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ABSTRACT

FACTORIZATION OF IDEALS IN COMMUTATIVE
DOMAINS AND SOME GENERALIZATIONS OF
DEDEKIND DOMAINS

Akif VURAL
Master of Science, Department of Mathematics
Supervisor: Assoc. Prof. Biilent Sarag

July 2015, 117 pages

This thesis consists of six chapters. In the first chapter we give some conventions as
well as some basic definitions and facts. In the second chapter we investigate Priifer and
Dedekind domains. In order to give a well-known characterization of Priifer domains
in terms of their localizations at prime ideals, as a preparation, we start chapter 2
with the concept of valuations and rings defined by valuations (called valuation rings).
Besides the characterization of Priifer domains using localizations we give many other
equivalent conditions for a domain to be a Priifer domain. Then we define Dedekind
domains as Noetherian Priifer domains and give a number of characterizations of them
in a similar way as we do for Priifer domains. Thus one can compare the properties de-
termining Priifer domains and Dedekind domains and see which properties of Dedekind
domains can be transferred if the domain lacks of Noetherian condition. In the end
of the second chapter, we prove that integral closures of a Dedekind domain R in any
finite extension of the field of fractions is again a Dedekind domain. This result will
be given analogously for almost Dedekind domains.

In the third chapter we give definition and important properties of almost Dedekind
domains. Since almost Dedekind domains are defined as generalizations of Dedekind
domains, we seek properties of Dedekind domains that remains valid for almost Dedekind

domains. In the next chapter we continue the study of almost Dedekind domains and



give an investigation of this class of rings with the perspective of multiplication cancel-
lation of ideals. Also we consider the factorization of ideals into radical ideals (instead
of prime ideals as we consider in the case of Dedekind domains) and give a number of
equivalent conditions for an almost Dedekind domain to have the radical factorization
property. In fact, we deduce that the class of rings in which the radical factorization
is possible lies in the class of almost Dedekind domains.

In Chapter 5, we study partially ordered abelian groups and rings which can be
produced from ordered abelian groups. Moreover, we study some correspondences
between a certain kind of subsets (called segments) of a lattice ordered abelian group
and the ideals of the ring induced by the group. We see that such correspondences
can give us ideas to construct some rings with specified properties. Among these rings,
Bezout domains are of particular importance in our study of almost Dedekind domains.
Thus we give a method for constructing a Bezout domain from a lattice ordered abelian
group. In the last chapter, we use this method for a special lattice ordered abelian group
to give the first example of an almost Dedekind domain. In this chapter we give one

more example of an almost Dedekind domain with a different character.

Keywords: Dedekind domain, Priifer domain, Valuation, Valuation ring, almost

Dedekind domain, prime ideal, radical ideal, integral extension.
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OZET

DEGISMELI HALKALARDA IDEALLERIN
FAKTORIZASYONU VE DEDEKIND BOLGELERIN BAZI
GENELLEMELERI

Akif VURAL
Yiiksek Lisans, Matematik Boliimii
Danigsman: Dog. Dr. Biilent Sarag
Temmuz 2015, 117 sayfa

Degismeli halkalar teorisi cebirsel geometri ve kompleks analitik geometri gibi alan-
larin temellerinin olugturulmasinda 6énemli bir yere sahip olmakla beraber, analiz topoloji,
homolojik cebir ve cebirsel sayilar teorisi gibi matematigin bir¢cok alan ile de cesitli
baglantilara sahiptir.

Z tamsayilar halkasinin sifirdan farkli her elemaninin asal sayilarin (sira gozetmek-
sizin) tek tiirlii garpimi olarak yazilmasi, bu halkayir 6nemli bir halka smifi olan tek
tiirlii carpanlara ayirma bolgeleri i¢inde gormemizi saglamaktadir. En temel degismeli
halka diyebilecegimiz Z halkasinin bazi ézellikleri, 1828 yilinda Gauss tarafindan Z[i]
halkas1 kullanilarak bulunmus, ve bdylece ele alinan halkanin baz 6zelliklerinin daha
genis halkalar icinde daha kolay elde edilebilecegi goriillmiistiir. Ancak bu geniglemeler
igindeki “tamsay1” adi verilen elemanlarin ¢arpanlarina tek tiirlii olarak ayrilamadig
1844 yilinda Kummer tarafindan farkedilmistir. Dedekind 1871 yilinda ideal kavramini
ortaya atarak eleman bazinda tek tiirlii asal ¢arpanlara ayrilma 6zelligi bulunmayan
baz1 halkalarin ideallerinin asal ideallerinin ¢arpimi seklinde tek tiirlii yazilabildigini
gostermis ve gliniimiizde son derece énemli kabul edilen Dedekind halkalarinin temel-
lerini olugturmustur.

Tezin giris kisminda, gerekli tanimlar ve bazi notasyonlardan bahsedildi. Ikinci
kisimda Priifer ve Dedekind bolgeler ile ilgili karakterizasyon vermek amaciyla, deger-
lendirmeler ve bu degerlendirmeler tarafindan tanimlanan degerlendirme halkalar: in-

celendi. Uyumlu bir tam siralama bagintisiyla donatilmig tam sirali abel gruplarim ve
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izole altgruplarimin tanimlarinin verilmesinin ardindan, GG bir degerlendirmenin deger
grubu ve V' bu degerlendirmenin tanimladigi degerlendirme halkasi olmak iizere; G'nin
izole altgruplar1 ile V'nin asal idealleri arasinda var olan birebir karsilik gelme gos-
terildi. Daha sonra integral eleman tanimi verilerek integrallik 6zellikleri incelendi.
Kesirsel ideallerin tanim ve bazi 6zelliklerinin verilmesinin ardindan ikinci béliimiin
sonunda sirasiyla sonlu tiretilmis tiim ideallerinin tersinir olmasiyla tanimlanan Priifer
bolgeler ve tiim ideallerinin asal ideallerin ¢arpimi olarak yazilabilmesiyle tanimlanan
Dedekind bolgeler karakterize edildi ve ideallerine ait ozellikler ¢aligildi. Dedekind

bolgelerin karakterizasyonu agagidaki gibidir:
Theorem. [I|R bir Noether tamlik bolgesi olmak tizere agagidakiler denktir:

e R bir Dedekind bolgedir.

R integral kapalidir ve sifirdan farkli her asal ideali maksimaldir.

e R'nin iki eleman ile iiretilmig sifirdan farkl tiim idealleri tersinirdir.

e A B,C R'nin idealleri olmak {izere A # 0 ve AB = AC' ise B = ("dir.
e Her M maksimal ideali i¢cin R); bir degerlendirme halkasidir.

e A B,C R'nin idealleri olmak tizere, A(BNC) = AB N AC saglanr.

e A, B R'nin idealleri olmak iizere, (A + B)(AN B) = AB saglanir.

e Ave B R'nin A C B kogulunu saglayan idealleri ise A = BC olacak gekilde R’nin
bir C' ideali vardir.

e A, B,C R'nin idealleri olmak iizere, ((A+ B): C) = (A: C) + (B : C) saglamr.
e A, B,C R'nin idealleri olmak iizere (C': (AN B)) = (C: A) + (C : B) saglanur.
e A, B,C R'nin idealleri olmak tizere AN (B +C) = (AN B) + (ANC) saglanr.
e Her P maksimal ideali icin P? C I C P olacak sekilde I ideali yoktur.

e Her P maksimal ideali i¢in P-primary idealler P’nin bir kuvvetidir.

e Her P maksimal ideali i¢in P-primary idealler kiimesi tam siralidir.
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e R'nin her iisthalkas: (overring) flat tisthalkadir.
e R’nin her iisthalkas: integral kapalidir.

Bu béliimde verdigimiz 6nemli bir sonug ise bir Dedekind bélgenin kesirler cisminin
sonlu geniglemesi igindeki integral kapaniginin yine bir Dedekind bélge oldugudur.

Tezin iigiincii kisminda biitiin maksimal ideallerindeki yerellestirmeleri Dedekind
bolge olan hemen hemen Dedekind bolgeleri ve ideal yapisi incelendi. Boliim sonunda
Dedekind bélgeler i¢in gordiigiimiiz bir teoremin hemen hemen Dedekind bolgeler i¢in

de saglandigini soyledik:

Theorem. [2, Corollary 4]D hemen hemen Dedekind bolge, K D’nin kesirler cismi, L
K’nin sonlu cisim geniglemesi ve D’ D’nin L i¢indeki integral kapams ise, D’ hemen

hemen Dedekind bélgedir.

Dordiincii kisimda degismeli halkalarda sadelestirme kurallarindan bahsedildi. R
bir halka ve A, B ve C' idealler olmak {izere AB = AC olmast B = C' olmasim1 AB # 0
kosulu altinda gerektiriyorsa, R’ye “kisitlanmig sadelestirme kuralim (RCL) saglar”
denir. Bahsi gecen gerektirme A # 0 kosulu altinda saglaniyorsa R’ye “sadelegtirme
kuralim (CL) saglar” denir. AB = AC esitligi, B = C esitligini A # 0 ve A sonlu
tiretilmis oldugunda gerektiriyorsa, R’ye “sonlu sadelestirme kuralim (FCL) saglar”
denir. Bu boéliimde kisitlanmig sadelegtirme kuralim1 saglayan halkalarin bir karak-
terizasyonu verildi. Ayrica sonlu sadelestirme kuralini saglayan bir tamlik bolgesinin
integral kapali oldugu sonucu verildi. Daha onceki boéliimde 6zelliklerini inceledigimiz
hemen hemen Dedekind bolgelerin bir karakterizasyonu da bu béliimde asagidaki gibi

yer aldi:

Theorem. |3, Theorem 3|D bir tamlik bélgesi olsun. Bu durumda D’de sadelegtirme

kurali saglanir, ancak ve ancak D bir hemen hemen Dedekind bolgedir.

Tamlik bélgelerinde ideallerin tek tiirlii carpanlara ayrilmasi hususunda Dedekind’in

sonucunun geligtirilemeyecegine dair agagidaki sonuca da bu kisimda yer verildi:

Theorem. |3, Theorem 8|S bir halka ve ., S’nin idealerinin Gyle bir ailesi olsun ki,
S’nin her ideali .#’nin sonlu sayida elemaninin ¢arpimi olarak tek tiirli ifade edilsin.
Eger S bir tamlik bolgesi ise, bu durumda S bir Dedekind bélge ve ./, S’nin asal

ideallerinin kiimesidir.



Yine bu kisimda tiim idealleri radikal ideallerin bir ¢arpimi olarak yazilabilen SP-
bolgeler tanimlandi ve hemen hemen Dedekind bélgeler sinifinda karakterize edildi. Ve
son olarak SP-bolgelerin hemen hemen Dedekind olduguna dair Vaughan ve Yeagy 'nin

sonucuna yer verildi.

Theorem. [4, Theorem 2.1|R bir hemen hemen Dedekind bolge olmak tizere agagidak-

iler denktir:

e R bir SP-bolgedir.

e [’nin sifirdan farklh her I 6z ideali J; C ... C J, kosulunu saglayan J;,i =
1,...,n radikal idealleri i¢in I = J; ... J, olarak tek tiirli ifade edilebilir.

Theorem (Vaughan and Yeagy). [5, Theorem 2.4|Her SP-bélge bir hemen hemen
Dedekind bélgedir.

Besinci kisimda, verecegimiz bir hemen hemen Dedekind bélge 6rnegi i¢in gerekli
altyapiy1 saglamak amaciyla kismen sirali abel gruplar ile latis sirali abel gruplar ince-

lendi. G latis sirali abel grup, S G’nin bir altkiimesi olmak {tizere,

e SCGT,
e S filtredir, yani x € S,y € G ve y > x ise y € S saglanir,

e z,yc Siseinf{z,y} €S

ozelliklerini saglarsa, S’ye G'nin bir segmenti denir. x,y € G*\ S durumunda x +y €
G\ S oluyor ise, S’ye bir asal segment denir.

G latis sirali abel grup olsun. S G*'min G\ S filtre olacak gekildeki bir alt yarigrubu
olsun. Hg = {g1 — 92|91, 92 € S} seklinde tanimlansin. P G'nin bir asal segmenti ve
S = Gt \ P oldugu durumda G/H; boliim grubu Gp ile gosterilir ve G'nin P asal
segmentindeki yerellestirmesi olarak adlandirilir.

Biitiin sonlu tiretilmisg idealleri temel ideal olan tamlik bolgelerine Bezout bolge
denir. Bu kisimda Bezout bolgeler ile latis sirali abel gruplar arasindaki iligkiye yer
verildi. Oncelikli olarak bir Bezout bolgenin béliinebilirlik grubunun latis sirali abel
grup oldugunu sdyledik. Daha sonra R bir Bezout bolge ve G' R’nin boliinebilirlik grubu
ise, R'nin 0z idealleri ile G'nin segmentleri arasnda siralamay1, asallik ve maksimallik
iligkilerini koruyan birebir kargilik gelmenin varligi gosterildi. Kisim sonunda agagidaki

teoreme yer verildi:
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Theorem (Krull-Kaplansky-Jaffard-Ohm). [6, p. 164/G latis sirali bir abel grup

ise, boliinebilirlik grubu G’ye latis izomorf olan bir Bezout bolge vardir.

Son kisimda ise tez boyunca altyapisini olusturdugumuz iki hemen hemen Dedekind

bolge ornegine yer vererek tezi tamamladik.

Anahtar Kelimeler: Dedekind bolge, Priifer bolge, Degerlendirme, Degerlendirme

halkalari, hemen hemen Dedekind bolge, asal ideal, radikal ideal, integral genigleme.
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1 INTRODUCTION

Multiplicative Ideal Theory began with the works of Julius Wilhelm Richard Dedekind,
a famous German mathematician, at the end of the 19th century, by which he aimed to
repair the lack of unique factorization property of elements in an integral domain. In
these works, he considered integral domains in which factorizations of ideals into prime
ideals are possible, which constitute an important class of rings in today’s mathematics,
called Dedekind domains. Dedekind domains play an important role in Algebraic Num-
ber Theory and Algebraic Geometry. In 20th century (mostly in the second half), there
appeared many classes of integral domains which arise as generalizations of Dedekind
domains, including Priifer domains (and valuation rings in a particular case) and al-
most Dedekind domains. In this thesis, we study the classes of Priifer domains and
almost Dedekind domains and expose some properties in which these two classes differ
from or resemble to Dedekind domains.

We assume that the reader has knowledge of groups, rings, fields and modules taught
in first year graduate courses. Because the definitions of groups, rings and fields are
widely known concepts, we only remark here that modules are defined in exactly the
same way as vector spaces only with the difference on the scalar field which is taken to
be a ring in this case. There is an extensive study of module theory in the literature;
however, we need only some basic knowledge from that theory which can be found in
[7].

The symbol C will stand for “a subset of”, and the symbol C is spared for the strict
inclusion. The set of rational numbers, integers and natural numbers, respectively,
denoted by Q, Z, and N.

Let A be a nonempty set and suppose that there is a relation < defined on A. If
< is reflexive and transitive, that is, if a < a; and if @ < b and b < ¢ implies a < ¢
for all a,b,c € A, respectively, then we say that < is a preorder on A, or that A is
preordered under <. Moreover, if, additionally, < is anti-symmetric, that is a < b and
b < a implies a = b for all a,b € A, then we say that < is a partial order, and that A
is partially ordered under <. In the case that we have a < bor b < a for all a,b € A in
a partially ordered set A, we say that < is a total order on A, or A is totally ordered
under <. We shortly say A is ordered under < if A is totally ordered under <.

One important case for partially ordered sets occurs when we consider the set of



ideals of any ring. Recall that a nonempty set consisting of ideals of a ring is partially
ordered by inclusion. Recall also that a commutative ring R is said to be Noetherian if
every nonempty set of ideals of R satisfies the maximal condition, i.e., every nonempty
set of ideals of R has a maximal element with respect to inclusion. This notion can also
thought for modules over R by replacing the term “ideals” by “submodules”. Thus a
commutative ring R is a Noetherian ring if and only if it is Noetherian as a module over
itself. One important result for Noetherian modules states that if M is a Noetherian
R—module, then every submodule of M is finitely generated, and vice versa.

