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ABSTRACT

LEARNING VISUALLY-GROUNDED REPRESENTATIONS USING
CROSS-LINGUAL MULTIMODAL PRE-TRAINING

Menekşe Kuyu

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. Mehmet Erkut ERDEM

August 2020, 81 pages

In recent years, pre-training approaches in the field of NLP have emerged with the in-

crease in the number of data and developments in computational power. Although these ap-

proaches initially included only pre-training a single language, cross-lingual and multimodal

approaches were proposed which employs multiple languages and modalities. While cross-

lingual pre-training focuses on representing multiple languages, Multimodal pre-training in-

tegrates Natural Language Processing and Computer Vision areas and fuse visual and tex-

tual information and represent it in the same embedding space. In this work, we combine

cross-lingual and multimodal pre-training approaches to learn visually-grounded word em-

beddings. Our work is based on cross-lingual pre-training model XLM [1] which has shown

success on various downstream tasks such as machine translation and cross-lingual classifi-

cation.

In this thesis, we proposed a new pre-training objective called Visual Translation Language

Modeling (vTLM) which combines visual content and natural language to learn visually-

grounded word embeddings. For this purpose, we extended the large-scale image captioning
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dataset Conceptual Captions [2] to another language—German using state-of-the art trans-

lation system to create a cross-lingual multimodal dataset which is required in pretraining.

We finetuned our pre-trained model on Machine Translation (MT) and Multimodal Machine

Translation (MMT) tasks using Multi30k [3] dataset. We obtained state-of-the-results on

Multi30k test2016 set for both MT and MTT tasks. We also demonstrated attention weights

of the model to analyze how it operates over the visual content.

Keywords: Cross-lingual Pre-training, Multimodal Pre-training, Transformer, Machine Trans-

lation, Multimodal Machine Translation
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ÖZET

ÇOK DİLLİ ÇOK KİPLİ ÖN ÖĞRENME İLE GÖRSEL TABANLI
TEMSİLLERİN ÖĞRENİLMESİ

Menekşe Kuyu

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Mehmet Erkut ERDEM

Ağustos 2020, 81 sayfa

Son yıllarda veri sayısındaki artış ve hesaplama gücündeki gelişmeler ile birlikte Doğal Dil

İşleme alanında ön eğitimli model yaklaşımları ortaya çıkmıştır. Bu yaklaşımlar başta sadece

tek dili kapsayacak şekilde olsa da, ardından çok dilli ve multimodal yapılar önerilmiştir.

Çok kipli ön eğitimli modeller, Doğal Dil işleme ve Bilgisayarlı Görü alanlarının ikisini

de kapsıyor olup görsel ve metinsel bilgiyi birleştirerek aynı uzayda ifade edilmesini hedef

alır. Bu çalışmada, görsel temelli kelime gösterimlerini öğrenmek için diller arası ve çok

kipli ön eğitim yaklaşımları birlikte kullanılmıştır. Çalışmamız, makine çevirisi ve diller

arası sınıflandırma gibi çeşitli alt görevlerde başarı gösteren, diller arası ön eğitim modeli

XLM tabanlıdır. Bu tez kapsamında, görsel temelli kelime vektörlerini öğrenmek için görsel

içerik ve doğal dili birleştiren Görsel Çeviri Dili Modellemesi adı verilen yeni bir ön eğitim

hedef önerildi. Bu amaçla, ön eğitimde gerekli olan diller arası çok kipli bir veri kümesi

oluşturmak için son yıllarda önerilen en başarılı açık kaynak çeviri modelini kullanarak,

büyük ölçekli bir görüntü altyazılama veri kümesi olan Conceptual Captions’ı [2], yeni bir

dil; Almanca olarak genişlettik. Önerilen ön eğitimli model, Multi30k [3] veri kümesini kul-

lanarak Makine Çevirisi (MÇ) ve Çok Kipli Makine Çevirisi (ÇMÇ) görevlerinde ince ayar

yapılmıştır. Hem MÇ hem de ÇMÇ görevleri için Multi30k test2016 setinde literatürdeki
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en başarılı sonuçlar elde edilmiştir. Ek olarak, önerilen modelin görsel içerik üzerinde nasıl

çalıştığını analiz etmek için dikkat ağırlıkları görselleştirilmiştir.

Anahtar Kelimeler: Çok Dilli Ön Eğitim, Çok Kipli Ön Eğitim, Dönüştürücü, Makine

Çevirisi, Çok Kipli Makine Çevirisi
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GENİŞLETİLMİŞ ÖZET

Kelimeleri düşük boyutlu vektörler ile temsil etmek, Doğal Dil İşleme alanında son yıllarda

oldukça popüler bir konu haline gelmiştir. Kelime vektörleri, kelimelerin bağlam içindeki

anlamlarının kodlanması ile oluşturulmaktadır. Bu vektörler, modern Doğal Dil İşleme’de

büyük ölçekli verilerin denetimsiz şekilde eğitilmesi ile elde edilmektedir. Teknolojinin ve

kaynakların gelişmesi ile birlikte, bu işlem için yapay sinir ağları kullanılmaya başlanmış

ve çok büyük ölçekli veri kümeleri ile eğitim gerçekleştirilmiştir. Geleneksel yöntemler

elde edilen kelime vektörleri, Doğal Dil İşleme’nin soru cevaplama, makine çevirisi birçok

probleminde başarı göstermiştir.

Son zamanlarda geleneksel yöntemlerin aksine, kelimelerin anlamsal yakınlıklarını ve bağlamlarını

gözeten yeni kelime vektörleri önerilmiştir. Bu bağlamsal yöntemler, diğerlerinin aksine ke-

limelerin arasındaki bağlamsal bilgiyi de kodlayabilmektedir. Bu yöntemler literatürde ön

eğititim (pre-training) yöntemleri olarak adlandırılmaktadır. Kelime vektörlerinin gelişmesiyle

birlikte, metinsel ve görsel bilginin bağlamsal yöntemlerle ifade edilmesi fikri ortaya çıkmıştır.

İki farklı kaynak türünden gelen bilgilerin aynı uzayda kodlanmasına çok kipli ön eğitim

(multimodal pretraining) adı verilmektedir. Bu yöntem sayesinde, metinsel ve görsel kay-

naklardan elde edilen vektörler görsel soru cevaplama, görüntü ve video altyazılma gibi

Doğal Dil İşleme ve Bilgisayarlı Görü alanlarının kesiştiği problemlerin çözümünde kul-

lanılabilmektedir.

Bu çalışmada, hem çok dilli (multilingual) hem de çok kipli (multimodal) bir ön eğitim

yöntemi üzerinde çalışılmıştır. Bunun için ilk olarak, birden fazla dilde metinsel bilgiliyi

ve bunlara karşılık gelen görsel bilgiyi içeren büyük ölçekli bir veri seti ihtiyacı doğmuştur.

Bunun için yaklaşık 3.3 milyon cümle/görüntü çifti içeren Conceptual Captions [1] veri seti

kullanılmıştır. Fakat bu veri seti yalnızca ingilizce açıklamalar ve karşılık gelen görüntüyü

içermektedir. Bu veri setini çok dilli hale getirmek için İngilizce-Almanca çeviride yüksek

performans gösteren açık kaynak kodlu bir çeviri modeli kullanılmıştır. Bu sayede, büyük

ölçekli çok dilli ve çok kipli bir veri seti elde edilmiştir.
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Birden fazla dil için kelime vektörleri öneren XLM [2] modeli, önerilen çok dilli çok kipli

modelin temelini oluşturmaktadır. XLM modeli, son yıllarda sekanstan sekansa olarak ad-

landırdığımız problemlerde yüksek başarı gösteren Transformer modelini baz almıştır. Biz

de bu çalışmada aynı mimariyi koruyarak, çok dilli bir yapıya görüntü bilgisini de dahil ed-

erek hem görsel, hem metinsel bilgiyi aynı anda kodlayan bir model geliştirdik. Bu model,

Görsel Dil Modelleme (GDM) adını verdiğimiz bir ön öğrenme hedefini kullanmaktadır.

GDM geliştirilirken XLM tarafından önerilen Çeviri Dil Modelleme (ÇDM) öğrenme hedefinden

ilham alınmıştır. GDM, bu çok dilli yapıya görüntü bilgisini de ekleyerek çok-kipli çok dilli

bir (multimodal cross-lingual) yaklaşımı önermektedir. Basitçe anlatmak gerekirse GDM,

ÇDM hedefinin görsel bilgi ile zenginleştirilmiş versiyonudur. Kaynak görüntüden elde

edilen her bir nesne, görsel kelime olarak ifade edilmektedir. Bu görsel kelimeler çok dilli

sekansın peşine eklenerek çok kipli yapı elde edilmiş olur.

Önerilen model, yukarıda bahsedilen Conceptual Captions [2] veri kümesinin çok dilli varyasy-

onu (İngilizce/Almanca) ile eğitilmiştir. Görüntü bilgisi ise, Masked Faster-RCNN [3] ta-

banlı Open Images [4] veri seti üzerinde bir nesne algılama modeli kullanılarak çıkarılmıştır.

Her bir görüntü, en yüksek olasılıklı 36 adet nesne bölgesi (object region) ile ifade edilmiştir.

Bu nesne bölgelerinde çıkarılan özellikler (feature), görsel kelimeler olarak yorumlanabilir.

Eğitilen çok dilli çok kipli model, makine çevirisi üzerinde ince ayar (finetune) yapılmıştır.

Makine çevirisi problemi üzerinde çalışılmasının sebebi, bazı kelimelerin cümle içindeki

anlamlarının belirsiz olması ve görüntü bilgisinin bu belirsizliği ayrıştırabileceği hipotezidir.

Önerilen modelin makine çevirisi görevinde ince ayar yapılması için Multi30k [3] veri seti

kullanılmıştır. Bu çalışmada Conceptual Captions İngilizce/Almanca otomatik çeviriler kul-

lanılarak elde edilen modeller, Multi30k İngilizce/Almanca ve insanlar tarafından çevirilerin

üzerinde ince ayar yapılmıştır.

