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Abstract 

Computerized adaptive test (CAT) has a possible risk that the quality of the item 

bank decreases over time due to the exposed items. The best possible and 

advantageous solution to this is to implement the online calibration. This study was 

aimed to investigate the effect of online calibration components on precision in 

parameter estimation and the cumulative sample size (specified to the calibration 

method). It was also aimed to transfer Joint Maximum Likelihood as a pretest 

calibration method to the online calibration procedure and assess this method’s 

feasibility. The simulation study was conducted under one-parameter logistic (1-PL) 

and two-parameter logistic (2-PL) model to compare the pretest item selection 

methods (Maximum Fisher Information-MFI, D-optimal value design-DVOD, and 

Bayesian D-optimal design-BDOD), the parameter estimation methods (Joint 

Maximum Likelihood-JML and Marginal Maximum Likelihood with One EM Cycle-

OEM), the sample size of the random calibration stage (250, 500, and 1000) and 

the calibration sample size of per pretest item (250, 500, and 1000). The 

performance of these factors on the parameter precision was evaluated by 

calculating bias and root mean squared error (RMSE). The results indicate that the 

performances of item selection methods differ according to Item Response Theory 

(IRT) models and the parameter estimation methods. Among the calibration 

methods, OEM has successfully estimated the most precise item parameters 

although JML performed better in some conditions. The sample size of the random 

stage did not have a characteristic effect on parameter estimation. Lastly, the 

parameter accuracy gets higher as the calibration sample size increases.  

 

Keywords: item response theory, computerized adaptive testing, online calibration, 

pretest item, field-test item, item parameter estimation, pretest item selection 

method  
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Öz 

Bireyselleştirilmiş Bilgisayarlı Testler (BBT)’de maddelerin teşhir olmasından 

kaynaklı olarak madde havuzunun kalitesinin düşme riski vardır. Bunun için en iyi 

ve en avantajlı çözüm, online kalibrasyon prosedürünün uygulanmasıdır. Bu 

çalışmanın amacı online kalibrasyon bileşenlerinin parametre kesinliğine ve madde 

seçim yöntemi özelinde kümülatif örneklem büyüklüğüne etkisini incelemektir. 

Ayrıca çalışmanın diğer bir amacı da Ortak Maksimum Olabilirlik yönteminin 

parametre kestirim yöntemi olarak online kalibrasyon prosedürüne uygulamak ve 

uygunluğunun değerlendirilmesidir. Bir Parametreli Lojistik (1-PL) model ve İki 

Parametreli Lojistik (2-PL) model altında öntest madde seçim yöntemlerini 

(Maksimum Fisher Yöntemi, D-optimal Değer Deseni, Bayesyen D-optimal Deseni), 

parametre kestirim yöntemlerini (Ortak Maksimum Olabilirlik ve Marjinal Maksimum 

Olabilirlik ile Tek Beklenti Maksimizasyon Döngüsü), seçkisiz kalibrasyon aşaması 

örneklem büyüklüklerini (250, 500 ve 1000) ve her öntest maddesi için örneklem 

büyüklüklerini (250, 500 ve 1000) karşılaştırmak amacıyla simülasyon çalışması 

yapılmıştır. Bu faktörlerin parametre doğruluğu üzerindeki performansları yanlılık ve 

Hata Kareleri Ortalamalasının Karekökü (HKOK) hesaplanarak değerlendirilmiştir. 

Sonuçlar madde seçim yöntemlerinin performanslarının Madde Tepki Kuramı (MTK) 

modellerine ve parametre kestirim yöntemlerine göre farklılaştığını göstermektedir. 

Kalibrasyon yöntemleri arasında Ortak Maksimum Olabilirlik yöntemi bazı 

koşullarda daha iyi performans göstermesine rağmen Tek Beklenti Maksimizasyon 

Döngüsü madde parametrelerini en doğru şekilde başarıyla kestirmiştir. Seçkisiz 

aşama örneklem büyüklüğünün parametre kesinliği üzerinde karakteristik bir etkiye 

sahip olmaması elde edilen diğer bir sonuçtur. Son olarak parametre kesinliği 

kalibrasyon örneklem büyüklüğünün artmasıyla yükselmiştir. 

 

Anahtar sözcükler: madde tepki kuramı, bireyselleştirilmiş bilgisayarlı test, online 

kalibrasyon, öntest maddesi, parametre kestirim yöntemi, öntest madde seçim 

yöntemi 
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Chapter 1 

Introduction 

The tests used for many different purposes in the range from low-stakes to 

high-stakes must fulfil some basic standards associated with reliability, validity, and 

fairness of their scores. In order to meet these standards, the psychometric 

developments (such as Item Response Theory-IRT) and the advantages of 

technology had been utilized and this brought along the change from the linear test 

fashion to the adaptive test fashion. Computerized adaptive test (CAT) is one of the 

best practices of adaptive test which aims to select and sequentially administer the 

most appropriate items to the examinees according to their provisional abilities. In 

contrast to traditional tests, CAT estimates the abilities more precisely with fewer 

items. Thanks to these features, it has expanded its popularity and has been used 

for wide range of purposes (i.e., large-scale assessment, college placement, 

achievement testing, monitoring education, and higher-education admissions) with 

various areas (i.e., education, psychology, health-outcome, and even surprisingly 

marketing) (van der Linden & Glas, 2010). In addition, it has been an increasingly 

important research area in psychometry and educational testing since 1970s 

(Luecht & Sireci, 2011).  

With the tailored nature of CAT, it provides many advantages to test takers 

and test designers. It estimates the ability with less measurement error by 

presenting more suitable items close to the examinee’s ability level. This means that 

test scores are more reliable. In this way, it enables the examinee to maintain their 

test motivation and prevents contamination of unrelated variables such as test 

anxiety, examinee fatigue to test scores. It can also balance the content with the 

help of the item selection algorithm for the purpose of the test. Another advantage 

of CAT is that it allows great flexibility for testing time and location. As a result of 

assigning different sets of items to each test taker, it increases test security. It also 

allows the presentation of multimedia-based items that cannot be used in traditional 

paper and pencil tests. It gives test takers immediate access to feedback, reports, 

and scores of their test (Linacre, 2000; Mead & Drasgow, 1993; Rudner, 1998; 

Wainer & Eignor, 2000; Weiss, 1982). Despite CAT provides numerous advantages 

as mentioned above, it has some disadvantages and limitations. It does not allow 

the examinee to skip an item, to go back to the previous item, and to review the 



 

2 
 

former responses. CAT is also a costly process. Although it provides tests of shorter 

lengths, it needs to have an item bank wide enough to span all ability levels in order 

to ensure its adaptive nature. Item exposure is more of a concern in CAT 

administration (Colvin, 2014). Therefore, in the next step, it raises the problem of 

maintaining the item bank. In addition, it is costly to access to computer networks 

and to have computer hardware and software that can enable the continuity of CAT 

(Luecht & Sireci, 2011; Mills & Stocking, 1995; Vispoel, Rocklin, & Wang, 1994; 

Wainer, 1993). 

CAT system is performed with five integrated components; a calibrated item 

pool/bank consisting of items with predetermined parameters, starting rule that 

initiates the procedure by the selecting the first item, item selection algorithm that 

determines the suitable items, the scoring method that estimates both interim and 

final ability of examinee and the stopping rule that determines how to terminate the 

test (Weiss & Kingsbury, 1984; Thomson, 2007; Thompson & Weiss, 2011). In order 

to realize its advantages, CAT should be administered to each examinee with 

different ability levels with higher quality items. That is, the item bank should have 

sufficient number of items targeted at each ability level according to the purpose of 

the test. Therefore, the item bank quality has been thought of as a key factor as it is 

directly related to the success of CAT (e.g. Flaugher, 2000; Wise & Kingsbury; 2000; 

Thompson & Weiss, 2011).  

Statement of the Problem 

The item bank is developed within a general plan starting with the steps of 

writing and reviewing items. After that, in order to estimate the parameters of these 

items, the pretesting session is carried out by administering the items to a large 

number of the examinee with the paper and pencil form. After the rules related to 

the components of CAT are decided, the CAT test is published. Due to the fact that 

CAT is a continuous system applied to different examinees at different time 

intervals, the critical issue that should be considered as the last step is the continuity 

of CAT (Flaugher, 2000; Thompson & Weiss, 2011). This is directly related to 

maintaining the item bank since some items in the bank are overexposed or 

outdated over time. In this case, these items should be retired from the bank and 

replaced by new ones (Wainer & Mislevy, 1990). The entire process is called “item 
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replenishment” or “refreshing item bank”. To do this, these additional items must be 

calibrated as in the first time the items bank is structured and be transferred to item 

bank for operational use. At this point, the efficient operation of the calibration 

process is critical. The precision of the item parameter estimation is known to directly 

affect the validity and reliability of the test scores, and is essential for test scores, 

test equating, differential item functioning. Therefore, it is crucial that item 

parameters can be estimated on large scale, efficiently and economically (Stout, 

Ackerman, Bolt, Froelich, & Heck, 2003).  

There are two methods to handle the parameter estimation of new items (or 

field-test item) for item replenishment in CAT. The first calibration method, 

conventional offline calibration, is similar to the method used for the initial 

development of item bank, is based on the anchor item design. In this method, new 

items are assigned to a group of volunteers with using a paper and pencil form, and 

then are calibrated using these obtained data. Finally, the linking process is 

employed to ensure that the parameters of the new items are on the same scale as 

the parameters of the operational items (Wainer & Mislevy, 1990). In this method, it 

may not always be feasible to perform the calibration with large samples. One of the 

potential disadvantages of this method is that the data obtained are unreliable due 

to the volunteers’ low motivation during test. In this respect, this method is both 

expensive and time-consuming (Chen & Wang, 2016; He, Chen, & Li, 2020). In the 

second method, named as online calibration, new items are carefully embedded 

among operational items and are “seeded” inconspicuously to the examinees during 

their active testing in the CAT scenario (Ban, Hanson, Wang, Yi, & Harris, 2001; 

Stocking, 1988; Wainer & Mislevy, 1990).  

The motivation for the emergence of this method is very similar to the idea of 

operating the CAT system meaning that the examinees’ abilities are estimated more 

effectively by administrating them appropriate set of items adaptively. Similarly, 

online calibration is based on the idea that the parameters of new items (called 

pretest items in online calibration context) can be precisely estimated by giving an 

optimal batch of the examinees (Ali & Chang, 2014; Zheng, 2014). In this context, 

online calibration is operated in as follows. During the examinee’s operational test, 

a certain number of items are administrated to the examinee at predetermined 

position in the test (seeding position/location) by selecting from the pretest bank 
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which is a collection of pretest items. Firstly, since the parameters of the pretest 

items are not estimated at all, the responses of the active candidates to these items 

are recorded and stored. At this stage, the pretest items are randomly selected from 

the pretest item bank. When these pretest items reach a certain number of 

responses (as defined the sample size of the random calibration stage) with the 

continuation of operational CAT, the initial parameters of these items are estimated. 

In the following stages, pretest items are administrated to the examinee according 

to the determined rules at the end of the operational CAT test. With the pretest item 

response of the active examinees, the parameters of that item are updated by re-

estimated using the responses of the previous examinees recorded to the same 

item. The procedure is continued until the specified stopping criterion is met (Zheng, 

2014). At the end of this process, all pretest items have final parameters.  

Online calibration has many clear advantages over the traditional method. As 

the pretest items are presented unnoticed to the examinees, they can maintain their 

test mode and can respond to the items with this motivation (Parshall, 1998). This 

ensures that the obtained data in this method is more reliable than the traditional 

method. This procedure makes it possible to estimate the test takers’ abilities and 

the pretest item parameters simultaneously. In online calibration procedure, pretest 

item parameters are located on the same scale as operational item parameters, thus 

further complex techniques such as equating and linking are not needed. With all 

these advantages, online calibration is cost-effective and time-saving (Chen, Xin, 

Wang, & Chang, 2012; Makransky & Glas, 2010).  

The online calibration procedure consists of two fundamental elements; 

online calibration design (as denoted pretest item selection method) and online 

calibration methods (as denoted item parameter estimation method). Online 

calibration design is related to the selection rules of the sample for the pretest items 

and more generally it refers to the pretest item selection rules or methods. The 

calibration method describes the parameter estimation methods used in this process 

specific to online calibration. In addition to those fundamental elements, the online 

calibration procedure consists of three administration elements; seeding position, 

termination rule and sample size as a type of termination rule. The seeding position, 

as the name suggests, describes where the pretest items will be administrated 

during the active test. The stopping rule describes how the online calibration 
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procedure will be finished. The sample size is defined the number of examinees 

required to complete parameter estimation for a pretest item (as defined the 

calibration sample size of per pretest item) or all pretest items (as defined the 

cumulative sample size). Previous studies have examined these elements on 

parameter estimation in different CAT designs; unidimensional CAT (UCAT) (e.g. 

Ali & Chang, 2014; Ban et al., 2001; Chang & Lu, 2010; He, 2015; He, Chen, Li & 

Zhang, 2017; He et al., 2020; Kingsbury, 2009; Lu, 2014; Makransky & Glas, 2010; 

van der Linden & Ren, 2015; Zheng, 2014; Zheng, 2016; Zheng & Chang, 2017) 

and multidimensional CAT (MCAT) (e.g. Chen & Wang, 2016; Chen, 2017; Chen et 

al., 2017; Zheng, 2014; Zheng, 2016; Zheng & Chang, 2017). However, few of these 

studies (e.g. He et al., 2017; He et al., 2020; Zheng, 2014; Zheng & Chang, 2017) 

have attempted to the examination of these components together in UCAT. Without 

conducting similar studies to these studies, it will not be known how operating the 

online calibration procedure will affect the accuracy of pretest item parameter and 

therefore it is clear that the item parameters will be estimated with more 

measurement errors.  

Furthermore, the obtained data in CAT is in a sparse and based restricted 

range of examinees’ ability due to its structure. This causes a change in the 

parameter estimation of the pretest item. Therefore, parameter estimation is more 

complex than traditional methods (Ban et al., 2001; Hsu, Thompson, & Chen, 1998; 

Chen, 2017). In order to overcome this problem, a number of parameter estimation 

methods have been suggested: Method A (Stocking,1988), Method B 

(Stocking,1988), Marginal Maximum Likelihood Estimation with one expectation 

maximization  (EM) cycle (OEM) method (Wainer & Mislevy, 1990), Marginal 

Maximum Likelihood Estimation with multiple expectation maximization (EM) cycle 

(MEM) method (Ban et al., 2001), BILOG/Strong Prior method (Ban et al., 2001), 

and maximum likelihood estimation-Lord’s bias-correction with iteration – Method A 

method (He et al., 2017). These methods are generally proposed by adapting 

traditional item response theory (IRT) parameter estimation methods for online 

calibration. Due to the importance of parameter estimation, this element is a 

complex but fruitful area for the adaptation and transfer of traditional methods and 

development of new methods.  
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As mentioned above, although there are several studies on online calibration, 

this field still needs to be improved. This study was designed based on all these 

problem situations and potential positive contributions.  

Aim and Significance of the Study 

The current study had two key aims. Firstly, it was aimed to investigate the 

effect of the pretest item selection methods, the parameter estimation methods, the 

sample size of the random calibration stage and the calibration sample size of per 

pretest item on precision in parameter estimation. It was also aimed to assess the 

effect of the pretest item selection methods on the cumulative sample size. 

Secondly, it was aimed to use Joint Maximum Likelihood as a pretest item 

parameter estimation method in the online calibration procedure and assess its 

feasibility. In order to evaluate the effectiveness of parameter estimation, bias and 

root mean squared error (RMSE) were calculated.  

In the CAT system, it is a possible risk that the quality of the item bank 

decreases over time due to the exposed or obsolete items. Precautions should be 

taken to prevent potential misconduct and decisions that may cause this risk to the 

continuity of CAT. Therefore, item replenishment that refers to the replacement of 

these items with new ones is required to maintain the item bank. The best possible 

and advantageous solution to this is to carry out the online calibration procedure. 

The key issue in this is the precise estimation of item parameters, that is to say, it is 

the estimation of the new items’ parameters with the least errors and the optimum 

number of samples. For this purpose, it is necessary to know the effects of online 

calibration elements on the item parameter recovery and thus the procedure can be 

run at the optimum sample size using the best proper item selection design, the best 

performing parameter estimation method. This aspect of the study serves and 

contributes to this purpose.  

The literature about online calibration begins with Stocking’s (1988) study. 

The previous studies of this issue (e.g. Ali & Chang, 2014; Ban et al., 2001; Chang 

& Lu, 2010; He et al., 2017; He et al., 2020; Kingsbury, 2009; Makransky & Glas, 

2010; van der Linden & Ren, 2015; Zheng, 2014; Zheng, 2016; Zheng & Chang, 

2017) have generally focused on online calibration design and related item selection 

methods, parameter estimation methods, sample size, and their combination. There 
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have been a small number of published studies (e.g. Stocking, 1988; Wainer & 

Mislevy, 1990; Ban et al., 2001; He et al., 2017) among these studies proposed the 

pretest item parameter estimation method for unidimensional CAT. Up to now, 

except for one study (Verschoor, Berger, Moser, & Kleintjes, 2019), no research has 

been found that examined the performance of JML as a parameter estimation 

method. This study provides information about the feasibility of this simple method 

in the online calibration procedure and shows its possible advantages and 

disadvantages that may arise within the design of this study. It also enabled the 

fundamental and administration elements of online calibration (the sample size of 

the random calibration stage, item selection methods, parameter estimation 

methods, and the calibration sample size of per pretest item) to explore together. 

The present study provided an opportunity to assess these conditions not only the 

parameter accuracy but also the cumulative sample size in online calibration. 

Moreover, although there have been studies on CAT in Turkey (i.e., Aybek & 

Demirtaslı, 2017; Bulut & Kan, 2012; Özberk & Gelbal, 2017), there is no study on 

online calibration. Therefore, it should make an important contribution to the national 

and international literature about online calibration.  

Research Questions 

What is the effect of the sample size of the random calibration stage, item 

selection methods, parameter estimation methods, and the calibration sample size 

of per pretest item on precision in parameter estimation and cumulative sample size 

in online calibration procedure? 

Sub research questions. The sub research questions are as follows. 

1. What is the effect of different item selection methods (Maximum Fisher 

Information method and D-optimal value design, and, Bayesian D-optimal 

design) on precision in parameter estimation and cumulative sample size 

in online calibration procedure? 

2. What is the effect of different parameter estimation methods (Joint 

Maximum Likelihood and Marginal Maximum Likelihood with One 

Expectation Maximization Cycle) on precision in parameter estimation in 

online calibration procedure? Can Joint Maximum Likelihood be used as 

a parameter estimation method in the online calibration procedure? 



 

8 
 

3. What is the effect of the sample size of the random calibration stage (250, 

500, and 1000) on precision in parameter estimation in online calibration 

procedure?  

4. What is the effect of the calibration sample size of per pretest item (250, 

500, and 1000) on precision in parameter estimation in online calibration 

procedure?  