In our study, all rings considered are commutative with unity. Noetherian rings
have an important property which we give in the following theorem, known as the

Krull Intersection Theorem:

Theorem (Krull Intersection Theorem). Let R be a Noetherian ring and I an ideal of

R contained in the Jacobson radical of R (i.e., the intersection of all mazximal ideals of

R). Then

ﬂ]”:o.

n>0

Let R be a ring and let S be a nonempty subset of R. We say that S is a multiplica-
tively closed subset of R, if 0 ¢ S and a,b € S implies that ab € S. If the inclusion
relation between R and S is clear, we simply say S is a multiplicatively closed set.
Recall that we can form a ring if we put a certain equivalence relation on R x S, con-
sider the set of all equivalence classes, written as fractions, and define addition and
multiplication on this set, just as we do when constructing rationals from integers. The
resulting ring is called the ring of fractions of R with respect to S, denoted by S™'R
or Rg.

Let R be a ring, and let a € R. If there exists b € R with b # 0 such that ab = 0,
then a is called a zero-divisor of R. If a € R is not a zero-divisor, then it is called a
regular element of R. If S is the set of all regular elements of R, then S becomes a
multiplicatively closed set. In this case, S™'R is called the total quotient ring of R.
In the case that R is an integral domain, S becomes R\ {0} and so the total quotient
ring ST!R becomes the field of fractions of R. The field of fractions K of an integral
domain R is the smallest field that contains R. If K is the field of fractions of R, then
K = {ab7!a,b € R,b+# 0}.

Let R be a ring and K be the total quotient ring of R. Then T is an overring of



R means that 7" is a ring such that R C T C K. If R is an integral domain, and if T
is an overring of R, then T" becomes an integral domain, and K becomes the field of
fractions of R, in which case K becomes also the field of fractions of T

Let R’ be a ring and R be a subring of R'. For an a € R, if by + bya + ... +
b,_1a" ! + a® = 0 holds for some by,...,b,_1 € R with n > 1, then we say that a
is integral over R. If every element of R’ is integral over R, then we say that R’ is
integral over R, or R C R’ is an integral extension of rings. If the set of elements of
R’ which are integral over R is equal to R, then we say that R is integrally closed in
R’. In particular, if R is the total quotient ring of R, then we simply say that R is
integrally closed. It is well-known that the set of elements of R’ which are integral
over the ring R form a ring, called the integral closure of R in R’. When we just use
the term “integral closure”, we mean the integral closure in the total quotient ring, or
in the field of fractions if R is an integral domain.

Let R be a ring and [ be an ideal of R. We define the radical of [ as the set
{a € R|a™ € I for some n € N}, and denote it by v/I. We refer the reader to [8] for
detailed information about radicals and their arithmetic properties. If we have an ideal
Q of R such that v/Q = P and for z,y € R with zy € Q, z ¢ Q implies that y € P,
then we call () a P-primary ideal of R. Note that if () is a P-primary ideal of R, then
P is a prime ideal of R, but not conversely. Note also that any ideal whose radical
is a maximal ideal, say M, is an M—primary ideal. It follows that if M is a maximal
ideal of R, then every power M® of M are M-primary ideals of R. The reader should
be careful in that there may be M—primary ideals other than powers of M in general

(see, for example [8, Example 4.11]).



2 PRUFER AND DEDEKIND DOMAINS

Throughout this section we use [1] as reference, so we do not mention it again in this

section.

2.1 Valuations and Valuation Domains

Definition 2.1. An integral domain V is called a valuation ring, if it satisfies the

property that for any ideals A and B, either A C B or B C A.

Proposition 2.2. The following statements are equivalent for an integral domain V :

(1) V is a valuation ring.
(2) For any a,b €V, either (a) C (b) or (b) C (a).
(3) If K s the field of fractions of V and x € K, then either x € V orz=t € V.

Proof. (1) implies (2) is clear. To show (2) implies (3), let z € K. So x = a/b for some
a,b € V with b # 0. If (a) C (b), then a = br for some r € V, then x = a/b=1r € V.
If (b) C (a), then b = ar for some r € V, and this gives that r = b/a = 2! € V. For
the last part of the proof, suppose for any element x of the field of fractions K of V,
either z or 27! belongs to V. Let A and B be ideals of V. Suppose A € B. Then there
exists a € A\ B. Let b € B be nonzero. If a/b € V, then we have a € (b) C B, which
is a contradiction, so we have b/a € V. Hence b € (a) C A. Since b is an arbitrary

nonzero element of B, then B C A, hence V is a valuation ring. O]
Corollary 2.3. Each overring of a valuation ring is a valuation ring.

Proof. Let V' be a valuation ring, and let V/ be an overring of V. If K is the field of
fractions of V, then V' C V/ C K. In this case K is also the field of fractions of V'.
Since an arbitrary element of K or its inverse belongs to V' by Proposition Vv

implies that it belongs to V', so this implies V' is a valuation ring. O]

Proposition 2.4. For a valuation ring V', the set of non-units of V is an ideal, which

s the unique mazimal ideal of V.



Proof. Let P be the set of non-units of V. Let a,b € P\ {0},¢ € V. Clearly ac is
a non-unit of V so it belongs to P. We may assume without loss of generality that
a/be V. Then a — b = (% — 1) b € P. Thus P is an ideal of V. If [ is a proper ideal
of P, then every element of I is a non-unit, since otherwise we have I = V. Then we

have I C P. Since every ideal is contained by P, then P is the unique maximal ideal

of V. O
Proposition 2.5. Valuation rings are integrally closed.

Proof. Let V be a valuation ring with field of fractions K, and let x € K be integral
over V. Say 2" + ap_12" ' + ... + a1z + ap = 0 for some ag,...,a,1 € V. If
r ¢ V, then z7! € V. By multiplying the equality with z!™" we have that x =
—(an_1 + Apox V... F aoxl_") € V, which is a contradiction. Hence an element

which is integral over V' must be an element of V. [

Proposition 2.6. Let R be an integral domain and K be its field of fractions. Then

there exists a valuation ring V' such that R C'V C K.

Before proving this proposition, we shall give some definitions and state a lemma
which we use for the proof.

Let K be a field. Let ¢ be a homomorphism from a proper subring K4 of K into
an algebraically closed field. ¢ is called a partial homomorphism on K. If we set . as
the set of such pairs and define an ordering < on .% by (¢, Ks) < (¢, Ky) if and only
if K, C Ky and ¢(a) = ¢(a) for all a € Ky, then . becomes a partially ordered set
under <. Then by Zorn’s Lemma, if (¢, K) € ., then there exists a maximal element
of . which is greater than or equal to (¢, Ks). Such a maximal element is called a

maximal partial homomorphism.

Lemma 2.7. Let K be a field and let x € K be nonzero. Let'V be a subring of K with
unique mazimal ideal P. Then either PV [z] # V(x| or PV[z™'] # V[z™1].

Proof. By the way of contradiction, assume that PV[z] = V]x] and PV[z'] = V[z7!].
Then we have

ap + a1z + ... +art =1 (1)

and

b+ bzt + .. by =1 (2)



for some aq, ..., ax, by, ...,b, € P. We shall choose m and k be the smallest integers
satisfying above equations, and without loss of generality, assume that &k < m. Multi-
plying equation [2{ by z*, we have (1 — bg)z* = bya*~! + ...+ by. Since by € P and P is

the unique maximal ideal of V', then we have 1 — by is a unit in V', hence

ZL’k = (1 - bo)_lbll’k—l + ...+ (]_ - bo)_lbk
= C1$k71—|—...—|—6k

where ¢y, ..., ¢, € P. If we use this in equation |1, we have

1 = ag+az+...+ap 2™ +apa™ F (et + .+ )

= do -+ dll' + ...+ dm,1$m_1

where dy,...,d,,—1 € P. This is a contradiction with the minimality of m, hence our

assumption is false. O

Lemma 2.8. Let V' be a subring of the field K. Then if there exists a homomorphism
¢ from V into an algebraically closed field with (¢,V') is a maximal partial homomor-

phism, then V is a valuation ring with field of fractions K.

Proof. Let L be an algebraically closed field. Let ¢ : V' — L be a homomorphism such
that (¢, V) is a maximal partial homomorphism. Let P = Ker ¢. P is a prime ideal of
V since ¢(1) = 1. Let uw € V'\ P, then ¢(u) is a unit in L, so there exists an extension
¢' : Vp — L of ¢ defined by ¢'(2) = (a) for a € V;s € V'\ P. This implies that
(V,¢) < (Vp,¢'). But since (¢, P) is maxunal, then Vp = V. This gives that P is the

unique maximal ideal of V.

Now let z € K be nonzero. If we show that z € V or 27! € V, then we are done.
By Lemma we may assume that PV[z] # Vx|, without loss of generality. Then
there exists M € Maxz(V[z]) such that PV[x] C M, then M NV = P since P is the
only maximal ideal of V. It follows that o : 5 —> [ ] given by o(a+ P) = a+ M is an
injective homomorphism. It follows that [x] = o(%)[z + M]. Now z + M is algebraic

over (%) since L is a field. Hence, if ¢ : % — L is given by ¢(a + P) = ¢(a),

then we can extend ¢o~' : 0(%) — L to an injective homomorphism ¢ :

Vlz]

7—>L.

If we set 7 : Viz] — % as the canonical homomorphism, then since for all a € V,

Yr(a) = p(a+ M) = ¢(a + P) = ¢(a) holds, we have (¢, V) < (¢, V]x]). Tt follows



by the maximality of (¢, V') that V = Vx| or x € V. Hence V is a valuation ring. [

Proof of Proposition[2.6. Let R be a ring with field of fractions K. Since R is a subring
of K, we can define a partial homomorphism ¢, from R into an algebraically closed
field L. If .7 is the family of all partial homomorphism, then clearly we have a maximal
partial homomorphism (¢, V) such that (¢, R) < (¢, V). This relation implies R C
V C K, and by Lemma , the maximality of (¢, V') implies that V' is a valuation
ring. O

Corollary 2.9. Let R be an integral domain and let K be the field of fractions of
R. The integral closure of R is the intersection of all the valuation rings of K which

contains R.

Proof. Denote the integral closure of R by R. By Propositionwe have that valuation
rings are integrally closed, then R must be contained in the intersection of all valuation
rings of K which are containing R. Otherwise, there exist € R such that z is not
belong to one of the valuation rings of K containing R. Since x is integral over R
implies z is integral over the containing valuation rings, it is a contradiction since z
doesn’t belong to at least one of the valuation rings. If we show that for any element
x of the field of fractions K, ¢ R implies that = doesn’t belong to the intersection
mentioned above, then the desired equality holds.

Let ¥ € K\ R. Then = ¢ R[z!]. For otherwise, there exists f(X) € R[X], of
degree n, such that x = f(z~!). By multiplying last equality with 2™, we have that

1

g™t — " f(271) = 0, which gives that » € R, a contradiction. Hence 2! is not a unit

in R[z™'], so there exists a maximal ideal P of R[z™!] such that 27! € P.

R[z—1]
P

Let L be the algebraic closure of . The canonical homomorphism R[z™!] —

R[z—1]
P

partial homomorphism of K into L such that (I, Rlz7!]) < (¢, V). By Lemma2.§8) V

furnishes us with a homomorphism IT : R[z™'] — L. Let (¢, V) be a maximal

is a valuation ring of K, and R C V. Since we have ¢(z~!) = 0, then = ¢ V. Hence
x is not in the intersection of all the valuation rings of K which contain R. So the

desired equality holds. O

For Noetherian rings, we can characterize valuation rings by much weaker conditions

than for arbitrary rings.



Theorem 2.10. Let V' be a Noetherian integral domain which is not a field. Then the

following statements are equivalent:

(1) V is a valuation ring.
(2) The set of non-units of V' is a nonzero principal ideal.

(3) V is integrally closed and has exactly one nonzero prime ideal.

Proof. Firstly, suppose V is a valuation ring and let P be the set of non-units. Since
V' is not a field, we have P # (0) and clearly P is an ideal. The fact that V is
Noetherian implies P is finitely generated, say P = (ay,...,a,). Since V is a valuation
ring, then the ideals (ay),...,(a,) give us a chain, without loss of generality suppose
(a1) C ... C (ay), and this implies P = (a,), a principal ideal.

Now, suppose that P is the ideal of non-units of V', and K be the field of fractions
of V. Let P = (a) for some a € P with a # 0. Clearly there is no maximal ideal
other than P. By the Krull Intersection Theorem, we have (| P™ = (0), so if I # (0)
is a proper ideal of V', then there exists £ > 1 such that [ Elpk but I ¢ P Let
b€ I\ P then b = a*u for some unit u € V. Now if ¢ € P*, then for some d € V,
¢ =a"d = bu'd € I. So this gives that I = P*. Since every ideal of V is a power of
P, and the only prime ideal which is a power of P is itself, then P is the only nonzero
prime ideal of V.

Now let ¢ € K be nonzero and integral over V', set ¢ = r/s for some r,s € V'\ {0}.
Since r and s are both a product of a unit and some power of a, we may assume that
either r or s is a unit. Since c is integral over V| then there exist by, ..., b, 1 € V such
that by +bic+...+b,_1c" 1+ " = 0. If we multiply the equality by s”, then we’ll have
T4 sby 1" 8"+ 5", = 0or 1™ = —s (8" by + 8" 2bir + .+ D™ Y.
If s is unit, then ¢ € V. If s is a non-unit then by the last equality, ™ € P and so
r € P. So r is also non-unit, and this is a contradiction with our assumption. Hence s
is unit and ¢ € V, thus V is integrally closed.

For the last part, assume that V is integrally closed and has exactly one nonzero
prime ideal P. It suffices to show that P is principal.

Now let K be the field of fractions of V', and set P* = {x € K|xP C V}. Then
P*P is an ideal of V' such that P C P*P C V. If P*P is strictly between P and V/,



then we must have a maximal ideal, hence a prime ideal which contains P*P and it
contradicts the fact that P is the only nonzero prime ideal, so we either have P = P*P
or P*P=1V.

Assume that P*P = P and let P = (ay,...,a,). Let a € P*, then we have aP C P.

And this gives us aa; = Y 74 a; where r;; € V. So we have that ) (6;;a—7;;)a; = 0 for
-1

J Jj=1

1 i=3j
i=1,...,n where §;; = / . Hence, since a; # 0 for at least one j =1,...,n

0 ,i#]j
and we are working in K, we have det[d;;a — r;;] = 0. Thus, a is integral over V' and

since V' is integrally closed, a € V. So P* C V. This gives us P* =V since we clearly
have V C P*.

Now we shall show that P* =V leads us to a contradiction. Let a € P be nonzero.
Set S = {a"|n € N\ {0}}. Our claim is that S™'V = K. By the way of contradiction,
suppose S~V is not the field of fractions of V, then S~'V has a nonzero maximal ideal
P'. Since a is a unit in S7'V, we have a ¢ P’, hence P’ NV # P, and consequently
P'NV = (0). However this can’t be true, since if % € P'\ {0}, then ¢ # 0 and
c € P'NV. So we have K = S~V which gives that every element of K can be written
in the form b/a™ for some b € V and n € N.

Now if ¢ € V is nonzero, then % = a% for some n, and so a" = ¢b € (¢). Thus,
for each a € P, some power of a is in (¢). Since P is finitely generated, then we have
P" C (c) for some smallest positive integer n. Let d € P"',d ¢ (c), then dP C (c) and
so (4)P C V. This gives that ¢ € P*, but ¢ ¢ V, hence P* # V. This contradiction
gives us P*P # P, so we have P*P =V

Since P*P =V, then there exist elements a,...,a; € P and bq,...,b, € P*such
that iaibi = 1. So for some i = 1,...,k, we have a;b; ¢ P. So we have elements
a € 113:,%7 € P* with ab = u for some unit v in V. Then we have abu=! = 1, and by
multiplying by ¢, we have ¢ = abcu™!. Now bc € V implies that ¢ € (a), and since c is
arbitrary in P, we have P = (a).

