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Detaylı video altyazılama, uzun videolardaki olayları tespit etmek ve tespit edilen her olay

için doğru ve tutarlı altyazı oluşturulmasını amaçlamaktadır. Altyazılar oluşturulurken, olay-

lar arasındaki zamansal bağımlılıklar ve olayların sıralamasının dikkate alınması ve bu kap-

samda anlamlı ve akıcı bir paragraf oluşturulması gerektiğinden en zorlu altyazılama görev-

lerinden biridir ve önceki çalışmaların çoğu büyük ölçüde videolardan elde edilen öznitelik-

lere bağımlıdır. Videoda yer alan her bir olayın ayrı ayrı altyazılanması ve uzun, tanımlayıcı

bir paragraf oluşturulması gerektiğinden, metinsel altyazıların oluşturulması, yoğun video

altyazılama görevi için oldukça zor bir iştir. Bu tezde, bu ağır yükü hafifletmenin bir yol-

unu arıyoruz ve bir videoda yer alan olaylar için uyumlu altyazılar oluştururken, yardımcı

veri kaynağı olarak, videolara benzer resimlerin altyazılarından yararlanan, yeni bir detaylı

video altyazılama yaklaşımı önerilmektedir. Önerilen model, görsel olarak benzer resimleri

başarılı bir şekilde bulmakta ve videolara benzer nitelikteki resimlerin altyazılarında yer alan

isim ve fiil tamlamalarını başarıyla kullanmaktadır. Yaratıcı ve seçici olarak adlandırabilecek
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bir dizayn ve dikkat mekanizması tabanlı birleştirme tekniği ile resim altyazılarının, yoğun

video altyazılama sürecinde dahil edilmesi sağlanmaktadır. Bir olay için en iyi üretilmiş

altyazı, olaylar arasındaki zamansal ve anlamsal bağlantıları dikkate alan bir seçici tarafından

seçilmektedir. Önerdiğimiz modelin başarımı, detaylı video altyazılama için önerilen Activ-

ityNet Captions veri kümesi üzerinde gösterilmiş ve yaklaşımımız güçlü bir temel model ile

kıyaslandığında otomatik metrikler ve nitel değerlendirmelerine göre daha iyi sonuçlar ver-

mektedir.

Anahtar Kelimeler: Detaylı Video Altyazılama, Görüntü Açıklamaları, Yardımcı Veri,

Bağlamsal Bilgi.
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Dense video captioning aims at detecting events in untrimmed videos and generating accu-

rate and coherent caption for each detected event. It is one of the most challenging captioning

tasks since generated sentences must form a meaningful and fluent paragraph by considering

temporal dependencies and the order between the events, where most of the previous works

are heavily dependent on the visual features extracted from the videos. Collecting textual

descriptions is an especially costly task for dense video captioning, since each event in the

video needs to be annotated separately and a long descriptive paragraph needs to be pro-

vided. In this thesis, we investigate a way to mitigate this heavy burden and we propose a

new dense video captioning approach that leverages captions of similar images as auxiliary

context while generating coherent captions for events in a video. Our model successfully

retrieves visually relevant images and combines noun and verb phrases from their captions

to generating coherent descriptions. We employ a generator and a discriminator design, to-

gether with an attention-based fusion technique, to incorporate image captions as context

iii



in the video caption generation process. We choose the best generated caption by a hybrid

discriminator that can consider temporal and semantic dependencies between events. The ef-

fectiveness of our model is demonstrated on ActivityNet Captions dataset and our proposed

approach achieves favorable performance when compared to the strong baseline based on

automatic metrics and qualitative evaluations.

Keywords: Dense Video Captioning, Image Descriptions, Auxiliary Data, Contextual In-

formation.
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1. INTRODUCTION

Video captioning can be described as the process of automatically generating natural lan-

guage sentences for describing the content in a video [3]. A video captioning sample is seen

in Figure-1.1.

In an ideal video captioning setup, objects, actions, scenes and the interactions between

people, objects, actions and scenes must be recognized [14]. Following this recognition

process, their time of arrival and temporal order must be learned. In the case of more than one

event in the video, the interrelation between events must be considered as well. These steps

should lead to generation of grammatically correct, coherent, visually related and human-

understandable captions.

Although there has been significant interest in this topic with the emergence of new datasets

[10, 15, 16] and techniques [10, 17–19], it remains a very challenging problem. Lack of

diversity, redundancies and semantic inconsistencies in generated captions are the main is-

sues. To overcome these issues, the majority of previous work [8, 18–23] has focused on

generating captions for events in videos only based on visual cues. In [24] audio, in [25]

speech, and in [26] both audio and speech are utilized along with visual cues as multi-modal

information.

Figure 1.1. Two examples for video captioning from MSR-VTT dataset [2]. (Image is taken from
[3].)

1



In video captioning, there are numerous major challenges [27]. First is the difficulty of gen-

erating fine-grained natural descriptions. While generating natural language sentences for

event clips in a video, interactions between objects can be occluded or cannot be visible.

There may be scene changes between events or reappearance of objects seen in different

parts of videos. Due to the fact generation task is somehow dependent on visual informa-

tion, these missing information and changes can drive the generation process to unrelated or

unsatisfactory captions.

Second major challenge can be named as difficulty in learning intermediate representations

between visual and text domains. Another main major challenge may be exposure to exces-

sive amounts of objects, interactions of these objects, different activity categories, scenes,

etc. in a video. Although we may access and learn these visual features from video data,

ranking them according to their importance can be a difficulty while recounting visual con-

tents.

Although these challenges may make video captioning task much more difficult, with the

high-speed computing capacity of GPUs and better performance of deep learning methods,

interest in video captioning in the community has increased. Generating coherent descrip-

tions of videos for impaired people who have difficulty seeing or having natural language

descriptions for video surveillance records are some of the important applications of this

task.

To generate diverse, coherent and grammatically acceptable captions that are aligned with the

visual context in a given video, different types of input combinations for models have been

proposed. But as far as we know no other work has considered auxiliary textual information

from image caption datasets in a pipeline as proposed in this thesis.

In this thesis, a dense video captioning approach that uses image captions as auxiliary input

alongside video information is proposed. In this way, we aim to benefit from the additional

diversity and richness of the image captions in generating more coherent descriptions for the

videos.

Our proposed framework is inspired from the generator and hybrid discriminator design of

[1], differs in using an existing image captioning dataset to collect useful information based

on similarity of images and events. Our proposal exploits an attention mechanism to incor-

porate this auxiliary information with visual information.

Our main motivation is using captions from an already existing image captioning dataset to

enhance the caption generation process of a selected video captioning model. Although there

are not enough datasets when compared with image captioning, a novel way for fusion of
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Figure 1.2. Summary for our proposed dense video captioning approach. (Best viewed in color.)

textual information gathered from an image caption dataset can be leveraged for generating

more coherent captions for events in a video.

Figure 1.2. illustrates our overall approach. At training time, our model first fetches similar

images to videos by comparing their visual features from a large image-captioning dataset.

We then compare the corresponding closest “k” image captions against ground truth event

captions, re-order them based on their sentence-level similarity. We extract the respective

noun and verb phrases and use an attention mechanism to attentively select the useful parts

of these auxiliary caption data. The generator module exploits this new enhanced input and

uses it to generate novel captions that are more descriptive of the content in the video. Finally,

a hybrid discriminator selects the optimal captions for events.

We evaluate our proposed model on ActivityNet Captions benchmark [13], and demonstrate

that our proposed framework achieves qualitatively better captioning performance than [1].

Our results show that the proposed method utilizes auxiliary image captions effectively as

additional context and combines them with visual information of videos.

1.1. Major Contributions of the Thesis

This thesis contribute towards a solution in generating coherent, meaningful captions for

events in a video. In summary, our main contributions in this thesis are:

• We propose an auxiliary data enhancement pipeline that enables extracting meaningful

phrases as auxiliary information to be used in caption generation process,

• We explore an attention mechanism to incorporate this auxiliary information with vi-

sual information,
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• Our model performs comparably to a strong baseline when evaluated using automated

metrics. We qualitatively show significant improvements with the generated video

captions,

• Our pipeline is quite generic and our proposed pipeline and attention mechanism can

be used in other dense video captioning models to enhance input diversity.

