$

• Çarpışma sonucu elektron ayrışması

$$B + A_2^- \to A_2 + B + e$$

• Birleşme sonucu elektron ayrışması

$$A + A^- \rightarrow A_2 + e$$

o İyon-iyon rekombinasyonu

$$B^- + A_2^+ \to A_2 + B$$

o Elektron-iyon rekombinasyonu

$$e + A_2^+ \rightarrow 2A$$

 $e + A_2^+ + B \rightarrow A_2 + M$

o Atom rekombinasyonu

$$2A + B \rightarrow A_2 + B$$

• Atom ayrışması

$$A + BC \rightarrow AB + C$$

Atom birleşmesi

$$A + BC + D \rightarrow ABC + D$$

- Örnek yüzeyi (S) ile meydana gelen heterojen reaksiyonlar
 - o Atom rekombinasyonları

$$S - A + A \rightarrow S + A_2$$

o Uyarma

$$S + A^* \rightarrow S + A + hv$$

Atom ayrışması

$$S - B + A \rightarrow S + A - B$$

o Püskürtme

$$S - B + A^* \rightarrow S^+ + B + A$$

Bu etkileşmeler haricinde plazma iyonları ile örnek yüzeyi arasında gerçekleşebilecek diğer etkileşmeler şunlardır:

Geri saçılma: Yüzey ile etkileşen iyonlar, yüzey atomları ile elastik ve inelastik çarpışmalar yaparak yüzeyden saçılabilirler.

Yüzeyde kayma: Yüzey ile etkileşen iyonun momentumuna bağlı olarak yüzey üzerinde zayıf bağlı duran bir atom yerinden kopararak yüzeyde daha kuvvetli bağ oluşturabileceği başka bir yere yerleşebilir.
İçyapıda kayma: Yüksek enerjili iyonlar, örneğin iç yapısına kadar nüfuz ederek burada atomik yerdeğiştirmelere neden olabilir.

Püskürtme: Yeteri kadar momentuma sahip olan iyonlar, momentumlarını yüzeydeki atomlara aktararak atomların fiziksel olarak yüzeyden ayrılmasına neden olabilir.

Kimyasal püskürtme: Yüzey atomları ile iyonlar arasında kimyasal bir bağ gerçekleşerek oluşan yeni bileşikler, gaz olarak yüzeyden ayrılabilir.

İmplantasyon: İyonlar, hedef örneğin içerisine nüfüz ederek burada atomlarla etkileşerek enerjilerini kaybedip tuzaklanabilir.

Yük transferi: Pozitif yüklü bir iyon, yüzeyden elektron alarak nört bir atom olarak yüzeyden saçılabilir.

İyon soğrulması: İyonlar, nötr olmayacak şekilde yüzeydeki atomlarla bağ oluşturabilir.

İkincil elektron yayımı: Yüksek enerjili parçacıklarla etkileşen yüzeyden elektronlar yayımlanabilir.

İkincil iyon yayımı: Yüksek enerjili iyonlar aracılığıyla yüzey atomları iyonlaşabilir ve iyonlaşan bu atomlar yüzeyden kopabilir.

Bu tez kapsamında aygıt izolasyonu için kullanılan $BCI_3 + CI_2$ gaz karışımı için ilgili reaksiyon denklemleri şu şekilde yazılabilir:

$$BCI_{3} + e \rightarrow BCI_{3}^{*} + e$$
$$BCI_{3} + e \rightarrow BCI_{2}^{+} + CI^{-}$$
$$BCI_{3} + e \rightarrow BCI_{3}^{+} + 2e$$
$$BCI_{3} + e \rightarrow BCI_{2} + CI + e$$
$$CI_{2} + e \rightarrow CI^{-} + CI^{+}$$
$$2GaN + 6CI \rightarrow 2GaCI_{3} + N_{2}$$
$$GaN + 6CI \rightarrow GaCI_{3} + NCI_{3}$$

Bu tez kapsamında dielektrik kaplama işlemi için kullanılan Si_3N_4 tabakasında dielektrik açıklığı oluşturmak için kullanılan SF_6 temelli gaz karışımı için ilgili reaksiyon denklemleri şu şekilde yazılabilir:

$$SF_6 + e \rightarrow SF_4^- + 2F$$

$$SF_6 + e \rightarrow SF_4 + F + F^-$$

$$SF_6 + e \rightarrow SF_3 + 2F + F^-$$

$$SF_6 + e \rightarrow SF_4 + F_2^-$$

$$Si_3N_4 + 4SF_6 \rightarrow 3SiF_4 + 4NF_3 + 4S$$

Bir aşındırma işlemi; aşınma hızı, seçicilik (selectivity), tekdüzelik (uniformity) ve kritik boyut ile karakterize edilir. Bir malzemenin aşınma hızı (H); plazmaya maruz kaldığı süre boyunca birim zaman cinsinden ne kadar aşındığının bir göstergesidir. Birimi; nm/s, nm/dk olarak tanımlanabilir. Aşınma hızı için genel denklem şu şekilde ifade edilir:

$$H = x/t \tag{5.4}$$

Eş. 5.4'te t, aşınma zamanını ve x, aşınma zamanı boyunca örnekten aşınan miktarı tanımlamaktadır.

Seçicilik (S); aynı anda aşınan iki malzemenin aşınma hızlarının birbirlerine oranı olarak tanımlanır. Fotorezist ile maskelenmiş bir örnek için, örneğin aşınma hızının fotorezistin ışınma hızına oranı buna örnek olarak verilebilir. Seçicilik için genel denklem şu şekilde ifade edilir:

$$S_{A/B} = \frac{H_A}{H_B} \tag{5.5}$$

Eş. 5.5'te H_A A tabakasının aşınma hızını, H_B B tabakasının aşınma hızını ve $S_{A/B}$ A tabakasının B tabakasına olan seçiciliğini tanımlamaktadır.

Tekdüzelik (uniformity); yüzeyin her noktasında aşınma hızının ne kadar homojen gerçekleştiğinin bir ölçütüdür. Tekdüzelik (T) için genel denklem şu şekilde ifade edilir:

$$T(\%) = \frac{H_{max} - H_{min}}{2x \sum_{i=1}^{H_{i}} x_{i}^{100}}$$
(5.6)

Eş. 5.6'da H_{max} maksimum aşındırma hızını, H_{min} minimum aşındırma hızını ve $\sum \frac{H_i}{N}$ N sayıda noktadan alınan aşınma hızlarının toplamını ifade etmektedir.

Kritik boyut; aşındırma işlemlerinde kritik boyut ifadesi, aşındırma sonrasında elde edilmek istenen desen ile örnek yüzeyine işlenen desen arasındaki benzerliği ya da farklılığı ortaya koymak için kullanılır. Bunu belirlemede anizotropi aşındırma (A) özelliği önemli bir rol oynamakta olup A ifadesi şu şekilde ifade edilir:

$$A = 1 - \frac{yataydaki aşındırma hızı}{dikeydeki aşındırma hızı}$$
(5.7)

Eş. 5.7'de A = 0 tamamen izotropik aşındırmayı ve A = 1 ise tamamen anizotropik aşındırmayı ifade etmektedir.

Örneğin aşındırılması esnasında karşılaşılabilecek olası problemler şu şekilde özetlenebilir:

Yeniden birikme (redeposition) ve çit (fence) oluşumu: Aşındırma esnasında oluşan uçucu olmayan ya da yeteri hızla pompalanamayan yan ürünlerin örnek yüzeyinde birikmesi sonucu oluşur.

Çukur (trench) oluşumu: DC bias voltajının çok yüksek olduğu ve kimyasal aşınmanın az olduğu durumlarda yan duvarlardan saçılan iyonların duvarın tabanında fazla aşınmaya neden olması sonucu oluşur. **Koruyucu maskenin yontulması (faceting)**: DC bias voltajının fazla olmasına bağlı olarak meydana gelen iyon bombardımanı sonucunda desen kenarına yakın bölgede maskenin fazla aşınması sonucu oluşur.

 Λ Λ

Mikromaskeleme ve çimen oluşumu: Maske, elektrot ya da kabin (chamber) duvarlarından örnek yüzeyine gelen ve aşınmayan atıkların yüzeyde istenmeyen maskelemeler oluşturması sonucu oluşur.

Kalıntı (residue) oluşumu: Aşındırma amaçlı kullanılan gazların reaksiyonları sonucunda oluşan polimerik kalıntılar, rezist kaynaklı polimerik kalıntılar ve aşındırılan malzemelerin yüzeye tekrardan yapışması sonucu oluşan kalıntılardır. Bu kalıntıların standart çözücülerle temizlenmesi oldukça zordur. Bu nedenle gerek kalıntı oluşumunu gerekse de yukarıda bahsi geçen aşındırma problemlerini minimize etmek amacıyla gazların, rezistin ve aşındırma reçetesinin optimum düzeyde seçilmiş olması çok önemlidir. Aşağıda çeşitli plazma aşındırma parametre değişimlerinin bazı etkileri özetlenmiştir. Plazma-örnek etkileşimleri gözönünde bulundurulduğunda aşındırılmak istenen farklı türdeki her malzeme için parametrik çalışma yapılarak ilgili malzeme için optimum parametrelerin belirlenmesi oldukça önemlidir.

RF frekansını arttırmak; plazmada oluşan iyon enerjisini, DC bias değerini, aşındırma hızını ve fiziksel aşındırma hızını azaltırken seçiciliği arttırır.

RF gücünü arttırmak; plazmada oluşan iyon enerjisini, DC bias değerini, aşındırma hızını ve fiziksel aşındırma hızını arttırırken seçiciliği ve izotropiyi azaltır.

DC bias değerini arttırmak; plazmada oluşan iyon enerjisini, aşındırma hızını ve fiziksel aşındırma hızını arttırırken seçiciliği azaltır.

Elektrot büyüklüğünü arttırmak; plazmada oluşan iyon enerjisini, DC bias değerini, aşındırma hızını ve fiziksel aşındırma hızını azaltırken seçiciliği arttırır.

87

ICP gücünü arttırmak; oluşan iyon sayısını arttırarak plazma yoğunluğunu arttırır. Yataydaki ve düşeydeki kimyasal ve fiziksel aşındırma hızını arttırır (kimyasal aşındırma daha etkindir) ve yapıda oluşacak hasar ve seçiciliği ise azaltır.

Proses basıncını arttırmak; çarpışma frekansını değiştirerek hem iyon enerjisinin hem de plazma yoğunluğunun değişimine neden olur. Aşınma hızını, seçiciliği, yanduvar pürüzlülüğünü arttırır. İyon püskürmesi azaltarak izotropiyi artırır.

Aşındırma süresi boyunca örnek sıcaklığını düşük ya da yüksek sıcaklıkta tutmak; plazma esnasında oluşan yan ürünlerin uçuculuğunu arttırarak daha düzgün profiller elde edilmesine olanak sağlar. Örneğin silikonun $SF_6 + O_2$ gaz karışımı ile aşındırılması sonucu oluşan yan ürünler, düşük sıcaklıklarda daha uçucu iken CI_2 temelli bazı reaksiyonlarda oluşan yan ürünler yüksek sıcaklıklarda daha uçucudur.

5.4. Yüzey Pasivasyonu

Yüzey pasivasyonu, HEMT aygıt teknolojisinde oldukça önemli bir yere sahip olup örnek yüzeyindeki kristal yapıda oluşan kusurların, bağ yapmamış atomların kimyasal kararlılığını sağlayarak yüzey kaçak akımlarını engellemek amacıyla yapılmaktadır. Pasivasyon tabakası ayrıca, aygıtı mekanik ve kimyasal hasarlardan, korozyondan korumak ve HEMT aygıtların kullanıldığı tek tabanlı mikrodalga entegre devrelerin (MMIC= Monolithic Microwave Integrated Circuit) kapasitif elemanlarının dielektrik malzemesini oluşturmak amacıyla kaplanmaktadır. HEMT aygıt teknolojisinde pasivasyon tabakası olarak; sahip olduğu yüksek dielektrik sabiti, mekanik dayanıklılık, kimyasal olarak inert (aktif olmayan) ve bir çok atom ve iyon türüne karşı yüksek bariyer oluşturarak bunların yapı içerisine difüz etmesini engellemesi özellikleri nedeniyle silisyum nitrür (Si₃N₄) tercih edilmektedir. HEMT aygıt teknolojisinde Si₃N₄ kaplama işlemleri, genelde plazma destekli kimyasal buhar biriktirme (PECVD=Plasma Enhanced Chemical Vapor Deposition) yöntemi ile yapılmaktadır. Şekil 5.13'te PECVD sistemi şematik çizimi ve NANOTAM'da bulunan Sentech SI 500 PPD plazma destekli kimyasal buhar biriktirme sistemi görülmektedir.

Şekil 5.13. PECVD sistemi şematik çizimi ve NANOTAM'da bulunan Sentech SI 500 PPD plazma destekli kimyasal buhar biriktirme sistemi.

PECVD sisteminde plazma, kuru aşındırma yönteminde anlatıldığı gibi RF kullanılarak oluşturulmaktadır. Ancak ICP RIE sisteminden farklı olarak bu sistemlerde, ICP kaynağı olmayıp dielektrik kaplanmak istenen örnek, ısıtıcı bir tabla üzerine konularak istenen sıcaklıkta (Sentech SI 500 PPD sistemi için 20°C -350°C aralığında) RF aracılığıyla oluşturulan iyonların, belli bir sıcaklıkta tutulan örnek yüzeyine, anot-katot arasında oluşturulan potansiyel aracılığıyla birikerek yalıtkan bir film oluşturması sağlanır. Bu tez kapsamında HEMT aygıtların yüzeyine kaplanan silisyum nitrür (Si₃N₄) dielektrik tabakası için reaksiyon denklemi şu şekilde verilir:

$$3SiH_4(g) + 4NH_3(g) \rightarrow Si_3N_4(s) + 12H_2(g)$$

Film kalitesi, aygıt performansını belirleyen önemli parametrelerden bir tanesi olup iyi bir şekilde karakterize edilmesi gerekmektedir. Kaplanan bir dielektrik malzemenin kalitesi temel olarak; film kalınlığı, yüzey düzgünlüğü, stres (termal ve mekanik özellikler), aşınma hızı ve kırıcılık indisi gibi parametrelerle karakterize edilir [106,107]. Çizelge 5.3'te PECVD plazma parametre değişimlerinin film kalite parametrelerine etkisi görülmektedir.

Plazma	SiH_4 akışı	NH ₃ : SiH ₄ oranı	RF güç	Proses	Sıcaklık	
Parametresi	1	1	↑	Basıncı ↑	1	
Kaplama hızı	↑	\downarrow	$\uparrow\uparrow$	$\uparrow\uparrow$	\downarrow	
Kırıcılık indisi	$\uparrow \uparrow$	$\downarrow\downarrow$	\downarrow		↓?	
Kaplama hızı			11	$\uparrow\uparrow$		
homojenitesi			$\checkmark \checkmark$			
Kırıcılık indisi		↑ ↑	11	↑ ↑		
homojenitesi			$\downarrow\downarrow$			
Film stresi	$\downarrow\downarrow$	↑ ($\downarrow\downarrow$	$\uparrow \uparrow$	1	
BOE (Buffered						
oxide etch)		↑ ↑		$\uparrow\uparrow$		
içinde aşınma				11	$\downarrow \downarrow \downarrow$	
hızı						

Çizelge 5.3. PECVD plazma parametre değişimlerinin film kalite parametrelerine etkisi [108, 109-111].

Bir filmin örneğe iyi bir şekilde yapışması (adhesion), sertliği ve çizilmeye karşı direnci, bağıl termal genleşme katsayısı ve arayüzdeki termal gerilmeler; film/örnek çiftinin mekanik ve termal özelliklerini belirler. Bir filmin örnek yüzeyine yapışma kuvveti, film ile örnek yüzeyi arasındaki etkileşim kuvvetleri (Van der Waals ya da elektrostatik kuvvetler) aracılığıyla kontrol edilir. Yapışma kuvveti, aynı zamanda örnek yüzeyinin temizliğine, mikroyapısına, kaplama parametrelerine ve örnek ile film arasındaki termal genleşme katsayıları arasındaki farka bağlı olarak da değişir.

Yüzey üzerine yapışan bir filmin yüzey üzerinde yaratacağı stres, aygıt performansını belirlemede oldukça önemli olup HEMT aygıt teknolojisinde, yüksek aygıt performansı için Si₃N₄ tabakasının, yüzey üzerinde, çekme gerilimi (tensile stres) yaratacak şekilde kaplanması istenmektedir [108, 112-114]. Şekil 5.14'te örnek yüzeyine kaplanan bir filmin, stres nedeniyle örnekte oluşturabileceği bükülme tipleri görülmektedir.

Şekil 5.14. Örnek yüzeyine kaplanan bir filmin, stres nedeniyle örnekte oluşturabileceği bükülme tipleri [115].

Kaplama esnasında film içerisine çok fazla atom paketlenirse, bağ uzunlukları normalden daha kısa olacak şekilde sıkışır. Bu durumda film, normal bağ uzunluğuna ulaşmak için gevşemeye başlar. Bu durumda da film dışarı doğru itilerek örneğin dışbükey bir eğri (baskı gerilimi) halini almasına neden olur. Bunun aksine cm³ başına çok az atom film içerisine paketlenirse içbükey bir yapı (çekme gerilimi) oluşur. Bu nedenle baskı (compressive) geriliminin etkin olduğu filmler, çekme (tensile) geriliminin etkin olduğu filmlere göre daha yoğundur ve baskı (compressive) gerilimi negatif, çekme (tensile) gerilimi ise pozitif işaret ile gösterilir.

Yüzey üzerine kaplanan bir filmin yaratacağı gerilme, lazer reflektans [116] ve mekanik profilometre [117-119] olmak üzere değişik yöntemler kullanılarak ölçülebilir. Bu tez kapsamında mekanik profilometre yöntemi kullanıldı. Kaplanan Si₃N₄ tabakasının kalınlık ve kırıcılık indisi gibi optik özellikleri ise elipsometre [120] cihazı yardımıyla ölçüldü. Si₃N₄ tabakasının kızılötesi (IR) bölgede soğurma spektrumu, Si₃N₄ tabakasının moleküler yapısı hakkında bilgi vererek kaplanan dielektrik tabakasının kalitesi hakkında önemli bilgiler alınmasını sağlar. Yüksek kalitede bir Si₃N₄ tabakası için soğurma pik konumları

91

şu şekilde verilir: Si-O:9,4 μ m, O-N:2,9 μ m, Si-H:4 μ m, N-H:7,2 μ m. Ancak genel olarak yapılan kaplama sonrasında stokiyometrik olmayan Si₃N₄ tabakaları gözlemlenmektedir. Bu nedenle kaplanan dielektrik tabakası bu pik değerlerine ne kadar yakınsa kaplamanın o derecede kaliteli olduğu söylenir.

Si₃N₄ tabakası, bir çok kimyasala karşı oldukça dirençlidir. Bununla birlikte kuru aşındırma haricinde çeşitli kimyasallar (BOF:oda sıcaklığında; H₃PO₄:140-180 °C'de) kullanılarak ta aşındırılabilir. Kimyasal aşınma hızı, kaplanan Si₃N₄ tabakasının kalitesi hakkında dolaylı yoldan bilgi alınmasını sağlar. Aşınma hızı ne kadar düşük ise kaplanan dielektrik malzemesi, o derecede kalitelidir. Çünkü kaplama hızı; filmin yoğunluğu, stokiyometrisi, bağ gerginliği ve içerdiği safsızlıklara bağlı olarak değişir. Aşağıda çeşitli kimyasallar içinde Si₃N₄ tabakasının kimyasal aşınma reaksiyon denklemleri görülmektedir.

$$Si_3N_4 + 18HF \rightarrow H_2SiF_6 + 2(NH_4)_2SiF_6$$

 $Si_3N_4 + 27H_2O + 4H_3PO_4 \rightarrow 4(NH_4)_3PO_4 + 9H_2SiO_3$

Bir dielektrik malzemenin dielektrik sabiti ya da elektriksel geçirgenliği (ε); ε_0 vakum dielektrik sabiti, d dielektrik malzemenin kalınlığı, A kapasitörün alanı ve C ölçülen kapasitans değeri olmak üzere şu şekilde ifade edilir:

$$\varepsilon = Cd/\varepsilon_0 A \tag{5.8}$$

Kaplama esnasında yapı içerisine, herhangi bir şekilde istenmeyen kirliliklerin dahil olması ya da kaplama parametrelerinde meydana gelecek istenmeyen değişiklikler, dielektrik sabitinde değişimlere neden olacaktır. Dielektrik malzemenin düzgün kaplanmamasına bağlı olarak yapı içerisinde oluşacak tuzaklanmalar, dielektrik malzemenin yalıtkan yapısını bozarak daha iletken bir form almasına yol açıp akım yoğunluğunda değişimlere neden olur. Bir dielektrik malzeme için akım yoğunluğu, Poole-Frenkel mekanizması'na göre belirlenir ve tuzak yoğunluğuna bağlı olarak şu şekilde ifade edilir [116,121,122]:

92

$$J = C_2 Eexp\left(\frac{-q(\phi_B - \sqrt{qE/(\pi\varepsilon_i)})}{k_B T}\right)$$
(5.9)

Eş. 5.9'da; J akım yoğunluğu, C_2 dielektrik malzemedeki tuzak yoğunluğuna bağlı olarak bir sabit, E elektrik alan, ε_i dinamik elektriksel geçirgenlik, qelektron yükü, \emptyset_B sıfır elektrik alan altında kristal yapı içerisinde bir elektronun bir atomdan diğerine geçmek için aşması gereken bariyer yüksekliği, T sıcaklık ve k_B Boltzmann sabitidir.

5.5. Elektron Demeti ile Buhar Biriktirme Yöntemi

Fiziksel buhar biriktirme yöntemlerinden birisi olan elektron demeti ile buhar biriktirme yöntemi; yüksek vakum (P<10⁻⁵ Torr) ortamında ısıtılan bir filamentten kopartılan elektronların, belirlenen bir hızlandırma gerilimi altında hızlandırılarak ve manyetik alan yardımıyla da yönlendirilerek buharlaştırılacak malzeme üzerine düşürülmesi esasına dayanır. Malzeme ile etkileşen elektronlar, enerjilerini malzemeye aktararak buharlaşmasını ve yukarıda duran örnek yüzeyinde ince film oluşturacak şekilde birikmesini sağlar. Şekil 5.15'te elektron demeti ile buhar biriktirme sistemi şematik çizimi ve NANOTAM'da bulunan Oerlikon Leybold Univex 350 model kaplama sistemi görülmektedir.

Vakum sistemlerinde, yüksek kaplama kalitesi için; kaplamanın yapıldığı bölme içerisinde, kaplanacak malzemenin atomları ile atmosfer ortamından kaynaklanan atomlar arasındaki çarpışmaların minimize edilmesi gerekmektedir. Bu da bölmenin oldukça temiz tutulması ve kaplama öncesi vakumun oldukça iyi bir düzeyde tutulması ile sağlanmaktadır. Bir parçacığın ortalama serbest yolu (λ); parçacığın çapı σ , çarpışma kesiti $\pi\sigma^2$, Boltzmann sabiti k, sıcaklık T ve basınç P olmak üzere şu şekilde ifade edilir:

$$\lambda = kT / \sqrt{2} \pi \sigma^2 P \tag{5.10}$$

Şekil 5.15. Elektron demeti ile buhar biriktirme sistemi şematik çizimi ve NANOTAM'da bulunan Oerlikon Leybold Univex 350 model kaplama sistemi.

 $k = 1,3626x10^{-22}$ atm. cm³. K⁻¹, T = 300K, $\sigma = 3x10^{-8}$ cm ve 1 atm = 760 Torr olmak üzere Eş. 5.10 şu şekilde yazılabilir:

$$\lambda (cm) x P (Torr) = kT / \sqrt{2} \pi \sigma^2 = 7,8x 10^{-3}$$
 (5.11)

Bir parçacığın ortalama serbest yolu, iki ardışık çarpışma arasında aldığı yolu ifade etmekte olup bu değer ne kadar yüksekse meydana gelecek çarpışmalar o derecede düşük ve kaplama kalitesi de o derecede yüksek olacaktır. Eş. 5.11'e göre $P = 10^{-6}$ Torr için $\lambda = 7800$ cm bulunur. Kaplama sisteminde kaynak ile örnek arasındaki mesafe 30 cm olması durumunda, ortalama çarpışma sayısı yaklaşık olarak; 30 cm/7800 cm \approx 0,004 bulunacaktır. Bu değer de kaplama sistemleri için oldukça iyi bir değerdir. Çizelge 5.4'te 0°C (273.15K)'de bazı gazlar için $\lambda x P$ değerleri görülmektedir.

Çizelge 5.4. 0°C (273.15K)'de bazı gazlar için $\lambda x P$ değerleri [123].