Since the unique prime ideal P of V' is principal, every nonzero ideal of V' can be
represented as a power of P as we have done above at paragraph 2 of this proof. Hence,

the set of ideals of V' is totally ordered under inclusion, and V' is a valuation ring. [

Theorem 2.11. Let V' be a valuation ring and let I be an ideal of V. Then

(1) VT is a prime ideal of V.



(2)

If J = Ofi[", then J is a prime ideal of V' such that every prime ideal of V' which

18 properly contained in I is contained by J.

Proof.

(1)

We know that v/I is the intersection of minimal prime ideals of I. Since the set
of ideals of V' is totally ordered, then I has only one minimal prime ideal, which

must be equal to v/1.

First, we shall show that J is a prime ideal. So let a,b ¢ J, then a ¢ I™ b ¢ I™
for some m,n € N. Then we have that I™ C (a) and I™ C (b). We also have that
I (b) C (a)(b) = (ab). Actually we have I"™(b) # (ab). Since we have I"™ C (a),
then there exists © € V such that xza ¢ I"™. If I"™(b) = (ab), then yb = zab for
some y € I™. Since b # 0, this implies that y = za € I"™, a contradiction. Thus
I'™(b) C (ab). Hence we have that I"™™ C I™(b) C (ab), and this gives that
ab & I"™™ so ab ¢ J. Hence J is a prime ideal of V.

Now if P is a prime ideal of V' such that P C A, then every power of A lies outside
of P. For otherwise, A™ C P for n € Nimplies A C P, which is impossible. Since

V' is a valuation ring, we have that P C A™ for each n € N, and hence P C J.

[]

Lemma 2.12. Let V' be a valuation ring and let K be the field of fractions of V. If A
and B are ideals of V such that A C /B, then A* C B for some k € N.

Proof. Suppose that B C A" for n > 1. Let € A. Since A C v/B, then z* € B for

some k € N. But also since we have B C A" for all n > 1, then 2% € A" for all n > 1.

Then z* € QlA” which is prime by (2) of Theorem

2.11

, SO x € Q A™. Hence we have
n>1

that A C QIA", and so A = A" for all n > 1. Hence A is prime gnd VAT = /A = A.
Now, B C_A implies that v B € VA = A which is a contradiction with 4 ¢ v/B.

Hence our assumption is false, so B contains some power of A. O

Theorem 2.13. Let V' be a valuation ring and let P € Spec(V'). Then

(1) If Q is P-primary and x € V' \ P, then Q = Q (z).

(2) The product of P-primary ideals of V is again P-primary, and if P # P?%, then

the complete set of P-primary ideals consists of powers of P.
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(3)

The intersection of all P-primary ideals is a prime ideal of V' which contains all

prime ideals properly contained by P.

Proof. (1) Let K be the field of fractions of V. Since z ¢ P, then = ¢ Q, so we

have @ C (z). Let A = {y € Klyz € Q}. Since Q C (x), then we have A C V.
Furthermore, A is an ideal of V and Q) = A (x):

Let a € A,b € V, then ax € @, since @ is an ideal of V', then abx € @, hence
ab € A. Tt a,b € A, then az,bx € @, and this implies ax + bx = (a + b)x € Q, so
we have a + b € A. Thus A is an ideal of V.

A(z) C Q is clear. If ¢ € @ C (x), then ¢ = ax for some a € V, but since
ax = q € @, then by definition of A, a € A, so ¢ € A(z). Hence Q = A (z) C A.

Since @ is P-primary and (x) € P, then we have A C Q. So A = (). As a result,

we have Q = @ (z), as claimed.

Let @1, Q2 be P-primary ideals of V. Then we have /Q)1Q2 = P:

Since Q1Q2 C @)1, then by taking radicals, we have /(12 C P. If x € P =
V@1 = +/Q>, then 2™ € Qq, 2™ € (), for some ny,ny € N, then 211" € Q1Q-,
this implies x € /Q1Q)2. Hence P C /(Q1Q)s.

Let z,y € V with zy € Q1Q2. Suppose that z ¢ P. Our aim is to show that
y € Q1Q2. Since @y is P-primary, then we have Q1 = Qi (z) by (1) of this
theorem. Then by multiplying with @Q5, we have that zy € Q1Q2 = (2)Q1Qs.
Since V' is a domain, then this gives that y € 1Q)2, hence QQ1Q)5 is P-primary.

For the last part, suppose P # P2 Let @ be a P-primary ideal of V. Since
P? C \/Q = P, then by Lemma[2.12] Q contains a power of P2, and so contains
a power of P. Set m be the minimal such power, so we have P™ C @ but
Pt ¢ Q. Let z € P™ 1\ @, then we have Q C (z). If A= {y € K|yz € Q},
then @ = A(z). z ¢ @ implies A C P under the fact that @ is P-primary. So
Q = A(x) C P(x) C P™, which gives that Q) = P™.

If P is the only P-primary ideal, then there is nothing to prove. Suppose that
() is a P-primary ideal of V such that @ # P. Let {Qa}acr be the set of all
P-primary ideals of V. Since we know a product of P-primary ideals is again

P-primary, then Q™ is P-primary for all n > 1. Hence () Q. C () Q". However
ael’ n>1

11



by Lemma [2.12] each @, contains a power of @, thus (| Q. 2 [ Q". Hence
a€el’ n>1
(} Q?a = (](Qn'

acl’ n>1

Since () is P-primary, () properly contains each prime ideal of R which is properly
contained by P and by (2) of Theorem every prime ideal which is properly
contained by @) is also contained by ﬂFQa which is a prime ideal of V.

[e1S

[]

Let GG be an abelian group with a defined total ordering <. If for arbitrary a, b, c €
G, a < b implies that a + ¢ < b+ ¢, then we say that GG is an ordered group. For
example, the additive group of real numbers with the natural ordering of real numbers
is an ordered abelian group. Each subgroup of an ordered group is again an ordered
group with the induced ordering.

Let n € N and {G;}?, be a family of ordered abelian groups. Let G = éGZ We
shall denote the elements of G by n-tuples (a, ..., a,), where a; € G;,1 = 1, .l.:.l, n. For
any distinct elements (ay, ..., a,), (b,...,b,) € G, we write (a1, ...,a,) < (b1,...,b,)
ifa; <byorifa;=0b;fort=1,...,k—1, and a; < b, for some k =2,...,n.

This is clearly a total order on G. So G, with this ordering, becomes an ordered

abelian group. We may refer to this ordering as the lexicographic ordering of G.

Let G be an ordered abelian group and let {oo} be a set where co is an element

such that oo ¢ G. Set G* = G U {oo}. Define addition on G* such that for a,b € G*,

a + b (addition in G) if a,bed
a+b=
00 if a=00o0r b= o0

With this addition, G* becomes a commutative semigroup. Now we extend the ordering
of G to an ordering of G* by defining a < oo for all a € G*. Thus G* is an ordered

semigroup in the sense that a < b implies that a + ¢ < b+ ¢ for all a,b,c € G*.

Definition 2.14. Let K be a field, and let G be an ordered abelian group. Define a
surjective mapping v : K — G*. If v satisfies the following conditions, than v is called

a valuation on K:
(1) v(a) = oo if and only if a = 0.
(2) v(ab) = v(a) + v(b) for all a,b € K.
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(3) v(a+0b) > min{v(a),v(b)} for all a,b € K.

If v : K — G* is a valuation, then the group G is called the value group of the
valuation v. The mapping v from a field K into G* given by v(a) = 0 for all a € K'\ {0}
and v(0) = oo is clearly a valuation on K which is called a trivial valuation.

Let v be a valuation on a field K and set V = {a € K|v(a) > 0}.

If a,b € V, then v(ab) > v(a) + v(b) > 0 and v(a + b) > min{v(a),v(b)} > 0, so
that ab,a +b € V. Since v(—1) = v(1) = 0, and hence —1 € V, we see that V is a
subring of K.

Let a € K with a # 0. If a ¢ V, then v(a) < 0, so v(1/a) = —v(a) > 0. Thus
1/a € V. Therefore V' is a valuation ring. Note also that K is the field of fractions of
V', and the maximal ideal of V is M = {a € K|v(a) > 0}:

Let a € M,b € V. Then we have v(a) > 0 and v(b) > 0, so we have v(ab) =
v(a) +v(b) > 0, hence ab € M.

Let a,b € M, then we have v(a),v(b) > 0, hence v(a + b) > min{v(a),v(b)} > 0,
soa+be M.

So M is an ideal of V.

To show M is maximal, let x € V' \ M. Since x € V' \ M, then v(z) = 0. Since
v(1) =0, then v(1/z) = v(1) —v(xz) = 0, hence 1/ € V, so x is a unit in V. Thus M
contains every non-unit element of V.

For x € M, we have v(1/z) = v(1) —v(z) = —v(z) < 0, s0 1/x ¢ V, hence x is a
non-unit. So, M is the set of non-units of V', therefore M is the unique maximal ideal
of V.

We shall now show that all valuation rings are determined by valuations in this

way.

Proposition 2.15. Let V' be a valuation ring, and let K be the field of fractions of V.
Then there ezists a valuation v on K such that V = {a € K|v(a) > 0}.

Proof. Let U be the group of non-units of V', then U is a subgroup of K* = K \ {0}.
Set G = K*/U, with addition aU + bU = abU for a,b € K*. Define a relation on
G by bU < aU if and only if a/b € V. If aU = «’'U and bU = b'U, then we have
a'/a,t' /b € U, hence a/b € V if and only if a’/b' € V' which means < is a well-defined

relation. This relation is a partial ordering:
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Clearly aU < aU since a/a =1 € V, hence < is reflexive. If aU < bU and bU < cU,
then b/a,c/b € V' hence ¢/a = (b/a) (¢/b) € V and this implies that aU < cU, hence <
is transitive. To see < is anti-symmetric, let aU < bU and bU < aU. Then a/b,b/a € V
hence a/b € U so aU = bU, hence < is anti-symmetric.

Since V' is a valuation ring, then < is a total order on G since for a,b € K*, we
have either a/b € V or b/a € V. Finally, G is an ordered abelian group with <:

Let aU, U, cU € GG with aU < bU. Then g € V. Clearly % €V, and so caU < cbU,
or equivalently aU + cU < bU + cU.

Now define v : K — G* by v(0) = 0o and v(a) = aU if a # 0, then v is a valuation:

Clearly v is surjective.

v(ab) = abU = aU + bU = v(a) + v(b).

v(a +b) > min{v(a),v(b)} if a =0 or b= 0.

Now suppose a,b € K*, with aU < bU. Then we have g €V, and so g—i- 1eV. So
v(241) > v(1) = 0. Therefore v(a+b) =v(a(2+1)) =v(a)+v(24+1) > v(a) >
min{v(a),v(b)}.

It follows that v is a valuation on K and V = {a € K|v(a) > 0}. O

Definition 2.16. If V and v are related as in Proposition [2.15] we say that v is the

valuation determined by V.

Definition 2.17. If v is an arbitrary valuation on a field K, then {a € Klv(a) > 0} is

called the valuation ring of v.

Let v and v' be valuations on a field K, with value groups G and G’ respectively.
We say v and v’ are equivalent valuations if and only if there exists an order-preserving
isomorphism ¢ from G onto G’ such that v'(a) = ¢(v(a)) for all a € K*. This relation
between valuations are clearly an equivalence relation since it is reflexive, symmetric
and transitive. It is also clear that equivalent valuations have the same valuation ring.

Conversely, if two valuations on a field K both have the same valuation ring, then
they are equivalent. To verify this, we shall show that if v is a valuation on a field K,
V' is the valuation ring determined by v, and v’ is the valuation determined by V', then
v and v’ is equivalent.

Let G be the value group of v and U be the group of units of V. Define ¢ : G —
K*/U by ¢(v(a)) = aU. If v(a) = v(b), then v(a/b) = 1 and this implies a/b € U,
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hence aU = bU, which gives that ¢ is well-defined. Since ¢(v(a)) = v'(a) for all a € K*,
it is sufficient to show ¢ is an order preserving isomorphism. ¢ is a homomorphism

since

¢(v(a) +v(b)) = p(v(ab)) = v'(ab) = 1'(a) +v'(b) = é(v(a)) + ¢(v(b))

¢ is clearly surjective. If aU = bU, then § € U so v(}) = 1 and this gives that
v(a) = v(b), hence ¢ is injective. To see that ¢ is order-preserving, let v(a) < v(b),
then 0 = v(1) < v(2) so 2 € V. So v/(%) > 0, hence v/(a) < v/(b), this is ¢(v(a)) <

o(v(b)). It follows that ¢ is an order-preserving isomorphism, and this gives the desired

equivalence between v and v’.

Definition 2.18. Let GG be an ordered abelian group. For a subgroup H of G, if for
each nonnegative element o of H, 0 < 8 < « implies € H, then H is called an
isolated subgroup of G. If H is an isolated subgroup of G and H # G, then H is called
a proper isolated subgroup of G.

Definition 2.19. Let GG be an ordered abelian group. If G has only finitely many
proper isolated subgroups, then the number of these subgroups of G is called the rank
of G. Thus, G has rank one if and only if G # 0 and the only proper isolated subgroup
of GG is 0. If G has rank n, then we say that both v and V' have rank n.

Definition 2.20. Let K be a field, and v be a valuation on K. Let G and V be the
value group and the valuation ring of v, respectively. If G is cyclic, then v is called a
discrete valuation, and V' is called a discrete valuation ring (DVR). If v is a non-trivial

discrete valuation, then v has rank one.

Before we continue our study about the structure of valuation rings, we give some

examples:

Example 2.21. Let K be a field, and let R be the formal power series in indeterminate
X over K, ie. R= KJ[[X]]. Then R is a discrete valuation ring:

We know that R = {ik’,X ‘|k; € K} and an element of R is unit if and only if its
constant term is unit. H(Z;loce XR is the set of all non-units of R. Let f(X),g(X) € R,
set f(X) = X'fo(X),9(X) = X7go(X), where 7,7 > 0 and X { fo(X), go(X). Clearly
we have fo(X) and go(X) are units i R, then we have (f(X)) = (X*.fo(X)) = (X*) and
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similarly (g(X)) = (X7). Now if we have i < j, then (¢(X)) = (X7) C (X?) = (f(X)),
otherwise (f(X)) = (X*) C (X?) = (¢9(X)). Thus R is a discrete valuation ring with

maximal ideal X R.

Example 2.22. Let D = Z) + XQ[[X]], where Z) is the localization of Z at 2Z.
Then D is a non-Noetherian valuation ring:

We clearly have D C Q[[X]]. Let o, € D. Set @« = a+ Xs; and = b+ X s,
where a,b € Z) and 51,5, € Q[[X]]. Since o, 8 € Q[[X]], and Q[[X]] is a valuation
ring, we may choose A € Q[[X]] such that « = A\3. Set A = [+ Xs3, where [ € Q and
s3 € Q[[X]]. @ = AB gives that a = [b. Set a = b= Z—; and | = %, where 2 { as, by
and GCD(ly, 1) = 1.

If 2 41y, then I € Z) hence A € D. So B | ain D. If 2 | Iy, then since
GCD(ly,ly) =1, we have 2 {[;. In the latter case, we have [™! € Z) and so A™' € D.
It follows that aA™ = 3, so a | B in D. Thus D is a valuation ring.

To see D is non-Noetherian, consider the chain

X X X X X
(X)C(ng ,5,.

)C(X,E,—)C...C(X ..,Q—n)

which is clearly infinite. Hence D is a non-Noetherian valuation ring.

To give another example, set D = k + X K[[X]], where K = k(Y) for some inde-
terminate Y such that Y # X. The fact that D is a valuation ring can be similarly

X X X )

obtained as the preceding example. Then if we consider the ideal (X, 3, 32,..., 7, - - -

of D which is not finitely generated. We have that D is also a non-Noetherian valuation
ring.

Now we shall explore the relation between the ideal structure of a valuation ring and
the group structure of the value group of the valuation determined by that valuation

ring.

Theorem 2.23. Let K be a field, and let v be a valuation on K. Denote the value
group and valuation ring of v by G and V', respectively. Then there exists a one-to-one

order-reversing correspondence between the isolated subgroups of G and the prime ideals

of V.