Deneyler kapsamında, XLM modelinin bir ön öğrenme görevi olan Çeviri Dil Modelleme

(ÇDM) kullanılarak da Conceptual Captions veri seti üzerinde çok dilli bir öğrenme gerçekleştirilmiştir.
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Bu model de aynı şekilde Multi30k veri seti üzerinde ince ayar yapılmıştır. Ön eğitilen mod-

ellerin her ikisi de Multi30k test 2016 veri seti üzerinde test edilmiştir. Sayısal karşılaştırma

için BLEU, METEOR ve MLT metrikleri kullanılmıştır. Elde edilen sayısal sonuçlara göre,

geliştirilen model BLEU metriğinde hem doğrulama hem de test kümesinde daha yüksek

başarım göstermiştir.

Deneysel sonuçlara bakıldığında, GDM ile ön eğitim gerçekleştirilen ve Multi30k üzerinde

ince ayar yapılan model, ÇDM’ye göre daha yüksek sonuçlar vermektedir. Bu deneyler,

görüntü bilgisi kullanılarak (GDM) elde edilen vektör repsentasyonlarının, sadece metinsel

bilgi kullanılarak elde edilenlerden (ÇDM) anlamsal açıdan daha zengin olduğu hipotezi

doğrulanmıştır.
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1. Introduction

Today, representing word semantics with low-dimension vectors, which are referred to as

word embeddings, has gained popularity in the Natural Language Processing (NLP) com-

munity. The most common method to obtain word representations in modern NLP is to

train large-scale unlabeled textual data in an unsupervised manner. With the development of

technology and resources, methods based on artificial neural networks are frequently used

for processing large-scale corpora. Even though, global representation of the word obtained

with the traditional methods shows success with different NLP tasks such as question an-

swering [7] and natural language inference (NLI) [8], such representation lacks contextual

information about the words.

Recently, contextual word representations have been proposed that take into account the

semantic affinities and contexts of words, unlike traditional methods. These contextual

methods can encode contextual information between words using a new strategy called pre-

training. Contextual word representations have become widely used in the literature and

shown success for Natural Language Generation problems. With the enhancement of word

representations, the idea of expressing textual and visual information with contextual meth-

ods has emerged. The encoding of information from two different source types in the same

space is called multimodal pre-training. Multimodal representations obtained from textual

and visual sources can be used to solve problems where Natural Language Processing and

Computer Vision intersect, such as visual question answering, image and video captioning.

In this thesis, we focused on cross-lingual and multimodal pre-training strategies. We ex-

tended the multimodal pre-training approach to multilinguality to enhance word represen-

tations with the contribution of visual information for Natural Language Generation tasks

involving multiple languages such as Machine Translation and Multimodal Machine Trans-

lation. For developing cross-lingual multimodal model, we needed a large-scale dataset con-

taining textual information in more than one language and corresponding visual information.

For this purpose, we used Conceptual Captions [2] dataset, which contains approximately
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3.3 million sentence / image pairs.. However, this dataset contains only the English descrip-

tions and the corresponding image. To extend this dataset into multiple languages, we used

an state-of-the-art open source English to German translation system to translate English

descriptions into German language.

In this study, we proposed a cross-lingual multimodal pre-training objective based on XLM

[1] architecture which proposes word representations for multiple languages and employs

Transformer [4] model, which has shown success in sequence-to-sequence tasks in recent

years. We extended the XLM architecture to encode both visual and textual information

at the same time by preserving the same architecture and including image information in

a multilingual structure. This model uses a preliminary learning objective that we call Vi-

sual Translation Language Modeling (vTLM). vTLM proposes a multimodal cross-lingual

approach by adding image information to this multilingual structure. In other words, vTLM

objective is a version of TLM objective proposed by XLM, and enriched by visual informa-

tion.

We used the word representations obtained from our cross-lingual multimodal model in two

different Natural Language Generation tasks; Machine Translation (MT) and Multimodal

Machine Translation (MMT). The reason we focused on the translation tasks is to enriched

word representations using visual information and solve the ambiguity problem in the trans-

lation. We used a multimodal translation dataset; Multi30k [3] in finetuning of MT and

MMT systems. In experimental results, we demonstrated that proposed objective vTLM

obtains higher results than XLM’s TLM objective for MT and MMT tasks. Results also

shows that word representations obtained using visual information are semantically richer

than those obtained using only textual information.

1.1. Scope of the Thesis

We proposed a new pre-training approach that fuses visual and textual data to create visually-

grounded word embeddings for multiple languages. We inspired from XLM [1] which is
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a multilingual pre-training model using Transformer [4] architecture. We extended XLM

architecture into multimodal setting by adding visual information in the network.

To train our model, we automatically translated the Conceptual Captions [2] into German

to create multilingual multimodal dataset. We compared our model with the textual-only

pre-trained model called XLM [1] and evaluated both models on two different downstream

tasks; Machine Translation and Multimodal Machine Translation. Our goal is to demon-

strate visually-grounded word embeddings are richer than the textual embeddings. Visually

grounded embeddings can also be beneficial for various tasks such as image captioning,

video captaining and visual question answering.

1.2. Contribution

Our contributions can be summarized as follows:

1. We developed a new pre-training approach which integrates multiple languages and

visual content which is called cross-lingual multimodal pre-training. We evaluated

the proposed pre-trained model on downstream tasks; Machine Translation and Multi-

modal Machine Translation and achieve state-of-art results on Multi30k [3] dataset.

2. The train our cross-lingual multimodal model, we needed a large-scale dataset con-

tains aligned image/caption pairs into multiple languages. For this purpose, we created

a new multilingual multimodal dataset using Conceptual Captions [2]. We automati-

cally translated English captions into German using state-of-the-art translation system,

fairseq [9].

3. We demonstrated the attention weights of the proposed Transformer [4] based model to

analyze the how model benefits from visual content in the training phase. We showed

that our models learns to attend correct visual information while predicting the words.
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1.3. Organization

In Chapter 1, we present our motivation and contributions and the scope of the thesis. In

Chapter 2, we provide a general background for Natural Language Generation. In Chap-

ter 3, we give an overview of recent pre-training approaches for language and multimodal

pre-training. In Chapter 4, we introduce a new pre-training objective for cross-lingual mul-

timodal pre-training, give details about the representation of the textual and visual data and

share the experimental setups and downstream tasks. In Chapter 5, we give detailed infor-

mation about the datasets and the evaluation results we used and discuss about experimental

results. In Chapter 6, we summarize our contributions and share ideas for the future work.
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2. Background

With the recent developments in the field of Deep Learning, new approaches have been pro-

posed for the modeling and representing the natural language. Neural Language Generation

(NLG) has become a widely studied problem with the increasing need to understand and

interpret natural language that is essentially the process of generating natural text obtained

from humans by an automated system. NLG has many application areas such as Machine

Translation, Text Summarization and Text Correction. In this section, we provided the back-

ground for Natural Language Generation (NLG) sub-tasks that we applied in this thesis and

present the widely used the Deep Learning architectures that are employed for NLG.

2.1. RNN-Based Approaches

Recurrent Neural Networks (RNNs) is a very popular architecture which have shown encour-

aging performance in various NLG tasks such as language modeling an machine translation.

The reason RNNs are successful in these tasks is that they can model long-range dependen-

cies in textual data adequately. Another reason that RNNs are highly preferred is to encode

variable length input sequences into a fixed-length vector embedding.

For an input sequence w = (w1, w2...wi), RNN updates its hidden states w = (h1, h2...hi)

for each time step and the last state of the RNN represents the entire input sentence. The to-

kens in the input sequence are first converted to one-hot vectors which are later transformed

into continuous word representations xi using pre-trained word representations or the repre-

sentations matrix, which is jointly trained with the network. Then, the RNN’s hidden state is

updated as follows;

hi = f(wi, hi−1) (1)

In Equation 1, f is the function that changes according to the RNN type, and hi shows the

hidden state of the RNN. The initial hidden state h0 is usually a vector filled by zeros. In
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RNNs, the hidden state of the current timestep is dependent on all of the previous hidden

states. Although this shows the usability of RNNs for long sequences, in reality RNN cannot

model the a few timestamp cannot model the context longer than a few steps. This issue

is called vanishing and exploding gradients [10] which cause the incapability of modeling

long-range dependencies.

2.1.1. Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) [11]) networks are proposed to solve the constraints of

RNNs caused by vanishing gradients. LSTMs are able to model long-range dependencies

using extra hidden layer and the memory cells for each hidden layer which are capable of

storing information for long periods of time-steps. Each memory contains 3 gates; an input

gate it which determines the cells to be updated, an output gate which determines what

the next hidden state should be, and a forget gate ft which controls the information to be

forgotten. In Equation 2, � stands for element-wise multiplication and σ is the sigmoid

activation function and b is the bias term.

it = σ
(
W (i)wt + U (i)ht−1 + b(i)

)
ft = σ

(
W (f)wt + U (f)ht−1 + b(f)

)
ot = σ

(
W (o)wt + U (o)ht−1 + b(o)

)
ut = σ

(
W (u)wt + U (t)ht−1 + b(t)

)
ct = it � ut + ft � ct−1

ht = ot � tanh (ct)

(2)

With the help of the gating mechanism, LSTMs are able to model dependencies over longer

time steps. This gating mechanism accommodates adjust hidden states’ values which pre-

vents vanishing or exploding gradients which makes LSTMs powerful architecture in NLG

tasks.
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2.2. Attention-based Approaches

RNNs show promising results in sequence-to-sequence tasks, but if the length of the input

sequence is large, RNN often fails to generate a good summarization vector. Experiments

using variant length sentences have shown that the performance of the model dramatically

decreases with the increase of the sentence length [12]. To overcome this problem, [13] pro-

posed an attention mechanism to be used in encoder-decoder architectures. The idea behind

the attention approach is to represent each token with a vector referred to as an annotation

vector rather than representing whole sentence with a single vector. Annotation vectors are

later combine into a context vector c which is calculated in each time step. This strategy

assists the decoder attend to on different parts of the input sequence while generating the

target sentence. Research has demonstrated that a bidirectional encoder with the attention

mechanism overcomes the performance problem when the sentences are long.

ct =
N∑
i=1

aithi (3)

eit = align(hi, ht−1) (4)

αit =
exp (et)∑
t′ exp (et′)

(5)

To generate the i-th target token, context vector ct is computed as shown in Equation 3 where

N correspons to the length of the sentence, ait is attention weight, and hi is an annotation

vector. Alignment scores eit can be obtained by the alignment function, which aims to cap-

ture the relation between annotation vector hi in encoding phase and the last hidden state

of the decoder ht−1. Attention weights αit are calculated with the softmax function which

converts alignment scores into probabilities (Equation 5).
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2.2.1. Transformer

With the recent advances of the attention mechanism, a fully attention-based approach called

Transformer [4] has been proposed and has made a big impact in the NMT literature.