In this work, we propose using extracted noun and verb phrases as auxiliary input alongside

visual information from videos. To lessen dependency over only visual information from

videos, we propose utilizing usage of extracted phrases as lexical input to caption generation

process in generator.

1.2. Structure of the Study

Overall structure for this thesis is as follows:

Chapter 2 presents the essential background knowledge. It starts off by presenting basic

principles of Generative Adversarial Networks, Recurrent Neural Networks and provides

an overview of Long-Short Term Memory. Then it briefly summarizes the Word Mover’s

Distance.

Chapter 3 summarizes main previous works on captioning tasks. We divide the related

works to categories as: Image Captioning, Video Captioning, Dense Video Captioning and

Image/Video Captioning models using Generative Adversarial Networks. This chapter also

presents other prominent studies on the topic, ending with a discussion on the contributions

of our work as compared other studies.

Chapter 4 describes the proposed pipeline for fetching relevant images and our model for

incorporating auxiliary captions with adversarial inference. In particular, details of the pro-

posed generator, the base hybrid discriminator and proposed hybrid discriminator architec-

tures are given.

Chapter 5 introduces video and image captioning datasets used in the study. automated

metrics and diversity metrics used for the evaluation of our proposed model are then defined.

Visual attributes used in this study and our training and evaluation details for models are

presented. Finally, the experimental results are discussed.

Chapter 6 includes a summary for our work in this thesis. At last, research directions for

future work are detailed.
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2. BACKGROUND

In this chapter, background knowledge which will help to follow the approaches and mod-

els represented at the rest of this study is introduced. First of all, basic information about

Generative Adversarial Networks is given in Section 2.1.. Then, in Section 2.2., basic Re-

current Neural Networks are explained; and Long-Short Term Memory is introduced briefly

in Section 2.3.. Finally, in Section 2.4., Word Mover’s Distance is explained in detail.

2.1. Generative Adversarial Network

Generative Adversarial Nets (GANs) are proposed by [28] as a new kind of deep gener-

ative networks. GANs have been successfully applied to various different problems (e.g.

generating realistic human faces [29], image-to-image translation [30], style transfer [31],

or to our interest, generating captions for events in videos [1]). They use a game-theoretic

framework in that generative modeling is formulated as a game between a generator net-

work and a discriminator network. The generator network is specifically designed for the

task at hand whereas the discriminator network scores how realistic are the samples gener-

ated by the generator network. For example, when applied to text generation, the generator

learns to generate novel sentences, which are evaluated by the discriminator which learns to

distinguish natural sentences from fake ones.

In more detail, the GAN framework involves two interconnected tasks, which are illustrated

in Figure 2.1.:

• The generator learns to generate truthful examples, which are used as negative training

data in training of the discriminator network. At the beginning of the training the

quality of these samples is low.

• The discriminator network learns to distinguish fake data generated by the generator

from ground truth data. In fact, at this stage, the discriminator gives feedback to gen-

erator for implausible generated data.

2.1.1. The Discriminator

The discriminator network serves basically as a classifier that tries to appoint real data and

fake data from generator to two different classes. Hence, the network architecture of dis-

criminator is based on data to be classified.
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Figure 2.1. Basic Generative Adversarial Network design.

The discriminator and the generator losses are combined in the full training objective. How-

ever, discriminator training uses only discriminator loss to update its weights through back-

propagation. Hence, generator loss is not directly used in discriminator training.

The discriminator:

• learns to separate output of generator as fake input and real input,

• updates its weight as stated with back-propagation [32] from only discriminator loss,

• penalizes learned weights through discriminator loss emerging from misclassified real

input and fake input instead of one another.

2.1.2. The Generator

The other component of GANs, the generator network tries to produce fake input to discrim-

inator without being realized by the discriminator [28]. To this end, generator learns how

to generate realistic fake data by the supervisory signal from the discriminator’s feedback.

The main aim of the generator is fooling the discriminator to classify its outputs as real. This

feedback mechanism forces a tight alliance between the discriminator and generator training.

The generator network of a GAN needs the following components:

• a random noise vector as input,

• a generator network that learns to generate output as training data,

• a discriminator network to assess its generation,

• a generation loss to update its weights through back-propagation to learn how to fool

discriminator with fake output.

One of the main advantages of Generative Adversarial Networks is that the update of gen-

erator is not based on the training samples it has access to, but with the feedback from the
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discriminator. Moreover, it provides a generic framework so that there is a larger variety of

functions that can be integrated into the GAN architecture [28].

Discriminator is trained with [28] the objective of maximizing the probability for setting true

labels to training examples and generated samples of G as follows:

minGmaxDV (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

V (G,D) is value function, pdata(x) is probability distribution over data x, pz(z) is probability

distribution over noise z, D(x) is probability that x is from data. While D is maximized, G

is simultaneously trained to minimize log(1−D(G(z))).

2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks which are tailor fit to process se-

quential data. An RNN network has hidden state(s) and allow previous outputs to be used

as inputs along with these hidden states, which allows for processing inputs with any length.

Hence, while processing inputs, an RNN has a history based on its hidden states.

As mentioned before, compared to conventional artificial neural networks that process each

input separately, RNNs have shared weights in processing an input based on previous inputs.

This sequential processing allows model to learn context of input data. Although these are

clear advantages, there are some drawbacks of RNNs as well. Computations in RNN are

slow, and although RNN has hidden state to carry historical information, difficulty of ac-

cessing information from a long time ago persists. Vanishing or exploiting gradients are the

main reason behind difficulty of capturing long term dependencies. Gradients can exponen-

tially decrease or increase with respect to the number of layers. The architecture of a vanilla

RNN is shown in Figure-2.2.. Commonly used activation functions in RNN are sigmoid,

tanh, and RELU . In Eq.2, on the left sigmoid, in the middle tanh and on the right, RELU

activation functions are shown.

g(x) =
1

1 + e−z
, g(x) =

ez − e−z

ez + e−z
, g(x) = max(0, z). (2)

ht−1 is hidden state at timestamp t − 1, ht is hidden state at timestamp t, xt is the input for

RNN.
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Figure 2.2. A repeating module in a basic Recurrent Neural Network.

2.3. Long-Short Term Memory

Long-Short Term Memory (LSTM) is specialized RNN and proposed by [33]. Although

RNNs propose to handle long-term dependencies in long sequences, [34] show they are not

practically efficient at remembering and considering more than a few previous timestamps

due to incapability of basic RNN cell to memorize long sequences. Main difference between

a basic repeating module in RNN and LSTM cell is memory cells. These cells are proposed

as a solution for long-term dependency problem of RNNs. They take an input sequence and

process this sequence considering input at previous timestamps. Long-Short Term Mem-

ory(LSTM) is used in both generator and discriminator parts of our model. A basic LSTM

repeating module is shown in Figure-2.3..

An LSTM cell can be defined with the following equations:

ft = σ(Wf · z + bf ), (3)

it = σ(Wi · z + bi), (4)

C̄t = tanh(WC · z + bC), (5)

Ct = ft ∗ Ct−1 + it ∗ C̄t, (6)

ot = σ(Wo · z + bt), (7)

ht = ot ∗ tanh(Ct). (8)

In this equations, t is the timestamp, xt is the input vector, ht is the hidden state of the cell.

ft denotes the forget gate, it is the input gate, ot is the output gate, Ct is the memory cell
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Figure 2.3. An overview of a basic LSTM cell.

Figure 2.4. An illustration of WMD. Words of two sentences are embedded, then distance between
sentences are calculated in a cumulative manner. (Image is taken from [4].)

state. C̄t is candidate state value that scaled according to it. W is the weight matrix of for

gates f, i, C, o. z is concatenated vector form of xt and ht−1, b is a bias. X is used for the

element-wise product of vectors. σ stands for the sigmoid function, tanh is the hyperbolic

tangent function.

