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ABSTRACT

THE INJECTIVE PROFILE OF A RING AND ITS EFFECT ON THE

STRUCTURE OF RINGS

Nergiz YUCA

Master of Science, Department of Mathematics

Supervisor: Assoc. Prof. Dr. Bülent SARAÇ

(August) 2020, 78 pages

This thesis is partly based on recent developments on the subject of what is known as

“injectivity domains” in the theory of modules over rings with identity. The subject was

suggested as a measurement of how far a module is away from being injective and has gained

increased interest over the last few years from people studying rings towards homological

properties. The aim of this thesis is to present significant achievements with a unifying

approach. Our thesis is primarily concerned with the investigation of a particular class of

rings, called rings with no middle class, which is defined by means of injectivity domains.

This thesis consists of four chapter. The first chapter contains motivation and historical

background of the subject of this thesis. In the second chapter, we give some necessary

background material and classifications of some rings by their homological properties to

better understand next chapters. In the third chapter, we introduce the notion of injectivity

domains and that of poor modules, defined in terms of injectivity domains. The last chapter

is concerned with the rings without a middle class. We give a number of properties of

these rings and characterize them with respect to hereditary pretorsion classes. We also

explore decomposability of rings with no middle class and obtain, in an incisive way, that

they can decompose into the product of an indecomposable ring and a semisimple Artinian

ring. Finally, we investigate commutative rings without a middle class.

Keywords: Injective module, Injectivity domain, Poor module, preradical, V-ring, QI-ring,

PCI-ring, SI-ring, Middle class.
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ÖZET

HALKALARIN İNJEKTİF PROFİLİ VE PROFİLİN HALKA YAPISI

ÜZERİNDEKİ ETKİSİ

Nergiz YUCA

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Doç. Dr. Bülent SARAÇ

Ağustos 2020, 78 sayfa

Bu tez, birimli halkalar üzerindeki modüller teorisinde “injektiflik bölgeleri” olarak bili-

nen konudaki son gelişmelere dayanmaktadır. Bu konu, bir modülün injektiflikten ne kadar

uzak olduğunun bir ölçütü olarak ortaya atılmış ve halkaların homolojik özellikleri üzerinde

çalışan insanlar tarafından son birkaç yıldır artan bir ilgi görmüştür. Bu tezin amacı bazı

önemli kazanımları birleştirici bir yaklaşımla sunmaktır. Tezimiz öncelikli olarak injektiflik

bölgeleri vasıtasıyla tanımlanan ve özel bir sınıf olan orta sınıfsız halkaların incelenmesi ile

ilgilidir.

Dört bölümden oluşan bu tezin ilk bölümünde, ilgilenilen konunun tarihsel geçmişi ve

motivasyonu hakkında bilgiler verilmiştir. İkinci bölümde, diğer bölümlerin daha iyi anlaşı-

labilmesi için bazı gerekli bilgiler ve halkaların üzerindeki homolojik özellikler aracılığıyla

sınıflandırılması verilmiştir. Üçüncü bölümde, injektiflik bölgeleri ve bu kavram üzerinden

tanımlanan yoksul modül kavramı ele alınmıştır. Son bölüm ise orta sınıfsız halkalar üze-

rinedir. Bu tür halkalarla ilgili özellikler verilmiş ve kalıtsal önburulma sınıfları ile ilişkili

olarak karakterize edilmiştir. Ayrıca, orta sınıfsız halkaların indirgenemez ve yarı-basit Artin

halkaların direkt çarpımı olarak ayrıştırılması üzerine çalışılmıştır. Son olarak, orta sınıfsız

değişmeli halkalar araştırılmıştır.

Anahtar Kelimeler: İnjektif modül, İnjektiflik bölgelesi, Yoksul modül, Önradikal, V-halka,

QI-halka, PCI-halka, SI-halka, Orta sınıf.
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Chapter 1

INTRODUCTION

Our thesis is a study that will be carried out within the scope of the research program that has

been actively ongoing for more than half a century under the title of "characterization of rings

through the homological properties provided by the modules over them", which is within the

scope of the algebraic theory known as "classification of rings". An important subject that

has been studied for a long time since the second half of the 20th century is the question

of how certain types of modules of a ring being injective affects the ring structure. In this

direction, many new ring types have been discovered and their relationships with each other

have been revealed. In our study, we will focus on a brand new ring type introduced in 2010,

and the relationship of these new rings with some of the previously defined ring types will be

presented. We will begin our study with the "injectivity domains", introduced as a measure

of how far the modules are from being injectivity, and the concept of "poor modules" defined

with the help of this concept. Then, we will address the structural properties and various

characterizations of the rings over which every module is either injective or poor. In addition,

we will give many examples of different character to these new rings.

In our thesis, we aim to discuss some new concepts and techniques which we believe

will contribute to the solution of the conjecture known as the “Boyle Conjecture” in the

literature that has not been resolved since the day it was brought forward. In this context, we

aim to constitute a theory within the scope of our thesis which would involve the researches

on the rings without a middle class carried out in the last ten years and scattered in the

literature. This thesis will also be an important source for understanding the position of the

QI-rings, because the rings without middle class are closely related to the QI-rings in terms

of each non-semisimple quasi-injective module being injective. Another aim of our thesis
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research is to be an important reference as part of the theory of classification of rings by their

homological properties.

According to a result obtained by Barbara Osofsky in 1964, the fact that all the cyclic

modules over a unital and associative ring are injective is equivalent to the ring being a

semisimple Artinian ring. This result is considered as one of the most important and funda-

mental results provided for determining a ring with the homological properties (e.g., injec-

tivity, projectivity, flatness, etc.) of the modules over it. Since then, significant steps were

taken to classify a ring in terms of the structure of the modules over it. One part of the re-

search program, extending from the second half of the twentieth century to the present day

and continues actively in this direction, is carried out when the certain types of modules over

a ring are injective. For example, we can say that there are ring classes such as right V-rings

(rings over which every simple rightR-module is an injective module), right PCI-rings (rings

over which every proper cyclic right R-module is an injective module), right QI-rings (rings

over which every quasi-injective rightR-module is an injective module), right SI-rings (rings

over which every singular right R-module is an injective module).

Many important steps have been taken to uncover the relations between these ring classes

so far. For example, in 1969, Ann Boyle showed that Noether hereditary V-rings are the QI-

rings, and threw out a conjecture (known as Boyle’s Conjecture) that “every right QI-ring is

right hereditary”. Some new methods and concepts that seem to provide the opportunity to

develop different approaches to the solution of Boyle’s Conjecture, which remains unsolved

until today, have been introduced in the last decade in several studies. The most important of

these is the concept of "ring without middle class", defined by the injectivity domains. First

introduced by Alahmadi, Alkan and Lopez-Permouth in 2010 [1], this ring class was later

studied in all aspects and its relationship with some other ring classes was investigated. It is

currently being investigated whether these rings have to satisfy the ascending chain condition

of right ideals. Rings without middle class are defined using the concept of poor modules.

In our thesis, contemporary theory of the previously mentioned subjects which are still

being developed will be compiled and presented as an integrated source of reference. Since

the rings without middle class, which is subject to our thesis, is an attractive subject in terms

of their interesting properties and their close relationship with other ring types, we think that

the subjects to be compiled in our thesis will be a good source for all researchers studying

related subjects.
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Chapter 2

PRELIMINARIES

2.1 Modules, Submodules and Homomorphisms

Definition 2.1.1. Let R be a ring with unity. A right R-module is an additive abelian group

M together with a mapping . : M ×R −→M , called scalar multiplication, which satisfies

the following axioms for all r, s ∈ R and m,n ∈M .

(i) m · 1 = m

(ii) m · (r · s) = (m · r) · s

(iii) m · (r + s) = m · r +m · s

(iv) (m+ n) · r = m · r + n · r

We can define a left R-module similarly. In this thesis, we will always use the right

R-modules.

Definition 2.1.2. A submodule N of an R-module M is a subgroup of (M,+) that is closed

under taking scalar multiplication, i.e, rn ∈ N for all r ∈ R and n ∈ N . IfN is a submodule

of M , then we write N ≤M .

Definition 2.1.3. A nonzero R-module S is said to be a simple module if 0 and S are the

only submodules of S.

Definition 2.1.4. Let M and N be two right R-modules. A homomorphism ψ: M −→ N is

a right R-homomorphism if for all a ∈ R and x, y ∈M we have

(i) ψ(x+ y) = ψ(x) + ψ(y),

3



(ii) ψ(xa) = ψ(x)a.

ψ is called a monomorphism if kerψ = 0 (in which case ψ is an injection), ψ is an epi-

morphism if Imψ = N (in which case ψ is a surjection) and ψ is called an isomorphism

when ψ is both a monomorphism and an epimorphism. If M = N , then ψ is called

an endomorphism. All right R-module homomorphisms from M to N form an additive

group, denoted HomR(M,N), with the following addition: If f, g ∈ HomR(M,N), then

(f + g)(x) = f(x) + g(x), for all x ∈ M . Also the endomorphisms of R-module M is

denoted EndR(M).

Definition 2.1.5. Let M be an R-module. A submodule U of M is said to be fully invariant

provided f(U) ⊆ U for every f ∈ EndR(M).

Definition 2.1.6. A sequence of homomorphisms · · · fn−1−→ An−1
fn−→ An

fn+1−→ An+1 · · · is

exact if for each successive pair fn, fn+1, we have Im fn = ker fn+1.

Proposition 2.1.7. [2, Proposition 3.12] Given modules X and Y and a

homomorphism ψ : X −→ Y , the sequence

(i) 0−→X ψ−→ Y is exact if and only if ψ is a monomorphism;

(ii) X
ψ−→ Y−→0 is exact if and only if ψ is an epimorphism;

(iii) 0−→X ψ−→ Y−→0 is exact if and only if ψ is an isomorphism.

Definition 2.1.8. We say that a class of right R-modules C is closed under taking extensions

if whenever 0→ X ′ → X → X ′′ → 0 is an exact sequence of right R-modules with X ′ and

X ′′ in C , then X is also in C .

2.2 Quotient Modules and Isomorphism Theorems

Definition 2.2.1. Let M be an R-module and A be a submodule of M . Then we can define

a module structure on the additive group M/A with the scalar multiplication

M/A×R −→M/A

(m+ A, r) −→ mr + A,

i.e , (m+ A)r = mr + A. The module M/A is called the quotient of M modulo A.
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The canonical map π : M −→ M/A, defined by π(m) = m + A, ∀m ∈ M is an

R-epimorphism with kerπ = A.

Proposition 2.2.2. [2, Corollary 3.7] Let M and A be right R-modules.

(i) If f : M −→ A is an epimorphism with ker f = B, then there is a unique isomorphism

η : M/B −→ A such that η(m+B) = f(m) for all m ∈M .

(ii) If B ≤ C ≤M , then M/C ∼= (M/B)/(C/B).

(iii) If D ≤M and B ≤M , then (D +B)/B ∼= D/(D ∩B).

Definition 2.2.3. Let M be a right R-module and let A be a nonempty subset of R. Then the

right annihilator of A in R is the set annR(A) = {r ∈ R : a.r = 0 for all a ∈ A}. Moreover,

if the nonzero subset A has exactly one element a ∈ R, then we write annR(a) instead of

annR(A).

Note that annR(A) is a right ideal of R. Also note that if A is a left ideal of R, then

annM(A) is a submodule of M .

Definition 2.2.4. A right R-module M is said to be cyclic if it is generated by one element,

i.e., M = mR = {mr : r ∈ R} for some m ∈ M . If cyclic right R-module M is not

isomorphic to R, then we say that it is proper.

Lemma 2.2.5. Let M be a cyclic right R-module generated by m. Then there exists an

isomorphism such that M ∼= R/ annR(m). Therefore, every cyclic R-module M is a factor

of R.

2.3 Direct Products and Direct Sums

Let {Ai}i∈I be a family of right R-modules. Their cartesian product∏
I

Ai = {(xi)I : xi ∈ (Ai)}

is a right R-module under addition and scalar multiplication defined in the usual way, as

follows:

(ai)I + (yi)I = (ai + bi)I

(ai)I · r = (ai · r)I

5



Then this module is called the direct product of the modules Ai. The direct sum of the

modules Ai is defined as the subset⊕
I

Ai = {(ai)I : ai ∈
∏
I

Ai with ai = 0 for almost i ∈ I}.

The direct product of the modules Ai contains the direct sum of modules Ai as a submodule

and if I is a finite set, then, obviously,⊕
I

Ai =
∏
I

Ai.

There are natural homomorphism,
∏

I Ai −→ Aj (for all j ∈ I), called a projection map

onto Aj , and Ai −→
∏

I Aj , called an injection map.

Lemma 2.3.1. [2, Lemma 5.1] Let ψ : M −→ A and ψ′ : A −→ M be R-homomorphisms

with

ψψ′ = 1A.

Then ψ is an epimorphism, ψ′ is a monomorphism and we have M = kerψ
⊕

Imψ′. In this

case ψ is called a split epimorphism and ψ′ is called a split monomorphism.

Lemma 2.3.2. LetC andD be rightR-modules such thatRR = C⊕D and let HomR(C,D) =

0. Then C is a two-sided ideal.

Proof. Let us consider the following equations:

RC = C2 +DC

We complete proof by showing DC = 0. Let d ∈ D. Define a mapping ψd : C → D with

ψd(c) = dc. Then we have ψd ∈ HomR(C,D) = 0 and dC = Imψd = 0. It means that for

all d ∈ D, dC = 0.

Proposition 2.3.3. LetM be a rightR-module, then the following statements are equivalent:

(i) M is semisimple.

(ii) M =
⊕

IMi, where Mi is a simple submodule of M for each i ∈ I .

(iii) M =
∑

IMi, where Mi is a simple submodule of M for each i ∈ I .

(iv) Every submodule of M is a direct summand of M , i.e., for some submodules L,N of

M , we have M = N ⊕ L.

6



Definition 2.3.4. An R-module M is called semisimple if any of the equivalent conditions

in Proposition 2.3.3 holds. We call the ring R semisimple in case RR is semisimple.

Proposition 2.3.5. [3, Proposition 1.17] The class of all semisimple right R-modules is

closed under taking submodules, factor modules, and direct sums.

2.4 The Socle and The Radical

Definition 2.4.1. Let M be a right R-module, the socle of M is the sum of all simple sub-

modules of M . We write Soc(M) to denote the socle of M .

By definition it is clear that the socle of M is the largest semisimple submodule of M

and note that M is semisimple if and only if Soc(M) = M .

Definition 2.4.2. Let M be a right R-module. The radical of M is defined as the intersection

of all maximal submodules of M . We denote the radical of M by rad(M).

Proposition 2.4.3. [2, Proposition 9.14, 9.8] Let M and A be right R-modules and let f :

M −→ A be an R-homomorphism. Then f(rad(M)) ≤ rad(A) and f(Soc(M)) ≤ Soc(A).

Definition 2.4.4. Let M be a right R-module. Then the top of M is defined as M/ radM ,

denoted topM .

Lemma 2.4.5. Let M and N be right R-modules. If M ∼= N , then topM ∼= topN .

As we shall see later in Lemma 2.12.7, the converse of Lemma 2.4.5 is also true for

finitely generated projective modules.

2.5 Essential and Small Submodules

Definition 2.5.1. Let A be a nonzero submodule of the R-module M. Then we say that A is

essential in M orM is an essential extension of A if for each submodule B ofM , A∩B = 0

implies B = 0. In this case, we denote A ≤e M . Dually, a submodule S of M is called

small or superfluous in M if, for any submodule L of M , L + S = M implies L = M . In

this case, we write S �M .

Proposition 2.5.2. [2, Proposition 5.16] Let M be a right R-module with submodules A ≤

B ≤M and C ≤M . Then,

7



(i) A ≤e M if and only if A ≤e B and B ≤e M ;

(ii) C ∩ A ≤e M if and only if C ≤e M and A ≤e M .

Definition 2.5.3. Let M be a right R-module and N ≤ M . If a submodule C of M is

maximal with respect to condition C ∩ N = 0, which means that C ⊆ C ′ and C ′ ∩ N = 0

implies C = C ′, then C is called a complement to N (in M ), denoted C ⊆c N . If C has no

proper essential extensions in M , we say that C is essentially closed in M .

Proposition 2.5.4. [2, Proposition 5.21] Let M be a right R-module and A′ ≤M . If A′ is a

complement to A, then

(i) A
⊕

A′ ≤e M ;

(ii) (A
⊕

A′)/A′ ≤e M/A′.

Proposition 2.5.5. [4, Proposition 6.22] Assume that C ⊆c M and that T is a submodule of

M such that C ∩ T = 0. Then C is a complement to T if and only if C ⊕ T ≤e M .

Proposition 2.5.6. [4, Proposition 6.32] Let M be a right R-module and C ≤M . Then the

following statements are equivalent:

(i) C ⊆c M .

(ii) C is essentially closed in M .

Proposition 2.5.7. [2, Proposition 5.17] Let M be a right R-module with submodules A ≤

B ≤M and C ≤M . Then,

(i) B �M if and only if A�M and B/A�M/A;

(ii) C + A�M if and only if C �M and A�M .

Proposition 2.5.8. [5, Proposition 3.16] Let A be a submodule of the right R-module M .

Then Soc(A) is the submodule of Soc(M). Moreover, if A is essential in M , then Soc(A) =

Soc(M).

Proof. The first claim is obvious. Let A ≤e M . Now consider a simple submodule B of M .

It is enough to show that B is also a submodule of A. Since A is essential in M , we obtain

A ∩B 6= 0, and so B ⊆ A. Hence, Soc(A) = Soc(M).
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Proposition 2.5.9. [5, Proposition 3.17] Let M be a right R-module. Then the following

statements are equivalent:

(i) Any nonzero submodule of M contains a simple submodule;

(ii) Soc(M) is essential in M .

Proof. We assume that (i) holds. If A is a nonzero submodule of M , then A contains a

simple submodule, say U . Then we obtain 0 6= U ⊆ Soc(M) ∩ A 6= 0. This shows that

Soc(M) is essential in M . Conversely, let Soc(M) is essential in M . If A is a nonzero

submodule of M , then A∩Soc(M) 6= 0. Since A∩Soc(M) is the submodule of semisimple

module Soc(M), thenA∩Soc(M) is also semisimple. Hence,A∩Soc(M) contains a simple

submodule. This shows that A also contains a simple submodule.

The following corollary provides a useful characterizations of the socle and radical.

Corollary 2.5.10. For a right R-module M , the following statements satisfy.

(i) Soc(M) =
⋂
{K ≤M : K is essential in M }

(ii) rad(M) =
∑
{K ≤M : K is small in M }

Corollary 2.5.11. [6, Corollary 10] Let M be a right R-module. Then M is semisimple if

and only if it contains no proper essential submodules.

2.6 Noetherian and Artinian Modules

Definition 2.6.1. A right R-module N is called Artinian if for every descending chain N1 ⊇

N2 ⊇ · · · ⊇ Ni ⊇ Ni+1 ⊇ · · · of submodules of N , there exists an n ∈ N such that

Nn+i = Nn (i = 1, 2, . . .).

A right R-module M is called Noetherian if for every ascending chain M1 ⊆ M2 ⊆

· · · ⊆ Mi ⊆ Mi+1 ⊆ · · · of submodules of M , there exists an n ∈ N such that Mn+i = Mn

(i = 1, 2, . . .).