Transformer model employs encoder-decoder architecture where both encoder and decoder

includes 6 stacked layers. The encoder includes of two parts; multi-head attention mecha-

nism and fully connected feed-forward layer. The decoder also have the same sub-layers as

the encoder and additionally, there is a separate multi-head attention layer which accepts the

output of the encoder and the decoder’s attention layer.

Transformer architecture (Figure 2.1.) is the first network which is completely based on the

self-attention. The self-attention mechanism captures dependencies between input tokens

inside the sequence instead of computing the dependency between input and output sequence.

In this way, the attention-based source representation is obtained.

The self-attention mechanism uses a dot product as an alignment function, which recieves

query Q, key K, and value V as inputs. This attention mechanism executes in a multi-head

manner. First, inputs are projected into keys, queries, values, and then the attention function

is applied (Equation 6).

A(Q,K, V ) = softmax

(
QK>√

d

)
V (6)

Self-attention applies only one attention function in each timestep, but the authors proposed

Multi-Head Attention Mechanism which is parallelized and is able to attend to different

portions of the input sequence. At the end, the output of each attention head is summed to

calculate final the context vector C;

C =
h∑
i=1

A
(
QWQ

i , KW
K
i , V W

V
i

)
WO
i (7)
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Figure 2.1. The Transformer architecture, taken from [4]

where W matrices are trainable parameters, and h is number of head.

The Transformer architecture does not employ any recurrent and convolutional layers. There-

fore, it’s essential to encode the locations of tokens in sentences. The authors proposed ”po-

sitional encoding” which is applied both input and output sequence. For positional encoding

function; the authors used sine and cosine functions that is shown in Equation 8 where p is

the position, d is the embedding dimension and i is the model’s dimension. The auhors also

experimented with learned and fixed positional encoddings which results similar results.

PE(p,2i) = sin
(
p/100002i/dmodel

)
PE(p,2i+1) = cos

(
p/100002i/dmodel

) (8)
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Transformer based encoder-decoder networks outperform the RNNs for many NLG tasks

and have become a commonly used architecture for sequence-to-sequence tasks.

2.3. Neural Machine Translation

The automatic translation from source language into the target language without any human

supervision is referred to as machine translation (MT) which is a highly popular task among

NLP researchers. MT has many applications areas, particularly based on communication

applications and this approach reduces the work required substantially.

Over the past decades, MT has maintained its popularity and various effective methods have

been introduced to improve MT system performance. In recent years, deep learning ap-

proaches have gained attraction for different research topics and the term Neural Machine

Translation (NMT) has been proposed. The first attempt for NMT [14] did not perform

well as a consequence of hardware limitations. In 2010s, deep learning gained substantial

attention with the development of computational powers that easily accessible for anyone.

NMT task were also reborned with the deep learning era. The first successful application is

proposed by [15] based on deep neural networks.

NMT takes the source sentences and directly translates them into the target language. This

is an end-to-end task, and the goal is to determine the correct target sentence for the cor-

responding input sentence. This can be also interpreted as a classification problem where

the labels are the words in the vocabulary. Generally, NMT systems perform with two main

processes; encoding and decoding (Figure 2.2.).

There are many different architectures proposed for NMT task, and they can be divided into

two category; recurrent and not recurrent. In early years of NMT development, Deep Neu-

ral Network (DNN), Convolutional Neural Network (CNN) and Recurrent Neural Network

(RNN) were the most common selections, but recently attention-based approaches has begun

to be used for this task.
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how are you ?

wie gehts ?

ENCODER DECODER

Figure 2.2. The architecture of typical NMT system. The source sentences is encoded by encoder.
The encoded source representation is passed to the decoder for generating the target
sentence.

2.4. Multimodal Machine Translation

MT involves an automatic translation from source language into the target language with-

out any human supervision. This approach has made a significant contribution to automatic

translation systems. Since the standard MT systems uses only the text data, the final transla-

tions may contain ambiguity and does not correctly translate the polysemous words. Multi-

modal Machine Translation task [16] is proposed to enhance the translations with the help of

a visual content which integrates the CV and NLP areas. Different from MT, MMT system

use an visual content beside the source sentece which is illustrated in Figure 2.3..

The workshop of Multimodal Machine Translation is organized under Machine Translation

conference in 2016 [17], 2017 [18] and 2018 [19]. The tasks under the workshop focused on

the generation of image captions into the different languages; French, German and Czech.

This can also be interpreted as the composition of the translation and image captioning tasks.

The Multi30k dataset [3] which is the multilingual extension of image captioning dataset;

Flickr30k [20], is proposed specifically for MMT task and each year, the workshop organiz-

ers released a new test set for multiple languages.

The methodology used in MMT task is similar to MT. Before the launch of the Transformer

architecture, most of the MMT systems employs RNN-based solutions [21], [22] which is
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Source Image:

Source Sentence:

A bird flies over the water

Model
Target Sentence:

Ein Vogel fliegt über das Wasser

Figure 2.3. An example demonstration of MMT system. The source image and source sentence are
fused together to generate target translation.

previously explained in MT section. Last workshop in 2018, almost every MMT system

applies Transformer-based methods [23], [24].

3. Pre-training Approaches for Natural Language

Processing

With the recent developments of deep learning approaches and the increase of the compu-

tational power, model sizes are becoming larger, resulting in a massive amount of model

parameters. Hence, a huge amount of data are necessary to train these models and overcome

the overfitting problem. Thanks to the rapid growth of the Internet, collecting and accessing

huge amounts of data has become easier. Altough most NLP tasks need an annotated dataset,

most of the time, building large-scale annotated datasets is extremely costly. Because col-

lecting large-scale unlabeled data is easy, we can benefit from these data and learn word

representations. Then, we can use these representations to other NLP tasks.

Recent studies have shown that using representations from a pre-trained model yields a sig-

nificant improvement in the performance of many NLP tasks. The global word representa-

tions can be learned with a pre-trained network with an unlabeled large text corpora, and

these representations can assist for the downstream tasks. Pre-trained word representations
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also enables a better initialization of the model, which can accelerate convergence on the

goal task.

Pre-training has also been previously used in different research areas such as Computer Vi-

sion. Researchers have trained models with ImageNet [25] dataset, which is a large image

corpus, and learn representation for images. Then, they perform finetuning on various vi-

sion and multimodal tasks. Many studies showed that using pretrained image features is a

powerful initialization method because, in the pre-training phase, the model is able to gen-

erate good representation of images. Pre-training a language model with large corpora also

showed success in NLP for the many downstream tasks.

3.1. Pre-trained Traditional Word Embeddings

The development of word representations is a problem that has been extensively studied

in recent years. One of the first studies using word embeddings in down-stream tasks was

performed by [26]. The results showed that using word embeddings from a pre-trained neural

network improves the performance of many tasks while avoiding task-specific engineering.

[27] proposed two different architectures termed Continuous Bag-of-Words and Continous

Skip-gram to learn word embeddings. Their approach was able to generate high-quality

representations with a simple approach and much lower computational cost. In the next

study [28], the authors extend the Skip-gram model and generate higher quality embeddings

with much less training time. This model is commonly called Wod2vec, and it is one of

the most popular embeddings in the literature. Another popular word embedding model is

GloVe [29], which uses a weighted least squares model. They used word-word co-occurrence

statistics from a combination of different large text corpora for training.

Context2Vec [30] is another unsupervised model for learning word embeddings. They learned

generic context embeddings with bidirectional LSTM, and it embeds the entire context of the

sentence and the target word in the same space. There are many similar works that generate

word embeddings from textual data such as paragraphs [31]. All models mentioned above

have shown improvement in various NLP tasks, but they all lack of contextual information.
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They all embed the word into a fixed-size vector representation in place of the contextual

representation.

3.2. Pre-trained Contextual Embeddings

3.2.1. Pre-training Tasks

For learning a representation of a language, pre-training tasks must be defined. In computer

vision, pre-trained models use large-scale annotated training data such as ImageNet [25].

But in NLP, annotated datasets are not large enough to pre-trained a model except from the

MT. In this section, we invetigate the most commonly used pre-training tasks literature.

Language Modeling The classical method to learn word embeddings in an unsupervised

fashion is with language modelling. A language model can be described as a probability

distribution over a sequence of words. For given N tokens (t1, t2, ..., tN), a language model

models the probability of token ti:

p (t1, t2, . . . , tN) =
N∏
i=1

p
(
ti|t1, t2, . . . , ti−1

)
(9)

Language models train with the maximum likelihood estimation (MLE) method with large

text corpora. The term language model is often used as a unidirectional language model

which calculates the conditional probability with the benefit of the previous words; (t1, t2, ..., ti−1)

in a left-to-right manner. Since the unidirectional languages models encodes words with the

context of words on the left, we can not obtain good quality representations. For a richer

representation, two unidirectional language models are commonly used to encode sequence

in both left-to-right and right-to-left manners. This improved approach is referred to as a

bidirectional language model.
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Masked Language Modeling (MLM) Another commonly used pre-training task in NLP

literature is Masked Language Modeling (MLM) which proposed by [32]. The authors also

named this task as Cloze. In MLM, some tokens from the input sequence are masked in

the training step and the model learns to predict these masked tokens by looking at the re-

maining tokens. Most of time time, we can approach MLM as a classification problem.

