
EFFECTS OF USING DIFFERENT RESOURCES ON
RELIABILITY AND POWER CONSUMPTION IN DIGITAL

CIRCUIT DESIGN

SAYISAL DEVRE TASARIMINDA FARKLI KAYNAK
KULLANIMININ GÜVENİLİRLİK VE GÜÇ TÜKETİMİNE

ETKİSİ

AKIN GÖKALAN

Prof. Dr. SÜLEYMAN TOSUN

Supervisor

Submitted to Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

January 2020

”Hayatta en hakiki mürşit, ilimdir.”

Mustafa Kemal ATATÜRK

ABSTRACT

EFFECTS OF USING DIFFERENT RESOURCES ON RELIABILITY
AND POWER CONSUMPTION IN DIGITAL CIRCUIT DESIGN

Akın GÖKALAN

Master of Science, Computer Engineering Department
Supervisor: Prof. Dr. Süleyman TOSUN

January 2020, 52 pages

Designing an application in hardware under inversely competing constraints such as area,

performance and power consumption with different objective functions such as reliability

of the circuits is a cumbersome task. Having different versions of the same resource

type handy during the design process may ease this burden since there can be several

alternative resources to meet the given constraints. Although area, power consumption and

speed values of commonly used arithmetic circuits can be found in previous researches,

reliability analysis of these circuits that are implemented on FPGAs are not done. Thanks

to reconfigurability features of FPGAs and their low cost compare to ASIC design at little

production numbers make FPGAs desirable also in aerospace industry. Especially in space

applications soft errors become a serious issue and requires reliability centric designs. For

this reason reliability concern in FPGAs is a salient subject.

In this study, some commonly used arithmetic circuits in FPGAs in terms of speed,

area, power consumption, and vulnerability to error propagation as reliability parameter are

characterized to create a library. Specifically, four well-known adders and two multipliers

in SRAM-based FPGA part of Xilinx’s Zynq-7000 SoC platform are implemented. Then

i

errors are injected to the configuration bits of the circuits to evaluate the error propagation.

The number and the ratio of the bits which causes miscalculations are determined. The

results show that different versions of the same resources can have different reliability values

in addition to area, latency, and power values. Finally separately analyzed circuits are mixed

in a topology consists of six adders. In this circuit impact of different resource selection on

meeting constraints is presented.

Keywords: Soft Error, FPGA, Reliability, Arithmetic Circuits

ii

ÖZET

SAYISAL DEVRE TASARIMINDA FARKLI KAYNAK
KULLANIMININ GÜVENİLİRLİK VE GÜÇ TÜKETİMİNE ETKİSİ

Akın GÖKALAN

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Süleyman TOSUN

Ocak 2020, 52 sayfa

Bir uygulamayı elektronik donanım üzerinde, devrelerin güvenilirliği parametresini göz

önünde bulundurarak, alan, performans ve güç tüketimi gibi birbiriyle rekabet eden

kısıtlamalar altında tasarlamak zahmetli bir iştir. Tasarım sürecinde aynı kaynak türünün

farklı versiyonlarının mevcut olması bu yükü hafifletebilir, çünkü verilen kısıtlamalar

birkaç alternatif kaynak arasından seçim yapılarak kullanılabilir. Yaygın olarak kullanılan

devrelerin alan, hız ve güç tüketimi değerleri literatürde bulunabilmesine karşın, FPGA’ler

üzerinde uygulanmış devrelerin güvenilirlik değerleri üzerine bir çalışma yapılmamıştır.

FPGA’lerin yeniden programlanabilme imkanları ve düşük üretim sayılarında maliyet olarak

daha avantajlı olmaları uzay ve havacılık sektöründe de FPGA’lerin yaygınlaşmasına sebep

olmaktadır Özellikle uzay uygulamalarında yumuşak hatalar büyük bir problem olmakta ve

güvenilirlik odaklı tasarım gerektirmektedir. Bu sebeple FPGA’lerde güvenilirlik konusu

önem arz etmektedir.

Bu tezde, FPGA’lerda yaygın olarak kullanılan bazı aritmetik devreler hız, alan, güç

tüketimi ve hataya karşı dayanıklılık diğer bir deyişle hata maskeleyebilme özellikleri

iii

yönünden nitelendirildi. Bu çalışmada spesifik olarak, Xilinx’in Zynq-7000 SoC plat-

formunun SRAM tabanlı FPGA’i üzerine dört tanınmış toplayıcı devresi ve iki çarpma

devresi uygulandı. Daha sonra hata yayılımını değerlendirmek için devrelerin konfigürasyon

bitlerine hatalar enjekte edildi. Devrelerin konfigürasyon bitlerinden sonuca etki edecek

kadar kritik olanlar bitlerin sayısı ve oranı belirlendi. Sonuçlar, aynı kaynakların farklı

sürümlerinin alan, gecikme ve güç değerlerine ek olarak farklı güvenilirlik değerlerine sahip

olabileceğini gösterdi. Ayrı ayrı analiz edilen devreler altı adet toplayıcı devresinden oluşan

bir devrede karıştırıldı ve kaynak seçiminin kısıtlamaları karşılamak bakımından yaptığı

iyileştirmeler gösterildi.

Anahtar Kelimeler: Yumuşak Hata, FPGA, Güvenilirlik, Aritmetik Devreler

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank to my supervisor Prof. Dr. Süleyman

Tosun for his time, patience and for all his valuable guidance at every stage of my research

along this long way. Without that support, It would have been impossible to write this thesis.

I would like to thank Tubitak who supported the research under the project number 116E095.

I am grateful to Roketsan and my manager Mazhar Gökhan Özkeser for their tolerance and

support in this cumbersome process.

I would like to thank to my friends Gün Demirbaş, Enes Akyurt and Sibel Arslan for their

ideas in every phase of this research.

Finally, I express my most sincere gratitude to my family and friends who supported me

morally with their best wishes.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

FIGURES . ix

1. INTRODUCTION. 1

1.1. Motivation . 1

1.2. Contributions . 2

1.3. Organization . 2

2. RELATED WORK . 4

3. BACKGROUND . 8

3.1. Zynq-7000 SoC . 8

3.2. FPGA . 9

3.3. CAD Tool and Design Flow . 13

3.4. Bitstream Structure. 15

3.5. Xilinx Essential Bits Technology . 15

3.6. Soft Error Mitigation IP . 16

3.7. Pblocks . 17

3.8. Full Adder . 17

3.9. Ripple Carry Adder . 18

3.10. Carry Lookahead Adder . 18

3.11. Brent-Kung Adder . 20

3.12. Kogge-Stone Adder . 21

3.13. DSP . 22

3.14. SEU . 23

3.15. SRAM .. 28

4. TESTING METHOD . 30

vi

4.1. Overview of the Test Setup . 30

4.2. Error Injection and Testing Method . 32

5. RESULTS & ANALYSIS . 38

5.1. Results of Library Characterization . 38

5.2. Case Study. 42

6. CONCLUSION. 46

REFERENCES . 48

vii

FIGURES

Page

3.1 Architectural Overview of the Zynq-7000 SoC Board [1]. 9

3.2 Architectural Overview FPGA. [2] . 10

3.3 Placement of Slices. [3]. 11

3.4 Slice Architecture. [3] . 12

3.5 Typical FPGA Design Flow [4] . 14

3.6 Full adder . 17

3.7 4 bit ripple carry adder [5] . 18

3.8 4 bit carry lookahead adder [6] . 19

3.9 8 bit brent-kung adder P and G signal generation [7] . 20

3.10 8 bit brent-kung adder [7]. 21

3.11 16 bit kogge-stone adder [8] . 21

3.12 Number of DSP Blocks in Xilinx FPGA Families [9]. 22

3.13 7 Series DSP48E1 Slice overview [10]. 23

3.14 SEU generation of ionizing particles [11] . 24

3.15 Penetration power of radiation types. [12] . 25

3.16 Generation of ionizing particles. [13] . 25

3.17 Cosmic ray shower.[14] . 27

3.18 Magnetosphere and belts [15].. 28

3.19 6 transistor SRAM cell. [16] . 29

4.1 Block diagram of the test setup. UUT stands for unit under test. 31

4.2 Structure of linear frame instruction bits. The numbers on the top, from 0 to

39, represent the bit index numbers. [17] . 32

4.3 PS program flowchart . 33

4.4 Hierarchy of the configuration bits. [18] . 34

4.5 An example design placement in FPGA. 35

viii

4.6 Classification of the circuits by the number of effected implementations by a

bit flip. 36

5.1 Customly designed data flow graph for the case study. 43

5.2 Schedule for only CLA and BKA implementations. Note that clock rates are

different as a result of adder delays. 44

5.3 Schedule for the mixed adder implementation . 45

ix

TABLES

4.1 Error counts of the ripple carry adder. 37

5.1 Comparison of circuits in terms of power, speed, and area. 38

5.2 Average number of miscalculations of ripple carry adders. 39

5.3 Average number of miscalculations of carry lookahead adders 39

5.4 Average number of miscalculations of brent kung adders . 39

5.5 Average number of miscalculations of kogge stone adders . 40

5.6 Average number of miscalculations of carry lookahead multipliers 40

5.7 Average number of miscalculations of DSP based multipliers. 40

5.8 Test results of the five identical circuits together in terms of vulnerability

(reliability). 41

5.9 Error rates of the circuits on average. 41

5.10 FIT rates. 42

5.11 Latency, area, and power consumption of three different implementations. 44

5.12 Error propagation values (critical bits in all essential bits) from the calcula-

tion (i.e., estimation) using resource library and from the simulation. Last

column gives the error of estimation. 45

x

1. INTRODUCTION

1.1. Motivation

A Field Programmable Gate Array (FPGA) is an electronic device that consists of a large

