

PARALLELIZATION ANALYSIS OF ECO TRACKING

ALGORITHM ON GPUS

ECO İZLEME ALGORİTMASININ GPU'LARDA

PARALELLEŞTİRME ANALİZİ

UĞUR TAYGAN

ASST. PROF. DR ADNAN ÖZSOY

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2020

This work titled “PARALLELIZATION ANALYSIS OF ECO TRACKING

ALGORITHM ON GPUS” by UĞUR TAYGAN has been approved as a thesis for

the Degree of MASTER OF SCIENCE in COMPUTER ENGINEERING by the

Examining Committee Members mentioned below.

Prof. Dr. Mehmet Önder EFE

Head ..……………………………………

Asst. Prof. Dr. Adnan ÖZSOY

Supervisor ..……………………………………

Prof. Dr. Süleyman TOSUN

Member …………………………………..

Prof. Dr. Alptekin TEMİZEL

Member ……………………………………..

Assoc. Prof. Dr. Ahmet Burak CAN

Member …….…………………………………

This thesis has been approved as a thesis for the Degree of MASTER OF

SCIENCE IN COMPUTER ENGINEERING by Board of Directors of the Institute

of Graduate Studies in Science and Engineering on / /

 Prof. Dr. Menemşe GÜMÜŞDERELİOĞLU

 Director of the Institute of Graduate

School of Science and Engineering

i

ABSTRACT

PARALLELIZATION ANALYSIS OF ECO TRACKING

ALGORITHM ON GPUS

Uğur TAYGAN

Master of Science, Computer Engineering Department

Supervisor: Asst. Prof. Dr. Adnan ÖZSOY

June 2020, 48 pages

Object tracking is a very popular area in image processing. Its popularity comes

from the variety of its application areas. It is used for security and surveillance,

autonomous vehicles, human-machine interaction, traffic control and so on. Due

to its application areas, an object tracking algorithm is usually expected to be fast.

On the other hand, an object tracking algorithm should be accurate and robust

and this usually increase the amount of calculations to be done. The nature of

the many image processing applications are suitable for parallel programming.

Since, GPUs consist of large number cores, they are widely used in image

processing and object tracking applications. In this thesis, we analyze an object

tracking algorithm for its suitability of parallelism. We detected the time-

consuming parts of the algorithm by using profiling tool. Each part of the algorithm

is handled separately and implemented on GPU. Additionally, we have worked

on the chances of optimization by using GPU capabilities. We compared our

methods with the original parts of CPU based approach by testing them on five

datasets.

ii

Keywords: Object tracking; image processing; computer vision; GPU, parallel

computing

i

ÖZET

ECO İZLEME ALGORİTMASININ GPU'LARDA

PARALELLEŞTİRME ANALİZİ

Uğur TAYGAN

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Adnan ÖZSOY

Haziran 2020, 48 sayfa

Nesne izleme, görüntü işlemede çok popüler bir alandır. Popülerliği, uygulama

alanlarının çeşitliliğinden kaynaklanmaktadır. Güvenlik ve gözetim sistemleri,

otonom araçlar, insan-makine etkileşimi, trafik kontrolü gibi alanlarda

kullanılmaktadır. Uygulama alanları nedeniyle, bir nesne takibi algoritmasının

hızlı olması beklenmektedir. Öte yandan, bir nesne izleme algoritması doğru ve

güvenilir olmalıdır ve bu durum genellikle yapılacak hesaplama miktarını artırır.

Birçok görüntü işleme uygulamasının doğası parallel programlamaya uygundur.

GPU'lar çok sayıda çekirdek içerdiği için görüntü işleme ve nesne izleme

uygulamalarında yaygın olarak kullanılırlar. Bu tezde, bir nesne izleme

algoritmasını paralelliğe uygunluğu açısından analiz edilmiştir. Bir profilleme

aracı kullanarak algoritmanın zaman alan kısımları belirlenmiştir. Algoritmanın

belirlenen her bir parçası ayrı ayrı ele alınarak GPU’da gerçeklenmiştir. Ayrıca,

GPU yeteneklerini kullanarak optimizasyon şansı üzerinde çalışılmıştır.

Yöntemlerimizi beş veri kümesi üzerinde test ederek orijinal CPU tabanlı

yaklaşımın ilgili parçaları ile karşılaştırdık.

ii

Keywords: Nesne takibi; görüntü işleme; bilgisayarlı görü; GPU, paralel

hesaplama

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Asst. Prof. Dr. Adnan

Özsoy for his endless patience, valuable guidance and advices throughout my

research.

I would like to also thank to my thesis committee members; Prof. Dr. Mehmet

Önder Efe, Prof. Dr. Süleyman Tosun, Prof. Dr. Alptekin Temizel, Assoc. Prof.

Dr. Ahmet Burak Can for taking their time to review and providing insightful

comments.

I am very grateful to my teammates at ASELSAN for providing me flexible work

environment.

I want to express my appreciation to my family and my friends for their support.

Last but not least, I want to express my gratitude to Kübra Temiz for encouraging

me throughout my study and being there for me all the time.

iv

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET ... i

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

ABBREVIATIONS ... ix

1. INTRODUCTION ... 1

1.1. Overview .. 1

1.2. Motivation ... 2

1.3. Organization of the Thesis ... 3

2. BACKGROUND ... 4

2.1. Preliminaries .. 4

2.2. DCF (Discriminative Correlation Filters) ... 5

2.3. GPU Basics .. 7

3. RELATED WORK .. 10

3.1. Adaptive Spatially-regularized Correlation Filters (ASRCF) [15] 10

3.2. A Robust Parallel Object Tracking Method for Illumination Variations

(MRAT) [16] ... 12

3.3. Parallel Tracking and Verifying (PTAV) [21] ... 13

3.4. Efficient Convolution Operators for Tracking (ECO) [2].......................... 14

4. ANALYSIS OF THE ECO TRACKING ALGORITHM 18

4.1. Datasets ... 18

4.2. Setup .. 19

4.3. Tracking Performance .. 19

v

4.4. Benchmark Results .. 20

4.5. Analysis using MATLAB Profiler ... 23

4.6. Analysis using a Profiler ... 26

5. IMPLEMENTATION ON GPU ... 28

5.1. Sequential Approach .. 29

5.2. Using cudaMemcpyAsync with Pinned Host Memory 30

5.3. Zero-Copy Memory ... 34

5.4. Using cudaMallocManaged with Unified Memory................................ 34

6. RESULTS ... 37

6.1. Results obtained with Setup-1 .. 38

6.2. Results obtained with Setup-2 .. 40

7. CONCLUSION .. 44

8. REFERENCES ... 45

CURRICULUM VITAE ... 48

vi

LIST OF FIGURES

Figure 1 The illustration of Fermi architecture and its SM [12] 8

Figure 2 Memory hierarchy on a NVIDIA GPU [13] .. 9

Figure 3 The tracking framework of location and scale CF models in ASRCF [15].

 .. 11

Figure 4 The comparison of (b) the MRAT algorithm with (a) the base algorithm

[16] .. 13

Figure 5 Illustration of the PTAV framework. The tracking and verifying processes

are carried on asynchronously in two parallel threads [21]. 14

Figure 6 The visualization of learning framework of C-COT [8] 15

Figure 7 The visualization of all 512 learned filters in the last convolutional layer

of C-COT [2] .. 16

Figure 8 Visualization of the remaining filters after eliminating the ones with

negligible energy [2] .. 17

Figure 9 The visualization of how Intersection over Union is calculated 20

Figure 10 Ground-truth and prediction bounding boxes 21

Figure 11 The Success Plot of ECO Tracker via using IoU 21

Figure 12 The Precision Plot of ECO Tracker ... 22

Figure 13 MATLAB Profiler output for data processing on CPU 23

Figure 14 Indication of how often the methods are called and how much

processing time they use ... 27

Figure 15 Call graph showing dependency of algorithm components on each

other .. 27

Figure 16 The illustration of the distribution of the matrix elements over threads