Gaz	H ₂	N ₂	O ₂	He	Ne	Ar	Hava	Kr	Xe	Hg	H ₂ O	СО	CO ₂	HCI	NH₃	Cl ₂
λχΡ																
x10 ⁻³	11,5	5,9	6,5	17,5	12,7	6,4	6,7	4,9	3,6	3,1	6,8	6,0	4,0	3,3	3,2	2,1
(m.Pa)																

Kaplama kalitesini belirleyen önemli parametrelerden bir tanesi de örnek yüzeyine kaplanan malzemenin homojenitesidir (örneğin her noktasında aynı kalınlıkta kaplanmış olmasıdır). Örnek yüzeyine kaplanan malzemenin homojenitesi (σ); *L* örneğin uzunluğu, R_1 örneğin merkezindeki kaplama hızı, R_2 örneğin kenarındaki kaplama hızı olmak üzere şu şekilde ifade edilir;

Eş.5.12 incelendiğinde kaynak (buharlaştırılan malzeme) ile örnek arasındaki r_1 mesafesi arttıkça homojenitenin (σ) arttığı görülmektedir. Ancak vakum sistemlerinde r_1 mesafesinin artması; kaplamanın yapıldığı kabinin büyümesi, daha fazla kirlilik, daha büyük kapasitede vakum pompası, düşük kaplama hızları ve aynı kaplama kalınlığı için daha fazla malzeme buharlaştırılması anlamına gelmektedir. Bunun yerine daha homojen bir kaplama için örneğin döndürülerek kaplanması daha yaygın kullanılan bir çözümdür.

Kaplama kalitesini belirleyen bir diğer önemli parametre ise kaplama hızıdır. Kaynak yüzeyinin birim alanı başına örnek yüzeyinde kütle birikim hızı (R_m),

$$R_m = C_m \left(\frac{M}{T}\right)^{\frac{1}{2}} \cos\theta \cos\varphi \frac{1}{r^2} \left(P_e(T) - P\right)$$
(5.13)

Eş. 5.13, Langmuire-Knudsen eşitliği olarak bilinmekte olup eşitlikten de görüldüğü üzere kaplamanın yapıldığı kabinin basıncının sıfıra yaklaşması $(P \sim 0)$ durumunda, kütle birikim hızı maksimum olmaktadır. Eş. 5.13'ten yola çıkarak örnek yüzeyinde birim zamanda biriken malzemenin kalınlığı (dh/dt) ise şu eşitlikle ifade edilir:

$$\frac{dh}{dt} = \frac{R_m}{\rho} A_e \Rightarrow \frac{dh}{dt} = \frac{A_e}{\rho} C_m \left(\frac{M}{T}\right)^{\frac{1}{2}} \cos\theta \cos\varphi \frac{1}{r^2} P_e(T)$$
(5.14)

Eş. 5.14'te; A_e (cm^2), kaynak yüzey alanını ve ρ (g/cm^3), buharlaştırılan malzemenin yoğunluğunu ifade etmektedir. Eşitlikten de görüldüğü üzere kaynak ile örnek arasındaki mesafe arttıkça, örnek yüzeyinde biriken malzemenin miktarı azalmaktadır. Buharlaştırılan malzemenin buhar basıncının (P_e) artması durumunda ise biriken malzemenin miktarı da artmaktadır. Şekil 5.16'da yaygın kullanılan bazı malzemeler için sıcaklığa bağlı buhar basıncı grafiği görülmektedir.

Şekil 5.16. Yaygın kullanılan bazı malzemeler için sıcaklığa bağlı buhar basıncı grafiği [124].

HEMT aygıt üretiminde, metal kaplama kalitesi aygıt performansı açısından oldukça kritik bir öneme sahip olup aygıtların schottky ve ohmik eklemlerini oluşturmak için gerekli metal kaplama işlemleri, elektron demeti ile buhar biriktirme sistemi kullanılarak yapıldı.

5.5.1. Schottky Eklem

HEMT aygıtlarda gate (kapı) kontağı, Schottky eklem olup bir besleme gerilimi altında bir kapasitör gibi görev yapar. Bu özelliği sayesinde serbet taşıyıcıların bulunduğu kanalın altındaki yarıiletken bölgede yayılım bölgesi (depletion region) oluşturur ve ohmik eklemler arasında yük akışını engeller. Schottky eklemin bu doğrultma özelliği, metal-yarıiletken arayüzeyindeki bant özelliğinden kaynaklanmakta olup metal ve n-tipi yarıiletken birleşmeden önce bant yapıları, Şekil 5.17'de görüldüğü gibidir.

Şekil 5.17. Schottky eklem oluşmadan önce metal ve n-tipi yarıiletken için bant yapısı [125].

Bir metal ile yarıiletken, eklem oluşturmak için bir araya geldiklerinde aralarındaki iş fonksiyonunun (ϕ) durumuna bağlı olarak iki farklı eklem tipi oluşturabilirler:

 ϕ_m metalin ve ϕ_n yarıiletkenin iş fonksiyonu olmak üzere;

n-tipi yarıiletken için, $\phi_m > \phi_n$ ise Schottky eklem

 $\phi_m < \phi_n$ ise Ohmik eklem

p-tipi yarıiletken için, $\phi_m > \phi_n$ ise Ohmik eklem

$$\phi_m < \phi_n$$
 ise Schottky eklem

Oluşur. Bu tez kapsamında ohmik ve Schottky eklemler n-tipi GaN kep tabakası üzerinde oluşturulduğundan bundan sonraki açıklamalar, n-tipi yarıiletkenler için yapılacaktır. n-tipi yarıiletkenin iş fonksiyonu (ϕ_n), metalin iş fonksiyonundan (ϕ_m) daha küçük olduğundan ve buna bağlı olarak da n-tipi yarıiletkenin Fermi enerji düzeyi (E_{F_n}), metalin Fermi enerji düzeyinden (E_F) daha büyük olduğundan, metal-yarıiletken eklem oluştuğunda, denge durumunda, Fermi enerji düzeyleri eşitlenir. Bu durumda; n-tipi yarıiletkenin iletim bandında bulunan elektronlar, metalin Fermi enerji düzeyi üzerinde yer alan boş enerji düzeylerini doldurmak üzere hareket ederler. Bu durum; yarıiletkende pozitif ve metalde de negatif bir yük yoğunluğunun birikmesini sağlayarak bir kontak potansiyeli (V_0), oluşturur. Şekil 5.18'de metal ve n-tipi yarıiletken birleştikten sonraki eklem görüntüsünü yer almaktadır [125].

Şekil 5.18. Metal ve n-tipi yarıiletken birleştikten sonraki eklem görüntüsünü [125].

Bir metal ile yarıiletken arasında kontak oluştuğunda sınır bölgede; yarıiletken tarafındaki düşük yük yoğunluğu nedeniyle ($\sim 10^{17} \text{ cm}^{-3}$) elektronlar sadece yarıiletkenin yüzeyinden değil aynı zamanda yarıiletkenin içinden belli bir derinlikten de gelerek yarıiletken içinde bir yayılım bölgesi (depletion region) oluşturur. Metal ve yarıiletken Fermi enerji düzeyleri eşitlenir ve yarıiletken tarafında pozitif bir potansiyel oluşur. Yayılım bölgesi, yarıiletkenin içinde belli bir bir derinliğe kadar uzandığından yarıiletken tarafına doğru enerji bandının

bükülmesine yol açar. Bantlar elektrik alan yönünde büküleceğinden, enerji bantları n-tipi yarıiletkenden metale doğru bükülür. Metal ve n-tipi yarıiletkenin Fermi enerji düzeyleri eşitlenir ve yarıiletkenin içinde bandın büküldüğü (yayılım bölgesi) belli bir bölge (W_D) oluşur. Şekil 5.19'da termal denge durumunda Schottky eklem için enerji bant diyagramı görülmektedir [125].

Şekil 5.19. Termal denge durumunda Schottky eklem için enerji bant diyagramı [125].

Schottky eklem oluşumu sonrasında indüklenen potansiyel (V_0) , iş foksiyonlarının farkı cinsinden şu şekilde ifade edilir:

$$eV_0 = \phi_m - \phi_n \tag{5.15}$$

Eş. 5.15'te eV_0 ifadesi, ϕ_{bi} şeklinde de gösterilmekte olup yapısal (built-in) potansiyel olarak da isimlendirilir.

Metallerin iş fonksiyonu sabitken, yarıiletkenlerin iş fonksiyonu, katkı konsantrasyonuna bağlı olarak değişir (katkılama miktarı, Fermi enerji düzeyinin bulunacağı konumu değiştirir). Eklem oluştuğunda, yarıiletkenden metale doğru elektronlar hareket ederek bir yayılım bölgesi oluştururlar. Termal denge

durumunda ise yarıiletkenden metale, daha fazla elektron geçmesini önleyecek şekilde bir kontak potansiyeli (V_0) oluşur. Bununla birlikte metalden yarıiletkene doğru da elektron geçişini önleyen bir bariyer vardır. Bu bariyer, Schottky bariyer yüksekliği (ϕ_B) olarak bilinmekte olup şu şeklinde ifade edilir:

$$\phi_B = (\phi_m - \phi_n) + (E_c - E_{F_n}) = \phi_m - \chi_n$$
 (5.16)

Eş. 5.16'da E_c , iletim bandı enerji seviyesini ve χ_n de n-tipi yarıiletkenin elektron ilgisini tanımlamaktadır.

Yayılım bölgesinin genişiliği (W_D) şu şekilde ifade edilir:

$$W_D = \sqrt{\frac{2\varepsilon_r \varepsilon_0}{qN_d} \left(V_0 - V - \frac{kT}{q}\right)}$$
(5.17)

Eş. 5.17'de ε_r yarıiletkenin bağıl dielektrik geçirgenliği, ε_0 vakum dielektrik geçirgenliği, q elektron yükünü, N_d verici katkı konsantrasyonunu, V uygulanan gerilimi, k Boltzmann sabitini ve T sıcaklığı tanımlamaktadır. kT/q ifadesi genelde V_T ile gösterilir ve oda sıcaklığında 0,026 V değerine eşittir. V_0 ise yaklaşık 1 V civarındadır. Eş. 5.17 incelendiğinde yüksek verici katkı konsantrasyonu (N_d) için yayılım bölgesinin küçüldüğü görülmektedir. Uygulanan pozitif dış gerilim (V) arttığında ise, yayılım bölgesi küçülerek kanaldan akan akım artacak, negatif dış gerilimin arttığı durumda da yayılım bölgesi büyüyerek kanaldan akan akım azalacaktır.

Yayılım bölgesi boyunca elektrik alan (E_m) şu şekilde ifade edilir:

$$E_m = \frac{qN_d}{\varepsilon_r \varepsilon_0} W_D = \sqrt{\frac{2qN_d}{\varepsilon_r \varepsilon_0} \left(V_0 - V - \frac{kT}{q}\right)}$$
(5.18)

Metal-yarıiletken ara yüzeyindeki elektrik alanın (E_m) değerinin, yarıiletkenin kırılma elektrik alan değerinden küçük olması gerekmektedir. Aksi halde elektronlar, elektron/atom çarpışmaları sırasında serbest yüklerin biraraya gelebileceğinden daha hızlı bir şekilde elektron/delik çifti oluşturmak için yeterli

kinetik enerjiye sahip olurlar. Oluşan bu yeni elektronlar da elektrik alan tarafından hızlandırılarak daha fazla elektron/delik çifti oluştururlar. Bu kaçak süreç, "çığ kırılması (avalanche breakdown)" olarak adlandırılır ve aygıtın çalışma aralığından çok daha düşük gerilimlerde kırılmasına yol açar.

Yayılım bölgesinde biriken yük aynı zamanda eklemde bir kapasitans oluşmasına yol açar. Bu kapasitans (C), şu şekilde ifade edilir:

$$C = \frac{\varepsilon_r \varepsilon_0}{W_D} = \sqrt{\frac{q \varepsilon_r \varepsilon_0 N_d}{2\left(V_0 - V - \frac{kT}{q}\right)}}$$
(5.19)

Eş. 5.19 incelendiğide; yayılım bölgesinde eklemde oluşan kapasitans değeri, uygulanan dış gerilimin bir fonksiyonu olarak değişmektedir. Bu da eklemin, voltaj kontrollü kapasitans gibi davranması anlamına gelmektedir. Ayrıca kapasitans değerinin eklemdeki katkı konsantrasyonuna bağlı olarak değişmesi, kapasitans-voltaj eğrisinin değişebileceği/değiştirilebileceği anlamına gelmektedir [126].

Metal-yarıiletken eklem oluştuktan sonra denge durumunda, yarıiletkenden metale doğru elektron hareketi, oluşan kontak potansiyeli tarafından dengelenir ve bu şekilde de net akım sıfır olur. Ancak denge durumunda yine de metal-yarıiletken eklem boyunca taşıyıcılar, birkaç yolla kendiliğinden hareket edebilirler [127]:

- i. **Termiyonik emisyon (TE)**: Taşıyıcılar, yarıiletkenden, Schottky bariyer yüksekliği üzerinden metal içerisine taşınabilir.
- ii. Termiyonik alan emisyonu (TAE): Sıcak taşıyıcılar, Schottky bariyer yüksekliğinin tepe noktasından tünelleme yoluyla metal içerisine taşınabilir (yüksek katkılama nedeniyle yayılım bölgesinin daralması durumlarında etkindir).
- **iii.** Alan emisyonu (AE): Taşıyıcılar, tüm Schottky bariyer yüksekliği boyunca tünelleme yoluyla metal içerisine taşınabilir.

Şekil 5.20'de denge durumunda metal-yarıiletken eklem boyunca taşıyıcıların hareket yolları görülmektedir.

Şekil 5.20. Denge durumunda metal-yarıiletken eklem boyunca taşıyıcıların hareket yolları [18].

Schottky ekleme uygulanacak dış potansiyelin tipine ve miktarına bağlı olarak kanaldaki akım akışı kontrol edilebilmektedir. Schottky eklem, uygulanan dış potansiyelin ileri besleme ve geri besleme durumuna bağlı olarak iki şekilde kontrol edilebilir.

İleri besleme durumu: Metalin, pozitif ve n-tipi yarıiletkenin de negatif potansiyelde tutularak kontak potansiyelin yönüne zıt olacak şekilde Schottky eklemin dış bir gerilimle beslendiği durumdur. Şekil 5.21'de ileri besleme durumunda Schottky eklemin enerji bant diyagramı görülmektedir. İleri besleme durumunda, uygulanan dış gerilim arttıkça devreden geçen akım artacaktır. İleri besleme durumunda bir Schottky diyottan geçen akım yoğunluğu (J) şu denklem ile verilir:

$$J = J_0[exp(eV/kT - 1)]$$
(5.20)

Eş. 5.20'de J_0 , Schottky bariyer yüksekliğine bağlı bir sabit olup şu eşitlik ile ifade edilir:

$$J_0 = AT^2 exp\left(-\frac{\phi_B}{kT}\right) \tag{5.21}$$

Eş. 5.21'de A, termiyonik emisyon için Richardson sabitini tanımlamakta olup malzemeye özgüdür.

Şekil 5.21. İleri besleme durumunda Schottky eklemin enerji bant diyagramı [125].

Geri besleme durumu: Schottky ekleme uygulanan dış potansiyelin, kontak potansiyeli ile aynı yönlü olduğu durumdur. Şekil 5.22'de geri besleme durumunda Schottky eklemin enerji bant diyagramı görülmektedir.

Şekil 5.22. Geri besleme durumunda Schottky eklemin enerji bant diyagramı [125].

Geri besleme durumunda elektron akışı, metalden n-tipi yarıiletkene doğru olup akan akım sabittir ve Eş. 5.21'de verilen J_0 değeri kadardır. Bu da geri besleme durumunda devreden akan akımın, ileri besleme durumuna göre akan akımdan onlarca kat daha düşük olduğu ve geri besleme durumunda Schottky eklemin bir doğrultucu (rectifier) olarak görev yapabileceği anlamına gelmektedir. Şekil 5.23'te Schottky eklem için ileri ve geri besleme durumunda I-V karakteristiği görülmektedir.

Şekil 5.23. Schottky eklem için ileri ve geri besleme durumunda I-V karakteristiği [125].

Yüksek HEMT aygıt performansı için Schottky eklemin (gate kontağının) düzgün bir şekilde oluşturulması gerekmektedir. Schottky eklem kalitesini; yarıiletkendeki kusurlar, lokal stokiyometrik varyasyonlar, yüzey pürüzlülüğündeki değişimler, metal kaplama öncesi yüzey temizliği ve seçilen metal etkilemektedir. Özellikle etkili bir Schottky eklem oluşturmak için seçilecek metalin; yarıiletkenin yüzeyine iyi yapışması, kaçak akımları minimize etmek amacıyla yüksek iş foksiyonuna sahip olması ve yüksek besleme gerilimleri altında çalışırken termal ve mekanik olarak kararlı bir yapıya sahip olması gerekmektedir. Çizelge 5.5'te n-GaN için doğrultma amaçlı kullanılan çeşitli metaller için ölçülen bariyer yükseklikleri ve termal dayanımları görülmektedir.

Çizelge 5.5.	n-GaN için doğrultma amaçlı kullanılan çeşitli metaller için ölçülen
	bariyer yükseklikleri ve termal dayanımları [128-130].

Metal	Pt	Au	Ti	Pd	Ni	Ag	Ni/Au
Bariyer yüksekliği (eV)	1.0-1,1	0,91-1,15	0,10-0,60	0,94-0,95	0,66-0,99	0,90	1,04
Termal dayanım (°C)	400	575	-	300	600	-	-

GaN HEMT aygıt teknolojisinde, Çizelge 5.5'te görülen metaller içerisinden; AlGaN/GaN yüzeyine oldukça iyi tutunması, 5,15 eV'luk yüksek bir iş fonksiyonuna sahip olması ve bant bükme davranışı oldukça iyi tanımlanmış olması nedeniyle Nikel (Ni) metali tercih edilmektedir [131]. Bu tez kapsamında Schottky (gate kontağı) eklem oluşturmak için 50 nm Ni ve Ni üzerini örtecek şekilde de 300 nm Au metali kaplandı. Au tabakası, Ni tabakasının oksitlenmesini engellemek ve aygıt operasyonlarında iletkenliği arttırmak amacıyla kaplanmaktadır. Au tabakasının elektromigrasyonunu önleyerek zamana bağlı aygıtlardaki kaçak akım artışını engellemek amacıyla Ni ve Au arasına, Au'nun difüzyonunu engellemek amacıyla bir difüzyon bariyeri olarak Pt metali de kaplanmaktadır [132].

5.5.2. Ohmik Eklem

Schottky eklem oluşturmak için, n-tipi yarıiletkenin metalden daha düşük bir iş fonksiyonuna sahip olması gerekirken ohmik eklem oluşturmak için bunun tersi bir durum istenir. Şekil 5.24'te Ohmik eklem için kontak öncesi ve sonrası enerji bant diyagramı görülmektedir.

Şekil 5.24. Ohmik eklem için kontak öncesi ve sonrası enerji bant diyagramı [125].

Termal denge durumunda elektronlar, metalden n-tipi yarıiletkenin iletim bandına doğru hareket ederek arayüzde n-tipi yarıiletken tarafına doğru bir birikim bölgesi oluştururlar. Bu bölge, yüksek elektron yoğunluğu nedeniyle n-tipi yarıiletkenden daha yüksek bir iletkenliğe sahip olup hem ileri besleme durumunda hem de geri besleme durumunda bir iletken görevi görür.

Düşük dirençli ve kararlı bir yapıya sahip ohmik eklemler, aygıt performansı açısından kritik bir öneme sahiptir. Ohmik eklemler, HEMT aygıtlarda akaçkaynak arasındaki akım akışını maksimize edecek ve R_{on} direncini düşürerek düşük bükülme voltajı (V_{knee}) elde edilmesine olanak sağlayacak şekilde tasarlanırlar. İyi bir ohmik eklem için spesifik kontak direncinin (ρ_c) düşük olması istenir. ρ_c şu şekilde ifade edilir:

$$\rho_{C} = \left(\frac{\partial J}{\partial V}\right)_{V=0}^{-1} \tag{5.22}$$

Yarıiletkenin düşük katkı konsantrasyonuna sahip olması durumunda metalyarıiletken arayüzeyinde termiyonik emisyon yoluyla iletim etkin olup akım yoğunluğu Eş. 5.20'de verildiği gibidir. Bu durumda Eş. 5.22 kullanılarak ρ_c için şu eşitlik elde edilir:

$$\rho_C = \frac{k}{qAT} exp\left(\frac{\phi_B}{kT}\right) \tag{5.23}$$

Eş. 5.23 incelendiğinde düşük ρ_c için Schottky bariyer yüksekliğinin düşük olması istenir. Ancak III-Nitrat grubu gibi geniş enerji bant aralığına sahip malzemeler için düşük Schottky bariyer yüksekliği elde edebilecek kadar düşük iş fonsiyonuna sahip metaller bulunmadığından düşük direnç elde edebilmek için metal-yarıiletken arayüzeyinde katkı konsantrasyonunun arttırılması yoluna gidilmektedir. Bu amaçla da HEMT apitaksiyel üretiminde yüksek konsantrasyounlu n-tipi GaN kep tabakası Schottky bariyer yüksekliğini azaltmak amacıyla bir kontak tabakası olarak büyütülmektedir. Yüksek katkı konsantrasyonlarında, metal-yarıiletken arayüzeyinde iletim, tünelleme yoluyla gerçekleşir ve tünelleme akım yoğunluğu (J_t) şu eşitlik ile verilir:

$$J_t \sim exp\left(-\frac{4k}{qh}\sqrt{\varepsilon_r\varepsilon_0 m^*}\frac{\phi_B}{\sqrt{N_d}}\right)$$
(5.24)

Eş. 5.22 kullanılarak Eş. 5.24'ten yüksek katkı konsantrasyonu durumunda ρ_c için şu eşitlik elde edilir:

$$\rho_C \sim exp\left(\frac{4k}{qh}\sqrt{\varepsilon_r\varepsilon_0 m^*}\frac{\phi_B}{\sqrt{N_d}}\right) \tag{5.25}$$

Eş. 5.24 ve 5.25 incelendiğinde metal-yarıiletken ara yüzeyinde katkı konsantrasyonu arttıkça akım yoğunluğunun arttığı ve ρ_c 'nin düştüğü görülmektedir.

Yüksek tavlama sıcaklıklarında n-tipi GaN ile düşük spesifik kontak direnci oluşturmak amacıyla X metali Ni, Pt, Mo gibi metallerden biri olmak üzere Ti/Al/X/Au metalleri ardışık olarak kaplanmaktadır. Gerek Ti (4,33 eV) gerekse de Al (4,28 eV) görece düşük iş fonsiyonlarına sahip metaller olup yüksek sıcaklıklarda n-tipi GaN ile düşük ohmik direnç oluştururlar. Ardışık olarak kaplanan Ti/Al/X/Au metallerinden her birinin ohmik eklem oluşturmak amacıyla spesifik bir görevi bulunmaktadır.

Titanyum (Ti): Malzeme üzerine oldukça iyi yapışır ve mekanik stabilite sağlar. Tavlamanın etkisi ile GaN ve AlGaN tabakaları ile reaksiyona girerek geride yüksek derece azot (N) boşlukları (verici=donor) oluşturacak şekilde TiN oluşturur. Bu sayede daha düşük bir iş foksiyonuna sahip olarak Schottky bariyer yüksekliğinin azalmasına ve elektronların 2-DEG'den kontağa daha kolay tünellemesini sağlayarak daha iyi bir ohmik eklem oluşmasını yardımcı olur [133,134].

Alüminyum (AI): Ti ile reaksiyona girerek Al₃Ti oluşturur ve bu şekilde de Ti'nin oksitlenmesini engeller. GaN ve AlGaN tabakaları ile de geride N boşlukları oluşturacak şekilde reaksiyona girerek AlN oluşturur. Bu şekilde de kontağın altındaki arayüzeyde elektronların kolaylıkla 2-DEG'e tünellemesine olanak sağlayacak şekilde yüksek katkılı bir tabaka oluşumuna yardımcı olur [135].

X (Ni, Ti ya da Mo): Au'nun içeri doğru difüzyonunu ve Al'ın da dışarı doğru difüzyonunu engelleyerek bu iki metalin birbirleriyle reaksiyonunu engeller. Au ve Al metallerinin yüksek oranda birleşerek alaşım oluşturmaları; beyaz veba (white plague) ve mor veba (purple plague) adı verilen yüksek dirençli tabakaların oluşmasına yol açar [136]. X metali ayrıca Al metalinin yayılmasını engellediğinden kontak hatlarının da belirgin olmasını sağlar. Aksi durumda, Al metali üzerinde bir X metali bulunmazsa kontak hatları kontrol edilemez bir şekilde genişler [137].

Altın (Au): Ti ve Al metallerinin yüksek tavlama sıcaklıklarında oksitlenmesini engeller ve ohmik eklem iletkenliğini arttırarak aygıt verimliliğini arttırır [138].

Bu tez kapsamında ohmik eklem oluşturmak amacıyla ardışık olarak Ti/Al/Ni/Au metalleri kaplandı. Kaplanan metallerin ohmik eklem oluşturmaları ve 2-DEG'e kadar difüz ederek kaynak ile akaç arasında akım akışına izin verecek şekilde kontak oluşturmaları amacıyla örnekler, atmosfer ortamında hızlı tavlama sistemine (RTP= Rapid Thermal Processing System) yüklendiler. Ardından halojen lambalar yardımıyla ısıtılan sistemde %5 H₂ ve %95 N₂ gazlarını içeren atmosfer ortamında, 850 °C'de 30 saniye tavlandılar.