number of configurable logic blocks (CLBs), programmable routing switches that connect

the CLBs, and input-output (IO) pins [19]. In FPGAs, logic functions are realized by means

of CLBs, which in turn are composed of look-up tables (LUTs) that store the truth tables

of the functions, multiplexers, and flip-flops. The prevalence of FPGAs are growing in both

industry and academia due to their advantages such as reduced time-to-market, reconfigura-

bility, and the ability of parallel processing. They are also preferred as the choice of the

design platform in aerospace industries. They are playing a critical role in the rover mis-

sions to Mars [20]. It is a new phenomenon for FPGAs to be in harsh conditions. FPGA

vendors are also working on the reliability of the FPGAs to increase the trust and usability

of them in aerospace applications. They develop radiation-resistant FPGA families and also

integrate automated reliability oriented design techniques in the software program flow[20].

However, under ionizing radiation, the configuration bits of the FPGAs tend to flip, which is

called SEU (single event upset) [21]. An SEU may propagate through the circuit and cause

an unexpected behaviour. On the other hand, it may not change the output of the design due

to the error masking capabilities of the combinational circuits. In other words, the internal

structure of the circuit and the input pattern applied determine whether or not the behaviour

changes in the presence of an SEU.

SEU by definition is a change of state in a semiconductor, which does not permanently

change the behaviour of the circuit. If such a non-persistent error cause the data stored in

memory to be erroneous even for a short period of time, all operations using that data will

yield erroneous results until the data is updated. These types of errors in digital systems

are called transient errors or soft errors (SEs). Since the behaviour is determined by the

configuration bits in SRAM-based FPGAs, an SEU cause a permanent change of behaviour

until restart.

1

1.2. Contributions

In this thesis, a new method for testing the SE vulnerability of the arithmetic circuits imple-

mented in SRAM-based FPGAs is presented and in this respect, four well-known adders and

two multipliers are taken into consideration where the choice of the FPGA platform is Xilinx

Zynq-7000 SoC. In the design flow, firstly, the adders and the multipliers are characterized

in terms of the occupied area in the FPGA, speed (i.e., latency), power consumption, and the

vulnerability to SEs as a reliability metric. Later, different adders and multipliers are em-

ployed to implement the same function that is customly generated and used as a case study

to illustrate how the different versions of the same resource affects the overall reliability and

the other metrics (i.e., area, latency, and power) on the final design. In the last step, errors

are injected into the configuration bits of the FPGA to observe if they affect the results.

The contribution of this work can be summarized as what follows below:

• A new methodology that can be used to test the vulnerability of circuits against SEs on

FPGA-based implementations is proposed

• A new library that consists of four adders and two multipliers is introduced. The re-

sources in this library are characterized in terms of the area, latency, power consump-

tion, and the SE vulnerability metric that represents the reliability. I strongly believe

that such a library is exceedingly useful for further research on high level synthesis

(HLS) of integrated circuits on FPGAs and ASICs (Application Specific Integrates

Circuits) as well.

• A case study is presented which shows utilizing different versions of the same resource

in a design helps meeting the constraints and yielding better optimized circuits. I used

a custom generated function that uses all additions for the case study and implemented

it with various adder types to show how different design parameters are affected.

1.3. Organization

The rest of the thesis are organized as follows: In Chapter 2. previous research done on reli-

ability is discussed. Research on the performance of arithmetic circuits in ASIC and FPGA

is reviewed. Studies to increase reliability of well-known arithmetic circuits is evaluated.

2

In Chapter 3., the overview of the system architecture, the technological components used

in the evaluations and concepts that are related to the research are introduced. The details

of the test methodology are presented in Chapter 4.. In Chapter 5., the test results for the

selected adders and the multipliers along with a case study that uses the characterized library

are discussed. Finally, Chapter 6. concludes the thesis by summing up the work and results.

3

2. RELATED WORK

Especially in space applications, reliability is a big concern. Lots of research is done on

the subject. Even though most of the research is done targeting ASIC design there is also

some valuable research targeting FPGA. Firstly some of the researches which considering

general reliability oriented design techniques and reliability analysis models are covered.

Then the researches that are done to increase the reliability of well-known arithmetic circuits

are summarized. Even though most of them target ASIC design they provide insight into the

problems and possible solutions.

Triple modular redundancy (TMR) combined with a voter mechanism is a well-known

method to increase the reliability and detect SEs [22]. Although this method drastically

improves the mean time to failure (MTTF), the area and the power consumption increase

threefold compared to the original design. Therefore, some prior research endeavors to op-

timize the TMR solution. Pratt et al. [23] analyzed the elements of the circuit and applied

TMR only to the highly vulnerable parts of the design. They classified the configuration bits

of the design as sensitive bits and persistent bits. Sensitive bits are the bits that impact the

result and behaviour. When sensitive bits are corrected circuit recovers from error state and

works as expected. Persistent bits are the bits that cause a fault in the state of the design

which can not be recovered even if the error is corrected. They realized persistent bits are

the feedback structures of the circuits. When they propagate incorrect values state machine

itself is broken and cannot recover to normal working conditions. They applied TMR to only

persistent bits to increase reliability while sacrificing little on power and area. They com-

pared reliability results of non-mitigated design, partial TMR design and TMR design. They

manage to increase reliability a hundred times while sacrificing only %20 area using partial

TMR.

Another well-known method is data scrubbing (DS) [24]. DS is the process of scanning

all device memory in some time intervals to correct the detected errors. It requires storing

the original configuration or part of the original configuration data to replace the corrupted

frames. Even though every frame of the FPGA bitstream has error correction code (ECC)

bits, it may not be enough since ECC codes are only capable of correcting a single bit or two

adjacent bits in a frame. Apart from the ECC codes, the bitstream is also protected by cyclic

redundancy check (CRC) codes; however, CRC codes are only beneficial for integrity check

and they are not useful for any error correction operation [17].

4

Ostler et al. test the effects of SEUs in SRAM-based FPGAs. They adopt a statistical method

to estimate the reliability of the FPGAs at different orbit levels [25]. FPGA design they

analyzed, is protected by scrubbing and TMR. Scrubbing is scanning configuration bits of

FPGA and correcting the flipped bits thanks to ECC codes as explained before. They assume

the scrubbing period is 15 ms. Their calculations are based on the idea that if two errors

occur in a single scrub cycle the circuit produces erroneous results and fails since they adopt

TMR. Using the orbital radiation levels they estimated SEU probability. In the light of this

information, they created their statistical results. Although the reliability results of the tested

FPGAs are very promising, the authors conclude that the FPGAs are not suitable devices to

be used in every environment but is an available choice in many environments.

In another work [26], the researchers used reliability estimator tools to infer the reliability of

the hardware components in FPGAs. This work shows how each component contributes to

the overall system failure rate. They calculated the device reliability by using the reliability

contribution of each hardware in the FPGA. They proposed hardware redundancy for less

reliable parts of FPGA to increase the overall reliability of the device. They compared the

reliability results of an FPGA that has one spare memory block and an FPGA that does not

have any spare hardware.

Another study aims to find a model to measure the reliability of designs by analyzing hard-

ware description language (HDL) code [27]. There are existing reliability models for con-

ventional programming languages. However standard programming languages work sequen-

tially. Therefore they do not adapt well to the concurrent nature of the HDLs. The presented

method in [27] extends the reliability model of a standard programming language to handle

the error propagation cases that stem from the parallel nature of the HDLs. The proposed

model is tested and validated with a real design to prove its practical correctness.