Proposition 2.6.2. [7, Proposition 2.4.3] The following statements are equivalent for a right

R-module M :

(i) M is Noetherian;
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(ii) any submodule of M is finitely generated;

(iii) any nonempty set of submodules of M has a maximal member.

Proposition 2.6.3. [7, Proposition 2.4.4] The following statements are equivalent for a right

R-module M :

(i) M is Artinian;

(ii) any nonempty set of submodules of M has a minimal member.

Corollary 2.6.4. [2, Corollary 10.11] Let M be a right R-module. If M is Artinian, then M

contains a simple module. Moreover, Soc(M) ≤e M .

Corollary 2.6.5. [2, Corollary 10.16] For a semisimple right R-module S the following

statements are equivalent:

(i) S is Artinian;

(ii) S is Noetherian;

(iii) S is finitely generated.

Proposition 2.6.6. [2, Proposition 10.15] For a right R-module S the following assertions

are equivalent:

(i) radS = 0 and S is Artinian;

(ii) S is the direct sum of a finite set of simple submodules;

(iii) S is semisimple and finitely generated;

(iv) S is semisimple and Noetherian.

Lemma 2.6.7. Every nonzero right ideal is essential in a right Noetherian domain.

Proof. Let I be a non zero right ideal in R. Assume on the contrary that I ∩ aR = 0 for

0 6= a ∈ R. Since I 6= 0, there exists 0 6= b ∈ I such that bR ∩ aR = 0. We shall prove∑∞
n=1 a

nbR is a direct sum. Let

akbr0 + ak+1br1 + · · ·+ ak+tbrt = 0 with ak 6= 0 and ri ∈ R for i = 0, . . . , t.
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Then we can write br0 + abr1 + · · ·+ atbrt = 0 and see that

br0 = −a(br1 + · · ·+ at−1 = 0) ∈ aR ∩ bR.

Consequently, br0 = 0. An inductive argument shows that br1, . . . , brt are all zero. Hence,∑∞
n=1 a

nbR is a direct sum. Then we have

abR ⊂ abR⊕ a2bR ⊂ abR⊕ a2bR⊕ a3bR ⊂ · · · .

But this is a contradiction since R is right Noetherian. Hence, I must be essential in RR.

Lemma 2.6.8. A commutative Artinian integral domain is a field.

Proof. Let u be a nonzero element in R. It is enough to show that the inverse of u exists in

R. We can write a descending chain of ideals of R

(u) ⊇ (u2) ⊇ · · · ⊇ (ui) ⊇ (ui+1) ⊇ · · · .

Then this chain must terminate by assumption. Namely, there is an integer n such that

(un) = (un+1) = · · · . Then there is b ∈ R such that un = un+1b. This shows that

un(1− ub) = 0. Since R is an integral domain and u is nonzero, we have 1− ub = 0. This

shows that b is an inverse of u, which completes the proof.

2.7 The Singular Submodule

Definition 2.7.1. Let M be a right R-module, the singular submodule of M consists of

elements whose annihilators are essential right ideals of R and we denote it by Z(M), this

means that Z(M) = {m ∈ M | annR(m) ≤e R}. A right R-module M is called singular

(respectively, nonsingular) if Z(M) = M (respectively, Z(M) = 0).

We would like to note that nonsingular 6= not singular. If a right R-module M is both

singular and nonsingular, then it must be zero.

Example 2.7.2. [4, Example 7.6] The following are examples of singular and nonsingular

modules:

(i) Let R be a simple ring, then it is nonsingular.
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(ii) For a commutative domain R, all nonzero ideals of R are essential. Therefore, for

every R-module A,

Z(A) = {a ∈ A : ann(a) 6= 0}

is just the torsion submodule of A. Moreover, A is singular if and only if A is torsion,

and A is nonsingular if and only if A is torsion-free.

Proposition 2.7.3. [8, Proposition 1.5] For right R- modules A, B and C the following

statements satisfy:

(a) A module C is singular if and only if there is a right R-module B and an essential

submodule A of B such that C ∼= B/A.

(b) If A ≤ B and B is nonsingular, then B/A is singular if and only if A ≤e B.

Proposition 2.7.4. [8, Proposition 1.6] If R is a right nonsingular ring, then for any right

R-module M , we have Z(M/Z(M)) = 0.

Proposition 2.7.5. [8, Proposition 1.7] Let R be a right nonsingular ring. For right R-

modules M and N , the following statements satisfy:

(i) A module M is singular if and only if HomR(M,N) = 0 for all nonsingular modules

N .

(ii) A module N is nonsingular if and only if HomR(M,N) = 0 for all singular modules

M .

(iii) The class of singular right R-modules is closed under taking submodules, factors,

direct sums, and extensions.

(iv) The class of nonsingular right R-modules is closed under taking submodules, direct

products, and extensions.

2.8 Semi-artinian Rings and Modules

Definition 2.8.1. AnR-moduleM is said to be semi-artinian if every nonzero homomorphic

image of M has an essential socle. We call the ring R right (resp., left) semi-artinian in case

RR (resp., RR) is semi-artinian.
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The following result is well-known.

Proposition 2.8.2. The following conditions are equivalent for a ring R.

(i) R is a right semi-artinian ring.

(ii) Any right R-module is semi-artinian.

(iii) Any cyclic right R-module is semi-artinian.

(iv) Every cyclic right R-module contains a simple right R-module.

Proposition 2.8.3. [9, Proposition 5.2] Let R be a ring. If R is right Noetherian and right

or left semi-artinian, then it is right Artinian.

The property of being semi-artinian for a module is closely related to the concept of

the socle series (see [9]). The terms of this series associated with ordinals are constructed

iteratively. Now the socle series (or Loewy series) of M is the chain of submodules

Soc0(M) ≤ Soc1(M) ≤ · · · ≤ Socα(M) ≤ Socα+1(M) ≤ · · · ,

where Socα+1(M)/ Socα(M) = Soc(M/ Socα(M)) for every ordinal α, and if α is a limit

ordinal, then

Socα(M) =
⋃
β<α

Socβ(M).

By contsruction, there must exist a smallest ordinal λ ≤ |2M | such that Socλ(M) = Socλ+1(M).

The following well-known result shows how we can use the socle series of a module to de-

termine if it is semi-artinian.

Proposition 2.8.4. [10, Proposition 1] Let R be any ring. Then the following statements are

equivalent for any right R-module M :

(i) M is a semi-artinian right R-module.

(ii) Every nonzero homomorphic image of M has nonzero socle.

(iii) Socλ(M) = M for some ordinal λ.

It is clear that any right Artinian ring is right semi-artinian; but not vice versa (for inter-

esting nontrivial examples, we refer the reader to §4 of [11]). More generally, every Artinian

right R-module is semi-artinian. Indeed, if M is Artinian, then every factor of M is also
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Artinian. Hence, every nonzero submodule of nonzero factor of M is also Artinian, and so

contains a simple submodule. However, the class of semi-artinian modules is broader since it

contains arbitrary direct sums of Artinian modules since the class of semi-artinian module is

closed under taking arbitrary direct sums. Note also that the class of semi-artinian modules

is closed under taking submodules and factor modules, a fact which can be easily deduced

from the definition.

2.9 Semiprime Rings

Before giving the definition of a semiprime ring it is useful to define semiprime ideals.

Definition 2.9.1. A proper ideal I of R is called semiprime if, for an ideal J of R and some

positive integer k, Jk ⊆ I implies that J ⊆ I .

Note that semiprime ideals are precisely those ideals which are intersections of prime

ideals. In particular, every prime ideal is semiprime.

Definition 2.9.2. A ring R is called a semiprime ring provided (0) is a semiprime ideal.

Equivalently, if R has no nonzero nilpotent ideals then R is called semiprime.

Theorem 2.9.3. [12, Theorem 10.24] The following conditions are equivalent for any ring

R.

(i) R is semiprime and right Artinian.

(ii) R is semisimple.

(iii) R is semiprime and satisfies the descending chain condition on principal right ideals.

2.10 Local and Semilocal Rings

Definition 2.10.1. A ring R is called local if R has a unique maximal right ideal.

Note that if R is a local ring then R has no nontrivial idempotents.

Definition 2.10.2. An idempotent element e of the ring R is called local if eRe is a local

ring.
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Proposition 2.10.3. [12, Proposition 2.18] Let e be an idempotent in R and let J = radR.

Then the following conditions are equivalent:

(i) e is a local idempotent in R.

(ii) eR/eJ is a simple right R-module.

(iii) eJ is the unique maximal submodule of eR.

Proposition 2.10.4. [12, Corollary 23.12] Let R be a commutative ring. Then the following

conditions are equivalent;

(i) R is an Artinian ring;

(ii) R is a finite direct product of Artinian local rings;

(iii) R is Noetherian, with Krull dimension zero (i.e., all prime ideals of R are maximal

ideals).

Definition 2.10.5. A ring R is said to be semilocal if R/radR is a right Artinian ring, or,

equivalently, if R/radR is a semisimple ring.

Proposition 2.10.6. [12, Proposition 20.2] Consider the following two conditions for a ring

R:

(i) R is semilocal.

(ii) R has finitely many maximal right ideals.

We have, in general (ii)⇒ (i). The converse holds when R/radR is commutative.

Notice that, any local or right Artinian ring is semilocal.

2.11 Categories and Functors

Definition 2.11.1. A category C is given by;

1. a class of objects, Ob(C ),

2. a set of morphisms Mor(M,N) for every ordered pair (M,N) of objects,
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3. a composition of morphisms, Mor(M,N) × Mor(N,K) −→ Mor(M,K), denoted

(α, β) −→ βα where α ∈ Mor(M,N), β ∈ Mor(N,K) such that

(i) every α ∈ Mor(M,N) has a unique domain M and target N ,

(ii) composition is associative, that is, given morphisms

α ∈ Mor(M,N), β ∈ Mor(N,K), γ ∈ Mor(K,L), then

γ(βα) = (γβ)α,

(iii) for any object M ∈ C , there exists an identity morphism

1M ∈ Mor(M,M) such that α1M = α and 1Nα = α for all

α : M −→ N .

Example 2.11.2. The category of right R-modules, denoted Mod-R, is the category whose

objects are all right R-modules and whose morphisms are all right R-module homomor-

phisms. The composition of the morphisms is the usual composition.

Example 2.11.3. The category Ab contains the abelian groups as objects and group homo-

morphisms as morphisms. The composition of the morphisms is the usual composition.

Definition 2.11.4. Let C and D be categories. A functor F : C −→ D is a function such

that

(i) if M ∈ Ob(C ), then F (M) ∈ Ob(D);

(ii) if α : M −→ N in C , then F (α) : F (M) −→ F (N) in D ;

(iii) if M α−→ N
β−→ K in C , then F (M)

F (α)−→ F (N)
F (β)−→ F (K) in D and

F (βα) = F (β)F (α);

(iv) F (1M) = 1F (M) for every M ∈ Ob(C ).

Definition 2.11.5. A functor F : Mod-R −→ Ab is called an additive functor if F (α+β) =

F (α) + F (β) for every pair of R-morphisms α, β : A −→ B.

2.12 Projective Modules

Definition 2.12.1. A right R-module P is called projective if for every module epimorphism

f : A −→ C and module homomorphism g : P −→ C, there exists a homomorphism

h : P −→ A such that the below diagram commute, that is, f ◦ h = g.
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P
h

��
g
��

A
f
// // C // 0

Proposition 2.12.2. [13, Proposition 3.3] A right R-module P is projective if and only if

every short exact sequence 0−→A i−→ B
g−→ P−→0 splits.

Definition 2.12.3. A ring R is called hereditary if every submodule of projective R-module

is also projective.

Lemma 2.12.4. [2, Corollary 16.11] Let {Mα}α∈A be an indexed set of right R-modules.

Then
⊕

AMα is projective module if and only if each Mα is projective.

Proposition 2.12.5. [3, Proposition 1.24] If S is a simple right R-module, then S is either

singular or projective, but not both.

Proof. Let S be a simple right R-module. For some maximal right ideal M of R, we have

S ∼= R/M . We know that S is singular if and only if M is an essential submodule in R. If S

is not singular, we must have N ∩M = 0 for some nonzero right ideal N of R. Since M is

a maximal right ideal, we have N ⊕M = R and hence S is projective.

Corollary 2.12.6. [3, Corollary 1.25] Every nonsingular semisimple right R-module is pro-

jective.

Proof. Let S =
⊕

Si be a semisimple right R-module such that Si is simple module. If

Z(S) = 0, then each Si is nonsingular and hence projective by Proposition 2.12.5. Then by

Lemma 2.12.4, S is projective.

Lemma 2.12.7. [12, Lemma 19.27] Let R be any ring and R = R/J , where J is an ideal

of R contained in radR. Let A,B be finitely generated projective right R-modules. Then

A ∼= B as R-modules if and only if A/AJ ∼= B/BJ as R-modules.

2.13 Injective Modules and Related Concepts

In this chapter, we will focus on injective modules that are of particular importance for this

thesis and give some auxiliary notions that will be needed in the next chapter.
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Definition 2.13.1. A right R-module E is said to be injective if for every module monomor-

phism f : A −→ C and module homomorphism g : A −→ E there is a homomorphism

h : C −→ E such that the following diagram commute, that is, h ◦ f = g.

0 // A
f //

g
��

C

h��
E

Definition 2.13.2. A ringR is said to be self-injective providedRR is an injectiveR-module.

Lemma 2.13.3. Every self-injective integral domain is a field.

Proposition 2.13.4. [13, Proposition 3.25] A right R-module E is injective if and only if

HomR(−, E) is an exact functor.

Proposition 2.13.5. [13, Proposition 3.40] A right R-module E is injective if and only if

every short exact sequence 0 −→ E −→M −→ N −→ 0 splits.

Proposition 2.13.6. [13, Proposition 3.28] The following statements satisfy for any ring R:

(i) If (Ek)k∈K is a family of injective right R-modules, then
∏

k∈K Ek is also an injective

right R-module.

(ii) Any direct summand of an injective right R-module E is injective.

Proof. (i) Let E denote the product
∏
Ek and let f : M −→ N be a monomorphism

and g : M −→ E be a homomorphism. Since Ek is an injective module, then for the

composition homomorphism pk ◦g : M −→ Ek where pk denotes the usual projection

of E onto Ek, we can find hk : N −→ Ek such that pk ◦ g = hk ◦ f .

0 //M
f //

g
��

N
h

}}
hk

��

E

pk
��
Ek

We can define a map h : N −→ E with h : n −→ (hk(n)).

The map h does extend g, for if n = f(m) with m ∈ M and n ∈ N , then h(fm) =

(hk(fm)) = (pkgm) = gm, since x = pk(x) for every x ∈ E.
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(ii) Let Ej be a direct summand of an injective R-module E and f : M −→ N be a

monomorphism and g : M −→ Ej be a homomorphism. Since E is an injective

module, then for the composition homomorphism i ◦ g : M −→ E there is h : N −→

E such that i ◦ g = h ◦ f .

0 //M
f //

g

��

N
h′

~~

h

��

EjOO
i p

��
E

Consider the homomorphism h′ = p ◦ h : N −→ Ej , then we obtain

h′ ◦ f = p ◦ h ◦ f = p ◦ i ◦ g = 1Ej
◦ g = g.

Corollary 2.13.7. The direct sum of finitely many injective right R-modules is injective.

Theorem 2.13.8. [2, Theorem 25.1] The following statements are equivalent for an injective

right R-module E:

(i) E(U) is injective for all sets U .

(ii) E(N) is injective.

Theorem 2.13.9. [13, Theorem 3.30](Baer Criterion) A rightR-module E is injective if and

only if every R-homomorphism f : I −→ E, where I is an ideal in R, can be extended to a

homomorphism R −→ E.

Proof. Let A be a submodule of an R-module M and f : A −→ E . Let

ψ = {(A′, h′) : A ⊆ A′ ⊆M,h′ ∈ HomR(A′, E) such that h′|A = f}

be a partially ordered set ordered by (A′, h′) ≤ (A′′, h′′) if and only ifA′ ⊆ A′′ and h′′|A′ = h′.

We know that ψ has a maximal element by Zorn’s Lemma, say (A′′, h′′). Consider the

following diagram:

A //

f
��

A′′

h′′~~

//M

E
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It is enough to show that A′′ = M . Assume A′′ 6= M . Then there exist x ∈M \ A′′. Let

I = {r ∈ R : xr ∈ A′′} be a right ideal. We define λ : I −→ E with λ(r) = h′′(xr). By

assumption there exists λ̄ : R −→ E which extends λ. Now define h̄ : A′′+ xR −→ E with

h̄(y + xr) = h′′(y) + λ̄(r)

where y ∈ A′′ and r ∈ R. It is not difficult to see that h̄ is well defined because y + xr = 0

implies that xr ∈ A′′ and h̄|A′′ = h′′. Therefore, (A′′ + xR, h̄) ∈ ψ. However this is a

contradiction. In this case, A′′ = M , and so E is injective. The converse follows from the

definition.

Theorem 2.13.10. [12, Theorem 2.9] The following statements on a ring R are equivalent:

(i) R is a semisimple ring.

(ii) All finitely generated right R-modules are injective.

(iii) All right R-modules are injective.

(iv) All cyclic right R-modules are injective.

Proposition 2.13.11. [13, Proposition 3.43] A right R-module E is injective iff E has no

proper essential extensions.

Proposition 2.13.12. [13, Lemma 3.44] Let M be a right R-module. Then the following

statements are equivalent for a module E containing M .

(i) E is a maximal essential extension of M ; i.e, no proper extension of E is an essential

extension of M .

(ii) E is an injective module and M is essential in E.

(iii) E is an injective module and there is no proper injective submodule E ′; that is, there

is no injective E ′ with M ⊆ E ′ ( E.

Definition 2.13.13. A right R-module E containing a right R-module M is said to be an

injective envelope (hull) of M , denoted E(M), if one of the equivalent conditions in Propo-

sition 2.13.12 satisfies.

Theorem 2.13.14. [2, Theorem 18.10] Every module has an injective envelope. It is unique

up to isomorphism.
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Proposition 2.13.15. [2, Proposition 18.12] In the category of right R-modules for a ring

R, the following conditions hold:

(i) I is injective if and only if I = E(I).

(ii) If I ≤e N , then E(I) = E(N).

(iii) If I ≤ K, with K injective, then K = E(I)⊕ E ′ for some E ′ ≤ K.

(iv) If
⊕

A E(Mα) is injective (for instance, if A is finite), then

⊕
A

E(Mα) = E(
⊕
A

Mα).

Proposition 2.13.16. [2, Proposition 18.13] For any ring R, the following statements are

equivalent:

(i) Every direct sum of injective right R-modules is injective;

(ii) If (Mα)α∈A is an indexed set of right R-modules, then

⊕
A

E(Mα) = E(
⊕
A

Mα);

(iii) R is a right Noetherian ring.

Lemma 2.13.17. [3, Exercise 17, Ch.1, Sec. B] Let R be a commutative Noetherian ring,

and let P,Q be prime ideals of R. Then, P ⊆ Q iff HomR(E(R/P ),E(R/Q)) 6= 0.

Proposition 2.13.18. [5, Proposition 3.16] Let M be a right R-module. Then Soc(M) =

Soc(E(M)).