Proof. Let .# and & respectively denote the isolated subgroups of G and the set of
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prime ideals of V. For I € &, set n(I) = {z € V|v(z) ¢ I}, and for P € &, set
k(P) ={a € Gla,—a € v(V'\ P)}.

First of all, we shall show that m and k are well-defined.

Let I € .#. We show that 7([) is a prime ideal of V.

Let x € n(I),y € V. Then v(zy) = v(x) + v(y) > v(x). If we have zy ¢ w(I),
then v(zy) € I, and since v(x),v(y) > 0, then we have v(z),v(y) € I, which is a
contradiction with the fact that v(z) ¢ I or x € w(I). So we must have zy € w([).

If 2,y € w(I), then v(x),v(y) ¢ I. Since v(x +y) > min{v(z),v(y)}, vz +y) € I
implies v(z) € I or v(y) € I, hence v(x + y) ¢ I, thus = +y € n(I).

So w(I) is an ideal of V. Suppose that there exists a unit v € V' such that u € w([),
then v(u) = 0 ¢ I, since every subgroup must contain 0, it is a contradiction, so 7(I)
is proper in V.

Now let z,y € V with z,y ¢ «(I), then v(z),v(y) € I and since I is a subgroup,
then v(x) + v(y) = v(zy) € I, hence zy ¢ w(I). Thus n(I) € Z.

Now let P € &2. We shall show that «(P) is an isolated subgroup of G.

Since 1 € V'\ P, then 0 = v(1) € v(V '\ P), hence 0 € x(P).

Let a € k(P), then by definition a, —a € v(V'\ P), so clearly we have —a € k(P).

Let o, € k(P). Then we have o, 8 € v(V \ P), set o = v(a), = v(b), where
a,b € V'\ P. Since V' \ P is multiplicatively closed, then ab € V' \ P hence v(ab) =
v(a) + v(b) = a+ p € v(V \ P), similarly we have —(a + ) € v(V \ P), hence
a+ f € k(P). So k(P) is a subgroup of G.

Now let ¢ € GT,a € k(P) with g < o. Then a = v(a) for some a € V' \ P and
g = v(z) for some x € V. Since a — g = v(a) —v(x) = v(%) > 0, then ¢ € V, hence
a € (z). Since a ¢ P, then we must have x ¢ P. Thus g = v(x) € v(V \ P) so
g € k(P). Therefore, x(P) is an isolated subgroup of G.

Now we shall show that m and x are inverses of each other.

Let P € &. Our aim is to show that 7 (k(P)) = P.

If x € P, then v(z) € v(P), hence v(z) ¢ x(P), and this implies € 7 (k(P)). So
P C 7w (k(P)). On the other hand, if z € V' \ P, then v(x) ¢ v(P), so v(x) € k(P),
which means x ¢ 7 (k(P)). Hence we have P = 7 (k(P)).

Let I € .. Our claim is that & (7(I)) = I.

Let a € I, then there exists x € G such that v(z) = a. Since v(z) € I, then
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x € V\m(I) and this implies that a = v(z) € v(V \7(I)), so by definition, a € k(7 ([)).
If a € V'\ I, then there exists € Gt such that v(x) =a ¢ I. So x € w(I). Hence
a = v(z) € v(m(I)), which implies that a ¢ (7 (I)). Thus k(w(l)) = I as desired.
Since we know that x and 7 are inverses of each other, showing one of them is
order-reversing is sufficient for us.
Let P,@Q € & with P C ). Our claim is that x(Q) C x(P).
Let o € k(Q), then @ € v(V\ Q) C v(V \ P) by definition, and this gives that
a € k(P), which completes the proof. O

From the correspondence defined in the proof of the theorem, we can say that if a
valuation ring has rank n and if V' is the valuation ring of this valuation, then there
exists a chain P, C ... C P, of prime ideals of V', but no longer such chain exists.

We now show that a Noetherian valuation ring is either a field or has rank one and

is discrete.

Theorem 2.24. A valuation ring which is not a field is Noetherian if and only if it

has rank one and is discrete.

Proof. Let V' be a Noetherian valuation ring and suppose that it is not a field. Let
P be the unique maximal ideal of V. Then P = (a) for some nonzero a € P. By
the Krull Intersection Theorem we have that (| P" = (0). If b € V' is nonzero, then
b = ua™ for some uniquely determined n € N ;Iil a unit u in V. Actually, if K is the
field of fractions of V, then every z € K may uniquely written as x = ua™, where u is
aunit in V and n € Z.

Let U be the multiplicative group of units in V', then ¢ : K*/U — Z defined by
¢(bU) = n if b = ua™, is an order-preserving isomorphism:

¢ is clearly surjective. To see it is injective, let ¢(zU) = ¢(yU) = n, then & = uya”
and y = uga™ for some uqy,us € U. Since g = > € U, then 2U = yU, hence ¢ is
injective. ¢ is order-preserving since if U < yU, then £ € V, and so y = xt for some
t € V. Now if z = uja™ and t = usa™, then since t € V', we have m > 0, and clearly
y = ujuga™ ™ implies that ¢p(zU) =n <m +n = ¢(yU).

Therefore, since V' is order-isomorphic to Z, then V has rank one and is discrete.

For the converse part, let V' be a valuation ring which has rank one and is dis-
crete. Let v be the valuation on K whose valuation ring and value group is V' and Z,

respectively.
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Let I # (0) be an ideal of V. There exists a € I such that v(a) = min{v(b)|b € I}.
Let ¢ € I\ {0}, then v(a) < v(c), hence v(£) > 0. This implies that £ € V' and so
¢ € (a). Since c is an arbitrary nonzero element in I and we also have a € I, then we
have I = (a). Since arbitrary ideal of V' is finitely generated, in fact principal, then V'

is Noetherian. ]

2.2 Integrality

Proposition 2.25. Let R’ be a ring and let R be subring of R, then for any a € R,

the following statements are equivalent:

(1) a is integral over R.
(2) Rla] is a finitely generated R-module.

(3) There exists a subring R" of R containing a, which is a finitely generated R-

module.

Proof. Suppose (1) holds. Then there exist by, ...,b,_1 € R and n > 1 such that by +
bia+...+b, 1a" ' +a™ = 0 holds. Our aim is to show that R[a] = R1+ Ra+...+ Ra".
Let f(X) € R[X] be such that deg f(X) =d > n. Set f(X)=co+ 1 X + ...+ caX?,
then

f((l) = ¢cy+ca+...+ Cd—ladil + Cda,dfn a”
= o+ ca+ ...+ cg1a + cga® " (=bg — bra — ... = by_1a™)

_ / / / d—1
= ¢ tcaa+...+cyqa

By repeating this argument, we finally have f(a) € R14+ Ra+ ... Ra"™. Thus (2) holds.
Since its obvious that (2) implies (3), for the final part, suppose that (3) holds and
let aq,...,a, be the generators of R” as an R-module. For each i = 1,...,n we have

aa; = ;bijaj where bij € Ror (bU - 5ija)aj =0.Ifd= det[bw - 5ija], then daj =0

n

Jj= Jj=1
for each j = 1,...,n. Since all elements of R” can be written as a linear combination
of a;’s, then dc = 0 for all ¢ € R”. In particular, since 1 € R”, then 1d = d = 0. Since
d can be viewed as a polynomial in R[a] at degree n, and since a™ has 1 as coefficient,

then (3) holds. O
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Proposition 2.26. Let R be a subring of a ring R. Let Ry = {a € R'|a is integral over R}.
Then Ry is a subring of R', and R C Ry.

Proof. 1t is clear that R C Ry. Let a,b € Ry. Then R[a] is a finitely generated
R-module and Rla,b] = R[a][b] is a finitely generated R]a]-module. So we have that
Rla, b] is a finitely generated R-module. Since a —b,ab € R|a, b], then they are integral
over R, hence a — b, ab € Ry, which gives that Ry is a subring of R'. O

If R, R and Ry are defined as in the above proposition, then Ry is called the integral

closure of R in R', or just the integral closure of R if R’ is the total quotient ring of R.

Proposition 2.27. Let R C R’ C R” be a chain of subrings. If R' is integral over R

and if a € R" is integral over R', then a is integral over R.

Proof. Since a is integral over R', there exists by, ..., b, € R’ such that by +bja+ ...+
bp_1a" ' +a™ = 0. So a is integral over R[by,...,b, 1]. Hence by the equivalence of (2)
of Theorem , Rlbg,...,by_1,a] is a finitely generated R-module. Since we clearly
have a € R|b, ..., by, al, then by (3) of Theorem [2.25] a is integral over R. O

Proposition 2.28. Let R’ be a ring and R be a subring of R, and let S be a multi-
plicatively closed set in R. Then S™'R may be considered as a subring of ST'R'. In

this case, R' is integral over R implies that S~ R’ is integral over S™'R.

Proof. Let 0g = {r € R|rs =0 for some s € S} and 0y = {r’ € R'|r's = 0 for some s €
S}. We clearly have that 0g € 05 N R. So let @ € 05 N R. Then sa = 0 for some
s € S, and since a € R, then this implies a € 0g. Hence 0g = 05 N R. So the mapping
¢ : ST'R — ST'R' defined by ¢ (%) = ¢ is an injective homomorphism. Since S™'R is
isomorphic to ¢(S™1R), we can identify ¢ with its image, in this way we may consider
S7'R as a subring of ST R’

Now assume that R’ is integral over R. Let ¢ € S™IR', where a € R',s € S. Since
R’ is integral over R then there exist by, ..., b,_1 € R such that bg+bia+...+b,_1a" 1+
a” = 0. By multiplying with 1, we obtain that bgo + (sfll) (%) + (8332) (%)2 + ...+

s

(bn—1> (2)"71 + (%)n = 0 Therefore ¢ is integral over S7IR. O

S S

Lemma 2.29. Let R, S be commutative rings with R C S. Let R’ be the integral
closure of R in S, and let U be a multiplicatively closed set in R. Then U'R' is the
integral closure of U'R in U~1S.
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Proof. Let s € R' be arbitrary. Since s is integral over R, then s" 4+ 7, 18" ' + ... +
ris +ro = 0 where ro,... ;7,1 € R. Let u € U be arbitrary. If we multiply the

equation by uln , then we have

G+ () Q) e (G Q)+ o

So 2 is integral over U™'R. Since s € R’ is arbitrary, then U~' R’ is integral over U™'R.

Now we shall show that * € U-'S, where s € S,u € U is integral over U 'R
implies that 2 € U 1R

Since Z is integral over U~'R, then there exists n € N, rg,...,7—1 € R, ug, ..., Up_1 €
U such that (2)" + (ﬁ) 6 (u—ll) (2) + (u—g> = 0.

Set v =g ... up—1. Then multiplying the above equation by “* gives that
(2)" + (Tﬁ”) (%)n_1 o+ () () + (%) = 0. Thus there exists x € U such
that = ((vs)" 4+ rl,_y(vs)" " + ...+ 7| (vs) +ry) = 0. Multiplying by 2"~ and by re-

arranging the coefficients, we see that xvs is integral in R, hence belongs to R'. Then

S — s o J-lR O

u rou

Corollary 2.30. Let R be a ring and U be a multiplicatively closed set in R. If R is
integrally closed, then U™'R is integrally closed.

Corollary 2.31. Let R be an integral domain with field of fractions K, let L be an
algebraic extension field of K, and let R be the integral closure of R in L. If S is the

set of all nonzero elements of R, then we have ST'R' = L.

Proof. Since K = S™'R, it follows from, Lemma [2.29] that S~ R’ is the integral closure
of K in L, which yields that S™'R’ = L, as desired. O

Proposition 2.32. Suppose R is an integrally closed domain with field of fractions K.
Let L be an extension field of K and let o € L. Then the following statements are

equivalent:
1. « is integral over R.

2. « is algebraic over K and the minimal polynomial m(X) of a over K has coeffi-

cients in R.
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Proof. Since (2) clearly implies (1), then it suffices to show (2) holds under the as-
sumption that a € L is integral over K. Since « is integral over K, then there exists a
monic polynomial P(z) € R[X] such that P(a) = 0. Since we also have P(X) € K[X],
then « is algebraic over K. Let m(X) be the minimal polynomial of o over K[X].
Clearly m(X)|P(X). Let a = ax,. .., o, be all roots of m(X) in an algebraic closure
of K. Since m(a;) = 0 for each i = 1,...,n and m(X)|P(X), then P(c;) = 0 for all
i =1,...,n, hence each q; is integral over K. Set s; = > (=1)ay, ... a for
1<iy <o.<ij<n
every j =1,...,n. Since we have m(X) = X"+ X" ' +.. . +s, € K[X], s; € K for
all j =1,...,n. By the definition of s;, each s; is integral over R. Since R is integrally

closed, then s; € Rfori=1,...,n,so m(X) € R[X] and the proof is complete. [

Corollary 2.33. Let R be an integral domain with field of fractions K, and let R’ be
the integral closure of R in K. Let L be an extension field of K and assume that o € L
is integral over R. Then the minimal polynomial m(X) of o over K lies in R'[X].
Hence each conjugate of o over K is also integral over R. Moreover, the ideal of R'[X]

consisting of those polynomials which have o as a root is principal generated by m(X).

Proof. Applying Proposition for R’ instead of R we obtain the first statement of
the corollary. The second statement then follows easily since the conjugates of a are
those elements of L which are roots of m(X). The last statement follows easily from

the fact that m(X) is the minimal polynomial of a over K. O

Corollary 2.34. Let R be an integrally closed domain with field of fractions K, and let
p(X) € R[X] be a monic polynomial. If P(X) = a(X)b(X) with a(X),b(X) € K[X]
are monic polynomials, then a(X),b(X) € R[X].

Proof. We use induction on n = dega(X). If n = 1, then a(X) = X — ¢ for some
¢ € K. Then a(c) = 0 implies that P(c) = 0, hence c is integral over R. Since R is
integrally closed, we have ¢ € R, therefore a(X) € R[X].

Now let n > 1 and assume that the claim is true for a product P(X) in which one of
the factors has degree less than n. Consider an extension L of K such that L contains
a root « of a(X). Since « is also a root of P(X), it is integral over R, hence by
Proposition it is algebraic over K with the minimal polynomial, say m(X), lying
in R[X]. Clearly m(X)|a(X). Let a(X) = m(X)a;(X). If a(X) = m(X), then we are
done. Otherwise, 1 < dega;(X) < dega(X), and since P(X) = a;(X)(m(X)b(X)),
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we have a; € R[X] by induction hypothesis . Since a;(X) and m(X) lie in R[X], then
we have a(X) € R[X]. By symmetry, we also see that b(X) € R[X], so the proof

complete. O

A part of the following corollary states an important fact that if we have an integral
extension R C R’ of domains where R is integrally closed, any prime ideal of R extends
to R’ properly. This fact will be used frequently, without giving any reference, when we
consider the case where R is a domain with field of fractions K and R’ is the integral

closure of R in an extension field of K.

Corollary 2.35. Let R C S be an integral extension of rings where S is an integral
domain and R s integrally closed, and let K be the field of fractions of R. If s € PSS,
for some P € Spec(R), then with the exception of the leading term, all the coefficients
of the minimal polynomaial of s over K are elements of P. In particular, PS is a proper

ideal of S.

Proof. We can write s = p1s1 + ... pmS, for some py,...,p, € P and sq,...,8, € 5.
Since $1,...,s, are all integral over R, the subring T = Rl[sq,..., s, is a finitely
generated R—module. Let s € PT. Using the determinant argument, we can find a

monic polynomial
p(X)=X"+a, 1 X"+ ..+ X +ag

such that ag,...,a,-1 € P and P(s) = 0. Let m(X) be the minimal polynomial of
s over K. Then m(X)|p(X). Write p(X) = m(X)b(X) for some b(X) € K[X]. By
Corollary m(X),b(X) € R[X]. If we write a(X) for any a(X) € R[X] to denote
the image of a(X) in (R/P)[X] under the natural homomorphism R[X] — (R/P)[X],

we obtain

2" = m(X).b(X),

which gives that m(X) and b(X) are powers of X, completing the proof. ]

2.3 Fractional Ideals

Let R be a ring, K be the total quotient ring of R and S be the set of regular elements
of R. Then a subset A of K is called a fractional ideal if it satisfies the following
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conditions:
(1) Ais an R-module, that is, if a,b € A and r € R, then a — b,ra € R.
(2) There exists d € S such that dA C R.