Şekil 5.25'te ohmik eklem oluşturmak için kaplanan metaller arasındaki reaksiyonlar görülmektedir.

Şekil 5.25. Ohmik eklem oluşturmak amacıyla kaplanan metaller arasındaki reaksiyonlar [18,139].

5.5.3. İletim Hattı Modeli

Ohmik eklem kalitesini ve elektriksel özelliklerini belirlemek amacıyla iletim hattı modeli (Transmission Line Model = TLM) yaygın olarak kullanılan bir yöntemdir [140,141]. Bu yöntem ile spesifik kontak direnci (ρ_c), tabaka direnci (R_{sh}), ve kontak direnci (R_c) belirlenebilmektedir. TLM test deseninin şematik diyagramı Şekil 5.26'da görülmektedir.

Şekil 5.26. TLM test deseninin şematik diyagramı [18].

TLM test deseni; aralarındaki mesafe (L) artacak şekilde W genişlikte ve d uzunlukta diktörtgen metal kontak pedlerden oluşmaktadır. Z, yarıiletkende

oluşturulan ada genişiğini ifade etmekte olup TLM desenini çevredeki diğer aygıtlardan elektriksel olarak izole ederek akımın iki ped arasında daha düzgün bir şekilde yayılmasını sağlamak için yapılmaktadır. Şekil 5.27'de ada aşındırması yapılmış ve yapılmamış TLM deseni için akım akışının şematik diyagramı görülmektedir.

(b) Ada aşındırması yapılmamış TLM deseni

Şekil 5.27. Ada aşındırması yapılmış ve yapılmamış TLM deseni için akım akışının şematik diyagramı [18].

TLM yönteminde; iki komşu pedten biri, iki ölçüm probu yardımıyla sabit bir akım kaynağıyla beslenir. Diğer pedten ise iki ölçüm probu yardımıyla voltaj okunur ve direnç hesaplanır. Ardından pedler arasındaki *L* mesafesine bağlı olarak direnç grafiği çizilir. Aralarında *L* mesafesi olan iki ped için toplam direnç (R_T) değeri şu eşitlik ile verilir:

$$R_T = 2R_C + R_{sh} \frac{L}{W}$$
(5.26)

Şekil 5.28'de pedler arasındaki L mesafesi değişimine bağlı olarak toplam direnç değişimi grafiği görülmektedir.

Şekil 5.28. Pedler arasındaki L mesafesi değişimine bağlı olarak toplam direnç değişimi grafiği [18].

Şekil 5.28'de pedler arasındaki L mesafesine bağlı olarak çizildirilecek toplam direnç değişimi eğrisinden elde edilecek eğim, R_{sh}/W' yı verecektir. Eğrinin yeksenini (R_T -ekseni) kestiği nokta $2R_C/W'$ yı ve x-ekseninde (L -ekseni) kestiği nokta ise transfer uzunluğunun iki katını ($2L_T$) verecektir. Transfer uzunluğu şu eşitlik ile ifade edilir:

$$2L_T = \frac{2R_C W}{R_{sk}}$$
(5.27)

Eş. 5.27'de R_{sk} kontak pedler altındaki tabaka direncini ifade etmektedir (R_{sh} ifadesi ise kontak pedler arasındaki tabaka direncini ifade etmektedir).

Kontak uzunluğu (*d*), transfer uzunluğundan (L_T) çok büyük ($d \gg L_T$) ise etkin kontak alanı Wd yerine yaklaşık olarak WL_T alınabilir. Bu durumda spesifik kontak direnci için Eş. 5.27'den yararlanarak şu eşitlik yazılabilir:

$$\rho_{C} = R_{C}WL_{T} = \frac{(R_{C}W)^{2}}{R_{sk}}$$
(5.28)

Bu tez kapsamında TLM ölçümlerini gerçekleştirmek için Şekil 5.29'da yer alan ölçüm düzeneği kuruldu ve ölçümler, Cascade M150 sonda istasyonunda

Agilent marka B1505 model Power Device Analyzer/Curve Tracer cihazı kullanılarak alındı. Şekil 5.29'da SMU1 (Source Measurement Unit 1) bağlantıları üzerinden -30 mA'den başlanarak +30 mA'e kadar 0,1 mA aralıklar ile akım uygulandı ve SMU2 bağlantıları üzerinden de voltajlar okundu. Pedler arasındaki her bir mesafeye bağlı olarak uygun bir yazılım aracılığı ile elde edilen direnç değeri Şekil 5.28'deki gibi çizdirilerek R_c , R_T ve ρ_c değerleri hesaplandı.

Şekil 5.29. TLM ölçüm düzeneği ve ölçümlerde kullanılan TLM test deseni.

5.5.4. DC I-V Ölçüm Sistemi

GaN HEMT aygıt karakterizasyonu için DC I-V ölçümleri oldukça önemli bir yere sahip olup ölçümler, Cascade M150 sonda istasyonunda Agilent marka B1505 model Power Device Analyzer/Curve Tracer cihazında yapıldı. Bu ölçümlerden yola çıkarak aygıtın eşik voltajı(V_{th}), bükülme voltajı(V_{knee}), maksimum doyum (satürasyon) akımı (I_{DSS}), kırılma voltajı (V_{br}), geçiş iletkenliği (g_m) ve kaçak akım gibi önemli parametreler elde edilmektedir. Şekil 5.30'da DC I-V ölçüm düzeneği görülmektedir.

Şekil 5.30. (a) DC I-V ölçüm düzeneği. Düzenekte HEMT aygıtların gate'ine SMU1 ve akaç kısmına da SMU2 bağlantısı bağlanmaktadır. (b) Örnek bir HEMT aygıt görüntüsü ve (c) Örnek bir HEMT aygıt için gate ve akaç-kaynak aralık boyutları.

I-V Ölçüm Prosedürü: Şekil 5.30'da görülen düzenekte gate voltajı -6 V'tan +1 V'a kadar, +1 V aralıklar ile arttırılır. Her bir gate voltaj adımı için akaç voltajı 200 mV aralıklar ile 0 V'tan +10 V'a kadar arttırılarak her bir noktada akaç akımı B1505 cihazı yardımı ile SMU2 üzerinden okunur. Okunan değerler, B1505 cihazı yazılımı yardımıyla y-ekseninde I_{DS} (akaç akımı), x-ekseninde V_{DS} (akaç voltajı) olacak şekilde ekranda çizdirilir. Gate gerilimi +1 V ve akaç akımı da en yüksek değerinde iken akaç akımı (I_{DSS}) cihaz üzerinden okunur. Şekil 3.30'da örnek HEMT aygıt, 2 adet gate içermekte olup her bir gate, 100 µm genişliğindedir. Bu da aygıttaki toplam gate genişliğinin 2 x 100 µm = 200 µm = 0,2 mm olduğu anlamına gelmektedir. Ölçümlerden elde edilen maksimum doyum (satürasyon) akımı I_{DSS} , mm başına başına hesaplanmak istenirse ölçümlenen değer, 0,2 mm'ye bölünmelidir. Şekil 5.31'de B1505 cihazında oluşturulan DC I-V ölçüm konfigürasyonu ve tipik bir I-V ölçüm çıktısı görülmektedir.

Şekil 5.31. B1505 cihazında oluşturulan DC I-V ölçüm konfigürasyonu ve tipik bir I-V ölçüm çıktısı.

 $V_{DS}(V)$

0,0

ò

 V_{kn}

 $V_{GS} = -5V$

Geçiş iletkenliği (g_m **) Ölçüm Prosedürü**: B1505 cihazında Şekil 5.32'de görülen konfigürasyon oluşturularak akaç voltajı 6 V olacak şekilde sabitlenir. Daha sonra gate voltajı, -6 V'tan +1 V'a kadar +100 mV aralıklarla arttırılarak B1505 cihazı yazılımı yardımıyla geçiş iletkenliği, $g_m = \frac{\partial I_{DS}}{\partial V_{GS}}\Big|_{V_{DS=sabit}}$ formülünden hesaplanır ve y-ekseninde g_m , x-ekseninde ise V_{GS}

olacak şekilde ekranda çizdirilir. g_m grafiğinde maksimum nokta, aygıtın geçiş iletkenliğini ifade eder. mm başına g_m değerleri hesaplanırken yukarıda belirttiğimiz gibi I_{DS} değerleri 0,2 mm'ye bölünerek hesaplanmalıdır.

Şekil 5.32. B1505 cihazında oluşturulan geçiş iletkenliği (g_m) ölçüm konfigürasyonu ve tipik bir g_m ölçüm çıktısı.

Kaçak Akım Ölçüm Prosedürü: B1505 cihazında Şekil 5.33'de görülen konfigürasyon oluşturularak gate voltajı, -6 V olacak şekilde sabitlenir. Akaç voltajı, 0 V'tan +50 V'a kadar +100 mV aralıklarla arttırılarak her noktada akaç ve gate akım değerleri cihaz yardımı ile okunur. Okunan değerler, B1505 cihazı yazılımı yardımıyla x-ekseninde V_{DS} , birinci y-ekseninde I_{DS} ve ikinci y-

ekseninde I_{GS} (gate akımı) olacak şekilde ekranda çizdirilir. Elde edilen akımların en yüksek değerleri, maksimum akaç ve gate kaçaklarını ifade eder.

Şekil 5.33. B1505 cihazında oluşturulan kaçak akım ölçüm konfigürasyonu ve tipik bir kaçak akım ölçümü çıktısı.

5.5.5. Güç Ölçüm Sistemi

Güç ölçümleri, amplifikatör tasarımları için HEMT aygıtların çalışılmak istenen frekans ve çıkış gücü aralığında uygunluğunu test etmek amacıyla yapılmaktadır. Yapılan ölçümlerde HEMT aygıtların girişine uygulanan belli bir frekanstaki sinyalin çıkışta ne kadar yükseltildiğine bakılmaktadır. Bu karakterizasyon yöntemi, büyük sinyal karakterizasyonu (large signal characterization) olarak da bilinmektedir. Şekil 5.34'te HEMT aygıtların güç ölçümlerinde kullanılan ölçüm düzeneği ve ölçüm konfigürasyonu görülmektedir. Ölçüm düzeneği; Cascade M150 sonda istasyonu, Maury load-pull sistemi (4-26,5 GHz), Agilent 83620B ve Agilent 5183A sinyal üreteci, Agilent 3631A üçlü çıkış DC güç kaynağı, Agilent 83020A sürücü yükselteç, Agilent 9300 güç sensörü ve Agilent 4419B güç metreden oluşmaktadır.

Şekil 5.34. (a) HEMT aygıtların güç ölçümlerinde kullanılan ölçüm düzeneği ve (b) ölçüm konfigürasyonu.

6. HEMT AYGIT FABRİKASYONU

Bu kesimde büyütülen epitaksiyel yapıların HEMT aygıt üretimine uygunluğunu test etmek amacıyla mikrofabrikasyon teknikleri kullanarak 8 adet gate içerecek ve her bir gate te 300 nm uzunluğa ($L_G = 300 nm$), 125 µm genişliğe ($W_G =$ 125 µm), 3 µm akaç-kaynak arası mesafeye ($L_{DS} = 3 µm$), 1 µm gate-kaynak arası mesafeye ($L_{GS} = 1 µm$) ve 1,7 µm gate-akaç arası mesafeye ($L_{GD} =$ 1,7 µm) sahip olacak şekilde Şekil 6.1'de fotomaske çizimi görülen aygıtlar üretildi. Aygıtların mikrofabrikasyon süreci ile ilgili ayrıntılı açıklamalar aşağıda yer almaktadır.

Şekil 6.1. Mikrofabrikasyonu gerçekleştirilen HEMT aygıtların fotomaskede yer alan çizimi.
6.1. Örnek Kesimi ve Temizlik Adımı

Örnek kesimi ve temizlik adımı, mikrofabrikasyonun ilk adımı olup örneklerin çalışmaya uygun boyutlarda kesilmesini ve fotolitografi öncesi yüzey temizliği işlemlerini kapsamaktadır. Bu işlemlerle ilgili ayrıntılı açıklamalar, tezin beşinci bölümünde ayrıntılı bir şekilde anlatıldı.

6.2. Aygıt Adacığı Aşındırma Adımı

Şekil 6.2. (a) Aygıt adacığı oluşturma adımı kesit görüntüsü ve (b) kuru aşındırma sonrası yüzey üzerinden optik mikroskop yardımıyla yukarıdan çekilmiş iki adet aygıt için adacık bölgeleri görüntüsü.

Örnek yüzeyinde oluşturulacak birden fazla aygıtı birbirinden elektriksel olarak izole etmek ve yüksek dirençli bir tabaka üzerinde pasif elamanları oluşturmak amacıyla örnek yüzeyinde, GaN kep tabakasından başlayarak yüksek dirençli GaN tampon tabakasına kadar, fotolitografi yöntemiyle belirlenen tüm bölgeler, kuru aşındırma yöntemiyle aşındırılır. Bu şekilde 2-DEG ile parazitik iletim engellenerek her aygıtın birbirinden elektriksel olarak izole olduğu aygıt adacıkları (mesa) oluşturulur. Şekil 6.2 (a) 'da aygıt adacığı oluşturma adımı şematik görüntüsü ve (b)'de kuru aşındırma sonrası yüzey üzerinden optik mikroskop yardımıyla yukarıdan çekilmiş iki adet aygıt için adacık bölgeleri görüntüsü görülmektedir. Dikdörtgen şekillerin her biri bir aygıt için ada bölgesini göstermektedir. Dikdörtgen şekillerin dışındaki bölgeler ise yüksek dirençli GaN tampon tabakasıdır.

Aygıt adacığı aşındırma adımı için gerekli prosedür, Çizelge 6.1'de görülmektedir.

Çizelge 6.1. Aygıt adacığı aşındırma prosedürü.

	Aygıt Adacığı Litografisi		
	a.	Örnek yüzeyine AZ-5214E@MicroChemicals fotorezisti damlatılarak spin	
		kaplama sisteminde spin kaplama parametreleri; 4 saniyede 6000 rpm'lik bir	
		hıza ulaşarak bu hızda 60 saniye kalacak şekilde ayarlanır ve fotorezist,	
		örnek yüzeyine homojen bir şekilde kaplanır.	
	b.	Fotorezist kaplı örnek, pozlama öncesi, sıcak plaka üzerinde 110°C'de 1	
		dakika boyunca pişirilir.	
	c.	Suss Microtec MA6 maske hizalama cihazı yardımıyla maske üzerindeki	
Adım 1		şekiller, fotorezist kaplı örnek yüzeyi ile hizalanır.	
	d.	Hizalama işleminden sonra i-line spektrumda doz miktarı, 120 mJcm ⁻²	
		olacak şekilde pozlama işlemi gerçekleştirilir.	
	e.	Fotolitografi işleminden sonra geliştirme (Develop); 1 oranında AZ-	
		400K@MicroChemicals geliştirici (developer) ve 4 oranında DI su içeren	
		çözelti içerisinde gerçekleştirilir. Çözünme işlemi göz ile takip edilir.	
	f.	Geliştirme işleminden sonra örnek, DI su içerisinde 3 dk boyunca bekletilir	
		ve akabinde azot tabancası yardımıyla kurutularak optik mikroskop altında	
		desen kontrolü yapılır.	
		Aygıt Adacığı Aşındırma	
	a.	Örnek, kuru aşındırma esnasında örneğin aşırı ısınarak fotorezistin	
		yanmasını engellemek amacıyla ısıl iletimi arttıran termal bant yardımıyla	
		silikon wafer üzerine yapıştırılır ve Sentech SI 500 ICP-RIE sistemine	
Adım 2		yüklenir.	
	b.	Sistemde vakum seviyesi, 1,6x10⁻⁵ Pa değerine düştüğünde; BCI₃ (35sccm)	
		ve CI_2 (5sccm) gaz karışımı kullanarak Proses Basıncı: 0.60 Pa, Sıcaklık:	
		20°C, RF Gücü: 50 W, ICP Gücü: 100 W ve aşındırma süresi, ortalama 70	
		nm'lik bir aşındırma derinliğine ulaşacak şekilde belirlenerek plazma	

		reçetesi çalıştırılır.
	c.	Aşındırma işleminden sonra wafer, 150 °C'de tutulan sıcak plaka üzerine
		konularak örnek ile termal bantın birbirinden ayrılması sağlanır.
		Örnek Temizliği
	a.	Örnek, içerisinde Aseton bulunan cam petri kabına konularak ultrasonik
		titreştiricide maksimum güçte 1 dk boyunca titreştirilir.
	b.	Aseton içerisinden çıkarılan örnek, içerisinde İsopropanol Alkol bulunan cam
		petri kabına konularak ultrasonik titreştiricide maksimum güçte 1 dk boyunca
		titreştirilir.
	c.	İsopropanol alkol içerisinden çıkarılan örnek, DI su içeren cam petri kabına
Adım 2		konularak 2 dk boyunca durulanır ve akabinde azot tabancası yardımıyla
Auni 5		kurutulur.
	d.	Optik mikroskop yardımıyla örnek yüzeyi kontrol edilir. Yüzeyde fotorezist
		kalıntısı tespit edilmesi durumunda, yüzeyde yeterli bir temizliğe ulaşana
		kadar temizlik döngüsü devam ettirilir.
	e.	Temizlik işleminden sonra optik mikroskop altında görünmeyen fotorezist
		kalıntılarının temizliği için; Glow Research Autoglow Plazma sisteminde 100
		W RF, 2 Torr basınçta O_2 atmosferi ortamında 3 dk boyunca plazma
		temizliği işlemi uygulanır.

Çizelge 6.1'de yer alan aygıt adacığı aşındırma prosedürü sonrası, büyütülen HEMT epitaksiyel yapılar için Veeco marka Dektak 150 model mekanik profilometre cihazı yardımıyla ölçülen tipik aygıt adacığı derinliği, Şekil 6.3'te görülmektedir.

Kuru aşındırma esnasında plazma kimyasının GaN HEMT apitaksiyel yüzey üzerinde oluşturduğu hasarı belirlemek amacıyla yapılan AFM incelemelerinde; yüzey pürüzlülüğü değeri (RMS), yaklaşık olarak 0,38 nm ölçüldü. Ölçülen bu değer, Wurtzite kristal yapısına sahip GaN için verilen $a_0 = 0,318 nm$ ve $c_0 = 0,518 nm$ kristal parametreleri ile uyumludur. Bu da plazma kaynaklı yüzey hasarının oldukça az olduğunu göstermektedir [142]. Şekil 6.4'te kuru aşındırma sonrası GaN HEMT apitaksiyel yüzey üzerinden alınmış tipik bir AFM görüntüsünü görülmektedir. Tüm örneklerde, aygıt adacığı derinliği ortalama olarak 100 ± 5 nm olarak ölçüldü. Şekilde yeşil bölge, GaN kep tabakasını ve kırmızı bölge, yüksek dirençli GaN tampon tabakasını ifade etmektedir.

122

Şekil 6.3. Aygıt adacığı aşındırma prosedürü sonrası, büyütülen HEMT epitaksiyel yapılar için mekanik profilometre cihazı yardımıyla ölçülen tipik aygıt adacığı derinliği.

Şekil 6.4. Kuru aşındırma sonrası GaN HEMT apitaksiyel yüzey üzerinden alınmış tipik bir AFM görüntüsü.

6.3. Ohmik Eklem (Akaç-Kaynak Kontak) Oluşturma Adımı

Bu adımda, bir önceki adımda oluşturulan her aygıt adacığı üzerine, aygıtlara bir potansiyel uygulayarak 2-DEG boyunca aygıtlardan akım çekebilmek amacıyla kaynak ve akaç kontakları oluşturulur. Bu kontakların her biri ohmik eklem olup ardışık olarak Ti/Al/Ni/Au (12/120/35/65 nm) metallerinin kaplanması ve ardından da örneğin, 850 °C'de 30 saniye tavlanması ile elde edilir. Şekil 6.5 (a)'da tek bir gate içerecek aygıt için ohmik eklem oluşturma adımı şematik görüntüsü ve (b)'de sekiz gate içerecek standart bir GaN HEMT aygıt için ohmik eklem oluşturma adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş görüntü görülmektedir.

 Şekil 6.5. (a) Tek bir gate içerecek aygıt için ohmik eklem oluşturma adımı şematik görüntüsü, (b) Sekiz gate içerecek standart bir GaN
 HEMT aygıt için ohmik eklem oluşturma adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş görüntü.

Ohmik eklem oluşturma adımı için gerekli prosedür, Çizelge 6.2'de görülmektedir.

Çizelge 6.2. Ohmik eklem oluşturma prosedürü.

		Ohmik Kontak Litografisi
	a.	Örnek yüzeyine AZ-5214E@MicroChemicals fotorezisti damlatılarak spin
		kaplama sisteminde spin kaplama parametreleri; 4 saniyede 6000 rpm'lik bir
		hıza ulaşarak bu hızda 60 saniye kalacak şekilde ayarlanır ve fotorezist,
		örnek yüzeyine homojen bir şekilde kaplanır.
	b.	Fotorezist kaplı örnek, pozlama öncesi, sıcak plaka üzerinde 110ºC'de 1
		dakika boyunca pişirilir.
	c.	Suss Microtec MA6 maske hizalama cihazı yardımıyla maske üzerindeki
		şekiller, fotorezist kaplı örnek yüzeyi ile hizalanır.
	d.	Hizalama işleminden sonra i-line spektrumda doz miktarı, 108 mJcm ⁻²
		olacak şekilde pozlama işlemi gerçekleştirilir.
	е.	Ters litografi işlemi için örnek, sıcak plaka üzerinde 110ºC'de 2 dakika
Adum 1		boyunca pişirilir.
Adim I	f.	Örnek, MA6 maske hizalama cihazında maske kullanmadan, i-line
		spektrumda doz miktarı, 108 mJcm ⁻² olacak şekilde pozlanır.
	g.	Fotolitografi işleminden sonra geliştirme (Develop); 1 oranında AZ-
		400K@MicroChemicals geliştirici (developer) ve 4 oranında DI su içeren
		çözelti içerisinde gerçekleştirilir. Çözünme işlemi göz ile takip edilir.
	h.	Geliştirme işleminden sonra örnek, DI su içerisinde 3 dk boyunca durulanır
		ve akabinde azot tabancası yardımıyla kurutularak optik mikroskop altında
		desen kontrolü yapılır.
	i.	Fotolitografi işlemi sonrasında oluşan desenlerin içerisinde kalmış olabilecek
		organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını
		sağlamak için örneğe, Glow Research Autoglow Plazma sisteminde 50 W
		RF, 2 Torr basınçta O ₂ atmosferi ortamında 1 dk boyunca plazma temizliği
		işlemi uygulanır.
		Ohmik Kontak Metal Kaplama
	а.	Örnek, Oerlikon Leybold Univex 350 model elektron demeti ile buhar
		biriktirme sistemine yüklenir ve sistemin minimum 3x10 ⁻⁶ mbar vakum
		değerine ulaşması beklenir.
	b.	Ardışık olarak Ti-Al-Ni-Au metalleri; kaplama kalınlıkları: 12 nm-120 nm-35
Adım 2		nm-65 nm ve kaplama hızları: 0,2 nm/s-0,2 nm/s-0,2 nm/s-0,3 nm/s olacak
		şekilde kaplanır.
	C.	Kaplama sonrasında istenmeyen bölgelerdeki metal kalıntılarının
		kaldırılması (lift off) amacıyla örnek, en az 20 dk boyunca aseton içerisinde
		bekletilir. Bu sürenin sonunda cam şırınga yardımıyla örnek üstüne aseton
		püskürtülerek metal kalıntılarının dağılması sağlanır.
	d.	Asetondan çıkarılan örnek, içerisinde aseton bulunan başka bir cam petri

		kabına konularak ultrasonik titreştiricide maksimum güçte 1 dk boyunca
		titreştirilir.
	e.	Aseton içerisinden çıkarılan örnek, içerisinde isopropanol alkol bulunan cam
		petri kabına konularak 1 dk boyunca bekletilir.
	f.	İsopropanol alkol içerisinden çıkarılan örnek, DI su içeren cam petri kabına
		konularak 2 dk boyunca durulanır ve akabinde azot tabancası yardımıyla
		kurutulur.
	g.	Optik mikroskop yardımıyla örnek yüzeyi kontrol edilir. Yüzeyde metal ya da
		organik kalıntı tespit edilmesi durumunda, yüzeyde yeterli bir temizliğe
		ulaşana kadar temizlik döngüsü devam ettirilir.
		Ohmik Eklem Oluşturma
	a.	Örnek, SSI Solaris-75 model hızlı tavlama (RTP) sistemine yüklenir.
Adım 3	b.	%5 H ₂ ve %95 N ₂ gaz karışımı içeren atmosfer ortamında 850 °C'de 30 s
		tavlama işlemi gerçekleştirilerek kaplanan ohmik metallerinin, ohmik eklem
		oluşturması sağlanır.

Çizelge 6.2'de yer alan ohmik eklem oluşturma prosedürü sonrası, büyütülen ve ticari olarak satılan HEMT epitaksiyel yapılar için elde edilen TLM ölçüm verileri Çizelge 6.3'te görülmektedir.