Some previous research aimed to gain on reliability by modifying the fundamental architec-

ture of circuits itself. In [28], authors improve the overall reliability by adding very limited

additional hardware. They investigate the full adder circuit targeting application-specific

integrated circuits (ASICs). By calculating the results with the original inputs and their

complements in the full adder, they manage to use different paths on the full adder circuit

resulting in the same output. They finally check the results and determine if a transient er-

ror emerged during one of the calculations. With the addition of negligible extra hardware,

they manage to get reliability results as if there is dual modular redundancy. However, the

5

modified full adder requires two clock cycles to produce two distinct results since two dif-

ferent paths have some common elements. For this reason, to prevent time redundancy, they

propagate the result of the regular full adder path as soon as it is available not to make the

remaining circuit wait. Afterward, they calculate the result of the alternative path. When the

results are compared, they inform the remaining of the circuit if an error occurred. Therefore,

the circuit does not suffer from the time redundancy in normal working conditions but only

when an error emerged. In [29] authors proposed a self-repairing full adder design which is

capable of repairing itself using extra logic responsible for validating the result. Extra logic is

only enough to manage a single fault at a time. By their method, they significantly improved

the reliability of the full adder while sacrificing very little on area compare to TMR. In [30]

authors present a method that can make the defected hardware operate correctly. To show the

use case of their method, they propose a redesigned version of the Kogge-Stone adder, which

can run correctly even a fabrication defect exists in the circuit. Using the mutually exclusive

nature of even and odd bits of the Kogge-Stone adder, they reconfigure the hardware to make

it only use the healthy bit set of the adder if a manufacturing fault is detected in even or odd

bits. This approach does not decrease the throughput since it can run at the same or even

higher clock rates; however, it requires two clock cycles to produce a result if the circuit is

reconfigured to use only even or odd bit sets.

There are also some research in the literature when it comes to investigating the performance

of the arithmetic circuits. Daphni et al. compared commonly used parallel prefix adders

(PPA) including Kogge-Stone adder and Brent-Kung adder on FPGAs, in terms of power,

speed and area. In this respect, they presented their results in 16 and 64-bit variations of the

circuits. Vitoroulis et al. [31] expanded study presented in [32]. They presented the area

and the speed results of commonly used PPA adders. They implemented adders with input

sizes of 16, 32, 64, 128, and 256 bits. They also produced two results: the first one is the

results of the synthesis with the area optimization setting, while the latter is the synthesis

results with the speed optimization setting. Jayanthi et al. [33] and SaiKumar et al. [34]

did not restrict their research on PPA adders and further analyzed high speed VLSI adders.

Mohanapriya et al. [35] investigated multiplexer-based adders using Cadence for 180nm

technology. They reported the performance of the circuits in terms of speed, area and power

dissipation. In [36], authors implemented various types of adders at 90nm, 130nm, and 180

nm technology. They extracted all the nets in the netlist and injected transient error to all of

them. They checked if the injected error causes an error on the final result. By doing so, they

tried to find the architectural vulnerabilities of the commonly used adder topologies targeted

6

for ASIC designs. However, to the best of the knowledge reviewed in the literature, there is

no previous work that compares the different implementations of the same arithmetic circuits

using SRAM-based FPGAs as far as the reliability is concerned.

7

3. BACKGROUND

In this section, the necessary hardware and software components of the experimental setup

for the proposed method is proposed. Moreover the concepts that are closely related to the

study is mentioned. Specifically the architecture of the FPGA board, FPGA configuration

bitstream, essential bits for testing, intellectual property (IP) that is used for SE propagation

tests and the circuits that are evaluated in the thesis are explained.

3.1. Zynq-7000 SoC

Xilinx’s Zynq-7000 SoC (System-on-Chip) board is selected as the implementation platform

[37]. The reason for this selection is that Zynq-7000 SoC has dual Arm Cortex A9 cores

and 28nm Artix-7 based programmable logic (FPGA) allow developers to easily program

and control the behaviour of the reconfigurable logic via the Arm cores.The architectural

overview of this board is given in Fig. 3.1. As can be seen in this figure, the board has two

main components that are connected to each other via AXI buses: the processing system

(PS) and the programmable logic (PL). Zynq has 256 kb on-chip memory (OCM) [38]. Ex-

ternal DDR bus is available for connecting external memory. Since PS has two level cache

architecture execution speed is not affected significantly. First level cache (L1 cache) is pro-

priteary to core itself. Size of L1 cache is 32kb. L2 cache is a shared cache between two

processor cores. Size of L2 cache is 512kb. Apart from these memory resources there is

Block Ram available in PL. It is available to be used as external memory via Axi bus. Zynq-

7000 has also two ports that allow developers to access and change the FPGA configuration

bits: the processor configuration access port (PCAP) and the internal configuration access

port (ICAP). While PCAP is used to access the FPGA configuration bits from the PS, ICAP

is used to access the FPGA configuration bits from the PL part.

8

FIGURE 3.1: Architectural Overview of the Zynq-7000 SoC Board [1].

3.2. FPGA

Field Programmable Gate Arrays (FPGAs) are reconfigurable silicon devices that can be

programmed at any time. For little production numbers, they are cost-effective compared to

application specific integrated circuit (ASIC). Also, design in FPGA can be updated while

it is not possible in ASIC. However, all these advantages come with a cost. FPGAs are less

efficient in terms of speed, area and power consumption compared to ASIC. Even though

the staggering innovation speed of FPGAs result in quite fast hardware compare to their

predecessors, they are still not a match to ASIC in terms of performance. The main obstacle

9

of FPGAs in performance is reconfigurability which is their main advantage. FPGAs consist

of three main components. These are:

• Configurable Logic Blocks

• Programmable Routing Elements (Interconnect)

• I/O Blocks

An overview of FPGA architecture and elements are presented in Figure 3.2.

FIGURE 3.2: Architectural Overview FPGA. [2]

Configurable logic blocks (CLBs) are the main element that handles combinational logic in

FPGAs. Designing of a CLB is a process restricted by constraints. A very capable CLB

unit causes waste of power and resources, on the other hand, simple CLB design can not

implement even simple functions also causes waste of resources. Under these constraints,

FPGA vendors released a lot of CLB designs. Specifically, in the remaining of the subsection,

10

CLB structure of Xilinx 7-Series FPGAs will be explained since it is the model which is used

in the test setup. In 7-Series FPGAs one CLB unit consists of two independent slices. They

have their own carry chain circuits. They are connected to other slices vertically. Overview

of the slices connection and placement is shown in Figure 3.3.

FIGURE 3.3: Placement of Slices. [3]

Each slice contains the following elements:

• Four Lookup Tables (LUT)

• Eight Storage Elements

• Multiplexers

• Carry Logic

Each LUT has six inputs and two outputs. Their main task is implementing combinational

logic and propagating output to the next step. Multiplexers are the elements that help LUTs

to implement logic by supplying extra functionality. If a circuit requires more than six inputs

two slices are used together to satisfy the required logic. Storage elements are flip-flops

11

that are working synchronously with the given clock. Carry logic is used to create carry

signals faster. They can also perform and operations. Carry logic can form a carry chain by

cascading their inputs and outputs in collaboration with LUTs. They use carry lookahead

logic to generate carry signals. The width of a carry chain is limited with the number of

slices that exist in an FPGA column. Detailed view of slice structure is presented in Figure

3.4

FIGURE 3.4: Slice Architecture. [3]

12

3.3. CAD Tool and Design Flow

ISE Design Suite v14.7 is used in the test setup. ISE design suite is especially targeted

for Spartan family FPGAs. Xilinx recommends working with Vivado Design Suite for Zynq.

However, in Vivado Design Suite prioritized essential bit flow is not implemented yet. There-

fore, ISE design suite is chosen as the computer-aided design (CAD) tool. The flow of FPGA

design consists of four main stages. These are:

• Synthesis

• Mapping

• Place

• Route

Mapping, place and route all together called as implementation phase. A typical HDL devel-

opment process is shown in Figure 3.5

13

FIGURE 3.5: Typical FPGA Design Flow [4]

Synthesis The synthesis process means converting the HDL code to a netlist. The out-

put of the synthesis process consists of boolean functions between wires, flip-flops and

interconnections[2]. Synthesis tools also able to make optimizations on the boolean func-

tions.

Mapping The mapping process takes the output of the synthesis and modifies it to the

target hardware. As mentioned in section 3.2. input and output number of LUTs depend on

the targeted hardware. The mapping process arranges the boolean functions that are produced

in the synthesis phase to fit the hardware capabilities. The dilemma of mapping is the depth

of the resulted logic[2]. For high input logical functions depth of the logic may get high and

cause performance problems. Decreasing depth brings extra area requirements. Mapping

algorithms put an effort to balance these two constraints in acceptable processing time.

14

Place Placing is the step where the tool associates synthesized logic with the existing phys-

ical elements in the hardware. The placement tool must be aware of the hardware and its extra

features. It supposed to use these features effectively to save from area, speed and power.

Another challenge of placing is keeping the wiring at minimum[2]. To achieve this objec-

tive placement algorithms use some approaches to keep the related logic close to each other.

Details of the algorithms are not covered in this study.

Route The routing phase handles the connection between the already placed logic. Since

interconnection resources are also limited on FPGAs, not all interconnection wires can have

the shortest path to their target destination[2]. Therefore, the challenge of route algorithms

is managing wiring without collision while sacrificing minimum at connection length.