2.4. Word Mover’s Distance

Word mover’s distance (WMD) [4] measures level of dissimilarity between two documents or

sentences. The idea is to first embed words of two text documents into a common semantic

space (usually done by using pretrained word vectors) and the the distance between two

documents is defined as the travel cost from one document to the other. An illustration of

WMD is seen in Fig.-2.4.
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WMD is a straight-forward technique to implement and has no hyperparameters to train. In

Figure-2.4., bold words are non-stop words in document one and two. All non-stop words are

embedded to word2vec[35] space. Representations for words in sentences are learned by a

word2vec model designed for this task. A neural network which model that consists an input,

a projection and an output layer is used for mapping words in text documents to word2vec

space in WMD. In a cumulative manner, distance to travel from all word embeddings of

sentences one to sentence two are added. Then this distance is used to compare all sentences

and to find most similar ones.

In this section, we provided background on the models and methods used in our work. As

this thesis mainly focuses on Generative Adversarial Network (GAN) based dense video

captioning model, in the following sections, we will give details about our proposed idea to

enhance baseline model, experimental details and results. Additionally, in this section, we

also provided a brief summary of the semantic distance metric we used in our study.
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3. RELATED WORK

Every day, around the world, thousands of videos and photos from various sources (e.g. per-

sonal devices, survaillence cameras, news articles, web sites) are created. Video surveillance

devices, social media, video sharing platforms, and phone applications have increased the

interest in taking pictures and recording videos. These images and videos are shared on

different platforms and used for different purposes. For humans, time is a limited source

and having reasonable summarizations for these excessive visual sources is a need emerged

lately.

For this reason, image and video captioning tasks have been popular for computer vision

field. Image captioning is generating syntactically and semantically correct sentences for an

image by learning salient objects, scenes and their relations in that image [36]. As mentioned

before, videos have been an important source in daily life, this need further expanded and led

to video captioning task. Video captioning is the process of generating a natural language

sentence for the action in a video automatically [3]. Furthermore, with longer videos, gener-

ating informative sentence that summarizes all events and connections between them became

harder. To this end, dense video captioning task emerged [10]. Apart from video captioning,

dense video captioning task aims detecting events in a video, and generating a sentence for

each one of these detected events.

3.1. Image Captioning

Machines, even in some cases humans, cannot understand what is important or happening

in a given image. But, by having advanced models, tasks once thought as impossible has

become applicable. Image captioning works on image understanding and creating a descrip-

tion for a given image [36]. A sample output of an image captioning model is shown in

Figure 3.1. An example for video captioning task. (Image is taken from [5].)
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Figure 3.2. Spaces for image caption generation. (Image is taken from [6].)

Figure-3.1.. To understand an image, recognition, and detection of objects, understanding

the scene they are in, interactions of them with each other must be learned by created mod-

els. At the same time, it must come up with words that can describe different aspects of an

image and fuse them into a sentence or a paragraph [37]. Describing images with a single

natural language sentence has recently received increasing interest. Advances in deep learn-

ing have significantly accelerated collaboration between Computer Vision (CV) and Natural

Language Processing (NLP) field [27].

In Figure-3.2. a sample to combine two different projections, image and sentence spaces are

shown. [6] argues to learn projections for these two spaces. By this, models can learn to

caption an image with a sentence.

Image captioning heavily depends on gathering image features. Techniques can be grouped

into two categories as hand-crafted features and learning frameworks, aka. shallow ap-

proaches and deep learning techniques. Techniques for hand-crafted features can be exam-

pled as Scale-Invariant Feature Transform(SIFT) [38], Histogram of Oriented Features(HOG)

[39], Local Binary Patterns(LBP) [40] which are widely used. Then, these features are fed

into a classifier, i.e. Support Vector Machines(SVM), to classify a detected object. The

feature extraction process of hand-crafted models is not that much applicable on large scale

datasets when compared with deep learning techniques.

On the other hand, the feature extraction phase is done internally and automatically with

deep learning techniques. With MSCOCO challenge [41], a new platform to evaluate results

of image captioning is provided. [42] proposed a model, Natural Image Captioning (NIC),

which uses a CNN as an image encoder, that is pre-trained on an image classification task

and feeds the hidden layer of CNN as input to a RNN decoder that generates the captions
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for a given image. [5] proposed Multi-modal Recurrent Neural Network architecture that

leverages images and descriptions of them, learns connections between image sub-regions

and these descriptions. These two architectures surpassed shallow approaches and reached

the state-of-arts.

Other works have contributions with attentive attention images [43]. Combining CNN and

RNN with LSTM to boost image captioning with attributes [44] added attention mechanism

to image captioning tasks. With improvements on image captioning, video captioning task

has been on the spot, lately.

3.2. Video Captioning

Due to success in object recognition on videos, a task to create a sentence that defines visual

semantics of an event on a video has attracted interests recently. The main goal of video

captioning is to generate a natural language description of a given short video sequence sum-

marizing the most important actors, their actions and their interactions seen in the video [45].

A sample output of a video captioning model is shown in Figure-3.3..

Before the deep learning era, the earlier works which tackle video captioning generally gen-

erally employ template-based language generation strategies [46–48]. These methods utilize

existing detectors and classifiers to separately detect subjects, verbs, and objects in the given

videos and use a template to join these information to form a sentence. In particular, to im-

prove the description coherence, [46] suggested to use a large text corpora for selecting the

best subject-verb-object triplet over the detected entities and actions. [47] learned semantic

relationships between subjects, verbs, and objects and used these semantic hierarchies while

forming a sentence. Interestingly, [48] was the first who formulated video captioning as a

machine translation problem. Specifically, they suggested to extract an intermediate seman-

tic representation from a given video and consider it as the source while generating a natural

language description by using methods borrowed from Statistical Machine Translation.

In the recent years, the developments in deep learning led to significant progress in video

captioning [7, 49–54]. Specifically, [49] borrowed techniques from neural machine transla-

tion to generate video descriptions, and used recurrent neural networks to encode the visual

features and then transform them into a sequence of words. Within an end-to-end learn-

ing framework, [7] proposed to additionally employ a common visual-semantic embedding

space for the descriptions and the videos while training a video captioning model to improve

13



Figure 3.3. An example for video captioning task. Under the video frames, generated caption from
two different video captioning models, LSTM and LSTM-E are shown. At the bottom,
alternative ground truth captions for video is shown. (Image is taken from [7].)

the alignment between the visual and the textual domains. [50] suggested a temporal atten-

tion mechanism to select most important temporal segments in videos during the description

generation process.

To improve the performance, [51] extended the previous models with a hierarchical recurrent

neural encoder which exploits temporal structure of videos while reducing the computations

and in this temporal information plays a crucial role. To better encode the visual content,

[52] utilized two different video features, one depending on the objects and their attributes

and the other relying on the motion and the action of the objects, that are processed by two

different sub-networks where another network model evaluates the descriptions generated

by these sub-networks and picks the best one. [53] proposed a joint model that employs

spatio-temporal attention along with frame-level image classifiers to learn to detect subjects,

verbs and objects and generates the video description accordingly. Finally, [54] suggested a

captioning model named LSTM-TSA that combines the semantic attributes(TSA) extracted

from frames and the video feature within an encoder-decoder architecture.