2.13.1 Relative Injectivity

Definition 2.13.19. Let M be a right R-module. A module N is called M -injective if for

any X ≤ M , any homomorphism ψ : X −→ N can be extended to a homomorphism

λ : M −→ N .

X i //

ψ
��

M

λ~~
N
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Notice that E is an injective module if and only if it is injective relative to every R-

module.

Lemma 2.13.20. [14, Lemma 1.2] IfB isA-injective, then any monomorphism α : B −→ A

splits. If, also, A is indecomposable, then α is an isomorphism.

Proof. There is an R-homomorphism β : A −→ B such that the following diagram com-

mutes.

B
α //

1B
��

A

β��
B

Now β ◦ α = 1B, and so A = α(B)⊕ ker β. The last statement is clear.

Proposition 2.13.21. [14, Proposition 1.3] Let N be an A-injective module. If B ≤ A, then

N is both B-injective and A/B-injective.

Proof. For a right R-module M , let f : M −→ N and let M be a submodule of B. Since N

is A-injective, then there is g : A −→ N such that g ◦ i = f .

M
i //

f
��

A

g~~
N

The restriction g|B : B −→ N extends f . This shows that N is B-injective. To prove

N is A/B-injective, let B ⊆ U ⊆ A and let α : U/B −→ N be a homomorphism. Now

consider the projection maps π : U −→ U/B and π′ : A −→ A/B. We can build the

following diagram:

U
i

//

π

��

A

π′

��
λ

��

U/B

α

��

// A/B

α′{{
N

It means that there exists λ : A −→ N which extends α ◦ π. In this case λ(B) =

(α ◦ π)(B) = α(0) = 0. This shows that kerπ′ ≤ kerλ, and so there is α′ : A/B −→ N

such that α′ ◦ π′ = λ. Therefore for all u ∈ U , we have

α′(u+B) = (α′ ◦ π′)(u) = λ(u) = (α ◦ π)(u) = α(u+B).
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Hence, α′ extends α, and this shows that N is A/B-injective.

Lemma 2.13.22. [15, Lemma 1.11] Let A =
∏

i∈I Ai and B be right R-modules. Then A is

B-injective if and only if Ai is B-injective for each i ∈ I .

Proof. Follows by using similar arguments given in the proof of the Proposition 2.13.6.

Proposition 2.13.23. [14, Proposition 1.5] A module N is (
⊕

i∈I Ai)-injective if and only if

N is Ai-injective for every i ∈ I .

Proof. Assume that N is Ai-injective for each i ∈ I . We shall denote A =
⊕

i∈I Ai. Let

B ⊆ A and let ψ : B −→ N be a homomorphism. Let Γ = {(B′, ψ′)|B ⊆ B′ ⊆ A,

ψ′ ∈ HomR(B′, N) such that ψ′|B = ψ} ordered by (B′, ψ′) ≤ (B′′, ψ′′) if and only if

B′ ⊆ B′′ and ψ′′|B′ = ψ′. Let (B′′, ψ′′) be a maximal member of Γ guaranteed by Zorn’s

Lemma.

B i //

ψ
��

B′′

ψ′′}}
N

It is enough to show that B′′ = A. Since N is Ai-injective, then there is ψi : Ai −→ N such

that ψi|Ai∩B′′ = ψ′′|Ai∩B′′ .

Ai ∩B′′ i //

ψ′′|Ai∩B′′
��

Ai

ψizz
N

We define ψ′i : Ai+B
′′ −→ N by ψ′i(ai+b) = ψi(ai)+ψ

′′
|Ai∩B′′(b), where ai ∈ Ai and b ∈ B′′.

ai + b = a′i + b′ ⇒

ai − a′i = b′ − b ∈ Ai ∩B′′ ⇒

ψi(ai − a′i) = ψi(b
′ − b) = ψ′′|Ai∩B′′(b

′ − b)⇒

ψi(ai) + ψ′′|Ai∩B′′(b) = ψi(a
′
i) + ψ′′|Ai∩B′′(b

′)⇒

ψ′i(ai + b) = ψ′i(a
′
i + b′).

This shows that ψ′i is well-defined. We now check that ψ′i is an extension of ψ, as follows:

ψ′i(b) = ψ′i(0 + b) = ψi(0) + ψ′′|Ai∩B′′(b) = 0 + ψ(b) = ψ(b)
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Since (B′′, ψ′′) is maximal, we obtain Ai + B′′ = B′′, and so Ai ⊆ B′′ for all i ∈ I .

Hence, A = B′′. To prove the converse, Proposition 2.13.21 together with Lemma 2.13.22

is sufficient.

Proposition 2.13.24. [15, Lemma 1.14] Let A and B be right R-modules. Then A is B-

injective if and only if β(B) ⊆ A for every R-homomorphism β : E(B) −→ E(A).

Proof. Suppose that β(B) ⊆ A for every R-homomorphism β : E(B) −→ E(A). Let

U ⊆ B and ψ : U −→ A be an R-homomorphism.

U
i //

ψ
��

E(B)

β

��

A

i
��

E(A)

Since E(A) is an injective module, then there exists β : E(B) −→ E(A) such that β|U =

ψ. It follows that, by hypothesis, β|B : B −→ A extends ψ, which implies that A is B-

injective. Conversely, assume that A is B-injective and let β : E(B) −→ E(A) be a nonzero

R-homomorphism. Now consider the set U = {b ∈ B|β(b) ∈ A}. Since A ≤e E(A),

Im β ∩ A 6= 0; hence U 6= 0 as B ≤e E(B) and U = B ∩ β−1(A).

U i //

β|U
��

B i //

ψ||

E(B)

β

||

A

i
��

E(A)

Since A is B-injective, there is ψ : B −→ A such that ψ|U = β|U . It is enough to show that

(β − ψ)(B) = 0. Let us show that M ∩ ((β − ψ)(B)) = 0. If a = (β − ψ)(b), where a ∈ A

and b ∈ B, then β(b) = ψ(b) + a ∈ A. Hence, b ∈ U . Consequently, a = (β − ψ)(b) = 0

for all a ∈ A and b ∈ B. In this case, A∩ (β−ψ(B)) = 0. But since A is essential in E(A),

we have (β − ψ)(B) = 0. This shows β(B) ⊆ A.

Definition 2.13.25. Let A and B be right R-modules. We define the trace of B in A by

Tr(B,A) :=
∑
{f(B) : f ∈ HomR(B,A)}. If U is a class of right R-modules, then we

define the trace of U in A as Tr(U , A) :=
∑

B∈U Tr(B,A).
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Lemma 2.13.26. Let A and B be right R-modules. A module A is B-injective if and only if

Tr(B,E(A)) ⊆ A.

Proof. Easily follows from Proposition 2.13.24.

Lemma 2.13.27. Let M be a right R-module and let E be an injective module. Then

Tr(M,E) is M -injective.

Proof. Let T = Tr(M,E). It is enough to show that Tr(M,E(T )) ⊆ T . Let f : M → E(T )

be a homomorphism. We already know that E(T ) is the minimal injective module containing

T by Proposition 2.13.12, and so E(T ) is embedded in the injective moduleE. We can regard

E as containing E(T ). Thus, we have f : M −→ E. This gives that Im f ⊆ Tr(M,E) = T ,

and so Tr(M,E) is M -injective.

2.13.2 Quasi-Injective Modules

Definition 2.13.28. A right R-module M is said to be quasi-injective if it is injective relative

to itself.

Lemma 2.13.29. [2, Corollary 1.14] A right R-module M is quasi-injective if and only if

M is a fully invariant submodule of E(M).

There are natural example of quasi-injective modules, namely injective modules. Now

we give some other examples.

Example 2.13.30. Any simple rightR-module is quasi-injective. However, it need not always

be injective. Moreover, any semisimple module is quasi-injective.

Example 2.13.31. [4, Example 6.72] Let R be a commutative PID. Then any proper cyclic

module is quasi injective.

Lemma 2.13.32. [15, Lemma 1.17] If M is quasi-injective, then every direct summand N of

M is also quasi-injective.

Proof. Suppose that M = N ⊕ S is quasi- injective. Then by Lemma 2.13.22, N is M -

injective. By Proposition 2.13.21, N is quasi-injective.

Note that a direct sum of two quasi-injective modules need not always be quasi-injective

in general. Now we give the following counterexample for this situation, which is given in

[4].
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Example 2.13.33. Let R = Z, A = Q and A′ = Zn for any natural number n. Note that A

and A′ are quasi-injective Z-modules. However, B = A⊕ A′ is not quasi-injective. Indeed,

let C = Z ⊕ (0) ⊆ B, and take f ∈ HomZ(C,B) such that f takes Z to Zn by the natural

projection map. f cannot be extended to an endomorphism of B, since HomZ(Q,Zn) = 0.

Therefore, B cannot be quasi-injective.

2.14 Some Rings Characterized by Homological Properties

Now, we will give some important classes of rings that are determined by the homological

properties of their modules.

Definition 2.14.1. A right nonsingular ring R is called right SI provided every singular right

R-module is injective.

Proposition 2.14.2. [8, Proposition 3.1] Let R be a ring. Then the following properties are

equivalent:

(i) R is a right SI-ring.

(ii) All singular right R-modules are semisimple.

(iii) R/I is semisimple for all essential right ideals I of R.

Proof. (i)⇒ (ii): LetM be a singular rightR-module. Then by assumption, all submodules

of M are injective, and hence are direct summands of M . It follows that M is semisimple

by Proposition 2.3.3.

(ii)⇒ (iii) : If I is an essential right ideal of R, then R/I is singular by Proposition 2.7.3.

Hence, it is semisimple.

(iii)⇒ (i) : Suppose that M is a singular right R-module and that I is a right ideal of R. Let

f : I → M be R-homomorphism. Note that, I/ ker f is singular. Then ker f is essential by

Proposition 2.7.3, and so R/ ker f is semisimple. Observe that I/ ker f is a direct summand

of R/ ker f , it follows f extends to a homomorphism g : R → M . This implies that M is

injective by Theorem 2.13.9. Therefore R is right SI-ring.

Proposition 2.14.3. [8, Proposition 3.3] The following statements satisfy for a right SI-ring

R.
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(i) rad(R) ⊆ Soc(RR).

(ii) [rad(R)]2 = 0.

(iii) I2 = I for every essential right ideal I of R.

(iv) R is right hereditary.

Proposition 2.14.4. [8, Proposition 3.6] Let R be a right SI-ring, then R/ Soc(RR) is right

Noetherian.

Theorem 2.14.5. [8, Theorem 3.11] A ring R is right SI if and only if there exists a ring

decomposition R = U ×R2× · · ·×Rn such that U/ Soc(UU) is a semisimple ring and each

Ri is Morita equivalent to a right SI-domain.

Definition 2.14.6. A ring R is called a right PCI-ring if every proper cyclic right R-module

is injective.

Theorem 2.14.7. [16, Theorem 5.2] A right PCI-ring R is either semisimple Artinian or a

simple right semi-hereditary right Ore domain.

Proposition 2.14.8. [17] Let R be a right PCI- domain, then R is right Noetherian.

Proposition 2.14.9. For a domain, the SI- and PCI- conditions are equivalent.

Proof. Let R be a right SI-domain and let R/I be a proper cyclic ideal of R for some right

ideal I of R. If we show that R/I is singular, then we are done. If R is semisimple Artinian,

then there is nothing to prove. Thus we suppose that R is not semisimple Artinian. First,

let us prove that R is a Noetherian domain. Since R is a domain by Theorem 2.14.7, we

have Soc(R) = 0. Then, by Proposition 2.14.4, R/ Soc(RR) is Noetherian, implying that

R is Noetherian. It follows that, by Lemma 2.6.7, I must be essential in RR, and so R/I is

singular. Since R is a right SI-ring, R/I is injective. Therefore, R is a right PCI-domain.

Conversely, let R be a right PCI-domain. It is enough to show that every singular cyclic

module is injective. Let S be a singular cyclic module. Then S must be proper because RR

cannot be singular. Hence, S is injective.

Lemma 2.14.10. Every injective cyclic rightR-module is semisimple over right PCI-domains.
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Proof. Let R be a right PCI-domain and let U be an injective cyclic right R-module which

is not isomorphic to R. Then we can write U ∼= R/I for some nonzero right ideal I of R.

Note that I is essential in R by Lemma 2.6.7, and so U must be singular by Proposition

2.7.3. So every nonzero submodule of U is singular. Since the SI- and PCI- conditions are

equivalent for a domain by Proposition 2.14.9, every submodule of U is injective, and thus a

direct summand.

Definition 2.14.11. A ring R is said to be right QI provided every quasi-injective right R-

module is injective.

Definition 2.14.12. A ring R is called a right V-ring if every simple right R- module is

injective.

Example 2.14.13. By definition, QI-rings and right PCI domains arise as natural examples

of right V-rings.

Indeed, we have the following implications (see [18] and [19, Theorem 7])

RightPCI =⇒ RightQI =⇒ rightV .

Moreover, Boyle proved in [19, Theorem 5] that if R is a hereditary Noetherian ring, then R

is a right QI-ring if and only if it is a right V-ring.

Lemma 2.14.14. [15, Lemma 8.12] Let R be a ring. Then the following statements are

equivalent:

(i) R is a right V- ring.

(ii) rad(MR) = 0 for any nonzero right R-module M .

(iii) Any proper right ideal T of R is an intersection of maximal right ideals.

Corollary 2.14.15. [15, Corollary 8.13] Let R be a right V-ring. Then the following state-

ments satisfy:

(i) J(R) = 0.

(ii) If I is any ideal of R, then R/I is also a right V- ring.

Corollary 2.14.16. Right or left V-rings are semiprime.
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Lemma 2.14.17. Right Artinian right V-rings are semisimple.

Proof. Let R be a right Artinian right V-ring. Then Soc(RR) is essential in RR, and it is

injective. Therefore, Soc(RR) = RR, completing the proof.

Definition 2.14.18. A ring R is called semiperfect if R is semilocal and idempotents of

R/radR can be lifted to R in the sense that given an idempotent η of R/ radR, there is an

idempotent e ∈ R such that η = e+ radR.

Example 2.14.19. Local rings and one-sided Artinian rings can be given as examples of

semiperfect rings.

The following result shows how semiperfect rings are determined homologically.

Proposition 2.14.20. [12, Theorem 24.16] Let R be any ring. R is a semiperfect ring if and

only if every finitely generated right R-module M has a projective cover.

Theorem 2.14.21. [12, Theorem 23.6] A ring R is semiperfect if and only if the identity

element 1 can be decomposed as 1 = e1 + · · · + en, where the ei’s are mutually orthogonal

local idempotents.

2.15 Some Torsion Theory

Definition 2.15.1. Let C and D be module categories and let σ : C −→ D and τ : C −→ D

be functors. A functor τ is called a subfunctor of σ if it satisfies the following properties:

(i) τ(C) ≤ σ(C) for all C ∈ C ,

(ii) τ(f) = σ(f)|τ(C) for all f ∈ HomC (C,D) .

By above definition, a functor τ : C −→ C will be a subfunctor of the identity functor

on C provided the following conditions hold:

(i) τ(C) ≤ C for all C ∈ C , and

(ii) τ(f) = f|τ(C) for all f ∈ HomC (C,D).

Definition 2.15.2. If an additive functor τ : Mod-R −→ Mod-R is a subfunctor of the

identity functor, then we say that τ is a preradical on Mod-R.
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Definition 2.15.3. Let M be a right R-module, then a preradical τ is called a left exact

preradical if and only if τ(N) = τ(M) ∩N for any submodule N of M .

Definition 2.15.4. A preradical τ is called idempotent provided τ 2 = τ . Also, τ is said to be

a radical if τ(M/τ(M)) = 0 for every right R-module M .

Definition 2.15.5. For a ring R, a subclass C of Mod-R is called a hereditary pretorsion

class if it is closed under taking submodules, factor modules, and arbitrary direct sums. If,

in addition, C is closed under taking extensions, then we call that C is a hereditary torsion

class.

Remark 2.15.6. One important and useful property of hereditary pretorsion classes is that

they are determined by the cyclic modules in them.

We remark that, to a left exact preradical τ one can associate the following two classes

of right R-modules, namely,

Tτ ={M |τ(M) = M}

Fτ ={M |τ(M) = 0}.

Note that Tτ is a hereditary pretorsion class. Conversely let C be a hereditary pretorsion

class of right R-modules. If M is an any right R-module, and τ(M) denotes the sum of

all submodules of M belonging to C , then τ(M) ∈ C . Therefore any module M contains

a largest submodules τ(M) belonging to C . In this way C gives rise to a preradical τ on

Mod-R. Connecting this procedure with the former assignment τ −→ Tτwe obtain the

following

Proposition 2.15.7. [9, Proposition 3.1] There is a one-to-one correspondence between

hereditary pretorsion (respectively, hereditary torsion) classes of right R-modules and left

exact preradicals (respectively, left exact radicals) on Mod-R.

Note that, if τ(M) = M (respectively, τ(M) = 0) for some right R-module M , where τ

is a left exact preradical on Mod-R, then we say that M is τ -torsion (respectively, τ -torsion-

free). Also note that, from now on, to avoid constant need for reffering to the correspondence

given in Proposition 2.15.7, we will use the same notation for both a hereditary pretorsion

class and its associated left exact preradical.
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Remark 2.15.8. There exist a partial ordering ≤ on the class of left exact preradicals (equiv-

alently, hereditary pretorsion classes) where T1 ≤ T2 means T1(M) ⊆ T2(M) for all right

R-modules M .

Proposition 2.15.9. [9, Ch. vi Proposition 1.5] For every preradical T , there exists a largest

idempotent preradical T̃ smaller than T , and there is a smallest radical T larger than T .

We can construct the smallest radical T larger than preradical T by transfinite induction

as mentioned in [9] as follows. We have an increasing sequence of preradicals Tα for an

ordinal α such that given any R-module M there exists an ascending chain

T0(M) ≤ T1(M) ≤ . . . ≤ Tα(M) ≤ Tα+1(M) ≤ . . . ,

of submodules of M where Tα+1(M)/Tα(M) = T (M/Tα(M)), for every ordinal α, and

if α is a limit ordinal, then

Tα(M) =
⋃
β<α

Tβ(M).

Now we define T by T (M) =
⋃
α Tα(M) for every R-module M .

Remark 2.15.10. Combining Propositions 2.15.7 and 2.15.9, one can conclude that given a

hereditary pretorsion class T , there exists a smallest hereditary torsion class T containing

T .

Corollary 2.15.11. [9, Ch. vi. Corollary 3.5] Let M be a right R-module. If T is a left

exact preradical , then we have T (M) ≤e T (M).

Example 2.15.12. Soc is a left exact preradical on Mod-R. It turns out that any right R-

module M is Soc-torsion modules are precisely semisimple modules. Note that the class of

all semisimple right R-modules, denoted SSMod-R, is a hereditary pretorsion class, which

corresponds to the left exact preradical Soc under the correspondence given in Proposition

2.15.7.

Example 2.15.13. The class of semi-artinian right R-modules is a hereditary torsion class.

If we consider the preradical Soc, then Soc is the smallest radical larger than Soc, and so

any Soc-torsion module is nothing but a semi-artinian module. Therefore, Soc is a left exact

radical corresponding to the hereditary torsion class of semi-artinian modules. It turns out

that the class of semi-artinian modules is the smallest hereditary torsion class containing

SSMod-R.
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Example 2.15.14. Let M be a right R-module and let Z(M) denote the singular submodule

of M , then Z is a left exact preradical. Observe that a module M is Z-torsion (respec-

tively, Z-torsion-free) if and only if M is singular (respectively, nonsingular). Also note that

the class of all singular right R-modules, denoted Sing-R, is a hereditary pretorsion class,

corresponding to the left exact preradical Z under the correspondence given in Proposition

2.15.7.