3.4. Bitstream Structure

Bitstream is the collection of the configuration bits that are loaded into the FPGA to realize

the desired logic. As a result of its technology protection policy, Xilinx does not reveal the

relationship between the logical placement and the bitstream. Instead, it provides linear ad-

dress scheme. The linear address does not represent a physical address; however, it provides

the ability for a user to pinpoint a specific logic in the design. The linear addressing scheme

also uses frames and words. The whole bitstream is firstly divided into the frames. Frames

are then divided into the words, where each word consists of a specific number of bits. For

example, the bitstream in Zynq-7000 consists of 7948 frames. Every frame consists of 101

words and every word has 32 bits. Therefore, a total of 25,687,936 bits exists in the bitstream

destined for Zynq-7000. At this point, it must be noted that the frame numbers and internal

structure of the frames change among different FPGA models.

3.5. Xilinx Essential Bits Technology

The essential bits of a design are defined as the bits that contain important information about

the design. Xilinx uses a special algorithm to identify the essential bits among the entire

configuration bits. If there is an SEU on an essential bit, the configuration of the circuit

changes as a result of the upset. However, this erroneous configuration bit might not change

15

the functionality of the design. Xilinx’s essential bits technology aims to provide the users the

ability to mark the essential bits in the design. The prioritized essential bit technology takes

it one step further and allows the users to mark the essential bits only for the selected parts of

the design. Xilinx synthesis tools create three classes of data files for the essential bits with

the extensions of .ebc, .ebd and an extra bit file after a successful implementation. The bit file

is the configuration file that is loaded into the FPGA. ebd file stores the configuration bits in

the ASCII format. ebc file is a marking file of the essential bits in the ASCII format. ebc and

ebd files have the same size. If a bit is 1 in the ebc file, then the corresponding configuration

bit in the ebd file is marked as essential. While the essential bits provide a good opportunity

for designers to reduce the failure in time (FIT) by extra precautions, they can be employed

for analyzing the SE susceptibility of a circuit.

There are three options to filter the ebc file. These options are none, mask and enable [18].

If none is selected as the filtering option tool produces an ebc file that contains all essential

bits for the whole design. If mask is selected as the filtering option tool produces an ebc file

that contains all essential bits except the essential bits that belong to the area marked by the

user during implementation. If enable is selected as the filtering option tool only extracts the

essential bits of user marked area. However, the enable option also extracts essential bits that

are important for the whole design to work such as the clock tree. Therefore in this study, the

essential bit map is obtained by the difference of ebc file that is generated by none option and

ebc file that is generated by mask option. Since common elements that are also important

for other parts of the design are not masked in the ebc file that is generated by mask option,

the difference of two ebc files produces the essential bit map that contains the essential bits

unique to user marked area.

3.6. Soft Error Mitigation IP

Xilinx provides a soft error mitigation intellectual property (SEM IP) to detect and cor-

rect SEs occurring in the configuration bits of the FPGAs. The SEM IP uses error correc-

tion codes (ECCs) for detection and correction of the erroneous bits. The ECC codes carry

enough information to correct one-bit flip or two adjacent bit flips in a frame. If more than

one non-adjacent bits flip, the ECC codes cannot correct the errors. In such a case, the frame

must be reloaded utilizing the ICAP or PCAP. The SEM IP is capable of reloading a frame

16

partially as shown in [39]. The SEM IP is also able to classify errors by comparing the

locations of the errors using the essential bits map.

Another important feature of the SEM IP is that it allows the designer to inject errors into the

configuration memory and emulate the errors as SEs. In this research, only the error injection

capabilities of the SEM IP is used. SEM IP is configured to accept commands through the

UART interface for the error injection and error mitigation capabilities of different imple-

mentations are tested.

3.7. Pblocks

Pblocks are the user-drawn areas in the FPGA logic and used to supply specific place and

route constraints to a specific module in the design. Pblocks are used to implement different

circuits in a specified FPGA location.

3.8. Full Adder

Full adder is a very primitive unit in adders. It has three inputs and two outputs. Two inputs

are the operands and the third one is carry. Outputs are the carry and the sum. The full adder

is designed to create adders at the desired width by stacking and connecting carry outputs to

the next full adder unit. Representation of full adder is shown in Figure 3.6.

FIGURE 3.6: Full adder

17

3.9. Ripple Carry Adder

Ripple carry adder is a very primitive adder. As explained in section 3.8. ripple carry adder

consists of cascaded full adders at the desired width. In Figure 3.7 four bit representation

of ripple carry adder is presented. Ripple carry adder is a simple and easily scalable design

however it is slow because carry signal needs to propagate through all full adders for a valid

result.

FIGURE 3.7: 4 bit ripple carry adder [5]

3.10. Carry Lookahead Adder

As explained in section 3.9. ripple carry adder is slow because of carry propagation delay.

Carry lookahead adder is a more complex hardware that targets to decrease carry propagation

delay. Carry lookahead adder generates two signals called carry generate (G) and carry

propagate (P) which is calculated using the following formulas:

Gi = Ai.Bi

Pi = Ai ⊕Bi

Therefore carry and sum signals can be calculated using following formulas:

Si = Pi ⊕Gi

18

Ci+1 = Ci.Pi +Gi

Using the equation above the carry signals are calculated as follows:

C1 = C0.P0 +G0

C2 = C1.P1 +G1 = (C0.P0 +G0).P1 +G1

C3 = C2.P2 +G2 = (C1.P1 +G1).P2 +G2

C4 = C3.P3 +G3 = C0.P0.P1.P2.P3 + P3.P2.P1.G0 + P3.P2.G1 +G2.P3 +G3

As it is seen from the formulas carry signals are not dependant on the previous carry signal

but only to C0. Thanks to the fast carry generation logic carry-lookahead adder performs bet-

ter than ripple carry adder at the cost of extra logic. Visual representation of carry-lookahead

adder is shown in Figure 3.8.

FIGURE 3.8: 4 bit carry lookahead adder [6]

19

3.11. Brent-Kung Adder

Carry lookahead adder implements carry logic faster compare to ripple carry adder. However,

its carry logic path delay linearly increases with n which is the number of bits of the operands.

Brent Kung adder is one of the parallel prefix adders(PPA) which reduces the complexity to

the logarithmic level. Brent Kung adder also calculates P and G signals as it is in carry-

lookahead adder. However brent-kung adder calculates P and G groups as a tree. At every

stage, another bit group of P and G values is calculated. A brief look to brent-kung adder P

and G signal generation is shown in Figure 3.9.

FIGURE 3.9: 8 bit brent-kung adder P and G signal generation [7]

After P and G values are calculated carry signals are being generated also using a tree-based

approach. Complete working steps of Brent-Kung adder is shown in Figure 3.10. Complexity

of the brent kung adder is given as (2)(logN) - 2

20

FIGURE 3.10: 8 bit brent-kung adder [7]

3.12. Kogge-Stone Adder

Kogge stone adder is also one of the PPA family. It is more complex and faster than Brent-

Kung adder at the expense of power and area. The complexity of the kogge-stone adder is

given as log(n). Carry generation tree of Kogge-Stone adder is given in Figure 3.11.

FIGURE 3.11: 16 bit kogge-stone adder [8]

21

3.13. DSP

Signal processing and image processing functions require a lot of arithmetic operations, es-

pecially multiplication operations. Multipliers implemented in the logic part of FPGAs are

slow and require a lot of space. Therefore, Xilinx first introduced embedded multiplier in

their Virtex II FPGAs. By developing the special multiplier considering the demands of the

industry, modern DSP blocks emerged. Modern DSP blocks are capable of handling a wide

range of operations.

DSP48E1 slice is used in the tests. DSP48E1 is introduced with 7 Series FPGAs however is

being used within all families. The sheer performance of DSP blocks which can run up to

720 MHz are demanded more and more by consumers. For this reason, the number of DSP

blocks in FPGAs is increasing. The number of DSP units in FPGA families are shown in

Figure 3.12.

FIGURE 3.12: Number of DSP Blocks in Xilinx FPGA Families [9].

The capabilities of the DSP48E1 slice is given as follows [10]:

• 25 bit preadder with a register to increase input capabilities.

• Balanced pipelining while switching between addition and multiplication operations.

• 18x25 bit multiplier

22

• Internal cascade capability using two DSP slices which supports up to 96 bit opera-

tions.

• Bitwise logic operations.

• Pipelining ability in the input and output pins.

• Capability to handle shift operations.

The architecture of DSP48E1 slice is given in the Figure 3.13

FIGURE 3.13: 7 Series DSP48E1 Slice overview [10].

3.14. SEU

Single event upset (SEU) is a change of state in the hardware which causes the hardware to

produce erroneous results. The cause of soft errors is high energy particles that make contact

with the semiconductor. The depiction of the phenomena is given in Figure 3.14. The type of

SEU is depended on the part of the semiconductor that high energy particle makes contact.

Single event upsets can be categorized as follows:

23

FIGURE 3.14: SEU generation of ionizing particles [11]

• Single Bit Upset: High energy particle changes the state of one bit in a memory.

• Multiple Bit Upset: High energy particle changes state of more than one bits.

• Single Event Transient: High energy particle strike a wire or interconnect. This

changes the electrical level of the line for a while which is called glitch. Glitches

may propagate to the remaining of the circuit depending on the logic, timing etc. If

glitch causes an erroneous data to be latched, circuit produces wrong results. This type

of SEU is more common in ASIC designs.