3.3. Dense Video Captioning

Dense video captioning aims to generate multiple descriptions summarizing all the events

that are temporally detected in a given video. Hence, temporal localization of such events
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Figure 3.4. An example for dense video captioning task. e∗ stands for events in videos. With over-
lapping events, this task becomes harder. (Image is taken from [8].)

are as important as generating a coherent set of natural language descriptions. A sample

output of a dense video captioning model is shown in Figure-3.4.. For instance, [17] pro-

posed a two-staged approach where at first simple descriptions are generated using temporal

and spatial attention from every short video segments, and then these generated descriptions

are combined to form a coherent paragraph. [10] suggested another dense captioning model

that detects all events in a single pass and proposed a captioning module that utilizes sur-

rounding events as context and generates captions for all detected events. [18] developed

an transformer [55]-based model which jointly performs event proposal and description gen-

eration within a single framework that is trained in an end-to-end manner. [19] proposed a

method which generates temporal event proposals from a given video and employs the events

from both forward and backward directions as additional context information along with the

current video features to generate a natural video description for a video segment. [56]

developed a dense video captioning model called Memory-Augmented Re-current Trans-

former (MART) model that utilizes an extra memory module where the previous states and

the descriptions of the events captioned before are stored in order to eliminate repetitive and

incoherent descriptions. Recently, there are some other works [24–26] that utilize multiple

modalities such audio or speech along with the input video while generating video descrip-

tions.
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3.4. Image/Video Captioning with Adversarial Learning.

Lately, some researchers developed both image captioning techniques [57, 58] and video

captioning [1, 59, 60] models that employs Generative Adversarial Networks (GANs) [28].

Apart from the previous studies, these works mainly aim to implicitly learn the distribution

of the groundtruth video captions so that when a video is given, they can generate a diverse

set of descriptions that are indistinguishable from the descriptions written by humans. To do

that, the training process generally involves a min-max game between two different networks,

a generator network which is responsible from generating descriptions, and a discriminator

network that is in control of distinguishing real descriptions from the machine generated

ones.

In particular, in their image captioning framework, [57] combined adversarial training with

Gumbel [61] sampling to match the distributions of descriptions by humans and machines.

[58] proposed a conditional GAN model for image captioning, which is trained using policy

gradient reinforcement learning.

For dense video captioning, [59] was the first that employed adversarial learning to learn a

model that is capable of generating multiple descriptions from a given video, giving a precise

summary of all of the events seen in that video. Their model which is called Recurrent Topic-

Transition Generative Adversarial Network (RTT-GAN), in particular, uses a structured para-

graph generator which forms descriptions in a recurrent manner by considering both textual

and spatial attention mechanisms at each step, and multi-level paragraph discriminators that

evaluate (sentence-level) plausibility and (paragraph-level) coherency of the descriptions. [1]

proposed another GAN-based dense video captioning model, however, their formulation dif-

fers from that of [59] in that it applies adversarial methods during inference time. That is, the

discriminator in their formulation, which consists of multiple sub-discriminator networks, is

mainly responsible from assessing the quality of the descriptions sampled from the genera-

tor. Particularly, within these sub-discriminator networks, the authors considered different

evaluation criteria that measure the visual relevance, the consistency and the distinctiveness

of the generated descriptions.

In this thesis, we propose using image captions as auxiliary input alongside video infor-

mation. We differ in this from all previous works. To lessen dependency over only visual

information from videos, we propose utilizing usage of extracted phrases as lexical input to

caption generation process. Furthermore, our pipeline is quite generic and extracted phrases

can be used any dense video captioning model.
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4. MODEL

Our main hypothesis in this thesis is that dense video captioning can benefit from auxiliary

textual information from captions of visually similar images. Our model starts fetching sim-

ilar images to event middle frames from ActivityNet dataset. Then features are extracted and

compared. Accordingly, highest k scores are used to find most similar images. Captions for

these k similar images are than used in caption generation process.

4.1. Fetching relevant images

Our framework starts with the auxiliary data retrieval, which is shown in Figure 4.1.. First,

middle frames of each event in a video is used to find closest k images from the Conceptual

Captions (CC) [9] dataset. This is done by computing the cosine similarity, sim(f l, f v)

between video middle frames and CC images, which is computed as:

sim(f l, f v) =
f l · f v

‖f l‖ ‖f v‖
(9)

where sim(f l, f v) is the similarity between visual features (f l) of the l’th image from CC

corpora and f v represents the features of the j’th event in the video. Top-k closest images

corresponding to each event in a video are collected using Eq 9. An example for fetched

images are shown in Figure-4.2.

Figure 4.1. Pipeline for extracting noun and verb phrases from closest k image captions. (a),(b).
Middle frames of each event are compared with images. (c) Visual features are extracted.
(d) Closest k images are found. (e) Closest k captions are reordered according to their
WMD [4] scores. (f) Resulting noun and verb phrases of closest k captions are used as
auxiliary words in event caption generation.(Best viewed in color.)
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Figure 4.2. An example for image fetching pipeline is shown. On left hand side, a middle frame of
an event, and on the right, closest images and their captions from Conceptual Captions[9]
dataset is seen. Our pipeline fetches images similar to event in the video.

18



We then reorder these images based on their caption similarities. We use Word Mover’s

Distance [4] (WMD) computed over non-stop words of two given sentences. In this com-

putation, words of both sentences are first embedded into a word embedding space, then the

cumulative word distance to travel from one sentence to another is evaluated. We use WMD

to reorder the closest k images, according to similarity between their captions and ground

truth event caption.

More formally, WMD(cgt, ci) is calculated between ground-truth event caption cgt and re-

trieved image i’s caption ci. The most similar captions to the event’s ground truth caption

is used as auxiliary data in the further steps. At inference, we do not use cgt, we reorder

according to the similarity of retrieved captions to have the most common captions at the

top. We select one retrieved caption and compute similarity score between that caption and

remaining captions. We sum these scores, repeat this for every caption and reorder them.

After reordering the captions, we extract noun and verb phrases from each image caption. For

this, part of speech tags are combined with regular expressions and grammar based heuristics

are exploited. We then extract corresponding noun and verb phrases. The resulting noun and

verb phrases of a sample caption from CC corpora is shown in Figure 4.1.(f).

4.2. Using auxiliary captions with adversarial inference

We conjecture that these retrieved image captions can be incorporated into many of the video

captioning models to improve the generated captions. In this thesis, we follow adversarial

inference based approach, as these approaches are well-suited to incorporate the auxiliary

image information.

Therefore, following the recent work of [1], we select Adversarial Inference(AdvInf) as our

base model. This model uses a generator and discriminator design, where the generator and

discriminator are pre-trained and updated jointly. The generator is responsible for generating

captions, which will then be scored by the discriminator.

Our proposed framework improves the generator with the use of the retrieved auxiliary cap-

tions. We let the generator use both the captions from the input videos and textual infor-

mation from the visually similar images. We use an attention based mechanism to select

the auxiliary phrases and learn a no-bias option to prevent the model from using auxiliary

phrases if required. Below, we describe the details of our framework.
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Figure 4.3. The overview of our proposed approach. Generator generates candidate captions for
events in a video by using visual attributes, auxiliary phrases, previous word, w, and the
previous selected sentence as input. The Hybrid Discriminator selects best captions for
events among generated samples. Overall process is shown on top for ith event, and on
bottom for i+ 1th event. (Best viewed in color.)

4.2.1. Generator

For a video, which has L event clips [v1, v2, ..., vL], generator G generates L sentences

[s1, s2, ..., sL], where each sentence si is generated in accordance with corresponding event

clip vi. The generator in AdvInf is based on LSTMs [33]. It has three inputs for each

timestamp; visual features (f i
m), previous ground truth word (wi

m−1), last hidden state of

generated caption (hi−1). Visual features consist of motion-, RGB, and object-level features

concatenated to form f i
m (Section 5.). The base LSTM based decoder of the generator is thus

formulated as:

him = LSTM(f i
m, w

i
m−1, h

i−1) with h0 = 0. (10)

Dense video captioning system might benefit from not only visual information but also other

modalities such as textual information from an image captioning dataset. To this extend, we

propose enhancing generator with phrases selected to be auxiliary context. One of the main

advantages of this proposal is being able to implement this idea easily to other dense video

captioning models, as well.