Proposition 2.15.15. [20, Proposition 1.11] If T is a torsion class on Mod-R, then:

(i) a right R-module M is T -torsion if and only if HomR(M,E(N)) = (0) for every

T -torsion-free right R-module N ;

(ii) a right R-module N is T -torsion-free if and only if HomR(M,E(N)) = (0) for every

T -torsion right R-module M .

Proposition 2.15.16. [20, Proposition 1.12] If T is a torsion class on Mod-R, then the class

of all T -torsion-free right R-modules is closed under taking extensions.

Definition 2.15.17. A hereditary torsion class T is said to be stable if T is closed under

taking injective hulls.

Example 2.15.18. Let M be a right R-module. Then Z2 : Mod-R −→ Mod-R is a left exact

preradical defined by

Z2(M)/Z(M) = Z(M/Z(M))

for all M ∈ Mod-R. In particular, Z2 is the smallest left exact radical larger than Z.

Proposition 2.15.19. [9, Proposition 6.2] Let M be a right R-module. Then the class of

Z2-tosion modules G = {M ∈ Mod-R |Z2(M) = M} holds the following conditions:

(i) G is the smallest hereditary torsion class containing Sing-R.

(ii) Z(M) ≤e Z2(M)

(iii) Z(M/Z2(M)) = 0

(iv) G is a stable torsion class.

Lemma 2.15.20. The following statements are equivalent for a hereditary pretorsion class

T :
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(i) T is a torsion class.

(ii) M/T (M) is T -torsion-free for every right R-module M .

(iii) If M is T -torsion-free, then so is E(M).

Now we define a particular class of modules that is of importance in our thesis introduced

by Robert Wisbauer.

Definition 2.15.21. Let C be a nonempty subclass of Mod-R. Then σ[C ] consists of sub-

modules of factors of direct sums of a right R-modules in C . If C consists of only a right

R-module M , then one can write σ[M ] instead of σ[C ].

Example 2.15.22. Let M be a right R-module. Then Tr(σ[M ], _) : Mod-R −→ Mod-R is

a left exact preradical, and so this preradical corresponds to the hereditary pretorsion class

σ[M ] under the correspondance given in Proposition 2.15.7.

Proposition 2.15.23. [21, Proposition 15.2] Let A and B be right R-modules. Then the

following statements are equivalent:

(i) σ[A] = σ[B];

(ii) B ∈ σ[A] and A ∈ σ[B].

Proposition 2.15.24. [21, Proposition 15.3] For any rightR-moduleM , the following state-

ments are equivalent:

(i) R is subgenerated by M (i.e, R ∈ σ[M ]);

(ii) σ[M ] = Mod-R;

(iii) R can be embedded in Mn for some n ∈ N.

Lemma 2.15.25. LetA andB be rightR-modules. If Tr(σ[A], B) = 0, thenB isA-injective.

Proof. Suppose that Tr(σ[A], B) = 0. It is enough to show that Tr(A,E(B)) ⊆ B. Suppose

that f : A −→ E(B) is a nonzero R-homomorphism. Since B ≤e E(B), we obtain 0 6=

f(A) ∩ B ⊆ B. Now let 0 6= g : C −→ B be the restriction of f to the nonzero submodule

C of A, where C = f−1(f(A) ∩B). Since C is in σ[A], g is a nonzero map in Tr(σ[A], B),

a contradiction. In this case, Tr(A,E(B)) = 0 ⊆ B. Hence B is A-injective.
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Lemma 2.15.26. Let M be a right R-module and let E be an injective right R-module.

Then, Tr(M,E) = Tr(σ[M ], E).

Proof. Clearly, Tr(M,E) ⊆ Tr(σ[M ], E). For the reverse inclusion, let f : A −→ E be an

R-homomorphism, where A ∈ σ[M ]. Note that A is a homomorphic image of a submodule

B of a direct sum
⊕

λ∈λMλ, where Mλ
∼= M for each λ ∈ Λ. Let g : B −→ A be an

epimorphism. Since E is injective, fg extends to a homomorphism h :
⊕

λ∈ΛMλ −→ E.

Note that Imh =
∑

λ∈Λ Im(hiλ) ⊆ Tr(M,E), where iλ : Mλ −→
⊕

λ∈ΛMλ is the natural

injection. Also, note that Im(fg) ⊆ Imh. Since g is onto, we have Im f = Im(fg). This

gives that

Im f = Im(fg) ⊆ Imh ⊆ Tr(M,E),

and so Tr(σ[M ], E) ⊆ Tr(M,E).

Before introducing the lattice structure of hereditary pretorsion classes, let us briefly

define the notion of a lattice.

Definition 2.15.27. A partially ordered set L is said to be a lattice provided that any two

elements a, b ∈ L have greatest lower bound a ∧ b (which is also called a meet of a and b),

and least upper bound a∨b (which is also called a join of a and b). If every subset of a lattice

L has least upper bound and greatest lower bound, then L is called a complete lattice. Let m

be an element in a lattice L. If x ≤ m for all x ∈ L then m is called a greatest element in

L. If there exist a greatest element, then it is unique and we denote it by 1. Let L be a lattice

with greatest element. If given any m ∈ L with m 6= 1, there exists a coatom x such that

m ≤ x, then L is called coatomic. We say that L is a modular lattice if (c∧b)∨a = (c∨a)∧b

for all a, b, c ∈ L with a ≤ b.

Now, we define meet and join in the partially ordered set of hereditary pretorsion classes.

If {τi : i ∈ I} ⊆ Mod-R is a set of hereditary pretorsion classes, then a right R-module A

is (
∧
i∈I τi)-torsion if and only if A is τi-torsion for each i ∈ I , and A is (

∨
i∈I τi)-torsion if

and only if A is σ[C ]-torsion, where

C = {A ∈ Mod-R : τi(A) = A for some i ∈ I}.

Then we can say that hereditary pretorsion classes form a lattice which is denoted hptors-R,

and hence left exact preradicals form a lattice, too, denoted lep-R, which is equivalent to

hptors-R.
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Now we introduce some notions that are going to be needed later.

Definition 2.15.28. Let F be a set of right ideals of R. If F holds the following conditions,

then it is called a linear filter of right ideals.

(i) R ∈ F .

(ii) I, J ∈ F implies that I ∩ J ∈ F .

(iii) If I ∈ F and I ≤ J , then J ∈ F .

(iv) r−1I = {x ∈ R : rx ∈ I} ∈ F for all I ∈ F and r ∈ R.

Proposition 2.15.29. [9, Proposition 4.2] There is a one-to-one correspondance between a

pair of the following classes:

(i) Linear filters of right ideals of R.

(ii) Hereditary pretorsion classes of right R-modules.

(iii) Left exact preradicals on Mod-R.

Therefore, we can put a lattice structure on linear filters of right ideals of R, denoted

fil-R, using the correspondence of the above proposition.

Proposition 2.15.30. [22, Proposition 1.1] The following lattices are equivalent for all rings

R.

(i) The lattice hptors-R of hereditary pretorsion classes in Mod-R.

(ii) The lattice fil-R of linear filters of right ideals of R.

(iii) The lattice lep-R of left exact preradicals in Mod-R.
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Chapter 3

Injectivity Domains and Extent of

Injectivity

3.1 Opposite of Injectivity: Poor Modules

Definition 3.1.1. For a right R-module M , the class In-1(M) = {N ∈ Mod-R : M is N -

injective} is said to be the injectivity domain of M .

Note that M is injective module if and only if it has the largest injectivity domain, that is,

In-1(M) = Mod-R. Now we consider the opposite case, that is, the case when an injectivity

domain is as small as possible.

Definition 3.1.2. [1] A right R-module M is said to be a poor module provided that injec-

tivity domain of M consists of only semisimple modules, that is, In-1(M) = SSMod-R.

The notion of a poor module has been introduced in [1]. It is natural to ask whether every

ring has a poor module . Before answering this question affirmatively, we give the following

proposition.

Proposition 3.1.3. [1, Proposition 3.1]⋂
M∈Mod-R

In-1(M) = SSMod-R

Proof. Let A ∈
⋂
M∈Mod-R In-1(M) and let B ≤ A. It is sufficient to see that B is a direct

summand of A. Since A is in the injectivity domain of any module, then B is A-injective.

In this case, B is a direct summand of A by Lemma 2.13.20, and so A ∈ SSMod-R. The

converse is obvious.
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Existence of poor modules states even more; at least one injectivity domain in this inter-

section is directly equal to SSMod-R.

Proposition 3.1.4. [23, Proposition 1] Every ring possesses a poor module.

Proof. Let R be a ring and let {Mβ|β ∈ B} denote the complete set of representatives of

isomorphism classes of non-semisimple cyclic rightR-modules. It means that we can choose

a proper essential submodule Nβ of Mβ for each β ∈ B. Now set K = ⊕β∈BNβ . Let A

be a cyclic module which is not semisimple, and suppose that K is A-injective. Then there

exist a β ∈ B such that A ∼= Mβ . Hence A contains a proper essential submodule U , which

isomorphic toNβ . SinceK isA-injective, any direct summand ofK is alsoA-injective. This

gives that U is A-injective, which is a contradiction. Therefore, K is a poor module.

Now we consider the probability that all right R-modules are the poor case.

Lemma 3.1.5. If every right R-module is poor then any right R-module is injective; and so

R is a semisimple Artinian ring.

Proof. Assume that every right R-module is poor and consider the injective envelope of RR

as a poor module. It is easy to see that

Mod-R = In-1(E(RR)) = SSMod-R

This gives that R is semisimple. By Theorem 2.13.10, any R-module is injective.

Corollary 3.1.6. [23, Corollary 1] The following statements are equivalent for a ring R:

(i) R is a semisimple Artinian ring.

(ii) Every nonzero factor of poor right R-module is poor.

(iii) Every poor right R-module is semisimple.

(iv) Every nonzero direct summand of poor right R-module is poor.

Proof. If R is semisimple Artinian, statements (ii), (iii), and (iv) follow easily. Now sup-

pose that any of the statements (ii), (iii) or (iv) holds. We remark that the direct sum of any

module with a poor module is also poor. We already know the existence of poor modules by

Proposition 3.1.4. Then (ii) or (iii) implies that every module is poor. In particular every

injective module is poor. This shows thatR is a semisimple Artinian ring. On the other hand,

(iv) implies that every module is semisimple; hence again R is semisimple Artinian.
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The following proposition provides us with an alternative construction of a poor module.

Note that its proof is based on a result given in [24] and [25].

Proposition 3.1.7. [23, Proposition 2] Let R be any ring and let A =
⊕

B∈ΓB, where Γ is

any complete set of representatives of cyclic right R-modules. Then A is poor.

Proof. Let A and N be right R-modules. If A is N -injective, then all cyclic submodules of

all factors ofN must beN -injective. It follows thatN is semisimple (see [24] and [25]).

Now we give a useful fact about poor modules which is given in [1].

Lemma 3.1.8. A right R-module M is poor if and only if all cyclic right R-modules con-

tained in In-1(M) is semisimple.

Proof. Let A ∈ In-1(M) and assume that aR is semisimple for every a ∈ A. Since A =∑
a∈A aR and the sum of semisimple modules is semisimple, A is semisimple; thus M is

poor. The converse is clear.

Theorem 3.1.9. [1, Theorem 3.3] Let R be a right Artinian ring, then the cyclic right R-

module M = R/J is poor, where J is Jacobson radical of R.

Proof. Let M = R/J and let N = aR be a nonzero cyclic right R-module in the injectivity

domain of M . It is enough to show that aR is semisimple. Let S1 be a simple submodule

of aR. Then S1 is isomorphic to a direct summand of M , and so S1 is aR-injective. Then

we may write aR = S1 ⊕K1 for some submodule K1 of aR. If K1 = 0, then aR must be

semisimple. Otherwise, let S2 be a simple submodule of K1. Then, similarly, K1 = S2⊕K2

and so aR = S1 ⊕ S2 ⊕K2, where S1 ⊕ S2 is semisimple and K1 ⊇ K2. This process must

terminate after a finite step. Thus, aR is semisimple. Hence, R/J is poor.

Before we give the following lemma, we shall define the notion of uniserial and serial

modules. Let M be a right R-module, then it is called a uniserial module if its submodules

are linearly ordered by inclusion. Also, we say that an R- module M is serial if it is a direct

sum of uniserial submodules. A ring R which satisfies the minimum condition on both sides

is called a generalized uniserial ring if for any primitive idempotent e of R the right (left)

ideal eR (Re) has unique composition series (see [18]).

Lemma 3.1.10. [1, Lemma 2.1]
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(i) [18, Lemma 1] Any finitely generated torsion module over a hereditary Noetherian

prime ring R is a direct sum of finitely many uniserial modules.

(ii) [18, Lemma 2] If x ∈ M is a torsion element, then xR is a torsion submodule over a

hereditary Noetherian prime ring R with nonzero annihilator.

(iii) [18, Theorem 1] Every R-module is a direct sum of uniserial modules, where R is a

generalized uniserial ring.

(iv) [26, Theorem 1] Every proper factor ring of a hereditary Noetherian prime ring is

generalized uniserial.

In view of Theorem 3.1.9, as we consider further examples of poor modules, it is reason-

able to focus on semisimple modules. In this regard we give the following

Proposition 3.1.11. [1, Proposition 3.4] Let R be a hereditary Noetherian domain and let

M be a semisimple module that contains a copy of each simple R-module. Then M is either

poor or injective. In particular, if R has only one simple module (up to isomorphism), then

that module M is either injective or poor. Moreover, for a ring R and a module M over R

satisfying the above hypotheses, M is poor unless R is a V-ring.

Proof. Let R be a hereditary Noetherian domain and let M be as described in the statement

of the proposition. Assume that M is not injective and let xR ∈ In-1(M). Since M is

not injective, annR(x) is nonzero. Then xR is serial by (i) and (ii) of Lemma 3.1.10. It

follows that xR = U1 ⊕ · · · ⊕ Un, where each Ui is uniserial. In this case, M is Ui-injective

for each i. It is enough to show that each Ui is simple. If Ui is not simple, then it must

contain a simple submodule, say S. Then the inclusion map from S to M can be extended

to a monomorphism from Ui to M . However, this is a contradiction. Therefore, Ui must be

simple. This gives that xR is semisimple.

In this example below, we will see that both possibilities in Proposition 3.1.11 are possi-

ble.

Example 3.1.12. Let R = Z. Then U =
⊕

p(Z/pZ), where the sum runs through prime

numbers p, is a poor Z- module, however, there exists no proper poor summand of U (see

Theorem 3.1 of [27]).
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3.2 The Injective Profile of a Ring

Definition 3.2.1. Let R be any ring. The class of right R-modules A is said to be an i-

portfolio if A = In-1(M) for some M ∈ Mod-R. The class {A ⊆ Mod-R : A is an

i-portfolio} is said to be the right injective profile of R (or right i-profile) and we denote it

by iPr(R). The left i-profile, denoted iPl(R), is defined similarly.

Remark that any i-portfolio is a hereditary pretorsion class of rightR-modules containing

SSMod-R, as it is closed under taking submodules, arbitrary direct sums and factor modules

(see Propositions 2.13.21 and 2.13.23).

Lemma 3.2.2. [22, Lemma 2.2] Let R be any ring. Let X ⊆ iP(R). Then,
⋂
X is an

i-portfolio.

Proof. We shall think of X as a set. Let MA be a module such that A = In-1(MA ) for each

A ∈ X. By Lemma 2.13.22 we obtain⋂
X = In-1(

∏
A ∈XMα).

This completes the proof.

In view of the above lemma, one can see that iP(R) is a complete lattice and is, indeed,

a sublattice of hptors-R. Furthermore, since any right R-module is injective relative to any

semisimple module, iP(R) is a sublattice of the interval [SSMod-R,Mod-R] ⊆ hptors-R.

Proposition 3.2.3. [22, Proposition 2.3] Let R and S be rings. Then there exists a lattice

isomorphism iP(R× S) ∼= iP(R)× iP(S).

Now our aim is to show that any hereditary pretorsion class including SSMod-R is nec-

essarily a portfolio. To prove this, we need to define the following notion.

Definition 3.2.4. Let A and B be right R-modules. If any A-injective module is B-injective,

we say that A rises to B and in this situation we write A ↑ B.

Remark 3.2.5. If B ∈ σ[A], then A ↑ B, indeed, if any module is A-injective, then it is also

injective relative to its direct sums, factors, and submodules. Hence it is injective relative

to B. Also note that if A ↑ B and B ↑ U , then we have A ↑ U . Moreover, if A ↑ B and

U ≤ B, then A ↑ U .
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We show that, under some conditions, the situation A ↑ B is indeed equivalent to B ∈

σ[A]. Note that, since any right R-module is injective relative to any semisimple module, if

B is a semisimple module, then any module A rises to B.

Lemma 3.2.6. [22, Lemma 2.7] Let A and B be right R-modules, and suppose that A ↑ B.

Then, either B is semisimple or Tr(σ[A], B) 6= 0.

Proof. Suppose thatB is not semisimple, and that Tr(σ[A], B) = 0. SinceB is not semisim-

ple, we can find a submodule of B which is not a direct summand of B, say K. This shows

that K is not B-injective. Since Tr(σ[A], B) = 0, then K is A-injective by Lemma 2.15.25.

But this is a contradiction. Hence, we obtain Tr(σ[A], B) 6= 0.

Theorem 3.2.7. [22, Theorem 2.8] Let R be any ring and let A be a module which subgen-

erates every semisimple module. Then, for any module B, A ↑ B if and only if B ∈ σ[A].

Proof. Suppose that A subgenerates every semisimple module and that A ↑ B. If B is

semisimple, then we are done. Hence, we assume that B is not semisimple. We show

first that Tr(σ[A], B) is essential in B. Let T ≤ B be a nonzero submodule. Since

Tr(σ[A],−) is a left exact preradical corresponding to the hereditary pretorsion class σ[A],

then T ∩Tr(σ[A], B) = Tr(σ[A], T ). If T is semisimple, then T ∈ σ[A] and this implies that

Tr(σ[A], T ) = T . If T is not semisimple, then by Lemma 3.2.6 and considering that A ↑ T ,

we have Tr(σ[A], T ) 6= 0. Since Tr(σ[A], B) ≤e B ≤e E(B), we obtain Tr(σ[A], B) ≤e
E(B) and this means that E(Tr(σ[A],E(B))) = E(B) by Proposition 2.13.15. Also note that

Tr(σ[A],E(B)) isA-injective (see Lemmas 2.13.27 and 2.15.26). Hence, it isB-injective by

our assumption. Therefore, every morphism B −→ E(Tr(σ[A],E(B))) = E(B) has its im-

age in Tr(σ[A],E(B)). Now considering the inclusion map we get thatB ≤ Tr(σ[A],E(B)).

Therefore B ∈ σ[A].

Theorem 3.2.8. [22, Theorem 2.9] Let R be any ring, and let C be a hereditary pretorsion

class in Mod-R, containing SSMod-R. Then, C is an i-portfolio, that is, In-1(M) = C for

some M ∈ Mod-R. In other words, the following lattices are the same:

1. iP(R).