Radiation is the energy that is emitted from a source. Radiation can be classified as non-

ionizing and ionizing radiation. Non-ionizing radiation is radio signals, wireless modems,

cell phones, etc. This type of radiation is not able to ionize atoms or molecules because of

the lack of energy they carry. Therefore ionizing radiation is the type of radiation which is

important for the study. Types of ionizing radiation are:

24

FIGURE 3.15: Penetration power of radiation types. [12]

• Alpha radiation: Consists of two protons and two neutrons. It has a positive charge

and identical to a helium nucleus. They are very large particles and can be stopped

with a sheet of paper. The source of alpha particles is decaying radioactive elements

such as special isotopes of uranium. Decay process and radiation generation is given

in the Figure 3.16.

FIGURE 3.16: Generation of ionizing particles. [13]

Alpha radiation is terrestrial radiation. It causes problems in the semiconductor indus-

try because materials are not pure. Impurities in the substances used in packaging emit

25

alpha particles and cause SEU. As a precaution, semiconductor manufacturers seek for

materials that do not contain radioactive substances, however, this is almost impossible

and an expensive process since radioactive elements are spread through the soil of the

earth. Another mitigation approach is to strengthen the resistance of the chip to radi-

ation by a layer that prevents radiation from passing through. However, this approach

makes packaging expensive and complex to produce. Therefore in semiconductors,

soft errors caused by alpha particles remains an ongoing problem.

• Beta radiation: Consists of an electron, therefore beta particles are negatively charged.

Beta particles are fast and have more penetration ability than alpha particles. However,

they can be stopped with a thin layer of plastic. Beta particles do not pose a significant

threat to SEUs because of the lack of energy.

• Gamma radiation: Usually emitted from the nucleus of an atom together with an alpha

or beta particle. Gamma radiation is very penetrating. A thick layer of concrete or lead

is able to stop gamma particles. They do not pose a threat to soft error generation since

their energy is not sufficient to change the charge of a transistor.

• Neutron radiation: Together with the alpha radiation neutron radiation is one of the

most threatening sources of SEU in terrestrial environments. The main cause of neu-

tron radiation is cosmic rays. When cosmic rays strike the outer atmosphere they

collide with atoms and create secondary particles. These secondary particles which

include neutrons continue to spread in the atmosphere. Since neutrons do not have

charge they continue their course without interacting with other atoms until they hit

the nucleus of another atom. When they hit the nucleus of another atom they generate

secondary particles again. Neutrons are dangerous because they can penetrate thick

materials and have enough energy to create single event upsets in the semiconduc-

tors. Even though the generation of neutron radiation is indirect, it is a big thread to

semiconductors in fail-safe applications.

The penetration levels of the radiation types are given in Figure 3.15

26

FIGURE 3.17: Cosmic ray shower.[14]

Radiation levels in the terrestrial environments and extra-terrestrial environments vary heav-

ily. The source of extra-terrestrial radiation is galactic cosmic rays and solar storms. Only

the particles that carry enough energy to penetrate the magnetosphere can reach the atmo-

sphere. The ones that do not have enough energy to penetrate the magnetosphere create a

sphere of particles which is called belts. The density of the trapped particles in belts vary

in time depending on the intensity of solar winds and galactic cosmic events. Solar winds

and belts formed by the magnetic field of the earth are depicted in Figure 3.18. The particles

that can penetrate the magnetosphere strikes the atmosphere and creates secondary particles

from the interaction with nitrogen and oxygen atoms. The chain of reactions creates more

particles which is called a shower. The visual depiction of the cosmic ray shower is shown

in figure 3.17. The most important and most dangerous product of cosmic ray shower is

neutron radiation. Neurons radiation becomes measurable at the 350 km altitude and reaches

its peak flux at 20 km. From 20 km altitude to the surface of the earth the level of neutron

density drops to 1/500 of the peak flux [40].

27

FIGURE 3.18: Magnetosphere and belts [15].

3.15. SRAM

Static random access memory (SRAM) is a flip-flop based semiconductor data storage cir-

cuit. Contrary to dynamic access memory (DRAM), SRAMs do not require a periodical

refresh. However, SRAMs should not be confused with read-only memory (ROM). ROM

can keep the information while not powered while SRAM loses the information stored when

it is not powered.

The main advantage of SRAM is speed. It is faster than DRAM memory however it is more

expensive. Therefore SRAM is generally used for memory types where performance is the

main concern such as cache memory or on-chip memory. Another advantage of SRAM

over DRAM is power consumption. Since SRAM does not require refreshing, its power

consumption rates are very low when it is idle. Only read-write operations at high clock

speeds increase power consumption to the levels of DRAM.

28

FIGURE 3.19: 6 transistor SRAM cell. [16]

A typical SRAM cell consists of six transistors. Four of them are used to store the bit and the

other two are used for read-write operations. The typical SRAM cell view is given in Figure

3.19. The M5 and M6 transistors are being used for read-write operations while others are

used for storing the bit.

29

4. TESTING METHOD

In this study, main focus is on adders and multipliers for the library characterization since

they are the most commonly used resources. Additionally, several other arithmetic opera-

tions can be performed on them after small modifications. For instance, the subtraction and

comparison circuits can be implemented using adders. Other arithmetic circuits and the dif-

ferent versions of adders and multipliers can also be added to the characterized library by

following the same methodology described below.

Four most commonly used adder implementations are selected. These adders can be listed

from the slowest to the fastest as follows:

• Ripple carry adder [41]

• Carry lookahead adder [41]

• Brent-Kung adder [42].

• Kogge-Stone adder [43]

The adders are implemented in the PL part using the CLBs of the Zynq-7000 board.

Two versions of multipliers are implemented: carry-lookahead multiplier (CLM) and DSP-

based multiplier. While the CLM is implemented in FPGA, pre-existing DSP fabric is used

for the DSP unit-based multiplier.

4.1. Overview of the Test Setup

The block diagram of the test setup is given in Fig. 4.1. In the FPGA design, five exact

copies of each circuit is placed for testing since each implementation may behave differently

on the FPGA because of the non-deterministic behavior of the place-and-route algorithms.

All inputs and outputs are implemented as 32-bit wires, The same inputs are applied to all

five circuits and their outputs are obtained. While the input and the output sizes of the

adders are 32 bits, the input and outputs of the multipliers are 16 and 32 bits, respectively.

Interconnection wires are driven by another module, which is called the intercommunication

30

module. The intercommunication module is a clock-synchronous AXI slave. The task of the

intercommunication module is to obtain the test data inputs from the PS via the AXI interface

and drive the wires that are connected to the unit under test (UUT). The outputs of the five

circuits are sent back to the intercommunication module. The PS also reads all outputs from

the intercommunication module via the AXI interface.

FIGURE 4.1: Block diagram of the test setup. UUT stands for unit under test.

The PS is connected to the SEM IP via the UART. The instruction parsing interface of the

SEM IP is called the monitoring interface. The PS generates the instructions and sends them

to the SEM IP via the UART pins. A dedicated PS-UART0 is used for the communication.

There are also two addressing schemes: linear addressing and physical addressing. Linear

addressing scheme does not give any information about a physical element or its location;

however, the ebc file is generated according to the linear addressing scheme. For this reason,

the linear addressing scheme is used for the error injection. An example of error injection

instruction looks like as shown in Fig. 4.2. It consists of 40 bits as shown in the figure. It

is designed to fully depict a specific bit in the whole bitstream. In the instruction bits, L, W,

and B bits represent the frame number, word number, and the bit number, respectively. S bits

are used to indicate if the device is a stacked silicon interconnect (SSI) device or not. A zero

value indicates that the device is a non-SSI device while a value of one indicates that it is an

31

SSI device. Since the hardware used in this research is a non-SSI device, the S bits is set to

zero in this study.

FIGURE 4.2: Structure of linear frame instruction bits. The numbers on the top, from 0 to
39, represent the bit index numbers. [17]

4.2. Error Injection and Testing Method

The PS flowchart of the error injection and the critical bit identification is given in Fig. 4.3.

PS first injects the errors to the configuration bits and feeds the test data. It then compares

the results generated by the FPGA logic with the correct results. To perform these steps, it

first searches the pre-loaded ebc file for determining the essential bit locations. Whenever an

essential bit is determined, it infers the linear address of the bit and injects an error into that

location. Error injection is basically flipping the value of the configuration bit. After flipping

the bit, PS feeds the test data to the intercommunication module and collect the results. If

any of the results are erroneous, PS assumes the bit as critical and collects all the statistics

from the test. Afterward, PS corrects the configuration bit. In order to make sure whether

the miscalculations are really caused by the injected error, PS feeds the same test data to

the intercommunication module again. If all the returned results are determined as valid,

then PS accepts the bit as the critical bit. If any erroneous result is detected from any of the

circuits, PS marks that configuration bit as fake critical bit and increments the unexpected

situation counter. Observing a fake error means that there is an unexpected error in FPGA

and the bitstream should be reloaded to continue on the tests. Since not any fake errors are

encountered in the tests, the behaviour of the program is not changed.