Note that for condition (2), it is enough to find x € K such that xA C R. Since we
can write r = g, where d, s € R, then d = sz implies that dA C s(zA) C R.

The ideals of R are also fractional ideals of R since if I is an ideal of R, then
11 = I C R. These ideals of R are called integral ideals instead of fractional ideals.

If K is the total quotient ring of R, and « € K, then R = {zr|r € R} is a fractional
ideal of R, and denoted by (x), such a fractional ideal of R is called principal.

Summation and multiplication of fractional ideals of R are defined as for integral
ideals of R. If A and B are fractional ideals of R, then A + B, AB and AN B
are also fractional ideals of R. Moreover, if B contains a regular element of R, then
[A: B] ={z € K|zB C A} is a fractional ideal of R:

[A : B] is clearly an R-module. Suppose that b and d are regular elements of R
such that b € B and dA C R. Then we have bd[A : B] C dA C R. Hence [A: B] is a
fractional ideal of R. We also know that a fractional ideal of R is containing a regular
element of R if and only if it contains a regular element of K, the total quotient ring
of R.

The fractional ideal [A : B] need not to be the same as (A : B), since (A : B) is
defined as (A: B) ={z € RlzBC A} =[A: B|NR.

We shall denote the set of all nonzero fractional ideals of R by F(R).

For A € F(R), we say that A is invertible if and only if there exists a B € F(R)
such that AB = R.

Proposition 2.36. Let R be a ring and let K be its total quotient ring.

1. If A € F(R) is invertible, then A contains a regular element of R and is finitely

generated as an R-module.

2. Let A,B € F(R) be such that A C B and suppose that B is invertible. Then
there exists an integral ideal C' of R such that A = BC.

3. Let A € F(R). Then A is invertible if and only if there exists B € F(R) such
that AB = (d) for some regular element d of K.
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Proof.

1. Let B € F(R) be such that AB = R. So we have 1 = Zazb for some ay, ..., a, €
A by,...,b, € B. Let x € A be arbitrary, then xb € AB = R, hence x =
Zaz(xb ). So ay,...,a, generate A as an R-module. Now suppose that dB C R
for d, a regular element of R. Then d € dR = dAB = A(dB) C AR = A. Thus

A contains a regular element of R.

2. Since B is invertible, there exists B’ € F(R) such that BB’ = R. Set C' = AB/,
then since A C B, we have C = AB’ C BB’ = R. It follows that BC =
B(AB') = A(BB') = AR = A.

3. Let = be a regular element of K and B € F(R) be such that AB = (), then
A(Bx™') = R, hence A is invertible. Now let A is invertible, then there exists
C' € F(R) such that AC = R. If x € K is a regular element of R, then
A(Czx) = (), hence B = C'z is the desired fractional ideal of R.

Let A € F(R) be invertible, then by (1) of Proposition [2.36], we have [R : A] €
F(R).

Proposition 2.37. Let A € F(R) be invertible and let B € F(R) be such that AB = R,
then B = [R : A].

Proof. Since we have AB = R, then B C [R : A]. We also have A[R : A] C R which
implies that [R: A] = R[R: A] = BA|[R: A] C BR= B. Hence B=[R: A]. O

Let A € F(R) be invertible. We shall denote [R : A] by A~ and call it the inverse
of A. If A, B € F(R) are both invertible, then AB is invertible, and (AB)™' = A~'B~1.

Let K be the total quotient ring of R, and let x € K. Then (z) is invertible if and
only if x is a regular element of K. In the latter case (z)~! = (z7!).

Finally, let A;,..., Ay € F(R) and set A = A;... A;. Then A is invertible if and
only if A; is invertible for all i = 1,... k. If A is invertible, then A;" = ATTA;.

Let R be an integral domain. If A, B € F(R), then all A+B,AB, ANB arjlzl [A: B]
are fractional ideals of R. We have seen in Proposition that invertible fractional

ideals are finitely generated. Now we investigate the integral domains for which the

converse 1s true.
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2.4 Priifer Domains

Definition 2.38. We call an integral domain R as Priifer domain, in the case that

each finitely generated ideal of R is invertible.

Let R be a Priifer domain and let A € F(R), then there exists a regular element
d € R such that dA C R. Since R is Priifer, then dA = (d)A is invertible. Both dA
and (d) is invertible gives that A is invertible.

Before giving a characterization of Priifer domains, we mention a non-Noetherian

example of a Priifer domain, which is actually a Bezout domain.

Example 2.39. [9, p. 775, Exercise 23|Let & be the ring of integers in an algebraic

closure Q of Q. Then € is a non-Noetherian Bezout domain.

Now we shall obtain some equivalent conditions for an integral domain to be a

Priifer domain.

Theorem 2.40. Let R be an integral domain, then the following statements are equiv-

alent:

(1) R is a Prifer domain.
(2) A nonzero ideal of R which is generated by two distinct elements is invertible.

(3) Let A, B,C are ideals of R such that A # (0). If AB = AC and A is finitely
generated, then B = C'.

(4) For P € Spec(R) with P C R, Rp is a valuation ring.
(5) If A, B and C are ideals of R, then A(BNC)=ABnN AC.
(6) If A and B are ideals of R, then (A+ B)(ANB) = AB.

(7) If A is a finitely generated ideal of R and B is an ideal of R with B C A, then
there exists an ideal C' of R such that B = AC.

(8) Let A, B and C are ideals of R. If C is finitely generated, then ((A + B): C’) =
(A:C)+ (B:C).

(9) Let A, B and C are ideals of R. If A and B are finitely generated, then (C’ :
(ANB)) =(C:A)+(C: B).
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(10) Let A, B and C are ideals of R. Then AN(B+C)=(ANB)+ (ANC).

Proof. We begin the proof by showing that (1) and (2) are equivalent. Clearly (1)
implies (2).
(2) = (1) : Assume that (2) holds and let C' = (cy,...,¢,) be a nonzero ideal of
R. We use induction on number of generators to see that C' is invertible. The claim
is true for n = 1 and also n = 2 by our assumption. Let n > 2, and assume that
every nonzero ideal generated by n —1 elements is invertible. We may also assume that
C1,...,0, are all nonzero. Now set A = (¢1,...,¢,-1), B = (¢2y...,¢n), D = (c1,¢n)
and F =cA'D™' +¢,B~'D~!'. Our aim is to show that FC = R.
CE = C(aA7'D™Y) +C(e,B7'D™)
= (A4 () A" DY) + (B + (1)) (B~ 'D7)
= D' +cic,A'D ' +¢ci¢,B'D ' +¢,D7!

= DY R+c,B ) +c, DY R+ cATY)
Since we have (¢1) C A, (¢,) C B, and A, B are invertible ideals, then ¢; A7, ¢, B~ C

R this gives that CE = ;D' + ¢,D™' = (¢; + ¢,)D™' = DD™! = R. Hence C is
invertible.

Now we have that (1) and (2) are equivalent.

(1) = (3) : Assume that AB = AC where A is finitely generated, and nonzero.
Since R is a Priifer domain, then A is invertible, hence B = A~ (AB) = A7 (AC) = C.

(3) = (4) : Assume that (3) holds. In this case if A is finitely generated, then
AB C AC implies B C C, since if AB C AC, then AC = AB+ AC = A(B+ (), by
assumption it gives that C' = B + C, hence B C C.

Now let P € Spec(R) be proper in R. We shall show that if %,% € Rp, we have
either (2) C (4) or (2) C (). However, s,t ¢ P implies that 1,1 are units in Rp,
hence it suffices to show that we have either aRp C bRp or bRp C aRp. If we have
either a = 0 or b = 0, our claim is true, so we may further assume that a and b are
nonzero.

It is easy to check that we have (ab)(a,b) C (a? b?)(a,b), and by (3), it implies
(ab) C (a?b%). So ab = a*z+b*y for some z,y € R. Tt follows that (yb)(a,b) C (a)(a,b):

Let (ybz)(au + bv) € (yb)(a,b), where z,u,v € R. Since we have b’y = ab — a’z,
then

(ybz)(au + bv) = abyzu + b*y(zv) = abyzu + (ab — a*x)(2v) = abyzu + abzv — a*xzv €
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(a)(a, ).

Since (yb)(a,b) C (a)(a,b) and (3) holds, then (yb) C (a), which implies yb = au
for some u € R. So ab = wa® + yb? = xa® + abu, or za®> = ab(1 — u)

Now if u ¢ P, then yb = au implies that a = b(%) € bRp. If u € P, then 1 —u ¢ P,
hence za* = ab(1 — u) implies that b = a({%) € aRp.

(4) = (5) : Assume that (4) holds, and let P € Spec(R). If A, B, C' are ideals of R,
then A(BNC)Rp = ARp(BRp N CRp). Since Rp is a valuation ring, we either have
BRp C CRp or CRp C BRp. Without loss of generality, suppose that BRp C C'Rp,
then clearly ARpBRp C ARpC Rp. Hence;

A(BNC)Rp = ARp(BRpNCRp)
= ARpBRp
= ARpBRpNARpCRp
= ABRpN ACRp
= (ABNAC)Rp

Since we have A(BNC)Rp = (AB N AC)Rp for arbitrary P € Spec(R), then we
have A(BNC)=ABnNAC.

The result can be obtained similarly if we suppose CRp C BRp.

(5) = (6) : Suppose (5) holds, then we have (A+ B)(ANB) = (A+B)AN(A+B)B.
Since AB C A(A+ B) and AB C (A+ B)B, then AB C (A+ B)(AN B).

For the converse inclusion, let (a +b)x € (A+ B)(AN B), where a € A,b € B,x €
AN B. Then ax € AB and bx € AB, hence (a + b)x € AB, which proves that (6)
holds.

(6) = (2) : Let C' = (¢1,¢2) be a nonzero ideal of R. If ¢; = 0 or ¢ = 0, then C' is
principal hence invertible. So we shall assume that both ¢; and ¢y are nonzero. Then

clearly A = (¢;) and B = (¢p) are invertible. Then ,
C(ANB)A™'B™' = (A+ B)(ANB)A™'B™' = ABA™'B™' = R

Hence C'is invertible.
Up to now, we have shown that the conditions (1) through (6) are all equivalent.

Now we shall show that (7) is also equivalent to these:
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(1) = (7) : Let R be a Priifer domain, let A and B be ideals of R such that A is
finitely generated and B C A. If A = (0), then B = AC for every ideal C of R. If
A # (0), then A is invertible since it is finitely generated. By Proposition , there
exists an ideal C' of R such that, B = AC.

(7) = (4) : Assume that (7) holds and let P € Spec(R) with P C R. We shall show
that if a,b € R, then either aRp C bRp or bRp C aRp. We clearly have (a) C (a,b)
hence by our assumption, there exists an ideal A of R such that (a) = (a,b)A. Let
a = av + by, for v,y € A. If we have v € P, then 1 —x ¢ P, hence a = b= € bRp.
Since we have bA C (a), then bx € (a), and so bz = au for some u € R. In the case
that x ¢ P, we have b = a> € aRp. Hence Rp is a valuation ring.

Now we have the equivalence of (1) through (7).

To complete the proof, we first show that (4) implies each of (8),(9) and (10), and
after that each of these implies one of the equivalent conditions we proved above.

(4) = (8) : Let A, B and C be ideals of R such that C' is finitely generated. Let
P € Maz(R). Under the assumption that (4) holds, we have Rp is a valuation ring,
then the equality in (8) holds for ideals of Rp. After we show that (ARp : BRp) =
(A : B)Rp for A, B are ideals of R with B finitely generated, we shall complete the

proof as following:

(A+B):C)Rp = ((A+ B)Rp: CRp)
(ARp + BRp : CRp)
— (ARp:CRp)+ (BRp: CRp)
(A:C)Rp + (B: C)Rp

(

(A:C)+(B:C))Rp

Since the equality holds for all P € Max(R), then (A+ B):C)=(A:C)+(B:C).

Now we shall prove that (ARp : BRp) = (A : B)Rp for A, B ideals of R with B
finitely generated:

Let £ € (A: B)Rp with z € (A: B). Since B C A, then clearly xBRp C ARp,
thus x € (ARp : BRp). For the converse inclusion, suppose that B = (by,...,by). Let
L € (ARp : BRp), where r € R,s € R\ P. Since for all i = 1,.. .k, 2% € ARp, then
T—bi = ¢ forali=1,...kwitha € At; € R\ P. Hence there exist s, € R\ P

S

such that rb;t;s; = sa;s, € A. Set 8" =t;... 1.8} ...s,. Clearly we have s” € R\ P.
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We have s"rb; € A for all i = 1,... k. It follows that s"rB C A since {b;}%_, is the
set of generators of B, hence s"r € (A : B). Therefore, £ = £ € (A : B)Rp since
s"r € (A: B)and s"s € R\ P. Thus we have the desired equality.

(4) = (9) : Suppose that (4) holds. Let P € Spec(R) and let A, B and C be ideals
of R such that A and B are finitely generated. Then

(C:(ANB)Rp C (CRp: (ANB)RP)

CRp : ARp) + (CRp : BRp)
C:A)Rp+ (C:B)Rp
(C:A)+(C:B) R

C: (AN B))Rp

~—~ I~ I~ I~

-

Thus we have (C': (ANB))Rp = ((C: A)+ (C : B)) Rp. Since it is true for arbitrary
P € Spec(R), then we have the desired equality.

(4) = (10) : Assume that (4) holds, let A, B and C be ideals of R, and let P €
Maz(R). Then we have

(AN(B+C)Rp = ARpN (B +C)Rp
— ARpN (BRp +CRp)
= (ARpN BRp) + (ARp N CRp)
= (ANB)Rp+(ANC)Rp
= (ANB)+(ANC))Rp

Since the equality holds for arbitrary P € Max(R), then the desired equality holds.
(8) = (2) : Let a,b € R be nonzero, and suppose that (8) holds. Then we have

R = ((a,b )
= ((a) + a,b))
= ((a):( ) ((b) : (a, b))
= ((a):( ) ((6) = (a))

By this equality 1 = x 4+ y for some z,y € R such that zb € (a) and ya € (b). So we
have that (xb)b C (ab) and (ya)a C (ab), and this implies that (a,b)(bx,ay) C (ab).
But since 1 = x + y, then ab = abx + aby, hence we have that (ab) = (a,b)(bz, ay).
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Now since (ab) is invertible, then (a,b) is invertible.

(9) = (2) : Let a,b € R be nonzero. Assume that (9) holds. Then

R = ((a)

So the result follows as above.
(10) = (4) : Assume that (10) holds. Let P € Spec(R) be proper in R and let
a,b € R. Since a € (b) + (a — b), then we have

(@) = (a)n((b)+ (a—0))
= ((@)n®) + ((a)N(a—1b))

Let a =t + ¢(a — b) where t € (a) N (b),c € R and c¢(a — b) € (a). Set t = bu for some
u € R. Since ca—cb € (a), then ¢b € (a), set cb = av for v € R. Since a =t + c(a —b),
then a(l —c¢) =t —cb= (u—c)b € (b).

If c€ P, then 1 —c¢ ¢ P, hence we have that a = b%=¢ € bRp. If ¢ ¢ P, then

l1—c

b=a? € aRp. Hence Rp is a valuation ring. O

The following corollary says that, to obtain R is a Priifer domain, it is sufficient to

check the localizations only at maximal ideals of R instead of at all prime ideals of R.

Corollary 2.41. Let R be an integral domain. Then R is a Priifer domain if and only
if Rp is a valuation ring for all P € Max(R).

Proof. Since for a Priifer domain R, all localizations of R at prime ideals are valuation
rings, it is enough for us to check the sufficiency part. Let P € Spec(R). Let P’ €
Mazx(R) be such that P C P’. Since we have R\ P C R\ P, then we clearly have
Rpr C Rp, and Rp: is a valuation ring by our assumption. Now by Corollary [2.3] we
have that Rp is a valuation ring, since it is an overring of the valuation ring Rp,. Hence
we have Rp is a valuation ring for P € Spec(R), then the equivalence of (1) and (6) of

Theorem [2.40] completes the proof. m

Lemma 2.42. Let R be an integral domain. The following statements hold:

(1) R= () Re.