 .. 30

Figure 17 Pageable Data Transfer to GPU ... 31

Figure 18 Using pinned host memory for the allocation and transfer 32

Figure 19 The operations on the NULL stream ... 33

Figure 20 The amount of concurrency .. 33

Figure 21 Single memory space with UM ... 35

Figure 22 CPU to GPU code transformation with Unified Memory 37

vii

Figure 23 The execution time of only one method on Setup-1. (a) the sequential

approach with the pageable host memory, (b) the sequential approach with

the pinned host memory, (c) the asynchronous approach with 3 streams, (d)

with no-memcpy data pointers. ... 39

Figure 24 Profiler output for unified memory (a) without using

cudaMemPrefetchAsync, (b) with prefetching memory before kernel launch

 .. 42

Figure 25 The execution time of only one method on Setup-2. (a) the sequential

approach with the pageable host memory, (b) the sequential approach with

the pinned host memory, (c) the asynchronous approach with 3 streams, (d)

with no-memcpy data pointers, (e) using managed memory 42

viii

LIST OF TABLES

Table 1 Hardware and software configuration of the experimental setups 19

Table 2 Caller functions of MTIMESX ... 24

Table 3 Execution time of the bottleneck functions on CPU and GPU 25

Table 4 Speed-up accomplished by using vectorized data 26

Table 5 Pseudo-code of element-wise multiplication of two k x n matrices 28

Table 6 Pseudo-code of element-wise division of two k x n matrices 28

Table 7 The number of calls to the methods... 29

Table 8 Pseudo-code of the element-wise multiplication kernel on GPU 29

Table 9 Pseudo-code of the element-wise division kernel on GPU 29

Table 10 The memory management functions used for asynchronous memory

transfers .. 32

Table 11 The utilized stream management functions 33

Table 12 The functions used for managed memory with Unified Memory 36

Table 13 The event management functions used for measurements 38

Table 14 The total time spent in CPU and GPU kernels, and achieved speedup

on Setup-1 ... 38

Table 15 The measured running times and achieved speed-ups over the

pageable memory on Setup-1 with respect to the serial approach 40

Table 16 The total time spent in CPU and GPU kernels, and achieved speedup

on Setup-2 ... 41

Table 17 The achieved speed-ups on Setup-2 with respect to the serial approach

with pageable memory transfers ... 41

ix

ABBREVIATIONS

DCF Discriminative Correlation Filter

VOT Visual Object Tracking

ECO Efficient Convolution Operators for Tracking

C-COT Continuous Convolution Operator Tracker

UVA Unified Virtual Addressing

CUDA Compute Unified Device Architecture

UM Unified Memory

 1

1. INTRODUCTION

1.1. Overview

The world among us is full of objects. We can group these objects into two

categories with respect to their motion status; stationary and moving objects.

Every day, from the time we wake up and to the time we go to sleep, we are

taking images from the world with our eyes and processing it with our brain. The

outputs of this process includes detection, classification and tracking of the

objects we see. We are doing this process every day in our lives. As a result,

object detection, classification and object tracking became the center of interest

in computer vision.

While the object detection and classification is focused on extracting information

about the objects in the images, object tracking is focused on finding the position

of the interested objects in every image sequence. In a broader manner, object

detection is the process of understanding what objects are in the image; object

tracking is the process of finding the same objects we saw in the previous image.

Object tracking aims to predict the position and the trajectory of an object, whose

only initial state is given, in an image sequence.

Object tracking has many practical applications such as security and surveillance,

autonomous vehicles, human-machine interaction, traffic control.

This is such an important and well-famous are in the computer vision so that,

there are competitions held for introducing new tracker algorithms. One of the

famous competitions is VOT Challenge [1] which is held every year. People from

all around the world are developing their own tracker algorithms and challenging

each other to have the best tracker algorithm. The criterias used in benchmarking

and performance evaluation of the tracker algorithms are accuracy and

robustness [1]. The primary measure in VOT is the expected average overlap

(EAO) – a principled combination of accuracy and robustness. Speed of the

algorithms is not a main concern of the challenge. Because, the speed varies on

hardware and implementation setup. There is a sub-challenge in VOT that

evaluates the tracker algorithm only on their speed but it is not taken into account

 2

for overall score. But, in many applications, a tracker is expected to have fast

execution while still having high accuracy and robustness.

1.2. Motivation

The purpose of this study is to accelerate an accurate and robust tracker

algorithm to succeed a higher speed while maintaining its reliability on tracking.

Main key feature on doing this will be the use of GPU.

In this manner, a tracker algorithm named Efficient Convolution Operators for

Tracking (ECO) [2], which is one of the best trackers in VOT Challenge 2017 [1],

is selected. The main reason of selecting ECO is its reliable performance. It is a

very important aspect in reliability required application areas such as, defense

industry and autonomous vehicles. These areas also need applications to

perform in adequate speed.

In recent years, the use of GPGPUs have become popular in areas like computer

vision [3] and big data problems [4]. GPGPUs use the advantage of having many

processor units. They are slower in clock speed when compared to common

CPUs but can handle and execute instructions on many threads simultaneously.

Nowadays, while a general CPU usually has 8 or 16 cores, a brand new NVidia

GPU has more than 3000 cores. Even the GPU cores are usually slower than

CPU cores, the computational power of GPUs are much greater due to the

enormous number of cores.

Object detection and tracking algorithms are good candidate to be implemented

on GPUs because they usually have parallelizable nature which can be divided

into many threads.

Our main contributions in this thesis:

 We obtain a benchmark result of an object tracking algorithm on a

database it has not been tested before.

 A deeper analysis on the object tracking algorithm is done by profiling its

structure. This analysis is used for deciding on which parts of the algorithm

 3

can be migrated to GPU for a faster execution. Eventually, GPU

implementations of these parts are done.

 We improve the performance of our implementations with memory and

kernel management tools of CUDA.

1.3. Organization of the Thesis

This thesis is structured as follows:

Chapter 2 provides a background information about the object tracking algorithms

and GPUs.

In Chapter 3, the structure of the selected object tracking algorithm is explained.

Chapter 4 provides benchmark results, analysis of the algorithm with a profiler

and investigates the methods which are eligible for GPU parallelization.

In Chapter 5, we discuss GPU parallelization steps and how the implementation

carried out.

In Chapter 6, the evaluation results of the GPU implementation is presented and

discussed.

Finally, Chapter 7 provides a conclusion by describing the lessons learned and

brief summary about the work done.

 4

2. BACKGROUND

2.1. Preliminaries

Correlation is a statistical measure of the relationship between two variables. It is

commonly used in statistics, economics and signal processing applications. The

correlation between two variables is measured with the correlation coefficient. It

can take values between -1 and 1. The very simple way of calculating the

correlation coefficient of 𝑥 and 𝑦 is:

𝑟𝑥𝑦 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2

𝑟𝑥𝑦:the correlation coefficient which gives the linear relationship between 𝑥 and 𝑦

�̅�:the mean of the values of 𝑥

�̅�:the mean of the values of 𝑦

If 𝑟𝑥𝑦 is close to zero, it means that there is no correlation between 𝑥 and 𝑦.

If 𝑟𝑥𝑦 is 1, there is a perfect positive correlation. So, the values of 𝑥 and 𝑦

increases or decreases at the same time with time same rate.

If 𝑟𝑥𝑦 is -1, there is a perfect negative correlation. It means that while 𝑥 increases,

𝑦 decreases with time same rate or vice versa.

From this point of view, a correlation filter is a type of a filter constructed using

the correlation of the input and the desired output. In object detection, the idea is

to filter the input with this correlation filter so that, the output only includes the

charecteristics of the object in focus.

The convolution of the signal 𝑓1(𝑡) with another signal 𝑓2(𝑡) is:

𝑓1(𝑡) ∗ 𝑓2(𝑡) = ∫ 𝑓1(𝜏)𝑓1(𝑡 − 𝜏)𝑑𝜏

∞

−∞

The Fourier Transform is excessively used in signal processing. It allows you to

look into the frequency components of a signal.

The Fourier Transform (𝐹) of a signal 𝑓 is given by a complex integral:

(2.1)

 5

ℱ{𝑓(𝑡)} = 𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

where 𝜔 is the angular frequency, 𝑗 is the complex variable and 𝑒−𝑗𝜔𝑡 = cos 𝜔𝑡 −

𝑗 sin 𝜔𝑡 gives the frequency components.

Performing the Fourier Transform on the both sides of the Equation 2.1, the

convolution equation becomes:

ℱ{𝑓1(𝑡) ∗ 𝑓2(𝑡)} = ℱ{𝑓1(𝑡)} ∙ ℱ{𝑓2(𝑡)}

This equation is named as the Convolution Theorem. It states that the Fourier

Transform of a convolution of two signals is the pointwise multiplication of their

Fourier transforms.

The correlation of two signals can be expressed as:

𝑓1(𝑡) ⊗ 𝑓2(𝑡) = ∫ 𝑓1(𝜏)𝑓1(𝑡 + 𝜏)𝑑𝜏
∞

−∞

In the Fourier domain, the Equation 2.2 becomes:

ℱ{𝑓1(𝑡) ⊗ 𝑓2(𝑡)} = ℱ{𝑓1(𝑡)} ∙ ℱ∗{𝑓2(𝑡)}

In ℱ∗{𝑓2(𝑡)}, * denotes that it is the complex conjugate of ℱ{𝑓2(𝑡)}.

2.2. DCF (Discriminative Correlation Filters)

The number of object tracking algorithms which uses Correlation Filters has

increased over these years [5-9]. They have shown remarkable performance on

benchmarks and many state-of-the-art algorithms uses correlation filters.