32

FIGURE 4.3: PS program flowchart

33

Xilinx’s prioritized essential bits technology is used to mark the essential bits of the five

circuits that are under test. Maximum clock frequency of the SEM IP is 100 MHz. At maxi-

mum clock frequency, the latency of the error detection is determined as 8.0 ms [17]. Since

the clock frequency is chosen as 50 MHz for the design to satisfy the timing requirements all

over the circuit, the latency is doubled to 16 ms for the error detection. The error detection

mechanism scans all configuration bits and verifies the ECC codes of the frames. Therefore,

PS program must wait 16 ms for the injection to propagate through the circuit after every

error injection. 40 ms is selected as the waiting time as the safe latency duration. Feeding

the test data and collecting the results also take another 40 ms. After correcting the error in-

jected into the configuration bit, PS waits 40 ms again for the correction to propagate through

the circuit. Therefore, testing a single bit takes 120 ms if the bit is not critical. If the bit is

critical, then it takes 160 ms since the test data are fed twice. If every configuration bit is

tested, testing of the whole configuration bits would take around 40 days considering the fact

that there are 25,687,936 bits in the device. For this reason, Xilinx’s essential bits technology

plays an important role in terms of a feasible testing.

As stated before, essential bits are the bits that are important to the design. Prioritized es-

sential bits are the bits that are essential in the marked area and critical bits are the bits that

actually change the behaviour of the circuit. In the light of these definitions, the configuration

bits can be classified as shown in Fig. 4.4, which is also reported in [18].

FIGURE 4.4: Hierarchy of the configuration bits. [18]

ISE Design Suite is selected for the design and synthesis platform since it supports the pri-

oritized essential bit flow. To place the circuits in the FPGA, pblocks are used to restrain the

tested circuits in a specific location. Specific constraint settings are given to implementation

34

tool not to allow another logic to be placed or routed through the Pblocks which also guaran-

tees that only the specified circuit can be placed in the Pblock area [44]. Fig. 4.5 shows how

five implementations of the same function are constrained to the specified locations of the

FPGA in the place-and-route phase. Since place-and-route algorithms are not deterministic,

each implementation of the same function may result in a different configuration. Thus, each

implementation may give us a different set of error propagation results. Therefore, five exact

copies of the circuits are implemented to be tested and averages of the detected errors and

essential bits are taken in the evaluations.

FIGURE 4.5: An example design placement in FPGA.

The statistics of the tests are stored in a log file. These statistics include the number of mis-

calculations for each circuit for every essential bit. This log file is used for the classification

35

and statistical analysis of each arithmetic circuit. The log data is evaluated by means of the

algorithm whose flowchart is given in Fig. 4.6. If a bit creates an error for only one circuit,

then it is classified as a critical bit for the related circuit. If a bit creates errors for more than

one circuit but not to all of the circuits, then that bit is considered as a strangely affecting

bit. Strangely affecting bits might exist in a circuit since the input nets of all five circuits are

common. In other words, the input nets arrive at the region of tested circuits as one net and

start leaving the main net as they reach to the location of the related circuit. The net distri-

bution continues until the inputs arrive at the last circuit. As a result, some bits do affect all

circuits. In this study, the errors affecting only one circuit are assumed to contain value for

the result. Therefore, the effects of the wires is ignored in calculating the SE vulnerability.

If a bit affects all five circuits, then it means that this particular bit is affecting the net tree

before any of the nets are left the net tree to reach their target circuit. In the same way, if a

bit affects more than one circuit that bit is also related to the net tree which does not carry

valuable information about the circuit itself.

FIGURE 4.6: Classification of the circuits by the number of effected implementations by a
bit flip.

In order to select the minimum required number of test data in terms of the accuracy and

the test time, 1000, 5000, and 10000 inputs are fed to the ripple-carry adder implementation.

The number of critical bits and the number of erroneous results are stored in a log file. Later,

number of the erroneous results is counted for each bit. If number of erroneous results were

less than five, the counter parameter is incremented, which is named as critically low error

count. This value is expected to be as close to zero as possible for having accurate test

results. The test results for the ripple carry adder when the size of the test data are 1000,

5000, and 10000 are given in Table 4.1. In the tests, 382 bits appear to create less than five

erroneous results out of 1000 test inputs. This number decreases to two when the test data

36

size is increased to 5000 while it becomes zero when the test data size is 10000. As a result,

test input data size is selected as 10000 since it decreases the critically low error count to

zero. Furthermore, increasing the number of test data from 5000 to 10000 does not change

the detected number of critical bits.

TABLE 4.1: Error counts of the ripple carry adder.

Number of Test Data 1000 5000 10000
Number of Critical Bits 1815 1836 1836

Critically Low Error Count 382 2 0

37

5. RESULTS & ANALYSIS

5.1. Results of Library Characterization

As stated above, four adders and two multiplier circuits are implemented in the resource

library. Power consumption, area, latency, and reliability metrics of the circuits are charac-

terized. In a separate project, only one instance of each arithmetic circuit on the same FPGA

platform is implemented to obtain the area, latency, and power consumption values. Since

pipelining is not applied to the circuits, the delay of the critical path is measured as the la-

tency value. As the area parameter, total number of slice LUTs utilized by the circuits are

used. However, since DSP is a special resource in PL that does not require any additional

logic, its area is taken as zero. Only the dynamic power consumption of the logic part is

considered. Since a clock restriction is not given to the tool, dynamic power values are cal-

culated under maximum switching frequency that the tool can handle. Therefore, they only

represent the relative power consumption values in each circuit but not the absolute power

consumption values under a specific clock frequency. The power, area, and latency values of

each circuit are depicted in Table 5.1. The table indicates that when a circuit is faster than

another circuit, its area and power consumption tends to increase proportionally. Since the

DSP-based multiplier is not a CLB-based implementation, its parameters do not fit into the

behaviour of other circuits. When four adders are considered, while the area and power pa-

rameters are directly proportional, the latency is inversely proportional to these two metrics

as expected.

TABLE 5.1: Comparison of circuits in terms of power, speed, and area.

Area* Latency(ns) Power(W)
Ripple Carry Adder 31 20.913 0.253

Carry Lookahead Adder 47 15.476 0.236
Brent-Kung Adder 117 9.213 0.359
Kogge-Stone Adder 185 8.982 0.737

Carry Lookahead Multiplier 383 36.425 7.445
DSP Based Multiplier 0 3.884 0.961

*Note: Unit of area is the total number of slice LUTs.

As the reliability metric, the number of critical bits and the number of erroneous results are

counted for each critical bit as explained in the previous section. Five identical copies of the

38

same circuit is averaged to determine the reliability results. 10000 input data is fed to each

five of the circuits and number of incorrect calculations is collected. The incorrect calculation

number per critical bit and number of critical bits can be seen in Tables 5.3, 5.2, 5.4, 5.5, 5.6,

and 5.7. The number of critical bits shows the critical bits, only unique to that specific circuit

and excludes the number of critical bits affecting all circuits and strangely affecting bits. In

the remaining of the section the reliability values of the circuits with the average value of the

five identical copies is presented.

TABLE 5.2: Average number of miscalculations of ripple carry adders

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 1836 456
Circuit2 1314 542
Circuit3 1227 594
Circuit4 1297 542
Circuit5 1085 646
Average 1351 556

TABLE 5.3: Average number of miscalculations of carry lookahead adders

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 1241 582
Circuit2 1051 628
Circuit3 1200 646
Circuit4 1495 424
Circuit5 1114 536
Average 1220 563

TABLE 5.4: Average number of miscalculations of brent kung adders

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 1830 736
Circuit2 1425 857
Circuit3 1668 715
Circuit4 1584 836
Circuit5 1726 739
Average 1646 776

In Table 5.8 the results of five identical circuits are given altogether to show the ratio of

strangely affecting bits and bits that affects all circuits. We give the number of total essential

39

TABLE 5.5: Average number of miscalculations of kogge stone adders

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 6555 624
Circuit2 6778 623
Circuit3 6827 652
Circuit4 6998 645
Circuit5 6853 626
Average 6802 634

TABLE 5.6: Average number of miscalculations of carry lookahead multipliers

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 37393 457
Circuit2 29968 536
Circuit3 32854 485
Circuit4 33376 514
Circuit5 36161 246
Average 33950 447

TABLE 5.7: Average number of miscalculations of DSP based multipliers

Number of Critical Bits Average Miscalculation Per Critical Bit
Circuit1 11 10000
Circuit2 11 10000
Circuit3 11 10000
Circuit4 11 10000
Circuit5 11 10000
Average 11 10000

bits and critical bits (i.e., the bits that results in an error at the output when flipped) in the

second and third columns of the table for each adder and multiplier instances. In the last

three columns, the categorized bits for each circuit are listed. The bits affecting only one

circuit are the bits that are causing an error at the output in one of the five identical copies.