2. The interval [SSMod-R,Mod-R] ⊆ hptors-R.

Moreover, the following three lattices are isomorphic:
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(i) iP(R).

(ii) The lattice of linear filters of right ideals F with I ∈ F for any maximal right ideal

I .

(iii) The lattice of left exact preradicals τ with Soc ≤ τ .

Proof. Let N be a right R-module such that σ[N ] = C and let U = {A : N ∈ A where A

is a portfolio}. It is enough to show that σ[N ] =
⋂

U . Since the intersection of injectivity

domains is again injectivity domain by Lemma 3.2.2, it is obvious that σ[N ] ⊆ U . Now

let K be a module such that K 6∈ σ[N ]. Since N subgenerates every semisimple module,

Theorem 3.2.7 implies that there is a portfolio B such that N ∈ B and K 6∈ B. Since

K 6∈ σ[N ], then K 6∈
⋂

U and we obtain σ[N ] =
⋂

U . Hence, by Lemma 3.2.2 σ[N ] is

a portfolio. It follows that the lattices iP(R) and [SSMod-R,Mod-R] ⊆ C are isomorphic.

The last part follows from Proposition 2.15.30.

Corollary 3.2.9. [22, Corollary 2.10] For a ring R, the lattice iP(R) is a modular and

coatomic lattice.

Proof. Follows from Theorem 3.2.8 and [28, Theorem 2].

Proposition 3.2.10. [22, Proposition 2.13] Let R be a right Artinian ring. Then iP(R) is

anti-isomorphic to the lattice of ideals contained in J(R). Also, iP(R) is an Artinian and

Noetherian lattice. Hence, iP(R) is also atomic.

Proof. Since R is right Artinian, then any linear filter of right ideals F of R is closed under

arbitrary intersections. Then, for every linear filter F there is a two-sided ideal I of R such

that F = {J ≤ RR : I ⊆ J} (see [29]). Since iP(R) and the lattice of linear filters of right

ideals which contain every maximal right ideal are isomorphic, iP(R) is anti-isomorphic to

the lattice of ideals contained in J(R). This completes the proof.
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Chapter 4

Rings without a Middle Class

The main focus of the present chapter is on the rings without a right middle class. We

will give some new properties of this ring and characterize them with respect to hereditary

pretorsion classes.

4.1 Definition and some examples

Definition 4.1.1. We say that a ring R has no right middle class (or alternatively R is a right

NMC-ring) provided every element in Mod-R is either poor or injective. Equivalently, R is a

right NMC-ring if the sublattice [SSMod-R,Mod-R] of hptors-R consists only of SSMod-R

and Mod-R. Moreover, if R is both right and left NMC, then we call that R is an NMC-ring.

Example 4.1.2. The first trivial example of rings without a right middle class is semisimple

Artinian rings because every module over this ring is injective by Theorem 2.13.10.

Just as with the case that every module is injective if every right R-module is poor,

then R is semisimple Artinian. On the other hand, there exist plenty of rings with no middle

class which are not semisimple Artinian, for example, any right PCI-domain as the following

proposition shows. Also, the proposition below provides us with the first non-trivial example

of rings with no middle class.

Proposition 4.1.3. [1, Proposition 3.2] If R is a right PCI-domain, then it is a right NMC-

ring and RR is a poor module.

Proof. If R is a division ring, then there is nothing to prove. Suppose that R is not a divison

ring. Then every cyclic right R-module is injective except those which are isomorphic to R.
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We already know that the injective cyclics are all semisimple by Lemma 2.14.10. Therefore,

if M is a right R-module which is not injective, then it is a poor module.

Theorem 4.1.4. [22, Corollary 2.14] Let R be a right Artinian ring. Then no nontrivial

ideals of R are contained in J(R) properly if and only if R is a right NMC-ring.

Proof. This follows easily from Proposition 3.2.10.

Example 4.1.5. [30, Example 2.9] Let M = Z3, and let α =

1 2

1 1

. Note that M ′ =

{0, 1, α, α2, . . . , α7} is a field. It follows that the ring (M,M2,M ′) is right NMC.

Example 4.1.6. [30, Example 2.10] Let F ≤ F1 be an extension of fields, and let K be a

division subring of Mp(F ). Suppose that K properly contains the field of scalar matrices in

Mp(F ), where p is a prime number. Then the ring

R =

F1 0

F p
1 K


is right NMC. In particular, if F = Q, then all scalar matrices are contained in any division

subring of Mp(Q). In this case,R is a right NMC-ring ifK is any division subring of Mp(Q)

which is not the field of scalar matrices.

Example 4.1.7. [30, Example 2.12] Given a fieldE and an irreducible polynomial q(x) over

E of prime degree, the ring  E 0

E[x]/(q(x)) E[x]/(q(x))


is right NMC.

Example 4.1.8. [30, Example 2.13] The ring

R =


C 0

C

C
M

 , where M =

{x −y
y x

∣∣∣∣∣ x, y ∈ R

}
∼= C,

is right NMC.

Example 4.1.9. [30, Example 2.20] Let E = Q(
√

2) be the field and let α : E −→ Q be the

mapping defined by α(a + b
√

2) = a. Regarding R = E × E as additive abelian group we

define a multiplication on R by

(x, y)(t, z) = (xt, xz + yα(t))
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and turn R into a ring. Observe that the composition length of RR is 2. Thus J(R) does not

contain nonzero ideal of R properly, and so R is a right NMC-ring by Theorem 4.1.4.

The property of having no middle class for a ring is closely related to its quasi-injective

modules as the following proposition shows.

Proposition 4.1.10. [22, Proposition 3.1] IfR is a right NMC-ring, then every non-semisimple

quasi-injective right R-module is injective.

Proof. Assume that A is quasi-injective module that is not semisimple. It follows that

SSMod-R ( In-1(A).Then we have In-1(A) = Mod-R because R is a right NMC-ring.

Hence A is an injective module.

The converse of the above proposition was proved to be true when R is semi-artinian in

[22, Proposition 3.1].

Lemma 4.1.11. [23, Lemma 1] Having no middle class property is closed under the forma-

tion of factor rings.

Proof. Let R be any right NMC-ring and let A be an ideal of R. Take a right R
A

-module

MR
A

, which is not poor. It means that we can choose a non-semisimple NR
A

such that MR
A

is NR
A

-injective. This gives that MR is NR-injective. Then MR must be injective because

NR /∈ SSMod-R and R is a right NMC-ring. Thus, MR
A

is also injective, which completes

the proof.

4.2 An approach to rings without a middle class from a torsion

theoretic view point

We will see in the sequel that when we study rings without a right middle class it is very use-

ful to consider some specific hereditary pretorsion classes that are not necessarily portfolios.

But, the following lemma shows that these hereditary pretorsion classes can be extended to

portfolios, which are large enough.

Lemma 4.2.1. [31, Lemma 2.1] Suppose that R is a ring and that T is a hereditary pretor-

sion class of right R-modules. Define the class

T = {A ∈ Mod-R : A/T (A) is T -torsion free and semisimple }.

Then T is a portfolio such that T ⊆ T .
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Proof. We first show that T contains both T and SSMod-R. Let A ∈ T , then we obtain

T (A) = A. In this case, (0) = A/T (A) is semisimple and T -torsion free. This implies

that T ⊆ T . Now let A ∈ SSMod-R. This gives that A = T (A)⊕A′ for some submodule

A′ of A. Then we obtain T (A) = T (T (A)) ⊕ T (A′). Since any left exact preradical is

idempotent, we have T (T (A)) = T (A), and so T (A′) = 0. It follows thatA/T (A) ∼= A′

is T -torsion free and semisimple. Hence SSMod-R ⊆ T . If we see that T is a hereditary

pretorsion class, then we are done. Now we show that T is closed under submodules, factor

modules and direct sums. Let A ∈ T and let B be a submodule of A. Then we obtain

B

T (B)
=

B

B ∩T (A)
∼=
B + T (A)

T (A)
≤ A

T (A)
.

Since A ∈ T , A/T (A) is semisimple T -torsion free. The property of being semisimple

and T -torsion free is inherited by submodules. Then B/T (B) is semisimple T -torsion

free and so B ∈ T . Let f : A → A′ be an epimorphism. In this case, there exists an

epimorphism f̄ : A/T (A) → A′/T (A′) induced by f . Since an epimorphic image of

semisimple modules is also semisimple, A′/T (A′) is semisimple, and hence isomorphic

to a submodule of A/T (A). Then A′/T (A′) is T -torsion free. Lastly, let {Ai}i∈I be an

arbitrary family of rightR-modules contained in T . Note that T (
⊕

i∈I Ai) =
⊕

i∈I T (Ai).

Then we have ⊕
Ai

T (
⊕

Ai)
=

⊕
Ai⊕

T (Ai)
∼=
⊕

(
Ai

T (Ai)
).

Therefore,
⊕

i∈I Ai ∈ T . This completes the proof.

As we mentioned before, semisimple Artinian rings are trivial examples of rings without

a right middle class. Therefore, we will focus on rings that are not semisimple Artinian in our

study of rings which have no middle class. The proposition below is crucial in this direction.

Proposition 4.2.2. [31, Proposition 2.2] Suppose that R is a right NMC-ring. Then any

singular right R-module is semisimple. If, in addition, R is right nonsingular, then R is a

right SI-ring.

Proof. In caseR is semisimple Artinian, there is nothing to prove. Thus we may suppose that

R is not semisimple Artinian. Let A be the class Sing-R, as constructed in Lemma 4.2.1.

It follows that A is a portfolio. Then we obtain either A = SSMod-R or A = Mod-R

because R is a right NMC-ring.
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First we assume that Z(RR) 6= 0, and that A is not equal to SSMod-R. Then we have

A = Mod-R. Note that A is defined as follows:

A = {M ∈ Mod-R : M/Z(M) is semisimple and nonsingular}

In this case R/Z(RR) must be semisimple nonsingular right R-module. This means that

it is a projective right R-module by Corollary 2.12.6. Thus Z(RR) is a direct summand of

R, a contradiction. Hence A = SSMod-R, implying that any singular right R-module is

semisimple.

Now suppose that Z(RR) = 0. If R ∈ A , then R/Z(RR) must be nonsingular semisim-

ple. But this contradicts our assumption that R is not semisimple Artinian. It follows that

we have R /∈ A , and so A = SSMod-R. Note that, in case Z(RR) = 0, the property of

being singular is closed under injective hulls. Suppose that M is a singular right R-module,

in which case E(M) is also singular. This shows that E(M) is semisimple. Since M is es-

sential in E(M), we obtain M = E(M) by Corollary 2.5.11. Hence, every singular module

is injective, and so R is right SI-ring. In particular, singular right R-modules are semisim-

ple.

Suppose that R is a ring and that T is a torsion class of right R-modules. We say that T

is a splitting torsion class if T (M) is a direct summand of each right R-module M .

Theorem 4.2.3. [31, Theorem 2.3] A ringR is right NMC if and only if given any hereditary

pretorsion class T of right R-modules with Sing-R ⊆ T , T satisfies either one of the

following statements:

(i) Every T -torsion module is semisimple (equivalently, T ⊆ SSMod-R), or

(ii) Every T -torsion-free module is semisimple and injective and T is a (splitting) torsion

class.

Proof. Suppose that R is a right NMC-ring. It follows from Proposition 4.2.2 that we have

Sing-R is contained in SSMod-R. Let T be a hereditary pretorsion class of rightR-modules

with Sing-R ⊆ T . In this case, we have either T = Mod-R or T = SSMod-R, where T

is defined as in Lemma 4.2.1. In the latter case, we obtain T ⊆ SSMod-R. Hence, let T =

Mod-R. It follows that M/T (M) is T -torsion-free semisimple for any right R-module

M . By Lemma 2.15.20, this means that T is a torsion class. On the other hand Z(M) ⊆
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T (M) for all M ∈ Mod-R because Sing-R ⊆ T . It follows that Z(M/T (M)) = 0 since

T (M/T (M)) = 0. Thus, M/T (M) is semisimple nonsingular (and hence projective) for

any M ∈ Mod-R. In this case we see that T (M) is a direct summand of M ; hence T

is splitting. In particular, we obtain that R/T (R) is a semisimple Artinian ring. Now we

will show that every T -torsion free module is semisimple injective. Assume that M is a

T -torsion-free module. Note that if T is regarded as a preradical, then T (M) is a two-

sided ideal of R. Now consider the homomorphism fm : R → M with fm(r) = mr for all

m ∈ M . As fm(T (R)) ⊆ T (M) for all m ∈ M , we have MT (R) ⊆ T (M). It follows

that MT (R) = 0, implying M is a semisimple module since R/T (R) is a semisimple

Artinian ring. This applies to E(M), i.e, E(M) is semisimple and T -torsion-free by Lemma

2.15.20 because T is a hereditary torsion class. This gives that M = E(M), implying M is

injective.

Conversely, assume that hereditary pretorsion class T with Sing-R ⊆ T satisfies either

(i) or (ii). We may suppose that R is not semisimple Artinian . First we shall show that

Sing-R is contained in SSMod-R. Assume the contrary that Sing-R * SSMod-R. Then (ii)

holds for T = Sing-R. In this case, every nonsingular module is semisimple and Sing-R is

a splitting torsion class. Therefore, Z(RR) is a direct summand of RR. This shows that R

is a right nonsingular ring, and hence semisimple Artinian. However, this is a contradiction.

Hence, every singular right R-module is semisimple. Now take a hereditary pretorsion class

T such that SSMod-R ( T . Since T contains Sing-R and T * SSMod-R, by assumption,

T is a torsion class and every T -torsion free module is semisimple. Therefore, T -torsion-

free modules are also T -torsion. Let M ∈ Mod-R, since T is a torsion class, M/T (M)

is T -torsion-free, and hence T -torsion. Then M is also T -torsion by Proposition 2.15.16

since T is a hereditary torsion class. It follows that T = Mod-R. Thus R is a right NMC-

ring.

As we shall see later, every ring without a right middle class can be decomposed into

an indecomposable ring without a right middle class and a semisimple Artinian ring. The

theorem below provides a characterization for indecomposable rings to have no middle class

by means of their lattices of hereditary pretorsion classes. Once we comprehend the structure

of these rings, we can reduce the study of rings without a right middle class to the case of

indecomposable rings.

Theorem 4.2.4. [31, Theorem 2.4] The following statements are equivalent for a ringR that
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is not semisimple Artinian:

(i) R is an indecomposable right NMC-ring.

(ii) The lattice hptors-R contains SSMod-R as a unique coatom.

(iii) We have σ[C] = Mod-R, for every cyclic non-semisimple right R-module C.

(iv) If C is a cyclic right R-module which is not semisimple, then RR is isomorphic to a

submodule in a finite direct sum of copies of C.

Proof.

(i)⇒ (ii) Suppose that R is an indecomposable right NMC-ring. By definition hptors-R

contains SSMod-R as a coatom. Now we shall show that it is a unique coatom. Let T be a

hereditary pretorsion class of right R-modules such that T * SSMod-R. Now assume that

Sing-R ⊆ T . Then by Theorem 4.2.3, every T -torsion-free module is semisimple and T is

a splitting torsion class. This gives thatR = T (R)⊕B for some right idealB ofR. Consider

the homomorphism f : T (R)→ B. Since T is a torsion class,R/T (R) ∼= B is T -torsion-

free. Then f(T (T (R))) ⊆ T (B) = 0. So we have f = 0 and HomR(T (R), B) = 0.

Now let g : B → T (R) be a homomorphism. Since B is semisimple, ker g must be a direct

summand of B. Then we obtain B = ker g ⊕ C. It follows that C ∼= B/ker g ↪→ T (R).

Since B is T -torsion-free, C is also T -torsion-free. In this case, C is both T -torsion-free

and T -torsion, and so it must be equal to zero. Therefore, B = ker g and g = 0. It follows

HomR(B,T (R)) = 0. By Lemma 2.3.2, B is an ideal of R. By the assumption that R is

an indecomposable ring, it must be equal to either B or T (R). As R is not a semisimple

Artinian ring, we must have R = T (R). Hence, T = Mod-R. Now we suppose that T

is arbitrary (not necessarily containing Sing-R). Set C = T
∨

Sing-R ⊆ hptors-R. Then

by above arguments we obtain that C = Mod-R. It follows that there is a monomorphism

f : R→ S ⊕ T of right R-modules where S ∈ Sing-R, T ∈ T . Let f(1) = (s, t) ∈ S ⊕ T

and f(r) = f(1)r = (sr, tr), where s ∈ S, r ∈ R and t ∈ T . Since f is monic, we have

0 = ker f = ann(s)∩ann(t). If s 6= 0, then ann(s) ≤e RR by definition of singular element;

hence ann(t) = 0. In this case, we can define a monomorphism R → T with 1 7−→ t. On

the other hand, if s = 0, then f is a monomorphism R → T . Therefore, R ∈ T , implying

that T = Mod-R. This shows that any hereditary pretorsion class T 6= Mod-R must be

contained in SSMod-R, completing the proof.
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(ii)⇒ (i) Assume that hptors-R contains SSMod-R as a unique coatom. This shows that

R is a right NMC-ring. Let 0 6= I be a proper ideal of R and let TI = {N ∈ Mod-R :

NI = 0}. Then TI is a hereditary pretorsion class. Since RI = I is nonzero, we obtain that

R /∈ TI . By assumption, TI is contained in SSMod-R , then R/I ∈ SSMod-R. Assume

that R can be decomposed as R = I ⊕ J , where I 6= 0 and J 6= 0. Then I ∼= R/J and

J ∼= R/I , where both of them are semisimple by above arguments, a contradiction because

R is not semisimple Artinian.

(ii)⇒ (iii) LetC be a non-semisimple cyclic rightR-module. In this case, σ[C] * SSMod-R.

Since SSMod-R is the unique coatom in hptors-R and hptors-R is a coatomic lattice, we

obtain σ[C] = Mod-R.

(iii)⇒ (ii) Suppose that T is a hereditary pretorsion class of right R-modules. Let T *

SSMod-R. Then there is a right R-module C such that C ∈ T \ SSMod-R, and so by (iii)

we obtain T ⊇ σ[C] = Mod-R. This implies that T = Mod-R.

(iii)⇔ (iv) This easily follows from Proposition 2.15.24.

Proposition 4.2.5. [31, Proposition 2.5] Suppose that R is an indecomposable right NMC-

ring. Then every hereditary pretorsion class of right R-modules (except possibly SSMod-R)

is a torsion class. Moreover, either one of the following statements holds.

(i) Z(M) is an injective direct summand of M and Z(M) ⊆ Soc(M) for every right

R-module M , or

(ii) Soc(M) = Z(M) ≤e M for every right R-module M .

Also, the statement (i) is satisfied if Z(RR) = 0 while the statement (ii) is satisfied otherwise.

Proof. Suppose that T is a hereditary pretorsion class in Mod-R. If T = Mod-R, then there

is nothing to prove. So, assume that T 6= Mod-R. Then by Theorem 4.2.4, T ⊆ SSMod-R.