To make use of auxiliary image information, we extend this base generator with the caption
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from the closest images. In order to have a fixed length representations for auxiliary phrase

list used while generating a caption for an event, we first extract noun and verb phrases from

closest caption. We extract a maximum of j phrases in total, and if the extracted number of

phrases is less than j, then we zero-pad to a fixed length j. We then use the word-embedding

layer of [1] to embed the extracted phrases to a common representation and and concatenate

them to form the auxiliary vector faux.

In order to boost the performance of context selection, temporal attention mechanism [50]

is applied over faux. Unnormalized relevance score for an auxiliary phrase from faux is

calculated with respect to the previous hidden state as follows:

eim = ψT tanh(Whim−1 + Ufaux + b) (11)

where ψ,W,U and b are parameters estimated during the learning phase. After calculating

relevance scores for all auxiliary phrases, normalized attention weights are obtained by:

αi
m =

exp
{
eim

}
∑j

1 exp
{
eim

} (12)

These normalized attention weights are then multiplied with auxiliary vector to obtain the

attentive auxiliary vector aim as:

aim = αi
mfaux (13)

We define a linear layer with inputs of previous ground truth word, wi
m−1, and attentive

auxiliary vector, aim as follows:

ρim = (Wc[w
i
m−1, a

i
m] + bc) (14)

where Wc, bc are parameters. Output of this layer is used in decoding LSTM of the proposed

generator G̃:

him = LSTM(vim, ρ
i
m, h

i−1) with h0 = 0. (15)

With attention over the auxiliary vector, our model learns whether to use auxiliary phrases or

not and with Eq.14, how much information will be added to input from wm−1
i , aim along with

visual features and previous context vector. While experimenting with attention mechanism,

if there are multiple zero-padded phrases in faux, we use the attention weights of only single

zero-padded element and normalize the remaining weights. This single ’zero-phrase’ stands
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Figure 4.4. Visualized attention weights over auxiliary phrases extracted from caption of closest
image. The caption of closest image was in this case: a young woman with large eyes
looking down to up. The phrase no bias on y-axis means not using any of extracted
auxiliary phrases. Generated caption is seen on x-axis. (Best viewed in color.)

for the no-bias option [62], meaning not using any of the auxiliary noun and verb phrases

while generating captions.

An example of visualized attention weights over auxiliary phrases are shown in Figure 4.4..

Phrases extracted from the caption of the closest image are seen on the y-axis and the gener-

ated caption is seen on x-axis. Our model learns to back-off if no additional phrase is needed

while generating next word.

4.3. Hybrid Discriminator

We use hybrid discriminator[1] for scoring all candidate generated captions choose best cap-

tion based on its visual relevance to video features, linguistic semantics and consistency with

the previous caption. The hybrid discriminator has three sub-modules named as visual, lan-

guage and pairwise discriminators. Overview of hybrid discriminator is shown in Figure-4.5..

Then we will give details about our proposed sub-module namely Similarity Discriminator.

This discriminator is proposed to evaluate similarity between generated caption and fetched

images caption.

4.3.1. Visual Discriminator

Visual Discriminator, DV , assesses whether generated caption is aligned with event features

or not. While this process, DV does not check fluency or grammar of the generated sentence

si for event in a given video.
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Figure 4.5. The overview of Hybrid Discriminator. Main goal of discriminator is to score generated
captions for events in a video. si and si+1 are consecutive captions generated by gener-
ator for two consecutive events, i and i+ 1. vi stands for visual features for ith event in
a video. This discriminator is referenced as HybDis in our experiments.

There are two types of negatives as inputs to visual discriminator DV ; mismatched ground

truth and mismatched generated captions. In first two epoch, mismatched negatives are ran-

domly selected, starting from third epoch, they are selected from captions of videos which

have same activity with target caption. There is one point that needs attention: visual dis-

criminator, DV , does not use captions of generator, with the idea that early at training step

of the generator, one input to generator was visual attributes, vim of an event i. They will be

already aligned with visual features of subject video, vim as input.

To be able to determine only visual alignment, generated captions are encoded with Bag of

Words (BOW) instead of Long-Short Term Memories (LSTMs). Whole sentence is encoded

with BOW, then BOW vector is embedded by a linear layer. Resulting sentence encoding is

named as wi. Visual discriminator uses visual attributes consisted of video, image and object

label features. To fuse these features(f ) together, each attribute is encoded with attention

mechanism [50] based on sentence embedding, wi, resulting as vif . Multi-modal Low-rank

Bilinear Pooling (MLB) [63] is used over these two representations, wi and vif (for each

attribute separately). Score of each visual attribute and sentence representation is calculated

as:

pif = σ(tanh(UTvif )� tanh(V Twi)), (16)
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In Eq.-16, σ is sigmoid, � is Hadamart product, U,V are linear layers. Weights for each pif
is learned based on the sentence representation, wi as follows:

λif =
ea

T
f wi∑

j e
aTj wi

,

DV (si|vi) =
∑
f

λifp
i
f ,

(17)

aj are learned parameters and DV is weighted, λif , sum of scores, pif .

4.3.2. Language Discriminator

Language Discriminator, DL, is used for ensuring diversity and fluency for generated cap-

tions. Generator G, has no structure for checking language structure in generation pro-

cess. Although pointing out difference between diversity of real and fake sentences can

be achieved with a single discriminator, to capture missing fluency and repetitive N-grams

in generated captions, a separate discriminator named as language, DL, is used[1]. Negative

inputs of this discriminator are mixture of randomly mixed words and repeating phrases at

the same sentence. This sentence, si, is encoded with a bi-directional LSTM and both hidden

states are concatenated as h̄i, then a fully-connected and sigmoid layer follows bi-directional

LSTM.

DL(si) = σ(WLh̄
i + bL), (18)

4.3.3. Pairwise Discriminator

Pairwise discriminator, DP , is used to score diversity of two consecutive generated event

captions, si and si−1. At the end of caption generation process, a caption paragraph will be

created. While checking for diversity, DP ensures coherency of these generated captions that

forms a paragraph. For negative inputs to DP , order of sentences in caption paragraph are

shuffled and two random sentences are selected from them.

To obtain DP score, both sentences are encoded with bi-directional LSTM, their hidden

states, h̄i and h̄i−1 are concatenated. If si is first sentence, no score is calculated. DP score

is calculated as:

DP (si|si−1) = σ(WP [h̄i−1, h̄i] + bP ). (19)
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WP , bP are parameters and σ is a sigmoid layer.

4.3.4. Proposed Similarity Discriminator

Our main goal in this part is adding a sub-discriminator to hybrid discriminator which will

enable discriminator to score similarity between generated caption, si and closest caption, gi

fetched by our proposed pipeline. For this purpose, we define a sub-discriminator namely

Similarity Discriminator, DS , similar to pairwise discriminator. But this time, instead of

checking diversity of two consecutive generated event captions, our similarity discriminator

scores similarity between si and gi.

To obtain DS score, both si and gi are first encoded with bi-directional LSTM, their hidden

states, h̄is and h̄ig are concatenated, accordingly. We propose computing DS score as follows:

DS(si|gi) = σ(WS[h̄is, h̄
i
g] + bS). (20)

By help of this sub-module, we aim evaluating similarity between closest caption and gener-

ated caption. If the similarity score is close to 0, we penalize this by similarity discriminator,

DS while selecting best scored caption from generator. On the other hand, if similarity score

is high, we encourage hybrid discriminator to select that generated captions which are similar

with closest caption. This is somehow dependent on fetched captions similarity with gener-

ated caption. To compensate this, we use a hyper-parameter and use this hyper-parameter as

a weight to control contribution from similarity discriminator to Hybrid Discriminator.

4.4. Adversarial Inference with Basic Hybrid Discriminator

Basic Hybrid Discriminator has three sub-discriminators as in AdvInf[1]: Visual Discrimi-

nator, Language Discriminator and Pairwise Discriminator.