PeMaz(R)
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(2)
(3)

Let I be an ideal of R, then I = () (IRpNR).

PeMazxz(R)

Let Q be an ideal of R such that \/Q = P, a prime ideal of R. If QR is
PRy-primary for each M € Max(R) with M 2 P, then Q is P-primary.

Proof. (1) Since R C Rp for all P € Max(R), then R C (] Rp. Now let

PeMaz(R)

a€ (] Rpbearbitrary. Set I = {z € Rjza € R}. We check if I is an ideal
PeMaz(R)

of R:

Clearly 0 € I, hence I # ().

Let z € I,r € R. z € I implies za € R, then rexa € R, and so rx € I.

If a,b € I, then acr,ba € R. Tt follows that aa+ba = (a+b)a € R, thus a+b € .
Hence [ is an ideal of R.

If we show that I = R, then 1 € I, and so la = a € R, which gives the desired
equality since « is an arbitrary element of the intersection. So by the way of
contradiction, suppose I C R. Then there exists M € Max(R) such that I C M.
Since o € Ry, then o = f? where z € R,y € R\ M. Since ya = x € R, then
y € I C M, but this is a contradiction since y ¢ M. So we have I = R, and the

proof is complete.

Set Maz(R) = {Px}xea. Then we clearly have I C IRp, N R for all A € A.
Suppose that () (IRp, NR)\ I # 0 and let x € () (IRp, N R)\ I. Since z ¢ I,
then (I : (:c))AizAproper in R. So there exists )\O)EAA such that (1 : (z)) C Py,.
Since x € IRp, , then there exists c € R \ Py, such that cx € I. It follows that
c e (I:(z)) C Py, which contradicts our choice of ¢. Hence such an = doesn’t
exist, so the equality holds.

Since we have @ = [ (QRy N R), if we suppose zy € @ with x ¢ P, then
MeMaz(R)

2 € QRyy for all M € Max(R) with M O P. x ¢ P implies £ ¢ PRy, since
otherwise, if £ = 2 for some p € P,r € R\ M, then there exists u € R\ M
such that uxr = up € P and since ur € R\ M C R\ P, we have z € P, a
contradiction. Since we have $ ¢ PRy, then since QRyy is PRy-primary, we

have ¢ € QRy, and this is true for all M € Max(R) with M 2 P. Clearly,
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y € QRy N R for all M € Max(R) with M O P. So by (2) of this lemma, we
have y € @, hence @) is P-primary.
]

Theorem 2.43. Let R be a Priifer domain and let P € Spec(R). Then the following

conditions hold:
(1) If Q is a P-primary ideal of R and x € R\ P, then we have Q = Q[Q + (x)].
(2) The set of P-primary ideals of R is closed under ideal multiplication.

Proof. Let M € Max(R) be arbitrary. The first claim is clear if @ Z M, since it
implies QRyr = Q*Ryr = Ry So assume that Q € M. Then since ) is P-primary,
we have QR is PRy-primary in Ry;. Since Ry is a valuation ring and x ¢ PRy,
then by Theorem , we have QRy = Q(x)Rys. This equality holds for arbitrary
M € Maz(R), so we have Q = Q(x). Since Q* C Q, then Q = Q* + Q(x).

For the second claim, let )1, Q2 be P-primary ideals of R. Then we clearly have
Q1 Ry and Q2 Ry, are PRy-primary ideals. Since R, is a valuation ring, then by
Theorem we have (Q1Ry)(Q2Ry) = Q1Q2Ry is PRy-primary for all M €
Spec(R) with M D P. We clearly have /Q,Qs = P, so by (3) of Lemma [2.42] we have
(Q1Q)> is a P-primary ideal of R, hence product of P-primary ideals is P-primary. [

Let R be a Priifer domain. Let P € Spec(R) be such that there exists a P-primary
ideal of R which is different from P. To obtain some information about the P-primary
ideals of R, we shall use the correspondence between the P-primary ideals of R and
the PRp-primary ideals of Rp. First of all, the set of P-primary ideals of R is totally
ordered by inclusion, and as a result of Theorem if P is the intersection of all
P-primary ideals of R, then P is prime and there is no prime ideal between P and P.
Hence the valuation ring Rp/ PRp has rank one.

Let x: R - Rp — Rp/ PRp be the composition of the natural homomorphisms.
If I is an ideal of R, then we shall use the notation /* instead of x(I). In this case,
there is a one-to-one order preserving correspondence between the P-primary ideals ()
of R and the P*-primary ideals Q* of R*. Under this correspondence ) and * are the
corresponded ideals of each other. This correspondence gives us the ability to focus

only rank one valuation rings to prove some results on Priifer domains as below.
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Lemma 2.44. Let V be a rank one valuation ring and let P be its mazximal ideal. Let

Q@ be a P-primary ideal of R. Then following statements hold:

1 IfQ # Q2 then Q" =0.

n>1

2. If for some i € N, Q' = Q! | then Q = Q*> = P

Proof. By Theorem [2.11] we have (| Q" is a prime ideal of V. Now if Q # @Q?, then

n>1

Q™ C @ C P, and since V has rank one, we have [ Q™ = 0. Suppose that there

n>1 n>1

exists i € N such that Q' = Q! then (| Q" = Q' is a prime ideal of V. Since V is

n>1
an integral domain, then Q' = 0 implies Q = 0, so we must have Q¢ = P. Therefore

we have P=Q'C Q"' C...C Q C P or simply Q = Q* = P. O

Proposition 2.45. Let R be a Priifer domain. If Q) is a P-primary ideal of R, then
Q" € Spec(R).
n=1

Proof. Observe that we immediately have

QQ” c [(ﬁ@“)}zp] NRC (ﬁ(@m)n) "R

On the other hand, since Q™ is a P-primary ideal of R by Theorem m (2), we also

have

< ﬁ(@Rﬂ”) NRCQ"R,NR=Q"

n=1

for each n > 1. It follows that

fle“: {(ﬁ@”)h’p}m: ((_] QRp) )

If P and the homomorphism # are defined as above, then the correspondence con-

structed by * and Lemma complete the proof. [

Now we shall give a characterization of Priifer domain in terms of their overrings.

Before this, we need some definitions and theorems.

Theorem 2.46 (The Lying-Over Theorem). Let R be a ring and let R be its
subring. If R’ is integral over R, then for each P € Spec(R), there ezists P € Spec(R')

such that PPNR = P. Moreover, P is a maximal ideal of R if and only if P' is a maximal
ideal of R'.
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Recall that an R-module M is flat if for each embedding f : Ny — Ny of R-
modules, 1, ® f : M ®g N; — M ®pg N5 is also an embedding, where 1,; is the identity

homomorphism of M.
Definition. An overring T of a ring R is called a flat overring, if T" is a flat R-module.

Lemma 2.47. Let R be a ring and M be an R-module. Then there is a group isomor-

phism ¥ : M ®r R — M defined by V(m ® a) = ma for alla € R and m € M.

Lemma 2.48. Let R be a ring and M be an R-module such that, for an ideal I of R
and f: I — R given by f(a) =a for alla € I, 1, ® f is injective, then M is flat.

Although flatness of a module mostly defined homologically, we shall give an element-

wise characterization of flatness which is useful for our study.

Lemma 2.49. Let R’ be a ring and let R be a subring of R, let x1,...,x, be indeter-
minates. Then R' is a flat R-module if and only if for every solution cy,...,c, in R’

of a system of equations

n
E ria;n =0,h=1,...,r
i=1

where a;, € R for each i and h, we have dy,...d, € R and bj; € R for each i and j
such that

k n
Ci:Zdjbﬁ,izl,...,n andeﬁaih:O,j:1,...,k,h:1,...,7".
j=1 i=1

Proposition 2.50. Let R be an integral domain, and let T' be an overring of R. Then

the following statements are equivalent:
(1) For P € Spec(R), either PT'=T or T C Rp holds.
(2) Forall 3 € T withz,y € R, (y:x)T =T.

Proof. First, suppose that (1) holds. Let % € T and by the way of contradiction,
suppose that (y : )T # T. Then there exists P € Spec(R) such that (y : z) C P
and PT # T. By our assumption, 7" C Rp and so 5 € Rp. Hence there exist
a € R,s € R\ P such that v s and it follows that for some v € R\ P we have
zsu = ayu € (y). So we have su € (y : x) € P, which is a contradiction. Thus

(y:x)T=T.
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Now assume that (2) holds. Let P € Spec(R) with PT # T. Our aim is to show
that 7" C Rp. So let £ € T. Then (y : )T = T and this gives (y : ) € P, since
otherwise (y : )T = T implies PT = T, a contradiction. Now let u € (y : z) \ P, then

ux = yr for some r € R. So we have % = - € Rp since u ¢ P, hence T C Rp. O

Proposition 2.51. Let R be an integral domain and T" be an overring of R. Then T
is a flat overring if and only the equivalent conditions of Proposition [2.50 holds for T

Proof. First suppose that 7' is a flat overring of R. Our aim is to show that condition

(1) of Proposition [2.50| holds. If ceT, then y < ) —x1 =0, so by Lemma [2.49| there

z
Yy

exists zjr € R,j=1,...,r,k=1,2 and by, ...,b, € T such that

r

z — L
i ijzﬂ’
J=1
,
1L = 2bizs,
=1
zj1y — zjpr = 0, 7=1,...,r

Let P € Spec(R). In the case that zj, € P, for j = 1,...,r, then we clearly have
PT =T. So suppose zj2 ¢ P for some j = 1,...,r. It follows that (y : z) P and
hence, we have either PT' = T or (y : ®) € P for all £ € T. 1If PT" =T, then we
are done, so suppose that (y : z) € P for all % € T. For each % € T, there exists
s € (y: x)\ P and this gives that, there exist a € R such that ay = sz, since s € R\ P
we have that % = 2 € Rp.

For the converse part of the proof, suppose that condition (2) of Proposition
holds for T'. By lemmas and [2.48] it suffices to prove that for an ideal I of R, the
homomorphism ¢ : I @z T — T given by ¢(a ® b) = ab for all a € I,b € T is injective.

So let ¢ € I ®g T, then there exist a; € I,b; € T for + = 1,...,s such that
c = ilai ® b;. There exist b,cy,...,c; € R such that b; = ¢ for i = 1,...,s; thus

1

c=>0;® % By our assumption, (b: ¢;)T =T for i =1,...,s. It follows that if we
i=1

set C'= [)(b: ¢;), then we have CT = T. Now suppose that ¢(c) = ¢(3 a; ® ¢) =0,
! i=1

=1

that is %% = 0. Let d € C, so we have dc; € (b) for i = 1,...,s, hence % € R for
=1

1=
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t=1,...,s; thus

de = Yuelh = S(4He)

=

s
I

—
o

I
N
s

]
Q
I3
~_
®
—_
I
o

It follows that ¢C' =0 and so 0 = 07 = ¢C'T = ¢T'. Since ¢ € c¢T', then we have ¢ = 0,
which gives that ¢ is injective. Hence T is a flat R-module. O

Proposition 2.52. Let R be an integral domain and T be an overring of R. Then the

following statements are equivalent:
(1) T is a flat overring of R.
(2) Tp = Rpng for all P € Max(T).

(3) T: ﬂ RPHR-

PeMax(T)

Proof. Assume that T is a flat overring of R and let P € Max(T). Our aim is to show
that (2) holds. We clearly have Rpnr C Tp. So let % € Tp, where z,y € T' with y ¢ P.
Then there exist u,v,s € R such that x = % and y = 2. Set C' = (s : u) N (s : v).
By Proposition2.51 we have CT = T, thus C ¢ PN R. Let z € C'\ (P N R). Then
zx,zy € R and zy ¢ P, hence zy ¢ PN R. It follows that + =%, € Rpnp, and this
gives Tp C Rpnpg.

Now suppose (2) holds, then since we know T'= |  Tp, by condition (2), this
PeMax(T)

isT= () Rpnr. So (2) implies (3).
PeMax(R)
Finally, suppose (3) holds. Let @ € Spec(R) be such that QT # T. Then QT C P
for some P € Max(R) and so Q@ € PNR. This gives Rpnr C Rg. But since T' C Rpng,

then we have T' C Rg. Hence T is a flat overring of R. O]

Proposition 2.53. Let R be an integral domain and let T and T' be overrings of R
such that T CT'. Then the following statements hold:

(1) T" is a flat overring of R implies that T is a flat overring of T

(2) IfT" is a flat overring of T and T is a flat overring of R, then T" is a flat overring
of R.
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Proof. For the first part, assume that 7" is a flat overring of R. Let a,b € T be such
that ¢ € T". Since a and b are both elements of the field of fractions of R and finitely
many elements of K can be written in a common denominator, then we can write a = ¢
and b = g, where s,c,d € R. Then we have § = § € T". Hence by Proposition m,
we have (d:¢)T =T. So there exist t1,...,t € T’ and uy,...,u € (d : ¢) such that
1= Zk:tlul Since u; € (d : ¢), then w;c € (d) = Td for i = 1,...,k. It follows that
U;a é:%b fori=1,... k. Hence, (Tb: Ta)T" =T'. Therefore, T" is a flat overring of
T.

For the second part, let P” € Max(T'). Set P’ = P"NT and P = P'NR. Clearly we
have P’ € Max(T) and P € Max(R). Moreover, we have P=P' NR=P'NTNR =
P"N R. Since T" is a flat overring of 7" and for P” € Max(T"), P’ = P" N T holds,
then by Proposition 2.52, we have (I")p» = (T)ps. Similarly since 7' is a flat overring
of R, and we have P’ € Max(T), then again by Proposition P = P'N R implies
that (T')pr = Rp. Hence we have (T")pr = Rp for arbitrary P” € Maz(T"). It again
follows from Proposition that, 7" is a flat overring of R. ]

Theorem 2.54. The only integral flat overring of an integral domain R is R itself.

Proof. Let R be an integral domain and 7" be a flat overring of R. Let % € T, then by
Proposition 2.51] we have (y : )T = T. If P € Spec(R), then by Lying-Over Theorem,
there exists P’ € Spec(T') such that P' C T and P' N R = P. Since PT C P’, we have
PT # T. It follows with the fact (y : )T = T that (y : x) is not contained in any
prime ideal of R, hence (y : ) = R. Thus 1z € (y), and this implies § € R. Hence
T =R. [

Theorem 2.55. Let R be an integral domain. Then R is Priifer if and only if each

overring of R is a flat R-module.

Proof. Suppose first that each overring of R is flat. Let P € Max(R). By Proposition
2.53] since Rp is an overring of R and every overring of R which contains Rp is flat,
then every overring of Rp is flat. Our aim is to show that Rp is a valuation ring, so
let a,b € Rp be such that aRp € bRp. If b = 0, then we clearly have bRp C aRp,
and this is what we aim to show, hence let b # 0. We have (bRp : aRp) # Rp, and
so (bRp : aRp) C PRp, since PRp is the unique maximal ideal of Rp. The ring
Rp[4] = {f($)|f(X) € Rp[X]} is an overring of Rp, so it is a flat overring of Rp.
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By Proposition [2.51], since § € Rp[}], we have (bRp : aRp)R,[}] = Rp[§]. So we
have 210, + ... + z,b, = 1 for some x1,...,7, € (bRp : aRp) and by, ..., b, € Rp[}].
For ¢ = 1,...,n there exists a;; € Rp where j = 1,...,s for some s € N such that

bi = > a;j($)’. Then we have 1 = Y x;b; = Yoy a;;(%) = > d;($)? where d; =
= < ! =

=1 =1 j=
> wa;; € (bRp : aRp) for j =0,...,s. Since (bRp : aRp) # Rp, then d; is not a unit
i=1
in Rp for j =0,...,s. Since dp is not a unit, then 1 —djy is a unit in R,. If we multiply

the equality by (1 — dp)*~*(2)*, then we have

(1= do) <g> ) —dy (1 do) (g) )5_1 o dy(1—dp) T =0

Thus (1 — do) (2) is an integral element over Rp. Since Rp [(1—do) (2)] is a flat

a

overring of Rp, by Theorem m, Rp = Rp [(1 —do) ()], hence (1 — do) (£) € Rp.
Since 1 — dj is a unit in Rp, then we have b € aRp or equivalently bRp C aRp. Hence
the localization Rp at an arbitrary prime ideal P is a valuation ring. Therefore, R is
a Priifer domain.