Limitations 

For this study, three limitations need to be considered. First, the online 

calibration procedure is carried out separately according to 1-PL, and 2-PL IRT 

models. However, the study did not evaluate the 3-PL model. Second, the previous 

studies have been suggested several item selection designs/methods (called 

methods in next sections) and item calibration methods for online calibration. This 

study is unable to encompass the entire pretest item selection methods and item 

calibration methods. It only uses Maximum Fisher Information (MFI) method and D-

optimal value design, and, Bayesian D-optimal design as pretest item selection 

methods and Joint Maximum Likelihood (JML), and Marginal Maximum Likelihood 

with One EM Cycle (OEM) as parameter estimation methods. Lastly, in some 

studies in the online calibration literature, the running time of simulation is 

considered as a criterion to compare the item calibration methods. Although it was 

recorded in this study, it was not used as a criterion because the simulation studies 

were carried out on different computers with different hardware.  
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Chapter 2 

Literature Review 

Computerized Adaptive Testing 

Computerized adaptive testing (CAT) is a modern test administration design 

as an alternative to linear test design such as fixed-length conventional paper-pencil 

tests. CAT is used to measure the latent trait of an examinee such as ability, 

personality, attitude by taking advantage of technology. The integration of CAT with 

item response theory makes it possible to estimate the ability level of an examinee 

more effectively with a shorter test. In CAT, the items are sequentially administrated 

to an examinee and this process is performed adaptively meaning that an item is 

selected according to the examinee’s provisional ability level estimation based on 

the response to the previous item (Lord, 1980a; Weiss & Kingsbury, 1984).  

As a result of both the adaptive nature of CAT and the use of computer and 

internet technology, it has many advantages. The first and one of the most crucial 

of these, as mentioned above, is that the ability can be estimated with fewer 

measurement errors than the paper-pencil tests since the examinees receive the 

appropriate items for their abilities. Accordingly, this could make it possible to have 

shorter tests and less time (by up to %50) without renouncing the abilities precision. 

Due to the continuous practice, it has testing flexibility that enables taking the test 

at the preferred time and location. Thanks to the adaptive item selection and hence 

each examinee receives different tests, the risk of test fraud and cheating is 

minimized and it preserves the test fairness. With the help of computer technology, 

it not only allows the use of different item formats (multiple media) as opposed to 

the traditional item formats but also provides speedy feedback to the examinee 

(Linacre, 2000; Rudner, 1998; van der Linden & Glas, 2010; Wainer & Eignor; 

Weiss, 1982).  

In the literature, it is stated that the components required to operate the CAT 

system are as follows; an item bank with the known item parameters, the item 

selection methods for both first item/s and next items, the ability estimation method 

for both interim and final ability and the termination rule (Magis & Raîche, 2012; 

Reckase, 1989; Thompson & Weiss, 2011; Weiss & Kingsbury, 1984). Using these 

components, the CAT algorithm runs the process in four steps: initial, test, stopping 
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and final. First, the first item is selected and given to the examinee from the item 

bank in the initial step. In the test step, the provisional ability is estimated using the 

ability estimation criteria and the item selection rule is activated. The operations in 

this step are repeated until the termination rule is met. In the stopping step, the test 

is terminated according to the pre-defined rules. In the final step, the final ability of 

the examinee and its measurement error is estimated by using the ability estimation 

criteria (Magis & Raîche, 2012; Magis, Yan, & Von Davier, 2017). 

The item bank is an accumulation of operational items to be administrated to 

examinees in CAT. It is a central component that ensures the continuity of the CAT 

process. It should have a sufficient number of pre-administrated, calibrated, and 

ready for use items to cover the entire range of ability (Wainer & Dorans, 2000). In 

order to develop the item bank, the properties of the test are determined according 

to the purpose of the test and then the items representing each content are written, 

reviewed for the fairness and the quality. After this stage, the pretesting stage is 

carried out and the parameters of the items are estimated. The parameters and 

statistical properties of the pretest are evaluated according to the determined criteria 

(IRT assumption, model fit statistic, et cetera) if any, the items which do not have 

the desired properties are eliminated. To ensure the continuation of the item bank, 

it should be checked periodically in terms of item exposure rate, item drift, and 

content balance (Magis et al., 2017). 

The first step of CAT involves selecting at least one item and administer it to 

the examinee to starting the test. This stage is operated in different ways depending 

on whether having any prior information about the examinee’s ability level. Mostly, 

this information is not available and the administration starts by clearly selecting the 

medium-difficult or the most informative item. In this case, the initial θ level is mostly 

fixed to zero (Magis et al., 2017). If this information is available, the item whose 

difficulty close to the θ level of the examinee is selected and given according to this 

information. This can also shorten the test length (Thissen, & Mislevy, 2000).  

One of the components that diversify adaptive tests from linear tests is the 

item selection method. In this respect, it determines how the test will proceed from 

beginning to end, depending on the accuracy of the examinee's estimated ability 

(van der Linden & Pashley, 2009).  There are many item selection methods in 

literature and many researchers are studied on the effectiveness of these methods 
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based on both simulation and real practice. The source of motivation for proposing 

different methods are primarily the idea of obtaining more information with a different 

approach to more accurately estimate the ability, then the problem of exposure of 

the items over time and the fact that the items are composed of different contents 

(Thompson & Weiss, 2011). These methods are as follows; b-matching, (Urry, 

1970), maximum Fisher Information (mostly used), Owen’s Approximate Bayes 

Procedure (Owen, 1975), Maximum Likelihood Weighted Information (MLWI; 

Veerkamp & Berger, 1997), Maximum Global-Information Criterion (Chang & Ying, 

1996), Maximum Posterior Weighted Information (MPWI; van der Linden,1998), 

Maximum Expected Information (MEI, van der Linden,1998), the progressive 

method (Revuelta & Ponsoda, 1998) and the proportional method (Segall, 2004).  

The ability estimation method does not calculate only the final ability 

according to all responses of administered items but also interim ability which 

determines the next item. It also indirectly determines when the test is to be stopped. 

Therefore, it is one of the essential components of the CAT. The methods in the 

literature are maximum-likelihood estimator (MLE; Lord, 1980b) and weighted 

likelihood estimator (WLE; Warm, 1989); and two Bayesian Fashion method: 

maximum a posteriori (MAP; Samejima, 1969) and expected a posteriori (EAP; Bock 

& Mislevy, 1982). MLE is the most popular estimator in the past and uses the point 

at which the likelihood function is maximized to calculate the ability. Warm (1989) 

proposed WLE as an alternative to MLE in order to lessen the bias of MLE. Bayesian 

Fashion estimators use the posterior distributions of the ability but in different ways. 

For estimating ability, MAP as known Bayes Modal, maximize the distribution while 

EAP calculates its expected value (van der Linden & Glas, 2010).   

The termination criterion deals with when and how to stop the adaptive 

administration of the item in the test. It is classified as fixed-length, ability precision 

level, the ability change, and the information level (minimum information). As with 

linear tests, the test is terminated after giving a predetermined number of items to 

the examinee in the fixed-length criterion. The ability precision criterion stopped the 

test when the accuracy of the examinee’s interim ability is less than or equal to the 

predetermined value. The standard error of ability is used as a measure of accuracy. 

The criteria of ability change are stopped if the ability level changes to very small 

amounts after the items have been administrated. Finally, the information method 
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finishes the administration of items if there is no available unused item that will cause 

a significant change in the information level. Also, combined versions of these 

criteria were used in different studies (Magis et al., 2017; Thompson & Weiss, 2011; 

van der Linden & Glas, 2010). 

Online Calibration 

Maintaining and extending the item bank by replacing exposed and outdated 

items with calibrated new ones are one of the fundamental requirements in ensuring 

the continuity of CAT. As mentioned in the introduction, the online calibration 

approach stands out among the other existing approaches to doing this. It is 

employed to calibrate new items (as denoted field test item or pretest items) which 

are randomly or adaptively administrated to examinees with operational items during 

the active testing by using their abilities (Stocking, 1988; Wainer & Mislevy, 1990).  

Examinees' responses to pretest items are not included in the scoring but are used 

only for calibration of the items. In this way, both the examinees’ abilities using 

operational items and the parameters of the pretest items using their abilities are 

estimated in CAT scenario.  

Online calibration is associated with optimal design in terms of more efficient 

estimation of item parameters. Therefore, the statistical solutions in the optimal 

design have been applied to the online calibration procedure. This is implemented 

in two different ways; sampling the batch of examinee for pretest items and selecting 

appropriate items for examinees. Getting effective results in the studies (Berger, 

1992; Berger, 1994) carried out by applying the optimal design to the paper-pencil 

test has been a driving force for its application to CAT (Zheng, 2014). 

Online calibration is more effective and more prominent than traditional 

methods with its advantages. As mentioned above, one of the most important 

advantages is that it saves both money and time as it simultaneously estimates both 

ability and parameter (Makransky & Glas, 2010). Unlike the pretesting in the paper-

pencil test, it is carried out during the operational testing, thus enabling the 

examinee to respond to new items with the same motivation by continuing the test 

mode (Parshall, 1998). Therefore, it gets more reliable data. Thanks to the 

parameter estimation methods for online calibration, it automatically places the 

pretest item parameters on the same scale as the operational items with no 
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linking/scaling requiring additional operations (Chen et al., 2012). Since the 

assignment of each item to different samples reduces the rate of item exposure, the 

test security risk in online calibration is lower than the other approaches (Guo, 

2016).  

The online calibration procedure can be reviewed under the two following 

elements: pretest item selection method deals with the application of the pretest 

item and the estimation methods deal with how to calibrate the items. In addition, it 

also has the other elements deal with practical issues affecting the procedure. 

These elements are described below. 

Pretest item selection methods. Pretest item selection method deal with 

the rules according to which pretest items are administered which examinee 

throughout the CAT session. It is one of the crucial elements that influence the 

pretest item calibration. This component has been handled by many researchers in 

different ways; optimal sequential design, random method and adaptive design. 

 Jones and Jin (1994), Y.C.I. Chang and Lu (2010), Lu (2014) and Zhu (2006) 

address this issue as a sequential or optimal sequential design. This design is based 

on the implementing of the traditional optimal design paradigm to the online 

calibration process (Zheng, 2014). The basic principle of the method is to select the 

suitable examinee for the pretest item from the examinee pool with different 

optimality criterion (L, E, A, mostly D). The static examinee pool is a requirement for 

this method. Despite that, this requirement cannot be met because CAT sessions 

are held at different times and each examinee who has completed the test leaves. 

Although this method is suitable for simulation, it is not feasible for these reasons in 

practice (Guo, 2016; Zheng, 2014) 

In order to overcome the aforementioned problems, the proposed realistic 

way is to apply the most suitable pretest item for the calibration where the 

examinees reach the seeding position in accordance with the predetermined criteria. 

One of these criteria is the random selection method which is based on the randomly 

selection of the item from pretest item bank and very simple to implement (Wainer 

& Mislevy, 1990). However, since items are administrated in an adaptive way 

determined by the examinee’s ability in the CAT, the seeding of these randomly 

selected pretest items may distort this adaptive trend and cause these items to be 
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perceived from operational items by the candidate. This may affect the examinee’s 

motivation during the exam in the negative way (He et al., 2020; Kingsbury, 2009; 

Zheng, 2014). 

Another criterion is that the pretest items are administrated to the examinee 

in an adaptive way depending on the needs of the examinee or item rather than 

random way. Chen et al. (2012) and Kingsbury (2009) applied this method in line 

with the needs of the examinee as the adaptive nature of CAT. In this method, which 

corresponds to the called examinee-centered method by Zheng (2014), pretest 

items are selected in the same way as selection of operational items depending on 

the examinee’s ability. Although the different item selection methods in CAT 

literature could be used, Kingsbury (2009), Zheng (2014), and Zheng and Chang 

(2017) preferred MFI method. These methods aim to select the most appropriate 

item to maximize the accuracy of the ability parameter, not the accuracy of pretest 

items parameters. Therefore, adaptive design with examinee needs may not be 

competent (He, et al. 2020; Zheng, 2014). On the other hand, it showed efficient 

results for calibrating difficulty parameter in Zheng (2014) study. In addition, it had 

more accurate results than random item selection method (Kingsbury, 2009). 

The adaptive method can also be applied in item needs form in which the 

comparing the examinee's contributions to the pretest items at the seeding position. 

The four different methods were applied depending on the adaptive design with item 

needs; Suitability index (SI; Ali & Chang, 2014), the comparison of D-optimal value, 

Ordered Informative Range Priority Index (OIRPI; Zheng, 2014), and Bayesian 

optimal design (van der Linden & Ren; 2015). SI method is calculated by considering 

the sample size and the target sample for ability ranges. 

In the comparisons of D-optimal values methods, the pretest items are 

selected according to which of the item in the pool will have the maximum D-optimal 

value with the addition of the examinee's ability. The disadvantage of this method is 

that the items which have greater D-optimal value in the item bank tend to be 

administered much more than other items. This leads to ineffective parameter 

recovery for items with a lower D-optimal value (Zheng & Chang, 2017). 

Zheng (2014) proposed the two different OIRPI method (OIRPI with Order 

Statistic and OIRPI with Standardization) based on the calculation of the D-optimal 
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statistic at different ability ranges. In the OIRPI with Order Statistic algorithm, the 

examinee ability scale is divided into specific intervals. At the seeding position, the 

information of each item in these ranges is calculated. These information values are 

sorted for each range. After determining the range of the examinee's ability, the item 

that provides the highest information is selected by employing order statistic for this 

range. OIRPI with Standardization method is generally similar to Order Statistic, the 

information value is calculated by standardized to solve the problem that the 

information values are the same when the ability interval is small in the OIRPI with 

Order Statistic.  

The Bayesian optimal design (van der Linden & Ren, 2015) calculates the 

expected contribution of the information to be obtained by adding the examinee’s 

ability to each pretest item at the seeding position. The critical keyword for this 

method is “the expected contribution” and means the information that may come 

from the assignment of the new item, which will be added to the information that the 

item has so far. van der Linden and Ren (2015) used D-, A-, E-, c- optimality criterion 

to obtain this information.  

As seen in this section, D-optimality is widely preferred from the online 

calibration literature. This criterion is based on maximizing the determinant of the 

Fisher Information matrix calculated based on the item parameters. This means that 

the item is estimated with fewer measurement errors (Anderson, 1984). 

Parameter estimation methods. The estimation method is concerned with 

how to estimate the pretest item in the online calibration procedure by making the 

use of operational items whose parameters are known. It is one of the most 

investigated issues in the literature along with item selection design. The methods 

differ in some points from traditional methods due to the used data structure. The 

reasons for the complicatedness of the online calibration are the fact that both 

operational and pretest items response are sparse because of the essential 

characteristics of CAT, calibrate as a basis of a restricted range of ability, and 

relatively small sample size from traditional paper-pencil administration (Stocking, 

1988; Ban et al., 2001).  In order to deal with these problems, several online 

calibration methods have been put forward for UCAT. These are Method-

A/Stocking-A and Method-B/Stocking-B (Stocking, 1988), one expectation 

maximization (EM) cycle (OEM) method (Wainer & Mislevy, 1990), multiple 
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expectation maximization (EM) cycle (MEM) method (Ban et al., 2001), 

BILOG/Strong Prior method (Ban et al., 2001), and maximum likelihood estimation-

Lord’s bias-correction with iteration – Method A (MLE-LBCI-Method A) method (He 

et al., 2017). They are summarized as follows. As proposed by Ban et al. (2001), 

Zheng (2014) used Bayesian priors with Method-A, Method-B, OEM, and, MEM and 

tested the performances of these methods. 

Method A. Among other calibration methods, Method-A (Stocking, 1988) has 

the simplest theoretical background and is easy to calculate (Chen & Wang, 2016). 

The basic principle underlying the method works as follows. First, the ability (θ) is 

calculated with maximum likelihood using operational item responses. Then, these 

are fixed and pretest item parameters are estimated using them by employing 

Conditional Maximum Likelihood Estimation process (Zheng, 2014). The pretest 

items parameter are on the same scale as the operational item because they are 

estimated the fixed thetas which are on the same scale as the operational items. 

Because of treating fixed abilities are as “true” ability without measurement error, it 

can cause parameter drift problems (Ban et al., 2001). 

Method B.  Although Method-B (Stocking, 1988) comes from the same basis 

of Method-A, it is strict and also impractical to implement. This is because it uses 

estimated anchor items to handle the parameter drift problem of Method A. In this 

method, candidates respond to operational items, pretest items, and anchor items, 

and then, the equating and transformation process is used to estimate parameters 

as similar Method-A (Ban et al., 2001). 

One Expectation Maximization. The OEM method (Wainer & Mislevy, 

1990) works primarily on calculating the expected posterior distribution of the ability 

estimated from administered operational items and then using it to maximize the 

Marginal Maximum Likelihood (MML) function. As a result of this method having only 

one EM cycle, the parameter is updated once with the distribution gained from the 

operational items only. In consequence of the distribution containing operational 

items, Parshall (1998) stated that the advantages of this method are that pretest 

items are on the same scale as the operational items and the calibration of any 

pretest item cannot infected by other pretest items  
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Multiple Expectation Maximization. The MEM method (Ban et al., 2001) is 

the derived form of OEM and the first EM cycle is operated in the same way in both. 

From the second EM cycle, the posterior distribution is calculated from both 

administrated operational and pretest items. Then, operational items parameters 

were treated as fixed and the process continues as in the OEM's maximization step. 

In this method, the pretest items also is same scale on operational items. It is an 

advantage of this method to utilize entirely the information get in the process, but it 

may be a disadvantage to include some deficiently estimated pretest parameters 

(Ban et al., 2001). 

BILOG/Strong Prior Method. BILOG/Strong Prior method (Ban et al., 2001) 

performs the calibration of pretest using a computer program (Bilog-MG; Zimowski, 

Muraki, Mislevy & Bock, 1996) of the same name as the method. This method re-

estimates the parameters of the operational items with strong prior distribution and 

then contribute them by fixing. Although there are similarities between this method 

and the MEM method in terms of employing the MML technique, the MEM method 

re-estimated pretest items parameters in cycles, not operational item parameters.  

Maximum Likelihood Estimation-Lord’s Bias-Correction with Iteration – 

Method A. MLE-LBCI Method A method (He et al., 2017) is proposed in order to 

eliminate the disadvantage of Method A from producing biased results in parameter 

estimation. For this purpose, Lord's bias-correction method (Lord, 1983) was 

implemented together with MLE in two different ways (at each update of the ability 

during the CAT test and at the end of the CAT test). 

Other elements. Apart from pretest item selection methods and parameter 

estimation methods, the elements such as seeding position, termination rule, and 

sample size were discussed and their effects on item parameter estimation were 

examined in previous studies on online calibration. 

The seeding position is defined as where the pretest item is to be assigned 

during the CAT session. Because the ability of before seeding is employed both in 

pretest item selection and parameter estimation, seeding position is one of the 

potential factors that can affect the calibration accuracy. Towards the end of the test 

in the adaptive session, theta includes fewer errors, thus providing maximum 

contribution to parameter recovery. The best option is to assign the pretest item very 
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close to the end of the test. However, in this case, it could be a problem if the test 

takers notice it (Kingsbury, 2009; van der Linden & Ren, 2015).  