Amongst the K sampled sentences from the proposed generator G̃, the best sentence is se-

lected by finding the sentence that yields the maximum hybrid discriminator score such that:

si∗ = si
argmaxn=1..KD(sin|vi,s

i−1
∗ )

(21)

where si−1∗ is previous best sentence, and D(.) is the final score of the hybrid discriminator,

calculated by weighted combination of individual discriminators:

D(sin|vi, si−1∗ ) = βDV (sin|vi) + γDL(sin) + θDP (sin|si−1∗ ) (22)
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Figure 4.6. The overview of proposed Hybrid Discriminator with Similarity sub-discriminator. si is
generated sentence by G̃, gi is closest caption from Conceptual Captions[9] dataset. Our
goal is scoring similarity between si and gi, then adding it to overall score of Hybrid
Discriminator. This discriminator is referenced as HybDis+ Sim in our experiments.

where β, γ, θ are hyperparameters and sin is nth sampled sentence from G̃. We will reference

this model as HybDis in our experiments.

4.5. Adversarial Inference with Proposed Hybrid Discriminator

Our Proposed Hybrid Discriminator has four sub-discriminators instead of three: Visual Dis-

criminator, Language Discriminator, Pairwise Discriminator and proposed Similarity Dis-

criminator. Overview of Hybrid Discriminator with Similarity sub-discriminator is presented

in Figure-4.6..

Instead of formula for hybrid discriminator given in Eq.22 we propose adding similarity

score between generated caption and fetched closest caption with our proposed pipeline from

Conceptual Captions dataset as in Eq.23 as follows:

D(sin|vi, si−1∗ ) = βDV (sin|vi) + γDL(sin) + θDP (sin|si−1∗ ) + φDS(sin|gi) (23)

where β, γ, θ, φ are hyperparameters, sin is nth sampled sentence from G̃, gi is closest caption

fetched. We will reference this model as HybDis+Sim in our experiments.
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5. EXPERIMENTS AND RESULTS

5.1. Datasets

We evaluate the effectiveness of the proposed approach on ActivityNet Captions [13] video

captioning dataset, where we utilize auxiliary phrases extracted from Conceptual Captions

[9] image captioning dataset. In the following, we briefly describe these two datasets and

discuss our experimental setup.

The ActivityNet Captions contains 10K videos in train split and 4.9K videos in validation

split. Each training video is annotated with a single reference paragraph, whereas the videos

in the validation set have two reference paragraphs, each provided by a different annotator.

As done in prior works [1, 15, 18], we used the videos in the validation set for both validation

and testing – utilizing the first reference description for assessing the test performance and

the second one for development and training of the models. Our approach involves retrieving

visually similar images from Conceptual Captions dataset, hence we need RGB frames of the

videos in ActivityNet so we downloaded them by their URLs. Due to permission issues or

videos deleted from YouTube, we could not download the whole dataset and only managed

to obtain 91% of the videos. An illustration of dense event video captioning sample from

Figure 5.1. An illustration of Dense-event captioning sample from ActivityNet Dataset. (Image is
taken from [10].)
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Figure 5.2. Image and image description examples from the Conceptual Captions dataset. (Image is
taken from [9].)

ActivityNet Dataset is shown in Figure-5.1.

Conceptual Captions [9] dataset is collected from the web with the objective of having large-

scale in-the-wild image captions. The dataset contains around 3.3M web images for training,

28K for validation, and 22.5K for testing. Each image has a single description, which corre-

spond to cleaned and hypernymized alt-text html attributes associated with the images. We

deliberately select Conceptual Captions dataset as a means to provide additional context be-

cause of its diversity and size. In particular, in our experiments, we utilize all the images

in the training set of Conceptual Captions and extract auxiliary phrases from the captions of

images that are visually similar to the input video clip, as explained before. Image and image

description examples from the Conceptual Captions dataset are shown in Figure-5.2..

5.2. Implementation Details

5.2.1. Metrics

We use the evaluation tool provided in [1]. This benchmark suite evaluates the generated

captions at paragraph-level [1, 22, 56]. Moreover, it does not focus on the event detection

task and employs ground truth event intervals, which also allows a fair comparison with

the baseline method [1]. For quantitative evaluation, we employ the commonly used ME-

TEOR [64], BLEU-4 [65] and CIDEr-D [66] metrics. In addition to these metrics, Div-1,

Div-2 [57] and RE-4 [22] are also evaluated. Div-1 and 2 metrics used to evaluate unique

N-grams ratio compared to total words of generated captions. RE-4 metric on the other hand,

evaluates number of N-gram that are repeated in generated captions and number of N grams
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are set as 4. The latter metrics are used to evaluate lexical diversity and to detect repetition

of phrases in generated captions.

5.2.2. Visual Features

We follow the steps described in [1] and encode each video with three different visual fea-

tures, namely video-, image- and object-level features.

Video features are 8192-dimensional 3D convolution based features, denoted as R3D [11],

which are extracted by a ResNext-101 model pre-trained on Kinetics dataset [67]. A ba-

sic block of ResNext model is shown in Figure-5.3.. Image features correspond to 2048-

dimensional ResNet-152 features [12] obtained by a model pre-trained on the Imagenet

dataset [68]. A basic ResNet block model is shown in Figure-5.4.. While image features

are extracted at every 16 frames, video features are obtained by setting the temporal resolu-

tion to 16. Finally, each video clip is divided into 10 regular intervals and then the extracted

features are mean pooled [22, 69].

For the object features, we also use the strategy by [1] and detected objects at the start,

end and middle frames of a clip. These objects are detected by Faster R-CNN detector [70]

trained with Visual Genome [71] from as [72]. Top-16 detection labels are then encoded with

standard bag of words features, which are additionally weighted by their detection scores.

Finally, these video-, image- and object-level features are concatenated to obtain a combined

visual representation, denoted with vim. Moreover, to obtain a more contextualized represen-

tation during decoding phase, we apply temporal attention mechanism proposed in [50], as

explored in previous work [1, 22, 69].

5.2.3. Training and Evaluation Setup

For training, we use 16 as batch size. Adversarial inferences main components, generator

and discriminator, are trained with cross entropy loss. The weight for negative input weights

used in the discriminator are used as 0.5. The weights for the visual discriminator, the lan-

guage discriminator and the pairwise discriminator are empirically set to 0.8, 0.2 and 1.0,

respectively. The weight for proposed similarity discriminator is set to 0.5, if used. We use

ADAM [73] optimizer and set learning rate as 5× 10−4. During training, we set the temper-

ate for sampling as 1.0 whereas at the inference, this parameter is set to 0.2. We generate a

total of K = 100 samples at inference. Moreover, we use the maximum number of noun or

verb phrases from closest captions (if more then one closest caption is used) as kaux = 10

where we zero pad this vector to 15, as detailed in Section 4.2.1..
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Figure 5.3. Block of ResNext. (Image is taken from [11].)

Figure 5.4. Block of ResNet. (Image is taken from [12].)

5.3. Experimental Results

In our experiments on ActivityNet Captions, we test two alternative versions of our model,

referred to as a) Ours(kaux = 1, HybDis) and b) Ours(kaux = 10, HybDis). In the first

one, we use the phrases from the caption of the single most visually and conceptually closest

image caption as auxiliary data in the proposed caption generation framework. On the other

hand, in the latter, we exploit a wider auxiliary context by considering a larger number of

phrases extracted from the captions of kaux = 10 similar images. There is a trade-off here

since enlarging the neighborhood size might introduce noise (irrelevant phrases) whereas us-

ing only too few phrases could enforce a large bias and reduce diversity. Again, we note that
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Table 5.1. Comparison against the base model of AdvInf [1]. Both of our models give better perfor-
mances in terms of both automatic metrics, METEOR, BLUE-4, CIDEr-D. But there is
a catch, the generated descriptions are on par linguistic diversity compared to AdvInf, as
we integrate auxiliary lexical context into the generation process.