Now assume that R is a Priifer domain, and let 7" be an overring of R. Let P €
Max(T). Clearly Tp is an overring of the valuation ring Rpng, hence Tp is a valuation
ring.

Let x € Tp. If x ¢ Rpng, then since Rpng is a valuation ring, we have % € Rpnr
and since it is not a unit in Rpng, then % € (PNR)Rpnr € PTp. This is a contradiction

since x € Tp, hence % is a unit in Tp. So Tr = Rpng. Since this is true for arbitrary

maximal ideal of T', then T is a flat overring of R by Proposition [2.52] O

The following two corollaries can easily be obtained from Theorem [2.55] its proof,

and Proposition [2.52]
Corollary 2.56. Fach overring of a Priifer domain is a Priifer domain.

Corollary 2.57. Let R be a Prifer domain and T' be an overring of R. If ' = {P €
Spec(R)|PT # T}, thenT = [ Rp.

pell

We shall give another characterization of Priifer domains in terms of their overrings.

Theorem 2.58. Let R be an integral domain. Then R is a Prifer ring if and only if

each overring of R is integrally closed.
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Proof. Let R be a Priifer domain, then by Corollary [2.57] each overring of R is an
intersection of some valuation rings. Since valuation rings are integrally closed by
Proposition the same is true of their intersection R.

Now assume that each overring of R is integrally closed. Let P € Maxz(R). Our
aim is to show that Rp is a valuation ring, for once this is done, R becomes Priifer
since P is an arbitrary maximal ideal of R. Let K be the field of fractions of R and
let « € K\ Rp be nonzero, we shall show % € Rp. Since Rpla?] is an overring of Rp,
then it is integrally closed. Clearly a is integral over Rpla?], hence a € Rp[a?]. Then
a = by +bia®+ ... +b,a® for some by, ..., b, € Rp. Multiplying by 62" ! /a®", we get
(%0)2” — (%0)27171 + b1bg (%0)2”72 + ...+ bnbg"_1 = 0. Hence %0 is integral over Rp, so
it belongs to Rp. Now if %0 is unit in Rp, then a € Rp. If %0 is not a unit in Rp, then

1— %0 is a unit in Rp. Multiplying the equation which we express a in terms of powers

2 1
of a* by —, we have

1 2n—1 1 2n—2
(1_@) (_) —blbo(—) -
a a a

Since (1 — %0) is a unit in Rp, then % is integral over Rp, thus % € Rp. So Rpis a

valuation ring and the result follows. O]

2.5 Dedekind Domains

Definition 2.59. An integral domain is said to be a Dedekind domain, if every ideal

of R is a product of prime ideals.

Proposition 2.60. Let R be an integral domain and let I be a proper ideal of R such
that I = Py...P,, where all P;’s are invertible prime ideals of R. Then this is the
unique way of expressing I as a product of invertible prime ideals of R, up to the order

of the factors.

Proof. Let I = P{... P! , where P/ is an invertible prime ideal of R for i = 1,...,m.
Without loss of generality, assume that P; is minimal among P,..., P,. Since [ =
P...P, C P, then P/ C P, for some j = 1,...,m, say P| C P,. Similarly [ =

Py ... P, C P| implies that P, C P/ for some ¢ = 1,...,n. Since this inclusion implies

P; C Py, by the choice of P;, we must have i = 1, hence P, = P|. Since P, is invertible,
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then we have P,... P, = Pj... P/ . By continuing in this way, we must have n = m,
and there exists a permutation o € S,, such that P, = Pc/r(i) fori=1,...,n. n
Theorem 2.61. Let R be a Dedekind domain, and let I be a nonzero proper ideal of

R. Then I is expressible as a product of prime ideals of R. Moreover, this expression

is unique up to the order of the factors.

Proof. Firstly, we shall show that an invertible prime ideal of R is maximal. Let P
be an invertible prime ideal of R. Our aim is to show P is maximal by proving that
P+ (a) =R forany a € R\ P.

Suppose that for some a € R\ P, we have P+ (a) C R, then P+ (a) = P; ... P, and
P+ (a*) = Q1...Qn, where P, and Q; are prime ideals for i =1,...,k, j=1,...,m.
Let ¢ : R — R/P be the canonical epimorphism, and let ', P/, Q' and a’ be the images
of R, P;,Q; and a, respectively, under ¢. In this case, we clearly have o’ R' = P/ ... P}
and a”?R' = Q) ...Q!,. Since @’ # 0, then the ideals ¢’ R’ and a”*R’ are both invertible,
s0 it is also true for each P/ and Q). Since we have P*...P? = Q}...Q,,, then by
Proposition [2.60, m = 2k. So we may order the primes such that Q1 = Qa; = P, for
i=1,...,k. Hence (P+(a))2 = P+(a?), and it follows that P C (P—i—(a))2 C P?+(a).
Soif b € P, then b = c+da for some ¢ € P>,d € R. da=b—c € P and a ¢ P together
implies that d € P, hence P C P? + Pa. Since P is invertible, then there exists a
fractional ideal A such that PA = R. Then R = PA C P?A+ PA(a) = P + (a). This
contradicts with our assumption, hence P is maximal.

To complete the proof, we shall show that every nonzero prime ideal of R is invert-
ible. Then our claim is clear by Proposition [2.60]

Let P € Spec(R) be nonzero. If R = P, then P is invertible, hence there is nothing
to prove. So suppose that P C R. Let a € P be nonzero. Write (a) = P; ... P;, where
each P; is a prime ideal of R. Since (a) is invertible, then each P; is invertible, hence
maximal for ¢ = 1,...,s. Then (a) = P;...P; C P implies that P, C P for some

t=1,...,s. By the maximality of P;, we have P = P;, thus P is invertible. O

Proposition 2.62. Let R be an integral domain. Then R is a Dedekind domain if
and only if the set of nonzero fractional ideals of R is a group with respect to ideal

multiplication.

Proof. Firstly, suppose that R is a Dedekind domain. Let F(R) be the set of nonzero

fractional ideals of R. We have mentioned that F(R) is closed under multiplication
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of fractional ideals. With respect to this multiplication, F(R) is a semigroup with
identity element R. By Theorem [2.61] and its proof, we have that every ideal of R is
invertible, since it is a product of prime ideals of R, which are invertible. Let A € F(R)
be arbitrary, then there exists d € R such that dA C R. So there exists a fractional
ideal B of R such that (dA)B = R. It follows that (dB)A = R, hence A has an inverse
in F(R). Thus F(R) is a group.

For the sufficiency part, we shall show every ideal of R is a product of prime ideals.
Let . be the set of all nonzero proper ideals of R which are not expressible as a
product of prime ideals. Our aim is to show . = () if F(R) is a group. By the way
of contradiction, assume that . # (). Since every nonzero ideal of R is invertible,
then R is Noetherian. So by the maximal condition, . has a maximal element, say
A. Since A is proper in R, then A C M for some M € Maz(R). Clearly, A € .
implies A # M. Let B € F(R) be such that MB = R. Since A C M, then we have
AB C MB =R, and since R=MB C B, then A= AR C AB. If A C AB, then the
maximality of A in . implies that AB ¢ ., hence AB is a product of some prime
ideals. But it follows that A = A(BM) = (AB)M is also a product of prime ideals
which is a contradiction. So we must have A = AB, so AM = (AB)M = A. Since
A € F(R), then it is invertible, so we have M = R which is impossible. Hence our
assumption that . # () is false. Therefore, R is a Dedekind domain. m

From Theorem [2.61] and Proposition [2.62] the following corollary can be given:

Corollary 2.63. Let R be an integral domain. Then R is a Dedekind domain if and

only if every nonzero ideal of R is invertible.

Corollary 2.64. If R is a Dedekind domain, then R is a Noetherian domain with
Spec(R) = Max(R).

Proof. 1t is clear from the proof of Theorem that Spec(R) = Max(R). It follows
directly from Proposition [2.36| and Theorem that every nonzero proper ideal of R
is finitely generated. Hence R is Noetherian. O

Proposition 2.65. Let R be a Dedekind domain and let I be an ideal of R. If I =
Py ... P, for some Py,...,P, € Spec(R), then {Py,...,P,} ={P € Spec(R)|I C P}.
Thus, every ideal in a Dedekind domain contained by only a finite number of prime

1deals.
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Proof. Let I = Py ... P, where P, € Spec(R) for alli = 1,...,n. Let P € Spec(R)
with I C P. Then we have I = P, ... P, C P, hence P; C P for some i =1,...,n. By
Corollary 2.64] we have P; = P. Hence a prime ideal containing I must be occur in
the factorization of I. Conversely, if I = P, ... P,, then we clearly have I C P; for all

¢t =1,...,n which completes the proof. m

Now we shall give several characterizations for a Noetherian integral domain to be

a Dedekind domain.

Theorem 2.66. If R is Noetherian integral domain, then the following statements are

equivalent:

(1) R is a Dedekind domain.

(2) R is integrally closed and every prime ideal of R is maximal.

(3) Each nonzero ideal of R which generated by two elements is invertible.

(4) If A, B,C are ideals of R such that AB = AC with A is nonzero, then B = C.
(5) For P € Max(R), Rp is a valuation ring.

(6) If A, B and C are ideals of R, then A(BNC)= ABN AC.

(7) If A and B are ideals of R, then (A+ B)(AN B) = AB.

(8) If A and B are ideals of R with A C B, then there exists an ideal C' of R such
that A = BC.

(9) If A, B and C are ideals of R, then (A+B:C)=(A:C)+ (B :C).
(10) If A, B and C are ideals of R, then (A: BNC)=(A:B)+(A: ().
(11) If A, B and C are ideals of R, then AN(B+C)=ANB+ ANC.

(12) If P € Max(R), then there are no ideals of R strictly between R and R*.
(13) If P € Maxz(R), then every P-primary ideal of R is a power of P.

(14) If P € Max(R), then the set of P-primary ideals of R is totally ordered by

inclusion.
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(15) Each overring of R is a flat overring.

(16) FEach overring of R is integrally closed.

Proof. Let R be a Noetherian integral domain.By Theorem [2.63, being a Dedekind
domain and being a Priifer domain are equivalent for R. So by theorems [2.40] [2.55
and we have all the conditions except (2), (12), (13), (14) are equivalent. Thus it
suffices to prove that these are also equivalent to others.

(1) = (2) : Let R be a Dedekind domain. Then R is integrally closed since it is a
Priifer domain. R has Krull dimension one by Corollary [2.64]

(2) = (5) : Assume that R is integrally closed and has the property that every
prime ideal of R is maximal. Let P € Max(R) be nonzero. Then Rp is Noetherian.
Rp is integrally closed by Corollary [2.30] Furthermore, PRp is the only nonzero prime
ideal of Rp. Therefore Rp is a valuation ring by Theorem [2.10]

(5) = (12) : Let P € Maz(R). If P = (0) the claim is obvious. So assume that
P # (0) and that Rp is a valuation ring. Let I be an ideal of R with P2 C I C P.
Clearly I is P-primary. It follows that I = IRpNR. But P2Rp C IRp C PRp implies
that we have either PRp = IRp or P?’Rp = IRp. Since I = IRp N R, then we have
either P =1 or P? = 1.

(12) = (5) : Assume that (12) holds. Let P € Max(R) be nonzero. Then clearly
PRp # (0) in Rp. By the Krull Intersection Theorem, we have (| P"Rp = (0). It

n>1

follows that PRp # P?Rp. By our assumption, there are no ideals between PRp and
P2Rp. Let P denotes PRp. Let a € P\ P2. Then clearly P = P? +aRp. Multiplying
by P gives that P? = P3 4+ aPRp, if we add aRp at both sides, since aPRp C aRp,
we have that P = P2 + aRp = P? + aRp. By continuing in this way, we have that
P = P" +aRp for all n € N. Hence P = Ol(aRp + Pm).

Since P/aR, is the unique maximal ideal of the Noetherian valuation ring Rp/aRp,

we have the following:

5 N (aRp + P™) - )\
P _ n>1 _ m CLRP + P _ m ( P ) _ (O)
aRp aRp alR, alR,

n>1 n>1

This implies that P = aRp, and since the set of non-units P is principal, it follows

from Theorem [2.10] that Rp is a valuation ring.
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(1) = (13) : Let R be a Dedekind domain, and let P € Max(R). If P = 0, then
the only P-primary ideal of R is P. So suppose that P # (0) and let ) be a P-primary
ideal of R. Since R is a Dedekind domain, there exists P, ..., P, € Spec(R) such that
Q=P ...P, Sincewechave P=Q=+P,...P,=+vVPNn..NvVP,=PN...NP,
and by the maximality of P, we have P, = P for i = 1,...,n hence Q) = P".

(13) = (12) : This is clear since an ideal between P and P? has radical P and so is
P-primary.

(5) = (14) : Since Rp is a valuation ring and so ideals of Rp are totally ordered, the
order-preserving correspondence between the P-primary ideals of R and P Rp-primary
ideals of Rp implies that the set of P-primary ideals of R is totally ordered.

(14) = (12) : Let P € Maxz(R). If P = (0) then there is nothing to prove. So
assume that P # (0) and the set of P-primary ideals of R is totally ordered. Clearly
P/P? is a vector space over R/P. The set of subspaces of P/P? whose elements are
of the form I/P?, for some ideal I of R such that P> C I C P. Since such ideals are
P-primary and has a total order, then the set of subspaces of P/P? is totally ordered.
Therefore P/P? is one dimensional. Hence, if I is an ideal of R such that P2 C I C P,
then we have either % = % or % = 1P3_§7 and it follows that we have either I = P or

I= P2 O

Theorem 2.67. Let R be an integral domain. R is a Dedekind domain if and only if
(I) for any a € R there exists only finite number of prime ideals P such that a € P.
(II) for every nonzero P € Spec(R), Rp is a DVR.

Proof. Let R be a Dedekind domain. Let a € R be nonzero. Then by Proposition
we have (a) is contained by only finitely many prime ideals of R, hence the same
is true for the element a, therefore (1) holds. By Theorem [2.66] Rp is a valuation ring
for all P € Spec(R), and it is clear that Rp is Noetherian since R is. Hence (/1) holds.

Now, let R be an integral domain which satisfies conditions (I) and (/). By
Theorem [2.66}, it suffices to show that R is Noetherian. To this aim, we shall show that
every nonzero proper ideal of R is finitely generated. Let I be such an ideal and let a € 1
be nonzero. Let Py, ..., P, be all prime ideals that contains a. Since for P € Spec(R),
Rp is a DVR, then there exists ¢; € Rp, such that [Rp, = ¢;Rp,. We may assume that
¢; € I. Now, consider the ideal C' = Ra + Rey + ...+ Re, C I. If P € Spec(R) with
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I ¢ P, then é € Rp, hence Rp = CRp C IRp C Rp, and so CRp = IRp. It P =P,
for some i = 1,...,n, then ¢; € C' implies that [Rp, = ¢;Rp, C CRp, C IRp,, and so
CRp = IRp. It follows that C' = I, hence [ is finitely generated. O]

Before we continue our study about Dedekind domains on overrings and integral
closures in finite extension fields, we shall give an example of a Dedekind domain.

Let K be an extension field of QQ, an element o € K is called an algebraic integer, if
« is integral over Z. The integral closure of Z in K is called the ring of integers of K,
and is denoted by 0. If K is an extension of finite degree over QQ, then K is called a
number field. Now we shall show that &'k is a Dedekind domain if X is a number field.
To this aim we shall prove that K is the field of fractions of Ok, hence it is integrally
closed. Moreover, we shall prove Ok is Noetherian and has the property that every

prime ideal of O is maximal.