There are many options for the seeding position in the literature. These are 

random assignment (Chen & Wang, 2016; Chen, 2017; Chen et al. 2017); fixed point 

(Kingsbury, 2009); at random position towards the end of the test (van der Linden & 

Ren, 2015); there location (early, middle, and late) of the test (He et al., 2020; 

Zheng, 2014; Zheng, 2016; Zheng & Chang, 2017). Each of these methods has 

different effects on parameter estimation and it is appeared that these effects can 

be significant or  non-negligible in different studies (Chen & Wang, 2016). 

The termination rule is the criterion that determines how to finish the sampling 

and when the pretest item export from the pretest item bank. This is another 

important factor to consider, as it is directly related to the accuracy of the parameter. 

While different criteria such as standard error and parameter stabilization have been 

recommended in the literature (Kingsbury, 2009), the sample size criterion is the 

most widespread in previous studies (Ali & Chang, 2014; Ban et al., 2001; He et al., 

2017; He et al., 2020; Ren, van der Linden, & Diao, 2017; Kingsbury, 2009; Zheng, 

2014; Zheng, 2016; Zheng & Chang, 2017; van der Linden & Ren, 2015). Ren et al. 

(2017) and van der Linden and Ren (2015) implemented a new criterion integrating 

of both posterior standard deviation and maximum sample size.  

The sample size is applied in two different ways; total or cumulative sample 

size in all process and sample size for each pretest item. The first method is the 

number of candidates participating from the beginning to the end of the online 

calibration process, while the second method is the number of candidates required 

for the calibration of each pretest item. The pretest items may be exposed noticeably 

more than others in the total sample size method except when random selection is 

used. For instance, if D-optimal value comparison design or MFI criterion is used as 

pretest item selection method, some items could have greater D-optimal or MFI 

value than the others, therefore tend to selected primarily for all candidates. 

However, pretest items with the low value will be less selected and the calibration 

results will not be satisfactory relative to the others as they are not given to 

approximately the same number of candidates. Due to the second method focuses 

on each pretest, it may eliminate this problem of the first method. 
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Model, Concept, and Notations 

The following concepts and notations are used to describe the issues in this 

study such as IRT model, pretest item selection methods and the parameter 

estimation methods.  

Item Response Theory (IRT) is a model-based measurement theory that 

explains the relationship between an individual's response and his or her latent trait 

level such as ability, performance, intelligence, or competency level (Embretson & 

Reise, 2000). IRT uses a variety of statistical models describe the probability of 

correct response according to dichotomously or polytomously scored items.  

IRT models defined with a mathematical function as called Item Response 

Function (IRF). Because of using dichotomous data, unidimensional dichotomous 

IRT model discussed in this study. These models range from simple to complex one-

parameter logistic (1-PL) model (Lord & Novick, 1968; Rasch 1960), two-parameter 

logistic (2-PL) model (Birnbaum 1968), and three-parameter logistic (3-PL) model 

(Birnbaum 1968) respectively. Since the study was limited to the 1-PL model and 2-

PL model, the notation of the 3-PL model was not included in this section. IRF for 

these models define the probability of a correct response 𝑢𝑗𝑖 = 1 of person 𝑗 =

1,2, . . . , 𝑁 with ability 𝜃𝑗 on item 𝑖 = 1,2, . . . , 𝐿 as; 

1-PL 

𝑃𝑖(𝜃𝑗) ≡ 𝑃𝑖(𝑢𝑗𝑖 = 1|𝜃𝑗 , 𝑏𝑖) =  
1

1+𝑒𝑥𝑝[−(𝜃𝑗−𝑏𝑖)]
 ; (1) 

2-PL 

𝑃𝑖(𝜃𝑗) ≡ 𝑃𝑖(𝑢𝑗𝑖 = 1|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖) =  
1

1+𝑒𝑥𝑝[−𝑎𝑖(𝜃𝑗−𝑏𝑖)]
 ; (2) 

where 𝑎𝑖 and 𝑏𝑖 are the discrimination and the difficulty parameters of item 

𝑖, respectively. 

Pretest item selection methods. This part describes the pretest selection 

methods which are examined the accuracy of parameter estimation in this study; 

MFI method, and D-optimal value design, and, Bayesian D-optimal design.  
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Suppose 𝑘 = 1,2, . . . , 𝑚 be the pretest item in pretest item bank and 

𝜂𝑘(𝑎𝑘, 𝑏𝑘) be pretest item parameters which are need to estimate. Let 𝑡 − 1 items 

have already administrated pretest item of person 𝑗 and 𝑅𝑡 denote the eligible items 

in pretest item bank for 𝑡th item. In the online calibration design in this study, since 

the pretest items were administrated to the examinee after all operational items, 𝜃𝑗 

that is the final ability of the examinee 𝑗th was used for the item selection. Suppose 

𝑛𝑘 be the number of examinees that have already responded item 𝑘th.  

The methods used in this section are briefly explained by using statistical 

notation. The detailed explanations are presented the methodology section in 

Chapter 3. 

Maximum Fisher Information. In online calibration context, this method 

aims to select the most informative pretest item among the remaining available 

items by using final ability. Therefore, the test information of the examinee is 

calculated using the item information function. For operational items 𝑖 = 1,2, . . . , 𝐿, 

the test item information is presented as  

𝐼(𝜃𝑗) = ∑
[𝑃𝑖

′(𝜃𝑗)]
2

𝑃𝑖(𝜃𝑗)(1−𝑃𝑖(𝜃𝑗))

𝐿
𝑖=1   ,  (3) 

where 𝑃𝑖
′(𝜃) is first derivative of the probability function 𝑃𝑖(𝜃) with respect 

to 𝜃. With the use of test information function of examinee 𝐼(𝜃) given Equation 3 

and the definition of arg max that is an element or position or a point of functions 

where the function values are maximized according to a given argument, the most 

informative item 𝑘𝑡
∗ is selected as  

𝑘𝑡
∗  =  arg max

𝑘∈𝑅𝑡

{𝐼(𝜃𝑗)}, (4) 

D-optimal value design. This design uses the D-optimality criterion that 

used Fisher information of the item 𝑘 with 𝜂𝑘 parameters by contributed 𝜃𝑗. The 

information is defined this matrix. That is (Hambleton & Swaminathan,1985),  

𝐼(ηk; θj) = [
𝐼𝑎𝑎𝑗𝑘 𝐼𝑎𝑏𝑗𝑘

𝐼𝑏𝑎𝑗𝑘 𝐼𝑏𝑏𝑗𝑘
].  (5) 
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Each element of 𝐼(ηk; θj) matrix is defined as; 

𝐼𝑎𝑎𝑗𝑘 = (𝜃𝑗 − 𝑏𝑘)2𝑃𝑘(𝜃𝑗)(1 − 𝑃𝑘(𝜃𝑗))  (6) 

𝐼𝑎𝑏𝑗𝑘 = −𝑎𝑘(𝜃𝑗 − 𝑏𝑘)2𝑃𝑘(𝜃𝑗)(1 − 𝑃𝑘(𝜃𝑗))   (7) 

𝐼𝑏𝑏𝑗𝑘 = 𝑎𝑘
2𝑃𝑘(𝜃𝑗)(1 − 𝑃𝑘(𝜃𝑗))  (8) 

 Consider 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑛𝑘
) denote the ability vector of 𝑛𝑘 

examinee answering to item 𝑘 and the total amount of information expressed as the 

sum of information provided by each ability. That is, 

𝐼𝑘(ηk; θ) = ∑ 𝐼(ηk; θj)
𝑛𝑘
𝑗=1   (9) 

This method aims to maximizes determinant of total information matrix 

(denoted as D-optimal value/statistic). This also minimizes determinant of the 

covariance matrix and therefore reduces the measurement error of parameter 

estimation (Anderson, 1984). This method seeks 𝑘𝑡
∗ item that having the maximum 

D-optimal value using the ability of current examinee (denoted as 𝜃𝑐) and 𝜃 by 

comparing all available pretest items. It is formulated as 

𝑘𝑡
∗ = arg max

𝑘∈𝑅𝑡

{𝑑𝑒𝑡[∑ 𝐼
𝑛𝑘
𝑗=1 (ηk; 𝜃𝑗) + 𝐼(ηk; 𝜃𝑐)]}.  (10) 

Bayesian-D optimality design. This method uses D-optimal design by 

modifying. It mainly focuses on the maximization of expected contribution with the 

𝜃𝑐. So that, it compares all eligible items and calculates their contribution (van der 

Linden, & Ren, 2015). It selects  𝑘𝑡
∗ using this equation given by; 

𝑘𝑡
∗ = arg max

𝑘∈𝑆𝑡

{𝑑𝑒𝑡[∑ 𝐼
𝑛𝑘
𝑗=1 (ηk; 𝜃𝑗) + 𝐼(ηk; 𝜃𝑟)] − 𝑑𝑒𝑡[∑ 𝐼

𝑛𝑘
𝑗=1 (ηk; 𝜃𝑗)]}. (11) 

Parameter Estimation Methods. This part presented the parameter 

estimation methods for pretest items that are tested in this study; Joint Maximum 

Likelihood and One EM Cycle.  

The likelihood function is used in parameter estimation. For ability 𝜃𝑗, the 

likelihood of response 𝑢𝑖𝑗 to operational item 𝑖 is  
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𝐿(𝑢𝑖𝑗|𝜃𝑗) = 𝑃𝑖(𝜃𝑗)
𝑢𝑖𝑗

[1 − 𝑃𝑖(𝜃𝑗)]
1−𝑢𝑖𝑗

 . (12) 

The likelihood function of response 𝑣𝑘𝑗 to pretest item 𝑘 for ability 𝜃𝑗 is 

expressed similarly, 

𝐿(𝑣𝑘𝑗|𝜃𝑗) = 𝑃𝑘(𝜃𝑗)
𝑣𝑘𝑗

[1 − 𝑃𝑘(𝜃𝑗)]
1−𝑣𝑘𝑗

 .  (13) 

Joint Maximum Likelihood. JML is an estimator that simultaneously 

calibrates ability and item parameters. It is a two-stage iterative procedure. In the 

first step, the item parameters are treated as known and fixed, then the abilities are 

estimated. In the second step, it runs the opposite way round; the abilities that get 

in the first stage are treated as known and fixed, then the parameters are obtained 

(Baker & Kim, 2004; Hambleton & Swaminathan,1985). However, due to the final 

abilities of the examinees are known in this study, it is used only for the parameter 

estimation. Accordingly, this technique was applied separately to each pretest using 

its first stage. JML is defined using the log likelihood function. The joint likelihood for 

all response 𝑣𝑘 = (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑘
) of 𝑛𝑘 examinee to which pretest item 𝑘 is 

administrated is the product of all separate  𝜃𝑗 ’s likelihood.  

𝐿 = ∏ 𝐿(𝑣𝑗𝑘|𝜃𝑗) =  𝑃𝑘(𝜃𝑗)
𝑣𝑗𝑘

[1 − 𝑃𝑘(𝜃𝑗)]
1−𝑣𝑗𝑘𝑛𝑘

𝐽=1  . (14) 

The principle underlying the parameter estimation of JML is to obtain �̂�𝑘
′ =

(�̂�𝑘, �̂�𝑘)′ vector that maximize the log likelihood function. It means that the first 

derivative of the 𝑙𝑛 𝐿 function with respect to �̂�𝑘 is zero. That is, 

𝜕 𝑙𝑛 𝐿

𝜕 �̂�𝑘
= 0 .  (15) 

This non-linear equation is solved by using the multivariate Newton-Raphson 

procedure since �̂�𝑘 column vector has two elements.  

Suppose 𝑥 be the (𝑑 × 1) column vector that maximize 𝑓 function as 𝑓(𝑥). 

The general form of this procedure is presented as (Baker & Kim, 2004) 

𝑥𝑡+1 = 𝑥𝑡 − [𝑓′′(𝑥𝑡)]−1𝑓′(𝑥𝑡) .   (16) 
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where 𝑓′′(𝑥𝑡) (𝑑 × 𝑑) matrix and 𝑓′(𝑥𝑡) (𝑑 × 1) column vector are the 

second and the first order partial derivates of 𝑓(𝑥), respectively; and 𝑡 is the 

iteration number.  If it is applied to Equation 15, it is (Hambleton & 

Swaminathan,1985) 

[
�̂�𝑘

�̂�𝑘
]

𝑡+1

= [
�̂�𝑘

�̂�𝑘
]

𝑡+1

− [
Λ11 Λ12

Λ21 Λ22
]

−1

[
ℓ1

ℓ2
]. (17) 

where 

ℓ1 =
𝑙𝑛 𝐿

𝜕�̂�𝑘
= ∑ (𝜃𝑗 − �̂�𝑘)(𝑣𝑗𝑘 − 𝑃𝑘(𝜃𝑗))

𝑛𝑘
𝑗=1  ,  (18) 

ℓ2 =
𝑙𝑛 𝐿

𝜕�̂�𝑘
= −�̂�𝑘 ∑ (𝑣𝑗𝑘 − 𝑃𝑘(𝜃𝑗))

𝑛𝑘
𝑗=1  ,  (19) 

Λ11 =
𝑙𝑛 𝐿

𝜕�̂�𝑘
2 = ∑ (𝜃𝑗 − �̂�𝑘)2(1 − 𝑃𝑘(𝜃𝑗)) (

𝑣𝑗𝑘

𝑃𝑘(𝜃𝑗)
− 𝑃𝑘(𝜃𝑗))

𝑛𝑘
𝑗=1  , (20) 

Λ22 =
𝑙𝑛 𝐿

𝜕�̂�𝑘
2 = �̂�𝑘

2 ∑ (1 − 𝑃𝑘(𝜃𝑗)) (
𝑣𝑗𝑘

𝑃𝑘(𝜃𝑗)
− 𝑃𝑘(𝜃𝑗))

𝑛𝑘
𝑗=1  , (21) 

Λ12 = Λ21 =
𝑙𝑛 𝐿

𝜕�̂�𝑘�̂�𝑘
= − ∑ (𝑣𝑗𝑘 − 𝑃𝑘(𝜃𝑗)) + �̂�𝑘(𝜃𝑗 − �̂�𝑘) (1 −

𝑛𝑘
𝑗=1

𝑃𝑘(𝜃𝑗)) (
𝑣𝑗𝑘

𝑃𝑘(𝜃𝑗)
− 𝑃𝑘(𝜃𝑗)). (22) 

This iterative procedure is continued until it converges to the specified value 

or reaches the maximum number of iterations.  After that, �̂�𝑘(�̂�𝑘, �̂�𝑘) of the pretest 

item 𝑘 are obtained. 

One Expectation Maximization. OEM is a pretest parameter estimation 

method based on Marginal Maximum Likelihood Estimation (MMLE) method with 

EM algorithm similar to MEM. It uses the posterior distribution of abilities for more 

precise parameter estimation. It consists of two steps (E and M), and this EM cycle 

is executed once (Wainer & Mislevy, 1990).  

In E step, the expected posterior log-likelihood of the pretest item 𝑘 is 

obtained as the posterior ability distribution of 𝑛𝑘 examinees that is given pretest 

item 𝑘. Suppose 𝑛𝑖(𝑖 = 1,2, . . . , 𝑛𝑖) be the number of operational items that an 
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examinee reaches and 𝑈𝑗 = 𝑢𝑗𝑖 = (𝑢𝑗1, 𝑢𝑗2, . . . , 𝑢𝑗𝑛𝑖
) be the response of the 

ability 𝑗  to these items. It also It is formed as the product of likelihood function from 

the responses of the 𝑛𝑘 examinee to administrated operational items and their 

parameters �̂�𝑜𝑝𝑟. That is,  

𝐿(𝑈𝑗 , 𝜃, �̂�𝑜𝑝𝑟) = ∏  𝑃𝑖(𝜃)𝑢𝑗𝑖[1 − 𝑃𝑖(𝜃)]1−𝑢𝑗𝑖
𝑛𝑖
𝑖=1  . (23) 

In M step, the posterior ability distribution is used to find �̂�𝑘 = (�̂�𝑘 , �̂�𝑘) 

parameter that maximize marginal maximum likelihood (Wainer & Mislevy, 1990).  

The EM cycle uses quadrature approximation approach to ensure continuity 

due to the integral-based definition of MMLE. Therefore, it uses quadrature points 

𝜃ℎ (ℎ = 1,2, . . . , 𝑞) on 𝜃 scale to a certain number and the weights of the 

distribution 𝑊(𝜃ℎ) corresponding to these points. Three different methods can be 

used in the selection of quadrate point; Gauss-Hermite quadrature point, quadrature 

over fixed points and Monte Carlo integration (Baker & Kim, 2004). For Gauss-

Hermite quadrature methods, the weights are defined before. The method of 

quadrature over fixed points uses the density function of standard normal 

distribution (Mislevy, 1984). This parameter estimator also uses multivariate 

Newton-Raphson procedure. Before this procedure is executed, the expected value 

�̅�𝑘ℎ at each 𝜃ℎ, and the expected number of correct responses �̅�𝑘ℎ at each 𝜃ℎ are 

calculated as; 

�̅�𝑘ℎ = ∑ [
𝐿(𝑈𝑗,𝜃ℎ,�̂�𝑜𝑝𝑟)𝑊(𝜃ℎ)

∑ 𝐿(𝑈𝑗,𝜃ℎ,�̂�𝑜𝑝𝑟)𝑊(𝜃ℎ)
𝑞
ℎ=1

]
𝑛𝑘
𝑗=1  ;  (24) 

�̅�𝑘ℎ = ∑ [
𝑣𝑗𝑘𝐿(𝑈𝑗,𝜃ℎ,�̂�𝑜𝑝𝑟)𝑊(𝜃ℎ)

∑ 𝐿(𝑈𝑗,𝜃ℎ,�̂�𝑜𝑝𝑟)𝑊(𝜃ℎ)
𝑞
ℎ=1

]
𝑛𝑘
𝑗=1  .  (25) 

 

The iterative Newton-Raphson algorithm is started with the implementation 

of the transformation �̂�𝑘 = 𝑙𝑜𝑔 �̂�𝑘. It is presented as 

[
�̂�𝑘

�̂�𝑘

]
𝑡+1

= [
�̂�𝑘

�̂�𝑘

]
𝑡+1

− [
𝛬11 𝛬12

𝛬21 𝛬22
]

−1

[
ℓ1

ℓ2
].  (26) 

where 
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ℓ1 = ∑ [�̅�𝑘ℎ − �̅�𝑘ℎ𝑃𝑘(𝜃ℎ)]𝑒𝑥𝑝(�̂�𝑘)(𝜃ℎ − �̂�𝑘)
𝑞
ℎ=1  ;  (27) 

ℓ2 = − ∑ [�̅�𝑘ℎ − �̅�𝑘ℎ𝑃𝑘(𝜃ℎ)]𝑒𝑥𝑝(�̂�𝑘)
𝑞
ℎ=1 ;  (28) 

Λ11 = ∑ �̅�𝑘ℎ[𝑒𝑥𝑝(�̂�𝑘)]2(𝜃ℎ − �̂�𝑘)2𝑞
ℎ=1 𝑃𝑘(𝜃ℎ)(1 − 𝑃𝑘(𝜃ℎ)) ;  (29) 

Λ22 = − ∑ �̅�𝑘ℎ[𝑒𝑥𝑝(�̂�𝑘)]2𝑞
ℎ=1 𝑃𝑘(𝜃ℎ)(1 − 𝑃𝑘(𝜃ℎ)) ;  (30) 

Λ12 = Λ21 = − ∑ �̅�𝑘ℎ[𝑒𝑥𝑝(�̂�𝑘)]2(𝜃ℎ − �̂�𝑘)
𝑞
ℎ=1 𝑃𝑘(𝜃ℎ)(1 − 𝑃𝑘(𝜃ℎ)). (31) 

This procedure is continued until it converges to the specified value or 

reaches the maximum number of iterations.  After that, the final transformation �̂�𝑘 =

𝑒𝑥𝑝(�̂�𝑘) is employed and  �̂�𝑘(�̂�𝑘, �̂�𝑘) of the pretest item 𝑘 are obtained. 