Now suppose that T 6= SSMod-R. In this case, we can find the smallest hereditary torsion

class containing T by Proposition 2.15.9, say T ′. If T ′ * SSMod-R, then we have T ′ =

Mod-R by Theorem 4.2.4. This implies that, T ′(M) = M , and so T (M) ≤e M for every

right R-module M by Corollary 2.15.11. Now let S be a semisimple right R-module, then

T (S) is both a direct summand and an essential submodule of S, so we have T (S) = S

by Corollary 2.5.11. But this is a contradiction since S is arbitrary and T 6= SSMod-R. By

Theorem 4.2.4 again, T ′ ⊆ SSMod-R. It follows that, we have T ⊆ T ′ ⊆ SSMod-R,
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and so T (M) ≤e T ′(M) ≤ Soc. Since T ′ is semisimple, T (M) = T ′(M) for any right

R-module M again by Corollary 2.5.11 and we obtain T = T ′. Hence T is a torsion class.

If Z(RR) = 0, then R is a right SI-ring and Z(M) ⊆ Soc(M) by Proposition 4.2.2.

Hence (i) holds. By Theorem 4.2.4, there are two cases: Sing-R ( SSMod-R and Sing-R =

SSMod-R. In the former case, Sing-R is a hereditary torsion class by the first part of the

proposition. If Z(RR) = 0, then we are done. Assume the contrary. Since Sing-R is a

hereditary torsion class, R/Z(RR) is nonsingular as a right R-module. Then it cannot be

semisimple because Z(RR) is not a direct summand of RR. In this case, by Theorem 4.2.4

(iv),RR can be embedded in a finite direct sum of copies ofR/Z(RR). But this is impossible

because RR cannot be annihilated by Z(RR).

Now consider the case Sing-R = SSMod-R. If Z(RR) = 0, then we are done. Suppose

that Z(RR) 6= 0. In this case, there exists no nonzero nonsingular right R-modules. If

there were a nonzero nonsingular right R-module C, then we would have σ[C] = Mod-R.

But this is a contradiction since Z(RR) 6= 0. Thus Sing-R cannot be a hereditary torsion

class. It follows that Mod-R is the smallest hereditary torsion class containing Sing-R.

Then Z(M) ≤e M for every nonzero right R-module M by Proposition 2.15.19. Thus (ii)

holds.

4.3 A decomposition theorem

In this section, we focus on decomposition of rings without a right middle class. We also

give several important properties of such rings.

Proposition 4.3.1. [31, Proposition 3.1] Suppose that R is any right NMC-ring. Then R is

either a right semi-artinian ring or a right Noetherian, right V-ring.

Proof. Let U = {M ∈ Mod-R : MR is semi-artinian}. Note that U is a portfolio by

Example 2.15.13 and Theorem 3.2.8. Suppose that R is not right semi-artinian. In this case,

U 6= Mod-R. Hence U = SSMod-R by Theorem 4.2.4. We shall show that all semisimple

right R-modules are injective. Assume the contrary. Let U be a semisimple right R-module

which is not injective. Since U is not injective, E(U)/U must be nonzero. Note that E(U)/U

is singular by Proposition 2.7.3, and so semisimple by Proposition 4.2.2. It follows that

E(U) ∈ U \ SSMod-R, which is a contradiction. Thus we obtain that every semisimple
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right R-module is injective. Therefore R is a right V-ring and also right Noetherian (see

[32]).

Proposition 4.3.2. [31, Proposition 3.2] If R is a right NMC-ring, then R is either a right

V-ring or a right Artinian ring. If R is a right NMC-ring such that Z(RR) 6= 0, then R is

right Artinian.

Proof. Let U = {M ∈ Mod-R : M is a semi-artinian module} and N = {M ∈ Mod-R :

finitely generated submodules of M are Noetherian}. Notice that both N and U are port-

folios. Now, assume that R is not a right V-ring. Then we can find a simple right R-module

V which is not injective. As in the proof of Proposition 4.3.1, E(V )/V is semisimple, and

hence it contains a simple submodule, say U/V . It follows that we obtain 0 ⊂ V ⊂ U ,

where V is the unique simple in E(V ). Then V = Soc(U), so we have 0 ⊂ V ⊂ U as a socle

series of U . Since this socle series terminates, U is semi-artinian and also Noetherian. Note

that U * SSMod-R because U ∈ U \ SSMod-R. Now we obtain that N = U = Mod-R

since R is a right NMC-ring. This gives that R is right Artinian by Proposition 2.8.3.

For the last statement, suppose that R is a right NMC-ring with Z(RR) 6= 0 and that

R is not right semi-artinian. Then by Proposition 4.3.1, R is a right Noetherian, right V-

ring. This means that Soc(RR) is injective, and so it is a direct summand of RR. But since

Z(RR) ⊆ Soc(RR) by Proposition 4.2.5, Z(RR) is a nonzero direct summand of RR, a

contradiction. Hence, R is right semi-artinian. Moreover, if R is a right V-ring, then it is a

regular ring (see [11]). But this is a contradiction because in the regular ring R, Z(RR) is

zero. Therefore, R is right Artinian.

The following proposition can be regarded as a consequence of Proposition 3.2.3.

Proposition 4.3.3. [31, Proposition 3.3] Let R be a ring and R = A× B be a ring decom-

position. If R has a linearly ordered profile, then either A or B is semisimple Artinian.

Proof. We already know that iP(A × B) ∼= iP(A) × iP(B) by Proposition 3.2.3. If both

iP(A) and iP(B) have at least two elements, then iP(A × B) cannot be linearly ordered.

Hence, one of these portfolios must have single element. Assume that iP(A) is a singleton.

Then SSMod-A = Mod-A, and so A is semisimple Artinian.

Lemma 4.3.4. [30, Lemma 2.4] Let R = A × B be a ring decomposition, where A is

semisimple. Then R is a right NMC-ring if and only if B is a right NMC-ring.

52



Proof. First suppose thatB is a right NMC-ring. LetN be a non-semisimple and cyclic right

R-module. Assume that M is N -injective. Note that any right R-module can be written as

X ⊕ Y , where X is an A-module and Y is a B-module. Then, we have N = N1 ⊕N2 such

that N1 is an A-module and N2 is a B-module. Since N1 and N2 are also cyclic, we obtain

that N ∼= A/I⊕B/J , where I ⊆ A and J ⊆ B for some right ideals I and J . Also note that

B/J is not semisimple (as bothR- andB-modules). Since 1 = a+b for some a ∈ A, b ∈ B,

we have m = ma + mb, which implies that M = MA + MB. Now let x ∈ MA ∩MB.

It follows that x = ma = m′b for some m,m′ ∈ M , so we obtain that x = 0. This gives

that M = MA⊕MB. Since M is N -injective, then it is also B/J-injective by Proposition

2.13.23; hence MB is B/J-injective as both R- and B-modules. MB is also injective as

B-module by assumption. It is not difficult to see that it is also injective as an R-module.

On the other hand, one can easily see that MA is an injective right R-module. In this case,

In-1(M) = Mod-R, and so R is a right NMC-ring. Now the converse follows from Lemma

4.1.11.

Lemma 4.3.5. [31, Lemma 3.4] Let R be a right NMC-ring and I be a nonzero ideal of R.

Then either R/I or R/annl I is a semisimple Artinian ring.

Proof. It is not difficult to see that the functor r defined by r(M) = annM(I) is a left

exact preradical on Mod-R for any right R-module M . Then, the class C = {M ∈ Mod-R :

M/r(M) is r-torsion-free and semisimple}, containing Mod-(R/I), is a portfolio by Lemma

3.1.10. It follows that we have either C = Mod-R or C = SSMod-R. In the latter case,

we obtain that R/I is semisimple. If C = Mod-R, then R/r(R) is semisimple. Therefore

R/annl(I) is semisimple because annl(I) = annRR
(I) = r(RR).

Proposition 4.3.6. [31, Proposition 3.5] Let R be a right NMC-ring that is not semisimple

Artinian. Let A1 and A2 be nonzero ideals of R such that A1 ∩ A2 = 0. Then R = Ai ⊕

annl(Ai) for at least one i = 1, 2. In particular, either A1 or A2 is semisimple.

Proof. Let f : R −→ (R/A1)⊕ (R/A2) be a homomorphism, whereA1 andA2 are nonzero

two-sided ideals. Since ker f = A1 ∩ A2 = 0, R can be embedded in (R/A1)⊕ (R/A2).

In this case, R/Ai is not semisimple for at least one of i = 1, 2. Otherwise we have a

contradiction because R is not semisimple Artinian. Say R/A1 is not semisimple. It follows

that R/ annl(A1) is semisimple by Lemma 4.3.5.
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We first assume that R is not right Artinian. By Proposition 4.3.2 R is a right V-ring, and

so it is semiprime by Corollary 2.14.16. Since

(Ai ∩ (annl(Ai))) · (Ai ∩ (annl(Ai))) ⊆ annl(Ai) · Ai = 0,

and R is semiprime, we obtain that Ai ∩ annl(Ai) = 0 for each i = 1, 2.

Now suppose that R is a right Artinian ring. Since (Ai ∩ (annl(Ai))
2 = 0, we see that

D := A1 ∩ annl(A1) ⊆ J(R). It follows that J(R) * A1 because R/A1 is not semisimple.

Therefore we obtain that D ( J(R). In this case R/ J(R) is a factor of R/D, and so it is in

σ[R/D]. Thus we have SSMod-R ⊆ σ[R/D] because all simples have an isomorphic copy

contained in R/ J(R). It follows that σ[R/D] is a portfolio. Then σ[R/D] must be equal

to Mod-R since R/D is not semisimple. Indeed, otherwise we would have J(R) ⊆ D, a

contradiction. Then R is subgenerated by R/D. Hence R must be annihilated by D, i.e,

RD = D = 0.

Thus, in any case, R/ annl(A1) is semisimple as a right R-module and A1 ∩ annl(A1) =

0. Set X = annl(A1). As 0 6= A1⊕X
X
≤ R

X
, where R/X is a semisimple right R-module, we

can write A1⊕X
X
⊕ Y
X

= R
X

such that (A1⊕X)∩Y = X and (A1⊕X)+Y = R, where Y ≤ RR

containing X . Then we have (A1 ∩ Y ) + X = X . It follows that A1 ∩ Y ⊆ X ∩ A1 = 0,

and so A1 ∩ Y = 0. Since A1 is a two-sided ideal of R, we have Y A1 ⊆ Y ∩ A1 = 0 and

Y ⊆ X . This gives thatR = A1⊕annl(A1). Therefore, eitherA1 or annl(A1) is semisimple

by Proposition 4.3.3. Since A2A1 ⊆ A1 ∩ A2 = 0, we obtain that A2 ⊆ annl(A1) = X . So,

if annl(A1) is semisimple, then A2 is semisimple.

Lemma 4.3.7. [31, Lemma 3.6] Let R be a right NMC-ring. Then there exists only a finitely

many isomorphism classes of simple right ideals of R.

Proof. Suppose, without loss of generality, that R is not right Noetherian. It follows that R

must be a right nonsingular ring by Proposition 4.3.2. Assume contrarily that R contains in-

finite number of nonisomorphic simple right ideals. In this case, one can find two semisimple

right ideals S1 and S2 having infinite length such that S1∩S2 = 0, and HomR(Si, Sj) = 0 (for

1 ≤ i 6= j ≤ 2). Now suppose that Si is injective for at least one of i = 1, 2. Say S1 is injec-

tive. This means that S1 is a direct summand of R, a contradiction. Hence, neither S1 nor S2

is injective. Let T be the hereditary torsion class {M ∈ Mod-R : HomR(M,E(S2)) = 0}.

Note that Sing-R ⊆ T by Proposition 2.7.5 (i) because E(S2) is nonsingular. Since E(S2)

is T -torsion-free and not semisimple, by Theorem 4.2.3, every T -torsion module must be
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semisimple. But this is a contradiction because E(S1) is a T -torsion module that is not

semisimple. This completes the proof.

Lemma 4.3.8. [31, Lemma 3.7] Any ring without a right middle class satisfies the ascending

chain condition on its ideals.

Proof. Suppose that R is a right NMC-ring and that M1 ( M2 ( · · · is a strictly ascending

chain of ideals of R. Then R/Mi is not semisimple Artinian for every i = 1, 2, . . .. Without

loss of generality, we suppose thatR is not right Artinian. In view of the proof of Proposition

4.3.6, it can be seen that R/ annl(Mi) is semisimple Artinian and R = Mi ⊕ annl(Mi) for

every i = 1, 2, . . .. Then we have Mi+1 = Mi ⊕ (Mi+1 ∩ annl(Mi)) for every i = 1, 2, . . ..

Observe thatNi := Mi+1∩annl(Mi) is a nonzero ideal ofR for every i = 1, 2, . . .. It follows

thatR = M1⊕N1⊕· · ·⊕Ni⊕annl(Mi+1) for every i = 1, 2, . . .. HenceM1⊕N1⊕· · ·⊕Ni

is semisimple as a right R-module because R/ annl(Mi+1) is semisimple. But in this case,

there are infinitely many nonisomorphic simple right ideals of R. By Lemma 4.3.7, we have

a contradiction. This completes the proof.

Theorem 4.3.9. [31, Theorem 3.8] Let R be any ring, then R is right NMC if and only if R

can be decomposed as a ring as R = A×B, where A is semisimple Artinian, and B = 0 or

B is an indecomposable right NMC-ring.

Proof. The “if” part follows from Lemma 4.3.4. To prove the converse, suppose that R is

a right NMC-ring. If R is semisimple Artinian or indecomposable, then there is nothing to

prove. Hence assume thatR is not semisimple Artinian and that there is a ring decomposition

R = A1 × B1, where A1 and B1 are nonzero. Then either A1 or B1 is semisimple by

Proposition 4.3.3. Say A1 is semisimple. By Lemma 4.3.4, B1 is a right NMC-ring. Then

B1 must be either indecomposable or has a decomposition B1 = A2 ⊕ B2 such that A2

and B2 are nonzero ideals of R and one of them is semisimple. Say A2 is semisimple.

Continuing this process, we get a strictly ascending chain A1 ⊂ A1 ⊕ A2 ⊂ · · · of ideals

of R. By Lemma 4.3.8, this chain must stop after finite steps, say after n steps. Hence

we can find a semisimple ideal A1 ⊕ · · · ⊕ An and an indecomposable ideal Bn such that

R = A1 ⊕ · · · ⊕ An ⊕Bn, completing the proof.
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4.4 Noetherian rings with no middle class

The main focus of the present section is on the right Noetherian rings without a right middle

class. We will give some important information about these rings, focusing on indecompos-

able rings.

Proposition 4.4.1. [31, Proposition 4.1 ] Let R be an indecomposable ring. If R is a right

NMC-ring, then R does not contain a pair of nonzero two-sided ideals which meet at zero.

Moreover, either Soc(RR) = 0 or Soc(RR) is homogeneous and Soc(RR) ≤e RR.

Proof. We may suppose that R is not a semisimple Artinian ring. If R has independent two

nonzero idealsA1 andA2 (i.e,A1∩A2 = 0), then we can writeR = Ai⊕annl(Ai) for at least

one i = 1, 2 by Proposition 4.3.6. But this is a contradiction because R is indecomposable.

Assume that Soc(RR) 6= 0. Then it must be homogeneous since R does not contain

independent nonzero two-sided ideals. If R is right Artinian, then Soc(RR) ≤e RR by

Corollary 2.6.4. Therefore we assume that R is not right Artinian. In this case, R must

be a right V-ring by Proposition 4.3.2. Let R be right Noetherian. Then every simple R-

module is injective, and arbitrary direct sum of simple R-modules is also injective. It means

that Soc(RR) is a direct summand of RR. So we may write R = U ⊕ Soc(RR), where U

is a right ideal of R. In this case, U is nonzero because R is not a semisimple Artinian

ring. Since U · Soc(RR) ⊆ U ∩ Soc(RR) = 0, we have U · Soc(RR) = 0. It follows that

U ⊆ annl(Soc(RR)), and so annl(Soc(RR)) is a nonzero ideal of R. Since R is semiprime

by Corollary 2.14.16, we obtain that Soc(RR)∩ annl(Soc(RR)) = 0 in view of the the proof

of Proposition 4.3.6, a contradiction. Thus R is not right Noetherian, and so R must be right

semi-artinian by Proposition 4.3.1. This means that Soc(RR) ≤e RR, and we are done.

We can easily deduce from the proof of Proposition 4.4.1 that , if a ring R without a right

middle class with Soc(RR) 6= 0 is right Noetherian, then it is right Artinian. Furthermore,

examination of indecomposable rings R without a right middle class splits into two cases

with respect to whether Soc(RR) = 0 or not. We begin with considering the case when the

right socle of the ring is zero. We should be noted that any ring without a right middle class

with zero right socle must be a right Noetherian, right V-ring by Proposition 4.3.1.

Theorem 4.4.2. [31, Theorem 4.2] Let R be an indecomposable ring with Soc(RR) = 0.

Then R is a right NMC-ring if and only if R is Morita equivalent to a right SI-domain.

56



Furthermore, if R is an indecomposable ring without a right middle class that is not simple

Artinian, we obtain Soc(RR) = 0 if and only if every hereditary pretorsion class of right

R-modules is a torsion class.

Proof. First assume that R is a right NMC-ring. Then by Proposition 4.3.2, R must be right

nonsingular, and so by Proposition 4.4.2 R is a right SI-ring. By Theorem 2.14.5, R has a

ring decomposition R = U ×R2 × . . .×Rn such that U/ Soc(UU) is a semisimple ring and

each Ri is Morita equivalent to a right SI-domain. Since R is an indecomposable ring, it

must be equal to one of the summands. If R = U , we obtain a contradiction. Therefore, R

must be equal to one of the R2, . . . , Rn. This means that R is a Morita equivalent to a right

SI-domain.

Conversely, we can suppose, without loss of generality, that R is a right SI-domain be-

cause having no right middle class property is Morita invariant property. Hence R is right

Noetherian by Proposition 2.14.4. In this case, every nonzero right ideal of R is essential in

RR by Lemma 2.6.7. Then R/I is semisimple for any nonzero right ideal I of R by Propo-

sition 2.14.2. Let A be a non-semisimple right R-module. Since Z(A) is injective, it must be

a direct summand of A. Then we can write A = Z(A)⊕B for some submodule B of A. By

Proposition 2.14.2, Z(A) is semisimple. Thus we may find a nonzero element b ∈ B such

that bR is not semisimple. It follows thatB is nonsingular. In domains, nonsingular elements

are precisely torsion-free elements. This means that b cannot be annihilated by any element

of R, and so bR ∼= R. Then R can be embedded in A and we may write σ[A] = Mod-R by

Proposition 2.15.24. Therefore R is a right NMC-ring by Theorem 4.2.4.

To prove the last statement, suppose that Soc(RR) = 0. It means that R cannot be a right

semi-artinian ring. We already know that the class of semi-artinian modules is the smallest

torsion class that contains SSMod-R. In this case, the smallest torsion class containing

SSMod-R is SSMod-R itself since it is a coatom in hptors-R. Then by Proposition 4.2.5,

we obtain that every hereditary pretorsion class is a torsion class. Conversely, suppose that

every hereditary pretorsion class is a torsion class. In this case, SSMod-R is a torsion class.

If Soc(RR) 6= 0, we have Soc(RR) ≤e RR by Proposition 4.4.1. Hence R/ Soc(RR) is

semisimple. But this is a contradiction by Lemma 2.15.20. Therefore Soc(RR) = 0.