The first use of Discriminative Correlation Filters in object detection goes back to

the early 80’s [10]. But became very popular with the recent works, starting with

MOSSE tracker published by Bolme et al. in 2010 [5].

DCFs are usually trained online with the early samples from the image

sequences. The increasing number samples cost high computational time and

some of them may become unnecessary if the images contains very same

(2.2)

 6

characteristics. So, the filter output is not changed and only causing loss of

precious time. On the other hand, low number of samples causes performance

issues. Today, the aim of the tracking algorithms, using DCFs, is to maximize the

benefits gained from the training of the filters.

In filter based trackers, the first image is usually used for training the filter. So,

the location of the target is given to the filter. After the filter is initialized with the

first image, object tracking and training of the filter is carried out together. The

resulting filter is applied to the image on the next image sequences. The location

of the highest correlation achieved is new location of the target in the image. In

every frame, the filter updated with the new correlation result.

We can categorize the tracking methods into two groups according to the size of

the video input and way of handling the detection failures. DCF based methods

can be labeled as long-term trackers. Long-term tracking methods usually include

online learning of the appearance of the object and they are expected to recover

when the object disappeared or cannot be detected in the image. But, short-term

tracking is focused only the precision of the detection and once the target is lost

they don’t aim to recover and continue tracking. Short-term trackers are usually

focused on working well for up to 1000 frames. On the other hand, long-term

trackers are expected to be successful for more than 1000 frames and to recover

if the object is lost in some of the frames. From this point of view, we can say that

short-term trackers can be well fitted for surveillance purposes, while the-long

term trackers are good if we want to follow the object constantly.

The computation of correlation matrices is easier and faster in Fourier domain

rather than in time domain. Because, the calculation of the correlations consists

of both summations and multiplications which make it harder to process. On the

other hand, the calculation in Fourier domain includes only multiplications and

eventually, it will be faster and straightforward.

As it is mentioned earlier, MOSSE [5] is the first tracker in which discriminative

correlation filter is used successfully. The speed and robustness of the algorithm

was so good that made it one of the state-of-the-art tracking algorithm at that

 7

time. After that, many tracking algorithms merged from MOSSE and

discriminative correlation filters.

MOSSE tracker uses DCF to predict the location of the object in each image

sequence and it updates the filter in every frame. The correlation filter in MOSSE

is obtained by minimizing the sum of squeared errors. Denoting the images by

𝑓1 … 𝑓𝑡 and the filter output by 𝑔1 … 𝑔𝑡, the filter function can be represented by:

𝜀 = ∑‖ℎ𝑡 ∗ 𝑓𝑘 − 𝑔𝑘‖2

𝑡

𝑘=1

The desired correlation filter (ℎ𝑡) at time 𝑡 is obtained by minimization of the

Equation 2.3.

According to the Convolution Theorem, the correlation between 𝑓 and ℎ is the

point-wise multiplication of them in the Fourier domain:

𝐺 = 𝐹 ∙ 𝐻∗

where 𝐹 denotes Fast Fourier Transform (FFT) of the images 𝑓 and 𝐻 denotes

the FFT of the correlation filter ℎ. 𝐺 is the desired and the training output of the

filter. So, the minimization problem of the MOSSE tracker algorithm can be

expressed in Fourier domain as follows:

𝑚𝑖𝑛
𝐻∗

∑|𝐹𝑘 ∙ 𝐻∗ − 𝐺𝑘|2

𝑘

2.3. GPU Basics

The main use of GPUs has been to create and manipulate images for display

purposes. The history of GPUs goes back to 1990’s. They weren’t fully

programmable and the intended use of the early GPU hardware was only for

graphics. The trend in GPU architecture is drawn toward a CPU-like

programmable design. The first General Purpose GPU (GPGPU), named Fermi

GPU, was released in early 2010 [11]. The illustration of Fermi architecture and

its Streaming Microprocessor (SM) is given in Figure 1 [12].

(2.3)

 8

Figure 1 The illustration of Fermi architecture and its SM [12]

Fermi GPU brought new features such as: unified address space, concurrent,

dual warp schedulers, and kernel execution [12]. It had a total of 512 cores

located in 16 SMs. Today, the number of cores in GPUs exceeds 3000 with high

bandwidth and larger memories.

GPUs use the Single-Instruction, Multiple-Thread (SIMT) execution model,

introduced by NVIDIA in 2006, where multiple threads execute concurrently using

a single instruction. Each SM can execute multiple SIMT groups. For example, a

Fermi GPU which has 512 cores, can execute four 128-threaded SIMT groups

simultaneously.

NVIDIA introduced a parallel programming model called CUDA which is used to

execute programs written with different programming languages on NVIDIA

GPUs.

 9

Within a CUDA program, a kernel is called to be executed in a thread block. Each

thread has its own ID, registers, program counter for executing an instance of the

kernel. A thread block includes concurrently executing threads and a shared

memory. A grid is a group of thread blocks that runs the same kernel and

connected to a global memory. The hierarchy of the execution and the memory

model is given in Figure 2 [13].

Figure 2 Memory hierarchy on a NVIDIA GPU [13]

 10

3. RELATED WORK

In this chapter, some of the state-of-the-art DCF-based tracking algorithms will

be presented.

After the Convolutional Neural Networks (CNNs) showed great results in the

ImageNet competition [14] in 2012, they became popular instrument to be used

in object detection and tracking. With the support of CNNs, DCF-based object

tracking methods have shown extraordinary results on tracking benchmarks.

The feature maps of early DCF approaches were limited to a single-resolution.

This means that all of the feature channels should have the same spatial

resolution. However, this limits the use of multiple convolutional layers of varying

spatial resolutions. Over the years, multi-channel feature maps are started to be

used in DCF framework and the DCF based methods started to provide better

results.

3.1. Adaptive Spatially-regularized Correlation Filters (ASRCF) [15]

ASRCF focuses on two major problems in CF-based methods [15]. First, the

sampling process is prone to suffer from training with a poor samples from the

image at boundaries of the target. The repetition of the training process with these

poorly maintained feature causes the tracker failing eventutally. The main cause

is the use of pre-defined and fixed spatial constraints on filter coefficients.

Second, the constant extraction of the features on every sample for scale

estimation and localization purposes results in too much computational burden

and eventually the speed of the tracker degrades.

The objective function in ASRCF is given as follows:

𝐸(𝐇, 𝐰) =
1

2
‖𝐲 − ∑ 𝐱𝑘 ∗ (𝐏𝐓 𝐡𝑘)

𝐾

𝑘=1

‖

2

2

+
𝜆1

2
∑‖𝐰 ⨀ 𝐡𝑘 ‖2

2

𝐾

𝑘=1

+
𝜆2

2
‖𝐰 − 𝐰𝑟 ‖2

2

(3.1)

 11

where x and h are the vectorized image and the filter respectively. K is the number

of feature channels and y is the ground-truth response. H is the filter response

and w is the weight of the filter channels.

As in a general CF, the tracking takes process with the filters learning from the

minimization of this objective function in Equation 3.1.

The location of the target is determined with the localization function:

𝐫 = ∑ 𝐱𝒌 ⨀ 𝐠𝑘

𝐾

𝑘=1

The localization is done based on the maximizing the response of the filter on the

image sequences.

The tracking framework of location and scale CF models of ASRCF is given

Figure 3 [15].

Figure 3 The tracking framework of location and scale CF models in ASRCF [15].

 12

3.2. A Robust Parallel Object Tracking Method for Illumination Variations

(MRAT) [16]

Liu, Shuai, et. al. [16] proposed a method (MRAT) performs detection on multiple

regions with the use of an alternate template based on parallel computing.

The CF-based trackers starts searching the object from the last known location

in the previous frame. The search area is usually kept small in order to achieve

better speed. But this can result in loss of the target. MRAT enlarges the search

area to improve the tracking robustness and deals with the speed degradation

with the help of parallel computing.

The tracking process is prone to fail with large illumination changes. There are

several methods to handle light changes. One approach is to gather as much

information as possible from the frames like Histogram equalization [17]. The

other approach focuses on light invariant features like edge features [18, 19].

Another method focuses on creating a prediction model to generate possible

images of targets in different lighting conditions [20].

MRAT splits the image into 9 sub-regions. One of the region includes the search

area of the correlation filter. The confidence score is calculated in the search area

of each frame in order to locate the target. Under intense illumination changes,

the confidence scores will be lower eventually and it is likely to lose the track of

the target. In order to lower the effects of the illumination changes, MRAT also

carries out detection on the other 8 regions when the original confidence score is

lower then a threshold value. If the confidence score of a region is higher than

the threshold value, it is selected as the new position of the target and the model

is updated with the new position.

MRAT algorithm perform the detection on other 8 sub-regions with the parallel

computing support. The illustiration of the MRAT algorithm is given in Figure 4

[16].