We give the input sequence to a encoder and use a softmax classifier to make a prediction

that uses the output representations from the the encoder. Another approach to solve MLM

is encoder-decoder networks. We feed the masked input sequence to the encoder and the

decoder generates the masked tokens in an auto-regressive manner.

Next Sentence Prediction (NSP) Some of the important NLP tasks, such as question an-

swering, aim to model the connection between two sentences, and language modeling is not

able to identify this connection directly. Next Sentence Prediction (NSP) [33] is a task that

learns two sequence from the training corpora that are consecutive sentences. To choose pre-

training sentencesX and Y , 50% of the time Y is followed byX , and 50% the timeX and Y

are just random sentences in corpora. With this learning manner, the model can understand

the relation between two sentences.

3.3. Pre-trained Models for Contextual Embeddings

3.3.1. Monolingual Pre-training

The first work in the NLP literature that propose a pre-trained model to be finetuned on

text classification and sentiment analysis [34]. The authors pre-train a model that consist of

sequence auto encoder and RNNs by using language modelling. They used weights from

the pretrained sequence encoder to initialize a supervised network and they obtained better

results than the randomly initialized networks. [35] propose a different method to increase

the performance of sequence models. They used both encoder and decoder weights from

pretrained network that was trained separately with two language models. They focused on

English-to-German translation task and used News Crawl English and German corpora of a
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WMT dataset for pretraining. They finetuned a MT system on WMT English-German cor-

pora and obtain better performance than the models that are randomly initialized. Another

aspect they highlight is that the machine translation performance significantly reduces (al-

most the same as without pretraining) if the pretraining network is only trained by the WMT

parallel corpus but remains similar if trained with another large corpus. This observation

shows that a large corpus is essential for pretraining.

ELMo [36] introduce a model referred to as ELMo which retrieves contextual representations

using the internal states from a pretrained bidirectional language model (biLM). The authors

used two different LSTM layers —forward and backward— to encode information in both

left and right contexts. For finetuning, the linear combination for vectors in internal states

are used, which improves the performance compared the using vectors from the top LSTM

layer. More specifically, ELMo combines layer representations L into single vector for each

token x.

ELMOtask
x = γtask

L∑
j=0

stask
j hx,j (10)

In Equation 10, γtask is the scalar task-specific vector, stask is the weights normalized by

softmax, and (h1,j, h1,j, ...hN,j) is the hidden representation for a sequence length N . For

a target downstream task, the authors essentiallt obtained the all layer representations for

each token and the target model learns the combination of the representations. The proposed

model evaluated on six different downstream tasks such as sentiment analysis and classifi-

cation, named entity recognition. The authors also show that ELMo reduces the need for a

large amount of training data with experiments on different portions of the SNLI corpus [37].

GPT [38] learn universal word representations, which can be transferred into different NLP

tasks only with small adjustments. They proposed a two-stage training process; training a

language model using large unlabeled corpora and supervised fine-tuning on downstream

tasks. For the language model, they used the Transformer architecture, which has been

showtn to be a powerful alternative to RNNs and captures long-range dependencies bet-

ter. The BookCorpus dataset [39] is used to train language models that consist of around

7,000 books. For transferring the pre-trained weights, they employ task-specific adjustments
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[SEP] he
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[SEP]
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Figure 3.1. The input sequence of BERT

inspired from [40] and converts text input into a single sequence of tokens using the specific

tokens. This architecture obtained better results than other task-specific approaches for 9 out

of 12 tasks. The following work GPT2 [41] proposes mostly similar architecture but uses a

different dataset called WebText, which consists of millions of web pages to show that pre-

training with an adequate amount of large and diverge data can obtain to good performance

for a wide variety of domains. The authors also demonstrate that the ability of language

models can be adapted to various tasks in zero-shot setting. They achieved state-of-the-art

performance on 7 out of 8 datasets that were tested for language modeling. Whereas the

aforementioned models use character or word-based language models, this study followed a

subword-based approach using Byte Pair Encoding (BPE) algorithm [42]. This model has

achieved significant success in tasks such as question answering, and it is certain whether

this success as a result of the subword approach.

BERT [33] propose a deep bidirectional Transformer model called BERT for contextual lan-

guage representation. BERT employs MLM objective in pretraining phase which empowers

to fusion of left-to-right and right-to-left contexts. They also introduce NSP objective to

improve the performance of the downstream tasks such as question answering and natural

language inference which depends on the relation between sentence pairs. BERT uses dif-

ferent special tokens in the same manner as GPT. The classification [CLS] token marks the

beginning of the sentence which is used after classification tasks as sequence embedding.

The other token is the separator [SEP ] which is used to distinguish the sentences because

input sentences are represented as contiguous sequence pairs.

17



The input sequence of BERT consists of the summation of token embedding, positional em-

bedding and segment embedding (Figure 3.1.). Segment embedding is used the represent

input and output sources and the positional embedding shows the position of the token in the

sequence.

BERT uses the same architecture for both pretraining and finetuning. For finetuning step, the

final hidden state of the [CLS] token is used for classification tasks. The authors achieved

new state-of-the-art performance on different NLP tasks and improved the GLUE [43] score

7.7%.

After the success of BERT, many researchers have worked on the architecture and the ob-

jective of BERT model to improve the performance of downstream tasks. RoberTa [44]

analyzed the impact of hyperparmeter selection and size of the training set and showed that

BERT is undertrained. The proposed solution includes the removal of NSE objective, using

larger batches and more data in pre-training and changing the masking strategy. The authors

proposed a new large-scale dataset called CC-NEWS to evaluate the dataset size more effec-

tively. In original BERT, random masking is performed only once in the data preprocessing

step. RoBERTa changed the strategy and performed dynamic masking which mask the to-

kens randomly in training phase. The experiments show that dynamic masking improves the

accuracy on 2 out of 3 datasets and they also obtained new state-of-the-art results on GLUE.

ERNIE [45] is a model which take advantage of knowledge-bases masking strategies. They

two different masking schemes for pre-training; phrase-level and entity-level masking. Most

of the time, entity and phrases consist of more than one word and instead of masking a single

token, whole entity or phrase is masked. In this way, semantic and syntactic knowledge

can be learn from the masked unit. The following work ERNIE2.0 [46] employs different

pre-training tasks through multi task learning and improve the GLUE score over BERT.

SpanBERT [5] is a pre-training approach based on BERT that has been developed to under-

stand and represent the spans of a text. The authors modify BERT by changing the masking

strategy and the training objective. Instead of masking the random tokens, they mask ran-

dom spans and propose a new training objective span-boundary objective (SBO) to predict
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Figure 3.2. The input sequence of SpanBERT (Figure from [5]) . The masked span is ”an American
football game”.

the masked span. Figure 3.2. shows the training sequence of SpanBERT. In SBO objective,

the model tends to store span information into adjacent tokens x4, x9, which can be used

in finetuning phase easily. The experiments shows that SpanBert outperforms BERT on 14

out of 17 baselines. Similar to ERNIE, they performed different masking strategies which

are masking the subword tokens, whole word, named entities, noun phrases and geometric

spans. Masking geometric spans achieve better performance than the others but linguistic

strategies like named entity and noun phrase masking yield competitive performance.

ALBERT [47] introduced two different techniques for parameter reduction that decreases

the memory usage and accelerate the training. The first one is factorized embedding param-

eterization, which decomposes the vocabulary into two smaller matrices and this reduces the

parameter size significantly. The second technique is cross-layer parameter sharing which

avoids the parameter size growing with the size of the network. They also propose a new

objective; sentence-order-prediction (SOB) in place of NSP objective and discuss that NSP

is not a difficult task.

XLNet [48] is a new pretraining approach that leverages autoregressive (AR) and autoen-

coding (AE) language modeling. The proposed training objective; permutation language

modeling is able to model bi-directional context by maximizing the likelihood of the input

sequence. The proposed objective can be represented as follows;
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max
θ

Ez∈ZN

 N∑
j=1

log pθ
(
tzj |tz1 , tz2 , . . . , tzj−1

) (11)

For the element t in the sequence, Zt shows the permutation for that element. They sample

a permutation z from Zt permutations and the probability of the sequence is calculated with

factorization according to z which is conditioned on every other tokens in sequence. This ob-

jective does not permutes the sequence order. XLNet uses the Transformer-XL [49] architec-

ture with two-stream attention mechanism. The authors achieved significant improvements

compared to the original BERT model on many datasets.

UniLM [50] is a pretrained language model which is trained with three language model-

ing tasks; unidirectional, bidirectional and sequence-to-sequence. UniLM can be employed

for both natural language generation and understanding. They introduce a specified self-

attention masks to integrate three different objectives. The text representations are jointly

trained with multiple language models and yields more generic representations and prevent

overfitting. UniLM obtained comparable results to BERT on GLUE scores and achieve state-

of-the-art performance on five NLG datasets.

ELEKTRA [51] proposes a novel pretraining objective called replace token detection. In

original word, tokens are randomly masked using the [MASK] token. However, ELEKTRA

uses samples created by a generator network to replace the masked token. In that way, model

can learn from all input sequence instead of the masked tokens. The pre-trained generator

network can also be used in the finetuning phase to enhance the input representations. They

show that the proposed objective is computationally more efficient than the other BERT-

based pre-training models.