Çizelge 6.3. Ohmik eklem oluşturma prosedürü sonrası, büyütülen ve ticari olarak satılan HEMT epitaksiyel yapılar için elde edilen TLM ölçüm verileri.

Örnek	E0	E1	E2	E3
$R_{\mathcal{C}}(\Omega.mm)$	0,40	0,48	0,50	0,57
$R_{sh}\left(\Omega/sq ight)$	407	375	396	343

Çizelge 6.3 incelendiğinde; R_C ve R_{sh} için elde edilen değerlerin, literatürde [143-145]; R_{sh} için verilen 300-600 Ω /sq ve R_C için verilen 0,2-0,9 Ω .mm değerler aralığında olduğu görülmektedir.

6.4. Schottky Eklem (Gate Kontak) Oluşturma Adımı

Bu adımda ohmik eklemler arasındaki 2-DEG kanalı boyunca akan akımı kontrol edilebilmek amacıyla, bir önceki adımda oluşturulan kaynak (K)-akaç (A) kontakları arasında, gate kontağı oluşturulur. Oluşturulan gate kontağı, sahip olduğu Schottky eklem özelliği nedeniyle yarıieltkende bir yayılım bölgesi oluşturarak akaç-kaynak ohmik eklemleri arasında 2-DEG kanalının kısılıp-açılmasında bir anahtar görevi görür. Şekil 6.6 (a)'da tek bir gate içeren aygıt için Schottky eklem oluşturma adımı şematik görüntüsü, (b)'de sekiz gate içeren standart bir GaN HEMT aygıt için Schottky eklem oluşturma adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş görüntü ve (c)'de tek bir gate için SEM görüntüsü görülmektedir.

Şekil 6.6. (a) Tek bir gate içeren aygıt için Schottky eklem oluşturma adımı şematik görüntüsü, (b) Sekiz gate içeren standart bir GaN HEMT aygıt için Schottky eklem oluşturma adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş görüntü ve (c) Tek bir gate için SEM görüntüsü.

Schottky eklem oluşturma adımı için gerekli prosedür, Çizelge 6.4'te görülmektedir.

Çizelge 6.4. Schottky eklem oluşturma prosedürü.

	Schottky Eklem Litografisi
	a. Örnek yüzeyine 950 PMMA (polymethyl methacrylate) A6 rezisti
	damlatılarak spin kaplama sisteminde spin kaplama parametreleri; 4
	saniyede 4000 rpm'lik bir hıza ulaşarak bu hızda 60 saniye kalacak şekilde
	ayarlanır ve rezist, örnek yüzeyine homojen bir şekilde kaplanır.
	b. Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 90 s boyunca pişirilir.
	c. Ardından örnek, spin kaplama sistemine yerleştirilerek örnek yüzeyine
	Aquasave polimer bileşiği damlatılarak spin kaplama parametreleri; 4
	saniyede 4000 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde
	ayarlanır ve polimer örnek yüzeyine homojen bir şekilde kaplanır.
	d. Örnek, Raith elektron demeti litografi sistemine yüklenir. Sistemde vakum
	seviyesi 2x10 ⁻⁵ mbar basınç seviyesine ulaştığında; hızlandırma gerilimi
	(EHT) 15kV, Aperture 20 μm ve Area Doz: 120 μC olacak şekilde ayarlanır.
Adım 1	e. Sistemde gate yazımı ile ilgili gerekli ayarlamalar yapıldıktan sonra pozlama
	işlemi gerçekleştirilir.
	f. Pozlama işleminden sonra sistemden çıkarılan ornegin yuzeyindeki
	aquasave temizligi için ornek, akan Di su altında 10's boyunca yıkanır ve
	ardindan da azot tabancasi yardımıyla kurutulur.
	jzobütil keton (MIBK) ve 1 oranında isopropanol alkol (IPA) iceren geliştirici
	icinde 50 s tutulur ve hemen akabinde gelistirici icinden cıkarılarak 30 s
	boyunca IPA icerisinde tutulur ve son olarak da IPA icerisinden cikarılarak
	azot tabancası vardımıvla kurutulur.
	h. Gelistirme isleminden sonra olusan desenlerin icerisinde kalmıs olabilecek
	organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını
	sağlamak amacıyla, Sentech SI 500 ICP-RIE sisteminde 50 W RF, 100 W
	ICP, 1 Pa basınç ve 40 sccm O₂ plazma reçetesi, 5 s boyunca çalıştırılır.
	Schottky (Gate) Metal Kaplama
	a. Örnek, Oerlikon Leybold Univex 350 model elektron demeti ile buhar
	biriktirme sistemine yüklenir ve sistemin 3x10 ⁻⁶ mbar vakum değerine
	ulaşması beklenir.
	b. Ardışık olarak Ni-Au metalleri; kaplama kalınlıkları: 50 nm-300 nm ve
Adım 2	kaplama hızları: 0,08 nm/s-0,18 nm olacak şekilde kaplanır.
	c. Kaplama sonrasında istenmeyen bölgelerdeki metal kalıntılarının
	kaldırılması (lift off) amacıyla örnek, 1 gece boyunca aseton içerisinde
	bekletilir.
	d. Aseton içerisinden çıkarılan örnek, içerisinde isopropanol alkol bulunan cam
	petri kabına konularak 1 dk boyunca bekletilir.

e.	İsopropanol alkol içerisinden çıkarılan örnek, DI su içeren cam petri kabına
	konularak 2 dk boyunca durulanır ve akabinde azot tabancası yardımıyla
	kurutulur.
f.	Optik mikroskop ve TEM vardımıyla örnek yüzevi ve gate kontrolü yapılır.

6.5. Birinci Bağlantı Metali Oluşturma Adımı

Bu adım; bir önceki adımda bir aygıt üzerinde oluşturulan gate'lerin tamamını tek bir bağlantı metali kullanılarak birleştirmek ve MMIC aygıtlarda ise kapasitif elemanların birinci metalini oluşturmak amacıyla yapılır. Birleştirme işlemi, elektron demeti ile buhar biriktirme sisteminde Ti/Au metalleri kaplanarak yapılır. Şekil 6.7'de birinci bağlantı metali oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü görülmektedir.

Şekil 6.7. Birinci bağlantı metali oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü.

Birinci bağlantı metali adımı için gerekli prosedür, Çizelge 6.5'te görülmektedir.

Çizelge 6.5. Birinci bağlantı metali oluşturma prosedürü.

	Birinci Bağlantı Metali Litografisi
Adım 1	Bu adımda Çizelge 6.2. Adım 1'de yer alan ohmik kontak litografi
	parametrelerinin aynısı uygulanır.
	Birinci Bağlantı Metali Kaplama
	a. Örnek, Oerlikon Leybold Univex 350 model elektron demeti ile buhar
	biriktirme sistemine yüklenir ve sistemin minimum 3x10-6 mbar vakum
	değerine ulaşması beklenir.
	b. Ardışık olarak Ti-Au metalleri; kaplama kalınlıkları: 50 nm-350 nm ve
	kaplama hızları: 0,2 nm/s-0,3 nm olacak şekilde kaplanır.
	c. Kaplama sonrasında istenmeyen bölgelerdeki metal kalıntılarının
	kaldırılması (lift off) amacıyla örnek, en az 20 dk boyunca aseton içerisinde
	bekletilir. Bu sürenin sonunda cam şırınga yardımıyla örnek üstüne aseton
	püskürtülerek metal kalıntılarının dağılması sağlanır.
Adım 2	d. Asetondan çıkarılan örnek, içerisinde aseton bulunan başka bir cam petri
	kabına konularak ultrasonik titreştiricide maksimum güçte 1 dk boyunca
	titreştirilir.
	e. Aseton içerisinden çıkarılan örnek, içerisinde isopropanol alkol bulunan cam
	petri kabına konularak 1 dk boyunca bekletilir.
	f. İsopropanol alkol içerisinden çıkarılan örnek, DI su içeren cam petri kabına
	konularak 2 dk boyunca durulanır ve akabinde azot tabancası yardımıyla
	kurutulur.
	g. Optik mikroskop yardımıyla örnek yüzeyi kontrol edilir. Yüzeyde metal ya da
	organik kalıntı tespit edilmesi durumunda, yüzeyde yeterli bir temizliğe
	ulaşana kadar temizlik döngüsü devam ettirilir.

6.6. Dielektrik Kaplama Adımı

Dielektrik kaplama; aygıtların yüzey kaçak akımlarını engelleyerek kırılma gerilimlerini ve akım yoğunluklarını arttırmak amacıyla yapılır. Bu amaçla bu tez kapsamında örnek yüzeylerine, plazma destekli kimyasal buhar biriktirme sisteminde Si₃N₄ (silisyum nitrür) kaplandı. Şekil 6.8 (a)'da tek bir gate içeren aygıt için dielektrik kaplama adımı şematik görüntüsü ve (b)'de sekiz gate içeren standart bir GaN HEMT aygıt için dielektrik kaplama adımı şoritk mikroskop yardımıyla yukarıdan çekilmiş görüntü görülmektedir. Dielektrik

kaplama sonrası yüzeyde meydana gelen renk değişimini algılayabilmek için, Şekil 6.7 (b) ile Şekil 6.8 (b) aynı anda incelenmelidir.

Şekil 6.8. (a) Tek bir gate içeren aygıt için dielektrik kaplama adımı şematik görüntüsü ve (b)'de sekiz gate içeren standart bir GaN HEMT aygıt için dielektrik kaplama adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş görüntü.

Dielektrik kaplama adımı için gerekli prosedür, Çizelge 6.6'da görülmektedir.

Çizelge 6.6. Dielektrik kaplama prosedürü.

	Örnek Temizliği
	a. Pasivasyon kaplaması öncesi örnek, 50ºC'ye ayarlanmış sıcak plaka
	üzerinde duran içinde aseton bulunan vezin kabı içerisine konarak 5 dk
	boyunca bekletilir.
	b. Aseton içerisinden çıkarılan örnek, 50°C'ye ayarlanmış sıcak plaka üzerinde
	duran içinde isopropanol alkol bulunan vezin kabı içerisine konarak 5 dk
	boyunca bekletilir.
Adım 1	c. İsopropanol alkol içerisinden çıkarılan örnek oda sıcaklığında duran içinde
	DI su bulunan cam petri kap içerisine konarak 5dk boyunca durulanır. Daha
	sonra azot tabancası yardımıyla kurutulur.
	d. Örnek, 80°C'ye ayarlanmış sıcak plaka üzerinde duran içinde AZ100
	remover@MicroChemicals bulunan vezin kabı içerisine konarak 5 dk
	boyunca bekletilir. Ardından oda sıcaklığında duran içinde DI su bulunan
	cam petri kap içerisine konarak 5dk boyunca durulanır. Daha sonra azot
	tabancası yardımıyla kurutulur.
	Dielektrik Kaplama
	a. Örnek, Sentech SI 500 PPD plazma destekli kimyasal buhar biriktirme
	sistemine yüklenir.
	b. Sistem kabini (chamber) içerisindeki havanın ve istenmeyen diğer atıkların
	temizliği için sistem, yüksek vakuma alınarak (<10 ⁻⁵ Pa) 1 saat boyunca
	beklenir.
	c. Sistem, orta duzey bir vakum seviyesine alınarak isitici tabla/anot, Ar gazi
	ortaminda prosesin yapilacagi 300 °C ye kadar isitilir ve bu sicaklikta
	Schouky ekiem kantesini arturmak amaciyla [146], 1 saat boyunca bekienir.
Adım 2	d. Af gazi kesilerek kabin içensine Sina Akişi . 500 socm, Nn ₃ Akişi . 15 socm
	aönderilir
	e Proses basincin 80 Pa'da ve sicakliğin da 300 °C'de stabil olması beklenir
	f BE değeri için 50 W ve kaplanmak istenen dielektrik kalınlığı için de besan
	edilen süre girilir. Bu tez kapsamında kaplanmak istenen Si ₂ N ₄ kalınlığı 200
	nm'dir.
	g. Kaplama süresi tamamlandıktan sonra anot sıcaklığı, 80 °C'ye çekilerek Ar
	gazı ortamında anot, soğutulur.
	h. Kabin vakumu kırılarak örnekler, sistemden çıkarılır.
	i. Optik mikroskop yardımıyla yüzey temizliği ve homojenite kontrol edilir.

Dielektrik kaplama prosedürü sonrası elipsometre cihazı yardımıyla ölçülen tipik bir Si₃N₄ ölçüm grafiği, Şekil 6.9'da görülmektedir. Elipsometre yardımıyla alınan ölçümlerde kaplanan Si₃N₄ için kalınlık, 203 nm ve kırıcılık indisi, 1,94 bulundu.

Şekil 6.9. Dielektrik kaplama prosedürü sonrası elipsometre cihazı yardımıyla ölçülen tipik bir Si₃N₄ ölçüm grafiği.

Kaplanan Si₃N₄ için kimyasal bağ bilgisini içeren FTIR (Fourier Dönüşümlü Infrared Spektrofotometre) ölçüm sonucu grafiği ise Şekil 6.10'da görülmektedir. Şekil 6.10 incelendiğinde; Si-N, Si-H ve N-H soğurma piklerinin sırasıyla 820, 2181 ve 3367 cm⁻¹ değerlerinde gözlemlendiği görülmektedir. Bu değerler de değerlerle uyumludur [147]. literatürde belirtilen Ayrıca Şekil 6.10 incelendiğinde; Si-H soğurma yoğunluğunun, N-H soğurma yoğunluğundan daha büyük olduğu görülmektedir. Bu da kaplanan Si₃N₄ tabakasının, örnek yüzeyinde çekme gerilimi (tensile stres) yaratacak şekilde büyüdüğünü göstermektedir. N-H bağının fazla olması, kaplamının baskı (compressive) gerilimi yaratacak şekilde büyümesine ve yüksek miktarda yük tuzaklanmaları oluşturarak aygıt performansının olumsuz yönde etkilenmesine neden olur [148].

Şekil 6.10. Dielektrik kaplama prosedürü sonrası aygıtlar üzerine kaplanan Si₃N₄ için Si wafer üzerinden alınan FTIR ölçüm sonucu grafiği.

Kaplanan Si₃N₄ için, mekanik profilometre cihazı yardımıyla ölçülen tipik bir stres (gerilim) ölçüm grafiği, Şekil 6.11'de görülmektedir. Grafik incelendiğinde; Si₃N₄ tabakasının, çekme gerilimi oluşturacak şekilde büyüdüğü ve gerilim değerinin, ortalama 108 MPa olduğu görülmektedir.

6.7. Dielektrik Açıklığı Oluşturma Adımı

Dielektrik açıklığı oluşturma adımı; dielektrik malzeme ile tüm yüzeyi yalıtılmış aygıtlar üzerinde, dielektrik malzemesi altında kalan metallerle, bu metaller üzerine kaplanacak ikinci bir metalin temasını sağlamak ve bu şekilde de aygıtlardan ölçüm alınabilmesi amacıyla yapılır. Bu tez kapsamında aygıtlar üzerinde gerekli yerlerdeki dielektrik tabakasının kaldırılması, kuru aşındırma yöntemiyle, Sentech SI 500 ICP-RIE sistemi kullanılarak yapıldı.

Şekil 6.11. Mekanik profilometre cihazı yardımıyla kaplanan Si₃N₄ için ölçülen tipik bir stres ölçüm grafiği.

Şekil 6.12'de dielektrik açıklığı oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü görülmektedir.

Şekil 6.12. Dielektrik açıklığı oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü.

Dielektrik açıklığı oluşturma adımı için gerekli prosedür, Çizelge 6.7'de görülmektedir.

Çizelge 6.7. Dielektrik açıklığı oluşturma prosedürü.

	Dielektrik Açıklığı Oluşturma Litografisi		
Adım 1	Bu adımda Çizelge 6.1. Adım 1'de yer alan aygıt adacığı litografi		
	parametrelerinin aynısı uygulanır.		
	Dielektrik Açıklığı Oluşturma		
	a. Örnek, kuru aşındırma esnasında örneğin aşırı ısınarak fotorezistin		
	yanmasını engellemek amacıyla ısıl iletimi arttıran termal bant yardımıyla		
Adım 2	silikon wafer üzerine yapıştırılır ve SAMCO RIE140iP sistemine yüklenir.		
Auim 2	b. Dielektrik aşındırma işlemi; Proses Basıncı: 0.60 Pa, RF Gücü: 40 W, ICP		
	Gücü: 60 W, SF $_6$ (4sccm) ve Ar (20sccm) gaz atmosferi ortamında yapılır.		
	c. Aşındırma işleminden sonra wafer, 150 °C'de tutulan sıcak plaka üzerine		
	konularak örnek ile termal bantın birbirinden ayrılması sağlanır.		
	Örnek Temizliği		
	a. Örnek, içerisinde Aseton bulunan cam vezin kabı içerisinde 30 dk bekletilir.		
	b. Aseton içerisinden çıkarılan örnek, aseton ile iyice durulanarak içerisinde		
	isopropanol alkol bulunan cam petri kabında 5 dk bekletilir.		
Adım 3	c. İsopropanol alkol içerisinden çıkarılan örnek, DI su içeren cam petri kabına		
Adimo	konularak 3 dk boyunca durulanır ve akabinde azot tabancası yardımıyla		
	kurutulur.		
	d. Örnek yüzeyinde kalan fotorezist kalıntılarının temizliği için; Glow Research		
	Autoglow Plazma sisteminde 150 W RF, 2 Torr basınçta O2 atmosferi		
	ortamında 5 dk boyunca plazma temizliği işlemi uygulanır.		

6.8. Köprü Desteği Oluşturma Adımı

HEMT aygıt ölçümlerinde, aygıtlardan ölçüm alınacak kontak bölgelerinin hattan akacak akımı kaldıracak kapasitede olması gerekmektedir. Bu nedenle oluşturulan gate, kaynak ve akaç kontaklarının, aynı metal grupları birbirleriyle birleşecek ve farklı metal grupları da birbirlerine temas etmeyecek şekilde ohmik direnci düşük ve akım kapasitesi yüksek ikinci bir bağlantı metali ile birleştirilmesi gerekmektedir. Bu amaçla; aynı metal kontak gruplarının birbirlerine dokunabilmesi ve farklı metal gruplarının da birbirlerine temas etmemesi amacıyla hava köprüleri oluşturulmaktadır. Şekil 6.13 (a)'da köprü desteği oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü ve (b)'de ikinci metal kontak oluşturma adımı sonrası köprü desteği için oluşturulan fotorezistin temizlenmesi sonrası SEM görüntüsü görülmektedir.

Şekil 6.13. (a) Köprü desteği oluşturma adımı sonrası standart bir GaN HEMT aygıt için optik mikroskop yardımıyla yukarıdan çekilmiş görüntü ve (b) ikinci metal kontak oluşturma adımı sonrası köprü desteği için oluşturulan fotorezistin temizlenmesi sonrası oluşan köprü desteğinin SEM görüntüsü.

Köprü desteği oluşturma adımı için gerekli prosedür, Çizelge 6.8'de görülmektedir.

6.9. İkinci Bağlantı Metali Oluşturma Adımı

Bu adımda; önceki adımlarda oluşturulan ohmik ve Schottky eklemler, aynı metal grupları birbirleri ile bağlanacak ve farklı metal grupları ise birbirlerine temas etmeyecek şekilde köprü destekleri üzerinden birleştirilir. Aygıtlardan ölçüm alınmasına olanak tanıyacak kontak bölgeleri oluşturulur. Oluşturulan ikinci bağlantı metalinin, ölçüm kaynaklı çizilme ve kopmalara karşı dayanımını arttırmak ve aygıttan akacak akımı kaldırabilmesi amacıyla düşük dirence ve yüksek akım kapasitesine sahip olacak şekilde oldukça kalın bir Altın katmanıyla kaplanır. Şekil 6.14'te ikinci bağlantı metali oluşturma adımı sonrası

optik mikroskop yardımıyla yukarıdan çekilmiş tipik bir GaN HEMT aygıt görüntüsü görülmektedir.

Çizelge 6.8. Köprü desteği oluşturma prosedürü.

		Köprü Desteği Oluşturma Litografisi
	a.	Örnek yüzeyinde DI su kalıntısının temizlenmesi ve rezist ile örnek yüzeyi
		arasındaki yapışma kuvvetinin arttırılması amacıyla örnek, 200ºC'ye
		ayarlanmış sıcak plaka üzerinde 5dk boyunca bekletilir (dehidrasyon
		tavlama işlemi). Ardından sıcak plaka üzerinden alınan örnek, oda
		sıcaklığında 5dk bekletilerek soğutulur.
	b.	Köprü desteği oluşturmak amacıyla kullanılacak fotorezistin yüzeye iyi
		yapışması ve fotolitografi sonrasında oluşturulacak desenlerin yüzeyden
		kaymaması amacıyla, örnek yüzeyine, HMDS (Hexamethyldisilazane)@
		MicroChemicals kimyasalı damlatılarak spin kaplama sisteminde spin
		kaplama parametreleri; 4 saniyede 2000 rpm'lik bir hıza ulaşarak bu hızda
		10 saniye kalacak şekilde ayarlanır ve kimyasal, örnek yüzeyine homojen bir
		şekilde kaplanır.
	c.	Ardından örnek yüzeyine S1828G2@Microresist fotorezisti damlatılarak spin
		kaplama sisteminde spin kaplama parametreleri; 4 saniyede 6000 rpm'lik bir
		hıza ulaşarak bu hızda 60 saniye kalacak şekilde ayarlanır ve fotorezist,
Adım 1		örnek yüzeyine homojen bir şekilde kaplanır.
	d.	Fotorezist kaplı örnek, pozlama öncesi, sıcak plaka üzerinde 130°C'de 3
		dakıka boyunca pışırılır.
	e.	Suss Microtec MA6 maske hizalama cihazi yardimiyla maske üzerindeki
		şekiller, fotorezist kaplı ornek yüzeyi ile nizalanır.
	Т.	Hizalama işleminden sonra g-line spektrumda doz miktari, 150 mjcm ²
	~	Estalitarrafi jalamindan conra galistirma: AZ MIE226@MieroChamicala
	g.	colonogran işleninden sonra genştirme, AZ Mir SZO@MicroChemicals
		islemi göz ile takin edilir
	h	Gelistirme isleminden sonra örnek. DI su icerisinde 3 dk bovunca durulanır
		ve akabinde azot tabancası vardımıyla kurutularak ontik mikroskon altında
		desen kontrolü vapılır.
	i.	Fotolitografi vöntemiyle olusturulan desenlerin, köselerden arındırılarak
		yuvarlak hatlara sahip olması ve ikinci bağlantı metali kaplaması esnasında
		düzgün bir şekilde kaplanabilmesi amacıvla örnek, 200°C've avarlanmıs
		sıcak plaka üzerinde 5 dk boyunca pişirilir (reflow işlemi).

Şekil 6.14. İkinci bağlantı metali oluşturma adımı sonrası optik mikroskop yardımıyla yukarıdan çekilmiş tipik bir GaN HEMT aygıt görüntüsü.

İkinci bağlantı metali oluşturma adımı için gerekli prosedür, Çizelge 6.9'da görülmektedir.

Çizelge 6.9. İkinci bağlantı metali oluşturma adımı prosedürü.