 13

Figure 4 The comparison of (b) the MRAT algorithm with (a) the base algorithm [16]

3.3. Parallel Tracking and Verifying (PTAV) [21]

Heng Fan and Haibin Ling proposed a novel Parallel Tracking and Verifying [21]

framework for achieve the accuracy and speed burden in an object tracking

algorithm.

Increasing the accuracy of an algorithm usually results in speed degradation. In

their work, the tracking task split into two parallel components working on two

separate threads. One of the components is a base tracker T and the other

component is a verifier V.

A tracking algorithm usually works fine for easy and slowly changing scenes. But

tracker usually struggles to cope with dramatic changes in object appearance.

These cases usually need much more computational process and analysis not to

lose the target. In their approach, they named these cases as the verification.

They are needed on some occasions and not on every frame. A simple tracker

locates the target on every frame and the verification process is carried out for

the detection of the tracking failure and correction of the result. The PTAV

framework is illustrated in Figure 5 [21].

 14

Figure 5 Illustration of the PTAV framework. The tracking and verifying processes are
carried on asynchronously in two parallel threads [21].

PTAV framework includes a tracking solution by combining a correlation filter-

based algorithm (Staple [22]) and a deep learning-based tracker (Siamese

network [23]). The Staple (Sum of Template and Pixel-wise Learners) combines

two complementary factors and learns a model. The model is based on a

correlation filter which uses HOG features and a colour histogram. Two branched

CNNs are used in the Siamese network. The VGGNet [24] architecture is used

for CNNs.

PTAV frameworks combines the speed of a tracking algorithm with the

robustness of a detection algorithm. Since the detection is not likely to happen in

real-time, it is not carried out on every frame. While the tracker T is working on

every frame, a verification request is sent to verifier V on every 10 frames. The

result of the verification process is sent back to T and if a failure occurs tracker T

continues with the information received from verifier V.

3.4. Efficient Convolution Operators for Tracking (ECO) [2]

Danelljan et al. proposed a method for learning a convolutional operator. Their

learning formulation generates a continuous confidence map by use of

convolution filters. Figure 6 provides a visualization of their continuous

convolution operator which integrates multi-resolution deep feature maps [8]. (a)

in Figure 6 is showing the feature map which includes the RGB input image

 15

together with the convolutional layers of a pretrained deep network. The next

column (b) is the visualization of the learned convolution filters. The convolution

output of the each layer is given in the third column (c) and their combination into

the final confidence function (d) provides the position of the object.

C-COT improved the mean overlap score of the state-of-the-art tracker from

77,3% to 82,4% on OTB-2015 [25], Temple-Color [26] and VOT2015 [27]

datasets. It has been ranked as the best tracker in VOT2016 Challenge [28].

Each training sample 𝑥𝑗 has feature channels 𝑥𝑗
1, … , 𝑥𝑗

𝐷 . The sample count of

each feature channel is denoted as 𝑁𝑑 thus, the sample space can be expressed

as 𝕏 = ℝ𝑁1 × … × ℝ𝑁𝐷 [8].

Figure 6 The visualization of learning framework of C-COT [8]

In order to transfer each feature map 𝑑 to the continuous spatial domain 𝑡 ∈

[0, 𝑇), an interpolation operator 𝐽𝑑 ∶ ℝ𝑁𝑑 → 𝐿2(𝑇) is introduced [8]:

𝐽𝑑{𝑥𝑑}(𝑡) = ∑ 𝑥𝑑[𝑛]𝑏𝑑 (𝑡 −
𝑇

𝑁𝑑
𝑛)

𝑁𝑑−1

𝑛=0

The 𝐿2(𝑇) space is considered to have complex functions periodic with 𝑇 > 0.

 16

The aim is to predict confidence scores for each layer 𝑆𝑓{𝑥}(𝑡) with trained the

convolution filters 𝑓 = (𝑓1 … 𝑓𝐷):

𝑆𝑓{𝑥}(𝑡) = 𝑓 ∗ 𝐽{𝑥} = ∑ 𝑓𝑑 ∗

𝐷

𝑑=1

𝐽𝑑{𝑥𝑑}

In ECO, the filter 𝑓 in the formulation (3.2) is replaced with an alternative filter

which reduces the number of model parameters and avoids over-fitting problem.

The problem in C-COT was that many of the learned filters don’t have enough

energy to provide diversity as it can be seen in Figure 7 [2]. This causes that an

important portion of the computatinal power is spent on these unnecessary filters.

ECO has introduced a new convolutional operator that removes the filters that

don’t have much energy form the related convolutional layers.

Figure 7 The visualization of all 512 learned filters in the last convolutional layer of C-
COT [2]

The reduction is done by modifying the convolution operator given in (3.2). The

obtained factorized convolution operator becomes:

𝑆𝑃𝑓{𝑥}(𝑡) = 𝑃𝑓 ∗ 𝐽{𝑥} = ∑ 𝑝𝑑,𝑐

𝑐,𝑑

𝑓𝑐 ∗ 𝐽𝑑{𝑥𝑑} = 𝑓 ∗ 𝑃T𝐽{𝑥}

𝑃 is a coefficient matrix for each of the filters of each feature layer. It is a 𝐷 × 𝐶

matrix where 𝐷 is the number of feature channels and the 𝐶 is the number of

filters that have the sufficient energy. The resulting matrix multiplication is

visualized in

Figure 8 [2].

(3.2)

(3.3)

 17

Figure 8 Visualization of the remaining filters after eliminating the ones with negligible

energy [2][

In Equation (3.3), 𝐽{𝑥} is multiplied by the matrix 𝑃T which results in a 𝐶 -

dimensional vector. This feature map is convolved with the desired filter 𝑓.

After the interpolation carried out, the filter is trained by minimizing the following

expression:

𝐸(𝑓) = ∑ 𝛼𝑗‖𝑆𝑓{𝑥𝑗} − 𝑦𝑗‖
2

+ ∑‖𝜔𝑓𝑑‖2

𝐷

𝑑=1

𝑚

𝑗=1

Here 𝛼 is the weight of the each sample and 𝜔 is the penalty function.

𝐸(𝑓, 𝑃) = ‖�̂�𝑇𝑃𝑓 − �̂�‖
2

+ ∑‖�̂� ∗ 𝑓𝑐‖
2

+ 𝜆‖𝑃‖𝐹
2

𝐶

𝑐=1

 18

4. ANALYSIS OF THE ECO TRACKING ALGORITHM

We have discussed some of the state-of-the-art DCF-based tracking algorithms

in Section 3. In this section, we will be analyzing, profiling and splitting an DCF-

based algorithm into sub-parts for the investigation of parallelizable features. For

this purposes, we chose to conduct the investigation on the ECO tracking

algorithm. Since, DCF-based methods are based on the training of the filter, these

analysis can be similarly applied to the algorithms other than ECO.

4.1. Datasets

The experiments is carried out on five datasets: VOT2017 [1], VOT2019 [29],

OTB-100 [30], TLP [31] and UAV123 [32].

VOT2017 dataset has 60 image sequences and all of them has 30 fps rate over

different resolutions. The total number of frames is 21.345. Since the ECO tracker

is introduced in VOT2017 challenge, it is tested on VOT2017 dataset for better

comparison on the benchmark result of the 2017 challenge [1].

VOT2019 Challenge [29] was held recently in late October 2019, the benchmark

results and the dataset has been made available. Even though some of the image

sequences are common with VOT2017 dataset, it will be beneficial to run the

experiment also on VOT2019. The 2019 dataset has the same number of image

sequences and frame rates as 2017 database. But the total frame count is now

19.760

OTB-100 [30] dataset has 100 image sequences with the total of 59083 frames.

The images have varying resolutions and the total size is 2,61 GB.

TLP [31] is a long video dataset which is more suitable for Long-Term Object

tracking. It consists of 50 HD videos over 676.431 frames. It is also modified for

Short-Term Object Tracking as it has first 600 frames from each of the image

sequences. The modified version is named as tinyTLP. In the experiments,

tinyTLP is used.

 19

UAV123 dataset is released by Image and Video Understanding Lab. at King

Abdullah University of Science and Technology [32]. It consists of sequences

captured from UAVs and has 123 sequences with more than 110.000 frames.

Each frame in all of the datasets are annotated by a rectangular bounding box.

4.2. Setup

The experiments were run on two setups which have the following specifications

as given in the Table 1.

Table 1 Hardware and software configuration of the experimental setups

 Setup-1 Setup-2

CPU Intel Core i7-7500U (4 cores) Intel Xeon Silver 4114 (40 cores)

Memory (RAM) 16 GB 126 GB

GPU NVIDIA GeForce GT940MX

(384 cores)

NVIDIA GeForce GTX 1080 Ti

(3584 cores)

Memory (GPU) 2 GB 12 GB

Operating System Ubuntu 16.04 Ubuntu 18.04

CUDA Version 8.0 10.0

OpenCV Version 3.4.4 3.4.4

4.3. Tracking Performance

The performance analysis will be done using Intersection over Union (IoU)

scores. IoU is calculated as dividing the intersection area of the ground-truth

bounding box and the resulting bounding box generated from the tracker by the

total area covered by the composition of these bounding boxes as visualized in

Figure 9.