Previous Research 

In this section, after the classification of previous studies, each of these is 

summarized. The online calibration procedure is extended and integrated into all 

CAT design; Unidimensional CAT (UCAT), multidimensional CAT (MCAT). Since 

this study is based on IRT, UCAT studies and MCAT studies were involved in this 

section while Cognitive Diagnostic CAT (CD-CAT) studies were not included. 

Previous Research About Unidimensional CAT. In this section, the 

studies about unidimensional CAT are listed as follows; Buyske (1998), Chang and 

Lu (2010), Lu (2014), Makransky and Glas (2010), Ban et al. (2001), Kingsbury 

(2009), Ali and Chang (2014), Zheng (2014), van der Linden and Ren (2015), He 

(2015), Zheng and Chang (2017), He et al. (2017), He et al. (2020) and Zheng 

(2016).  

Buyske (1998) proposed the L-optimal design as an alternative to the D-

optimal design. It is based on the two-point design that the probability of responding 

correctly to the item is equal weight to 25% or 75%. In the study, standard (random), 

D-optimal, and proposed (L-optimal) design were compared on parameter accuracy 

using MSE, bias and sample size criteria. According to the findings, the standard 

methods have a larger error than the proposed methods chosen for extreme 

parameter b values. In general, the methods except standard method have similar 

results in terms of MSE and bias. On the other hand, L-optimal design needed 
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smaller sample size than L-optimal design in similar condition and it was lightly more 

effective and practical in this respect. 

Chang and Lu (2010) discussed online calibration in the context of sequential 

design under variable length CAT. Their designs consist of two stages CAT and item 

calibration process. In the first stage, examinees abilities are estimated with 

conducted CAT procedure. In the second stage, the pretest items are calibrated by 

selecting the most informative examinee using the 2-point D-optimal design. In 

addition, the measurement error models are applied to compare the parameter 

estimation accuracy. Two studies were performed by using simulated and real data 

in 2-PL. The results showed that the sequential design performed well at the 

parameter estimation and this method was more effective than the sample size for 

both data. In addition, they stated that the method could be used in large scale 

examinations. 

Lu (2014) studied the effect of different sequential optimal design methods 

on parameter estimation. In the study, D-optimality, A-optimality, E-optimality, and 

random design have been tested in low to high discrimination (0.5 to 2.5) and 

difficulty parameter (-3 to +3) conditions under the 2-PL. MSE and sample size 

range-based stopping time were used as a criterion to compare the results. There 

is no significant difference between the compared methods when estimating a 

parameter. For the b parameter estimation, the most advantageous methods in 

parameter accuracy are E-optimal and A-optimal when the parameter a is low. On 

the other hand, while the parameter a is high, D-optimal and A-optimal are the most 

effective methods. In general, optimal methods were found to be more appropriate 

than random methods. The sample size increased when parameter a reached from 

low to high. A similar trend is also seen as the parameter b is close to -3 and +3. In 

addition, the sample size in the random method is lower than the optimal method 

because examinees are not selected according to the suitability of the parameters. 

Makransky and Glas (2010) explore new adaptive model to make more 

practical and rapid calibration that can be used in small testing. For this purpose, 

they tested three different optimal calibration methods with a simulation study. 

These strategies are two-phase, multi-phase and continuous updating strategy. 

These strategies are based on the random or adaptive selection of the items in 

stages and vary according to the number of steps. In the study, the transition points 
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(10, 25, 50, 100 and 200 item administration), the sample size (250, 500, 1000, 

2000, 3000 and 4000), the Item Response Theory (IRT) model (1-PL and 2-PL) and 

the item pool (200 and 400) conditions are simulated. The continuous updating 

strategy had better results than the other strategies in all stage points and item pool 

size. The weak point of this method is that it requires more application for parameter 

estimation of a few items in the 2-PL. Multi-phase strategy showed good results in 

large samples in the 2-PL model. In addition, the two-phase strategy generally has 

lower performance than the others. 

Ban et al. (2001) examined the effect of five pretest item calibration method 

(Stocking-A, Stocking-B, OEM, MEM, and BILOG with Strong Prior) on pretest item 

recovery in online calibration. For this purpose, the performance of these methods 

was investigated under different sample size (300, 1000 and 3000) with a simulation 

study. This study used 540 items in total for operational item bank, pretest items 

and linking items respectively 520, 10, and 10. The adaptive tests were applied on 

fixed length (30 items). The item characteristic curves (based on weighted mean 

squared error-WMSE), bias, standard error (SE) and root mean square error 

(RMSEA) was used as a criterion for evaluating the performance of pretest item 

calibration methods. The findings of the study show that the method with the 

smallest parameter estimation error in all sample sizes is the MEM. However, it has 

the most time-consuming method because its procedure is iterative. In spite of 

needing the anchor items and big sample size, the Stocking’s Method B is the 

second-best option for pretest item calibration. The OEM has larger error than MEM. 

The Stocking’s Method A is the last option because of having the largest parameter 

estimation. The BILOG with Strong Prior method requires a big sample size so that 

it is not feasible for small sample size.  On the other hand, this method is suitable 

for sparse data. 

Kingsbury (2009) explained how the online calibration process works as an 

adaptive item calibration with an example and discussed the specific components 

that need to be controlled in the process. In addition, an online calibration simulation 

study was performed depending on sample size and item selection in the study. 

Random sampling and adaptive item calibration methods were used as item 

selection methods and were compared. The study was limited to the 1-PL model 

and online calibration was continued until the number of responses has extended 
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500 (as also sample size). As the evaluation criterion, the mean absolute parameter 

difference, correlation coefficient and bias were calculated. The results show that in 

the all samples sizes less than 150, the adaptive item calibration showed fewer 

errors than the random sample method. For two methods, similar results were found 

in the case of large samples size greater than 150. In terms of correlation 

coefficients, it was seen that the adaptive item calibration obtained a larger 

correlation coefficient in all sample sizes. In terms of bias, the random sample item 

calibration method with 40 response showed the greatest positive bias, while 

adaptive item calibration with 10 response showed the greatest negative bias. 

However, as the sample size increased, the bias also decreased for both methods. 

Ali and Chang (2014) introduced the Suitability Index (SI) as a new pretest 

item selection method developed by them and tested the effectiveness of this 

method according to other methods. The effects of the sample size (300, 500, 750, 

1000, 1500 and 2000) were tested in the Monte Carlo simulation study. The 

research mainly focuses on the effect of the pretest item selection method. These 

methods are the Maximum Suitability Index (MSI), match-b and random. The 

performance of the methods in the study was examined by calculating the root mean 

square error (RMSEA) and bias for pretest items parameters. For discrimination and 

difficulty parameters, MSI showed fewer measurement errors than match-b and 

random method. MSI and match-b methods’ performance is relatively better for 

guess parameter, but the results are very close to each other. In terms of sample 

size, bias is low for all item selection methods in small samples size and RMSE 

decreased as the number of samples increased for the discriminant parameter. Both 

bias and RMSE became smaller in all methods as the number of samples increased 

for difficulty parameters. For guess parameter, the results are very similar all sample 

size. 

Zheng (2014) introduced the Order Statistics (OIRPI-O) and Standardization 

(OIRPI-S) methods based on The Ordered Informative Range Priority Index (OIRPI) 

for the selection of pretest items for the replenishment of the item pool. In addition, 

the performance of these methods was compared with other pretest item selection 

methods (Random, Examinee Centered, Optimal-D). The parameter estimation 

accuracy of the seeding location (early, middle and late), pretest item calibration 

methods (Stocking-A, OEM, MEM, Bayes Stocking-A, Bayes OEM and Bayes MEM) 
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was examined for 1-, 2-, and 3-PL model in the study. The mean square of the error 

squares (RMSE) and the difference between the estimated and real item 

characteristic curves were calculated to compare performance in the study. Findings 

of the study indicated that both methods of OIRPI were the most effective in all IRT 

model and item parameter. In the 2- and 3-PL model, the examinee centered 

method showed more accurate results for the b parameter whereas it showed worse 

results in the other parameter accuracy. In terms of estimation methods, Bayesian 

MEM showed more balanced results than other estimation methods. When the 

effect of the seeding location for OIRPI-O and OIRPI-S methods are examined, it is 

found that the middle and late seeding more accurate estimations of item parameter 

than the early seeding. The increasing trend was shown from early seeding to late 

seeding for a and c parameter in the examinee centered method. Middle and late 

seeding results were similar in the other methods. 

van der Linden and Ren (2015) suggested an adaptive estimation design 

using the Bayesian criteria for the field test item. The design uses both the posterior 

distribution of the examinee’s abilities acquired as adaptive and the posterior 

distribution of the field test item parameters applied consecutively. Two simulation 

studies were performed for two different purposes. The first of these was to analyse 

of the two MCMC applications in terms of parameter accuracy. The second of these 

was to test the performance of Bayesian D-optimality, A-optimality, c- optimality for 

only parameter a and random item selection criteria. In the first study, nine item 

parameters were estimated by the MCMC algorithm with 12000 iterations. In the 

findings, it was found to be effective on parameter precision with small variance for 

difficulty and guessing parameter (unexpected case for it). In contrast, less accurate 

results were obtained for the discriminant parameter. In the second study, 50 field 

test items were compared in terms of completing the item calibration according to 

four different items selection design and two stopping rules (below the threshold for 

the item’s posterior standard deviation and predetermined sample size). In standard 

deviation stopping rule, the D-optimal method had the tendency to retire earlier by 

calibrating items from A-optimality and random design except for last a few items. 

The random method is more efficient than A-optimality. In fixed sample size rule, D-

optimal showed similar results to the previous results for all items. In terms of 
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performance, A-optimality and c-optimality for a-parameter showed similar results 

while the random method had the worst performance. 

He (2015) examined the optimum sample size for pretest item (as defined 

field test item) calibration under Rasch Model. In this study, the sample size was 

used as the number of responses required for each pretest item. Different sample 

size (30, 60, 120, 250, 500 and 1000) was compared with Monte Carlo simulation 

study. Bias, absolute bias (abias) and mean squared error (MSE) was used to 

measure the pretest item calibration accuracy and precision. According to the 

results, difficult items were overestimated, while easy items were underestimated. 

As the number of samples increased, the bias, abias, and MSE were decreased. 

When the sample size was 250, the parameter recovery was acceptable and 

sufficient. However, when the sample size reached to 1000, almost unbiased results 

were obtained for parameter precision. Another result is that the contribution to the 

parameter estimation of the bias correction formula was slight. 

Zheng and Chang (2017) aimed to compare five different pretest item 

selection methods with a simulation study. The methods discussed in the study are 

random selection, the examinee-centered method, D-optimal method, Bayesian D-

optimal design, and The Ordered Informative Range Priority Index (OIRPI). In this 

study, the examinee-centered method is applied as Maximum Fisher Information 

selection method. Parameter estimation methods (OEM and MEM), seeding 

location (early, middle and late) and sample size (1000, 1500, 2500, 5000 and 7500) 

are other elements examined in the study. The study also simulated under 

conditions of the 1-PL, 2-PL, and 3-PL. In order to examine the effectiveness of the 

methods in different situations, pretest item parameters were formed by crossing 

parameters a and b divided into different levels from low to high. In terms of 

estimation methods, the results show that OEM is as accurate as MEM in many 

conditions. On the other hand, OEM produced abnormal results when examinee-

centered method was used in estimating large a parameter in the 2-PL and 3-PL. In 

general, OEM is suitable for 1-PL, while MEM is more suitable for 2-PL and 3-PL as 

it produces more consistent results. The seeding location effect was not particularly 

noticeable especially in the 1-PL model and most cases in the 2-PL and 3-PL. As 

expected, more accurate estimation results were obtained in the middle and late 

seeding locations for examinee-centered and ORPI methods. The increase in the 
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sample size gets better the accuracy of parameter estimation and this change 

occurred at various rates especially in the 2-PL and 3-PL depending on the high and 

low values of a and b parameters. On the other hand, the accuracy of the c 

parameter estimation gets worse with increasing sample size. In terms of estimation 

methods, findings are different from previous studies. Although OIRPI and 

examinee-centered method improve the parameter accuracy for 1-PL, the 

difference between other methods is quite small. In the 2-PL model, it was found 

that adaptive methods are more effective than the random method only under some 

conditions (high a and small absolute b parameter). The interesting result is that the 

random method, which is a simple method, gives similar results and also to be more 

effective than many complex adaptive methods. 

He et al. (2017) suggested a new online calibration method to improve the 

performance of the Method-A. In this method, named MLE-LBCI-Method A,  the 

ability estimation is performed the corrected MLE (Lord’s bias-correction method) 

and Method-A is used in the online calibration part. Two simulation study were 

performed in which the corrective MLE in CAT settings was examined and the 

performance of MLE-LBCI-Method A was compared with the other methods 

(Method A, OEM, and MEM). In addition that, sample size (1000, 2000, and 3000) 

and test lenght (10, 20, and 30) was examined as a simulation condition. RMSE, 

bias and the area difference of item characteristic curves (AWG) were used as 

evaluation criteria. The new method showed better results than Method A in most 

cases. It also showed less AWG value than OEM in some condition. In terms of 

RMSE, it had less error than MEM on calibrating a and c parameter in most case. 

MEM is the best method in all conditions but it needed more time than others. As 

the sample size increases, the precision of the item parameter estimates increases. 

He et al. (2020) aimed to achieve the effectiveness of calibration in online 

calibration by suggesting the excellence degree (ED) criterion by integrating the 

original D optimal design with modified d-optimality design (called in D-VR design) 

introduced by van der Linden and Ren (2015). Four different design schemes 

(original estimated information (o), the minimum information (min), the mean 

information (mean), and the likelihood-weighted information (lw)) based on the ED 

criteria were created and compared with the DV-R design.  Three different 

simulation studies were conducted. In the first study, the effect of the number of 
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pretest sample size (200,400, and 600) and the seeding positions (early, middle and 

late) were examined. In the second study, the effect of sample size at random 

calibration stage and the number of parameter update samples of the pretest items 

were tested. Finally, the accuracy of calibrated items in ability estimation was 

investigated. In the findings, all ED designs show more improvements over the DV-

R design under the most situation.  It was found that parameter estimation was more 

effective in cases when new items were seeded in the middle and last position in 

the test. ED-o produced more accurate results than D-VR design in the second 

simulation. The ED-o design is efficient when the sample size at random stage is 

fairly small, and vice versa for the DV-R. The increase in the number of parameter 

updates provided only time-saving efficiency but did not cause much change in 

calibration accuracy.  As predicted, for the accuracy of the ability parameter the 

calibrated items had a worse result than the actual ability parameters in the last 

simulation study. Whereas D-VR worked better than ED-o design when the sample 

size is small, ED-o results are more accurate when the sample size increases. In 

addition, the most prominent features in schemes except than ED-o were the 

following. ED-lw was the best solution when seeding position was early. Another 

effective design when the pretest item is seeded early was ED-min but its process 

takes a long time. It was found that ED-mean performs quite well when the small 

standard error range was used and the seeding position was middle and late. 

Zheng (2016) explained how the online calibration process works under the 

generalized partial credit model for polytomous items and then examined the 

accuracy of parameter estimation methods with a simulation study. For this purpose, 

the effect of estimation method (OEM and MEM), number of response category (3 

and 4), pretest item selection method (random, maximum θ information and match-

b), seeding location (early, middle and late) and calibration sample size (200, 500, 

and 500) were investigated as a simulation condition. The parameter estimation 

accuracy in different conditions was examined by calculating RMSE for each 

parameter. The results showed that in the OEM method, the RMSE rises when the 

number of categories increases from 3 to 4. On the other hand, there is no difference 

in the number of these two categories when using MEM.  From the point of view of 

pretest item selection methods, it has been found that the random method had more 

accurate than maximum θ information and match-b in many conditions. In terms of 
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seeding location. the results are similar. The results show that the RMSE based on 

sample size have changed according to the method of pretest item selection and 

calibration method and when the sample size is 4000, the results are not different 

from each other. 

Previous Research About Multidimensional CAT. In this section, the 

studies about multidimensional CAT are listed as follows; Chen and Wang (2016), 

Chen et al. (2017) and Chen (2017). 

Chen and Wang (2016) argued the fact that when the M-Method A method is 

used for parameter estimation in the multidimensional CAT, the ability is considered 

as real ability and therefore is not to take any notice measurement errors of its. In 

order to overcome this deficiency, they have proposed two new parameter 

estimation methods (FFMLE-M Method A – Individual and Mean) by combining with 

the M-Method A and the full Functional MLE. The effect of these method and other 

methods (M-Method A and M-MEM) on parameter recovery was tested under 

simulation conditions based on item pool type (within-item and between-item 

design), sample size (1500 and 3000) and test length (20 and 40). The results show 

that the two proposed methods had better performance than Method-A on 

parameter accuracy, especially discrimination parameter, in all large sample size 

conditions. This performance is more noticeable in short tests. In contrast, when the 

sample is small, these two methods are not effective in estimating the parameters 

as much as the original M-Method-A. In addition, these methods also performed 

better than M-MEM. 

Chen et al. (2017) developed new and favorable online calibration methods 

(M-Method-A, M-OEM, and M-MEM) for multidimensional CAT (MCAT) and tested 

their effectiveness for item parameter recovery. These methods are based on the 

methods used in the unidimensional CAT. NAMC and AMC integration is used to 

adapt these methods (M-OEM and M-MEM) to MCAT. Besides the methods, item 

bank design (within and between item), the correlation between dimensions (.0, .5 

and.8) and test length (20,30,40 item) were also examined. In the scope of the study, 

three simulations were conducted, two of which were based on simulated item bank 

and one was based on a real item data. In the first simulation study, the effects of 

NAMC and AMC integration were examined in terms of parameter recovery (ability 

and especially item). The variables tested in the second simulation were the effect 
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of random item selection and the proportion of sample size (%25, %50, %75) in 

terms of pre-calibration sample size (random item application). In the last simulation 

study, the conditions in the study were investigated by using real item parameters. 