Remark 4.4.3. We already know that every hereditary pretorsion class of right R-modules

(except possibly SSMod-R) is a torsion class by Proposition 4.2.5. Now it is worth empha-

sising here that SSMod-R is also a hereditary torsion class under the conditions of the above
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theorem.

Now that Theorem 4.4.2 has shed light on the case when the indecomposable right NMC-

ring has zero right socle, we can turn our attention to the case when the socle is nonzero.

Towards this end we begin with the following theorem.

Theorem 4.4.4. [31, Theorem 4.3] Let R be an indecomposable right NMC-ring that is

not semisimple Artinian. If Z(RR) = 0 and Soc(RR) is nonzero, then there exists exactly

one isomorphism class of singular simple right R-modules. In particular, the isomorphism

classes of singular simple right R-modules are precisely those of simple right ideals of the

ring R/ Soc(RR) as R-modules and R/ Soc(RR) is a simple Artinian ring.

Proof. Note that Soc(RR) ≤e RR by Proposition 4.4.1. Since R/ Soc(RR) is singular, it

is also a semisimple right R-module by Proposition 4.2.2. Assume that U is a singular

simple right R-module. In this case, there is some maximal ideal M of R such that U ∼=

R/M. Then by Proposition 2.7.3, M is essential in RR and we have Soc(RR) ⊆ M. This

shows that R
M
∼= R/ Soc(RR)

M/Soc(RR)
. Therefore U is isomorphic to a simple right R-submodule of

R/ Soc(RR). This gives, in particular, that isomorphic copies of every singular simple right

R-module is contained in R/ Soc(RR). Thus R/ Soc(RR) contains only a finitely many

singular simple right R-modules up to isomorphism. Let {U1 = U, . . . , Un} be a complete

set of representatives of isomorphism classes of singular simple right R-modules. Now

suppose that n > 1. Let B be the proper ideal of R such that B/ Soc(RR) is the sum of

all simple right ideals of the semisimple Artinian ring R/ Soc(RR) isomorphic to U . Then

we have B 6= Soc(RR). Notice that every non-singular simple right R-module must be

projective by Proposition 2.12.5. This gives that it can be embedded in R, and so isomorphic

to a simple right ideal of R (necessarily contained in B). In this case, the right R-module

M = B ⊕ U2 ⊕ · · · ⊕ Un contains isomorphic copies of every simple right R-module.

Since M
Soc(RR)⊕U2⊕···⊕Un

∼= B
Soc(RR)

, we have U ⊆ B/ Soc(RR) ⊆ σ[M ]. Also, since BR

is not semisimple, SSMod-R is strictly contained in σ[M ]. Then we obtain that σ[M ] =

Mod-R. Thus R can be embedded in a finite direct sum of copies of M by Proposition

2.15.24. Since R is right nonsingular, R/ Soc(RR) can be embedded in a finite direct sum

of copies of B/ Soc(RR). But this is a contradiction because the simple modules U2, . . . , Un

are isomorphic to a submodule of R/ Soc(RR) and they cannot be embedded in a direct sum

of copies of B/ Soc(RR). Therefore, we have n = 1. The last statement is obvious.

58



Proposition 4.4.5. [31, Proposition 4.4] The following statements are equivalent for a ring

R without a right middle class that is not semisimple Artinian.

(i) There exists an indecomposable right R-module of composition length two.

(ii) R is right Artinian.

(iii) R is not a right V-ring.

Proof.

(i)⇒ (ii) Let T be an indecomposable right R-module of composition length two such that

0 ⊂ U ⊂ T , where U is the simple submodule of T . Assume that R is not right Artinian,

then it is a right V-ring by Proposition 4.3.2. It follows that U must be an injective module,

and so it is a direct summand of T . Since U is also an essential submodule of T , it must be

equal to T . But this is a contradiction.

(ii)⇒ (iii) Let R be a right Artinian ring. Assume that R is a right V-ring. Then by Lemma

2.14.17, we have a contradiction. Thus R is not a right V-ring.

(iii)⇒ (i) Suppose that R is not a right V-ring. Then there is a simple right R-module W ,

that is not injective. Since W ≤e E(W ), E(W )
W

is a nonzero singular module by Proposition

2.7.3. Then it is also semisimple by Proposition 4.2.2. It follows that there exist a simple

rightR-module U/W in E(W )/W , whereW ≤ U . Hence we have an indecomposable right

R-module 0 ⊂ W ⊂ U of composition length two.

We now study right Noetherian rings without a right middle class with nonzero right

socle. It is worth mentioning that an indecomposable right Noetherian ring having no right

middle class with nonzero right socle must be right Artinian. The proposition below reveals

that a majority of significant properties of right Artinian rings with no right middle class,

stated in [23], are shared by rings subgenerated by an indecomposable module of composi-

tion length two.

Proposition 4.4.6. [31, Proposition 4.5] Let R be a ring. Assume that there exists an in-

decomposable right R-module U of composition length two and S be its simple submodule.

Assume also that σ[U ] = Mod-R. Then the following conditions are satisfied:

(i) R is a right Artinian ring.

(ii) Soc(RR) is homogeneous.
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(iii) Singular rightRmodules are semisimple. In particular, as a rightR-moduleR/ Soc(RR)

is semisimple, that is, J(R) ⊆ Soc(RR).

(iv) S and U/S are the only simple right R-modules up to isomorphism.

(v) If a right R-module M contains no copy of S, then M is injective.

(vi) If S is a nonsingular module, then

(a) U/S is an injective module, and

(b) R is a right SI-ring.

(vii) If S is a singular module, then we have J(R) = Soc(RR) = Z(RR).

Proof. Let U be an indecomposable right R-module of composition length two such that

σ[U ] = Mod-R. In this case, R can be embedded in a direct sum W = U1 ⊕ · · · ⊕ Un by

Proposition 2.15.24, where Ui ∼= U for every i = 1, . . . , n. Since length of Ui’s is 2, length

of W must be 2n. It follows that W is a right Artinian module, that implies that R is also

right Artinian. Since Soc(RR) = Soc(W ) ∩ R, we obtain that Soc(RR) is homogeneous.

Hence (i) and (ii) hold.

Now let Si denote the unique simple submodule of Ui for each i = 1, . . . , n. There is

an epimorphism σ : W −→ W/ Soc(W ) with kerσ = Soc(W ). In this case, σ can be

restricted to R, and we have a homomorphism σ′ = R −→ W/ Soc(W ) such that kerσ′ =

Soc(W )∩R = Soc(RR). This implies that R/ Soc(RR) can be embedded in W/ Soc(W ) ∼=

(U1/S1)⊕· · ·⊕ (Un/Sn). SinceW/ Soc(W ) is semisimple, R/ Soc(RR) is also semisimple.

Therefore J(R/ Soc(RR)) must be equal to zero, which implies that J(R) ⊆ Soc(RR). Now

letA be a right ideal ofR such thatR/A is a singular rightR-module. In this case,Amust be

essential in RR. This gives that A ⊇ Soc(RR). Since R/A ∼= R/ Soc(RR)
A/ Soc(RR)

, R/A is semisimple.

Hence every nonzero singular right R-module is semisimple.

Let T be a simple right R-module such that T ∼= R/M, where M is a maximal right

ideal of R. We suppose that T is singular. Then M must be essential in RR by Proposition

2.7.3. This means that Soc(RR) ⊆ M. As R/ Soc(RR) is semisimple such that its simple

submodules are isomorphic to U/S, we have T ∼= R/M ∼= U/S. If T is a nonsingular

simple right R-module, then it must be projective by Corollary 2.12.6. Thus M is a direct

summand of RR and T is isomorphic to a simple submodule of RR which is necessarily
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isomorphic to S. In this case, R has only S and U/S as a simple right R-modules, up to

isomorphism.

To prove (v), let M be a right R-module that contains no copy of S. Let 0 6= f : U −→

E(M) be an R-homomorphism. Since M ≤e E(M), we have f(U) ∩ M 6= 0, and so

f−1(M) 6= 0. In this case, we obtain that either f−1(M) = U or f−1(M) = S. In the

latter case, f maps S isomorphically onto a simple submodule of M , a contradiction. Then

we must get that f−1(M) = U ; hence Im f ⊆ M . This shows that M is U -injective by

Proposition 2.13.24. It follows that Mod-R = σ[U ] ⊆ In-1(M), and so we have In-1(M) =

Mod-R. Therefore M is an injective module.

Let M be a nonzero singular right R-module. Suppose that S is nonsingular. Then a

copy of S is not contained in M . This means that M is an injective module by (v), and so

U/S is injective. Moreover, R is a right SI-ring. This proves (vi).

To prove (vii), let S be a singular module. In this case, any simple right R-module is

singular by (iv). It follows that M ≤e RR, where M is any maximal ideal of R. Thus we

have Soc(RR) ⊆M. This gives that J(R) = Soc(RR). Then we obtain Soc(RR) ⊆ Z(RR)

because every simple right R-module is singular. By (iii), Z(RR) ⊆ Soc(RR), completing

the proof.

Lemma 4.4.7. [31, Lemma 4.6] LetR be a semilocal ring and let J(R) ⊆ Soc(RR). Assume

that R has an indecomposable right module U of composition length two. In this case, the

simple submodule of U can be embedded in RR.

Proof. Let 0 ⊂ S ⊂ U , where S is a simple submodule of U . Now take 0 6= u ∈ U \ S.

Then uR must be equal either S or U . Since u /∈ S, we have uR = U . Hence U is cyclic.

It follows that there is an R-homomorphism ψ : R −→ U . Assume that Soc(RR) ⊆ kerψ.

Then we obtain that U ∼= R
kerψ

∼= R/ Soc(RR)
kerψ/Soc(RR)

. In this case, R/ Soc(RR) is semisimple

because R/ J(R) is semisimple. Thus U must be semisimple. But this is impossible because

S is not a direct summand of U . Therefore Soc(RR) * kerψ, and so there is a simple right

ideal T of R such that ψ(T ) 6= 0. It follows that ψ(T ) must be isomorphic to S. This

completes the proof.

Theorem 4.4.8. [31, Theorem 4.7] The following statements are equivalent for a ringR that

is not semisimple Artinian.

(i) R is an indecomposable right Artinian ring without a right middle class.
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(ii) R has an indecomposable right R-module of composition length two and we obtain

σ[U ] = Mod-R for any such module U .

Proof. We suppose that R is an indecomposable, right Artinian ring and has no right middle

class. In this case, we can find an indecomposable rightR-module of composition length two

by Proposition 4.4.5, say U . Let S be the simple submodule of U . Since Soc(RR) ≤e RR,

R/ Soc(RR) is singular as a right R-module by Proposition 2.7.3. Hence it is a semisimple

right R-module by Proposition 4.2.2, implying J(R) ⊆ Soc(RR). By Proposition 4.4.1

Soc(RR) is homogeneous. It follows that any simple right ideal of R is isomorphic to S

by Lemma 4.4.7. Now let C = σ[U ⊕ T ], where T is the direct sum of a complete set

of isomorphism classes of simple right R-modules except for that of S (note that if there

exist no such simple right R-modules we take T = 0). Since U contains S and T contains

simple modules that are not isomorphic to S, SSMod-R ⊆ C . Then C is a portfolio by

Theorem 3.2.8. Thus we obtain that C = Mod-R because U is not semisimple. Hence RR

is a submodule of the direct sum (U1⊕ · · · ⊕Un)⊕ (T1⊕ · · · ⊕ Tm) by Proposition 2.15.24,

where Ui ∼= U and Tj ∼= T for i = 1, . . . , n and j = 1, . . . ,m. Let π : (U1 ⊕ · · · ⊕ Un) ⊕

(T1⊕· · ·⊕Tm) −→ (U1⊕· · ·⊕Un) be the natural projection with kerπ = (T1⊕· · ·⊕Tm).

As R ∩ kerπ is zero, R can be embedded in (U1 ⊕ · · · ⊕ Un). Therefore σ[U ] = Mod-R by

Proposition 2.15.24.

Assume that there is an indecomposable right R-module of composition length two. In

case U is such a module, we may write σ[U ] = Mod-R. It follows, by Proposition 4.4.6, that

R is right Artinian and Soc(RR) is homogeneous; so R is an indecomposable ring. Suppose

thatM is a rightR-module that is not semisimple. Let f : R −→M be anR-homomorphism

with f(r) = mr for m ∈ M . Then we have MJ ⊆ radM by Proposition 2.4.3. Since R

is semilocal, R/J is semisimple, and so M/MJ is an R/J-module. Therefore, M/MJ is

a semisimple R-module and MJ can be written as an intersection of maximal submodules.

It means that radM ⊆ MJ . If MJ = 0, then M must be semisimple, a contradiction.

Thus, we obtain that radM = MJ 6= 0. In this case, there is 0 6= m ∈ M such that

mR is a small submodule of M by Corollary 2.5.10. Then we can choose a submodule L

of M by Zorn’s lemma that is maximal amongst every submodule of M such that m /∈ L.

Then (L + mR)/L is the simple submodule of M/L. Note that if any nonzero submodule

of M/L contains L/(L + mR), then L/(L + mR) is the unique simple submodule. Now

let L ( A, where A is a right R-module. If m /∈ A, then we have a contradiction with the
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maximality of L. Hence m ∈ A and (L + mR) ⊆ A. This gives that L+mR
L
⊆ A

L
⊆ M

L
,

and so L+mR/L is the unique (essential) simple submodule of M/L. Then L+mR 6= M

because mR � M . Since M is semi-artinian, every nonzero factor of M contains a simple

submodule. In this case, M
L+mR

has a simple submodule, say K/(L + mR). Then we have

0 ⊂ L+mR
L
⊂ K

L
, and so K/L is an indecomposable right R-module of composition length

two. In case a right R-module A is M -injective, then it must be U -injective. It follows that

σ[U ] = In-1(A) = Mod-R. Hence R is a right NMC-ring. This completes the proof.

Corollary 4.4.9. [31, Corollary 4.8] LetR be a right Artinian ring. ThenR is a right NMC-

ring if only ifR can be decomposed as a ring asR = A×B, whereA is semisimple Artinian,

and B = 0 or B is an indecomposable ring that holds the following statements:

(i) Soc(BB) is homogeneous.

(ii) J(B) ⊆ Soc(BB).

(iii) TrB(U,EB(U)) = EB(U) for any indecomposable right B-module of composition

length two.

Proof. Assume thatR is a right Artinian ring without a right middle class. By Theorem 4.3.9,

R can be decomposed as a ring as R = A× B, where A is semisimple Artinian, and B = 0

or B is an indecomposable ring without a right middle class. Suppose that B is nonzero. It

follows by Proposition 4.4.6 and Theorem 4.4.8, that Soc(BB) is homogeneous and J(B) ⊆

Soc(BB). It is well-known that the injective hull of a uniform module is indecomposable.

If U is an indecomposable right B-module of composition length two, then EB(U), an in-

jective hull of the right B-module U , is indecomposable. Since U is essential in EB(U),

U is also essential in TrB(U,EB(U)). Hence we have EB(U) = EB(TrB(U,EB(U))) by

Proposition 2.13.15. Consider the inclusion U ⊆ TrB(U,EB(U)) ⊆ EB(U). It follows

that TrB(U,EB(U)) ⊆ E(TrB(U,EB(U))) ⊆ EB(U). Therefore TrB(U,EB(U)) is quasi-

injective by Lemma 2.13.29. Since TrB(U,EB(U)) contains U , it is not semisimple. Also

since B is a right NMC-ring, TrB(U,EB(U)) must be injective B-module. It follows that

TrB(U,EB(U)) = EB(U).

Now suppose that R can be decomposed as a ring as R = A×B, where A is semisimple

Artinian, andB = 0 orB is an indecomposable ring which satisfies the conditions (i)−(iii).

If B = 0, there is nothing to prove. Hence suppose that B is nonzero. By Theorem 4.3.9, we
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need to show that B is a right NMC-ring. Then we may suppose that R = B by Theorem

4.3.9. Let U be an indecomposable right R-module of composition length two with its

simple submodule S. As Soc(RR) is homogeneous, by Lemma 4.4.7, any simple right ideal

of R is isomorphic to S. This means that there exist simple submodules S1, . . . , Sn such

that S1 ⊕ · · · ⊕ Sn = Soc(RR) ≤e RR. Then we have E(S1) ⊕ · · · ⊕ E(Sn) = E(RR)

by Proposition 2.13.15. Therefore, RR can be embedded in a finite direct sum of copies of

E(S) = E(U). It follows, by (iii), that U generates E(S). Then U generates RR. This

implies that σ[U ] = Mod-R by Proposition 2.15.24. Hence R is a right NMC-ring by

Theorem 4.4.8.

Corollary 4.4.10. [31, Corollary 4.9] Let R be a ring. Then R is a right Noetherian ring

without a right middle class if and only if R can be decomposed as a ring as R = A × B,

where A is semisimple Artinian, and B = 0 or B is an indecomposable ring which satisfies

one of the following statements:

(i) B is Morita equivalent to a right SI-domain, or

(ii) B is a right Artinian ring such that its Jacobson radical does not properly contain a

nonzero ideal.

Proof. Let R be a right Noetherian ring with no right middle class. Then R can be decom-

posed as a ring as R = A × B, where A is semisimple Artinian, and B = 0 or B is an

indecomposable ring having no right middle class by Theorem 4.3.9. If B = 0, then we are

done. We may assume that R = B by Theorem 4.3.9. If Soc(BB) = 0, then the statement

(i) holds by Theorem 4.4.2. Otherwise, Soc(BB) is essential in BB by Proposition 4.4.1.

Assume that B is a right V -ring. Then Soc(BB) is an injective module and it is a direct

summand of BB. But this is a contradiction. Therefore, B is a right Artinian ring and no

nontrivial ideal of B is contained in its Jacobson radical by Theorem 4.1.4. The converse

easily follows from Theorem 4.1.4, Theorem 4.3.9 and 4.4.2, Corollary 4.4.9.

Corollary 4.4.11. [31, Corollary 4.10] Assume that R is an indecomposable ring. If R is a

right Artinian ring without a right middle class, then R satisfies the following statements:

(i) Soc(RR) is homogeneous.

(ii) If Z(RR) = 0, R has a unique simple singular right R-module up to isomorphism.
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(iii) There exist at most two simple right R-modules up to isomorphism.

(iv) Any singular right R-module is semisimple. Also, J(R) ⊆ Soc(RR).

(v) If Z(RR) is nonzero, then Soc(RR) = J(R) = Z(RR).

Proof. Follows easily from Propositions 4.2.2, 4.4.1, 4.4.4, 4.4.5 and 4.4.6 and Theorem

4.4.8.

Now we give a decomposition theorem of rings without a right middle class, which can

be regarded as a summary of this section.

Theorem 4.4.12. [23, Theorem 2] Let R be a right NMC-ring. Then R can be decomposed

as a ring as R = A× B, where A is a semisimple Artinian ring, and B is zero or it belongs

to one of the following classes:

(i) B is Morita equivalent to a right SI-domain (equivalently right PCI-domain), or

(ii) B is an indecomposable right SI-ring such that:

(a) B is either a right V-ring or a right Artinian ring,

(b) Soc(BB) is homogeneous and Soc(BB) ≤e BB,

(c) B has a unique singular simple right module up to isomorphism, or

(iii) B is a right Artinian indecomposable ring such that:

(a) Soc(BB) = J(B) = Z(BB),

(b) Soc(BB) is homogeneous.