The formulation of IoU can be expressed as follows:

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛

(4.1)

 20

Figure 9 The visualization of how Intersection over Union is calculated

Precision and Success curves are another popular performance measurement

criteria’s. Success curve is plotted over an overlap threshold. Precision Plot is

used to measure what percentage of the center error is within the center error

threshold. The center error threshold is the maximum acceptable distance in

pixels with the center of bounding box and the center of the ground-truth. The

popular threshold used in object tracking benchmarks is 20. The threshold value

of 20 is redundant of the object and the image size.

4.4. Benchmark Results

IoU scores are calculated for every frame. The ground-truth and the estimated

bounding boxes also drawn on the current frame for display purposes which can

be seen in Figure 10.

The Success Plot is given in Figure 11. The IoU values which is larger than the

overlap threshold means that the target is successfully tracked in that frame. The

Succes Rate starts to fall down dramatically as the overlap threshold is increased

beyond 0,5. This is also a popular threshold level for IoU.

The precision score is computed by a center error threshold between 5 and 50

pixels. The resulting Precision Plot is given in Figure 12.

 21

Figure 10 Ground-truth and prediction bounding boxes

Figure 11 The Success Plot of ECO Tracker via using IoU

 22

When examining these results, it is necessary to consider the characteristics of

the data sets. The source of motion in image sequences can occur in two ways:

one is the movement of the target and the other is the movement of the image

recorder. The OTB100 data set usually contains image sequences where the

image recorder is stabilized and the source of the motion is the target. Although

both sources are active in the image sequences in the TLP and UAV123 datasets,

the motion of the image recorder is less severe. However, in the VOT-2017 and

VOT-2019 datasets, the intensity of both the target's and the image recorder's

movements is generally very high.

Figure 12 The Precision Plot of ECO Tracker

If we first examine the Success Plot in Figure 11, we see that the algorithm's

performance is inversely proportional to the motion intensity of the target and the

image recorder. In the Precision Plot in Figure 12, it is seen that the algorithm's

performance in the TLP dataset approximates its performance in the VOT

datasets. Since the resolution of the image frames in the TLP dataset is higher

than in other datasets and the target sizes are generally large, the center error

thresholds remain small. This led to the downward movement of the precision

graph.

 23

4.5. Analysis using MATLAB Profiler

MATLAB Implementation on Single-core CPU

The ECO tracking algorithm was originally implemented using MATLAB with GPU

support. Thus, we conduct an analysis on the MATLAB implementation with

MATLAB profiler.

The MATLAB implementation is profiled over one image sequence which

contains 742 frames. The total time is 183.26 seconds.

Figure 13 MATLAB Profiler output for data processing on CPU

The methods covering the most of the execution time are investigated and the

ones which are eligible for parallelization are determined.

MTIMESX [33]: The most time spend in the mtimesx function. MTIMESX is a fast

general purpose matrix and scalar multiply routine [33] and it is used for the

element-wise multiplication of matrices. It has 6 calling functions. The

measurements on the functions that use MTIMESX are given in Table 2.

The methods except lhs_operation have negligible execution time. On every call

to lhs_operation, multiplication of around 10.000.000 complex numbers is

carried on. This is a naturally parallel problem. The matrix sizes in the other

calling functions are very small and they have negligible compute-time.

 24

Table 2 Caller functions of MTIMESX

Caller name Calls Time Spent Time/Call

project_sample 1486 0,881 0,0005929

train_joint 20 0,009 0,0004500

lhs_operation_joint 1280 0,201 0,0001570

optimize_scores 34827 0,498 0,0000143

train_filter 246 0,216 0,0008780

lhs_operation 2952 32,211 0,0109116

find_gram_vector routine, two matrices with around 4.000.000 elements are

multiplied and this provides a good chance of parallelization. In

average_feature_region and integralVecImage are the other bottleneck

functions which includes matrix multiplications and summations in their basis.

MATLAB Implementation with GPU Support

MATLAB has Parallel Computing Toolbox that includes many of the standart

MATLAB built-in function to be executed in GPU. This minimizes the need of a

new kernel implementation. MATLAB lets you declare GPU arrays by using the

type gpuArray. It is also possible to transfer an array A from CPU memory to

GPU memory via A_gpu = gpuArray(A). On the other hand, a GPU array B

can be transfered to CPU memory using gather function.

With the support of its built-in functions and easy memory allocation on GPU, a

MATLAB code which is written for running on CPU can be also run on GPU by

only migrating the variables from CPU memory to GPU memory. No change or

minor changes may be needed for the methods themself.

Overcoming the Bottlenecks

bsxfun is a MATLAB function that is used for applying element-wise operation

to two arrays. bsxfun(fun,A,B) applies the element-wise binary operation

specified by the function handle fun to arrays A and B. fun is replaced by

 25

@times for the multiplication operation. For GPU arrays, mtimesx function is

replaced by bsxfun.

The GPU counterparts of these methods have provided a better performance as

expected. The execution times are given in Table 3.

Table 3 Execution time of the bottleneck functions on CPU and GPU

Description CPU Time GPU Time

lhs_operation 32,211 10,622

find_gram_vector 17,447 2,493

average_feature_region 9,981 2,892

integralVecImage 8,832 4,589

Total 68,471 20,596

With the GPU usage, the average profile time is decreased to 134,72 seconds

from 183,26 seconds providing a 26,49% speed-up. The average profile times

are obtained over 100 runs.

Further speed-up can be achieved changing the structure of the arrays. In the

original implementation, the input arrays to the previously mentioned processes

are 2D, 3D or sometimes 4D arrays. The vectorization of these array can provide

better performance on calculations. Addition to the original approach, we

changed the allocation of the arrays so that they are aligned in a vector array.

For example, the element-wise multiplication of two 4D arrays with the size of

50x30x125x63, took more time than two 1-D vector array with the same amount

of elements. The average times spent for the multiplication are given in the

following Table 4. The vectorization of the input array shortened the execution

time by 21,76%.

 26

Table 4 Speed-up accomplished by using vectorized data

Array dimensions CPU Time GPU Time

4-D arrays 0,012951 0,000043362

1-D arrays 0,013005 0,000033928

Effects on Accuracy

We also investigated the differences between the results obtained from MATLAB

implementations with CPU and GPU.

If it is not handled explicitly, it is likely to come across slight differences between

the multiplications and summations of the floating points carried out in CPU and

GPU because of the rounding modes and order of the accessing elements [34].

The maximum difference between the CPU and GPU calculations is measured

as 0,2% which affects the tracking accuracy by a maximum of 0,4%.

4.6. Analysis using a Profiler

As previously described in Section 3.4, the algorithm includes a large amount of

matrix products and convolution processes. An analysis was carried out to

understand how much processing power these processes require and affect the

speed of operation.

Valgrind [35] tool was selected for analysis. The Valgrind tool is a very successful

tool in memory management, fault finding and processor profiling. The algorithm

was run on the 3.734 image sequence with the Valgrind analysis tool. The

visualization of the analysis outputs is given in Figure 14 and Figure 15.

The algorithm proceeds predominantly in two independent branches as can be

seen in Figure 15. One of them is the part about the training of the filter and the

other is the part where the feature maps of the image sequences are drawn.

Approximately 74,15% of the time spent in the filter training section covers matrix

multiplications and convolution. It is observed that approximately 30,28% of the

entire running time of the algorithm consists of extracting HOG and ColorNames

 27

property maps. FFT and matrix manipulations are frequently used during these

operations. As it is known, these processes can be good candidates for GPU

parallelization.

Figure 14 Indication of how often the methods are called and how much processing time
they use

Figure 15 Call graph showing dependency of algorithm components on each other

 28

5. IMPLEMENTATION ON GPU

As mentioned in the previous section, the ECO tracking algorithm excessively

includes element-wise multiplication and division of the complex matrices. The

initialization and the training of the filter, the extraction of the feature from the

images, the convolution of the filter and the features, the computation of the

energy include matrix multiplications and all using the same method whose

algorithm is given in Table 5.

Table 5 Pseudo-code of element-wise multiplication of two k x n matrices

1: procedure complexDotMultiplication(A, B)

2: 𝑘 = 𝐴. 𝑟𝑜𝑤𝑠

3: 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠

4: let C be a new k x n matrix
5: for i = 1 : k

6: for j = 1 : n

7: 𝐶𝑖𝑗 = 𝐴𝑖𝑗 ∙ 𝐵𝑖𝑗

8: end for

9: end for

10: return C

11: end procedure

The ECO algorithm also includes the element-wise division of the matrices as

given in Table 6.