According to the results obtained from the first simulation study, three developed 

methods show similar results and provide precise item parameter estimation. In five 

of the six tested conditions, M-OEM showed the best results, while in the remaining 

one, M-MEM had the best results. The accuracy of the ability and item parameter 

estimation is directly proportional to the increase in test length. Another result 

obtained is that NAMC and AMC integration give similar results. In addition, the 

proposed AMC integration was found to be more useful in estimating parameters in 

difficult situations. In the second simulation, adaptive calibration design has more 

advantages than random calibration design in most conditions. The relationship 

between the changes in the proportion of sample size could not be obtained. The 

third simulation results showed that abilities for both dimensions can be accurately 

estimated. Unlike the second simulation condition, increasing the proportion of 

sample size in the adaptive design estimate parameters with fewer errors in the 

proposed three online calibration methods. 

Chen (2017) put forward two new estimators (M-OEM-BME and M-MEM-

BME) in the multidimensional computerized adaptive test (MCAT) literature by 

integrating Bayesian model estimation with multidimensional OEM (M-OEM) and 

multidimensional MEM (M-MEM) methods. These two methods use the information 

of a priori distribution both the ability and the items' parameters. The two simulation 

studies were conducted under 9 conditions formed by crossing 3 level dimensions 

of ability (no correlation, moderate and strong) and 3 level sample size (900, 1800, 

3600). In the first simulation study, existing six (M-Method A (True), M-Method A 

(Original), FFMLE-M-Method A (Mean), FFMLE-M-Method A (Individual), M-OEM, 

M-MEM) and the new two parameter estimation methods were compared using 

random design in terms of ability and item parameter recovery, the number of EM 

cycle and time consumption. The results of the first simulation showed that: M-MEM-

BME had the best results in parameter estimation in cases when there is no 

correlation between the dimensions; FFMLE-M-Method A (Individual) was effective 

in large samples, and M-OEM OEM had satisfactory performance results under the 

other conditions. Besides, M-MEM-BME found a solution to the non-convergence 
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problem of M-MEM. However, both methods are not particularly economical in some 

cases (strong correlation between dimensions and large sample sizes) in terms of 

time consumption. In the second simulation, the random design and the optimal 

Bayesian design proposed by van der Linden and Ren (2015) compared using 

FFMLE-M-Method A (Individual) estimator. It was found that the difference between 

methods on the parameter recovery was too close to be considered. 

Summary of Previous Research. In the literature, some of the calibration 

studies (Buyske,1998; Chang & Lu, 2010; Lu, 2014) used the principle of examinee 

selection for the item from examinee pool, in other words, sequential design. The 

preferred designs in these studies are L-optimal, A-optimal, E-optimal and mostly 

D-optimal. Makransky and Glas (2010), unlike others, proposed a new design called 

automatic online calibration for small testing programs. On the other hand, the most 

preferred design in the literature is adaptive design. The specified version of this 

design, the Bayesian optimal design proposed by van der Linden and Ren (2015), 

has been a source of motivation for other studies (Chen, 2017; He et al., 2020; 

Zheng & Chang, 2017). Among the optimality methods, D-optimality is frequently 

employed in these designs as a result of its structure and success in calibration. In 

addition, the random design is widely compared with them in terms of performance. 

Although quite simple, it performed similarly impressive with other complex designs 

(Chen, 2017; Zheng & Chang, 2017) 

Apart from the design, another factor that is considered in the previous 

studies is parameter estimation method. These methods were proposed primarily 

for UCAT and then generalized for MCAT and CD-CAT; Stocking-A, Stocking-B, 

BILOG, OEM, and MEM. The simplest method, Method A, was performed in 

extended version by combining Lord bias correction in UCAT (He et al., 2017) and 

full functional MLE method in MCAT (Chen & Wang, 2016; Chen, 2017). The other 

two important and frequently used methods are MMLE with OEM and MMLE with 

MEM. They were modified with Bayesian prior to get better performance. The 

expected effect on the parameter recovery had seen in Zheng (2014) and Cheng 

(2017) with this modification. It has been found that MEM was better in most cases 

in parameter estimation due to the fact that having multiple cycles in UCAT and 

MCAT versions. However, a consequence of this causes a loss of time. Besides, 
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OEM has worked in some cases as effective as MEM or even more effective (Chen 

et al., 2017; Chen, 2017; Zheng & Chang, 2017).  

Finally, the investigated factors are the sample size as termination rule for 

online calibration procedure and the seeding position for pretest item. As expected, 

the number of sample size is directly proportional to the accuracy of pretest item 

parameter estimation (Ali & Chang, 2014; Chen et al., 2017; He, 2015; He et al., 

2017; Kingsbury, 2009; Zheng & Chang, 2017). On the other hand, in Zheng and 

Chang (2017) study, this trend continued for parameters a and b, and surprisingly, 

with the increase in the sample size, the parameters c was estimated less precisely. 

Due to having less error estimation of ability towards end of test, it was found that 

middle and late seeding were more effective than early seeding (He et al. 2020; 

Zheng, 2014; Zheng & Chang, 2017).  

Based on these aforementioned studies, in this study, the item selection 

method (MFI, D-optimal value design, and Bayesian-D optimality design), 

parameter estimation method (JML and OEM), sample size  of both random stage 

(250, 500, and 1000) and all calibration process (250, 500, and 1000) components 

which have effect on parameter estimation (as mentioned in the studies in the online 

calibration literature above) were considered as variables together and their effect 

on parameter estimation accuracy and cumulative sample sizes were examined with 

a simulation study.   
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Chapter 3 

Methodology 

Type of Research 

In this research, the effect of the pretest item selection methods, parameter 

estimation methods, the sample size of random calibration stage, and the calibration 

sample size of pretest item on the accuracy of the item parameter estimates and 

cumulative sample size were investigated in the online calibration scenario. The 

data (operational and pretest item parameters and examinees’ ability parameters) 

in this research have been generated and the online calibration process has been 

simulated with a computer program. As with any simulation study, this study was 

carried out under certain conditions that restrict the generalization of the results 

(Davey, Nering, & Thompson, 1997; Feinberg & Rubright, 2016). For all these 

reasons, it can be classified as a Monte Carlo simulation study. These types of 

studies are commonly used in psychometry and make it possible to evaluate and 

compare the performance of different methods (Rubinstein & Kroese, 2017). 

Simulation Study Design 

An online calibration procedure was carried out with the simulation study for 

the purpose of the study. The simulation study was conducted using ‘Rcpp’ package 

(Eddelbuettel et al., 2018) in R (R Core Team, 2017) with the computer program 

which is written by the researcher. The features and development of this program 

are detailed in the Online Calibration Computer Program section. The calibration 

process was carried out based on 1-PL and 2-PL IRT models, separately. Since the 

items are targeted or tailored for the examinees, there is not much guessing involved 

in a CAT administration (Glas, personal communication). Therefore, 3-PL IRT model 

was not considered in this study. 

In this study, an online calibration procedure was applied in two phases. In 

the first phase, pretest items were administered to an examinee at the end of the 

administration of operational items within his/her individual CAT-session. Following 

that, responses and ability estimates were recorded. At this phase, pretest items 

were administered randomly. This phase continues until the number of 

observations/examinees reach a certain number (defined as the sample size of the 
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random calibration stage). Due to the fact that enough observation was not obtained 

for pretest items within this phase and therefore parameter estimation was unstable, 

parameter estimation was not performed; hence this stage is also called the pre-

calibration phase. At the end of the first phase, pretest items have a minimum 

number of observations that allow their parameters to be estimated. In this way, the 

pre-calibration phase is completed and item parameters were estimated separately 

conditional on the examinees’ ability estimates and responses to operational and 

pretest items. Before the second phase, each pretest item has a temporary initial 

parameter value. In the second phase, given the item parameter estimates of the 

first phase, and the ability estimate at the end of the CAT, pretest items were chosen 

by using all available information on item parameters, ability parameters, and 

response pattern according to applied item selection method. During this process, 

the administration of pretest items to examinee continues and the pretest items’ 

parameters were updated periodically depending on the number of responses. In 

this process, once a pretest item reached the predetermined number of responses 

(defined as the calibration sample size of pretest item), the calibration process for 

that item ended and it was removed from the pretest item bank. The process 

continued until no pretest item remained in the pretest item bank (The number of 

examinees required for all process is also defined the cumulative sample size.) 

Throughout this online calibration process, the adaptive test was administered to 

examinees one after another.  The responses of examinees to the pretest items in 

two phases were not included in the scoring. 

In this study, IRT models (1-PL and 2-PL), pretest item selection methods 

(MFI, D-optimal value design, and Bayesian D-optimal design), parameter 

estimation methods (JML and OEM), the sample size of random calibration stage 

(250, 500, and 1000), and the total number of responses (250, 500, and, 1000) were 

the factors that were simulated across the conditions to examine the effects of these 

on the parameter estimation in accordance with the simulation design described 

above. For each condition examined in the study, the simulation was repeated 100 

times (i.e. rep = 100) to reduce random errors. Simulation conditions are 

summarized in Table 1. 
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Table 1 

Simulation Conditions 

Simulated Factors Methods Number of Conditions 

IRT model 
1-PL 

2 
2-PL 

Sample Size of Random 
Calibration Phase 

250 

3 500 

1000 

Pretest Item Selection 
Methods 

MFI 

3 D-optimal value design 

Bayesian-D optimality design 

Pretest Item Parameter 
Estimation Methods 

JML 
2 

OEM 

Calibration Sample Size of 
Pretest Item 

250 

3 500 

1000 

 

Generation of Item Parameters and Examinees  

For each replication, the operational item bank containing 250 items and the 

pretest bank containing 25 new items (i.e. m = 25) were randomly generated from 

the following the distribution. As in the simulation design of He et al. (2020), 

Kingsbury (2009), and Zheng (2014), different operational and pretest item banks 

were used for each replication in this study. The parameters a were drawn from log-

normal (0, 0.25) distribution and the parameters b were drawn from standard normal 

(0, 1) distribution. Similarly, these distributions were used in previous studies (Fink, 

Born, Spoden, & Frey, 2018; Natesan, Nandakumar, Minka, & Rubright, 2016). The 

reason for selecting these distributions is to resemble real situations for the items. 

The descriptive statistics of all items in the different operational and pretest item 

banks are presented in Table 2. As with the generation of the item parameters, the 

ability parameters for each test taker in each replication were randomly sampled 

from standard normal (0, 1) distribution.  
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Table 2 

Descriptive Statistics of Operational and Pretest Item Bank 

Statistics Operational Item Bank Pretest Item Bank 

1-PL 2-PL 1-PL 2-PL 

b a b b a b 

Mean -0.051 1.016 -0.051 -0.002 1.025 -0.002 
Std. Dev. 0.992 0.241 0.992 0.996 0.261 0.996 
Min -2.467 0.519 -2.467 -3.162 0.453 -3.162 
Max 3.100 1.980 3.100 3.108 2.256 3.108 

 

Adaptive Test and Online Calibration Procedure 

In this section, the details of the adaptive testing process and the online 

calibration procedure are explained, and then the item selection methods in the 

research are introduced. 

As mentioned in the simulation, firstly the operational items administrated to 

the examinees. The medium items with difficulty parameters ranging between -0.5 

and 0.5 were selected randomly as the initial operational item as proposed by 

Thompson and Weiss (2011). MFI criterion was applied for the selection of the 

following item. Both interim and final ability were estimated by using weighted 

maximum likelihood estimator (WLE; Warm, 1989). An examinee responds to 35 

operational items before reaching the pretest items. To put it another way, the fixed 

number of 35 items was used as the termination rule for the application part of the 

operational items in CAT session.  

After administration of operational items, pretest items were started to be 

seeded to the examinees. In this study, the seeding position was determined as the 

end of operational items. The motivation for this is that the final ability estimated at 

the end of the test include least measurement errors and greatest information (van 

der Linden & Ren, 2015), and as a consequence, the use of these abilities for item 

parameter estimation provides more accurate results. The number of pretest items 

applied to each examinee was determined as 5 or less (i.e. D ≤ 5). Towards the end 

of the online calibration process, fewer than 5 items are administered since there is 

not enough pretest items in the item bank whose calibration process is not finished. 



 

41 
 

The pre-calibration phase continued until the responses to the pretest items 

reached a certain number, in other words, the sample size of the random calibration 

stage. Due to the number of observations had an effect on the accuracy of 

parameter estimation (Chen and Wang, 2016), the three levels of the sample size 

were compared for random calibration stage: 250, 500, and 1000 (i.e. nr = 250, 500, 

1000). Because the pretest items are randomly assigned to the examinees in this 

phase, the number of responses that the average for each item has to calibrate is 

equal to the product of the sample size of random calibration stage and the number 

of pretest items applied to each examinee divided by the number of items in pretest 

item bank to be calibrated [i.e., (𝑛𝑟 ×  𝐷) /𝑚 ]. Given these sample size of random 

calibration, each item has an average of 50 [i.e., ((250 x 5)/25)], 100 [i.e., ((500 x 

5)/25)], and 200 [i.e., ((1000 x 5)/25)] responses, respectively. At the end of the first 

phase, the initial parameters of the pretest items were calculated using abilities and 

responses.  

In the second phase of the calibration procedure, when an examinee reaches 

the seeding position, the pretest item is selected according to the applied item 

selection method and administrated. In this study, the three pretest item selection 

methods were employed: Maximum Fisher Information method, and D-optimal value 

design, and Bayesian D-optimal design.  

During the second phase, the pretest items parameter was updated as each 

item reached each new sample. The parameter update sample size is set to 10 new 

responses which is one of the lowest numbers used in previous studies (He et al., 

2020; Zheng, 2014; Zheng & Chang, 2017). The same estimation technique was 

used in the computation of the initial, interim and final parameters of pretest item 

parameter. Depending on the simulation conditions, the performance of two pretest 

item parameter estimation method was examined; Joint Maximum Likelihood and 

One EM Cycle. 

For both JML and OEM, parameter estimation procedure is iterated until the 

absolute change in estimated values was less than the threshold value or reaches 

the maximum number of iterations. The convergent threshold and the maximum 

number of iterations were set 0.001 and 100, respectively. The online calibration 

procedure is terminated when each item reaches a specified fixed number of 

responses/examinees. The three-level calibration sample size of pretest item were 
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investigated; 250, 500, and 1000 (i.e. N = 250, 500, 1000). The reason for selecting 

these sample sizes is that 250 (He, 2015; He et al., 2017), 500 (He, 2015; He et al., 

2017; He et al., 2020; Kingsbury, 2009; Zheng, 2014; Zheng, 2016)   and 1000 (He, 

2015; van der Linden & Ren, 2015; Ren et al., 2019; Zheng, 2016) are widely 

preferred in the previous studies. 

Pretest item selection methods. In this part, Maximum Fisher Information 

method, and D-optimal value design, and Bayesian D-optimal design are 

introduced. 

Maximum Fisher Information. MFI method is a standard item selection 

method commonly used in CAT. This approach aims to select the operational item 

that maximizes Fisher information at interim theta based on the test items previously 

administrated in the exam (van der Linden & Pashley, 2000; Weiss, 1982). Although 

this method is intended to optimize the ability estimation, it can optimize the 

accuracy of parameter estimation, especially in the 1-PL model by matching b 

parameter to ability during the online calibration process (Zheng, 2014). In addition, 

it was used in different studies and it was found to be effective compared to other 

item selection methods in some conditions. For these reasons, this criterion is 

included in this study as a pretest item selection method (Kingsbury, 2009; Zheng, 

2014; Zheng & Chang, 2017).  

D-optimal value design. The D-optimal value design is mainly related to 

optimal design. The basic principle behind this design is to minimize the standard 

error of parameter estimation by maximizing the determinant of the Fisher 

information matrix (Anderson, 1984). This design was applied in some studies in the 

online calibration literature (Buyske, 1998; Chang & Lu, 2010; Jones & Jin, 1994; 

Zhu, 2006) to select the appropriate examinee from the examinee pool for the 

pretest item. As mentioned previously, it was thought that this would not be suitable 

because of the continuous nature of the CAT sessions. Therefore, as in Guo (2016), 

Zheng (2014), Zheng and Chang (2017) studies, the design is applied on the basis 

of the comparison of the pretest item’s expected total D-optimal value for the 

examinee in this study. Firstly, when an examinee reaches the seeding position, the 

D-optimal value for each item is calculated using the ability of the active and past 

examinee previously took the same pretest item, and then the item having the 

maximum D-optimal value is selected (Zheng, 2014).  
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Bayesian-D optimality design. The Bayesian-D optimality design is a 

restructured version of the D-optimal design. Similar to the method of comparing D-

value, the item having the largest Bayesian D-optimality value (as explained 

Equation 11 in the Model, Concept, and Notations section) is selected by comparing 

all the pretest items for the examinee. In this method, the item is chosen among the 

pretest items according to which item’s expected contribution will be maximum by 

the examinee (van der Linden, & Ren, 2015). 

Parameter estimation methods. In this part, Joint Maximum Likelihood and 

One EM Cycle are introduced. 

Joint Maximum Likelihood. JML is a technique that simultaneously 

estimates both ability and item parameters by maximizing likelihood function in IRT, 

commonly preferred especially in the early stages of IRT. It is almost never used in 

the online calibration literature except for one study (Verschoor et al., 2019) as a 

parameter estimation method. It was conducted in a different calibration design from 

this study. As previously described, JML is a two-stage iterative process. In the first 

stage, the item parameters are fixed and the ability is estimated, whereas in the 

second stage, the abilities calculated in the first stage are fixed and the item 

parameters are estimated (Hambleton, Swaminathan, and Rogers, 1991). As the 

final abilities of the examinees (estimated using operational items) are known in this 

study design, in other words these are fixed, the second stage of this method is 

employed for item parameter estimation. The disadvantages of JML method are 

stated in the literature; making biased estimations in some conditions (de Gruijter, 

1990; Drasgov, 1989; Holland, 1990) and failure to estimate parameters when all 

answers are true or false (Embretson & Reise, 2000). Although these shortcomings, 

it is included in this study because it is simple, easy to applicable and programmable, 

efficient to calculate (Embretson & Reise, 2000), and quite fast compared to MML 

based methods (Verschoor et al., 2019).  

One EM Cycle. OEM is a parameter estimator commonly used in online 

calibration studies includes one EM cycle. In E step, this approach calculates the 

expected posterior distribution of abilities from administered operational items. In 

the next step M, it estimates the test item parameter using this posterior distribution 

obtained in step E to maximize the Marginal Maximum Likelihood function (Wainer 
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& Mislevy, 1990). It is also a more suitable option instead of MEM which contains 

statistically intensive process when the parameter update sample is small. 

Online Calibration Computer Program 

This computer program can simulate all online calibration procedure as 

explained in the Simulation Study Design section. It allows the control of IRT models 

(1-PL and 2-PL), CAT elements (first and next item selection, ability estimation, and 

termination rule), the fundamental (pretest item selection and pretest item parameter 

estimation) and administration (seeding location, termination rule, and sample size) 

elements of online calibration and extra features related to the process (i.e., the 

number of items to be administrated to each examinee and the number of the update 

sample). As mentioned above, it was developed using the ‘Rcpp’ package in the R 

program. The reason why this program was written by the researcher is the absence 

of commercial or free software to simulate the online calibration process. The 

development stages of the program are detailed below. 