Method
Per video Overall Per video

METEOR BLEU-4 CIDEr-D
Vocab
Size

Sent
Length Div-1 Div-2 RE-4

AdvInf[1] 13.94 8.88 17.56 2340 12.35 0.626 0.780 0.052
Ours (kaux = 1, HybDis) 14.05 9.20 17.94 1905 12.29 0.619 0.775 0.055
Ours (kaux = 10, HybDis) 14.46 8.88 15.54 1776 14.30 0.574 0.747 0.075

here we employ ground truth segments for events and only focus on decoding better para-

graph captions from these provided segments. To have a fair comparison with the baseline

AdvInf model [1], we further trained it with our downloaded version of the dataset, where

some videos are missing, as detailed in Section 5..

As can be seen from Table 5.1., our models both outperform AdvInf in terms of METEOR,

BLEU-4 and CIDEr-D metrics and on par in terms of the diversity metrics. Also we note

that one of the main advantages of our approach is that the proposed auxiliary data pipeline

is quite generic and in fact the extracted phrases can be used to boost the performance of any

dense video captioning model. It allows a model to have access to additional lexical input to

increase the certainty of visual information.

In Figure 5.5.,5.6.,5.7., we show examples of paragraph descriptions generated by our (kaux =

1,HybDis), AdvInf [1] and ground-truth captions. These qualitative examples show that our

model generates more diverse and informative captions when compared with AdvInf. As in

these examples, our model generates more coherent and linked captions than baseline. In first

example, paragraph captions generated by our model start with the location; ‘standing in a

gym’ and ‘a large gymnasium’, continues with the exercise; ‘spins’, ‘flips’ and ‘twirls’ and

ends with the ‘walking away’ action. It is more diverse and coherent and with a clear conti-

nuity of actions. In second example, although AdvInf also generates meaningful sentences,

our captions include more information with additional words ‘lifts’ and ‘drops’.

5.3.1. Ablation Studies

In Table-5.2., we present an ablation study in which we evaluate the impact of various design

choices on the captioning performance. In addition, we evaluate our proposed Hybrid Dis-

criminator with similarity sub-discriminator, DS in this study. Specifically, we have tested

the following variants:
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Our Model (kaux = 1, HybDis): A woman is seen standing in a gym holding a pose and holding
a baton and flipping around a large gymnasium. She twirls her baton and twirls around the baton.
She does a baton routine. The girl spins her baton, flips and twirls the baton. She continues to dance
around the baton and ends by walking away.

AdvInf [1]: A woman is standing in a room. She is twirling a baton and twirling her baton. She twirls
and twirls around and twirls the batons. She starts twirling batons and the baton. She does a flip and
twirls the batons.

Ground Truth: The video starts with a lady walking to the center of a court. The lady starts doing
a rendition and spinning a stick around while doing fancy tricks with it. The lady continues her
rendition and spins the stick using her neck. The lady throws the stick into the air and catches it. The
lady ends the rendition on the floor.

Figure 5.5. Qualitative comparison of our proposed model with the Adversarial Inference [1] for a
sample video from ActivityNet Captions dataset [13] with action of gymnastic. This
video includes a dense caption involving five sentences one for each event. Our model
(kaux = 1) generates more coherent and diverse captions for events as seen in blue
colored parts. (Best viewed in color.)

Our Model (kaux = 1, HybDis): A woman is seen speaking to the camera and leads into lifting a
weight. The woman lifts the weight and lifts it up and then drops it over his head. She then lifts the
weight over his head and then drops it down and then walks back to the ground.

AdvInf [1]: A man is seen bending over a bar. The man lifts the weight above his head. He lifts the
weight above his head.

Ground Truth: A female weight lifter bends at the knees.She lifts a barbell to her chest. She then
lifts it over her head before dropping it heavily to the ground.

Figure 5.6. Qualitative comparison of our proposed model with the Adversarial Inference [1] for a
sample video from ActivityNet Captions dataset [13] with action of weight lifting. This
video includes a dense caption involving three sentences, one for each event. Our model
(kaux = 1) generates more coherent and diverse captions for events as seen in blue
colored parts. (Best viewed in color.)
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Table 5.2. Ablation study showing the effect of different design choices for our method on the cap-
tioning performance.

Method
Per Video Overall Per Video

METEOR BLEU-4 CIDEr-D Vocab Size Sent Size Div-1 Div-2 RE-4
Ours (kaux = 1, Concat) 14.39 9.50 17.92 1909 13.14 0.57 0.75 0.07
Ours (kaux = 1, AvgPool) 14.41 9.38 17.54 2007 12.85 0.62 0.76 0.06
Ours (kaux = 1, AvgPool + Concat) 13.97 9.20 18.51 1835 12.21 0.62 0.78 0.07
Ours (kaux = 1, AvgPool + Linear + Concat) 14.39 9.39 18.41 1705 13.42 0.58 0.75 0.08
Ours (kaux = 1, Attention,HybDis) 14.05 9.20 17.94 1905 12.29 0.62 0.78 0.06
Ours (kaux = 10, Attention,HybDis) 14.46 8.88 15.54 1776 14.30 0.58 0.75 0.08
Ours (kaux = 1, Attention,HybDis+ Sim) 14.32 9.27 16.69 2104 13.19 0.60 0.76 0.06

Our Model (kaux = 1, HybDis): A man is seen speaking to the camera and leads into a person
riding down a hill. The man is then shown of the camera and leads into a man riding down a hill. The
man is snowboarding down a hill. He then goes down the mountain going down the mountain slope.

AdvInf [1]: A man is seen riding down a snowy hill and leads into him speaking to the camera. The
man continues to ride around on the skis while looking back to the camera and leads into him riding
down a hill. The people continue riding down the hill and ends with him moving around and looking
off into the distance. The man then begins skiing down the hill while looking off into the distance.

Ground Truth: A man is skiing down some snow at a very fast speed. Snow is building up all over
his face, it looks extremely cold. He kind of almost falls down but continues moving. He is skiing
fast through trees, passing by other skiers, he continues to go so fast.

Figure 5.7. Qualitative comparison of our proposed model with the Adversarial Inference [1] for
a sample video from ActivityNet Captions dataset [13] with action of skiing. This
video includes a dense caption involving four sentences, one for each event. Our model
(kaux = 1) generates more coherent and diverse captions for events as seen in blue
colored parts. (Best viewed in color.)

1. Ours (kaux = 1, Concat,HybDis): We concatenate one of auxiliary phrase word

embedding with previous ground-truth word embedding in every timestamp and then

feed this vector to generator instead of only previous ground-truth word (or the ground-

truth word during training) embedding.

2. Ours (kaux = 1, AvgPool,HybDis): We first average pool all the auxiliary noun

phrases and verb phrases, and concatenate this embedding vector with the embedding

of the previously generated word (or the ground-truth word during training) at each

time step of decoding.
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3. Ours (kaux = 1, AvgPool + Concat,HybDis): We first average pool all the auxil-

iary noun phrases and verb phrases separately, and concatenate these two embeddings

with the embedding of the previously generated word (or the ground-truth word during

training) at each time step of decoding.

4. Ours (kaux = 1, AvgPool + Linear + Concat,HybDis): After retrieving auxiliary

noun phrases and verb phrases, we again apply average pooling independently to the

noun and verb embeddings, but this time, we introduce an additional linear layer, in

a fashion similar to DAN encoder [74]. We then concatenate the output of this layer

with the embedding of the previously generated word (or the ground-truth word during

training) at each time step of decoding.

5. Ours (kaux = 1, Attention,HybDis): This is basically the version of our approach

described in Section 4., which exploits phrases extracted from the single most visu-

ally similar image to the middle frame of a given video event and uses an attention

mechanism to focus on different auxiliary phrases at different times of decoding.

6. Ours (kaux = 10, Attention,HybDis): This is the version of our approach described

in Section 4. with kaux = 10. In this version, we consider a larger number of phrases

extracted from the captions of 10 similar images and use an attention mechanism to

focus on different auxiliary phrases at different times of decoding.