Table 6 Pseudo-code of element-wise division of two k x n matrices

1: procedure complexDotDivision(A, B)

2: 𝑘 = 𝐴. 𝑟𝑜𝑤𝑠

3: 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠

4: let C be a new k x n matrix

5: for i = 1 : k

6: for j = 1 : n

7: 𝐶𝑖𝑗 = 𝐴𝑖𝑗/𝐵𝑖𝑗

8: end for

9: end for

10: return C

11: end procedure

These methods are used for the multiplication and the division of the matrices

whose sizes are changing between 50x50 and 200x200. At first glance, these

sizes are very small to use a GPU for the multiplication. But a deeper look into

 29

the ECO algorithm revealed that this method continuously called for each frame

and these small matrices are parts of a much larger matrix. The total number of

elements of the larger matrices are changing between 200.000 and 2.000.000

depending on the image size. The multiplication of these matrices are very good

candidates to be parallelized with the use of a GPU.

The number of calls to the original methods and the GPU counterpart developed

for this work are given in Table 7.

Table 7 The number of calls to the methods

Procedure # of calls (in CPU) # of calls (in GPU)

Multiplication 417.439.222 8.653.021

Division 9.425.588 725.045

5.1. Sequential Approach

Firstly, a sequential approach is followed for the parallelization of the methods.

So, the elements of the matrices are copied to the GPU and they are evenly

distributed over the threads. The pseode-code for the sequential approach is

given in Table 8 and Table 9.

Table 8 Pseudo-code of the element-wise multiplication kernel on GPU

𝑘 = 𝐴. 𝑟𝑜𝑤𝑠, 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠, N = k * n

let C be a new (k x n) length array

1: procedure complexDotMultiplicationGPU(A, B, N)

2: idx = blockIdx.x * blockDim.x + threadIdx.x
3: if idx < N

4: 𝐶𝑖𝑑𝑥 = 𝐴𝑖𝑑𝑥 ∙ 𝐵𝑖𝑑𝑥

5: end if

6: end procedure

Table 9 Pseudo-code of the element-wise division kernel on GPU

𝑘 = 𝐴. 𝑟𝑜𝑤𝑠, n= 𝐴. 𝑐𝑜𝑙𝑠, N = k * n

let C be a new (k x n) length array

1: procedure complexDotDivisionGPU(A, B, N)

2: idx = blockIdx.x * blockDim.x + threadIdx.x
3: if idx < N

4: 𝐶𝑖𝑑𝑥 = 𝐴𝑖𝑑𝑥/𝐵𝑖𝑑𝑥

5: end if

6: end procedure

 30

In the sequential approach, the related kernel is called after the matrices are

copied to the device memory as whole. The distribution of the matrix elements

and the calculation process is visualised for the multiplication in the Figure 16

below.

Figure 16 The illustration of the distribution of the matrix elements over threads

The organization of the threads is based on one-dimensional blocks and one-

dimensional grids. This approach only uses the advantage of large number of

cores on GPU to shorten the computation time. But this might not be the only

advantage of using a GPU. Further improvements can be achieved by using the

asynchronous memory transfers instead of the synchronous transfers.

5.2. Using cudaMemcpyAsync with Pinned Host Memory

Up to this point, the advantage of multi-threaded parallelism is used in order to

achieve faster execution time. But, this is not the only way of shortening the

computation time. Concurrency is the ability to run a number of tasks at the same

time. Overlapping two actions is the most common optimization in asynchronous

programming.

In CUDA, the kernels are asynchronous by default. cudaMemcpyAsync can be

used in order to overlap two memory transfers in different directions.

cudaMemcpyAsync is also asychronous with the kernels. So, it is possible to run

 31

a CUDA kernel, cudaMemcpyAsync and do some other operations on the CPU

and on the other GPU streams at the same time.

cudaMemcpyAsync requires Pinned (Page-locked) Host Memory allocation. The

host memory allocation with malloc is pageable by default and it is managed by

the operating system. While transfering data on the pageable host memory to

GPU memory, the CUDA driver first copies the data to a temporarily allocated

pinned memory, and then the transfer to device memory is carried out after that,

as illustrated in Figure 17.

Figure 17 Pageable Data Transfer to GPU

The creation of another copy of the data can be very time consuming especially

with large data and this will cause slower memory transfer between the host and

the device. The CUDA Runtime API provides functions to allocate the data

directly using the pinned host memory, as illustrated in Figure 18.

 32

Figure 18 Using pinned host memory for the allocation and transfer

The use of the pinned host memory provides lower latency and increased

bandwidth for both synchronous and asynchronous memory transfers. The

excessive use of pinned memory will degrade host performance, since the

available amount of pageable memory to the host decreases. The list of the

memory management functions used in this work and their descriptions are listed

in Table 10 [13].

Table 10 The memory management functions used for asynchronous memory transfers

CUDA provides concurrency by the execution of asynchronous commands in

streams. CUDA devices have a default stream, usually referred as stream 0 or

NULL stream, which is synchrous with all streams and its operations cannot

overlap other streams. If it is not explicitly specified, all operations run on the

default stream. Figure 19 shows that how the NULL stream handles the

Function Description

cudaMallocHost(void** ptr, size_t size) Allocates pinned memory on the host

cudaFreeHost(void* ptr) Frees pinned host memory

 33

operations in a simple multiplication program running on GPU. Kernel is only

launched after the completion of the transfer of matrix A and B to the GPU

memory and the resulting matrix C can be copied to CPU after the kernel

completes its execution.

Figure 19 The operations on the NULL stream

CUDA streams let us to overlap these actions in order to achieve concurrency. In

order to create and handle the streams, the following stream management

functions in Table 11 are used provided in CUDA Runtime API [13].

cudaStream_t is used to declare streams as a variable.

Table 11 The utilized stream management functions

Function Description

cudaStreamCreate(cudaStream_t *stream) Create an asynchronous stream

cudaStreamDestroy(cudaStream_t stream)
Destroys and cleans up an

asynchronous stream

cudaStreamSynchronize(cudaStream_t stream)
Waits for stream tasks to

complete

In this method, the matrix multiplication and division workload is distributed over

the streams to maintain a 3-way concurrency which is illustrated in Figure 20.

Figure 20 The amount of concurrency

 34

5.3. Zero-Copy Memory

Normally, the host and device cannot directly access each other’s variable. Zero-

copy memory is one exception to this behaviour. Zero-copy memory is can be

accessed by both the CPU and GPU.

The host memory allocation must be pinned and it is mapped into the GPU

address space. cudaHostAlloc(void** ptr, size_t size, unsigned

int flags) is used for allocation but with cudaHostAllocMapped flag [13].

cudaMallocHost is given cudaHostAllocDefault as flag, it emulates

cudaMallocHost function which is used for pinned memory allocation for

asynchronous memory transfers. The host memory can be accessed via

cudaHostGetDevicePointer which passes back a device pointer ptr. This

pointer can be directly passed to the kernel without any memory copy operation.

But the memory accesses must be synchronized. Both the host and device

should not access or modify the same memory space at the same. This will result

in unpredictable behaviour.

If the device memory is insufficient, it can be used to laverage from the host

memory. Since the host memory is accessed over PCI-Express, the latency is

much worse than global memory.

The excessive use of pinned memory will degrade host performance in both

asynchronous data transfer and zero-copy memory.

5.4. Using cudaMallocManaged with Unified Memory

Eventhough GPUs have very fast memories, the transfer speed of the data to the

GPU is always be a limitation to get the best out of GPU performance. In GPU

applications, it is desired that the data to be as close to the GPU as possible.

The explicit memory copies are the traditional way of transfering data from the

CPU to the GPU or vice versa. Alltough this approach usually provides the best

GPU performance, it needs to give much attention to the handling of the data

access to get the most out of it.

 35

In 2011, with CUDA 4.0, a special addressing type called Unified Virtual

Addressing (UVA) is introduced. Before UVA is introduced, the pointers refering

to the host and device memory have to be managed individually like it is

described previously. With UVA, the pinned host memory has identical pointers

for the host and device. As a result, it can be passed directly to a kernel. With

UVA, it is not necessary to assign a device pointer to the pinned memory space

like it is done with cudaHostGetDevicePointer for the zero-copy. The rest

of the procedure is identical with the zero-copy memory.

A new support called Unified Memory was introduced with CUDA 6.0, in order to

make the memory management even easier. A managed memory pool can be

created with Unified Memory which is reachable from both the host and device

with the same pointer. The data is automatically migrated to which processor

needs access to the data. As a result, it improves performance and locality. On

the other hand, UAV does not migrate data automatically like Unified Memory.

UM lets the host and device to share a single virtual address space, as shown in

Figure 21.