Proof. Let R be a right NMC-ring. Then by Theorem 4.3.9, R can be decomposed as a ring

as R = A × B, where A is a semisimple Artinian ring, and B is zero or B is an indecom-

posable right NMC-ring. If B = 0, then we are done. Thus suppose that B is nonzero. By

Theorem 4.3.9, we can suppose that R = B. Let Soc(BB) = 0. Then by Theorem 4.4.2, B

must be Morita equivalent to a right SI-domain. Since SI- and PCI- conditions are equivalent

by Proposition 2.14.9, B is Morita equivalent to a right PCI-domain. Therefore (i) holds.

Assume that Soc(BB) is nonzero. We split our proof into two cases: Z(BB) = 0 or

Z(BB) 6= 0. In the former case, B is a right SI-ring by Proposition 4.2.2. Then by Theorem

4.4.4, B has a unique simple singular right B-module up to isomorphism. By Proposition
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4.4.1, B has a homogeneous right socle. Also by Proposition 4.3.2, B must be either a right

V-ring or right Artinian. Thus (ii) holds. Now suppose that Z(BB) 6= 0. It follows that B

is right Artinian by Proposition 4.3.2. Then by Proposition 4.4.1, Soc(BB) is homogeneous.

Also, we can say that Soc(BB) = J(B) = Z(BB) by Proposition 4.4.6 and Theorem 4.4.8.

Hence (iii) holds. This completes the proof.

So far in this section, we have investigated the structure of right Noetherian rings with

no right middle class. However, we still do not know if there exists a right non-Noetherian

ring with no right middle class. Now we give a survey of some interesting properties of such

rings in the following proposition considering that they exist. Before giving the proposition,

we remark that when studying a non-semisimple ring R with no right middle class, it is

sufficient to suppose that R is an indecomposable ring in light of Theorem 4.3.9.

Note that a right R-module M is called faithful if its annihilator is equal to zero. A ring

R is called right primitive if it has a faithful simple right R-module.

Proposition 4.4.13. [31, Proposition 5.1] The following statements are satisfied for any

indecomposable ring R without a right middle class that is not right Noetherian.

(i) R is a right SI-ring.

(ii) R/ Soc(RR) is a simple Artinian ring.

(iii) R is a right semi-artinian, right V-ring, and so a von Neumann regular ring (see [11]).

(iv) R has homogeneous right socle that has countably infinite length and Soc(RR) ≤e RR.

(v) R is a right primitive ring.

(vi) There is exactly one non-trivial ideal of R, namely Soc(RR).

Proof. Note that since the right Artinian ring is right Noetherian, R is right nonsingular by

Proposition 4.3.2. It follows that R is a right SI-ring by Proposition 4.2.2. By Proposition

4.3.1 and 4.3.2 it is a right semi-artinian, right V-ring. Then by Theorem 4.4.4, R/ Soc(RR)

is a simple Artinian ring. Therefore (i), (ii), and (iii) hold. By statement (iii), Soc(RR) is

nonzero. Then Soc(RR) ≤e RR and Soc(RR) is homogeneous by Theorem 4.4.1. Hence to

prove (iv), it is sufficient to see that Soc(RR) is isomorphic to a direct sum of countably many

simple modules. Let T be a simple right ideal of R. Since R is not semisimple Artinian,

Soc(RR) is not injective, and so U = T (N) is not injective by Theorem 2.13.8. It follows that
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E(U) is a non-semisimple rightR-module; hence E(U)/U is (singular) nonzero semisimple.

Then we have σ[E(U)] ) SSMod-R by Theorem 4.4.4. Thus, by assumption, σ[E(U)] =

Mod-R. In this case, R can be embedded in a finite direct sum W := E(U)⊕ · · · ⊕E(U) by

Proposition 2.15.24. As Soc(W ) is isomorphic to a direct sum of countably infinite simple

modules, so is Soc(RR). This proves (iv).

To prove (v), it is enough to show that R has a faithful simple right ideal. Let S be a

simple right ideal of R. Assume that Sa = 0 for some nonzero a ∈ R. As Soc(RR) ≤e RR,

aR must contain a simple right ideal of R, say S1. Then we obtain that S2
1 6= 0 because R is

regular. It follows that there exists x ∈ S1 such that S1x 6= 0. Since Sa = 0 and x ∈ aR, we

get Sx = 0. However, we have a contradiction because S ∼= S1. Hence R is a right primitive

ring.

Lastly, to prove (vi), let A be a nonzero ideal of R. Assume that A is not an essential

right ideal of R. Then A ∩ B = 0 for some right ideal B. In this case, there exists a simple

right ideal S such that SA ⊆ A ∩ B = 0. But this contradicts the proof of (v). Hence we

have Soc(RR) ⊆ A. This implies that R/A ⊆ R/ Soc(RR). Since R/ Soc(RR) is simple

ring by (ii), A must be equal Soc(RR). This completes the proof of (vi).

4.5 In search of a converse

In this section, we concern ourselves with conditions under which R is a right NMC-ring.

The following proposition deals with the case when the ring is Artinian as in Theo-

rem 4.4.12 (ii) and shows that the converse is satisfied under a uniqueness condition that is

stronger than that of Theorem 4.4.12 (ii)(c). Also remark that if R is a right SI-ring then any

non-simple local right R-module, is nonsingular.

Proposition 4.5.1. [23, Proposition 6] Let R be a right Artinian right SI-ring. Suppose that

there exists a unique indecomposable module of composition length two up to isomorphism.

Also suppose that R has homogeneous socle. Then R is a right NMC-ring.

Proof. We already know that one-sided Artinian rings are semiperfect. Then by Theorem

2.14.21, we have a ring decomposition RR = e1R ⊕ · · · ⊕ ekR ⊕ f1R ⊕ · · · ⊕ fnR, where

eiR are simple right ideals and fjR are local modules of length ≥ 2. Notice that since R

is right Artinian right SI, Soc(ftR) ≤e ftR and Soc(ftR) ⊆ ft J for each t. This gives

that Soc(ftR) ≤e ft J. It follows that ft J
Soc(ftR)

is singular by Proposition 2.7.3. Hence
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it is injective and splits in ftR
Soc(ftR)

. This means that ftR
Soc(ftR)

= ftJ
Soc(ftR)

⊕
C′

Soc(ftR)
for some

C ′ ⊆ ftR. Assume that C′

Soc(ftR)
6= ftR

Soc(ftR)
. Since ftR is local for each t, we have C ′ ⊆ ft J.

However, this is a contradiction. Thus C′

Soc(ftR)
must be equal to ftR

Soc(ftR)
. In this case, we

obtain that ftJ = Soc(ftR). For any t, t′, we can choose two right ideals At ⊆ ftR and

A′t ⊆ ft′R such that cl(ftR
At

) = cl(
ft′R
A′t

) = 2, where cl denotes the composition length. Then

by assumption, we have an isomorphism ftR
At

∼= ft′R
A′t

. This means that ftR
ft J
∼= ft′R

f ′t J
by Lemma

2.4.5. Therefore ftR ∼= ft′R by Lemma 2.12.7.

Let M and A be right R-modules such that A is non-semisimple cyclic and M is A-

injective. If we see that M is injective, then we are done. Let λ : R −→ A be an epimor-

phism. If λ(fiR) is semisimple for each i, then λ(R) must be semisimple, a contradiction.

In this case, there exists a non-semisimple local submodule in A, which is an image of some

fiR, say A′. Then we can choose some local factor B of A′ with composition length two.

It follows that M is B-injective. Fix any fj and suppose that Soc(fjR) = S1 ⊕ · · · ⊕ Sl

for some simple right ideals Si. For any i, set Vi =
⊕

t6=i St (if l = 1 we take Vi = 0).

It follows that
⋂l
i=1 Vi = 0 and cl(

fjR

Vi
) = 2 for each i. Since Soc(ftR) is maximal, we

have Vi =
⊕

t6=i St ⊂ Soc(fjR) ⊂ fjR. Note that Soc(fjR)/Vi ∼= Si is simple. Let

α : fjR −→ ⊕li=1
fjR

Vi
∼= Bl be an R-homomorphism. Then fjR can be embedded in Bl.

Since M is Bl-injective, it is also injective relative to fjR. Then M is injective because

Soc(RR) is homogeneous and all fjR are isomorphic. Hence R is a right NMC-ring.

Proposition 4.5.2. [23, Proposition 7] Let R be a right Artinian ring with homogeneous

Soc(RR) = J(R) and unique indecomposable module of composition length two up to iso-

morphism. Then R is a right NMC-ring. Moreover, R is a ring of Theorem 4.4.12 (iii).

Proof. Since Soc(RR) = J(R), in view of the proof of Proposition 4.5.1 it is enough to

prove the last statement. Note that R can be decomposed as a ring as R = A × B, where

A and B are as described in Theorem 4.4.12. If both A and B are nonzero, R must contain

two simple right ideals (one in A and one in B) with distinct annihilators. However, this

contradicts the fact that R has a homogeneous socle. Also, since R has an indecomposable

module of composition length two, R cannot be equal to A. Otherwise, we would have a

contradiction by our assumption that an indecomposable module of composition length two

exists. Hence R must be equal to B, where B is not semisimple Artinian. Then B cannot be

Morita equivalent to a domain because B is right Artinian but not semisimple. Assume that

S is a simple right ideal of R which can split in R. Then we have R = S⊕X for some right
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ideal X of R. In this case, S must be generated by an idempotent. Since Soc(RR) = J(R),

we obtain that S ⊆ J(R). But this is a contradiction because J(R) does not contain any

nonzero idempotent. Thus no simple right ideal in R can split. Similarly, also no maximal

ideal in R can split. Let V = vR be any simple right ideal of R for v ∈ V . So we have

V = R/ ann(v) by Lemma 2.2.5. Hence ann(v) must be an essential right ideal ofR. In this

case, R/ ann(v) is singular by Proposition 2.7.3. This implies that the simple right ideals of

R must be singular submodules of RR. It follows that Z(RR) 6= 0; hence R cannot be a right

SI ring. Thus R must be as in Theorem 4.4.12.

The following example exemplifies the case in Proposition. 4.5.2.

Example 4.5.3. [23, Example 6] Let R = Z
p2Z , where p is a prime number. Then R is a right

NMC-ring.

Example 4.5.4. [23, Example 7] Let R = Z
p3Z , where p is a prime number. Then R does not

have no right middle class.

The example 4.5.4 indicates that the condition Soc(RR) = J(R) is necessary in Proposi-

tion 4.5.2. Moreover, if R is right SI, the condition Soc(RR) = J(R) is not superfluous.

Lemma 4.5.5. [23, Lemma 11] LetR be a (non-semisimple) right SI-ring with homogeneous

right socle and let Soc(RR) ≤e RR. Suppose that every proper essential submodule of

E(RR) is poor. Then R is a right NMC-ring.

Proof. Assume that M is injective relative to A such that A is cyclic but not semisimple.

Our aim is to show that M is injective. Since R is a right SI-ring, in view of the Proposition

2.14.2, we may assume that A is nonsingular. It follows that A ∼= R/I for some essentially

closed right ideal I of R. Otherwise, if there is a right ideal I ′ of R such that I ≤e I ′ ≤ R,

I ′/I must be singular. In this case, Z(R/I) = 0 because R/I ∼= A. This implies that I ′/I

is contained in a nonsingular module R/I , as a singular module, a contradiction. Then by

Proposition 2.5.6, there exists a right ideal B of R such that I is complement to B. By

Proposition 2.5.5, we obtain that I ⊕ B ≤e R. In this case, we have B ∼= I⊕B
I
≤e R

I

by Proposition 2.5.4. Hence, there exists an essential submodule of A which is isomorphic

to a right ideal of R. It follows that Soc(A) can be embedded in Soc(RR). Since R has

an essential right socle, every nonzero cyclic submodule of A contains some simple right

R-module. This gives that Soc(A) ≤e A.
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Let S be a simple submodule of E(RR) and let S ′ be a (nonsingular) simple submodule

in A. Then S ′ can be embedded in R by Corollary 2.12.6. Since Soc(RR) is homogeneous,

we obtain that S ′ ∼= S. Also since E(RR) is injective we have an R-homomorphism f :

A −→ E(RR). It follows that S ⊆ Im f ⊆ Tr(A,E(RR)). Since S is arbitrary, we get

Soc(RR) ⊆ Tr(A,E(RR)). It is not difficult to see that Tr(A,E(RR)) ≤e E(RR). Since

Tr(A,E(RR)) is a fully invariant submodule of E(RR), it is also quasi-injective by Lemma

2.13.29.

Now let f : Soc(A) −→ RR be any monomorphism, which is mentioned above. A

monomorphism f can be extended to some homomorphism g : A −→ E(RR). Then we have

0 = ker f = Soc(A) ∩ ker g. Since Soc(A) is essential in A, g is a monomorphism. In this

case, A can be embedded in Tr(A,E(RR)). Since A is non-semisimple, Tr(A,E(RR)) can-

not be semisimple. Suppose now that Tr(A,E(RR)) is a proper submodule of E(RR). Then

by assumption, it is a poor module and also quasi-injective. This means that Tr(A,E(RR))

is semisimple. But this is a contradiction. Hence Tr(A,E(RR)) must be equal E(RR). Since

M is A-injective, it is also injective relative to Tr(A,E(RR)); hence E(RR)-injective. This

implies that M is RR-injective. Thus R is a right NMC-ring.

Lastly, we give an example to show that converse of Theorem 4.4.12 (iii), in general, is

not true.

Example 4.5.6. [30, Example 2.23] Let R =

Z/4Z 0

Z/2Z Z/2Z

. Then

(i) Soc(RR) ≤e RR and Soc(RR) is homogeneous.

(ii) Soc(RR) = J(R) = Z(RR),

(iii) RR is a poor module, and

(iv) R has right middle class.

4.6 Commutative rings

In this section, we turn our attention to commutative rings. Notice that a commutative ring

R is right NMC if and only if it is left NMC. We complete our thesis by giving a full

characterization of commutative NMC-rings.

70



Proposition 4.6.1. [30, Proposition 4.2] If R is a commutative Noetherian NMC-ring, then

R is a Artinian ring.

Proof. By Proposition 2.10.4, it is enough to show that any prime ideal of R is maximal.

Since this is the case for any commutative V-ring we may assume that R is not a V-ring. In

this case, we can choose a maximal ideal M such that R/M is not injective. Then E(R/M)

cannot be semisimple. Let P be any prime ideal such that P 6= M. Our aim is to show that

P is a maximal ideal of R. Now HomR(E(R/M),E(R/P )) = 0 by Lemma 2.13.17 since

M is a maximal ideal and M is not contained in P . Therefore R/P is E(R/M)-injective

by Proposition 2.13.24. Since E(R/M) is not semisimple and R is an NMC-ring, R/P is

injective. Therefore, R/P is a self-injective domain; hence a field by Lemma 2.13.3. This

completes the proof.

Theorem 4.6.2. [30, Theorem 4.3] A commutative ring R is NMC if and only if R can be

decomposed as a ring as R = A⊕B, where A is semisimple Artinian, and B = 0 or B is a

local ring with exactly one nonzero proper ideal.

Proof. Assume first that R is NMC-ring. By Theorem 4.4.12, R can be decomposed as a

ring as R = A ⊕ B, where A is semisimple Artinian, and B = 0 or it belongs to one of the

following cases:

Case I: B must be Morita equivalent to a right PCI-domain B′. It follows that B′ is right

Noetherian by Proposition 2.14.8, then so is B. In this case, B′ is an Artinian domain

by Proposition 4.6.1, and so it is a simple ring. This implies that B is also simple;

hence it is a field.

Case II: B is an indecomposable SI-ring. Then it must be either a V-ring or Artinian by Propo-

sition 4.3.2. Suppose first that B is Artinian. It follows that B is a finite product of

local rings by Proposition 2.10.4. Since B is an indecomposable ring, it must be a

commutative local Artinian ring. Also since B is an SI-ring, it is nonsingular; hence

semiprime. It is well-known that Artinian semiprime rings are semisimple. It follows

that B is a field. Now assume that B is a V-ring. If B is Noetherian then it should

be Artinian and by above arguments B is a field. So we may suppose that B is not

Noetherian. Then B must be a semi-artinian by Proposition 4.3.1. This implies that

Soc(B) 6= 0. Let S be a nonzero minimal ideal ofB. As J(B) = 0 by Lemma 2.14.14,
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there is a maximal ideal M, which does not contain S. Hence S ⊕M = B. Since B

is indecomposable, we obtain that S = B. Therefore, B is a field.

Case III: B is an indecomposable Artinian ring such that Soc(B) = J(B). Notice that as men-

tioned in Case II, B is a local ring. In this case, by Theorem 4.1.4, B is a ring whose

maximal ideal J(B) is minimal.

Conversely, suppose that B is a commutative local ring with exactly one nonzero proper

ideal. This implies that B has a unique indecomposable module of composition length two

up to isomorphism, that is B itself. Then it has homogeneous Soc(B) = J(B). Therefore,

B is an NMC-ring by Proposition 4.5.2, completing the proof.

Corollary 4.6.3. Let R be a commutative NMC-ring. Then it is Artinian.

Corollary 4.6.4. Let R be a commutative ring. Then R is a local ring with exactly one

nonzero proper ideal if and only ifR is an indecomposable Artinian NMC-ring with Soc(R) =

J(R).
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Chapter 5

CONCLUSION

In this thesis, we mainly studied rings with no right middle class. The following theorem is

the most comprehensive conclusion we have reached.

Theorem 5.0.1. [23, Theorem 2] Let R be a right NMC-ring. Then R can be decomposed

as a ring as R = A× B, where A is a semisimple Artinian ring, and B is zero or it belongs

to one of the following classes:

(i) B is Morita equivalent to a right SI-domain (equivalently right PCI-domain), or

(ii) B is an indecomposable right SI-ring such that:

(a) B is either a right V-ring or a right Artinian ring,

(b) Soc(BB) is homogeneous and Soc(BB) ≤e BB,

(c) B has a unique simple singular right B-module up to isomorphism, or

(iii) B is a right Artinian indecomposable ring such that:

(a) Soc(BB) = J(B) = Z(BB),

(b) Soc(BB) is homogeneous.

Also, we studied the structure of the right Noetherian rings without a right middle class.

However, we need to investigate the open problem whether there is not right Noetherian ring

without a right middle class. The following result gives some interesting properties of such

rings considering that they exist.

Proposition 5.0.2. [31, Proposition 5.1] The following statements are satisfied for any in-

decomposable ring R without a right middle class that is not right Noetherian:
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(i) R is a right semi-artinian, right V-ring, and so a von Neumann regular ring (see [11]).

(ii) R is a right SI-ring.

(iii) R/ Soc(RR) is a simple Artinian ring.

(iv) R has homogeneous essential right socle which has countably infinite length.

(v) R is a right primitive ring.

(vi) There is exactly one non-trivial ideal of R, namely Soc(RR).
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[27] R. Alizade, E. Büyükaşık, Poor and pi-poor Abelian groups, Communications in Alge-

bra, 45:1, 420-427, (2017).

[28] J. E. van den Berg, Primeness described in the language of torsion preradicals, Semi-

group Forum 64, no. 3, 425-442 (2002).

[29] J. Golan, Linear Topologies on a Ring: An Overview, Pitman Res. Notes Math. Ser.,

vol. 159, 1987.
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