Firstly, a literature review on online calibration was carried out to determine 

which software (and programming language) simulate the process. There are 

various commercial and free software and R packages to run CAT simulations; 

Software: FireStar (Choi, 2009), CATsim (Weiss & Guyer, 2012), and SimulCAT 

(Han, 2012) and R Packages: catIRT (Nydick, 20014) and catR (Magis, Raiche ve 

Barrada, 2018). However, none of them allow the simulation of online calibration. 

Only SimulCAT allows random administration of the pretest items during the 

operational CAT test, but it does not estimate any pretest parameter. It is seen that 

all simulation studies are carried out with the computer programs written by the 

researchers. They have simulated their studies with Fortran, C and C++ program 

languages and Matlab and R programs. Since the online calibration process has 

computationally intensive procedures, the author of this study has written his 

computer program using the “Rcpp” package, which provides the integration of the 

open-source and free R program and the C++ programming language and enables 

the easy and fast implementation of high-performance computation (Eddelbuettel, 

2013). The program has been developed to consist of a 3-tier theoretical structure 

and technical functions that support this structure. The development scheme of the 

online calibration program is presented in Figure 1. 
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Figure 1. The development scheme of online calibration program 

 

As can be seen in Figure 1, IRT, CAT, and online calibration functions 

constitute the structure from the lowest level to the highest level, respectively. The 

example codes of the program for each level are presented in Appendix A. IRT 

functions are basic and perform the following operations based on theory; 

• Calculating the probability of responding to an item, 

• Calculating item information (Fisher Information),  

• Computing Likelihood function, 

• Calculating the ability of examinee and its standard error, 

• Generating item response. 

CAT functions cover the entire operational test process, from the 

administration of the first item/s to the termination of the test. These functions 

perform the following operations. 

• Selecting the first and following item/s, 

• Stopping the test, 

• Simulating the operational Cat test based on the above functions for an 

examinee. 
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Online calibration functions simulate the entire calibration process as 

mentioned in the Literature Review section including operational CAT test and 

perform the following operations; 

• Computing D-optimal Value, 

• Selecting the pretest items (random, MFI, D-optimal value design, and 

Bayesian-D optimality design), 

• Estimating the parameter of the pretest items (JML and OEM), 

• Simulate the online calibration process based on the above functions for a 

pretest item bank. 

Technical functions are the infrastructure of other functions in the program, 

such as integrating, adding and transforming the data types used in the “Rcpp” 

package and performing some calculations (i.e., calculating the integral). The 

‘RcppArmadillo’ package (Eddelbuettel, François, Bates, & Ni, 2019), which links 

the ‘Rcpp’ package with a linear algebra library (Armadillo) in C++, has also been 

used in the functions (i.e., computing D-optimal value) in which matrix operations 

are performed. Numerical methods were used in the functions of estimating the 

ability and pretest item parameters. The Newton-Raphson method and Brent's 

algorithm (Brent, 1973) were used to determine the maximum likelihood function in 

the ability estimation functions. The multiple Newton-Raphson method was applied 

to estimating the pretest item parameters. As aforementioned, the values of the 

converge threshold and the number of iteration and are determined as 0.001 and 

100, respectively for multiple Newton-Raphson iterations.  

All simulations were carried out separately on 2 laptops and 6 virtual 

machines with different features to save time. The laptops have an Intel® Core™ i7 

CPU, 2.80GHz, and 16GB of RAM, and Intel® Core™ i5 CPU, 1.70GHz, and 6GB 

of RAM, respectively. The virtual machines are equipped the same features as 

threes: Intel Xeon® Platinum 8175 processors (4 virtual cores), up to 3.1GHz, and 

16GB of RAM in Amazon Elastic Compute Cloud (EC2; Amazon Web Services, 

2019) and Intel® Xeon® E5-2673 processors (2 virtual cores), 2.3GHz, and 8GB of 

RAM in Azure Virtual Machines (Microsoft Azure, 2019). The R program was run on 

using Rstudio Desktop and RStudio Server for the laptops and the virtual machines, 

respectively. 
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Evaluation Criteria 

For each simulation condition, the performance of the tested factors on the 

accuracy of parameter estimation was evaluated by calculating bias and root mean 

squared error (RMSE). Bias and RMSE is calculated using the following formulas; 

𝐵𝑖𝑎𝑠𝜂 =
1

𝑟𝑒𝑝

1
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) are the estimated and true parameters 

of i th item in the r th replication. The bias values closer to 0 and the smaller RMSE 

values indicate higher precision on parameter estimation. 

 Besides, the cumulative sample size of each pretest item (i.e. Nc) in the online 

calibration process was recorded and presented in tables and graphs to compare 

the effectiveness of each item selection method. For this, when the pretest item 

reached the calibration sample size, the total sample size including examinees from 

the beginning to the current of the calibration process was recorded for each 

replication. These sample sizes are sorted from small to large. The mean value of 

the smallest samples is calculated by dividing the number of replications, then this 

process is continued until the average of the largest sample number is calculated. 

If the mean value is decimal, it is rounded to an integer. This data is summarized 

using graphical representation for each condition.  
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Chapter 4 

Findings and Discussion 

The results are presented in the order following the research questions of the 

study; Comparison of Pretest Item Selection Methods, Parameter Estimation 

Methods, Sample Size of The Random Calibration Stage, and Calibration Sample 

Size of Per Pretest Item. Since the simulations process was carried out separately 

according to 1-PL, and 2-PL model, the results are provided separately for each 

model under each title. 

Comparison Pretest Item selection methods  

To compare the effect of pretest item selection methods on parameter 

precision, bias and RMSE values were calculated for each condition and each 

parameter.  These statistics of each parameter are presented in Table 3 and Table 

4 for 1-PL and 2-PL model, respectively. RMSE values of item selection methods 

grouped according to parameter estimation methods (JML and OEM) for other 

conditions crossed by the sample size of random calibration phase (nr = 250, 500, 

and 1000) and calibration sample size of per pretest item (N = 250, 500, and 1000) 

in Tables 3 and 4 are graphed in Figure 2 for 1-PL model and b parameter, Figure 

3 for 2-PL model and a parameter, and Figure 4 for 2-PL model and b parameter. 
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Table 3 

Bias and RMSE of b parameter for Different Item Selection Methods Under 1-PL 

Model and Different Conditions 

nr N 
Item Selection 
Method 

JML OEM 

Bias RMSE Bias RMSE 

b b b b 

250 250 MFI -0.0050 0.1710 -0.0049 0.1442 
DOVD 0.0015 0.1640 -0.0007 0.1537 
BDOD -0.0001 0.1725 -0.0010 0.1424 

500 MFI -0.0035 0.1372 -0.0016 0.1033 
DOVD 0.0009 0.1124 0.0006 0.1066 
BDOD 0.0040 0.1346 -0.0029 0.1026 

1000 MFI -0.0004 0.1160 0.0013 0.0772 
DOVD -0.0005 0.0806 0.0015 0.0761 
BDOD -0.0002 0.1174 0.0009 0.0785 

500 250 MFI 0.0010 0.1623 0.0006 0.1390 
DOVD 0.0009 0.1570 0.0015 0.1507 
BDOD 0.0007 0.1661 0.0042 0.1399 

500 MFI -0.0005 0.1353 -0.0027 0.1009 
DOVD 0.0005 0.1120 -0.0011 0.1070 
BDOD 0.0011 0.1349 0.0031 0.1023 

1000 MFI 0.0029 0.1142 -0.0002 0.0763 
DOVD -0.0012 0.0796 0.0028 0.0777 
BDOD 0.0007 0.1167 0.0026 0.0774 

1000 250 MFI 0.0057 0.1599 -0.0036 0.1548 
DOVD 0.0047 0.1647 0.0071 0.1562 
BDOD -0.0066 0.1584 0.0065 0.1540 

500 MFI 0.0047 0.1267 -0.0019 0.1063 
DOVD 0.0017 0.1108 0.0063 0.1112 
BDOD 0.0003 0.1249 0.0048 0.1046 

1000 MFI 0.0040 0.1115 -0.0023 0.0761 
DOVD 0.0029 0.0773 0.0040 0.0777 
BDOD 0.0002 0.1118 0.0032 0.0766 

Note. The best values of three item selection method are printed in boldface. 
RMSE= Root Mean Squared Error. MFI=Maximum Fisher Information,  
DOVD= D-optimal Value Design, BDOD= Bayesian-D optimality design 
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Figure 2. RMSE of b parameter for different item selection methods under 1-PL 

model and different conditions 
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As can be seen from Table 3, the bias of b parameter for MFI, DOVD, and 

BDOD ranged from -0.0050 to 0.0057, from -0.0012 to 0.0071, and from -0.0066 to 

0.0065, respectively. Table 3 and Figure 2 shows that DVOD had the best 

performance in terms of RMSE under all conditions except one condition (nr = 1000 

and N = 250) for JML. MFI and BDOD performed poorly in most conditions, whereas 

for OEM, MFI, and BDOD worked better than DVOD under most conditions. What 

is interesting about the result is in Table 3 that MFI and BDOD produced very close 

values almost all conditions especially for OEM. When OEM is used as the 

parameter estimation method, the performance of all three item selection methods 

improved and approached each other as the calibration sample sizes increased. 

Accordingly, Figure 1 clearly shows that the results of all item selection methods are 

very similar under all three nr conditions when the calibration sample size of per 

pretest item is large (i.e. N = 1000) for OEM. With the increase in sample size for 

JML, a similar trend was observed in terms of performances as in OEM, but the 

difference across different item selection methods remains.  
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Table 4 

Bias and RMSE of b parameter for Different Item Selection Methods Under 2-PL Model and Different Conditions 

nr N 
Item Selection 
Method 

JML OEM 

Bias RMSE Bias RMSE 

a b a b a b a b 

250 250 MFI -0.0553 0.0104 0.2074 0.2825 -0.1027 -0.0023 0.2043 0.2531 
DOVD -0.0731 -0.0096 0.2091 0.3344 -0.0934 -0.0114 0.2182 0.3009 
BDOD -0.0817 -0.0055 0.2088 0.3119 -0.0885 -0.0020 0.2075 0.2898 

500 MFI -0.0697 0.0022 0.1617 0.1922 -0.1197 0.0014 0.1815 0.1904 
DOVD -0.0765 -0.0021 0.1694 0.2481 -0.1017 0.0000 0.1682 0.2409 
BDOD -0.0786 0.0059 0.1733 0.2413 -0.0922 0.0012 0.1628 0.2104 

1000 MFI -0.0797 0.0049 0.1396 0.1616 -0.1293 -0.0007 0.1695 0.1469 
DOVD -0.0852 0.0014 0.1533 0.2112 -0.0989 0.0026 0.1393 0.1752 
BDOD -0.0852 0.0030 0.1392 0.1970 -0.0979 0.0044 0.1394 0.1756 

500 250 MFI -0.0611 0.0012 0.2121 0.3165 -0.0990 0.0045 0.2059 0.2645 
DOVD -0.0742 -0.0158 0.2243 0.3517 -0.0892 -0.0015 0.2110 0.3016 
BDOD -0.0714 0.0024 0.2095 0.3167 -0.0876 -0.0040 0.2091 0.3030 

500 MFI -0.0723 -0.0054 0.1706 0.2282 -0.1193 0.0030 0.1881 0.2115 
DOVD -0.0762 -0.0017 0.1785 0.2538 -0.0974 -0.0033 0.1696 0.2248 
BDOD -0.0814 0.0010 0.1631 0.2272 -0.0944 0.0065 0.1682 0.2169 

1000 MFI -0.0767 -0.0010 0.1370 0.1561 -0.1366 -0.0035 0.1782 0.1561 
DOVD -0.0827 -0.0045 0.1516 0.2068 -0.0990 -0.0005 0.1421 0.1728 
BDOD -0.0807 -0.0024 0.1461 0.1926 -0.0965 0.0017 0.1376 0.1621 

1000 250 MFI -0.0689 -0.0026 0.2062 0.3304 -0.0891 0.0025 0.2016 0.2893 
DOVD -0.0747 0.0038 0.2112 0.3481 -0.0897 -0.0030 0.2108 0.2879 
BDOD -0.0736 -0.0089 0.2085 0.3283 -0.0930 -0.0040 0.2105 0.2956 

500 MFI -0.0710 -0.0056 0.1701 0.2247 -0.1092 -0.0001 0.1777 0.1867 
DOVD -0.0804 -0.0025 0.1691 0.2631 -0.0944 0.0041 0.1642 0.2131 
BDOD -0.0813 0.0000 0.1693 0.2650 -0.0982 -0.0036 0.1636 0.2133 

1000 MFI -0.0794 -0.0031 0.1471 0.1800 -0.1360 0.0016 0.1760 0.1433 
DOVD -0.0805 -0.0050 0.1389 0.2035 -0.0990 -0.0017 0.1417 0.1812 
BDOD -0.0831 0.0008 0.1446 0.2125 -0.0958 -0.0022 0.1382 0.1722 

Note. The best values of three item selection method are printed in boldface. RMSE= Root Mean Squared Error. MFI=Maximum Fisher Information,  
DOVD= D-optimal Value Design, BDOD= Bayesian-D optimality design 
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Figure 3. RMSE of a parameter for different item selection methods under 2-PL 

model and different conditions 
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From Table 4, the bias of a parameter for MFI, DOVD, and BDOD ranged 

from -0.1366 to -0.0553, from -0.1017 to -0.0731, and from -0.0982 to -0.0714, 

respectively. In terms of the accuracy of a parameter, the performance of the item 

selection methods is comparable according to other conditions. There are no 

outstanding methods for JML in terms of the lowest RMSE value under the nine 

conditions. Performance ranking of the methods for JML is MFI (4 out of 9), BDOD 

(3 out of 9) and DOVD (2 out of 9). However, since DVOD has the highest RMSE 

values, it is less efficient than other methods. The performance of BDOD is 

remarkable when OEM was used as the parameter estimation method and 

especially N = 500. Looking at Figure 3 for the OEM, it is apparent that DVOD 

consistently worked worse than the others when calibration sample size of per 

pretest item is small level (i.e. N = 250), and MFI obviously performance poorly when 

it is medium level (i.e. N = 500), and especially large level (i.e. N = 1000). The 

increase in the sample size of the random calibration phase did not cause a clear 

pattern in the performance of the methods. On the other hand, the methods had 

lower RMSE values with the increase of calibration sample size of per pretest item, 

so their performance improved.  
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Figure 4. RMSE of b parameter for different item selection methods under 2-PL 

model and different conditions 
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By browsing Table 4, the bias of b parameter for MFI, DOVD, and BDOD 

ranged from -0.0056 to 0.0104, from -0.0158 to 0.0041, and from -0.0089 to 0.0065, 

respectively. In terms of RMSE, a point worth noting is that MFI consistently resulted 

in the best item selection method for both parameter estimation methods as can be 

seen Figure 4. Besides, DOVD is the least effective method - especially small 

random calibration sample size (nr = 250) - since it has the largest RMSE value for 

both parameter methods. For the increase in both sample size of random calibration 

phase and calibration sample size of per pretest item, similar results were obtained 

as the result of a parameter. 

In summary, it can be said that DVOD is the best pretest item selection 

method for JML, whereas MFI (as expected) and BDOD are better and preferable 

for OEM in the 1-PL model. These finding for OEM and the 1-PL model is consistent 

with Zheng (2014)'s finding that MFI outperforms DVOD for b parameter. The reason 

why MFI and BDOD are close to each other for 1-PL can be explained as the 

convergence of results due to the use of both information functions and the fact that 

the ability was estimated only based on b parameter. For the 2-PL model, DVOD is 

the worst in terms of the accuracy of the discrimination parameter. The results of 

this study do not match the findings of Zheng (2014) that MFI (the examinee-

centered method) is the worst outcome among the five item selection methods and 

Zheng and Chang (2017). Finally, as expected and the 1-PL model, MFI is the best 

choice among other pretest item selection designs. This can be explained by the 

fact that MFI has a greater value when the difficulty of the selected item approaches 

the ability level, as Zheng (2014) states. BDOD performed close to the best 

performing methods in both 1-PL and 2-PL models. While this method performed 

better in extreme difficulty parameter than the other methods (MFI, DVOD, and 

OIRPI) in Zheng and Chang (2017) study and head-to-head with the random method 

in Chen (2017) study, it lagged behind the Excellence Degree (ED) criterion in He 

et al. (2020) study and also showed poor performance for the lower discrimination 

parameters in Zheng and Chang (2017) study. 

In this study, the cumulative sample size of pretest items was used as a 

measure of comparison of the effectiveness of item selection methods. For this 

purpose, the average of simulated examinees required from the first item (starting 

to retirement of pretest items) to the last item (in other words, for all items or 



 

57 
 

retirement of all pretest items) whose calibration was completed, in other word which 

exported from pretest item bank, was put on record for each condition. These values 

for the first and last items in the 1-PL model and 2-PL model are shown in Tables 5 

and 6, respectively. In addition, the cumulative sample size for all items is plotted in 

Figures 5 and 6 for OEM in the 1-PL and the 2-PL model, respectively. Since the 

results of the pretest item selection methods are very close and showed similar for 

JML and OEM, the plots of the cumulative sample size for JML is presented in 

Appendix B and Appendix C for 1-PL and the 2-PL model, respectively. 

 

Table 5 

The Cumulative Sample Size of First and Last Item for Different Item Selection 

Methods Under 1-PL Model and Different Conditions 

nr N 
Item Selection 
Method 

JML OEM 

First Item Last Item First Item Last Item 

250 250 MFI 856 1313 857 1313 
DOVD 439 1265 438 1264 
BDOD 854 1314 855 1311 

500 MFI 1625 2644 1628 2643 
DOVD 689 2513 688 2514 
BDOD 1630 2645 1618 2638 

1000 MFI 3158 5296 3160 5286 
DOVD 1189 5013 1188 5014 
BDOD 3166 5297 3086 5283 

500 250 MFI 942 1297 938 1298 
DOVD 634 1270 634 1270 
BDOD 942 1299 937 1297 

500 MFI 1717 2622 1703 2627 
DOVD 884 2520 884 2520 
BDOD 1700 2624 1702 2621 

1000 MFI 3257 5281 3192 5264 
DOVD 1384 5019 1384 5020 
BDOD 3251 5284 3213 5266 

1000 250 MFI 1083 1267 1099 1268 
DOVD 1027 1274 1017 1274 
BDOD 1097 1269 1083 1267 

500 MFI 1891 2593 1885 2591 
DOVD 1278 2529 1277 2530 
BDOD 1891 2596 1887 2591 

1000 MFI 3434 5249 3407 5240 
DOVD 1778 5029 1777 5030 
BDOD 3409 5255 3396 5240 

MFI=Maximum Fisher Information, DOVD= D-optimal Value Design,  
BDOD= Bayesian-D optimality design 
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Note. The lines of MFI and BDOD overlap. 