7. Ours (kaux = 1, Attention,HybDis + Sim): This is the version of our approach de-

scribed in Section 4. as kaux = 1 and different than other variant hybrid discriminator

with usage of Similarity Discriminator, DS as forth sub-module. We name this dis-

criminator design as HybDis + Sim. In this version, we consider phrases extracted

from the captions of closest image and use an attention mechanism to focus on differ-

ent auxiliary phrases at different times of decoding.

We show loss plots for models aforementioned in between Figure-5.8.-5.14.. All figures in

this part, show generator loss on the left, discriminator loss on the right. These loss plots

suggest that each model variant is a slight variant of the other. In fact, when we evaluate

scores in Table-5.2., we see slightly better or similar scores between variants.
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Figure 5.8. Loss plots for model, Ours (kaux = 1, Concat,HybDis).

Figure 5.9. Loss plots for model, Ours (kaux = 1, AvgPool,HybDis).

Figure 5.10. Loss plots for model, Ours (kaux = 1, AvgPool + Concat,HybDis).
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Figure 5.11. Loss plots for model, Ours (kaux = 1, AvgPool + Linear + Concat,HybDis).

Figure 5.12. Loss plots for model, Ours (kaux = 1, Attention,HybDis).

Figure 5.13. Loss plots for model, Ours (kaux = 10, Attention,HybDis).
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Figure 5.14. Loss plots for model, Ours (kaux = 1, Attention,HybDis+ Sim).

According to our analysis, we see that all these variants achieve better results than baseline

model of AdvInf with respect to automatic metrics and they are on par or slightly worse in

terms of diversity. In model kaux = 1, Concat,HybDis), we take auxiliary phrases as a se-

quence. We get compatible results when compared with our basic kaux = 1, Attention,HybDis

setup, but taking this phrase list has a bias in it. With this idea, we are deemed to accept that

generated captions will be aligned with these phrase in temporal dimension. But this claim

will be wrong with a generated stop-words in the captions e.g. a, the, is. Although scores are

high, we do not accept this setup as our baseline.

Furthermore, in comparison of modelsAvgPool + Concat andAvgPool + Linear + Concat,

we show that using a linear layer as inAvgPool + Linear+Concat serves as setting kaux =

10 with a trade-off and causes decrease in diversity. AlthoughAvgPool + Linear + Concat

scores better in METEOR, Bleu-4 and CIDEr-D when compared with our model(kaux = 1)

which uses attention, due to decrease in diversity metrics, we choose our models(kaux =

1, kaux = 10) with attention as our basic approachs in comparing with baseline method, Ad-

vInf. Our proposed hybrid discriminator with similarity sub-module, (kaux = 1, Attention,

HybDis + Sim) shows compatible results when compared with our base model, (kaux =

1, Attention, HybDis). Further evaluations on this setup is left as a future work.

5.4. Attention Weight Visualization

In this part, we evaluate attention weights learned by our model, Ours (kaux = 1, Attention,

HybDis) . In this setup, our proposed generator exploits phrases extracted from the single

most visually similar image to the middle frame of a given video event and uses an attention
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mechanism to focus on different auxiliary phrases at different times of decoding. We show

our visualized weights for five different events in a given video. In figures between Figure-

5.15. and 5.19.; y-axis is for auxiliary phrases and x-axis is for generated captions. ”no-bias”

in figures stands for no bias option as detailed in Section-4..

When auxiliary phrases for all figures are evaluated, we show that we fetch semantically

meaningful words which can contribute caption generation process. As in Figure-5.15., our

generated caption has riding, down a street, and our fetched phrases from image captions of

CC dataset are correspondingly, traveling, dirt road. no-bias option [62], is shown in every

figure and means not using any of the auxiliary noun and verb phrases while generating

captions. In second figure, Figure-5.16., we show our auxiliary phrases are portrait, man,

violin, playing. When we compare our fetched phrases, we show that they are aligned with

generated caption. In this example model used especially phrases violin and playing with

high attention weights while generating words playing the violin.

In Figure-5.17., phrases as motor boat travels, rivers are conceptual and visually in alliance

with event represented in video. We see that while generating caption water model had

positive feedback from phrase river. In 5.18., model fetches similar words when considered

with output sentence. As we see, while generating word eye, model strongly attended to

phrase eyes from phrases. And at last example, we see phrase as ball and football player

which are truly aligned with action in the event.

As a result from all these weight figures, we show our proposed model successfully fetches

captions that are accordance with target captions, and phrases extracted from these captions

can be used in video caption generation process successfully.

38



Figure 5.15. Attention visualization for an event in video with id 7qBA7XPDsC4 from ActivityNet
[13]. Auxiliary phrases are end, dirt road, is, travelling. We use no-bias option with
line ”no-bias” as shown.

Figure 5.16. Attention visualization for an event in video with id fJNauQt9Di0 from ActivityNet
[13]. Auxiliary phrases are portrait, man, violin, playing. We use no-bias option with
line ”no-bias” as shown.
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Figure 5.17. Attention visualization for an event in video with id hzuQYOG0ag from ActivityNet
[13]. Auxiliary phrases are image, motor boat travels, river. We use no-bias option
with line ”no-bias” as shown.

Figure 5.18. Attention visualization for an event in video with id sAAARH12tdc from ActivityNet
[13]. Auxiliary phrases are woman, eyes, looking. We use no-bias option with line
”no-bias” as shown.

Figure 5.19. Attention visualization for an event in video with id YzcgGHmfaKE from ActivityNet
[13]. Auxiliary phrases are football player, battle, ball. We use no-bias option with line
”no-bias” as shown.
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6. CONCLUSION

6.1. Conclusion

In this thesis, we propose a new dense video captioning model that allows auxiliary im-

age captions to be used in generating natural descriptions for a given video. Our proposed

auxiliary data enhancement pipeline enables extracting meaningful phrases as auxiliary in-

formation to be used in caption generation process. This pipeline retrieves a set of images

having a content similar to that of the input video and collects a group of noun and verb

phrased from the captions of the retrieved images. Then, it utilizes these phrases as addi-

tional context information and integrates it with the video features via an attention module

within the decoder.

We visualize attention weights for auxiliary phrases and show that our method fetches con-

textually similar noun and verb phrases that can be used in generation process. Furthermore,

we show that with an attention mechanism to incorporate these weighted phrases, we lever-

age using these phrases effectively. Also, we learn a no-bias option which corresponds to

not using any auxiliary data if any of the phrases are irrelevant or not needed in generation

pipeline.

Experiments on the ActivityNet dataset demonstrate that the proposed model gives more ac-

curate and more diverse video descriptions than a baseline model. As a result, our method

outperforms a baseline model when compared with automated metrics and on par with di-

versity metrics.

We show variants for our base model. These models represents different fusion techniques to

combine textual information from image captions to video captioning process. Even in these

setups, we get better results than a baseline model.

With our new proposal over a similarity sub-module in hybrid discriminator, we suggest

penalizing the model if generated captions are not similar to fetched closest caption. We

show that our results are compatible with our base proposal.

Our pipeline is quite generic, and proposed pipeline and attention mechanism can be used in

other dense video captioning models. With the generic approach within this proposal, any

image captioning dataset can be used as auxiliary data source instead of Conceptual Captions

dataset.
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6.2. Future Work

For future work, it would be interesting to adapt the proposed framework under zero-, or

few-shot learning scenario and to explore the use of other kinds of auxiliary data extracted

from different modalities.

We plan utilizing similarity discriminator with captions other than only the closest one. A

new approach to enhance captions for this discriminator will be pursued. To disable noise

caused by bias of using to much auxiliary phrases, a pipeline other than only extracting noun

or verb phrases can be tried. We use only textual information from image captions dataset to

enhance caption generation process. Along with this textual information, image features of

closest ones can be used as an additional input.

We use whole Conceptual Captions dataset in image retrieval phase. This method can be

used more effectively. A research over generating chunks of images from this dataset based

on events or object labels will be conducted.

Using a video captioning dataset as auxiliary data source can be effective, too. With our

pipeline, we can fetch similar events from auxiliary videos and use their captions in video

captioning process.
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