		İkinci Bağlantı Metali Litografisi			
	a. Örnek yüzeyine AZ 2070 nLOF@MicroChemicals fotorezisti damla				
		kaplama sisteminde spin kaplama parametreleri; 4 saniyede 6000 rpm'lik bir			
		hıza ulaşarak bu hızda 60 saniye kalacak şekilde ayarlanır ve fotorezist, örnek			
		yüzeyine homojen bir şekilde kaplanır.			
	b.	Fotorezist kaplı örnek, pozlama öncesi, sıcak plaka üzerinde 100ºC'de 7			
		dakika boyunca pişirilir.			
Adım 1	c.	Suss Microtec MA6 maske hizalama cihazı yardımıyla maske üzerindeki			
		şekiller, fotorezist kaplı örnek yüzeyi ile hizalanır.			
	d.	Hizalama işleminden sonra i-line spektrumda doz miktarı, 100 mJcm ⁻² olacak			
		şekilde pozlama işlemi gerçekleştirilir.			
	e.	Ters litografi işlemi için örnek, sıcak plaka üzerinde 110ºC'de 1 dakika			
		boyunca pişirilir.			
	f.	Örnek, MA6 maske hizalama cihazında maske kullanmadan, i-line			
		spektrumda doz miktarı, 500 mJcm ⁻² olacak şekilde pozlanır.			

	g. Fotolitografi işleminden sonra geliştirme; AZ MIF326@MicroChemicals
	döz ile takip edilir.
	h. Geliştirme işleminden sonra örnek, DI su içerisinde 3 dk boyunca durulanır ve
	akabinde azot tabancası yardımıyla kurutularak optik mikroskop altında desen
	kontrolü yapılır.
	i. Fotolitografi işlemi sonrasında oluşan desenlerin içerisinde kalmış olabilecek
	organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını
	sağlamak için örneğe, Glow Research Autoglow Plazma sisteminde 50 W RF,
	2 Torr basınçta O ₂ atmosferi ortamında 1 dk boyunca plazma temizliği işlemi
	uygulanır.
	İkinci Bağlantı Metali Oluşturma
	a. Örnek, Oerlikon Leybold Univex 350 model elektron demeti ile buhar biriktirme
	sistemine yüklenir ve sistemin minimum 3x10 ⁻⁶ mbar vakum değerine
	ulaşması beklenir.
	b. Ardışık olarak Ti-Au metalleri; kaplama kalınlıkları: 200 nm-2000 nm olacak
	şekilde kaplanır.
	c. Kaplama sonrasında istenmeyen bölgelerdeki metal kalıntılarının kaldırılması
	(Ifft off) amaciyla ornek, en az 1 saat boyunca NPM (N-Methyl-2-pyrrolldone)
	içensinde bekletilir. Bu sulenin sonunda cam şiringa yaldımışla omek ustune
	NMP puskultuletek metal kalmularinin uayimasi sayianin.
	u. Nimi içensinden çıkaman önlek, içensinde bi su bulunan başka bir cam peti kabına alınarak 3 dk boyunca durulanır ve akabinde azot tabancası vardımıyla
Adım 2	kurutulur.
	e. Ardından köprü desteği için oluşturulan fotorezistin temizlenmesi amacıyla
	örnek, içerisinde AZ100 Remover@MicroChemicals kimyasalı bulunan cam
	vezin kabı içerisine konularak 200°C'ye ayarlanmış sıcak plaka üzerinde 3
	saat boyunca bekletilir. Ardından sıcak plaka üzerinden alınan örnek, oda
	sıcaklığında 5dk bekletilerek soğutulur.
	f. AZ100 Remover@MicroChemicals kimyasalı içerisinden çıkarılan örnek,
	içerisinde DI su bulunan başka bir cam petri kabına alınarak 5 dk boyunca
	durulanır ve akabinde azot tabancası yardımıyla kurutulur.
	g. Yüzeyde kalmış olabilecek organik kirliliklerin temizliği için örneğe, Glow
	Research Autoglow Plazma sisteminde 150 W RF, 2 Torr basınçta O_2
	atmosferi ortamında 5 dk boyunca plazma temizliği işlemi uygulanır.

7. HEMT AYGIT KARAKTERİZASYONU

Bu kesimde büyütülen epitaksiyel yapıların HEMT aygıt üretimine uygunluğunu test etmek ve ticari olarak satılan bir epitaksiyel yapı ile de karşılaştırma yapmak amacıyla mikrofabrikasyonu tamamlanan aygıtlar için, DC I-V ve RF güç ölçümleri alınarak yüksek güçlü HEMT aygıt üretimine en uygun tasarım belirlendi.

Çizelge 7.1'de büyütülen tasarımlar ve ticari olarak satılan bir epitaksiyel yapı için HEMT aygıtlar üzerinden ölçülen DC I-V ve RF güç ölçüm sonuçları görülmektedir.

Ornek	E0	E1	E2	E3
I _{DSS} (mA/mm)	1040	755	828	1167
g_m (mS/mm)	280	238	252	265
V_{th} (V)	-3,8	-3,5	-3,5	-4,6
V_{br} (V)	>50	>50	>50	>50
Gate kaçağı, $I_{gate} $ (µA)	0,37	360	184	26
Akaç kaçağı, $I_{aka_{\zeta}}$ (mA)	0,2	0,5	0,6	0,04
RF güç (dBm) / Kazanç (dB) (12 GHz@25V)	35,07/5,5	35,74/6,3	35,77/7,7	36,39/6,5

Çizelge 7.1. Büyütülen tasarımlar ve ticari olarak satılan bir epitaksiyel yapı için HEMT aygıtlar üzerinden ölçülen DC I-V ve RF güç ölçüm sonuçları.

Çizelge 7.1 incelendiğinde; **E3** tasarımında, akım yoğunluğunun, beklenildiği gibi yüksek Al konsantrasyonu nedeniyle diğer tasarımlara göre daha yüksek çıktığı görülmektedir. **E1** ve **E2** tasarımlarında ise; aynı Al konsantrasyonuna sahip olmalarına rağmen **E2** tasarımının akım yoğunluğunun daha yüksek

çıktığı görülmektedir. Bunun temel nedeni; E2 tasarımında GaN tampon (2) tabakasının daha ince olması nedeniyle elektron saçılmalarının daha az olması ve yüksek dirençli GaN tampon (1) tabakasının daha kalın olmasından dolayı elektronların, 2-DEG boyunca daha iyi sınırlandırılmış olmasından kaynaklanmaktadır. Aynı nedenlerden dolayı E2 tasarımında geçiş iletkenliği, E1 tasarımına göre daha yüksek ve gate kaçağı ise daha düşük çıktı. Bununla birlikte E2 tasarımında akaç kaçağı, E1 tasarımına göre daha yüksektir. Bunun temel nedeni ise; yüksek dirençli GaN tampon (1) tabaka kalınlığının artmasına bağlı olarak GaN tampon (2) tabaka kalınlığının yeterli kalınlıkta olmaması ve bunun da yapı içerisine daha fazla istenmeyen karbon safsızlıklarının girmiş olmasından kaynaklanmaktadır.

E3 tasarımında, GaN kanal tabakasının daha kalın tutulması, GaN tampon tabakası üzerinde büyütülen tabakalardaki gevşemeleri azaltarak toplam kutuplanma alan şiddetini arttırarak, beklenildiği gibi V_{th} değerinin daha yüksek çıkmasına neden oldu.

Tüm tasarımlarda kırılma gerilimleri aynı bulundu. Ancak gate ve akaç kaçağı açısından en düşük değerler ve RF güç performansı açısından en yüksek değer, **E3** tasarımında elde edildi. Ticari olarak satılan **E0** waferı ile de yapılan karşılaştırmada büyütülen **E3** tasarımının oldukça iyi bir performansa sahip olduğu görülmektedir. Ayrıca **E3** tasarımında; yüksek dirençli GaN tampon (1) tabaka kalınlığının, literatürde yer alan birçok çalışmadan farklı olarak daha düşük kalınlıkta olmasına rağmen yüksek performans sergilemesi, bu alanda yapılacak büyütmelerde maliyeti de aşağıya çekecektir.

7.1. Sonuç

Büyütülen tasarımlar ve ticari olarak satılan bir epitaksiyel yapı için mikrofabrikasyon teknikleri kullanarak HEMT aygıt üretimi yapıldı. Aygıtlardan DC I-V ve RF güç ölçümleri alınarak analiz edildi. Yapılan analizlerde büyütülen her üç tasarımın da ticari olarak satılan bir HEMT epitaksiyel yapısı ile kıyaslanabilecek kalitede olduğu görüldü. Büyütülen tasarımlar içerisinde HEMT aygıt üretimine en uygun tasarımın, **E3** tasarımı olduğu görüldü.

142

8. GATE TASARIMI VE AYGIT PERFORMANSINA ETKİSİ

HEMT aygıt üretiminde gate, aygıt performansının belirlenmesinde oldukça önemli bir yere sahiptir. Bu bölümde; DC I-V ve RF güç ölçümleri açısından en yüksek performansa sahip olduğu belirlenen **E3** epitaksiyel yapı bilgisi kullanılarak, X-bant (8 GHz-12 GHz) aralığında çalışacak HEMT aygıtlar için en uygun gate tipinin belirlenmesi amacıyla, Silvaco ATLAS programı kullanılarak aygıt simülasyonları yapılacak ve aygıtlar birbirleri ile karşılaştırılacaktır.

Bir aygıtın çalışma frekansını arttırmak, dâhili aygıt boyutunu azaltarak parazitik geometrik kapasitans ve indüktans değerlerini minimize etmek anlamına gelmektedir. Örneğin; X-bant aralığında çalışan aygıtlar için 40 GHz'den daha büyük f_T değerlerlerine ulaşmak için gate uzunluğunun (L_G), 250 nm – 500 nm aralığında olması gerekmektedir. Aynı zamanda yüksek güçlü HEMT aygıt performansı için L_G 'nin de minimize edilmesi önem arz etmektedir. Aşağıda yer alan eşitliklerde [149], L_G 'nin I_{DS} , f_T , f_{max} , MAG (maksimum elde edilebilir kazanç) ve NF_{min} (minimum gürültü çarpanı) üzerindeki etkisi net bir şekilde görülmektedir.

$$I_{DS} \alpha \frac{W_G}{L_G}$$
(8.1)

$$f_T = \frac{v_{sat}}{2\pi L_G} = \frac{g_m}{2\pi (C_{GS} + C_{GD})}$$
(8.2)

$$f_{max} = \frac{f_T}{2\sqrt{2\pi f_T R_G C_{GD} + DSR_{in}}}$$
(8.3)

$$MAG = \frac{(f_T/f)^2}{4G_{DS}\left(R_{in} + \frac{\omega_T L_S}{2}\right) + 2\omega_T C_{GD}(R_{in} + R_G + \omega_T L_S)}$$
(8.4)

$$NF_{min} = 1 + K \frac{f}{f_T} \sqrt{g_m (R_G + R_S)}$$
(8.5)

(8.1) – (8.5) arasındaki eşitliklerde geçen; C_{GS} gate-kaynak kapasitansını, C_{GD} gate-akaç kapasitansını, G_{DS} çıkış kapasitansını, R_G gate direncini, R_{in} gate, kaynak ve kanal bileşenlerini içeren giriş direncini, L_S kaynak indüktansını, K

ayar parametresini ve $\omega_T = 2\pi f_T$ ifade etmektedir. R_G ifadesi açık olarak şu şekilde ifade edilir [150]:

$$R_G = \frac{\rho W_{gu}}{3mhL_G} \tag{8.6}$$

Eş. 8.6'da geçen ρ gate metalinin direnci, W_{gu} birim gate genişliğini, m paralellenen gate sayısını ve h gate metal kalınlığını ifade etmektedir. Eş. 8.6 incelendiğinde; yüksek performanslı HEMT aygıt üretimi için L_G azaltıldığında gate direncinin artarak performansı olumsuz yönde etkilediği görülmektedir. Bu sorunun önüne geçmek için; paralellenen gate sayısı (m) ve kaplanan gate metal kalınlığı (h) arttırılabilir ve de daha yüksek iletkenliğe sahip gate metali kullanılabilir. Ancak burada, kaplanan gate metali için en-boy oranına (aspect ratio) yani h/L_G 'ye dikkat edilmesi gerekmektedir. Çünkü çok yüksek h/L_G değerleri için gate'ler çok kırılgan hale gelerek fabrikasyon işlemlerinde gate kopmaları gibi problemlerin doğmasına neden olacaktır [151].

Şekil 8.1'de aygıt simülasyon çalışmalarında kullanılan gate tiplerinin şematik görüntüsü görülmektedir.

8.1. Aygıt Simülasyonları

Aygıt simülasyonları, Silvaco ATLAS programı kullanılarak yapıldı. Program; sürüklenme, difüzyon ve hidrodinamik modelleri, etkiyle iyonlaşma (impact ionization) modelini, III-N bileşiklerinde bulunan piezo-doğal elektrik alan hesaplamalarını, Poisson denklemlerini, elektrik alana, katkılama ve kusur yoğunluğuna bağlı mobilite değişimlerini hesaba katarak simülasyon yapmaktadır.

Şekil 8.1. Aygıt simülasyon çalışmalarında kullanılan gate tiplerinin şematik görüntüsü. (a) I-Gate, (b) Alan Levhalı I-gate, (c) Si₃N₄ Üzerinde Duran Gama (Γ)-Gate, (d) Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)-Gate.

8.1.1. Gate Uzunluğu

Gate uzunluğu (L_G), çalışılacak bant aralığı ile doğrudan ilintili olup X-bant (8 GHz-12,4 GHz) aralığında çalışacak GaN HEMT aygıtlar için L_G değerinin 250 nm-500 nm aralığında olması istenir [151]. Ancak L_G değeri arttıkça gate kaynaklı kapasitif etkiler daha etkin olmaya başlayarak aygıt performansının düşmesine yol açmaktadır [152]. Bu tez kapsamında L_G değeri; aygıt performansı ve aygıt üretiminde tekrar edilebilirliği açısından daha uygun olması nedeniyle 300 nm olarak alındı.

8.1.2. Gate Konumu

Gate'in akaç-kaynak arasındaki konumu; aygıtın maksimum doyum (satürasyon) akımı (I_{DSS}), kırılma gerilimi (V_{br}) ve geçiş iletkenliğinin (g_m) belirlenmesinde önemli rol oynamaktadır.

Gate-kaynak arası (L_{GS}) mesafe değişiminin; maksimum doyum akımına olan etkisi Şekil 8.2'de, kırılma gerilimine olan etkisi Şekil 8.3'te, geçiş iletkenliğine olan etkisi ise Şekil 8.4'te ve maksimum DC çıkış gücüne olan etkisi Şekil 8.5'te görülmektedir.

Şekil 8.2, Şekil 8.3 ve Şekil 8.4 incelendiğinde; gate-kaynak arası mesafe azaldıkça gate altındaki elektrik alanın artmasına bağlı olarak elektronların hızları artmakta ve bunlara bağlı olarak da maksimum doyum akımı ve geçiş iletkenliği de artmaktadır. Geçiş iletkenliğinin artması, f_T ve f_{max} değerlerini arttırarak çalışılmak istenen frekans aralığında aygıtlardan daha yüksek kazanç alınmasını sağlamaktadır.

Gate-kaynak arası mesafe azaldıkça; kırılma geriliminde, bir noktaya kadar artma daha sonra azalma ve maksimum DC çıkış gücünde (P_{DC_max}) (Şekil 8.5) ise artma olduğu görülmektedir.

HEMT aygıtlar için önemli olan çalışmak istenen frekans aralığında maksimum kazanç-maksimum güç optimizasyonu olduğundan L_{GS} değerinin 0,8 µm olduğu değer, tasarım için en uygun değer olarak görünmektedir.

Şekil 8.2. Gate-kaynak arası (L_{GS}) mesafe değişiminin maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.3. Gate-kaynak arası (L_{GS}) mesafe değişiminin kırılma gerilimine (V_{br}) etkisi.

Şekil 8.4. Gate-kaynak arası (L_{GS}) mesafe değişiminin geçiş iletkenliğine (g_m) etkisi.

Şekil 8.5. Gate-kaynak arası (L_{GS}) mesafe değişiminin maksimum DC çıkış gücüne (P_{DC_max}) etkisi.

 L_G değeri 300 nm ve L_{GS} değeri 0,8 µm olmak üzere akaç-kaynak arası (L_{DS}) mesafe değişiminin; maksimum doyum akımına olan etkisi Şekil 8.6'da, kırılma gerilimine olan etkisi Şekil 8.7'de ve geçiş iletkenliğine olan etkisi Şekil 8.9'da görülmektedir.

Şekil 8.6, Şekil 8.7 ve Şekil 8.8 incelendiğinde; akaç-kaynak arası mesafe değişiminin; maksimum doyum akımını, kırılma gerilimini ve geçiş iletkenliğini çok etkilemediği görülmektedir. Ancak akaç-kaynak arası mesafe arttıkça, yüksek frekanslarda kapasitif etkiler daha etkin olmaya başlayarak aygıtların maksimum doyum akımının ve geçiş iletkenliğinin azalmasına ve aygıt performansının düşmesine yol açar. HEMT aygıtlar için önemli olan çalışmak istenen frekans aralığında maksimum kazanç-maksimum güç optimizasyonu olduğundan L_{DS} değerinin 2,5-3,0 µm olduğu değerler tasarım için en uygun değerler olarak görünmektedir. Bu tez kapsamında mikrofabrikasyon açısından tekrar edilebilirliği daha kolay olduğundan $L_{DS} = 3$ µm olarak alınacaktır.

Şekil 8.6. Akaç-kaynak arası (L_{DS}) mesafe değişiminin maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.7. Akaç-kaynak arası (L_{DS}) mesafe değişiminin kırılma gerilimine (V_{br}) etkisi.

Şekil 8.8. Akaç-kaynak arası (L_{DS}) mesafe değişiminin geçiş iletkenliğine (g_m) etkisi.

Simülasyon sonuçları göz önünde bulundurulduğunda tasarlanan 5 farklı gate tipi için optimum gate konumu; $L_G = 300 nm$ olmak üzere $L_{DS} = 3 \mu m$, $L_{GS} = 0.8 \mu m$ ve $L_{GD} = 1.9 \mu m$ olarak alındı.

8.1.3. Alan Levhalı I-gate Optimizasyonu

Tüm gate tasarımlarında alan levhasının temel görevi, gate'in akaç bölgesi sınırından başlayan ve akaç bölgesine doğru yayılan keskin elektrik alan dağılımını düzgün bir yapıya sokarak elektronların bu pik elektrik alan bölgelerinde tuzaklanarak akım çökmelerini engelleyerek kırılma gerilimi arttırmak ve bu şekilde de aygıt güç performansını arttırmaktır. Şekil 8.9'da tipik bir alan levhasının gate-akaç sınırında elektrik alan dağılımı üzerindeki etkisi görülmektedir.

Kaynak omik ekleminden olan uzaklık (µm)

Şekil 8.9. Alan levhasının gate-akaç sınırında elektrik alan dağılımı üzerindeki etkisi [151,153].

I-gate alan levhası uzunluğunun (L_{AL}) maksimum doyum akımına olan etkisi Şekil 8.10'da, kırılma gerilimine olan etkisi Şekil 8.11'de ve geçiş iletkenliğine olan etkisi Şekil 8.12'de görülmektedir. Simülasyon sonuçları incelendiğinde; Igate alan levhası uzunluğu arttıkça maksimum doyum akımı ve geçiş iletkenliğinin değişmediği, ancak kırılma geriliminin bir noktaya kadar arttığı görülmektedir. Bu sonuçlar göz önünde bulundurularak alan levhalı I-gate tasarımı için L_{AL} değeri 0,6 µm olarak alındı.

Şekil 8.10. I-gate alan levhası (L_{AL}) uzunluğunun maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.11. I-gate alan levhası (L_{AL}) uzunluğunun kırılma gerilimine (V_{br}) etkisi.

Şekil 8.12. I-gate alan levhası (L_{AL}) uzunluğunun geçiş iletkenliğine (g_m) etkisi.

8.1.4. Si₃N₄ Üzerinde Duran Gama (Γ)-Gate Optimizasyonu

Şekil 8.13. Si₃N₄ Üzerinde Duran Gama (Γ)-Gate şematik çizimi.

Deneysel olarak üretilen gama gate'lerde üretimin doğal bir sonucu olarak kanat tarafında (L_{AL_S}) da bir çıkıntı oluşmaktadır. Bu çıkıntının uzunluğu yaklaşık 0,25 µm'dir. Ancak L_G değeri 300 nm, L_{GS} değeri 0,8 µm, L_{GD} değeri 1,9 µm, L_{AL_D} değeri 0,6 µm ve Si₃N₄ kalınlığı 200 nm olmak üzere Si₃N₄ Üzerinde Duran Gama (Γ)-Gate'in kaynak tarafına bakan kanadın (L_{AL_S}) uzunluk değişiminin; maksimum doyum akımına (Şekil 8.14), kırılma gerilimine (Şekil 8.15) ve geçiş iletkenliğine (Şekil 8.16) olan etkisi simüle edildiğinde L_{AL_S} değişiminin; maksimum doyum akımına, kırılma gerilimine ve geçiş iletkenliğine çok etki etmediği görüldü. Ancak buna rağmen yüksek frekanslarda gate kaynaklı kapasitif etkileri minimize etmek amacıyla L_{AL_S} değerinin minimumda tutulması gerekmektedir.

Şekil 8.14. L_{AL_S} değişiminin maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.15. L_{AL_S} değişiminin kırılma gerilimine (V_{br}) etkisi.

Şekil 8.16. L_{AL_S} değişiminin geçiş iletkenliğine (g_m) etkisi.

 L_{AL_S} değeri 0,25 µm olmak üzere gama gate'in akaç tarafına doğru uzanan ve gate'in gamasını oluşturan L_{AL_D} uzunluk değişimin maksimum doyum akımına olan etkisi Şekil 8.17'de, kırılma gerilimine olan etkisi Şekil 8.18'de ve geçiş iletkenliğine olan etkisi Şekil 8.19'da görülmektedir.

Şekil 8.17, Şekil 8.18 ve Şekil 8.19 incelendiğinde; L_{AL_D} uzunluk değişiminin maksimum doyum akımını ve geçiş iletkenliğini çok etkilemediği, ancak kırılma gerilimi üzerinde büyük bir etkiye sahip olduğu görülmektedir. Simülasyon verileri göz önünde bulundurulduğunda L_{AL_D} için en uygun değerin 0,6 µm olduğu görülmektedir.

Şekil 8.17. L_{AL_D} değişiminin maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.18. L_{AL_D} değişiminin kırılma gerilimine (V_{br}) etkisi.

Şekil 8.19. L_{AL_D} değişiminin geçiş iletkenliğine (g_m) etkisi.

8.1.5. Bir Kısmı Si $_3N_4$ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)-Gate Optimizasyonu

Şekil 8.20. Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)-Gate şematik çizimi. Özellikle yüksek frekanslarda düşük kırılma gerilimleri ile çalışacak HEMT aygıtlar için aygıt kazancını maksimize etmek amacıyla kapasitif etkileri minimize etmek önem taşımaktadır. Bu amaçla gate'in gama metali altında kalan bölümündeki malzemenin dielektrik katsayısını düşürmek (Si₃N₄ yerine dielektrik katsayısı daha düşük olan bir malzeme, örneğin hava kullanmak) önemli bir avantaj sağlar. L_G değeri 300 nm, L_{GS} değeri 0,8 µm, L_{GD} değeri 1,9 µm, L_{AL_S} değeri 0,25 µm, L_{AL_D} değeri 0,6 µm ve Si₃N₄ kalınlığı 200 nm olmak üzere bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama (Γ)-gate'in havada duran kısmının (L_h) değişiminin maksimum doyum akımına olan etkisi Şekil 8.21'de, kırılma gerilimine olan etkisi Şekil 8.22'de ve geçiş iletkenliğine olan etkisi Şekil 8.23'te görülmektedir.

Şekil 8.21. L_h değişiminin maksimum doyum akımına (I_{DSS}) etkisi.

Şekil 8.22. L_h değişiminin kırılma gerilimine (V_{br}) etkisi.

Şekil 8.23. L_h değişiminin geçiş iletkenliğine (g_m) etkisi.

Şekil 8.21, Şekil 8.22 ve Şekil 8.23 incelendiğinde; L_h değişiminin; maksimum doyum akımını ve geçiş iletkenliğini etkilemediği, ancak L_h arttıkça kırılma geriliminin azaldığı görülmektedir. Bu simülasyon verileri ışığında L_h değerinin 50 nm olduğu değer, bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama (Γ)-gate için en optimum değerdir.

8.2. Sonuç

Yüksek güçlü HEMT aygıt üretimi için en uygun gate tipinin belirlenmesi amacıyla, DC I-V ve RF güç ölçümleri açısından en yüksek performansa sahip olduğu belirlenen **E3** epitaksiyel tasarımı verileri kullanılarak, Silvaco ATLAS programı yardımıyla gate simülasyon çalışmaları yapıldı. Yapılan simülasyon çalışmaları sonucunda dört farklı gate tipi için optimum uzunluklar belirlendi. Silvaco ATLAS programı yardımıyla belirlenen optimum gate verileri, Çizelge 8.1'de görülmektedir.

Çizelge 8.1 incelendiğinde similasyonu yapılan dört farklı gate tipi için; maksimum doyum akımının (I_{DSS}) aynı olduğu, geçiş iletkenliği (g_m) açısından aralarında çok fark olmadığı görülmektedir. Ancak kırılma geriliminin (V_{br}) en yüksek elde edildiği gate tipi, Si_3N_4 Üzerinde Duran Gama (Γ)-Gate'tir. Bu da simülasyon verilerine göre DC I-V ölçümler açısından yüksek güçlü HEMT aygıt fabrikasyonu için en uygun gate tipinin, Si_3N_4 Üzerinde Duran Gama (Γ)-Gate olduğunu göstermektedir.

Gate Tipi	I-Gate	Alan Levhalı I-Gate	Si₃N₄ Üzerinde Duran (Γ)-Gate	Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Γ)- Gate			
L _{DS} (μm)	3	3	3	3			
L _{GS} (μm)	0,8	0,8	0,8	0,8			
L _{GD} (μm)	1,9	1,9	1,9	1,9			
<i>L_G</i> (μm)	0,3	0,3	0,3	0,3			
L _{AL} (μm)	-	0,6	-	-			
L _{AL_S} (μm)	-	-	0,25	0,25			
L _{AL_D} (μm)	-	-	0,6	0,6			
L _h (nm)	-	-	-	50			
I _{DSS} (mA/mm)	1,4	1,4	1,4	1,4			
V _{br} (V)	90	124	246	78			
<i>g</i> _m (S/mm)	0,46	0,44	0,43	0,44			

Çizelge 8.1. Çeşitli gate tipleri için Silvaco ATLAS simülasyon programı yardımıyla elde edilmiş optimum veriler.