Figure 5. The cumulative sample size of pretest items for OEM methods under 1-

PL model and different conditions 
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Table 5 and Figure 5 indicate that DVOD is obviously the first method to 

initiate the retirement of pretest items with a minimum number of simulated 

examinees for all pretest estimation methods, the sample size of the random 

calibration phase and calibration sample size of per pretest item. Moreover, it 

completed the calibration process/retirement of all items in the pretest item bank at 

the earliest. On the other hand, MFI and BDOD require more simulated examinees 

on average in terms of both starting the retirement and completion of the calibration 

process. In addition to that, their results are very close to each other in terms of 

cumulative sample size as well as RMSE under all conditions. Even, they have the 

same average values in some conditions, for example, when nr = 1000 and N = 500 

and 1000 for OEM.  

 

Table 6 

The Cumulative Sample Size of First and Last Item for Different Item Selection 

Methods Under 2-PL Model and Different Conditions 

nr N 
Item Selection 
Method 

JML OEM 

First Item Last Item First Item Last Item 

250 250 MFI 501 1328 507 1327 
DOVD 440 1271 439 1276 
BDOD 446 1310 446 1313 

500 MFI 813 2678 820 2675 
DOVD 690 2521 690 2540 
BDOD 696 2596 696 2593 

1000 MFI 1423 5381 1426 5353 
DOVD 1190 5022 1189 5030 
BDOD 1196 5109 1196 5118 

500 250 MFI 687 1309 689 1309 
DOVD 635 1278 637 1277 
BDOD 646 1305 643 1307 

500 MFI 1004 2650 1010 2666 
DOVD 886 2531 886 2532 
BDOD 896 2599 895 2613 

1000 MFI 1630 5353 1627 5366 
DOVD 1386 5029 1386 5040 
BDOD 1397 5151 1396 5156 

1000 250 MFI 1050 1275 1050 1276 
DOVD 1030 1274 1031 1275 
BDOD 1039 1274 1038 1277 

500 MFI 1368 2615 1374 2625 
DOVD 1281 2537 1281 2536 
BDOD 1297 2593 1298 2604 

1000 MFI 1992 5306 2005 5330 
DOVD 1781 5040 1781 5040 
BDOD 1798 5172 1798 5188 

MFI=Maximum Fisher Information, DOVD= D-optimal Value Design,  
BDOD= Bayesian-D optimality design 
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Figure 6. The cumulative sample size of pretest items for OEM methods under 2-

PL model and different conditions 

 

As can be seen from the average simulated examinees for the first items in 

Table 6, DVOD is the first method to retire the items under all conditions at the 

earliest, as in 1-PL. In terms of this criterion, it can appear from Figure 6 that the 
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results of BDOD are close to the DVOD. MFI is worst because it needs more 

simulated examinees. In terms of the termination of all pretest items retirement, the 

three methods can be rank ordered as (from the earliest to the latest): DVOD, 

BDOD, and MFI. When nr = 1000 and N = 250, all three pretest item selection 

methods behaved similarly for both pretest estimation methods.  

When comparing pretest item selection methods for the 1-PL and 2-PL 

model, an interesting finding is that MFI and BDOD methods in the 1-PL model 

require more simulated examinees than 2-PL model to complete the calibration of 

the first pretest item. For DVOD, the average number is quite close in both models. 

To complete the calibration process, all three methods require fewer examinees for 

1-PL model than 2-PL model. Another interesting result is that MFI and BDOD need 

less average simulated examinees with the increasing of random stage sample size 

and vice versa for DVOD in the conditions when the calibration sample size is the 

same for 1-PL model. Moreover, MFI showed the same tendency for the 2-PL 

model. Apart from all these, by comparing the cumulative sample size of the 

parameter estimation methods with Tables 5 and 6 for the 1-PL model and 2-PL 

model, it can easily notice that these numbers are close to each other or even the 

same for JML and OEM.  

Summarizing the results in terms of cumulative sample size, DVOD tends to 

retire early for both the 1-PL model and the 2-PL model. DVOD followed a 

characteristic curve similar to the progressive stairs that retired five items with the 

highest D-optimal value each time and then moved on to the next five items. The 

disadvantage of this is that the pretest items with the highest D-optimal value tend 

to be selected continuously, regardless of the ability of the next examinee, and other 

pretest items cannot be selected (Zheng, 2014). As a result, however, other pretest 

items are administrated after the favourite one’s retirement. For the 2-PL model, 

BDOD followed the similar characteristic curve as in the study of van der Linden and 

Ren (2015). Accordingly, it has been observed by Chen (2017) that some pretest 

items tend to be preferred and selected more than others by BDOD similar to DVOD. 

MFI is the worst method for this criterion because it is designed as an examinee-

centered method rather than an item- centered method that optimizes the calibration 

of the pretest items. Apart from these, the reason why there is no difference between 
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parameter estimation methods in terms of the cumulative sample size is that this 

variable is directly related to the item selection method. 

Comparison Parameter Estimation Methods 

To compare the effect of different parameter estimation (JML and OEM) 

methods on precision in parameter estimation, average bias and RMSE values were 

used. In the item selection method comparison section, since bias and RMSE values 

for both 1-PL (difficulty parameter) and 2-PL model (discrimination and difficulty 

parameter) are presented in Tables 3 and 4 which include parameter estimation 

results, no tables are included in this section. Figures 7 through 9 portrays the 

comparison of parameter estimation methods grouped according to item selection 

methods (MFI, DVOD, and BDOD) for other conditions crossed by the sample size 

of random calibration phase (nr = 250, 500, and 1000) and calibration sample size 

of per pretest item (N = 250, 500, and 1000) in Tables 3 and 4 for b parameter in 1-

PL model, a parameter in 2-PL model, and b parameter in 2-PL model. 
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Figure 7. RMSE of b parameter for different parameter estimation methods under 

1-PL model and different conditions 
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According to Table 3, the bias of b parameter for JML and OEM ranged from 

-0.0066 to 0,0057 and from -0.0049 to 0.0071, respectively. These two calibration 

methods tended to overestimate difficulty parameters, as stated by the positive 

biases in Table 3. When the RMSE values as a measure of parameter accuracy are 

compared, it is seen from Table 3 and Figure 7 that the OEM method is a clear best 

method for b parameter. The differences of JML and OEM are more obvious in the 

conditions of MFI and BDOD for medium (N = 500) and large (N = 1000) calibration 

sample size. When DVOD used as the item selection method, although the 

difference between JML and OEM is small, JML performance is generally behind 

the OEM. Only under two conditions (when nr = 1000 and N = 500 and 1000 for 

DVOD), JML produced slightly lower RMSE values than OEM but the difference is 

very small. 
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Figure 8. RMSE of a parameter for different parameter estimation methods under 

2-PL model and different conditions 
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In Table 4, the bias of a parameter for JML and OEM ranged from -0.0852 to 

-0,0553 and from -0.1366 to -0.0876, respectively. Between these two methods, 

JML yields smaller bias than OEM. Besides, as can be seen from the negative 

biases in Table 4, these methods underestimated the discrimination parameter 

under all simulated conditions. In terms of RMSE, these two methods provided 

comparable results according to pretest item selection methods. For MFI, OEM was 

found slightly more efficient than JML, when the calibration sample was small (N = 

250). In contrast, JML is more sensitive than OEM as indicated by lower RMSE 

values when the calibration sample was medium (N = 500) and large (N = 1000). 

For DVOD, JML generated less RMSE only two conditions - when both random 

phase and calibration sample size is small (nr = 250 and N = 250) and large (nr = 

1000 and N = 1000). In other conditions, OEM performed better than JML. Lastly, 

for BDOD, OEM shows better performance than JML. Besides, JML performed 

better in a very interesting pattern. If one looks at Figure 8 diagonally from top right 

to bottom left, it can be seen that JML behaved better than OEM. Summarized in 

terms of recovering discrimination parameter, when MFI is set aside, it can be seen 

that the two parameter estimation methods generally produce close values 

regardless of whether they perform better or worse. 
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Figure 9. RMSE of b parameter for different parameter estimation methods under 

2-PL model and different conditions 
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From Table 4, the bias of b parameter for JML and OEM ranged from -0.0158 

to 0,0104 and from -0.0114 to 0.0065, respectively. Accordingly, the bias results of 

the OEM are closer to 0. Even, the bias value is 0 when nr = 500 and N = 500. Both 

JML and OEM tended to underestimate difficulty parameters, as stated by the 

negative biases in Table 4. Compared to the performance of parameter estimation 

methods in terms of RMSE with Table 4 and Figure 9, OEM produced smaller values 

in almost all conditions and the differences between the methods is more obvious.  

In other words, JML consistently showed worse performance than OEM. When nr = 

500 and N = 1000, two parameter estimation methods exhibited the same 

performance.  

To summarize the results in terms of parameter estimation methods, OEM is 

yielded better difficulty parameter recovery for both the 1-PL model and the 2-PL 

model. For the recovering of the discrimination parameter, OEM performed slightly 

better than JML. OEM is based on MMLE and has been used in studies in the online 

calibration literature (Ban et al., 2001; He et al., 2017; He et al., 2020; Zheng, 2014; 

Zheng & Chang, 2017). These studies have also demonstrated the effectiveness of 

the pretest calibration method in terms of parameter accuracy and speed. Zheng 

and Chang (2017) proposed OEM for the 1-PL model because it has similar 

parameter recovery performance as MEM (which is the best method) with shorter 

processing time. They also proposed the use of the OEM method when the pretest 

item selection method is not examinee-centered and pretest items with larger 

discrimination parameters if the processing time is important. Likewise, Zheng 

(2014) stated that it is worse when MFI is the pretest item selection method for the 

precision of the discrimination parameter. However, in this study, OEM performed 

well in examinee-centered methods (MFI). He et al., (2017) explained that the 

reason why the OEM method works well is that it is not affected by the measurement 

errors within theta estimates by integrating the latent abilities out in the M step.  

Verschoor et al. (2019) used JML as a parameter estimation method in online 

calibration (they called On-the-Fly Calibration). However, it was used to calibrate 

the item pool instead of the individual estimation of each item parameter. With this 

aspect, JML was used for the first time as a parameter estimation method in online 

calibration. It is known that JML has some disadvantages when used as parameter 

estimation method in fixed length tests; biased parameter estimation, have 
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questionable standard errors, and do not improve the accuracy of calibration while 

increasing the number of test takers is expected to increase (Embretson & Reise, 

2000; Holland, 1990). However, in this study, instead of two stages of JML, a single 

stage was employed and, in this stage, the ability parameters obtained at the end 

of the CAT test were fixed. As a result, the biases that may arise from ability 

estimation have been slightly reduced. Although it maintains its genetic 

disadvantages, it performed a bit better or closer to OEM in the estimation of the 

difficulty parameter for the 1-PL model (when the pretest item selection method is 

DVOD) and the discrimination parameter for the 2-PL model (when the pretest item 

selection method is BDOD).  

When the same conditions are compared in Table 4, the values of a 

parameter are greater than the values of b parameter in terms of bias. Conversely, 

for RMSE, the values of b parameter are greater than the values of a parameter. 

This similar results in terms of RMSE have been seen in the studies of Ban et al. 

(2001), He et al. (2017), and Wang and Xu (2015). He et al. (2017) explained the 

reason for this by the fact that the discrimination parameter distributed a narrower 

range (from 0.45 to 2.26) while the difficulty parameter distributed a wider range 

(from -3.17 to 3.11). Besides, biases of b parameters under all conditions are very 

close to 0. Regardless of the 2-PL model, this finding is consistent with the results 

of the 1-PL model. It can be also seen from the data about RMSE of b parameters 

in Table 3 and Table 4 that the values are lower in the 1-PL model than the 2-PL 

model under the same conditions. The possible reason for this is that both the a and 

the b parameters need to be calibrated for the 2-PL model, while only the b 

parameter is calibrated for the 1-PL model. Similarly, the difference between JML 

and OEM was found clearer in the 2-PL model than the 1-PL model. 

To compare the effect of different parameter estimation (JML and OEM) 

methods on precision in parameter estimation at the parameter level, the average 

biases of the parameters were calculated for each condition and each parameter 

level. For this purpose, the parameters of all calibrated 2500 pretest items (25 

pretest items were calibrated in each replication; m x rep = 25 x 100 = 2500) are 

used. The bias values against the parameter levels were illustrated in Figure 10 for 

the 1-PL model and b parameter, Figure 11 for the 2-PL model and a parameter, 

and Figure 12 for the 2-PL model and b parameter. 
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Figure 10. Bias of b parameter at each difficulty level for different parameter estimation methods under 1-PL model and different 

conditions
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The effect of the parameter estimation methods on parameter accuracy at 

each difficulty level in terms of bias for the 1-PL model and b parameter is 

comparable for the pretest item selection methods. According to Figure 10, for MFI 

and BDOD, JML and OEM performed opposite fluctuation to each other at different 

difficulty levels except in one condition (nr = 1000 and N = 250, see the left-bottom 

in Figure 11). In general, JML underestimates easy items while overestimates hard 

items. The biases reached a negative and positive peak at around b=-2 and around 

b=+2, respectively. Contrary to expectations, JML outperformed at negative outliers. 

However, it performed irregularly in positive outliers. OEM tended to underestimate 

both very easy and hard pretest items and overestimate both easy and very hard 

pretest items. For DVOD, JML and OEM performed similar almost all conditions; 

underestimate for easy pretest items and vice versa for difficult pretest items. They 

outperformed as indicated by biases close to 0.  
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Figure 11. Bias of a parameter at each discrimination level for different parameter estimation methods under 2-PL model and 

different conditions
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From Figure 11, the performance of the parameter estimation methods for 

the 2-PL model and a parameter are very similar in almost all conditions. As 

aforementioned and seen in Table 4, the discrimination parameters are 

underestimated by these methods. When the discrimination level increased from 

low to high, (negative) bias values produced by both parameter calibration methods 

increase moderately. This means that they are less sensitive for pretest items with 

higher discrimination value. Moreover, JML deviated more than OEM for high 

discriminating items. However, for larger a parameter values, RMSE value produced 

by OEM increased with an increasing sample size when MFI is used as the pretest 

item selection method. Zheng and Chang (2017) also reported similar behaviour in 

their study. Apart from that, when the MFI is used as the pretest item selection 

method, it is seen again that JML provides more accurate parameter estimation than 

OEM.  
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Figure 12. Bias of b parameter at each difficulty level for different parameter estimation methods under 2-PL model and different 

conditions
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Figure 12 indicates that the results of the parameter estimation methods on 

the accuracy of b parameter for the 2-PL model are consistently similar under all 

simulated conditions. When very easy and very difficult items (from at b =-3.0 to at 

b = -2.5 and from at b = 2 to at b = 3) put aside, both calibration methods 

underestimate easy items while they overestimate hard items, such as JML's 

performance in the 1-PL model. Medium difficulty items (at around b=0) yielded 

better parameter accuracy as in the 1-PL model. For very easy and very hard pretest 

items, JML and OEM could not maintain their characteristic trend, but JML's 

performance was more deviated.  

Comparison Sample Size of The Random Calibration Stage 

To compare the effect of the sample size of the random calibration stage 

(250, 500, 1000) on precision in parameter estimation, average RMSE values were 

used. This effect was investigated separately for item selection methods and 

parameter estimation methods, respectively. As explained above, no tables are 

included in this section. RMSE values of pretest item selection methods at these 

sample size for other conditions crossed by the parameter estimation methods and 

calibration sample size of per pretest item (N = 250, 500, and 1000) in Tables 3 and 

4 are plotted in Figure 13 for the 1-PL model and b parameter, Figure 14 for the 2-

PL model and a parameter, and Figure 15 for the 2-PL model and b parameter. 
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Figure 13. RMSE (b parameter) of the item selection method for sample size of the 

random calibration stage under 1-PL model and different conditions 
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The effect of the random phase sample size via the pretest item selection 

methods on parameter accuracy for the 1-PL model and b parameter differs 

according to other simulated conditions, as can be seen from Table 3 and Figure 

13. However, their performance is very close to each other for different sample sizes 

of the random stage under most conditions. Only, the change between sample sizes 

of the random stage more noticeable when the calibration sample is small (N = 250). 

MFI showed a characteristic pattern when the parameter estimation method is JML. 

For these conditions, RMSE value decreased slightly as the sample size of the 

random phase increased from 250 to 1000. Similar trends are seen for DVOD and 

BDOD when N = 1000 and for DVOD when the parameter estimation method is 

OEM and N = 1000. Apart from these conditions, irregular trends are seen when the 

random phase sample size increases. For example, it is shown a decrease from 250 

to 500, followed by an increase from 500 to 1000 for some conditions (for DVOD 

when JML used as calibration method and N = 250 and 500, for BDOD when JML 

and OEM used as calibration method and N = 250). Moreover, as nr = 1000, the 

performance of the methods in the small (N = 250) and medium (N = 500) calibration 

sample sizes approached each other. 
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Figure 14. RMSE (a parameter) of the item selection method for sample size of the 

random calibration stage under 2-PL model and different conditions 
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By browsing Table 4 and Figure 14, with the increasing of random phase 

sample size under the parameter estimation methods, the performance of the 

pretest item selection methods for 2-PL model and a parameter has aberrant trend 

as follows in most conditions; an increase from small (nr = 250) to medium (nr = 500) 

followed by a fall from medium (nr = 500) to large (nr = 1000). However, these 

increases and decreases are very small as in the 1-PL model. The conditions in 

which calibration accuracy of discrimination parameter improves (RMSE decreases) 

as the sample size of random stage increases when calibration sample sizes are 

small (N = 250) and medium (N = 500) for OEM and JML, respectively. In addition, 

the performance of the methods converges under all calibration sample sizes for the 

large sample size of the random stage (nr = 1000) and JML. 
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Figure 15. RMSE of (b parameter) of the item selection method for sample size of 

the random calibration stage under 2-PL model and different conditions 
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As Table 4 and Figure 15 show, depending on the increase in the random 

stage sample, the results of the item selection methods on the accuracy of b 

parameter for the 2-PL model are not consistent as in the above-mentioned results. 

The differences between these sample sizes are more apparent. For MFI and small 

calibration sample size (N = 250), the accuracy of parameter estimation is reduced 

as the sample size of the random phase increases. When the parameter estimation 

method is JML, BDOD and DVOD showed the same trend for N = 250 and 500, 

respectively. In contrast, DVOD behaved the opposite way when N = 500 for OEM 

and when N = 1000 for JML. In other conditions, RMSE fluctuations were seen for 

different pretest item selection methods at different sample levels. 