Strangely affecting bits are the bits that affect more than one circuit but not all circuits. As

it can be seen from the table, the number of essential bits are directly proportional to the

area of the circuits. However, critical bits do not follow this trend since each circuit may

have various error masking capabilities. The proportion of the critical bits tends to decrease

while the total essential bits increase as it is shown in Table 5.9. The average essential and

40

critical bits for each implementation are listed in this table. The ratio shows how vulnerable

the circuit to SEs. In other words, the bigger the ratio, the lower the reliability of the circuit.

One can use this ratio as the vulnerability or 1-ratio as the reliability metric.

TABLE 5.8: Test results of the five identical circuits together in terms of vulnerability (reli-
ability).

Number of Bits
Circuit Name Essential Critical Strangely Affecting Affecting All Circuits Affecting One Circuit

Ripple Carry Adder 13040 6796 33 4 6759
Carry Lookahead Adder 12200 6124 23 0 6101

Brent-Kung Adder Adder 20427 8282 49 0 8233
Kogge-Stone Adder Adder 96443 34338 317 10 34011

Carry Lookahead Multiplier 439202 169848 95 1 169752
DSP Based Multiplier 735 55 0 0 55

TABLE 5.9: Error rates of the circuits on average.

Essential Bits Critical Bits Ratio
Ripple Carry Adder 2608 1359 0.521

Carry Lookahead Adder 2440 1224 0.501
Brent-Kung Adder 4085 1656 0.405
Kogge-Stone Adder 19228 6867 0.357

Carry Lookahead Multiplier 87840 33969 0.386
DSP Based Multiplier 147 11 0.074

[45] reports that that FIT (Failure in Time) rate for Zynq-7000 families is 76 FIT/Mb. The

test results are obtained in 109 device operation hours. Therefore, FIT of one bit is calculated

as 76 · 10−6. If one of the critical bits fails, the circuit produces incorrect results. Therefore,

the FIT of a circuit can be calculated using the following simple equation:

FIT = (FITRatePerBit)× (NumberofCriticalBits) (1)

FIT rates of the arithmetic circuits are calculated and the results are reported in Table 5.10.

FIT rates can also be used in designing circuits either as a constraint or as an objective

function.

41

TABLE 5.10: FIT rates.

FIT Rate
Ripple Carry Adder 1.03 · 10−1

Carry Lookahead Adder 9.3 · 10−2

Brent-Kung Adder 1.25 · 10−1

Kogge-Stone Adder 5.2 · 10−1

Carry Lookahead Multiplier 2.58
DSP Based Multiplier 8.36 · 10−4

5.2. Case Study

In this section, it is shown, how using the different versions of the same resource in an

application can result in different reliability and power consumption values under given area

and latency constraints. Six additions for the case study are used as their dependencies are

depicted by the data flow graph (DFG) given in Fig 5.1. Three variations of the topology

are implemented using only carry lookahead adder (CLA), only Brent-Kung adder (BKA),

and mixed circuit using both CLA and BKA. For the mixed circuit, BKA is used for the

nodes one, two, three, and four while CLA is used for nodes five and six. In Fig. 5.2, the

schedule of the nodes are given for the circuits that only use CLA and BKA. The schedule

takes four clock cycles, which is expressed as step in the figure. However, the clock cycles

for each circuit implementation use the maximum delays of CLA and BKA. The schedule

of the mixed circuit is given in Fig. 5.3. In this implementation, the clock rate is selected

based on the delay of BKA. Therefore, CLA is pipelined into two clock cycles in order

to synchronize with the BKA under four clock cycle delay. Between the every step of the

schedule in Fig. 5.2 and 5.3, intermediary registers are placed to store the result of each

addition. In the mixed circuit, the critical path uses only BKA not to increase the latency of

the circuit. Since the CLA is used on the non-critical paths, it does not increase the latency

although it takes two clock cycles to finish its execution. Note that resource sharing is not

used in the implementations. Resource sharing adds extra steering logic and control logic that

effect the overall area, power consumption, and the number of critical bits. Therefore, the

simulation results for the implementation becomes unreliable since it is difficult to calculate

the contribution of these extra logic to overall simulation results.

The performance characteristics (speed, area, and power) of three implementations are shown

in Table 5.11. The second and third columns depict the clock rates and total latency of the

42

FIGURE 5.1: Customly designed data flow graph for the case study.

circuits, respectively. Column four gives the area of each implementation. Finally, the last

column in the table lists the power consumption values. Since dynamic power consump-

tion is proportional to the switching frequency, power results are collected without giving

timing constraints to the synthesis tool. Therefore, power consumption values are generated

under the maximum switching activity that can be handled by the synthesis tool. For this

reason, power consumption values of the circuits give only the proportional relation among

the circuits, not the absolute values.

When the results given in Table 5.11 are analyzed, circuits C2 and C3 are the fastest circuits

since they use BKA in the critical path. On the other hand, C3 consumes less area than C2

as a result of replacing BKA with CLA for nodes five and six in the DFG. This replacement

does not effect the total latency since nodes five and six are not on the critical path of the

circuit. The power consumption of three implementations seems directly proportional to

their areas as expected.

In Table 5.12, the error propagation results obtained from the calculations (i.e., estimation)

by using the resource library and from the simulations are given. The columns two and

three respectively show the essential bits and critical bits, which are determined by adding

43

FIGURE 5.2: Schedule for only CLA and BKA implementations. Note that clock rates are
different as a result of adder delays.

TABLE 5.11: Latency, area, and power consumption of three different implementations.

Circuit Adders Clock Cycle(ns) Latency (ns) Area(LUT) Power(W)
C1 CLA 17 67 282 2.952
C2 BKA 11 44 671 6.224
C3 CLA-BKA 11 44 564 5.940

the essential and critical bits of each adder. The column four of Table 5.12 is the ratio of the

critical bits to the essential bits, which gives the vulnerability of the estimation. Similarly, the

columns five, six, and seven give the essential bits, critical bits, and their ratios obtained by

the simulation. The last column shows the difference (i.e., Diff) in percentage between the

vulnerabilities of the estimation (Rc) and simulation (Rs). This value is determined using the

percentage reduction formula given in Equation (2). This column indicates that the resource

library parameters are very accurate in estimating the total vulnerability (or reliability) with

a very small deviation from the results obtained by simulations. Therefore, characterized

resource library is very useful source for designing better circuits in FPGAs in terms of

area, latency, power, and reliability. While some of these parameters can be used as design

44

FIGURE 5.3: Schedule for the mixed adder implementation

TABLE 5.12: Error propagation values (critical bits in all essential bits) from the calculation
(i.e., estimation) using resource library and from the simulation. Last column gives the error

of estimation.

Circuit Bits from calculation Ratio Bits from simulation Ratio Diff (%) in
Essential (1) Critical (2) Rc (2/1) Essential ((3) Critical (4) Rs (4/3) Rc and Rs

C1 14640 7344 0.501 13417 6518 0.485 3.19
C2 24510 9936 0.405 23050 8737 0.379 6.40
C3 17930 8208 0.457 18924 7969 0.421 7.87

constraints, others can be the objective function parameters.

Diff =
Rc −Rs

Rc

× 100 (2)

45

6. CONCLUSION

Different arithmetic circuits may have different area, latency, and power consumption values

on FPGAs. They can even have different response to the transient errors on the circuits.

Having a characterized resource library for high level synthesis eases the design process and

helps meeting the design constraints while optimizing the selected parameters. In this study,

the needs of such a resource library are fulfilled and a resource library with four commonly

used adders and two multipliers are characterized. A methodology for the error propagation

simulations to test the vulnerability and reliability of the circuits is presented. Presented

method can easily be applied to different arithmetic and logic circuits. Also the effectiveness

of the resource library is tested on a custom-generated application by comparing the estima-

tion and simulation results. The estimation results are in agreement with the results obtained

by the simulations.

Results show that there is a trade-off between the analyzed characteristics. While a circuit

gets faster its power and area requirements increase. As the area increases the number of

critical bits increases which also inversely affects reliability. For these reasons, one should

choose the circuits deeply analyzing their own topology, requirements, and constraints. As

shown in the case study substituting some of the fast adders that are not on the critical path

with slower adders may have a positive effect in terms of reliability, power consumption, and

area while not decreasing the speed of the circuit.

In terms of multipliers, the DSP based multiplier is far more ahead of the CLA multiplier

in terms of every measured aspect. Since the CLA multiplier is not a complex and fast

multiplier one can expect faster multipliers will require more area and power than CLA

multiplier while gaining on speed. However, DSP based multiplier is even faster than the

fastest adder characterized in the library. Since DSP based multiplier requires little amount

of configuration its number of critical bits is also very little. Therefore one should prefer DSP

based multiplier as a choice of multiplier especially in reliability oriented designs. However,

the number of DSP units is limited on the FPGA and it is completely dependant on the choice

of FPGA platform. Therefore a designer should predict the number of multiplier requirement

for the project and prefer the FPGA platform that satisfies their needs. Resource sharing can

also be used to save on the required number of DSP units.

46

The library which is characterized in this study consists of four adders and two multipliers.