9. TASARLANAN AYGITLARIN MİKROFABRİKASYONU

Bu bölümde; Silvaco ATLAS simülasyon programı yardımıyla gate simülasyonları yapılan tasarımların, mikrofabrikasyon teknikleri kullanılarak, **E3** epitaksiyel yapısı üzerinde HEMT aygıt fabrikasyonları yapıldı.

9.1. I-Gate (Tip-1) HEMT Aygıt Mikrofabrikasyonu

Şekil 9.1. I-Gate (Tip-1) HEMT aygıt yapısı şematik görünümü.

I-gate (Tip-1) HEMT aygıt mikrofabrikasyon adımları tezin altıncı bölümünde anlatıldığı gibi yapıldı.

9.2. Alan Levhalı I-Gate (Tip-2) HEMT Aygıt Mikrofabrikasyonu

Şekil 9.2. Alan levhalı I-gate (Tip-2) HEMT aygıt yapısı şematik görünümü.

Alan levhalı I-gate (Tip-2) HEMT aygıt tasarımında dielektrik açıklığı oluşturma adımına kadar olan tüm mikrofabrikasyon adımları tezin altıncı bölümünde anlatıldığı gibi yapıldı. Dielektrik açıklığı oluşturma adımından sonra ise bu gate tasarımında oluşturulan I-gate üzerinde aynı genişlikte ancak akaç bölgesine doğru uzanacak şekilde Şekil 9.2'de görüldüğü gibi levha kaplaması yapıldı. Alan levhası oluşturulduktan sonraki köprü desteği oluşturma ve ikinci bağlantı metali oluşturma mikrofabrikasyon adımları ise yine tezin altıncı bölümünde anlatıldığı gibi yapıldı.

Alan levhası oluşturma adımı için gerekli prosedür, Çizelge 9.1'de görülmektedir.

Çizelge 9.1. Alan levhası oluşturma prosedürü.

Alan Levhası Litografisi							
a.	Örnek yüzeyine ZEP520A rezisti damlatılarak spin kaplama sisteminde spin						
	kaplama parametreleri; 4 saniyede 2000 rpm'lik bir hıza ulaşarak bu hızda 40						
	saniye kalacak şekilde ayarlanır ve rezist, örnek yüzeyine homojen bir şekilde						
	kaplanır.						
b.	Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 3 dk boyunca pişirilir.						
c.	Ardından örnek, spin kaplama sistemine yerleştirilerek örnek yüzeyine						
	Aquasave polimer bileşiği damlatılarak spin kaplama parametreleri; 4						
	saniyede 4600 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde						
	ayarlanır ve polimer örnek yüzeyine homojen bir şekilde kaplanır.						
d.	Örnek, Raith elektron demeti litografi sistemine yüklenir. Sistemde vakum						
	seviyesi 2x10 ⁻⁵ mbar basınç seviyesine ulaştığında; alan levhası yazımı ile ilgili						
	gerekli ayarlamalar yapıldıktan sonra pozlama işlemi gerçekleştirilir.						
e.	Pozlama işleminden sonra sistemden çıkarılan örneğin yüzeyindeki aquasave						
	temizliği için örnek, akan DI su altında 10 s boyunca yıkanır ve ardından da						
	azot tabancası yardımıyla kurutulur.						
f.	Pozlama yapılan bölgelerin kaldırılması amacıyla örnek, Xylene geliştiricisi						
	içinde 4 dk tutulur ve hemen akabinde geliştirici içinden çıkarılarak 30 s						
	boyunca isopropanol alkol (IPA) içerisinde tutulur ve son olarak da IPA						
	içerisinden çıkarılarak azot tabancası yardımıyla kurutulur.						
g.	Geliştirme işleminden sonra oluşan desenlerin içerisinde kalmış olabilecek						
_	organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını						
	sağlamak amacıyla, Sentech SI 500 ICP-RIE sisteminde 50 W RF, 100 W						
	ICP, 1 Pa basınç ve 40 sccm O_2 plazma reçetesi, 10 s boyunca çalıştırılır.						
	a. b. c. f.						

		Alan Levhası Metal Kaplama
	a.	Örnek, Oerlikon Leybold Univex 350 model elektron demeti ile buhar biriktirme
		sistemine yüklenir ve sistemin 3x10 ⁻⁶ mbar vakum değerine ulaşması beklenir.
	b.	Ardışık olarak Ti-Au metalleri; kaplama kalınlıkları: 15 nm-340 nm ve kaplama
Adım 2		hızları: 0,08 nm/s-0,18 nm olacak şekilde kaplanır.
	c.	Kaplama sonrasında istenmeyen bölgelerdeki metal kalıntılarının kaldırılması
		(lift off) amacıyla örnek, 1 gece boyunca N-Methyl-2-pyrrolidone (NMP)
		içerisinde bekletilir.
	d.	NMP içerisinden çıkarılan örnek, içerisinde DI su bulunan cam petri kabına
		konularak 5 dk boyunca durulanır ve akabinde azot tabancası yardımıyla
		kurutulur.
	e.	Optik mikroskop ve TEM yardımıyla alan levhası kontrolü yapılır.

Şekil 9.3'te alan levhası oluşturma adımı sonrası alan levhalı I-gate için SEM görüntüsü görülmektedir.

Şekil 9.3. Alan levhalı I-gate (Tip-2) için SEM görüntüsü.

9.3. Si₃N₄ Üzerinde Duran Gama Gate (Tip-3) HEMT Aygıt Mikrofabrikasyonu

Şekil 9.4. Si₃N₄ üzerinde duran gama gate (Tip-3) HEMT aygıt yapısı şematik görünümü.

Si₃N₄ üzerinde duran gama gate, Şekil 9.4'te de görüldüğü üzere gate ayağı, nitrat içine gömülü ve gate başı da nitrat üstünde duracak şekilde iki kısımdan oluşmaktadır. Si₃N₄ üzerinde duran gama gate tasarımı; tezin altıncı bölümünde anlatılan proses akışından farklı olarak şu proses akışı göz önünde bulundurularak yapıldı:

- 1. Örnek Kesimi ve Temizlik Adımı,
- 2. Aygıt Adacığı Aşındırma Adımı,
- 3. Ohmik Eklem (Akaç-Kaynak Kontak) Oluşturma Adımı,
- 4. Birinci Bağlantı Metali Oluşturma Adımı,
- 5. Dielektrik Kaplama Adımı,
- 6. Schottky Eklem (Gate Kontak) Oluşturma Adımı,
- 7. Dielektrik Açıklığı Oluşturma Adımı,
- 8. Köprü Desteği Oluşturma Adımı,
- 9. İkinci Bağlantı Metali Oluşturma Adımı

Tüm bu işlem adımlarında, gate litografi adımı hariç tüm mikrofabrikasyon adımları tezin altıncı bölümünde anlatıldığı gibi yapıldı. Si₃N₄ üzerinde duran gama gate oluşturma adımı için gerekli prosedür, Çizelge 9.2'de görülmektedir.

Çizelge 9.2. Si $_3N_4$ üzerinde duran gama gate oluşturma prosedürü.

	Si₃N₄ Üzerinde Duran Gama Gate Ayak Litografisi						
	a.	Örnek yüzeyine ZEP520A rezisti damlatılarak spin kaplama sisteminde spin					
		kaplama parametreleri; 4 saniyede 2000 rpm'lik bir hıza ulaşarak bu hızda					
		40 saniye kalacak şekilde ayarlanır ve rezist, örnek yüzeyine homojen bir					
		şekilde kaplanır.					
	b.	Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 180 s boyunca pişirilir.					
	c.	Ardından örnek, spin kaplama sistemine yerleştirilerek örnek yüzeyine					
		Aquasave polimer bileşiği damlatılarak spin kaplama parametreleri; 4					
		saniyede 4000 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde					
		ayarlanır ve polimer örnek yüzeyine homojen bir şekilde kaplanır.					
	d.	Örnek, Raith elektron demeti litografi sistemine yüklenir. Sistemde vakum					
Adum 1		seviyesi 2x10 ⁻⁵ mbar basınç seviyesine ulaştığında; gate ayağı yazımı ile					
Aum		ilgili gerekli ayarlamalar yapıldıktan sonra pozlama işlemi gerçekleştirilir.					
	e.	Pozlama işleminden sonra sistemden çıkarılan örneğin yüzeyindeki					
		aquasave temizliği için örnek, akan DI su altında 10 s boyunca yıkanır ve					
		ardından da azot tabancası yardımıyla kurutulur.					
	f.	Pozlama yapılan bölgelerin kaldırılması amacıyla örnek, Xylene geliştiricisi					
		içinde 4 dk tutulur ve hemen akabinde geliştirici içinden çıkarılarak 30 s					
		boyunca IPA içerisinde tutulur ve son olarak da IPA içerisinden çıkarılarak					
		azot tabancası yardımıyla kurutulur.					
	g.	Geliştirme işleminden sonra oluşan desenlerin içerisinde kalmış olabilecek					
		organik kirliliklerin temizliği amacıyla, Sentech SI 500 ICP-RIE sisteminde					
		50 W RF, 100 W ICP, 1 Pa basınç ve 40 sccm O_2 plazma reçetesi, 5 s					
		boyunca çalıştırılır.					
		Gate Ayağı Oluşturma Adımı					
	a.	Örnek, termal bant yardımıyla silikon wafer üzerine yapıştırılır ve SAMCO					
		RIE-140iP ICP-RIE sistemine yüklenir.					
Adım 2	b.	Gate ayağını oluşturacak nitrat tabakasının kuru aşındırma işlemi, SF ₆ (4					
		sccm) ve Ar (20 sccm) gaz karışımı kullanarak 0,60 Pa proses basıncında					
		ve 10 W RF gücünde gerçekleştirilir.					
	C.	Aşındırma işleminden sonra wafer, 150 °C'de tutulan sıcak plaka üzerine					
		konularak örnek ile termal bantın birbirinden ayrılması sağlanır.					
		Ornek Temizliği					
	а.	Gate ayağı kuru aşındırma işleminden sonra gate ayağı içerisinde oluşmuş					
Adım 3		polimerik kalıntıların temizliği için örnek, 80 °C'de tutulan ultrasonik titreştirici					
		içerisinde en yüksek güçte 15 dk boyunca titreştirilir. Ardından deiyonize su					
		içerisinde 5 dk boyunca durulanır ve azot ile kurutulur.					
	b.	Daha sonra örneğe, Sentech SI 500 ICP-RIE sisteminde 50 W RF, 100 W					

		ICP, 1 Pa basınç ve 40 sccm O2 plazma reçetesi ile 15 s boyunca plazma						
		temizliği işlemi uygulanır.						
		Si₃N₄ Uzerinde Duran Gama Gate Baş Litografisi						
	a.	Örnek yüzeyine PMMA A6 950K rezisti damlatılarak spin kaplama						
		sisteminde spin kaplama parametreleri; 4 saniyede 2000 rpm'lik bir hıza						
		ulaşarak bu hızda 40 saniye kalacak şekilde ayarlanır ve rezist, örnek						
	yüzeyine homojen bir şekilde kaplanır.							
	b.	Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 90 s boyunca pişirilir.						
	c.	Ardından örnek, spin kaplama sistemine yerleştirilerek örnek yüzeyine						
		Aquasave polimer bileşiği damlatılarak spin kaplama parametreleri; 4						
		saniyede 4000 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde						
		ayarlanır ve polimer örnek yüzeyine homojen bir şekilde kaplanır.						
	d.	Örnek, Raith elektron demeti litografi sistemine yüklenir. Sistemde vakum						
		seviyesi 2x10 ⁻⁵ mbar basınç seviyesine ulaştığında; gate başı yazımı ile ilgili						
Adım 4		gerekli ayarlamalar yapıldıktan sonra pozlama işlemi gerçekleştirilir.						
	е.	Pozlama işleminden sonra sistemden çıkarılan örneğin yüzeyindeki						
		aquasave temizliği için örnek, akan DI su altında 10 s boyunca yıkanır v						
	ardından da azot tabancası yardımıyla kurutulur. f. Pozlama yapılan bölgelerin kaldırılması amacıyla örnek, 1 oranında							
		izobütil keton (MIBK) ve 1 oranında IPA içeren geliştirici içinde 50 s tutulur						
		ve hemen akabinde geliştirici içinden çıkarılarak 30 s boyunca IPA içerisinde						
		tutulur ve son olarak da IPA içerisinden çıkarılarak azot tabancası						
		yardımıyla kurutulur.						
	g.	Geliştirme işleminden sonra oluşan desenlerin içerisinde kalmış olabilecek						
		organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını						
		sağlamak amacıyla, Sentech SI 500 ICP-RIE sisteminde 50 W RF, 100 W						
		ICP, 1 Pa basınç ve 40 sccm O ₂ plazma reçetesi, 10 s boyunca çalıştırılır.						

Şekil 9.5'te Si₃N₄ üzerinde duran gama gate (Tip-3) oluşturma adımı sonrası gate'lerin SEM görüntüsü görülmektedir.

Şekil 9.5. Si₃N₄ üzerinde duran gama gate (Tip-3) için SEM görüntüsü.

9.4. Oyuklu (Recessed) Gama Gate (Tip-4) HEMT Aygıt Mikrofabrikasyonu

Şekil 9.6. Oyuklu (recessed) gama gate (Tip-4) HEMT aygıt yapısı şematik görünümü.

Si₃N₄ üzerinde duran gama gate (Tip-3) yapısında, gate yapısının oluşturulabilmesi için gate ayağı ve başı için iki aşamalı bir elektron demeti litografisi ve gate ayağının oluşturulabilmesi için de kuru aşındırma işleminin yapılması gerekmektedir. Tip-4 gate yapısı ile gate ayağı için kuru aşındırmayı ortadan kaldıran ve ayak ile baş için ayrı ayrı yapılan elektron demeti litografisini de tek adıma indiren, Tip-3 gate yapısına alternatif daha basit bir gate yapısı oluşturuldu. Bu gate tasarımı ile gate ayağı için Si₃N₄ tabakasının aşındırılmasına gerek kalmadan tek seferde elektron demeti litografi yöntemi ile gate ayağı ve başı aynı anda desenlenmekte ve hemen ardından gate metal kaplaması öncesi gate'in AlGaN bariyer tabakası içerisinde oturacağı oyuk oluşturulmakta ardından da gate metal kaplama işlemi yapılmaktadır. Gate altında oluşturulan bu oyuk ile gate kaçaklarının azaltılması, aygıtın kırılma geriliminin ve çıkış gücünün arttırılması hedeflenmektedir [154-57]. Gate metalizasyon sonrasında aygıt pasivasyonu için kaplanan Si₃N₄ tabakası ile gate metalinin hem altı ve hem de üstü kapatılarak, tek bir nitrat tabakası ile hem yüzeyin hem de metallerin yalıtılması işlemi yapılmakta ve bu şekilde de Tip-3 gate yapısına alternatif bir gate yapısı oluşturulmaktadır.

Tip-4 gate yapısı için; gate litografisi ve oyuk oluşturma adımı hariç tüm mikrofabrikasyon adımları tezin altıncı bölümünde anlatıldığı gibi yapıldı. Tip-4 gate yapısı oluşturma adımı için gerekli prosedür, Çizelge 9.3'te görülmektedir.

Çizelge 9.3. Oyuklu (recessed) gama gate (Tip-4) oluşturma prosedürü.

	Tip-4 Gate Litografisi								
	a.	Örnek yüzeyine PMMA A4 950K rezisti damlatılarak spin kaplama							
		sisteminde spin kaplama parametreleri; 3 saniyede 3000 rpm'lik bir hıza							
Adım 1	ulaşarak bu hızda 40 saniye kalacak şekilde ayarlanır ve rezi								
		yüzeyine homojen bir şekilde kaplanır.							
	b.	Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 90 s boyunca pişirilir.							
	c.	Ardından örnek, spin kaplama sistemine tekrardan yüklenerek yüzeyine							
		MMA EL13 rezisti damlatılarak spin kaplama parametreleri; 3 saniyede 300							
		rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde ayarlar							
		rezist, örnek yüzeyine homojen bir şekilde kaplanır.							
	d.	Rezist kaplı örnek, sıcak plaka üzerinde 150ºC'de 90 s boyunca pişirilir.							
	e.	Daha sonra örnek tekrardan spin kaplama sistemine yüklenerek yüzeyine							

		PMMA A5 50K rezisti damlatılarak spin kaplama parametreleri; 3 saniyede				
		3000 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde ayarlanır				
		ve rezist, örnek yüzeyine homojen bir şekilde kaplanır.				
	f.	Rezist kaplı örnek, sıcak plaka üzerinde 180ºC'de 90 s boyunca pişirilir.				
	g.	Ardından örnek, spin kaplama sistemine yerleştirilerek örnek yüzeyine				
		Aquasave polimer bileşiği damlatılarak spin kaplama parametreleri; 3				
		saniyede 3000 rpm'lik bir hıza ulaşarak bu hızda 40 saniye kalacak şekilde				
		ayarlanır ve polimer örnek yüzeyine homojen bir şekilde kaplanır.				
	h.	Örnek, Raith elektron demeti litografi sistemine yüklenir. Sistemde vakum				
		seviyesi 2x10 ⁻⁵ mbar basınç seviyesine ulaştığında; gate yazımı ile ilgili				
		gerekli ayarlamalar yapıldıktan sonra pozlama işlemi gerçekleştirilir.				
	i.	Pozlama işleminden sonra sistemden çıkarılan örneğin yüzeyindeki				
		aquasave temizliği için örnek, akan DI su altında 10 s boyunca yıkanır ve				
		ardından da azot tabancası yardımıyla kurutulur.				
	j.	Pozlama yapılan bölgelerin kaldırılması amacıyla örnek, 1 oranında metil				
		izobütil keton (MIBK) ve 1 oranında isopropanol alkol (IPA) içeren geliştirici				
		içinde 2 dk tutulur ve hemen akabinde geliştirici içinden çıkarılarak 30 s				
		boyunca IPA içerisinde tutulur ve son olarak da IPA içerisinden çıkarılarak				
		azot tabancası yardımıyla kurutulur.				
	k.	Geliştirme işleminden sonra oluşan desenlerin içerisinde kalmış olabilecek				
		organik kirliliklerin temizliği ve metallerin bu yüzeylere daha iyi yapışmasını				
		sağlamak amacıyla, Sentech SI 500 ICP-RIE sisteminde 50 W RF, 100 W				
		ICP, 1 Pa basınç ve 40 sccm O ₂ plazma reçetesi, 5 s boyunca çalıştırılır.				
		Oyuk Oluşturma				
	а.	Örnek, silikon wafer üzerine konularak Sentech SI 500 ICP-RIE sistemine				
		yüklenir.				
	b.	Sistemde vakum seviyesi, 1,6x10 ⁻⁵ Pa değerine düştüğünde; BCI ₃ (20sccm)				
Adım 2		ve Cl ₂ (20sccm) gaz karışımı kullanarak Proses Basıncı: 0.60 Pa, Sıcaklık:				
		20°C, RF Gücü: 5 W, ICP Gücü: 300 W ve aşındırma süresi, ortalama 2-3				
		nm'lik bir aşındırma derinliğine ulaşacak şekilde belirlenerek plazma				
		reçetesi çalıştırılır.				
	C.	Aşındırma işleminden sonra örnek, gate metal kaplama işlemine hazırdır.				

Şekil 9.7'de Oyuklu gama gate (Tip-4) oluşturma adımı sonrası gate'lerin SEM görüntüsü görülmektedir.

Şekil 9.7. Oyuklu gama gate (Tip-4) için SEM görüntüsü.

9.5. Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama Gate (Tip-5) HEMT Aygıt Mikrofabrikasyonu

Bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama gate tasarımında, Şekil 9.8'de görüldüğü üzere; Si₃N₄ üzerinde duran gama gate tasarımından farklı olarak gate'in baş kısmını havada bırakacak şekilde bir proses işlemi yapıldı. Bu şekildeki bir gate tasarımı ile nitrat kaynaklı kapasitif etkiler azaltılarak bunun, aygıt performansına olan etkisi incelenmeye çalışıldı.

Bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama gate tasarımı, şu proses akışı göz önünde bulundurularak yapıldı:

- 1. Örnek Kesimi ve Temizlik Adımı,
- 2. Aygıt Adacığı Aşındırma Adımı,
- 3. Ohmik Eklem (Akaç-Kaynak Kontak) Oluşturma Adımı,
- 4. Birinci Bağlantı Metali Oluşturma Adımı,
- 5. Dielektrik Kaplama Adımı,
- Germanyum (Ge) Kaplama Adımı (200 nm Si₃N₄ kaplama işlemi sonrasında örnek yüzeyine elektron demeti ile buhar biriktirme yöntemi ile 50 nm Ge kaplanmaktadır),
- 7. Schottky Eklem (Gate Kontak) Oluşturma Adımı,
- 8. Germanyum (Ge) Islak Aşındırma Adımı,
- 9. Dielektrik Açıklığı Oluşturma Adımı,
- 10. Köprü Desteği Oluşturma Adımı,
- 11. İkinci Bağlantı Metali Oluşturma Adımı

Bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama gate için gate ayağı ve başı oluşturma prosedürü, Çizelge 9.2'de anlatıdığı gibi yapıldı. Buna ek olarak; Schottky eklem (gate kontak) oluşturma adımı sonrasında gate'in baş kısmının havada bırakılması amacıyla önceden kaplanan germanyum yarı iletkeninin ıslak aşındırma işlemi, 100 ml DI su ve 10 ml Hidrojen peroksit (H₂O₂) içeren çözelti içerisinde gerçekleştirildi. Islak aşındırma sonrasında örnek, DI su dolu cam petri kap içerisinde 5 dk boyunca durulanarak azot tabancası yardımıyla kurutuldu.

Şekil 9.9'da bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama gate (Tip-5) için SEM görüntüsü görülmektedir.

Şekil 9.9. Bir kısmı Si₃N₄ içine gömülü ve bir kısmı da havada duran gama gate (Tip-5) için SEM görüntüsü.

Mikrofabrikasyon sonrasında elde edilen 0,3 µm×8×125 µm AlGaN/GaN HEMT aygıtların optik mikroskop görüntüsü, Şekil 9.10'da görülmektedir.

Şekil 9.10. Mikrofabrikasyon sonrasında elde edilen 0,3µm×8×125µm AlGaN/GaN HEMT aygıtların optik mikroskop görüntüsü.

10. MİKROFABRİKASYONU YAPILAN GATE TASARIMLARININ DC VE RF KARAKTERİZASYONU

Bu bölümde 9. Bölümde mikrofabrikasyonları gerçekleştirilen farklı gate tasarımları içeren AlGaN/GaN HEMT aygıtların elektriksel karakterizasyonları (DC I-V, RF güç ölçümü) özel olarak hazırlanmış düzeneklerde yapılarak aygıtlar birbirleri ile karşılaştırılacaktır.

Farklı gate yapısına sahip AlGaN/GaN HEMT aygıtlar için elde edilen $I_{DS} - V_{GS}$ grafiği Şekil 10.1'de görülmektedir.

Şekil 10.1. AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı eşik voltaj (V_{th}) karşılaştırma grafiği.

Şekil 10.1 incelendiğinde eşik voltaj (V_{th}) değeri, Tip-1 aygıt için -3,8 V, Tip-2 aygıt için -3,7 V, Tip-3 aygıt için -3,0 V, Tip-4 aygıt için -3,2 V ve Tip-5 aygıt için -1,9 V olarak bulundu.

Farklı gate yapısına sahip AlGaN/GaN HEMT aygıtlar için elde edilen I_{DS} – V_{DS} grafiği Şekil 10.2'de görülmektedir. Maksimum doyum (satürasyon) akımı (I_{DSS}); Tip-1 aygıt için 1,1 A/mm, Tip-2 ve Tip-3 aygıtlar için 1,0 A/mm, Tip-4 aygıt için 0,9 A/mm ve Tip-5 aygıt için 0,88 A/mm olarak ölçüldü.

Şekil 10.2. AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı $I_{DS} - V_{DS}$ karakteristiği. Gate besleme gerilimi, -6V'tan 1V'a kadar 1 V aralıklarla tarandı.

Farklı gate yapısına sahip AlGaN/GaN HEMT aygıtlar için elde edilen $g_m - V_{GS}$ grafiği Şekil 10.3'te görülmektedir. Maksimum geçiş iletkenliği (g_m); Tip-1 aygıt için 0,29 S/mm, Tip-2 aygıt için 0,25 S/mm, Tip-3 aygıt için 0,29 S/mm, Tip-4 aygıt için 0,28 S/mm ve Tip-5 aygıt için 0,33 S/mm olarak ölçüldü.

Şekil 10.3. AlGaN/GaN HEMT aygıtlar için gate yapısına bağlı $g_m - V_{GS}$ karakteristiği.

Farklı gate yapısına sahip AlGaN/GaN HEMT aygıtlar için $V_{DS} = 25$ V ve $I_{DS} = 100$ mA/mm değerlerinde elde edilen akım kazancı ($|h_{21}|$) grafiği, Şekil 10.4'te görülmektedir. Eğrilerin kestiği noktalar, akım kazancı kesilim frekansı (f_T) olmak üzere Tip-1 aygıt için 14,14 GHz, Tip-2 aygıt için 17,33 GHz, Tip-3 aygıt için 21,79 GHz, Tip-4 aygıt için 14,52 GHz ve Tip-5 aygıt için 25,87 GHz olarak bulundu.