Figure 21 Single memory space with UM

Unified Memory provides a single pointer for the data like zero-copy memory. But

zero-copy memory is located in host memory thus, the data can be accessed only

over the PCIe bus which is prone to high-latency.

 36

The functions provided by CUDA Runtime API [13] in order to allocate and free

managed memory is given in the Table 12.

Table 12 The functions used for managed memory with Unified Memory

But, Unified Memory is handled differently in our setups, due to the architectural

differences. The Setup-1 has a GPU based on Maxwell architecture. In Maxwell

architecture, all managed memory used by the CPU for writing has to be

synchronized with the device before a kernel launch. So, the size of the Unified

Memory is limited to physical memory in GPU.

The Setup-2 has GTX 1080Ti GPU which is based on Pascal architecture. With

the Pascal GPUs, NVIDIA introduced a hardware support to extend Unified

Memory management [36]. In Maxwell architecture, the migration of the data from

CPU to GPU is normally handled by CUDA runtime. With this hardware support,

Pascal GPUs gained 49-bit virtual addressing ability which is large enough to

cover the virtual address space of the device and the host. Thus, the UM is no

longer limited to device memory size, the full memory size of the system becomes

accessible.

Another feature comes with the hardware support is page faulting. This means

that CUDA driver will not need synchronize the managed memory before any

kernel launch. If the managed memory space accessed by any processor is not

available yet, we will have a page fault. This page fault will trigger an automatic

migration of the data, as a result, the need of a data synchronization is removed.

The parallel programming usually starts with serial coding for CPU and ends up

with porting the CPU code to the GPU. We start with the allocation on GPU,

adding a copy feature to the code and replacing the multiplication function. In

Function Description

cudaMallocManaged(void** ptr, size_t

size, unsigned int flags=0)

Allocates memory that will be

automatically managed by the

Unified Memory system

cudaFree(void* ptr) Frees managed memory

 37

order to use the pinned memory, the allocation of the data is needed to be

changed. The use of zero-copy removed the extra data allocation and the copy

requirement. But we still needed a copy for transferring the results to the CPU.

Lastly, the Unified Memory let us to remove the transfer requirement for the

results. The last code was very similar to the CPU code. An example for the

transformation of the code from base CPU code to the GPU code with Unified

Memory is given in Figure 22.

Figure 22 CPU to GPU code transformation with Unified Memory

6. RESULTS

In this section, the results obtained from the original CPU based method and the

implemented GPU based methods will be discussed. Before providing the results,

it is needed to be explained how the measurements are made.

The time spent in CPU methods are measured with the help of OpenCV libraries.

OpenCV has a cv::TickMeter class to measure the passing time. This class

has public member functions start(), stop() in order to start and stop the

timer as expected. The passed time between these two functions can be gathered

with getTimeSec() member function.

CUDA Runtime API provides event management functions in order to measure

the timings in GPU. The functions that are used in this work given in Table 13.

cudaEvent_t is used for the declaration of events.

 38

In order to examine memory transfers, kernel execution and streams for

optimization, NVIDIA Visual Profiler [37] is used. It can detect performance

bottlenecks and provide suggestions for improvements.

Table 13 The event management functions used for measurements

Function Description

cudaEventCreate(cudaEvent_t* event) Creates an event object

cudaEventRecord(cudaEvent_t event,

cudaStream_t stream = 0)
Records an event

cudaEventSynchronize(cudaEvent_t event) Waits for an event to complete

cudaEventElapsedTime(float* ms,

cudaEvent_t start, cudaEvent_t end)

Computes the elapsed time between

events

cudaEventDestroy(cudaEvent_t event) Destroys an event object

The maximum difference between the CPU and GPU calculations is measured

as 0,2% which affects the tracking accuracy by a maximum of 0,3%. The average

calculation error is 0,04% and having negligible effect on the overall accuracy.

6.1. Results obtained with Setup-1

As stated in the Section 4.2, the Setup-1 has Intel Core i7-7500U CPU @2.7GHz,

16GB of RAM and NVIDIA GeForce 940MX with 384 cuda cores and 2GB

memory. The operating system is Ubuntu 16.04 with CUDA 8.0 and OpenCV

3.4.4 installed. The algorithm has run on five datasets and they include 243.299

frames in total. The total time spent on the multiplication and the division

processes is given in Table 14. According to these measurements, the

calculations in GPU are two times faster than the original CPU based methods.

Table 14 The total time spent in CPU and GPU kernels, and achieved speedup on Setup-

1

CPU Kernel (in sec) GPU Kernel (in sec) Speed-up

10005,87 1633,01 ~6,13x

 39

The time consumed in memory transfers and kernels are analized using NVIDIA

Profiling Tool. The profiler output for a single call to the multiplication method with

around 2.000.000 elements for each matrix is given in Figure 23.

The sequential approach is eligible to use both pageable host memory and

pinned host memory with the synchronous memory transfers. The sequential

approach with the pinned host memory is 6,64% faster than with the pageable

host memory. The use of asynchronous CUDA memory transfers and streams

for 3-way concurrency provided a 5,11% improvement over the synchronous

approach with the pinned host memory. Using the streams, the time spent in

kernel is overlapped with the memory transfers and has no effect on the total

processing time as can be seen in Figure 23(c). Since 940Mx has one copy

engine, the host to device and the device to host data transfers can not overlap.

Figure 23 The execution time of only one method on Setup-1. (a) the sequential
approach with the pageable host memory, (b) the sequential approach with the pinned
host memory, (c) the asynchronous approach with 3 streams, (d) with no-memcpy data
pointers.

 40

On the other hand, this is not the ideal gain from the 3-way concurrency since it

is possible to provide up to 3x speed-up. This is because the complexity of the

calculations in kernels is not high enough to fully overlap with the time spent on

the asynchronous memory transfers.

The profiler output in Figure 23(d) shows that there is no time spent in copying

the data to the GPU but the time spent in kernel is increased dramatically due to

the lack of bandwidth. Eventhough the kernel execution time increased, the total

process is sped up by 21,75% with respect to the synchronous memory transfer

with pinned host memory.

In GPU applications, the memory transfers have been a greater problem for

achieving better performance results. This is why we have used five different

method in order to retrieve data on GPU. The primitive sequential approach with

pageable memory is selected as base method for comparison. The speed-ups

obtained on Setup-1 are summarized in Table 15.

Table 15 The measured running times and achieved speed-ups over the pageable
memory on Setup-1 with respect to the serial approach

 Pageable

Memory

Pinned Memory

cudaMemcpy

Pinned Memory

cudaMemcpyAsync

Zero-copy

memory

Managed

memory

Time(sec) 25648,33 23945,48 22721,52 19825,56 27570,44

Speed-up 1x ~1,07x ~1,13x ~1,29x ~0,93x

6.2. Results obtained with Setup-2

The Setup-2 is a workstation which is built for applications like big data

processing, image processing, data mining, etc. It has 40 Intel Xeon Silver 4114

cores, 128 GB of RAM and two NVIDIA GTX1080Ti GPUs based on the NVIDIA

Pascal architecture. Each of the GPUs has 3584 CUDA cores, memory speed

up-to 11Gbps with 352-bit memory interface width and the memory bandwidth

484 GB/sec referred to spec-sheet. The maximum clock rate is 1620 MHz and

memory clock rate 5505 MHz which are 36% and 175% more than 940MX of

Setup-1 respectively. The operating system is Ubuntu 18.04 with CUDA 10.0 and

OpenCV 3.4.4 installed.

 41

Running the ECO algorithm on Setup-2 provided the kernel execution times as

given in Table 16. As expected, sharing the workload between the threads led to

95,76% faster execution time over the CPU execution.

Table 16 The total time spent in CPU and GPU kernels, achieved speedup on Setup-2

CPU Kernel (in sec) GPU Kernel (in sec) speedup

5999,41 254,23 ~23,60x

Using the pinned host memory for the sequential approach instead of the

pageable host memory provided 71,12% faster execution time. The

asynchronous memory transfers with 3 streams were 76,30% faster than the

base GPU method. The zero-copy memory usage also improved the execution

time by 58,85% but not better than the other methods using pinned memory for

explicit memory transfers. Finally, the use of the managed memory was only

14,72% faster than the base method with pageable memory. The achieved

speed-ups over the base GPU approach are summarized in Table 17.

Table 17 The achieved speed-ups on Setup-2 with respect to the serial approach with
pageable memory transfers

 Pageable

Memory

Pinned

Memory

cudaMemcpy

Pinned Memory

cudaMemcpyAsync

Zero-copy

memory

Managed

memory

Time(sec) 13932,69 4023,37 3302,08 5733,84 11881,83

Speed-up 1x ~3,46x ~4,22x ~2,43x ~1,17

At this point, we need to focus on the managed memory usage. At the first steps

of the implementation with managed memory, the performance on GTX 1080Ti

was much worse than the pageable memory. As described in Section 5.4, when

a kernel try to access the memory, a page fault occurs and it triggers the migration

of the data to GPU as demanded. But this causes migration time to interfere with

the kernel execution and stalls it. CUDA provides a management function for

prefetch the data on GPU side. In order to prefetch the data after the CPU

initializes it, cudaMemPrefetchAsync is used before the kernel launch. The

comparison of the cases with the profiler can be seen in Figure 24. Prefetching

the data shortened the execution time by around 64.22%.