Even though BERT performed well on many NLP tasks, it can not be adapted directly into

language generation task since it trains only the encoder or decoder. To address this issue,

MASS [52] propose a new objective called MAsked Sequence to Sequence learning (MASS)

for language generation task. MASS use a encoder-decoder network based on Transformers,

the encoder gets an input sequence with masked tokens and the decoder learns the predict
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these masked tokens. The tokens which are not masked in encoder step is also masked in

decoder step to ensure that decoder concentrate on source sequence. For unsupervised ma-

chine translation task, MASS obtained state-of-the-art BLEU scores for different languages

including English to German.

3.3.2. Cross-lingual Pre-training

Most of the research in the literature focuses on monolingual pre-training, particularly for

the English language. Recently, learning sentence representations for multiple languages

has gained attention amount the NLP researches. The multilingual version of BERT [33] is

designed by the authors 1. They used XNLI (Cross-lingual Natural Language Inference) [53]

corpus for pre-training. XNLI is the extended version of NLI (Natural Language Inference)

corpus. It consist 15 languages and 112,500 annotations in total. Authors also used this

corpus to evaluate the performance of the sentence embeddings with different tasks including

machine translation.

Most of the works in the multilingual NLP area focus on a few languages. [54] proposed

universal sentence embeddings for 93 lanugages by using a single bidirectional LSTM model

for all languages. The proposed model requires paralell data for training. Thus, the authors

combine several parallel datasets from multiple languages. They obtained successful results

for different tasks (cross-lingual classification, bitext mining) without additional fine-tuning.

They also evaluate the embeddings on the XNLI dataset and achieve better performance

than the XNLI baseline and Multilingual BERT for almost every language. For XNLI, they

trained a classifier on top of the pre-trained LSTM encoder.

XLM [1] is proposed for cross-lingual pre-training which is based on BERT architecture.

The authors introduces new unsupervised pre-training objectives for monolingual and cross-

lingual pre-training and unsupervised objectives that benefits from the parallel data and en-

hance the cross-lingual embedding quality. For monolingual pre-training, they prepared

1https://github.com/google-research/bert/blob/master/multilingual.md
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Wikipedia dump and used shared vocabulary among the languages. For supervised pre-

training objective, they combined different parallel datasets for multiple languages. They

evaluated the pre-trained model on cross-lingual classification, unsupervised and supervised

machine translation. For machine translation, they achieved state-of-the-art performance on

WMT’16 German to English and Romanian to English datasets. They also evaluate the cross-

lingual performance on the XNLI dataset and found that it outperforms the state-of-the-art.

3.3.3. Multimodal Pre-training

Modeling the relation between vision and natural language is a challenging problem. Be-

cause it needs to understand both visual and language contexts and capture the alignment

between them. There are many successful applications in the literature that are able to under-

stand language and vision separately. In this section, the pre-trained models which combines

visual and language modalities are examined and summarized in Table 3.1..

The first attempt for multimodal pretraining is VideoBERT [55]. The proposed approach

consist of three parts; BERT model for language understanding, automatic speech recogni-

tion system to convert the audio in the videos into text and vector quantization for extracting

the features from video. They cluster the video clips according to features and the loss is

calculated using the cluster number of the masked video token. VideoBERT can be applied

for various vision-language tasks including image and captioning and also achieved the state-

of-the-results for video captioning task.

ViLBERT [56] (stands for Vision Language BERT) introduce a joint model based on BERT

using aligned visual and language data. ViLBERT employs separate streams for each modal-

ity unlike VideoBERT. The streams later fused with an additional co-attention layer. In this

way, each modality can be processed under its specificities. Additionally, the modalities can

be combined in different representation levels. They use Conceptual Captions [2] dataset for

pre-training and perform finetuning with four different visual-language downstream tasks.

ViLBERT outperform state-of-the-art results on various downstream tasks including Visual

Question Answering (VQA) and Visual Commonsense Reasoning (VCR).
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LXMERT [57] introduce a pre-training model based on transformer architecture which con-

tains three different encoders; language encoder, visual encoder and cross-modality encoder.

LXMERT employs five different pre-training objectives to understand the alignments be-

tween linguistic and visual contents. Similar to ViLBERT, different streams are used for

language and vision modalities. In this way, model can deduce the masked tokens using

unmasked tokens from same modality or the corresponding modality. Authors combined

different datasets for pretraining including image question answering and image captioning

datasets. The final pretraining data consist of 9m image-language pairs. The sentences are

splitted into subwords using WordPiece tokenizer [58]. For each image, object level fea-

tures are extracted using a pretrained detection network. The final object representation is

obtained from the region feature and the position embeddings. For pretraining objective,

they used masked cross-modality language model and masked object detection tasks. They

performed finetuning for VQA with only small modifications to the network and achieved

state-of-the-art overall accuracy for two VQA datasets. They also evaluated the model on

visual reasoning task and showed significant increase on model generalizability.

VisualBERT [59] modified the original BERT training objectives to conform both visual and

textual input. They used a large scale image captioning dataset; MSCOCO [60] for pre-

training and employs two different training procedures; task agnostic pretraining and task

specific pretraining. Task agnostic pretraining includes masked language modeling and sen-

tence image prediction objectives. However, task specific pretraining only use masked lan-

guage modeling to accommodate model into domain of the downstream task. VisualBERT

showed powerful performance for various vision-language tasks. The ablation studies proved

that proposed model’s attention mechanism is able to catch information between vision and

language which is interpretable.

Unicoder-VL [61] is designed to learn language and vision representations jointly using

Transformer architecture. The multimodal models mentioned before calculates KL diver-

gence between real and predicted object label distributions for the visual pre-training ob-

jective. However, Unicoder-VL directly predicts the object labels. They used poolæed ROI

features from pretrained Faster R-CNN network and box coordinates to encode the position
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which are fed to separate fully connected layers. Lastly, the outputs of fully connected lay-

ers are summed up to produce final object embedding. They trained the model with 3.8m

image/text pairs which are the combination of two vision/language datasets including Con-

ceptual Captions. Unicoder-VL evaluate the performance of the proposed embeddings for

two downstream tasks; image to text and text to image retrieval. They obtained state-of-the-

art performance for both of the tasks.

VL-BERT [62] aims to generate representations for vision language for vision language tasks

using a single Transformer. Images are represented as ROI features extracted from Fast R-

CNN [63] which are fed to the network together with the text input. Different from men-

tioned models, Fast R-CNN weights are also updated in the training. They calculate the po-

sition embedding using box coordinates of the region. In addition, VL-BERT adopts segment

embedding to separate the input modalities. The network is trained with large scale datasets;

Conceptual Captions [2], BooksCorpus [39] and English Wikipedia data. They finetuned

VL-BERT on VQA which performed better than concurrent works except LXMERT [57].

The reason is LXMERT is pre-trained with various VQA datasets. VL-BERT also shows

better performance than the other works in VCR task.

UNITER (UNiversal Image-TExt Representation) [64] created multimodal embeddings trained

with four different large-scale vision-language datasets which is based Transformers. They

designed four different training objectives to jointly train vision and language. The difference

that distinguish this model from previous is that they adopted conditional masking instead of

the random masking. UNITER also benefit from a Word Region Alignment (WRA) which

pushes the language vision pairs to be aligned. They demonstrated that both conditional

masking and WRA strategy and improves the pre-training.
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Model Stream Type Dataset Pre-training Objective Downstream Tasks

VideoBERT single-stream Cooking312K
- Masked Language Modeling
- Masked Image RoI Prediction
- Image-Sentence Alignment

- Video Captioning
- Action Classification

CBT single-stream Cooking312K

- Masked Language Modeling
- Masked Visual-Feature
Regression
- Sentence-Image Alignment

- Video Captioning
- Action Anticipation

ViLBERT two-stream Conceptual Captions

- Masked Language Modeling
- Masked Visual-Feature
Classification
- Sentence-Image Alignment

- Visual Question Answering
- Image Retrieval
- Visual Commonsense Reasoning
- Grounding Referring Expressions

LXMERT two-stream

MS COCO
VQA v2.0
GQA
VG-QA

- Masked Language Modeling
- Masked Visual-Feature
Classification
- Masked Visual-Feature
Regression
- Sentence-Image Alignment

- Visual Question Answering
- Natural Language Visual
Reasoning

VisualBERT single-stream MS COCO
- Masked Language Modeling
- Sentence-Image Alignment

- Visual Question Answering
- Natural Language Visual
Reasoning
- Visual Commonsense Reasoning

Unicoder-VL single-stream Conceptual Captions

- Masked Language Modeling
- Masked Visual-Feature
Classification
- Sentence-Image Alignment

- Image-Text Retrieval

VL-BERT single-stream
Conceptual Captions
Book Corpus
Wikipedia (English)

- Masked Language Modeling
- Masked Visual-Feature
Classification

- Visual Question Answering
- Grounding Referring Expressions
- Visual Commonsense Reasoning

UNITER single-stream

Conceptual Captions
Visual Genome
MS COCO
SBU Captions

- Masked Language Modeling
- Masked Region Modeling
- Word Region Alignment
- Image-Text Matching

- Visual Question Answering
- Natural Language Visual
Reasoning
- Image-Text Retrieval
- Visual Commonsense Reasoning

Table 3.1. The summarization of the models proposed for multimodal pretraining

4. Cross-lingual Multimodal Pretraining

4.1. Textual Representation

The first step for developing a pre-training network is constructing the vocabulary from train-

ing data. The regular vocabulary consists of the unique words in the dataset, but the size of

the vocabulary can be gigantic depending on the training data. Furthermore, for the vo-

cabulary containing the most frequent words, the words that do not exist in vocabulary are

represented as unknown words. Recently, almost every NLP application has built vocabulary

from smaller units such as subwords to address these problems.
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One of the most popular approaches for subword creation is Byte Pair Encoding (BPE) [65].

The BPE model uses an iterative method to create a subset of words in the training set. The

words in the education set are first separated into the characters that are the smallest part of

a word. Each parsed character is considered a symbol, and the co-occurrence of these binary

symbols is calculated. A symbol that has two characters is created by combining the two

most common characters. This merging process is repeated iteratively for all symbols until

a certain number of sub words are obtained. The main purpose of this process is to finally

convert the most common character n-grams in the training set into a single symbol, or in

other words, a subword.