Şekil 10.4. AlGaN/GaN HEMT aygıtlar için V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde gate yapısına bağlı akım kazancı ($|h_{21}|$) grafiği.

Farklı gate yapısına sahip AlGaN/GaN HEMT aygıtlar için $V_{DS} = 25$ V ve $I_{DS} = 100$ mA/mm değerlerinde elde edilen güç kazancı ($|U_G|$) grafiği, Şekil 10.5'te görülmektedir. Eğrilerin kestiği noktalar, maksimum salınım frekansı (f_{max}) olmak üzere Tip-1 aygıt için 35,5 GHz, Tip-2 aygıt için 28,2 GHz, Tip-3 aygıt için 44,65 GHz, Tip-4 aygıt için 35,45 GHz ve Tip-5 aygıt için 53,1 GHz olarak bulundu.

Şekil 10.5. AlGaN/GaN HEMT aygıtlar için V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde gate yapısına bağlı güç kazancı ($|U_G|$) grafiği.

Farklı gate yapısı içeren AlGaN/GaN HEMT aygıtlar için 8 GHz'de $V_{DS} = 25$ V ve $I_{DS} = 100$ mA/mm değerlerinde alınan RF güç ölçüm grafikleri aşağıda (Şekil 10.6-10.10) yer almaktadır. Yapılan ölçümlerde Tip-1, Tip-2, Tip-3, Tip-4 ve Tip-5 HEMT aygıtlar için 2 dB kazanç sıkıştırmasında (gain compression) ardışık olarak elde edilen çıkış gücü değerleri (P_{out}); 35,3 dBm (3.4 W/mm), 36,5 dBm (4,5 W/mm), 37 dBm (5,0 W/mm), 38,2 dBm (6,6W/mm) ve 36,7 dBm (4,7 W/mm), kazanç değerleri; 10,3 dB, 10,3 dB, 9,7 dB, 8,8 dB ve 12,7 dB ve PAE (%) (Power-Added Efficiency = Güç Katılmış Verimlilik) değerleri, 36,8; 44,6; 44,7; 63,1; 47,1'dir.

Şekil 10.6. Tip-1 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8 GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç karakteristiği.

Şekil 10.7. Tip-2 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8 GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç karakteristiği.

Şekil 10.8. Tip-3 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8 GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç karakteristiği.

Şekil 10.9. Tip-4 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8 GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç karakteristiği.

Şekil 10.10. Tip-5 gate yapısına sahip AlGaN/GaN HEMT aygıtlar için 8 GHz'de V_{DS} = 25 V ve I_{DS} = 100 mA/mm değerlerinde RF güç karakteristiği.

Farklı gate yapılarına sahip AlGaN/GaN HEMT aygıtlar için elde edilen performans sonuçlarını karşılaştıran özet tablo, Çizelge 10.1'de görülmektedir.

Gate Yapısı	Tip-1	Tip-2	Tip-3	Tip-4	Tip-5
I _{DSS} (mA/mm)	1,1	1,0	1,0	0,9	0,88
V_{th} (V)	-3,8	-3,7	-3,0	-3,2	-1,9
g_m (S/mm)	0,29	0,25	0,29	0,28	0,33
f_T (GHz)	14,14	17,33	21,79	14,52	25,87
f _{max} (GHz)	35,5	28,2	44,65	35,45	53,1
PAE (%)	36,8	44,6	44,7	63,1	47,1
Kazanç* (dB)	10,3	10,3	9,7	8,8	12,7
Çıkış Gücü* (dBm)	35,3	36,5	37	38,2	36,7
Çıkış Gücü* (W/mm)	3,4	4,5	5,0	6,6	4,7

Çizelge 10.1.	Farklı gate	yapılarına	sahip	AlGaN/GaN	HEMT	aygıtlar	için
	performans						

* 25V, 2dB kazanç sıkıştırmasında (gain compression)

11. SONUÇ VE ÖNERİLER

Bu bölüm; tez çalışması kapsamında elde edilen ana sonuçları ve ileri araştırmalar için önerileri içermektedir.

11.1. Ana Sonuçlar

Bu tezde, yüksek çıkış gücüne sahip GaN temelli yüksek elektron hareketlilikli (HEMT) üretmek amacıyla öncelikle HEMT transistörler avgitlarin oluşturulabileceği uygun bir epitaksiyel yapının büyütülmesi ve karakterizasyonu konusunda çalışmalar yapılmıştır. MOCVD yöntemi kullanarak üç yeni epitaksiyel yapı büyütülmüştür (4. Bölüm). Yapılan elektriksel ve yapısal incelemeler sonucunda bu üç yapının da ticari olarak satılan bir HEMT epitaksiyel yapısı ile kıyaslanabilecek kalitede olduğu görülmüştür. HEMT aygıt üretimi için en uygun olan E3 epitaksiyel yapısı için; 1,270x10¹³ cm⁻² 2-DEG taşıyıcı yoğunluğu, 1877 cm²/V.s elektron hareketliliği ve 262 Ω /sq tabaka direnci elde edilmiştir.

Epitaksiyel yapıların büyütülmesi sürecinde (4. Bölüm) şu ana sonuçlara ulaşılmıştır:

- Epitaksiyel büyütme öncesi alttaşın fotorezist gibi organik malzemelerle temas etmesi, 2-DEG oluşumunda problemler doğurmaktadır. Bu nedenle küçük alan epitaksiyel büyütmelerinde, büyütme öncesi, alttaşlar, fotorezist kaplanmadan küçük parçalara kesilmelidir.
- GaN tampon tabakası için kusur yoğunluğu, baskın olarak yüksek dirençli GaN tampon (1) tabakası tarafından belirlenmektedir. GaN tampon tabakasının kusurlu büyümesi, üstünde büyüyeceği tabakaların da kusurlu büyüyeceği ve 2-DEG oluşumunda da problemler doğuracağı anlamına gelmektedir. Ancak kusur yoğunluğunu azaltmak için; GaN tampon (2) tabakası kalınlığını çok arttırmak, kristal kusurlarının çok azalacağı anlamına gelmemektedir. Belli bir optimum değere kadar kalınlığı arttırmak kusur yoğunluğunu azaltmakta, ancak bu optimum değerden sonra kalınlığı arttırmak, kusur yoğunluğununun tekrardan artmasına neden olmaktadır.

- Alttaş kaynaklı yüzey pürüzlülükleri, yeterli kalınlığa sahip GaN tampon (2) tabakasının büyütülmesi ile giderilebilir.
- Yüksek kusur yoğunluğuna ve düzgün olmayan bir morfolojiye sahip alttaşlar, 2-DEG oluşumunu ve aygıt performansını olumsuz yönde etkilemektedir.
- Epitaksiyel yapılar üzerinde oluşturulacak geniş alan aygıt üretiminde, AFM ile yapılan yüzey morfolojisi incelemesi yeterli bilgi vermemektedir. Bu nedenle özellikle geniş alan aygıt üretiminde yüzey kusurları ve pürüzlülük incelemesi için Nomarski Mikroskobu ve Mekanik Profilometre kullanımı oldukça avantaj sağlamaktadır.

MOCVD yöntemi kullanılarak büyütülen üç epitaksiyel yapının, HEMT aygıt üretimine uygunluğunu test etmek ve deneysel olarak da en uygun epitaksiyel yapıyı belirlemek amacıyla mikrofabrikasyon teknikleri kullanarak $L_G = 300 nm$, $W_G = 125 \mu m$, $L_{DS} = 3 \mu m$, $L_{GS} = 1 \mu m$ ve $L_{GD} = 1,7 \mu m$ olacak şekilde 8 adet gate içeren HEMT aygıtlar üretilmiştir (6. Bölüm). Yapılan DC I-V ve RF güç ölçümleri sonucunda HEMT aygıt üretimi için deneysel olarak da en uygun epitaksiyel yapının, **E3** olduğu görülmüştür (7. Bölüm). Bu da epitaksiyel yapı karakterizasyonu ile aygıt karakterizasyonu sonuçlarının birbirleri ile tutarlı sonuçlar verdiğini göstermiştir.

- 6. Bölüm ve 7. Bölüm kapsamında şu ana sonuçlara ulaşılmıştır:
- AlGaN bariyer tabakasındaki Al konsantrasyonunu arttırmak, Al konsantrasyonuna bağlı olarak ohmik kontak direncini arttırmaktadır.
- GaN tampon (2) tabakasının kalınlığı azaldıkça elektron saçılmaları azalmakta ve yüksek dirençli GaN tampon (1) tabakasının kalınlığı arttıkça ise elektronlar, 2-DEG boyunca daha iyi sınırlanmaktadır. Bu iki etkinin toplamı da akım yoğunluğunun ve geçiş iletkenliğinin daha yüksek ve kaçakların ise daha düşük olmasını sağlamaktadır. Ancak yüksek dirençli GaN tampon (1) tabakası kalınlığı ile GaN tampon (2) tabakası kalınlığı arasında bir oran bulunmaktadır. Yüksek dirençli GaN tampon (1) tabaka

kalınlığının artmasına bağlı olarak GaN tampon (2) tabaka kalınlığının yeterli kalınlıkta arttırılmaması, yapı içerisine istenmeyen karbon safsızlıklarının girmesine ve bunların da kaçak akımların artmasına neden olmaktadır. HEMT aygıt üretimi için en uygun olan **E3** epitaksiyel yapısı için yüksek dirençli GaN tampon (1) tabakası/GaN tampon (2) tabakası kalınlık oranı, 4 olarak bulundu.

- Yüksek dirençli GaN tampon (1) tabakası kalınlığınının çok olması, kaçak akımların o derecede az olacağı anlamına gelmemektedir.
- GaN kanal tabakasının kalınlığını arttırmak, eşik voltajı, negatif yönde arttırmaktadır.

Yüksek HEMT üretiminde güçlü aygıt gate, aygıt performansinin belirlenmesinde oldukça önemli bir yere sahiptir. Bu amaçla DC I-V ve RF güç ölçümleri açısından en yüksek performansa sahip olduğu belirlenen E3 epitaksiyel yapı bilgisi kullanılarak X-bant (8-12 GHz) aralığında çalışacak en uygun gate tipinin belirlenmesi amacıyla Silvaco ATLAS programı yardımıyla simülasyon çalışmaları yapılmıştır (8. Bölüm). Alan Levhalı I-gate, Si₃N₄ Üzerinde Duran Gama (Γ)-Gate ve Bir Kısmı Si₃N₄ İçine Gömülü ve Bir Kısmı da Havada Duran Gama (Г)-Gate yapılı HEMT aygıtlar simüle edilmiştir. Yapılan simülasyonlar sonucunda L_G , 300 nm olmak üzere L_{GS} , L_{DS} , L_{ALS} ve $\textit{L}_{\textit{AL}_\textit{D}}$ için optimum değerler; 0,8 µm, 3 µm, 0,25 µm ve 0,6 µm olarak belirlenmiştir.

- 8. Bölüm kapsamında şu ana sonuçlara ulaşılmıştır:
- L_{GS} değeri arttıkça; I_{DSS} , g_m ve P_{DC_max} azalmaktadır (Şekil 8.2, Şekil 8.4, Şekil 8.5).
- L_{DS} değeri arttıkça; I_{DSS} , V_{br} ve g_m çok değişmemektedir (Şekil 8.6, Şekil 8.7, Şekil 8.8).
- I-gate alan levhası uzunluğu (L_{AL}) arttıkça; I_{DSS} ve g_m değişmemekte, ancak V_{br} bir noktaya kadar artmaktadır (Şekil 8.10, Şekil 8.12, Şekil 8.11).

- L_{AL_S} değeri artıkça; I_{DSS} , V_{br} ve g_m çok değişmemektedir (Şekil 8.14, Şekil 8.15, Şekil 8.16).
- L_{AL_D} değeri artıkça; I_{DSS} ve g_m değişmemekte, ancak V_{br} artmaktadır (Şekil 8.17, Şekil 8.19, Şekil 8.18).
- L_h değeri artıkça; I_{DSS} ve g_m değişmemekte, ancak V_{br} azalmaktadır (Şekil 8.21, Şekil 8.23, Şekil 8.22).

Silvaco ATLAS simülasyon programı yardımıyla gate simülasyonları yapılan tasarımların, mikrofabrikasyon teknikleri kullanarak, **E3** epitaksiyel yapısı üzerinde HEMT aygıt fabrikasyonları yapılmıştır (9. Bölüm). Ardından farklı gate tasarımları içeren bu aygıtlar için; DC I-V ve RF ölçümleri alınarak maksimum doyum akımı (I_{DSS}), geçiş iletkenliği (g_m), eşik voltaj (V_{th}), akım kazancı kesilim frekansı (f_T), maksimum salınım frekansı (f_{max}) ve 8 GHz'de küçüksinyal kazancı ve RF çıkış gücü (P_{out}) karşılaştırması yapılmıştır. (10. Bölüm).

9. Bölüm ve 10. Bölüm kapsamında şu ana sonuçlara ulaşılmıştır:

- Alan levhasının yokluğu gate direncini arttırmaktadır [158]; bu da Tip-1 gate yapısına sahip AlGaN/GaN HEMT aygıtlarda I_{DSS} değerinin maksimum ve V_{th} değerinin ise mimimum olmasına neden olmaktadır. Alan levhasının yokluğu; aynı zamanda gate-kaynak ve gate-akaç kapasitans (fringing =saçak capacitance, C_{GF}) değerlerini de azaltarak [159] Tip-1 gate yapısında f_{max} değerinin düşmesini limitleyerek minimum olmasını engellemektedir. Ayrıca alan levhasının yokluğu, Tip-1 gate yapısına sahip aygıtlardan, minimum P_{out} ve minimum PAE değerlerinin elde edilmesine neden olmaktadır.
- Tip-2 gate yapısına sahip AlGaN/GaN HEMT aygıtlarda; gate bağlantılı alan levhası, gate direncini ve içsel gate kapasitansını (C_{GO}) azaltarak g_m değerini minimize eder. Bununla birlikte alan levhası yapısı, içsel electron hızını (V_e) arttırarak [160], f_T değerinin düşmesini sınırlandırmakta, ancak

gate ile alan levhası arasındaki pasivasyon tabakası ise saçak kapasitansını (C_{GF}) daha baskın olacak şekilde arttırarak f_{max} değerinin minimum olmasına neden olmaktadır [159]. Alan levhası kullanmak, Tip-1 gate yapısı ile kıyaslandığında P_{out} ve PAE değerlerini arttırmaktadır.

- Tip-3 gate yapısına sahip AlGaN/GaN HEMT aygıtlarda; gama gate yapılar kullanmak, Tip-2 gate yapısı ile kıyaslandığında V_{th} ve g_m değerlerini arttırırken I_{DSS} değerini ise değiştirmemektedir. Bu da Tip-2 gate yapısı ile kıyaslandığında gate direncinin daha düşük ve içsel gate kapasitansının ise daha büyük olduğunu göstermektedir. Gate başı ile gate ayağı arasında dielektrik tabakasının olması, Tip-1 gate yapısı ile kıyaslandığında, saçak kapasitansının daha düşük olmasına, f_T ve f_{max} değerlerinin ise daha büyük olmasına neden olmaktadır. Saçak kapasitansının daha düşük olması tabakasının olması, tabakasının olması, Tip-2 gate yapısı ile kıyaslandığında, saçak kapasitansının daha düşük olmasına, f_T ve f_{max} değerlerinin ise daha büyük olmasına neden olmaktadır. Saçak kapasitansının daha düşük olması ve gate başı üzerinde bir pasivasyon tabakasının olmamasının yarattığı daha iyi termal performans, Tip-3 gate yapısının, Tip-2 gate yapısına göre daha yüksek çıkış gücüne sahip olmasına neden olmaktadır.
- Tip-4 gate yapısına sahip AlGaN/GaN HEMT aygıtların, P_{out} ve PAE değerleri açısından en yüksek performansa sahip olduğu gözlemlenmiştir. Tip-3 gate yapısı ile kıyaslandığında; Tip-4 gate yapısında 2 nm'lik oyuk oluşturarak Schottky gate metalini doğrudan AlGaN bariyer tabakası üzerine oturtmak, içsel gate kapasitansını düşürerek g_m değerini düşürmekte, gate direncini ise arttırarak V_{th} değerini düşürmektedir. Oyuk oluşturma [161] ve gate metali üzerinde dielektrik tabakasının olması, saçak kapasitansını arttırarak f_T ve f_{max} değerlerinin Tip-3 gate yapısına göre daha küçük olmasına neden olmaktadır. Bu sonuçlar göz önünde bulundurulduğunda; yüksek güçlü HEMT aygıt üretiminde, oyuk oluşturma ve gate metali üzerinde dielektrik kaplama iyi bir alternative yöntem olarak düşünülebilir.
- Tip-5 gate yapısında, gate başının altında dielektrik tabakası yerine hava olması (bu da diğer gate tipleri ile karşılaştırıldığında minimum saçak kapasitansı ve maksimum içsel gate kapasitansı anlamına gelmektedir), bu gate yapısını, diğer gate yapıları ile kıyaslandığında V_{th} , g_m , kazanç, f_T ve

 f_{max} değerleri açısından üstün kılmaktadır [159-160]. Bu gate yapısı kullanılarak gate uzunluğunun azaltılmasına gerek kalmadan ve güç performansından da taviz vermeden HEMT aygıtlardan yüksek f_T ve f_{max} değerleri elde edilebilir.

 HEMT aygıtların DC ve RF performansı gate yapısına sıkı sıkıya bağlı olup gate yapısı ve fabrikasyon işlemleri; elde edilmek istenen aygıt isterleri, üretim kolaylığı, tekrar edilebilirlik ve sağlamlık gibi kriterler göz önüne alınarak optimize edilmelidir. Yüksek güç ve verimlilik göz önüne alındığında Tip-4 gate yapısına sahip aygıtlar en uygun görünmektedir. Bununla birlikte aygıtların güç performansını azaltmadan yüksek frekanslarda yüksek kazanç elde edilmek isteniyorsa, Tip-5 gate yapısına sahip aygıtlar en uygun görünmektedir.

11.2. İleri Araştırmalar için Öneriler

İleri araştırmalar kapsamında; yüksek frekanslarda ve yüksek güçlerde çalışacak HEMT aygıt performansını arttırmak amacıyla; yüzey ve tampon kaçaklarının minimizasyonu için iyon implantasyonu ile izolasyon, ohmik kontak direncini düşürmek için alaşımsız ohmik kontak oluşturma, AlGaN bariyer tabakası üzerine oturacak gate metalinin Schottky özelliğini arttırmak amacıyla Platin ya da İridyum temelli metallerin kullanılması, daha istikrarlı bir aygıt yapısı için gate metalizasyon sonrası azot gazı ortamında tavlama işlemi ve yüksek kırılma gerilimleri için gama gate'li yapıların alan levhası ile birlikte kullanılması yararlı olacaktır.

KAYNAKLAR

- [1] Lilienfeld, J. E. 1930. US1745175 A
- [2] J. M. Early, Out to Murray Hill to Play: An Early History of Transistors, *IEEE Transactions on Electron Devices*, vol. 48, No. 11, November **2001**.
- [3] J. Bardeen and W. H. Brattain, The Transistor, A Semi-Conductor Triode, *Phys. Rev.* Vol 74, Iss.2, July **1948**.
- [4] W. C. Johnson, J. B. Parsons, and M. C. Crew, "Nitrogen Compounds of Gallium", *J.Phys. Chem.*, 36 (10): 2561 **1932**.
- [5] Maruska H. P. and Tietjen J. J., "The preparation and properties of vapordeposited single-crystalline GaN", *Appl. Phys. Lett.*, 15: 327 **1969**.
- [6] H. Manasevit, F. M. Erdmann, and W. I. Simpson, "The use of metalorganics in the preparation of semiconductor materials: IV. The Nitrides of Aluminum and Gallium", *J. Electrochem. Soc.*, 118 (11): 1864-1868 1971.
- [7] J. I. Pankove, E. A. MIller, D. Richman and J. E. Berkeyheiser, "Electroluminescence in GaN", *J. Luminescence*, 4, 63 **1971**.
- [8] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN electroluminescent diodes", *RCA Review*, 32, 383 **1971**.
- [9] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, "Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence", *Mat. Res. Bull.*, Vol. 7, 777-782, **1972**.
- [10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer", *Appl. Phys. Lett.*, 48 (5): 353-355 **1986**.
- [11] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)", Jpn. J. Appl. Phys., 28 (12): L2112-L2114, **1989**.
- [12] S. Nakamura, M. Senoh, and T. Mukai, "p-GaN/n-InGaN/n-GaN doubleheterostructure blue light-emitting diodes," *Jpn. J. Appl. Phys.*, 32: L8–L11, **1993**.
- [13] S. Nakamura, "Characteristics of room temperature CW operated InGaN

multi-quantum-well structure laser diodes", *Proc. Mat. Res. Soc.*, USA, 449, **1996**.

- [14] T. Mimura, "The Early History of the High Electron Mobility Transistor (HEMT)", *IEEE Transactions on Microwave Theory and Techniques*, 50(3): 780-782, **2002**.
- [15] M. Khan, J. van Hoven, J. Kuznia, and D. Olson, "High electron mobility GaN/AlGaN heterostructures grown by low-pressure metalorganic chemical vapor deposition", *Appl. Phys. Lett.*, 58 (21): 2408–2410, **1991**.
- [16] M. Khan, J. Kuznia, A. Bhattarai, and D. Olson, "Metal semiconductor field effect transistor based on single crystal GaN," *Appl. Phys. Lett.*, 62 (15): 1786–1787, **1993**.
- [17] M. Khan, J. N. Kuznia, D. T. Olson, W. Schaff, J. Burm, and M. Shur, "Microwave performance of a 0.25 µm gate AlGaN/GaN heterostructure field effect transistor," *Appl. Phys. Lett.*, 65 (9): 1121– 1123, **1994**.
- [18] S.Taking, *AIN/GaN MOS-HEMTs Technology*, Doktora Tezi, Glasgow University, Divison of Electronics and Nanoscale Engineering, İskoçya, 2, **2012**.
- [19] T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R.J. Gutmann, SiC and GaN bipolar power devices, *Solid-State Electronics*, 44, 277–301, **2000.**
- [20] http://www.ioffe.ru/SVA/NSM/Semicond/ (Ocak, **2017**).
- [21] http://www.gansystems.com/why_gallium_nitride_new.php(Ocak, **2017**).
- [22] E. Bahat-Treidel, *GaN Based HEMTs for High Voltage Operation*, Technischen Universität Berlin, Germany, **2012**.
- [23] S. Hamady, *New concepts for normally-off power Gallium Nitride* (*GaN*) *High Electron Mobility Transistor (HEMT)*, Doktora Tezi, Paul Sabatier University, Fransa, **2014**.
- [24] G. Greco, *AlGaN/GaN heterostructures for enhancement mode transistors*, Doktora Tezi, University of Catania, İtalya, **2012**.
- [25] S. Yoshida, Growth of cubic III-nitride semiconductors for electronics and optoelectronics application, *Physica E*, 7(3-4), 907–914, **2000**.
- [26] A. P. Grzegorczyk, *GaN grown on sapphire by MOCVD*, Doktora Tezi, Radboud Universiteit Nijmegen, Nijmegen, Hollanda, **2006**.

- [27] H. Harima, Properties of GaN and related compounds studied by means of Raman scattering, *Journal of Phsics: Condensed Matter,* 14 R967–R993, **2002.**
- [28] H. Morkoç, *Nitride Semiconductors and Devices, Springer-Verlag Berlin Heidelberg,* Germany, 8–9, **1999.**
- [29] F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezo electric constants of III-V nitrides, *Physical Review B*, 56, 10024–10027, **1997.**
- [30] S. Dahmani, Large-Size AlGaN/GaN HEMT Large-Signal Electrothermal Characterization and Modeling for Wireless Digital Communications, Doktora Tezi, Kassel Üniversitesi Elektrik Mühendisliği ve Bilgisayar Bilimleri Enstitüsü, Almanya, **2011.**
- [31] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, *J. Appl. Phys.* 85, 3222 1999.
- [32] R. Dimitrov et al., Comparison of N-face and Ga-face AlGaN/GaN-Based High Electron Mobility Transistors Grown by Plasma-Induced Molecular Beam Epitaxy, *Jpn. J. Appl. Phys.* Vol. 38, pp. 4962–4968 Part 1, No. 9A, September **1999**.
- [33] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure fieldeffect transistors, *Appl. Phys. Lett.* 71, 2794 **1997**.
- [34] L. S. Yu, D. J. Qiao, Q. J. Xing, S. S. Lau, K. S. Boutros, and J. M. Redwing, Ni and Ti Schottky barriers on n- AlGaN grown on SiC substrates, *Appl. Phys. Lett.* 73, 238, **1998**.
- [35] G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoc, W. R. L. Lambrecht, and B. Segall, Valence-band discontinuity between GaN and AIN measured by x-ray photoemission spectroscopy, *Applied Physics Letters*, vol. 65, pp. 610-612, **1994**.
- [36] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Valence-band discontinuities of wurtzite GaN, AIN, and InN heterojunctions measured by x-ray photoemission spectroscopy, *Applied Physics Letters*, vol. 68, pp. 2541-2543, **1996**.
- [37] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, Optical constants of
epitaxial AlGaN films and their temperature dependence, *Journal of Applied Physics*, vol. 82, pp. 5090- 5096, **1997**.