Test results belong to 28nm Artix-7 architecture. However, one can also utilize the library as

an insight even though the choice of the FPGA platform differs, especially if the design of

CLB is similar between the FPGA platforms. In this study, the effects of the CLB design on

reliability are not discussed and can be the work of the future.

47

REFERENCES

[1] Zynq-7000 soc. https://www.xilinx.com/products/silicon-devices/soc/

zynq-7000.html. Accessed: 2020-02-05.

[2] Umer Farooq, Zied Marrakchi, and Habib Mehrez. FPGA Architectures: An

Overview, pages 7–48. Springer New York, New York, NY, 2012. ISBN 978-1-

4614-3594-5. doi:10.1007/978-1-4614-3594-5 2.

[3] Xilinx Inc. 7 series fpgas configurable logic block user guide. 2016.

[4] Fpga design flow overview. https://www.fpgacentral.com/docs/fpga-tutorial/

fpga-design-flow-overview. Accessed: 2020-02-05.

[5] Ripple carry adder module in vhdl and verilog. https://www.nandland.com/vhdl/

modules/module-ripple-carry-adder.html. Accessed: 2020-02-05.

[6] Carry lookahead adder in vhdl and verilog. https://www.nandland.com/vhdl/

modules/carry-lookahead-adder-vhdl.html. Accessed: 2020-02-05.

[7] Adders. https://web.stanford.edu/class/archive/ee/ee371/ee371.1066/lectures/

lect 04.2up.pdf. Accessed: 2020-02-05.

[8] U. Penchalaiah and S. K. VG. Design of high-speed and energy-efficient parallel

prefix kogge stone adder. In 2018 IEEE International Conference on System,

Computation, Automation and Networking (ICSCA), pages 1–7. 2018. ISSN null.

doi:10.1109/ICSCAN.2018.8541143.

[9] Rami Akeela and Behnam Dezfouli. Software-defined radios: Architecture, state-

of-the-art, and challenges. Computer Communications, 128, 2018. doi:10.1016/

j.comcom.2018.07.012.

[10] Xilinx Inc. 7 series dsp48e1 slice user guide (ug479). 2018.

[11] Andrew Mark Keller. Using on-chip error detection to estimate fpga design sen-

sitivity to configuration upsets. 2017.

[12] Gamma decay. https://energyeducation.ca/encyclopedia/Gamma decay. Ac-

cessed: 2020-02-05.

48

[13] Uses of beta radiation. http://allusesof.com/energy/uses-of-beta-radiation. Ac-

cessed: 2020-02-05.

[14] Neutrino map. http://neutrino.xyz/neutrino-map, 2020. Accessed: 2020-02-05.

[15] Magnetic fields. https://www.astronomynotes.com/solarsys/s7.htm. Accessed:

2020-02-05.

[16] Nanjundappan Devarajan and V. Rukkumani. Design and analysis of static ran-

dom access memory by schmitt trigger topology for low voltage applications.

Journal of Engineering Science and Technology, 11, 2016.

[17] Soft Error Mitigation Controller. v4. 1 logicore ip product guide. Xilinx inc., San

Jose, CA, 2015.

[18] Robert Le. Soft error mitigation using prioritized essential bits. Xilinx XAPP538

(v1. 0), 2012.

[19] Series FPGAs Configuration User Guide. Ug470 (v. 1.3). Feb, 14:1–136, 2012.

[20] David Ratter. Fpgas on mars. Xcell J, 50:8–11, 2004.

[21] M. Alderighi, F. Casini, S. D’Angelo, S. Pastore, G. R. Sechi, and R. Weigand.

Evaluation of single event upset mitigation schemes for sram based fpgas using

the flipper fault injection platform. In 22nd IEEE International Symposium on

Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pages 105–113. 2007.

ISSN 2377-7966. doi:10.1109/DFT.2007.45.

[22] Paul S Graham, Nathaniel Rollins, Michael J Wirthlin, and Michael P Caffrey.

Evaluating tmr techniques in the presence of single event upsets. Faculty Publi-

cations, 2003.

[23] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin. Improving fpga

design robustness with partial tmr. In 2006 IEEE International Reliability Physics

Symposium Proceedings, pages 226–232. 2006. ISSN 1938-1891. doi:10.1109/

RELPHY.2006.251221.

49

[24] A. Sari and M. Psarakis. Scrubbing-based seu mitigation approach for

systems-on-programmable-chips. In 2011 International Conference on Field-

Programmable Technology, pages 1–8. 2011. ISSN null. doi:10.1109/FPT.2011.

6132703.

[25] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan, B. H.

Pratt, H. M. Quinn, and M. J. Wirthlin. Sram fpga reliability analysis for harsh

radiation environments. IEEE Transactions on Nuclear Science, 56(6):3519–

3526, 2009. ISSN 1558-1578. doi:10.1109/TNS.2009.2033381.

[26] M. Radu. Reliability and fault tolerance analysis of fpga platforms. In IEEE Long

Island Systems, Applications and Technology (LISAT) Conference 2014, pages 1–

4. 2014. ISSN null. doi:10.1109/LISAT.2014.6845211.

[27] BASHIER MACHMUR. Reliability calculation of hdl-designs for fpga-based

safety related systems.

[28] Chiraz Khedhiri, Mouna Karmani, Belgacem Hamdi, and Ka Lok Man. Concur-

rent error detection adder based on two paths output computation. In 2011 IEEE

Ninth International Symposium on Parallel and Distributed Processing with Ap-

plications Workshops, pages 27–32. IEEE, 2011.

[29] P. Kumar and R. K. Sharma. Double fault tolerant full adder design using fault

localization. In 2017 3rd International Conference on Computational Intelligence

Communication Technology (CICT), pages 1–6. 2017. ISSN null. doi:10.1109/

CIACT.2017.7977345.

[30] Swaroop Ghosh, Patrick Ndai, and Kaushik Roy. A novel low overhead fault

tolerant kogge-stone adder using adaptive clocking. In Proceedings of the Con-

ference on Design, Automation and Test in Europe, DATE ’08, page 366–371.

Association for Computing Machinery, New York, NY, USA, 2008. ISBN

9783981080131. doi:10.1145/1403375.1403462.

[31] K. Vitoroulis and A. J. Al-Khalili. Performance of parallel prefix adders imple-

mented with fpga technology. In 2007 IEEE Northeast Workshop on Circuits

and Systems, pages 498–501. 2007. ISSN null. doi:10.1109/NEWCAS.2007.

4487969.

50

[32] S. Daphni and K. S. V. Grace. A review analysis of parallel prefix adders for

better performnce in vlsi applications. In 2017 IEEE International Conference

on Circuits and Systems (ICCS), pages 103–106. 2017. ISSN null. doi:10.1109/

ICCS1.2017.8325971.

[33] A. N. Jayanthi and C. S. Ravichandran. Comparison of performance of high

speed vlsi adders. In 2013 International Conference on Current Trends in En-

gineering and Technology (ICCTET), pages 99–104. 2013. ISSN null. doi:

10.1109/ICCTET.2013.6675920.

[34] Dr P Samundiswary Maroju SaiKumar. Design and performance analysis of var-

ious adders using verilog. International journal of computer science and mobile

computing, 2(9):128–138, 2013.

[35] D Mohanapriya, Dr N Saravanakumar, and Erode BIT. A comparative analysis of

different 32-bit adder topologies with multiplexer based full adder. International

Journal of Engineering Science, 4850, 2016.

[36] Mostafa Salehi, Ali Azarpeyvand, and Armin Hajaboutalebi Aboutalebi. Vulnera-

bility analysis of adder architectures considering design and synthesis constraints.

Journal of Electronic Testing, 34(1):7–14, 2018.

[37] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W Stewart.

The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx

Zynq-7000 All Programmable Soc. Strathclyde Academic Media, 2014.

[38] Xilinx Inc. Zynq-7000 soc technical reference manual. 2018.

[39] Mohamed Elhady Keshk and Kenichi Asami. Fault injection in dynamic partial

reconfiguration design based on essential bits. Journal of Aeronautics and Space

Technologies, 11(2):25–34, 2018.

[40] J. L. Barth, C. S. Dyer, and E. G. Stassinopoulos. Space, atmospheric, and terres-

trial radiation environments. IEEE Transactions on Nuclear Science, 50(3):466–

482, 2003. ISSN 1558-1578. doi:10.1109/TNS.2003.813131.

[41] M Morris Mano and MD Ciletti. Digital design. New Jersey, Pearson Education

Inc, pages 158–164, 2015.

51

[42] Brent and Kung. A regular layout for parallel adders. IEEE Transactions on

Computers, C-31(3):260–264, 1982. ISSN 2326-3814. doi:10.1109/TC.1982.

1675982.

[43] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient solu-

tion of a general class of recurrence equations. IEEE transactions on computers,

100(8):786–793, 1973.

[44] Xilinx Constraints Guide. Ug625 (v. 14.5) ed. Xilinx, April, 2013.

[45] Xilinx UG116. Device reliability report. First Half, 2015.

52