Another commonly used approach in subword tokenization is called SentencePiece (SPM)

[66] which has been specifically developed for text processing. SPM is a deterministic ap-

proach which is based on both BPE approach and unigram language modeling. Unlike BPE,

SPM can work directly on raw data that are not tokenized or processed at all. The first step

of the SPM approach is transforming all characters in the input data into unicode which

eliminates the language dependency.

We used BPE approach to extract subwords and created a shared vocabulary from Concep-

tual Captions using both English and German sentences and limit the vocabulary to 50k

subwords. We also used the same subword dictionary to tokenize Multi30k [3] that is used

in finetuning phase.

4.2. Object Representation

It is crucial to obtain good representation of the image in order to learn rich multimodal

embeddings. Most of the recent works have applied a pre-trained object detection network

to extract region representations.

LXMERT [57] extracts 2048 dimensional ROI features from a Faster R-CNN [67] network

that is pretrained on Visual Genome Dataset [68]. VL-BERT [62] follows the same approach,

but instead of a feature extractor, it also updates the parameter of the Faster R-CNN network

during pre-training. ViLBERT [56] obtains mean-pooled convolutional features from the
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same Faster R-CNN network. For selecting the ROIs, the authors defined a threshold value

for the proposal scores and selected 10 to 36 region proposals.

In a similar way to the literature, we extracted the image features using a Faster R-CNN

network that is pre-trained on Open Images dataset [69]. We also performed mean pooling

to convolution features resulting in 1586 dimensional ROI embedding which is projected into

the embedding size of the network with a linear layer. For the sake of simplicity, we selected

30 ROI features for each image that had the highest scores.

Object features are projected into embedding size and fed into the network as visual words.

We also applied a special regional encoding strategy to encode the order of object proposals.

For this purpose, bounding box coordinates of the objects are also projected into the embed-

ding size. At the end, bounding box coordinates and object features are summed to obtain

final object representation.

4.3. Model

In this section, we proposed a cross-lingual multimodal to create general language and visual

embeddings that can be used in not only language/vision problems including image caption-

ing, multimodal machine translation but also other translation-related tasks such as machine

translation. In addition, word embeddings obtained with the help of visual information carry

richer information than those obtained using only textual information.

We developed a cross-lingual multimodal model based on XLM [1] that is cross-lingual

model trained in both a supervised and unsupervised manner. XLM employs three different

learning strategies. The first approach is termed Casual Language Modeling that is based

on typical language modeling for monolingual setting. The authors also employ Masked

Language Modeling (MLM) trained on multiple languages in a streaming manner. All words

in the input data are treated as a single stream with a length 256. During the training, 15%

of the text stream is sampled and 80% of the tokens in the stream are switched with masked

token [MASK].
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Figure 4.1. The TLM objective of XLM model. The words are randomly masked for both lan-
guages.

The final objective, which is the inspiration of this work is Translation Language Modeling

(TLM) illustrated in Figure 4.1.. In this approach, text streams from different languages

are concatenated into a single stream. TLM leverages parallel data, in contrast to other

previously mentioned objectives. In TLM, a fixed portion of the both languages is randomly

masked during training and promotes the alignment between two languages while predicting

the masked token. In other words, the model learns to attend to German language tokens

while predicting a token in English. Inspired from XLM, we developed a training objective

called Visual Translation Language Modeling (vTLM) to learn rich cross-lingual multimodal
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representations.

4.3.1. Visual Translation Language Modeling (vTLM)

TLM objective applies parallel pairs from different languages to learn cross-lingual repre-

sentations. Visual Translation Language Modeling (vTLM) extended the TLM objective by

adding an another modality; image. vTLM simply includes the visual input together with the

parallel data which is illustrated in Figure 4.2.. Each image in the input data is represented

with ROI features that can also be interpreted as visual words.

For masking visual words, VL-BERT [62] and LXMERT [57] zero out 15% of the ROI

features. On the other hand, vTLM masks 15% percent of the ROI features and are replaced

with the [MASK] token. In pre-training, vTLM uses the same [MASK] token for both visual

and textual tokens. 15% of the textual tokens are also masked randomly.

For the textual part of the input stream, vTLM follows the MLM objective where the model

learns to predict masked tokens. In the TLM objective, a softmax classifier with cross-

entropy loss is used for masked token prediction. vTLM also follows the same approach for

the textual part of the input. Similar to this idea, vTLM predicts the object label for masked

ROI feature and calculates cross-entropy loss for label prediction task. In other words, vTLM

employs two separate cross-entropy losses for visual and textual parts of the input stream.

For final loss, the outputs of these cross-entropy loss functions are summed together.

4.4. Pre-training Settings

To train our model, we used a small version of the original XLM [1] due to an insufficiency

of computational power. We set the embedding dimension to 512, which is half of the orig-

inal XLM setting. We used 6 layers and 8 attention heads with the Adam optimizer. We

trained our network with batch size of 64 and learning rate 0.0001. The network is trained

with Conceptual Captions [2] dataset which is originally contains 3.3m image/caption pairs.
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Figure 4.2. The proposed vTLM objective.
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However, some of the image links were broken or cannot be downloaded. Therefore, the fi-

nal dataset contains 3.1m pairs. We also set the epoch size to 300k which are sampled from

the entire dataset. For early stopping, we end the training if validation accuracy of MLM is

not changed in 25 epochs. Whereas most of the mentioned works in the literature such as

VilBERT [56] initialize the network with pre-trained BERT embeddings, we initialize our

network with random weights.

For comparison, pre-training was carried out with the TLM objective of XLM model with the

same training configuration of the vTLM objective. English/German automatic translation

pairs of the Conceptual Captions dataset are used for pre-training the XLM model.

4.5. Downstream Tasks

4.5.1. Machine Translation

vTLM and TLM models trained with the same configuration are finetuned for the machine

translation task on the Multi30k dataset. The purpose of choosing this task is to observe that

word representations created using visual information are more successful and semantically

richer than those created using only textual information. To adapt the proposed model to the

MT problem, the pre-training encoder was also used as a decoder. We initialized both en-

coder and decoder weights from pre-trained encoder. In the original adaption of XLM model

to the MT task, the attention layers between the encoder and the decoder were randomly

initialized. However, we realized that random initilization of these layers affected the fine-

tuning performance badly and the finetuned model failed to produce meaningful translations

in early epochs. For this reason, unlike the original XLM model, we set the weights of atten-

tion layers between the encoder and decoder using the encoder attention weights, and thus,

the model started to produce correct translations even in the first epochs during the finetuning

phase. We used a dropout of 0.2, an attention dropout of 0.1 and a learning rate of 0.0001.

We finetuned both models to maximum 80 epochs and performed early-stopping according

to the validation BLEU score.
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4.5.2. Multimodal Machine Translation

We evaluated the performance of the vTLM model on MMT task. We used the same ap-

proach with MT only with the addition of object proposals. For input sequence, we concate-

nateD the input sentence and object features extracted from the Faster-RCNN [68] network.

We used the top 36 object proposals which is the same as for the pre-training. We used the

same initialization on parameter set with the MT experiments.

5. Results and Analysis

We performed pre-training experiments for both TLM and vTLM objectives and evaluated

the performance of pretrained models with two different downstream tasks: Machine Trans-

lation and Multimodal Machine Translation. We used the same setting for all experiments

to compare different pre-training strategies. In addition to traditional performance metrics

such as BLEU, we also used MLT accuracy which measures the correctness of the translated

ambiguous words.

5.1. Datasets

5.1.1. Conceptual Captions

Conceptual Captions [2] is a large-scale image/language dataset collected using alt-text de-

scriptions of the images on the Internet. The final dataset contains 3.3m image/description

pairs in total. The authors build an automated process to create nice and clean captions from

alt-text descriptions. This process employs a pipeline proposed by [70], which consists of

extract, filter and process steps. In contrast to the MSCOCO [60], Conceptual Captions con-

tains data from various sources since they are collected on the Internet. Raw descriptions

contain many people/location names and it is, therefore, more diffucult to learn captioning

model. The authors used Google’s Natural Language APIs to locate named-entities and they

replaced these with corresponding hypernym words using Google’s Knowledge Graph API.
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They also removed numbers, dates, and units from descriptions and created a clean, learnable

captions. Example descriptions are shown in Table 5.1..

Figure 5.1. Samples taken from the Conceptual Captions dataset. Alt-text descriptions are the raw
descriptions collected from Internet. Conceptual Captions descriptions are clean and
fluent.

There are several large-scale image captioning an visual question answering datasets in the

literature, although all of these datasets specialized for one language, particularly English. In

this work, we extended the Conceptual Captions to another language— German. The reason

behind the choice of the German language is that the recent translation systems have shown

great success for English to German translation task. English and German belong to the same

language family and share the same grammatical rules which makes it easier to translate one

to another. For translation, we used fairseq [9] toolkit with a pretrained translation model

proposed by [71] which is the best performing network on the WMT19 English-German

translation task even outperforms human performance. The example translations can be seen

in Figure 5.2..

Each caption in Conceptual Captions is translated into German language to develop a large-

scale multimodal multilingual dataset. The German translations are not preprocessed or

validated; they are exactly used as they are obtained from the translation model. Therefore,
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the English-German translations are not perfectly aligned with each other and may contain

translation errors.

Figure 5.2. Example sentences from Conceptual Captions [2] and their automatic translations

5.1.2. Multi30K

Multi30K [3] is a multimodal machine translation dataset originated from Flickr30K [20].

The Flickr30k descriptions are collected with crowd-sourcing process for each image and

contains 31k image/caption pairs. Human translators translated each description in the

Flickr30K dataset into German in order to develop a parallel dataset. Human translators

did not see any image related to the description. Later on, Multi30k is expanded with other

languages; French and Czech. Different from German descriptions, images corresponding to

the the source description are shown to French [72] and Czech [73] translators which yields

image-aware translations.