- [38] A. J. Sierakowski and L. F. Eastman, Analysis of Schottky gate electron tunneling in polarization induced AlGaN/GaN high electron mobility transistors, *Journal of Applied Physics*, vol. 86, pp. 3398-3401, **1999**.
- [39] H. N. Kim, Qualitative and Quantative Characterization of Trapping Effects in AlGaN/GaN High Electron Mobility Transistors, Doktora Tezi, Ohio State University, Electrical and Computer Engineering, ABD, 2009.
- [40] A. Asgari and M. Kalafi, The control of two-dimensional-electron-gas density and mobility in AlGaN/GaN heterostructures with Schottky gate, *Mater. Sci. Eng.* C26, 898, **2006**.
- [41] Md. Tanvir Hasan, Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors, Doktora Tezi, University of Fukui, Electrical and Electronics Engineering, Japan, 2013.
- [42] P. Javorka, *Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors,* Doktora Tezi, Fakultät für Elektrotechnik und Informationstechnik der Rhienisch-Wesatfälischen Technischen Hochschule, Almanya, 16, **2004.**
- [43] E. Bahat-Treidel, *GaN-Based HEMTs for High Voltage Operation Design, Technology and Characterization*, Doktora Tezi, von der Fakultät IV Elektrotechnik und Informatik der Technischen Universität Berlin, Almanya, **2012**.
- [44] R. Wang, *Enhancement/depletion-mode HEMT technology for IIInitride mixed-signal RF applications*, Doktora Tezi, The Hong Kong University of Science and Technology, Hong Kong, **2008**.
- [45] A. Witek, Some aspects of thermal conductivity of isotopically pure diamond a comparison with nitrides, *Diamond Relat. Mater.*, 7: 962-964, **1998**.
- [46] O. Ambacher, Growth and applications of Group III-nitrides, *J. Phys. D: Appl. Phys.*, 31: 2653-2710, **1998**.
- [47] H. Xing, et al, Gallium nitride based transistors, *J. Phys.: Condens. Matter*, 13: 7139-7157, **2001**.
- [48] L. Liu and J. H. Edgar, Substrates for gallium nitride based epitaxy, *Mat. Sci. Eng.*, R37: 61-127, **2002**.

- [49] L. J. Schowalter, Fabrication of native, single-crystal AIN substrates, *Phys. stat. sol.* (c) 0, No. 7, 1997–2000, **2003**.
- [50] http://www1.eere.energy.gov/buildings/publications/pdfs/ssl/zahler_sa pphire_sanjose2012.pdf (Kasım, **2016**).
- [51] B. Chander Joshi, C. Dhanavantri, D. Kumar, Sapphire, SiC, AIN, Si and diamond-substrate material for GaN HEMT and LED, *Journal of Optoelectronics and Advanced Materials*, Vol. 11, No. 8, p. 1111 -1116, August 2009.
- [52] Y. Dikme, *MOVPE and charecterization of GaN-based structures on alternative substrates,* Doktora Tezi, Von der Fakultät für Electrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule, 15, **2006.**
- [53] X. Wu, P. Fini, S. Keller, E. Tarsa, B. Heying, U. Mishra, S. DenBaars, and J. Speck, Morphological and structural transitions in GaN films grown on sapphire by metal-organic chemical vapor deposition, *Jpn. J. Appl. Phys., vol.* 35, pp. 1648–1651, **1996**.
- [54] L. Eastman, V. Tilak, J. Smart, B. Green, E. Chumbes, R. Dimitrov, O. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. Schaff, and J. Shealy, Undoped AlGaN/GaN HEMTs for microwave power amplification, *IEEE Trans. Electron Devices*, vol. 48, pp. 479–485, Mar. 2001.
- [55] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. Smorchkova, S. Keller, S. DenBaars, and U. Mishra, AlGaN/AIN/GaN high-power microwave HEMT, *IEEE Electron Device Lett.*, vol. 22, pp. 457–459, Oct. **2001**.
- [56] Z. Y. Ma, Z. L. Wang, G. X. Hu, J. X. Ram, H. L. Xiao, W. J. Luo, J. Tang, J. P. Li, and J. M. Li, Growth and characterization of AlGaN/AIN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer, *Chinese Phys. Lett.*, vol. 24, no. 6, pp. 1705–1708, **2007**.
- [57] L. Guo, X. X. Wang, C. Wang, H. Xiao, J. Ran, W. Luo, B. Wang, C. Fang, and G. Hu, The influence of 1nm AIN interlayer on properties of the Al0:3Ga0:7N/AIN/GaN HEMT structure, *Microelectronics J.*, vol. 39, pp. 777–781, May **2008**.
- [58] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki, and I. Akasaki, Energy band-gap bowing parameter in an AlxGa(1-x)N alloy, *J. Appl. Phys.*, vol. 61, no. 9, p. 4540, **1987**.
- [59] S. Turhan, AlGa(In)N/AIN/GaN Heteroeklem Yapıların Enerji Bant Profillerinin ve Taşıyıcı Yoğunluklarının Nextnano³ Simülasyon

programı Kullanarak İncelenmesi, Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, **2011.**

- [60] M. A. Acar, *Fabrication, Modeling and Characterization of GaN HEMTs, and Design of High Power MMIC Amplifiers,* Yüksek Lisans Tezi, Bilkent Üniversitesi Mühendislik ve Fen Bilimleri Enstitüsü, Ankara, **2009.**
- [61] A. Emen, *Growth, Characterization and Fabrication of AlGaN/GaN High Electron Mobility Transistors on Silicon Carbide Substrates*, Yüksek Lisans Tezi, ODTÜ Fen Bilimleri Enstitüsü, Ankara, **2014**.
- [62] Ö, Kelekçi, *GaN Temelli Yüksek Elektron Mobiliteli Transistör (HEMT) Tasarımı, Fabrikasyonu ve Karakterizasyonu,* Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, **2011.**
- [63] N. E. Kaluza, *MOVPE Growth and Characterization of AlGaN/GaN Heterostructures for HEMT Application,* Doktora Tezi, Fakultät für Mathematik, Informatik und Naturwissenschaften der Rhienisch-Wesatfälischen Technischen Hochschule, Almanya, **2003.**
- [64] T. H. Gfroerer, *Photoluminescence in Analysis of Surface and Interfaces in Encyclopedia of Analytical Chemistry*, R.A. Meyers (Ed.), John Wiley & Sons Ltd, Chichester, 9209–9231, **2000.**
- [65] http://www.geobacter.org/images/jpg/AFM_diagram.jpg (Kasım, **2016**).
- [66] K. Inaba, et al, High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO₃/ZnO/Sapphire(0001) Double Heteroepitaxial Films, *Advances in Materials Physics and Chemistry*, 3, 72-89, **2013**.
- [67] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films, *Appl. Phys. Lett.*, vol. 68, no. 5, p. 643, **1996**.
- [68] D. Green, S. Gibb, B. Hosse, R. Vetury, D. Grider, and J. Smart, Control of epitaxial defects for optimal AlGaN/GaN HEMT performance and reliability, *J. Cryst. Growth*, vol. 272, pp. 285–292, Dec. **2004**.
- [69] M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, *Reports Prog. Phys.*, vol. 72, p. 036502, Mar. **2009**.
- [70] L. Jun-Lin, et al, Status of GaN-based green light-emitting diodes, *Chin. Phys. B* Vol. 24, No. 6, 067804, **2015**.
- [71] https://www.nist.gov/pml/engineering-physics-division/hall-effect (Kasım, 2016)

- [72] P. Waltereit, et. al., Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures, *Journal of Applied Physics*, 106, 023535, **2009**.
- [73] V. Tilak, et.al., Influence of Barrier Thickness on the High-Power Performance of AlGaN/GaN HEMTs, *IEEE Electron Device Letters*, vol. 22, No. 11, November **2001**.
- [74] M. Miyoshi, et.al., Characterization of Different-Al-Content AlGaN/GaN Heterostructures and High-Electron-Mobility Transistors Grown on 100-mm-Diameter Sapphire Substrates by Metalorganic Vapor Phase Epitaxy, *Japanese Journal of Applied Physics*, Vol. 43, No. 12, pp. 7939–7943, **2004**.
- [75] A. Jiménez, et.al., Improved AlGaN/GaN high electron mobility transistor using AlN interlayers, *Applied Physics Letters*, vol. 82, no. 26, 30 June **2003**.
- [76] C. Wang, et.al., The effect of AIN growth time on the electrical properties of Al_{0.38}Ga_{0.62}N/AIN/GaN HEMT structures, *Journal of Crystal Growth*, 289, 415–418, **2006**.
- [77] L. Guo, et.al., The influence of 1 nm AIN interlayer on properties of the Al_{0.3}Ga_{0.7}N/AIN/GaN HEMT structure, *Microelectronics Journal*, 39, 777–781, **2008**.
- [78] D. Seup Lee, et.al., Impact of GaN Channel Scaling in InAIN/GaN HEMTs, *Electron Devices Meeting (IEDM), IEEE International*, **2011**.
- [79] X.L. Wang, et.al., Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates, *Solid-State Electronics*, 49, 1387–1390, **2005**.
- [80] S. Heikman, et.al., Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition, *Applied Physics Letters*, vol. 81, no. 3, 15 July **2002**.
- [81] D.D. Koleske, et.al., Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, *Journal of Crystal Growth*, 242, 55–69, **2002**.
- [82] P. Caban, et.al., Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H–SiC, *Journal of Crystal Growth*, 315, 168–173, **2011**.
- [83] C. Fong Lo, et.al., Effect of buffer layer structure on electrical and structural properties of AlGaN/GaN high electron mobility transistors, *J. Vac. Sci. Technol.* B 30(1), Jan/Feb **2012**.

- [84] K. Soo Kim, et al., Effects of growth rate of a GaN buffer layer on the properties of GaN on a sapphire substrate, *Journal of Applied Physics*, Vol. 85, No. 12, 15 June **1999**.
- [85] A. Grzegorczyk, et al., Resistivity control of unintentionally doped GaN films, *Physica Status solidi (c)*, vol. 2, pp. 2113-2116, **2005**.
- [86] S. Boeykens, et al., Investigation of AIN nucleation layers for AIGaN/GaN heterostructures on 4H-SiC, *Physica Status Solidi (c)*, vol. 3, pp. 1579-1582, **2006**.
- [87] S. Corekci, et al., Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer, *Journal of Applied Physics*, vol. 101, pp. 123502-123502-6, **2007**.
- [88] B. N. Pantha, et al., Correlation between optoelectronic and structural properties and epilayer thickness of AIN, *Applied Physics Letters*, 90, 241101 **2007**.
- [89] E. Arslan, et al., Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD, *J. Phys. D: Appl. Phys.* 41, 155317, **2008**.
- [90] Y. Hoon Cho, et al., Dynamics of anomalous optical transitions in Al_xGa_{1-x}N alloys, *Physical Review B*, Volume 61, Numbe 11, 15 March **2000**.
- [91] E. Kuokstis, et al., Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers, *Applied Physics Letters*, 88, 261905, **2006**.
- [92] B. Chander Joshi, et al., Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications, *Pramana J. Phys.*, Vol. 74, No. 1, January **2010**.
- [93] X. Wang, C. Wang, G. Hu, J. Wang, J. Li, Room temperature mobility above 2100 cm2/Vs in Al_{0.3}Ga_{0.7}N/AIN/GaN heterostructures grown on sapphire substrates by MOCVD, *Physica status solidi* (c) 3, No. 3, 607–610, **2006**.
- [94] C. Wang, The effect of AIN growth time on the electrical properties of Al_{0.38}Ga_{0.62}N/AIN/GaN HEMT structures, *Journal of Crystal Growth* 289, 415–418, **2006**.
- [95] W. Xiaoliang, et.al., Growth and characterization of 0.8-μm gate length AlGaN/GaN HEMTs on sapphire substrates, Science in China Ser. F Information Sciences, Vol.48 No.6 808—814, 2005.

- [96] R. Tülek, et.al., Comparison of the transport properties of high quality AlGaN/AIN/GaN and AlInN/AIN/GaN two-dimensional electron gas heterostructures, *J. Appl. Phys.* 105, 013707, **2009**.
- [97] http://www.microchem.com/Tech-LithoTerms.htm (Ocak, **2017**)
- [98] http://users.ece.gatech.edu/~alan/ECE6450/Lectures/ECE6450L8-Photoresists%20and%20Nonoptical%20Lithography.pdf (Ocak, 2017)
- [99] H. J. Levinson, M. A. McCord, F. Cerrina, et.al., Handbook of microlithography, micromachining, and microfabrication, Volume 1: Microlithography, SPIE, **1997**.
- [100] M. Stepanova, S. Dew, *Nanofabrication Techniques and Principles*, Springer Science & Business Media, **2012**.
- [101] Y. F. Wu, D. Kapolnek, D. P. Ibbetson, P. Parikh, B. Keller, and U. K. Mishra, Very-high power density AlGaN/GaN HEMTs, *Electron Devices, IEEE Trans.*, vol. 48, no. 3, pp. 586–590, **2001**.
- [102] S. Hubbard, D. Pavlidis, V. Valiaev, and A. Eisenbach, Metal-organic vapor phase epitaxy growth and characterization of AIN/GaN heterostructures, *J. Electron. Mater.*, vol. 31, pp. 395–401, **2002**.
- [103] K. Nojiri, *Dry Etching Technology for Semiconductors*, Springer Science & Business Media, **2015**.
- [104] Y. Hatta: *Gas Discharge*, 2nd Edition, Kindai Kagaku Sha Co., Ltd., **1971**.
- [105] T. lijima, S. Kondo, T. Aoyama: *Plasma Technology, Beginner's Books Series 7*, Kogyo Chosakai Publishing Co., Ltd., **1999**.
- [106] J. Y. M. Lee, K. Sooriakumar, and M. M. Dange, The Preparation, Characterization and Application of PECVD Silicon Nitride Films Deposited at Low Temperatures, *Thin Solid Films*, Vol. 203, pp. 275-287, **1991**.
- [107] D. Virzonis, V. Sinkevicius, V. Grigaliunas, S. Tamulevicius, R. Kaliasas, Advanced Process Equipment for PECVD silicon Nitride Deposition-an Experimental Study, ISSN 1392-1320, Materials Science (Medziagotyra). Vol. 12, No. 2, 2006.
- [108] F. Karouta, et.al., Influence of the Structural and Compositional Properties of PECVD Silicon Nitride Layers on the Passivation of AIGaN/GaN HEMTs, *ECS Transactions*, 16 (7) 181-191, **2008**.
- [109] F. Karouta, Structural, compositional and optical properties of PECVD silicon nitride layers, *J. Phys. D*: Appl. Phys. 45, **2012**.

- [110] https://nanolab.berkeley.edu/process_manual/chap6/6.20PECVD.pdf (Şubat 2017).
- [111] http://csmantech.org/OldSite/Digests/2004/2004Papers/12.4.pdf (Şubat 2017).
- [112] D. Gregušová, et.al., Influence of passivation induced stress on the performance of AlGaN/GaN HEMTs, *Phys. Stat. Sol.* (c) 2, No. 7, 2619–2622, **2005**.
- [113] P Kordoš, et.al., The effect of passivation on the performance of AlGaN/GaN heterostructure field-effect transistors, *Semicond. Sci. Technol.* 21, 1592–1596, **2006**.
- [114] R. Fan, et.al., Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors, *Chin. Phys.* B Vol. 19, No. 1, **2010**.
- [115] H. Piombini, Stress measurement of elastic sol-gel layer by photoelasticimetry comparison with Stoney, *Optical materials express*, Vol. 6, No. 2, **2016**.
- [116] A. Krishnan, *Control of Stress in Silicon Nitride Thin Films*, Yüksek Lisans Tezi, New Jersey Institute of Technology, ABD, **1990**.
- [117] M. E Thomas, M.P. Hartnett, and J.E. Mckay, The Use of Surface Profilometers for the Measurement of Wafer Curvature, *Journal of Vacuum Science and Technology A*: vol. 6, , pp. 2570-2571, July **1988**.
- [118] L. O. Davis, Investigation of residual and thermal stress on membrane-based MEMS devices, Yüksek Lisans Tezi, Mechanical Engineering Department of Mechanical Engineering College of Engineering University of South Florida, ABD, 2009.
- [119] M. Zecchino and T. Cunningham, *Thin film stress measurement using Dektak stylus profilers*, https://www.rpi.edu/dept/cie/mncr/documents/AN516_Dektak_Stress_Measure.pdf (Şubat 2017).
- [120] R. J. Archer, Determination of the Properties of Films on Silicon by the Method of Ellipsometry, *Journal of the Optical Society of America*, vol. 52, No. 9, September **1962**.
- [121] J. G. Simmons, Poole-Frenkel Effect and Schottky Effect in MetalInsulator-Metal Systems, *Phys. Rev.*, vol. 155, No. 3, **1967**.
- [122] M. Ieda, G. Sawa, and S. Kato, A Consideration of Poole-Frenkel Effect on Electric Conduction in Insulators, *Journal of Applied Physics*, vol. 42, No.10, **1971**.

- [123] https://www.pfeiffer-vacuum.com/en/know-how/lists/literature/#lit-10 (Şubat 2017).
- [124] J. D. Plummer, M. D. Deal, P. B. Griffin, *Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall electronics and VLSI series,* Prentice Hall, **2000**.
- [125] S. Kasap, *Principles of Electronic Materials and Devices*, McGraw-Hill Education, **2005**.
- [126] https://parts.jpl.nasa.gov/mmic/3-II.PDF (Şubat 2017)
- [127] A. Piotrowska, A. Guivarc'h, and G. Pelous, Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques, *Solid-State Electronics*, vol. 26, no. 3, pp. 179-197, **1983**.
- [128] S. J.Pearton, J. C. Zolper, R. J. Shul, GaN: Processing, defects, and devices, *J. Appl. Phys.* 86, 1, **1999**.
- [129] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, Comparative study of drain current collapse in AlGaN/GaN high-electron mobility transistors on sapphire and semi-insulating SiC, *Appl. Phys. Lett.* 81, 3073, **2002**.
- [130] S. K. Noh, and P. Bhattacharya, Determination of intrinsic barrier height in the Au/n-GaN contact system, *Appl. Phys. Lett.* 78, 3642, **2001**.
- [131] M. D. Smith, *Development of InAIN HEMTs for space application*, Doktora Tezi, University College Cork, **2016**.
- [132] H. Jung, et al., Reliability behavior of GaN HEMTs related to Au diffusion at the Schottky interface. *Physica Status Solidi (c)*, . 6(S2): p. S976-S979, **2009**.
- [133] B. V. Daele, G. V. Tendeloo, a. J. D. W. Ruythooren, M. R. Leysand, and M. Germain, The role of Al on Ohmic contact formation on n-type GaN and AlGaN/GaN, *Applied Physics Letters*, vol. 87, pp. 061905-061908, **2005**.
- [134] A. Soltani, A. BenMoussa, S. Touati, V. Hol, J.-C. D. Jaeger, J. Laureyns, Y. Cordier, C. Marhic, M. Djouadi, and C. Dua, Development and analysis of low resistance Ohmic contact to n-AlGaN/GaN HEMT, *Diamond and Related Materials*, vol. 16, no. 2, pp. 262-266, **2007**.
- [135] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, Investigation of the mechanism for Ohmic contact

formation in AI and Ti/AI contacts to n-type GaN, *Applied Physics Letters*, vol. 70, no. 1, pp. 57-59, Jan. **1997**.

- [136] https://en.wikipedia.org/wiki/Gold-aluminium_intermetallic (Mart 2017)
- [137] F. M. Mohammed, L.Wang, D. Selvanathan, H. Hu, and I. Adesida, Ohmic contact formation mechanism of Ta/Al/Mo/Au and Ti/Al/Mo/Au metallizations on AlGaN/GaN HEMTs, *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures*, vol. 23, no. 6, pp. 2330-2335, **2005**.
- [138] Z. Qin, Z. Chen, Y. Tong, X. Ding, X. Hu, T. Yu, and G. Zhang, Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au Ohmic contacts to n-GaN, *Applied Physics A: Materials Science Processing*, vol. 78, pp. 729-731, **2004**.
- [139] X. Kong, K. Wei, G. Liu and X. Liu, Role of Ti/Al relative thickness in the formation mechanism of Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN heterostructures, *J. Phys. D: Appl. Phys.* 45, 265101, **2012**.
- [140] H. H. Berger, Models for contacts to planar devices, *Solid-State Electronics*, vol. 15, no. 2, pp. 145-158, **1972**.
- [141] G. K. Reeves and H. B. Harrison, Obtaining the specific contact resistance from transmission line model measurements, *IEEE Transactions on Electron Devices*, vol. 3, no. 5, pp. 111-113, **1982**.
- [142] V. Geringer, et.al., Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO₂, *Physical Review Letters*, 102, 076102, **2009**.
- [143] S. T. Sheppard, et al., High-Power Microwave GaN/AlGaN HEMT's on Semi-Insulating Silicon Carbide Substrates, *Electrical and Electronics Engineers (IEEE) Electron Device Letters*, Vol. 20, No. 4, 1999.
- [144] J. G. Felbinger, et al., Comparison of GaN HEMTs on Diamond and SiC Substrates, *Electrical and Electronics Engineers (IEEE) Electron Device Letters*, Vol. 28, No. 11, **2007**.
- [145] H. K. Lin, et al., DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths, *Solid-State Electronics*, 54, 582–585, **2010**.
- [146] N. Miura, et.al., Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal, *Solid-State Electronics*, 48, 689–695, **2004**.

- [147] D. J. Meyer, *Surface Passivation studies of AlGaN/GaN High Electron Mobility Transistors*, Doktota Tezi, Pennsylvania State University, Materials Science and Engineering, ABD, **2008**.
- [148] J. S. Jung, et.al., The impact of SiN_x gate insulators on amorphous indium-gallium-zinc oxide thin film transistors under bias-temperature-illumination stress, *Appl. Phys. Lett.* 96, 193506, **2010**.
- [149] R. S. Pengelly, Microwave field-effect transistors: *Theory, design and applications*. Research studies press, Letchworth, England, **1986**.
- [150] E. Abou-Allam and T. Manku, A small signal MOSFET model for radio frequency IC applications, *IEEE Transactions on Computer-Aided Design*, pp. 437–447, May **1997**.
- [151] M.C.J.C.M. Krämer, Gallium Nitride-based Microwave High-Power Heterostructure Field-Effect Transistors-design, technology, and characterization, Doktora Tezi, Eindhoven Teknik Üniversitesi, Hollanda, **2006**.
- [152] A. Toprak, *Gate Uzunluğunun GaN HEMT Aygıtlarda Güç Performansına Etkisi,* Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, **2014**.
- [153] S. Kalmalkar and U. K. Mishra, Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate, *IEEE Transactions on Electron Devices*, vol. 48, no. 8, pp.1515-1521, Aug. **2001**.
- [154] A. Chini, et.al., Power and Linearity Characteristics of Field-Plated Recessed-Gate AlGaN–GaN HEMTs, *IEEE Electron Device Letters*, Vol. 25, No. 5, **2004**.
- [155] L. Shen, et.al., High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation, *IEEE Electron Device Letters*, Vol. 25, No. 1, **2004**.
- [156] J. S. Moon, et.al., Gate-Recessed AlGaN–GaN HEMTs for High-Performance Millimeter-Wave Applications, *IEEE Electron Device Letters*, Vol. 26, No. 6, **2005**.
- [157] Yue Hao, et.al., High-Performance Microwave Gate-Recessed AlGaN/AIN/GaN MOS-HEMT With 73% Power-Added Efficiency, *IEEE Electron Device Letters*, Vol. 32, No. 5, **2011**.
- [158] G. Greco, F. Lucolano, F. Roccaforte, Review of technology for normally-off HEMTs with p-GaN gate, *Materials Science in Semiconductor Processing*, Vol. 78 pp. 96-106, **2018**.

- [159] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, E. R. Heller, Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices, *IEEE Transactions on Electron Devices*, Vol. 54 Issue: 10 pp. 2589 2597, **2007**.
- [160] D. Guerra, M. Saraniti, D. K. Ferry, S. M. Goodnick, F. A. Marino, Carrier Dynamics Investigation on Passivation Dielectric Constant and RF Performance of Millimeter-Wave Power GaN HEMTs, *IEEE Transactions on Electron Devices*, Vol. 58 Issue: 11 pp. 3876 – 3884, 2011.
- [161] B. Song, et. al., Effect of Fringing Capacitances on the RF Performance of GaN HEMTs With T-Gates, *IEEE Transactions on Electron Devices*, Vol. 61 Issue: 3 pp. 747 - 754, **2014**.

EKLER

EK 1 – Tezden Türetilmiş Yayınlar

Ahmet Toprak et. al., Effect of gate structures on the DC and RF performance of AlGaN/GaN HEMTs, *Semiconductor Science and Technology*, Volume 33, Number 12, **2018**.