 42

Figure 24 Profiler output for unified memory (a) without using cudaMemPrefetchAsync,
(b) with prefetching memory before kernel launch

In order to better see the performance of the methods, the profiler output is given

in Figure 25.

Figure 25 The execution time of only one method on Setup-2. (a) the sequential
approach with the pageable host memory, (b) the sequential approach with the pinned
host memory, (c) the asynchronous approach with 3 streams, (d) with no-memcpy data
pointers, (e) using managed memory

 43

As we can see in Figure 25(c), the input data to the stream kernels and results

back to CPU are copied at the same time. GTX 1080Ti has two separate copy

engines for the transfer data from host to device and from device to host.

44

7. CONCLUSION

We have obtained the benchmark results of ECO tracking algorithm on five

datasets which have different characteristics. We have analyzed the algorithm

and investigated its suitability for GPU parallelism with the help of a profiling tool.

After we have decided on candidate methods, we implemented GPU code for

them starting from very naïve approach. The code implementation is done with

NVIDIA’s CUDA platform. CUDA provides C/C++ extension and APIs for

programming and managing GPUs.

We managed to speedup its execution time with respect to the original

implementation. After the first approach, we worked on the optimization of our

implementation. We first started with the memory management. Page-locked

(pinned) memory, zero-copy memory and Unified Memory are popularly used for

increase GPU performance. We investigated their use and applied them to our

implementation.

Later, we focused on another popular GPU parallelism concept called streams.

We have introduced further improvements on the performance of the algorithm.

We managed to achieve a 76,30% performance increase in execution time with

respect to the original implementation.

We saw that the speed is not only related to the processing power of a processor.

Since, we are always dealing with data, it is also important that how you reach it

and affects the performance directly. Our work showed that traditional explicit

memory copies may still provide better for performance but the gap is smaller

than it used to be. The explicit memory transfers are subject to the programmers

control and must be carefully handled. With the use of Unified Memory, one can

transform a CPU code to GPU code faster. If you C/C++ code are using malloc

for the memory allocation, all you need to do replace it with CUDA method then

you are ready to go. This is very useful for fast prototyping and maintenance of a

software.

45

8. REFERENCES

[1] M. Kristan et al., "The visual object tracking vot2017 challenge results," in Proceedings

of the IEEE International Conference on Computer Vision Workshops (ICCVW), 2017,
pp. 1949-1972, doi: 10.1109/ICCVW.2017.230.

[2] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, "Eco: Efficient convolution
operators for tracking," in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 6931-6938, doi: 10.1109/CVPR.2017.733.

[3] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, "Computer vision algorithms and
hardware implementations: A survey," Integration, vol. 69, pp. 309-320, 2019, doi:
10.1016/j.vlsi.2019.07.005.

[4] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, "A survey on deep learning for big data,"
Information Fusion, vol. 42, pp. 146-157, 2018, doi: 10.1016/j.inffus.2017.10.006.

[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using
adaptive correlation filters," in 2010 IEEE computer society conference on computer
vision and pattern recognition, 2010, pp. 2544-2550, doi:
10.1109/CVPR.2010.5539960.

[6] Z. Chen, Z. Hong, and D. Tao, "An experimental survey on correlation filter-based
tracking," arXiv preprint arXiv:1509.05520, 2015.

[7] M. Danelljan, G. Häger, F. Khan, and M. Felsberg, "Accurate scale estimation for
robust visual tracking," in British Machine Vision Conference, Nottingham, September
1-5, 2014: BMVA Press.

[8] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, "Beyond correlation filters:
Learning continuous convolution operators for visual tracking," in European conference
on computer vision, 2016, pp. 472-488, doi: 10.1007/978-3-319-46454-1_29.

[9] A. Lukezic, T. Vojir, L. ˇCehovin Zajc, J. Matas, and M. Kristan, "Discriminative
correlation filter with channel and spatial reliability," in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309-6318, doi:
10.1007/s11263-017-1061-3.

[10] C. F. Hester and D. Casasent, "Multivariant technique for multiclass pattern
recognition," Applied Optics, vol. 19, pp. 1758-1761, 1980, doi: 10.1364/AO.19.001758.

[11] C. McClanahan, "History and evolution of gpu architecture," A Survey Paper, vol. 9,
2010.

[12] "Fermi Whitepaper." NVIDIA Corporation.
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Arc
hitecture_Whitepaper.pdf (accessed May 2020).

[13] "CUDA C++ Programming Guide." NVIDIA Corporation.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (accessed May
2020).

46

[14] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei, "Imagenet large scale
visual recognition competition 2012 (ilsvrc2012)," See net. org/challenges/LSVRC, p.
41, 2012, doi: 10.1007/s11263-015-0816-y.

[15] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, "Visual tracking via adaptive spatially-
regularized correlation filters," in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4670-4679.

[16] S. Liu, G. Liu, and H. Zhou, "A robust parallel object tracking method for illumination
variations," Mobile Networks and Applications, vol. 24, no. 1, pp. 5-17, 2019.

[17] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, "Bas-relief generation using
adaptive histogram equalization," IEEE transactions on visualization and computer
graphics, vol. 15, no. 4, pp. 642-653, 2009.

[18] L.-H. Chen, Y.-H. Yang, C.-S. Chen, and M.-Y. Cheng, "Illumination invariant feature
extraction based on natural images statistics—Taking face images as an example," in
CVPR 2011, 2011: IEEE, pp. 681-688.

[19] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, "Statistical modeling of complex backgrounds
for foreground object detection," IEEE Transactions on Image Processing, vol. 13, no.
11, pp. 1459-1472, 2004.

[20] G. Silveira and E. Malis, "Real-time visual tracking under arbitrary illumination
changes," in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
2007: IEEE, pp. 1-6.

[21] H. Fan and H. Ling, "Parallel tracking and verifying: A framework for real-time and high
accuracy visual tracking," in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5486-5494.

[22] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr, "Staple:
Complementary learners for real-time tracking," in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 1401-1409.

[23] S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric discriminatively, with
application to face verification," in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'05), 2005, vol. 1: IEEE, pp. 539-546.

[24] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale
image recognition," arXiv preprint arXiv:1409.1556, 2014.

[25] Y. Wu, J. Lim, and M.-H. Yang, "Object tracking benchmark," IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834-1848, 2015.

[26] P. Liang, E. Blasch, and H. Ling, "Encoding color information for visual tracking:
Algorithms and benchmark," IEEE Transactions on Image Processing, vol. 24, no. 12,
pp. 5630-5644, 2015.

[27] M. Kristan et al., "The visual object tracking vot2015 challenge results," in Proceedings
of the IEEE international conference on computer vision workshops, 2015, pp. 1-23.

47

[28] M. Kristan et al., "The Visual Object Tracking VOT2016 Challenge Results," Cham,
2016: Springer International Publishing, in Computer Vision – ECCV 2016 Workshops,
pp. 777-823, doi: 10.1007/978-3-319-48881-3_54.

[29] M. Kristan et al., "The seventh visual object tracking vot2019 challenge results," in
Proceedings of the IEEE International Conference on Computer Vision Workshops,
2019, pp. 0-0.

[30] "Visual Tracker Benchmark." http://www.visual-tracking.net (accessed May 2020).

[31] A. Moudgil and V. Gandhi, "Long-term visual object tracking benchmark," in Asian
Conference on Computer Vision, 2018: Springer, pp. 629-645.

[32] M. Mueller, N. Smith, and B. Ghanem, "A benchmark and simulator for uav tracking," in
European conference on computer vision, 2016: Springer, pp. 445-461, doi:
10.1007/978-3-319-46448-0_27.

[33] J. Tursa. "Fast Matrix Multiply with Multi-Dimensional Support."
https://www.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-
multiply-with-multi-dimensional-support (accessed May 2020).

[34] N. Whitehead and A. Fit-Florea, "Precision & performance: Floating point and IEEE 754
compliance for NVIDIA GPUs," rn (A+ B), vol. 21, no. 1, pp. 18749-19424, 2011.

[35] "Valgrind." https://valgrind.org/ (accessed May 2020).

[36] "Pascal Whitepaper." NVIDIA Corporation.
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf (accessed May 2020).

[37] "NVIDIA Visual Profiler." NVIDIA Corporation. https://developer.nvidia.com/nvidia-
visual-profiler (accessed May 2020).