5.2. Evaluation Metrics

Human evaluations of MT systems show several prospects of translation, including suffi-

ciency , constancy, and eloquence of the translation [74] but most of the time human eval-

uation approaches are rather costly [74]. Furthermore, these processes can take significant

amount of time to be completed which creates the need for automatic evaluation of these

systems. To solve this problem, several methods such as BLEU [75], METEOR [76] has
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Figure 5.3. Example captions from Multi30k dataset [3].

been proposed. In this section, we will give details about the evaluation metrics that we used

to evaluate our MT and MMT systems.

5.2.1. BLEU

Bilingual Evaluation Understudy (BLEU) [75] is the most popular MT performance metric

that propose distinguishes a good quality translation. This evaluation metric can be used in

many systems evaluated by comparing the source and target text data such as video/image

captioning, MT, MMT and question answering.

The initial task for a BLEU is to contrast unigram or n-grams of the competitor with the n-

grams of the translation of reference and compute the number of matches which are position-

independent. An increased number of matches shows that the candidate translation is more

similar that the reference and better alignment.
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logBLEU = min

(
1− r

h
, 0

)
+

N∑
n=1

wn log pn (12)

The calculation of the BLEU score is formulated in Equation 12 where N is the n-gram

number, h is the hypothesis sentence’s length, r is the length of the reference corpus and wn

stands for the positive weights that are summed to 1.

5.2.2. METEOR

METEOR is an automatic evaluation metric that is predicated on an approach of unigram

matching between the machine generated translations and reference translations. When

matching unigrams of the alignment of the candidate and reference sentences, could be

based on their surface, stemmed, and sentiment forms; besides, METEOR could be enlarge

to comprise more advanced matching techniques. [76]. Essentially, METEOR calculates

harmonic mean of recall and precision of the uni-grams matches. Recall is formualated as

R = mrh/rtotal and precision is P = mrh/htotal where mrh is the count of matches between

reference and hypothesis sentence, rtotal is the count of unigrams in the reference set and

htotal in the hypotheses set. To calcualate n-gram matches, METEOR employs a penalty

term p that groups the unigram matches to obtain longer matches. The final METEOR cal-

culation is formulated in Equation 13.

M =
10PR

R + 9P
(1− p) (13)

5.2.3. Multimodal Lexical Translation Accuracy

Multimodal Lexical Translation (MLT) accuracy is a evaluation metric for the multimodal

machine translation task. This method determines whether the ambiguous words in sen-

tences are translated correctly. [6] identified ambiguous words in the Multi30k [3] dataset

for this problem, and the translations corresponding to ambiguous words were performed by
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Ambigous Word: big

Textual content: girl watching a 
big wave heading towards her

Lexical Translation: große

Visual Content:

Figure 5.4. An example from MLT [6] dataset

humans. The authors discovered that 1108 different English words are ambiguous in German

or French. These words are in many sentences and in a total of 98,647 ambiguous word /

sentence pairs. An example data from MLT dataset is shown in Figure 5.4..

For input word x and translation system T , the proposed MLT accuracy metric searches

for the correct translation y of the ambiguous word in the output T (x) from the translation

system. Finally, the MLT accuracy is calculated by counting how many times the system

predicted ambiguous words correctly. This metric is used not only to evaluate MMT perfor-

mance, but also to the assess of standard MT systems.

5.3. Quantitative Results

We trained the XLM architecture for both TLM and vTLM objectives under same setting. In

order to compare the performance of these models, we first performed finetuning on machine

translation task. In this experiment, we investigated whether the word embeddings learned by
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including visual information are richer than those learned by using the traditional language

model.

In the pre-training phase, we used same parameter set for both TLM and MLM objective and

validation MLM accuracy is used for early stoppping. During the experiments, we realized

that the word embedding obtained from the checkpoints where the validation MLM was

highest performed poorly in finetuning. For this reason, we conducted our experiments with

checkpoints that we received from an intermediate point where both models reached the

similar MLM accuracy.

In Table 5.1., the experimental results are shown for downstream tasks. We performed ma-

chine translation experiments for both XLM-TLM (textual) and XLM-vTLM (textual + vi-

sual) models to observe whether word representations enriched by using visual informa-

tion are of higher quality than those using only textual data. In machine translation exper-

iments in Table 5.1., we showed that the model which is initialized using the weights of

the visual-based XLM-vTLM model, obtain better results than the XLM-TLM initializa-

tion in the BLEU and METEOR metrics. We also achieved state-of-the-art results for MT

and MMT tasks on Multi30k test2016 test set. We obtained 41.55 and 60.1 in BLEU and

METEOR respectively for MMT tasks which improves the MT performance of textually-

grounded model (XLM-TLM). This also shows that the image information is included in the

model yields better translations. MT system initiliazed by our visually-grounded representa-

tions (XLM-vTLM) perform better than even existing MMT systems which includes visual

content in the model.

We also evaluate the performance of the MT and MMT system using MLT accuracy [6]

which a new evaluation metric measures the correct translation of ambiguous words. Ex-

perimental results showed that the achievements in the MLT accuracy are in contrast to

BLEU and METEOR. The model initialized with the TLM weights obtained the highest

accuracy. We investigated the dataset to understand the reason why TLM performs better

in this metric and realized that the dataset [6] we used to calculate MLT accuracy involves

only Multi30k vocabulary. When we examined the translations created by vTLM which are
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Downstream Task Model BLEU METEOR

Machine Translation

Doubly-att (TF) [77] 38.8 56.8
nmtpy (RNN) [78] 38.9 58.4
XLM-TLM (ours) 41.1 59.5
XLM-vTLM (ours) 41.55 59.8

Multimodal Machine Translation
Trg-mul (RNN) [21] 37.8 57.7
VMMT (RNN) [79] 37.5 56.0
Deliberation Network (TF) [80] 38.0 55.6
Graph-based (TF) [81] 39.8 57.6
BN + Enc. Attention (RNN) [82] 40.5 57.9
XLM-vTLM (ours) 41.8 60.1

Table 5.1. Experimental results of our models and recent state-of-the-art models on Multi30k
test2016 dataset. There is no MT and MMT systems in the literature employs pre-training
and fine-tuning on Multi30k dataset. Thus, the systems shared here does not use pre-
training.

marked wrong, we found that it was not actually wrong. For source sentence ”a motocross

race with a lot of mud”, the MT system based on vTLM generates the following translation;

”einen motocrossennen mit viel schlamm” which is correct. However, MLT dataset searches

the ”matsch” word for lexical German translation of ”race”. In generated translation, ”mo-

tocrossennen” also means ”race” in English but MLT accuracy tagged this translation as

incorrect. The reason is the MLT dataset does not contain similar words and dependent on

the vocabulary of the Multi30k dataset. Therefore, MLT accuracy does not provide clear

evaluation. For future work, we plan to extend the MLT dataset by using a similar words

dictionary.

Model MLT Accuracy

Machine Translation
XLM-TLM 79.14
XLM-vTLM 71.77

Multimodal Machine
Translation XLM-vTLM 72.22

Table 5.2. Experimental results on Multi30k test2017 dataset

5.4. Qualitative Results

In Table 5.3., we present the example English-German translation results for both TLM

and vTLM models. The first column shows the English input sentence, and the second
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and third columns show the English translations produced by TLM and vTLM models, re-

spectively. Below each translation, there is an explanation translated back to English using

Google Translate. In these results, samples differentiated by TLM and vTLM models were

selected. In the selected examples, the TLM model failed to translate every word correctly,

and there are missing words in the translations. In the translations obtained by the vTLM

model, missing words are corrected, and some words are translated more accurately. We also

demonstrated additional examples to compare MT and MMT systems 2.3.. We shared the

English translation (ET) which is obtained using Google Translate. MT results are obtained

without any visual information.

For selecting the weights for our pre-trained models, we first selected the best checkpoints

according to the MLM accuracy. We realized that best checkpoints obtained from pre-trained

models performs dramatically bad in finetuning. We observed that validation BLEU scores

does not improve over 12 epochs while finetuning MT model which is initialized by the

best checkpoint obtained from pre-trained TLM model. For this reason, we decided to use

checkpoints taken from the intermediate steps of the pre-trained models in the finetuning

experiments.

In Figure 5.5., we shared the BLEU scores for TLM and vTLM models on Multi30k vali-

dation set for each epoch in finetuning the MT system. We selected the checkpoints where

both models obtained similar MLM accuracy, which is 80. Unlike the finetuning experi-

ments with the best checkpoint of the pre-trained models, we observed that model initiliazed

with vTLM showed better performance and obtained 26 BLEU on validation set even in first

epoch finetuning which is almost 5 point higher than TLM. However, we noticed that vTLM

converges slower than the TLM based model.