To compare the effect of the random phase sample size via parameter 

estimation methods, RMSE values of these for other conditions crossed by the 

pretest item selection methods and calibration sample size of per pretest item (N = 

250, 500, and 1000) in Tables 3 and 4 are plotted in Figure 16 for the 1-PL model 

and b parameter, Figure 17 for the 2-PL model and a parameter, and Figure 18 for 

the 2-PL model and b parameter. 
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Figure 16. RMSE (b parameter) of the parameter estimation method for sample 

size of the random calibration stage under 1-PL model and different conditions 
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The effect of the random phase sample size via the calibration methods on 

parameter accuracy for the 1-PL model and b parameter is comparable as can be 

seen from Table 3 and Figure 16. JML produced more precise parameter estimation 

with an increasing sample size of the random stage in almost all conditions. Even 

the largest decrease (from 0.1725 to 0.1584; see right-top in Figure 16) in RMSE is 

for JML when the sample size increases from nr = 250 to nr = 1000 and BDOD used 

as pretest item selection method. OEM showed a tendency to decrease and then 

rise in most conditions for N = 250 and 500 when the random phase samples 

increased from 250 to 500 and from 500 to 1000. For N = 1000, the changes in 

different nr levels were negligible in all item selection methods. 
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Figure 17. RMSE (a parameter) of the parameter estimation method for sample 

size of the random calibration stage under 2-PL model and different conditions 
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From Table 4 and Figure 17, with the increasing of random phase sample 

size, the performance of the calibration methods for the 2-PL model and a parameter 

is irregular. In most conditions; the fluctuations were detected in both JML and OEM, 

where there was an increase from nr = 250 to nr = 500 followed by a decline from nr 

= 500 to nr = 1000. However, these differences between different sample sizes of 

the random stage for the parameter estimation methods are minor levels. Apart from 

that, as can be seen from the overlapping two lines on the graph on the right-top in 

Figure 17, the performances of the two methods for BDOD are extremely close with 

the increasing of random phase sample size when the calibration sample size is 

small (N = 250). 
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Figure 18. RMSE (b parameter) of the parameter estimation method for sample 

size of the random calibration stage under 2-PL model and different conditions 



 

87 
 

As can be seen from Table 4 and Figure 18, the parameter estimation 

methods have different tendencies under the same conditions as the increasing 

sample size of the random stage from small (nr = 250) to large (nr = 1000). They 

have similar trend for MFI when N = 250 (continuous increase) and N = 500 (first 

increase then decline), for DVOD when N = 250 (first increase then decline), and for 

BDOD when N = 1000 (first decrease then rise). However, JML and OEM performed 

in the opposite way for MFI when N = 1000 (first decrease then rise and first increase 

then decline, respectively), for DVOD when N = 500 (continuous increase and 

continuous decline, respectively), and for BDOD when N = 250 (first decrease then 

rise and first increase then decline, respectively) and N = 500 (first decrease then 

rise and first increase then decline, respectively). Moreover, the greatest difference 

(from 0.2825 to 0.3304) between the random phase sample sizes (from 250 to 1000) 

was observed when MFI was used as the parameter estimation method and N = 

250 

In summary, the effect of the increasing sample size of the random stage has 

changed according to IRT model, item parameters, pretest item selection methods 

and parameter estimation methods. However, these effects (i.e., continuous 

increase, first decrease then rise) cannot be generalized in terms of these variables. 

Sample size of the random calibration stage was considered as a variable only in 

He et al. (2020) study while it was fixed to 150 for all pretest items in He (2015) and 

was approximately set 100 for each pretest items in Zheng (2014), Zheng (2016), 

and Zheng and Chang (2017) studies. He et al. (2020) examined the effect of the 

different sample sizes of random calibration stage (100, 200, 300, 400, and 500) on 

parameter estimation accuracy by calculating the relative efficiency as evaluation 

criteria. In their study, only OEM parameter estimation method was used and BDOD 

performance is better for larger sample sizes whereas Excellence Degree (ED) 

criterion works well in small random samples. For BDOD and the 2-PL model, this 

finding was observed only when the calibration sample size was large (N = 1000) in 

this study. He et al. (2020) explained this by the fact that DVOD is more sensitive 

than ED to more accurate initial parameter estimation with larger random stage 

sample size. However, ED compensated for this disadvantage with its adaptive 

stage performance. In this study, the irregularities of different pretest item selection 

methods and parameter estimation methods can be explained in this way. 
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Comparison Calibration Sample Size of Per Pretest Item 

To compare the effect of the calibration sample size of per pretest item (250, 

500, 1000) on precision in parameter estimation, average RMSE values were used. 

This effect was investigated separately for item selection methods and parameter 

estimation methods, respectively. As explained above, no tables are included in this 

section. RMSE values of pretest item selection methods at these sample size for 

other conditions crossed by the parameter estimation methods and the sample size 

of random stage (nr = 250, 500, and 1000) in Tables 3 and 4 are graphed in Figure 

19 for the 1-PL model and b parameter, Figure 20 for the 2-PL model and a 

parameter, and Figure 21 for the 2-PL model and b parameter. 
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Figure 19. RMSE (b parameter) of the item selection method for calibration sample 

size under 1-PL model and different conditions 
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The effect of the calibration sample size via the pretest item selection 

methods on parameter accuracy for the 1-PL model and b parameter is similar in all 

simulated conditions, as can be seen from Table 3 and Figure 19.  As expected, 

when the calibration sample increased from 250 to 1000, the RMSE value for all 

methods dropped, in other words, the parameter accuracy improved. This decrease 

was sharp for DVOD when the parameter estimation method is JML (see the left 

side in Figure 19), but it was considerable for other conditions.  
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Figure 20. RMSE (a parameter) of the item selection method for calibration sample 

size under 2-PL model and different conditions 
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According to Table 4 and Figure 20, the pretest item selection methods for 

the 2-PL model and a parameter under all conditions consistently yielded smaller 

RMSE values with the increasing of calibration sample size under the parameter 

estimation methods. This means the larger sample size generated better parameter 

recovery.  However, the variation between calibration sample sizes is at different 

levels. As the calibration sample increased from 250 to 1000, RMSE value went 

down gradually when OEM used as the parameter estimation method for MFI (see 

the right side in Figure 20) whereas it decreased substantially under other 

conditions. 
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Figure 21. RMSE (b parameter) of the item selection method for calibration sample 

size under 2-PL model and different conditions 
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As Table 4 and Figure 21 show, the results of the item selection methods on 

the accuracy of b parameter for the 2-PL model improved from small calibration 

sample (N = 250) to large sample (N = 250) in all simulated conditions. In terms of 

RMSE values, small calibration samples produced the worst performance whereas 

large samples had the best performance. Moreover, these changes are more rapidly 

- especially from N = 250 to N = 500 - than the discrimination parameters. 

To compare the effect of the calibration sample sizes of per pretest item size 

via parameter estimation methods, RMSE values of these for other conditions 

crossed by the pretest item selection methods and the sample sizes of random 

phase (nr = 250, 500, and 1000) in Tables 3 and 4 are plotted in Figure 22 for 1-PL 

model and b parameter, Figure 23 for 2-PL model and a parameter, and Figure 24 

for 2-PL model and b parameter. 
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Figure 22. RMSE (b parameter) of the parameter estimation method for calibration 

sample size under 1-PL model and different conditions 
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The effect of the calibration sample size via the calibration methods on 

parameter accuracy for the 1-PL model and b parameter is similar as can be seen 

from Table 3 and Figure 22. Both JML and OEM produced more accurate parameter 

estimation as the number of samples increased. At different calibration sizes, For 

DVOD, the performance of these methods is almost the same whereas OEM 

performed better than JML for MFI and DVOD except when nr = 1000 and N = 250.  

However, MFI and DVOD showed similar decreases when the calibration sample 

size increased -except again nr = 1000 - (see the left-top, the left-middle, the right-

top and the right-middle in Figure 22). For nr = 1000, the performance variation 

between JML and OEM has been going up in favour of OEMs with an increase from 

N = 250 to N = 1000. 
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Figure 23. RMSE (a parameter) of the parameter estimation method for calibration 

sample size under 2-PL model and different conditions 
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From Table 4 and Figure 23, with the increasing of calibration sample size, 

the parameter estimation methods for the 2-PL model and a parameter performed 

very similarly according to the pretest item selection method. For DVOD and BDOD, 

these calibration methods generated very close RMSE values at different calibration 

sizes. For MFI, JML yielded better parameter recovery than OEM as increasing the 

calibration sample size. Especially, the differentiation between JML and OEM was 

maximum under this condition when N = 1000. 
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Figure 24. RMSE (b parameter) of the parameter estimation method for sample 

calibration sample size under 2-PL model and different conditions 
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As can be seen from the Table 4 and Figure 24, the parameter estimation 

methods tend to improve parameter accuracy as increasing the calibration sample 

size from small (N = 250) to large (N = 1000). For MFI and DVOD, the performances 

of JML and OEM are very close when nr = 250 and N = 500 (see the left-top and the 

center-top in Figure 24). In most other conditions, the parameter estimation methods 

showed a similar reduction trend; the substantial from nr = 250 to nr = 500 then 

moderate from nr = 500 to nr = 1000. 

 Ali and Chang (2014), Ban et al. (2001), He (2015), He et al. (2017), He et 

al. (2020) and Kingsbury (2009) tested the effect of calibration sample size on the 

accuracy of parameter estimation. Although some fluctuations are seen with the 

arising sample size in Ali and Chang’s (2014) study, a larger sample size improves 

parameter recovery for all parameters, the pretest item selection method and the 

parameter estimation method in all studies, as expected. This finding indicates that 

the problem of the classical version of JML that the failure to improve parameter 

accuracy as the number of responses is not encountered in the context of online 

calibration. This can be explained by the fact that JML can be converged more easily 

due to This can be explained by the fact that JML can be converged more easily 

due to its single step application. 

  



 

101 
 

Chapter 5 

Conclusion and Suggestions 

In this section, the results of this study are summarized, and then suggestions 

are made for both practical applications of the study and future research. 

Conclusion 

The purpose of this study is to investigate the effect of the online calibration 

elements (pretest item selection methods, the parameter estimation methods, the 

sample size of the random calibration stage and the calibration sample size of per 

pretest item) on the accuracy of pretest item parameter. In addition, this study also 

aimed to use JML as a parameter estimation method to the online calibration 

procedure and assess this method’s feasibility. In line with this purpose, a simulation 

study was carried out. For the 108 conditions formed by crossing the IRT models 

(1-PL and 2-PL), pretest item selection methods (MFI, D-optimal value design, and 

Bayesian D-optimal design), parameter estimation methods (JML, and, OEM), the 

sample size of random calibration stage (250, 500, and, 1000) and the total number 

of responses (250, 500, and, 1000), the parameters of the pretest items were 

estimated and then the RMSE and bias values were calculated. The findings 

obtained from the simulation study are as follows. 

• Compared to the pretest item selection methods, it was seen that the results for 

the 1-PL model and b parameter differed according to parameter estimation 

methods. D-optimal value design is the best method for JML, while Maximum 

Fisher Information and Bayesian D-optimal design are the best and close 

performance method for OEM. For the 2-PL model and a parameter, the 

effectiveness of the methods also depends on the parameter estimation 

method. When the parameter estimation method is JML, it is seen that MFI 

performs a little better although a predominant method does not stand out 

among them. For OEM, Bayesian D-optimal design has been the best pretest 

item selection method by producing the lowest RMSE in most conditions. The 

worst method is D-optimal value design for small calibration sample size (N = 

250) and MFI for medium and large calibration sample sizes (N = 500 and 

1000). Finally, for the 2-PL model and b parameter, MFI is seemed to be the 
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best choice among the pretest item selection methods, regardless of the 

calibration method.  

• When the item selection methods were compared in terms of the cumulative 

sample size, it was seen that the use of D-optimal value design as the item 

selection method was inclined to early retirement for both IRT models and 

parameter estimation methods. This causes to the priority administration of 

pretest items which are favorite in terms of the D-optimal value. Bayesian D-

optimal design behaved similarly for the 2-PL model. In addition, MFI and 

Bayesian D-optimal design for the 1-PL model and Bayesian D-optimal design 

for the 2-PL model have completed the calibration process with more average 

simulated examinee. 

• Comparing the performance of the parameter estimation methods, OEM 

produced a lower RMSE value for the 1-PL model and parameter b, regardless 

of the pretest item selection method. When the pretest item selection method is 

D-optimal value design, JML performed close to OEM. For the 2-PL model and 

a parameter, the results of both the parameter estimation methods are neck and 

neck. Specifically, JML worked slightly better than OEM at medium and large 

calibration sizes (N = 500 and 1000) when MFI was used. For the 2-PL model 

and b parameter, OEM has successfully estimated the most precise item 

parameters.  

• Assessing the effectiveness of the parameter estimation method at different 

levels, it was observed that they showed extreme deviations for the easiest, 

most difficult and more discriminating items. Apart from this, a parameter is 

underestimated under all conditions. 

• When the effect of the sample size of random calibration stage in terms of 

parameter estimation accuracy was examined, the increase of it caused 

different effects (such as a decrease after an increase, a continuous decrease, 

a continuous increase, an increase after a decrease) in IRT model, item 

selection method, parameter estimation method and calibration sample sizes. 

Therefore, it is not possible to observe a specific trend for these tested factors. 

• Lastly, the effect of increasing the calibration sample size is similar for all pretest 

item selection methods and all parameter estimation methods, although it 
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occurs at different levels. The parameter accuracy gets higher as the calibration 

sample size increases.  

Suggestions 

In this section, suggestions for practice based on the research results and 

future research are presented below. 

Suggestions for practice based on the research results 

1. MFI produced more efficient results as the pretest item selection method 

when both OEM and JML were used for the 1-PL model. According to 

these results, the use of MFI in online calibration applications for the 1-PL 

model will be beneficial thanks to its simple and easily applicable 

structure.  

2. For the 2-PL model, MFI and OEM methods may be preferred as a pretest 

item selection method and parameter estimation method, respectively. 

However, Bayesian D-optimal design may be an option for the 2-PL model 

since MFI lagged behind it in terms of the precision of the discrimination 

parameter. 

3. D-optimal value design method may be preferred to complete the 

calibration process with fewer examinees in cases where it is not a 

problem to apply the pretest items with the highest optimal D value without 

considering the ability level of the examinee. 

4. In similar studies, it may be recommended to use a larger sample size for 

pretest item calibration as it increases the parameter accuracy. 

Suggestions for future research 

1. In this research, JML as a new pretest parameter estimation method was 

compared with OEM only. In future research, the effect of existing 

calibration methods can be compared with JML. 

2. In this study, JML was found to be ineffective in most cases. In future 

research, the effectiveness of JML can be improved by employing 

different statistical correction methods. 
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3. In this study, the parameter update sample size is set to 10 new 

responses for each pretest item. In future research, its effect on the 

accuracy of parameter estimation can be tested by using larger samples 

to reduce the calibration time. 

4. In this research, the parameter estimation of a pretest item is completed 

when it is administrated to the specified number of samples. The impact 

of different termination rules (for example, based on the standard error of 

parameter estimation, depending on the stability of the changes in the 

estimation of the pretest item parameter) can be examined in future 

research.  

5. In this study, item parameters in both operational item bank and pretest 

item bank and the ability parameter of examinee were generated to mimic 

the real-life situation. In future studies, post-hoc or hybrid simulations can 

be carried out using real items and ability parameters. By going one step 

further, the effectiveness of online calibration components can be tested 

in practice by demonstrating live online calibration application. 

6. In this study, CAT components such as first and next item selection 

method and parameter estimation method are fixed in CAT phase. 

Different methods of these components can be selected in future studies. 

For example, different operational items may be selected depending on 

the different item selection method, and therefore the results of the OEM 

method may be influenced by the inclusion of these items parameter in 

the calculation. 

7. In this study, although the running time were logged, it was not taken into 

consideration because the simulation studies were performed on different 

computers and virtual machines with different hardware. In future studies, 

it can be used as a variable and thus more information about the JML 

method can be obtained. 

 

. 
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APPENDIX-A: Example Codes of the Online Calibration Program 

 

Example Code for IRT functions (Item Probality Function) 
 
NumericVector Prob0_mRcpp(double theta, NumericMatrix items, double D=1) { 
  int count = items.nrow(); 
  NumericVector aux0(count); 
  NumericVector pr(count); 
 
   
  for(int i = 0; i < count; ++i)  
  { 
    aux0[i] = exp(D*items(i,0)*(theta-items(i,1))); 
    pr[i] = (items(i,2) + (1-items(i,2))*(aux0[i]/(1+aux0[i]))); 
  } 
  return pr; 
} 
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Example Code for CAT functions (Select First Item/s) 
 
List FirstItemSelect_mRcpp(NumericMatrix it_pool, NumericVector theta = 
NumericVector::create(0) , double D = 1, String rule = "RNG", int n_rand = 1, 
Rcpp::Nullable<double> seed = R_NilValue, NumericVector range_it = 
NumericVector::create(-0.5,0.5)){ 
   
  if (rule != "DFC" && rule != "MFI" && rule != "RNG" ) 
  { 
    stop("Check start item selection rule Diffuculty 'DFC', Maximum Fisher 
Information 'MFI' or Range 'RNG'\n"); 
  } 
   
  if(rule == "RNG" && (range_it.length()!=2 || range_it.isNULL() || range_it[1]< 
range_it[0])) 
  { 
    stop("If rule 'RNG', define 'range_it' correctly!\n"); 
  } 
 
  NumericVector fit; 
  double nit; 
  nit = it_pool.nrow(); 
  double l_theta; 
  l_theta = theta.length(); 
  NumericMatrix fit_par(l_theta,3); 

 . . .  
  . . . 
   . . . 
 
   List firstitem; 
    
   if(sum(!is_na(fit))==0) 
   { 
     firstitem=List::create(Named("fit")=R_NilValue, Named("fit_par")=R_NilValue, 
Named("theta")=theta, Named("rule")=rule); 
   } 
   else 
   { 
     firstitem=List::create(Named("fit")=fit[!is_na(fit)], 
Named("fit_par")=Valid_mRcpp(fit_par, fit) , Named("theta")=theta, 
Named("rule")=rule); 
   } 
 
    return firstitem; 
} 
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Example Code for Online Calibration functions (Compute D-Optimal Value) 
 
double DOptV_mRcpp(NumericVector adm_theta, NumericVector it_par, double 
D=1, String irt_model="2PL") 
{ 
  if (irt_model != "1PL" && irt_model != "2PL") 
  { 
    stop("Check IRT model 'irt_model'\n"); 
  } 
   
  double dopt; 
  dopt=0; 
  int l_alltheta=adm_theta.length(); 
  NumericMatrix item_mpar; 
  item_mpar=VecM_mRcpp(it_par); 
   
  if(irt_model=="1PL") 
  { 
    arma::mat dmat(1,1); 
    dmat.zeros(); 
    for(int i=0;i<l_alltheta; i++) 
    { 
      NumericVector P; 
      NumericVector Q; 

 . . .  
  . . . 
   . . . 
    } 
    dopt=arma::det(dmat); 
  } 
  else(irt_model=="2PL") 
  { 
    arma::mat dmat(2,2); 
    dmat.zeros(); 
    for(int i=0;i<l_alltheta; i++) 
    { 
      NumericVector P; 
      NumericVector Q; 

       . . .  
  . . . 
   . . . 
    } 
    dopt=arma::det(dmat); 
  } 
   
  return dopt; 
} 
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APPENDIX B: Figures of The Cumulative Sample Size of Pretest Items for 

JML Methods Under 1-PL Model 

 

 

Note. The lines of MFI and BDOD overlap. 
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APPENDIX C: Figures of The Cumulative Sample Size of Pretest Items for 

JML Methods Under 2-PL Model 

 

 

 