To examine the attention mechanism of the vTLM model, we extracted the attention weights

in the pre-training phase which are shown in Figure 5.7., Figure 5.8.. For simplicity, we

truncated the English sentence from the input sequence and only fed the German sentence

and object regions as input the network and used the last Transformer layer.
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Translation
Source Sentence TLM vTLM

a woman with brown hair
sitting on a bench outside
a cafe

eine frau mit braunen haaren
sitzt draußen auf einer bank

eine braunhaarige frau sitzt
draußen vor einem
cafe auf einer bank

ET: a woman with brown hair
is sitting outside on a
bench

ET: a brown-haired woman
is sitting on a bench
outside a cafe.

four people relaxing on a
grassy hill overlooking
a rocky valley

vier leute entspannen
sich auf einem
grasbewachsenen hugel
mit blick auf ein steintal

vier personen entspannen
sich auf einem
grasbewachsenen hugel
mit blick auf ein felsigen tal

ET: four people relax on a
grassy hill overlooking a
stone valley

ET: four people relax on a
grassyhill overlooking a
rocky valley

a boy wearing red and white
swimming trunks diving
backwards in a beautiful
pool

ein junge mit rot-weißen
badehose springt ruckwarts
in einem wunderschonen
pool ruckwarts

ein junge in einer rot-weißen
badehose springt ruckwarts
in ein schones
schwimmbecken

ET: a boy in red and white
swimming trunks jumps
backwards in a beautiful pool

ET: a boy in red and white
swimming trunks jumps
backwards into a beautiful
swimming pool.

a female police officer in a
cap and navy uniform
smiles while wearing
sunglasses outside of a shop

eine polizistin mit kopfbede-
ckungund marineuniform
lachelt lachelnd vor einem
geschaft und lachelt

eine polizistin mit mutze
und marineuniform lachelt
wahrend sie eine sonnenbrille
vor einem geschaft tragt

ET: a policewoman with a hat
and a marine uniform
smiles and smiles in front
of a shop

ET: a policewoman with a hat
and navy uniform smiles
while wearing sunglasses
in front of a shop

a man dressed in black
leather and a cowboy hat
is walking around a
renaissance festival

ein mann in schwarzer
lederkleidung und cowboyhut
lauft um ein renaissancestuck

ein mann in schwarzer
lederkleidung und cowboyhut
geht um ein renaissance-fest

ET: a man in black leather
clothes and a cowboy hat
walks around a renaissance
piece

ET: a man in black leather
clothes and cowboy hat
goes to a renaissance festival

a woman acts out a
dramatic scene in public
behind yellow caution tape

eine frau macht in der
offentlichkeit hinter gelben
warnbandern eine dramatisch
szene

eine frau fuhrt in der
offentlichkeit eine dramatischer
szene in einem offentlichen
hinter gelbem absperrband auf

ET: a woman makes a dramatic
scene in public behind yellow
warning bands

ET: a woman performs a dramatic
scene in public on a public
behind a yellow barrier tape

two people are silhouetted
against a lake reflecting a
painted sky

zwei personen stehen gegen
einen see und spiegeln einen
bemalten himmel

zwei menschen stehen sich als
silhouette an einen see und spiegelt
sich einen bemalten himme

ET: two people stand against
a lake and reflect a painted sky

ET: two people stand in silhouette
at a lake and a painted sky is
reflected

Table 5.3. Example translations for produced from MT systems using TLM and vTLM models. We
back-translated each translation to English using Google Translate which is shown under
the translation (ET).
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Figure 5.5. We showed the BLEU score on Multi30k validation set while finetuning for TLM and
vTLM models

In Figure 5.7., we demonstrated the attention weights of the German sentence ”ein junge

springt auf seinen fußball spielenden bruder” and corresponding object proposals for each

head. When we examine the heads with the masked token ”fußball”, we observed that ma-

jority of the heads are focused on random tokens and are not indicative. However, when

looking at Head 6, we realized that the model directly attends to the object associated with

the masked word ”fußball”. Also in Head 5, the model tends to attend to sport-related object

regions such as football, sports-uniform and clothing. In this matter, [83] conducted various

experiments to prove that the test performance does not significantly drops when some of

the heads are removed. The authors also demonstrated that even some of the heads can be

represented only one head. Therefore, most of the heads are redundant in our case.

In Figure 5.7., we show another attention visualization for the German sentence ”ein junges

mädchen versucht, eine ziege zu bürsten”. We masked the word ”ziege” which means ”goat”

into English and we examine whether model attends to animal-related objects or not. We
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Image Source Sentence Ground Truth MT output (TLM) MT output (vTLM) MMT (vTLM)

four red 
pomegranates 
hang from a tree

vier rote 
granatäpfel hängen 
an einem baum

vier rote schleifen 
hangen von einem 
baum

vier rote helfer hangen 
von einem baum herab

vier rote äpfel hängen 
von einem baum

ET: four red bows 
hangs from a tree

ET: four red helpers 
hang from a tree

four red apples hang 
from a tree

a snow-covered 
mountain viewed 
from afar

ein 
schneebedeckter 
berg aus der ferne 
gesehen

ein schneebedeckter 
berg von weiter ferne 
betrachtet

ein schneebedeckten 
berg von weiter ferne

ein schneebedeckten 
berg betrachtet ferne

ET: a snowy mountain 
viewed from afar

ET: a snow-capped 
mountain from afar

a snow-capped 
mountain looks afar

a man is casting 
his line to fish

ein mann wirft zum 
angeln seine leine 
aus

ein mann wirft seine 
leine zum fischen

ein mann stellt seine 
leine zum fischen an

ein mann wirft seine 
leine zum fisch

ET: a man throws his 
line for fishing

ET: a man puts his line 
on for fishing

a man throws his line to 
the fish

graffiti of cartoon 
space scene on 
bridge underpass

graffiti einer 
cartoon-raumfahrts
zene unter einer 
brückenunterführun
g

graffitis von 
cartoon-raumszene auf 
einer brücke 

graffitis in einem 
cartoon-raum auf einer 
brücke aus brücke

graffitis im cartoon-raum 
auf einer unterfuhrung

ET: graffiti from cartoon 
room scene on a 
bridge.

ET: graffiti in a cartoon 
room on a bridge made 
of bridge

ET: graffiti in cartoon 
room on an underpass

a man watches 
four defenseless 
cats

ein mann 
beobachtet vier 
wehrlose katzen .

ein mann beobachtet 
vier passanten 

ein mann beobachtet 
vier lagerkatzen

ein mann beobachtet 
vier katzen

ET: a man observes 
four passers-by

ET: a man watches four 
camp cats

ET: a man watches four 
cats

Figure 5.6. Example translations from MT and MMT systems for Multi30k test2017 dataset

observe that Head 3 has significantly high attention weights on ”mule”, ”goat” and ”dog”

objects. Also in Head 8, the attention weights are higher in animal and human-related objects.

Similar with previous example, most of the heads does not provide meaningful attention

weights.

6. Conclusion

In this thesis, a new approach was developed for cross-lingual multimodal pre-training. We

translated the large-scale image captioning dataset; Conceptual Captions [2] into German

automatically using a state-of-the-art English to German Machine Translation model [71],
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because a large-scale multilingual dataset was required during the pre-training phase of this

model.

Our proposed model called Visual Translation Language Modeling (vTLM) is based on a

cross-lingual model XLM [1]. XLM employs Transformer architecture, similar to other

BERT-based [33] models. XLM proposed a pre-training objective called Translation Lan-

guage Modeling (TLM) that takes sentences from multiple languages as an input and trains

cross-lingual word embeddings. We extend the TLM objective by adding the object features

extracted from corresponding images. Each image is represented by object proposals that can

be interpreted as visual words. We extracted object proposals using a Masked Faster-RCNN

[68] trained on OpenImages [69] dataset which consist of 600 object classes.

We trained XLM model for both TLM and vTLM objectives and compared the performance

on two downstream tasks; MT and MMT. We used the Multi30k [3] dataset for downstream

tasks which is an extension of Flickr30k [20] dataset with multiple languages. We showed

that visually-grounded word representations (vTLM) performed better than the word repre-

sentations only pre-trained with the textual data (TLM) in BLEU and METEOR. Experi-

mental results showed that the proposed model outperforms all of the existing MT and MMT

systems. Our MT system which is initialized with visually-grounded word representations

(vTLM) also outperforms the existing MMT systems that directly used the visual content.

We compared the example translations of MT systems that are initiliazed with TLM and

vTLM models’ weights (Table 5.1.). It has been observed that the descriptions produced

by the vTLM model contain more accurate words than those produced by TLM, and some

words ignored by TLM are included in the vTLM translation output. In Appendix A, we also

shared translation examples for both MT and MMT systems. In some examples, although

MT systems using both TLM and vTLM are insufficient to make accurate translation, the

MMT system has been able to produce correct explanation because it benefits from visual

information directly.

We also demonstrated that MMT improves the MT performance in BLEU and METEOR

which confirms adding visual information increase the translation quality. Additionally, we
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evaluated MT and MMT models using MLT accuracy which are in contrast to other reported

evaluation metrics. When we analyzed the translations and ground truth, we observed that

MLT dataset is created based on Multi30k dataset which is significantly smaller than the

Conceptual Captions and most of the translated words does not exist in Multi30k vocabu-

lary. In future work, we will expand the MLT dataset using a similar words dictionary and

hopefully obtain more relevant results.

We visualized the attention weights for each head to demonstrate whether the proposed

model focused on the relevant object regions. We observed that most of the heads oper-

ate randomly and are not indicative but some heads learns to attend related object regions.

We also showed the MT finetuning performance in each epoch according to BLEU met-

ric for both models initiliazed with TLM and vTLM. Accordingly, it was observed that the

vTLM-based model not only achieved higher final BLEU score, but also performed signifi-

canly better than the TLM-based model in the early stages of the finetuning phase. Thus, we

concluded that visually grounded word representations are more successful than textual ones

even before finetuning.

As future work, we began to develop a new masking strategy to improve model’s learning ca-

pacity. This strategy essentially masks the word corresponding to the relevant object region,

forcing the model to attend that object region when generating the masked word. We assume

that this strategy will improve the performance in downstream tasks and results richer word

embeddings. We also plan to work on probing tasks to understand how model operates and

how it uses the visual information.
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Head #1

Head #2

Head #3

Head #4
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Head #6

Head #7

Head #8

Head #5

Figure 5.7. We visualize the attention weights for each head in pre-training for a German sentence
and object regions. The rows contains German tokens and columns are named as the
object label. We replaced the token ”fußball” with [MASK] token to observe model’s
attention on visual input.
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Head #1

Head #2

Head #3

Head #4
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Head #5

Head #6

Head #7

Head #8

Figure 5.8. We visualize the attention weights for each head in pre-training for a German sentence
and object regions. The rows contains German tokens and columns are named as the ob-
ject label. We replaced the token ”ziege” with [MASK] which means ”goat” in English.
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