Theorem 2.68. Let K be a number field of degree n over Q. Then the following

statements hold:

1. For every B € K, there exists some nonzero d € 7 such that df € Og. In
particular, K is the field of fractions of O .

2. If By, ..., Bnis a Q-basis of K, then there exists an integer d such that dfy, ..., dS,
18 a basis for a free Z-submodule of Ok of rank n. FEach basis of the Z-module

Ok is also a basis for K as a vector space over Q.
3. The ring Ok 1is a Noetherian ring and is a free Z-module of rank n.

Proof. Let f € K, and let 2* 4+ a;_12" ! + ... + ag be the minimal polynomial of j3
over K. If d is a common denominator for the coefficients, then multiplying through

by d* gives that
(dB) + dag_1(dB) ™ + ... + d*ta(dB) + d*ap = 0,

and d*ag, d*'ay, ... ,day_1 € Z. Hence df8 € O. It follows from 3 = % that K is the
field of fractions of O. Hence the proof of (1) is complete.
If now (4, ..., 3, is a Q-basis for K over Q, then there is a nonzero integer d such

that dfy,...dB, € Ok. These elements are still linearly independent over @, so in
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particular, are linearly independent over Z, hence generate a free submodule of O of
rank n, which proves the first statement in (2).

Since O is a subring of the field K, it is a torsion-free Z-module. If O were
contained in some finitely generated Z-module, it would follow that O is also finitely
generated over Z, hence it is a free Z-module. If L is a normal closure of K, in some
algebraic closure of Q, then 0k C &', and so it suffices to see that &, is contained in a
finitely generated Z-module. Since L is a finite extension of K, then by the transitivity
of dimensionality, we have L is a finite extension of Q. Let oy, ..., a,, be a Q-basis for
L over Q. Multiplying by an integer d, if necessary, we may assume that each «; is an
algebraic integer, i.e., ay,...,qa, € 0. For each fixed 6 # 0 in L, the map Ty : L — Q
defined by Ty(a) = Trpg(fa) for each a € L, is a Q-linear transformation. Ty # 0
since we have Ty(0~') = Ty g(1) = m. It follows that the map

L — Homg(L,Q)
0 — Th

is an injective homomorphism of vector spaces over Q. Since both spaces have the same
dimension over Q, the map is an isomorphism; in other words, every linear functional
on L is of the form Tj for some § € L. In particular, there are elements o, ...,al, € L

such that {T,,...,Ts, } give the dual basis of ay, ..., amn, ie.

. 1, i=j
Trpgla) =
0, i#y
Since o, ...,al, are linearly independent, they give a basis for L over Q. Hence

every element (3 of &, can be written as
B=aal+...+ana,
with ay, ..., a, € Q. Multiplying by «; and taking the trace shows that
Trro(Bey) = arTrrg(cha;) + ...+ aTrpglaiey) + ... 4 anTrgla,a;) = a;

But 3 and «; are both elements of 07, so also Ba; € O, and this implies that a; =
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Trro(Baj) € Z since we know that the trace of fa; is a coefficient of the minimal

polynomial of Sa; over Q, which is an element of Z[X], as noted above. It follows that

O, C Loy + ... 7%,

so that &' is contained in a finitely generated Z-module, proving that O is a free
Z-module.

Since we can embed Ok ® Q into K, in a natural way, we have rank;0x =
dim(Ok ® Q) < dimgK = n. Because Ok also contains a free Z-module of rank
n, it follows that Z-rank of O is precisely n. Note that any Z-linear dependence rela-
tion among elements in O is a Q-linear dependence relation in K, and multiplying a
Q-linear dependence relation of elements of 0k in K by a common denominator for the
coefficients yields a Z-linear dependence relation in @k . Thus the second statement in
(2) follows.

Finally, any ideal I in 0% is a Z-submodule of a free Z-module of rank n, so is a
free Z-module of rank n at most, and a set of Z-module generators for I is also a set
of Ok-generators, hence every ideal of Ok can be generated by at most n elements,

which implies that Ok is a Noetherian ring and completes the proof. O]

If P is a nonzero prime ideal in the ring of integer Ok of a number field K, then
PNZis a prime ideal in Z. If o € P is nonzero, then the constant term of the minimal
polynomial for o over Q is then an element in P NZ , which shows that P NZ # (.
Hence P N7Z = pZ for some prime number p. Since pZ is maximal, it follows from the
Lying-over Theorem that nonzero prime ideals P in 0 are maximal.

Now, since we have shown that Ok is a Noetherian ring which is integrally closed
and has the property that every nonzero prime ideal is maximal, then by Theorem

O'x is a Dedekind domain.

Theorem 2.69. IfT is an overring of a Dedekind domain R, then T is also a Dedekind

domain.

Proof. Let R be a Dedekind domain. If R is a field then our claim is clear since R
itself is the only overring of R. So suppose that R is not a field. Let T" be an overring
of R, which is not the field of fractions of R. Let M € Maxz(T) be nonzero. Since R
is a Priifer domain, by Proposition [2.52] we have that Ty = Ryngr. Hence, we have
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M N R # (0) since Ryng is not a field. It follows that M N R € Max(R), and so
Ty = Ryng 1s a DVR.

Let I be an ideal of T. If M € Max(T), then there exists a nonnegative integer
x(M) such that ATy, = M* )Ty, We clearly have x(M) > 0 if and only if I C M,
and since [ = (I N R)T, then x(M) > 0 for only finitely many M € Max(M). By (2)

of 2.42, we have that I = [  ([TuNT)= () M*™) Since the maximal
MeMaxz(T) MeMax(T)
ideals of T" are pairwise comaximal, then it follows that I = [T M*™) Hence T
MeMaz(T)
is a Dedekind domain. O]

Let R be a Dedekind domain with field of fractions K. We shall show that if R’ is
the integral closure of R in a finite extension field K’ of K, then R’ is also a Dedekind
domain. Since K’ can be viewed as a purely inseparable extension of some separable
extension of K, then we shall prove that in both cases the integral closure of R is a

Dedekind domain.

Theorem 2.70. Let R, R', K and K’ be as in the preceding paragraph. If K'/K is

finite and separable, then R’ is a Dedekind domain.

Proof. 1f we show that R’ is a Noetherian ring, then by Theorem it is sufficient for
us to show that R’ is integrally closed and has Krull dimension one. But since R’ is the
integral closure of R, it is integrally closed by definition. R’ has Krull dimension one
is a direct result of the Lying-Over Theorem. Hence if we show that R’ is Noetherian,
then we are done.

Clearly, K’ is the field of fractions of R'. If a € K’, then a* + by_1a" ' 4+ -+ +

bia + by = 0 for some by, ...,bp—1 € K. Since each ; has the form ¢ and there are

[
s )

a finite number of b;, we can write them in a common denominator. So let b; =
where ¢;,s € R for i = 1,...,k — 1. If we multiply the equation with s*, we obtain
(sa)k + cp_1(sa)f ' + ...+ c15"72(sk) + cos" 1 = 0, thus sa € R’ and a = 2.

If uy, ..., uy is a basis of K'/K, then there exists v1,...,v,,s € R such that u; =
for i =1,...n. As in the preceding paragraph we may choose s € R. So vy, ...,v, are
linearly independent over K and they form a basis of K'/K. Without loss of generality,
we may assume that uq,...,u, € R

Let M = {ajuy + ... + ayuyla; € Ryt = 1,...n}. M is clearly an R-module an
M C R. Set M* = {b € K'|Tk/ k(ab) € R for all a € M}, where Ty is the trace
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mapping of K’/K. Define R like above. By the properties of trace mapping, we have
that M* and R™ are both R-modules, and we have that M C R’ C R™ C M*. After
we show that M* is finitely generated R-module, then R’ and all ideals of R’ becomes
finitely generated since any submodule of a finitely generated module over a Noetherian
ring is again finitely generated, so we can conclude that R’ is a Noetherian ring.

Let wy,...,w, € K. Consider the following equations in n unknowns:
n
ZTK//K(Uin).I‘j = w,-,i = ]_, Lo, n
j=1

Since K'/K is separable, det [T i (usu;)] # 0. Thus this system has a unique solution
ai,...,a, € K. It follows that a = aju; + . ..+ a,u, is the unique common solution of
the equations

TK//K(UZ[E) = ’lUu’L. = 1, Lo, n

Thus, for a fixed j, the equations
TK//K(UifL’) = ij;i = 1, Lo n

has a unique common solution /.
Now suppose that c;u) + ...+ c,ul, =0, for some ¢y,...,¢, € K. Fori=1,...,n,

we have
0 = TK’/K (’U,i<01U/1 + ...+ cnugl))

= S (Taoywcluas)
= ¢
It follows that uf,...,u!, are linearly independent in K, hence they form a basis of
K'/K.
Now we shall show u},...u), € M* and they generate M* as an R-module.

Let a € M, then there exists a4, ...,a, € R such that a = aju; + ...+ a,u,. Then

TK’/K(G%‘) = TK’/K((alul + ...+ anun)u;)
= > aiTgk(uu})
=1

= CL]'GR
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hence u}; € M* for j =1,...,n.
Finally, if b € M* with b = bju} + ... + byu], where by,...,b, € K, then for i =
1,...,n, we have b; = T/ (ui(blu’l +.. .+bnu;)) € R. So the proof is completed. [

Theorem 2.71. Let R, R, K and K' be as in the paragraph above Theorem [2.70, If
K'/K s finite and purely inseparable, then R’ is a Dedekind domain.

Proof. Since K'/K is finite and purely inseparable, then K has prime characteristic p,
and there exists e € N* such that for all a € K/, o*° € K.

If f is a positive integer, then set Ky = {a € K’|apf € K}. Then Ky is a subfield
of K’, and we have K = Ky C K; C Ky, C ... C K, = K'. Clearly a € K implies
a? € Ky for all f =1,...,e. So it suffices to show that R’ is a Dedekind domain in
the case that a? € K for all a € K.

Let K’ be such that a” € K for all a € K’. Then we have R’ = {a € K'|a” € R}:

Clearly if a? € R, a is a root of X? —a? € R[X], hence a € R'. Conversely if a € R',
then a? € K by our assumption, and clearly a? € R', hence a* € K "R = R.

Let C be an algebraic closure of K such that K’ C C. Let K" = {c € C|? € K},
and let R” be the integral closure of R in K”. Then we have R = {c € K"|¢? € R}.
In this case we have K/ C K" and R’ C R".

The surjective mapping ¢ : K” — K given by ¢(c) = ¢ for all ¢ € K" is an
isomorphism, so its restriction to R”, maps R” isomorphically onto R. Therefore R” is
a Dedekind domain, since R is.

If I be a nonzero ideal of R', then I R” is invertible by Theorem [2.63] By Proposition
we have that (IR")[R" : IR"] = R". Let 1 = a1b; +...+agby where ay,...,ap € I
and by,...,by € [R” : IR"]. Then we have 1 = a0} + ...+ a}b}. Foralli=1,... k,
we have ¥ € K and tYa € R"N K' = R for all a € I. Hence ! € [R': I]. Since we
have a? € I, for alli = 1,... k, it follows that I[R’ : I] = R, so [ is an invertible ideal
of R'. Thus, by Theorem 2.63] R’ is a Dedekind domain. O

What we have done in Theorem and Theorem 2.71] can be combined to obtain

Theorem 2.72. If R is a Dedekind domain with field of fractions K and R’ is the

integral closure of R in a finite field extension of K, then R' is a Dedekind domain.

Let R be a Dedekind domain with the field of fractions K, let L be a finite algebraic
extension of K, and let R’ be the integral closure of R in L. Then by Theorem [2.72]
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R’ is also a Dedekind domain. Therefore if P is a maximal ideal of R, then PR’ can be
expressed as a product of maximal ideals of R', say PR’ = M{" ... My°. Observe that
M, ..., M, are all maximal ideals of R’ containing P and they lie over . Our next aim
is to expose some arithmetic relations between the exponents e; and the dimensionality

[L : K]. But before, we need to give the following sequence of preparatory results.

Lemma 2.73. [15, Ezercise 39.6] Let R be a principal ideal ring (i.e., a ring in which
every ideal is principal) and let xy,...,xp,x € R. If (x1,...,2,) = (z), then there

exist Y1, ..., yn € R such that x; = y;x for eachi=1,...,n and (y1,...,yn) = R.

Proof. 1t is easy to see the lemma if we take R to be a factor of a PID. However, if
R is a principal ideal ring, then it is a finite product of homomorphic images of PIDs

(see Theorem 1 of [2]). O

Lemma 2.74. Let R be a principal ideal Ting, letry, ... 1, € R be such that (ry,...,r,) =
R, and let M = Rxy + --- + Rz, be a finitely generated R—module generated by n ele-
ments x1,...,x,. Then there exists a generator set of M with cardinality n containing

r="T+- -+ 1, T,

Proof. We use induction on n. If n = 1, then r; is a unit element of R, so r1x1 generates
M. Now consider the case where n = 2. By assumption, there exist s, s5 € R such
that s1r1 + s9rg = 1. Let © = rixq + 7929 and y = Sox1 — s129. Then 27 = s1x + oy
and xo = sox — r1y. Hence x and y generate M.

Now assume that the lemma is valid for n = k. Let M = Rmq+-- -+ Rmy+ Rmy,1
and let (r) = (r1,...,7r;). Choose $1,...,s, € R such that r; = s;r for each i =
1,...,k and (s1,...,s¢) = R by Lemma [2.73] If u = symy + - + spmy, then the
induction hypothesis implies that u is one of a set of k generators of Rmy + - - -+ Rmy,
say Rmy; + ---+ Rmy = Ru; + -+ + Rui_1 + Ru. We have © = ru + rpo1miy1,
where (r,rp11) = (r1,...,7k,7k+1) = R. Therefore the case where n = 2 shows that

Ru + Rmy.1 = Rx + Ry for some y. It follows that

Rmi+---+ Rmy + Rmygyy, = Ruy+---+ Rug_1 + Ru+ Rmyyq

= Ru1—|—~--+Ruk_1—l—Raj+Ry.

This completes the inductive step. ]
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Theorem 2.75. Let R be a principal ideal ring and let M = Rxy + --- + Rx, be a
finitely generated R—module. Then there exist ti,...t,, € M, with m < n, such that
M=Rt;®--- D Rty

Proof. We use induction on n. If n = 1, then there is nothing to prove. Let n > 1
and assume that the theorem is valid for n = k. Let M = Rmy + --- + Rmy1. We
consider the set S of all ideals B, where y is an element of any generator set of M of
cardinality k£ + 1. Since R is Noetherian, S contains a maximal member, say B, = (1).

Let {x1,..., 2k, x} be a generator set of M. Assume that we have a relation

rxy + -+ gz +Hre =0,

where rz # 0. Let (r,t) = (s). Then we have B, = (t) C (s). Write s = ar + bt where
a,b € R. Then sx = arx + btz = arx so that

0=arix1+ - - +aryx, +arc = s1x1 + - - - + Spxk + sz,

where s; = ar; for each i = 1,...,k. Let (u) = (s1,...,8k,8) and choose, by
Lemma 2.73 v1,...,v;,v € R such that s; = v;u for each ¢ = 1,...,k, s = vu, and
(U1, ..., 05,0) = R. If m = vjx1 + - - -+ vgzy, +vx, then m is one of a set of k+ 1 genera-

tors of M by Lemma [2.74, Moreover, u € By, implies that B,, 2 (u) 2 (s) D (t) = By,

which contradicts with the choice of B,. Therefore, a relation
rxy+ -+ rgxp+re =0

implies that rz = 0. Thus M = (Rzy + --- + Rxy) & Rx. The induction hypothesis
implies that Rxy + -+ + Rxp = Ry, @ --- @ Ry, for some r < k. This completes the
proof. O

Lemma 2.76. Let V be a valuation ring with maximal ideal M and let K be its field
of fractions. Assume that V' is a subring of a domain J with field of fractions L. If
A is an ideal of J lying over M, we consider J/A as a vector space over V/M. If
{s1,..., 8} is a linearly dependent subset of J over K, then {s; + A, ... s, + A} is
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linearly dependent over V//M. Therefore, if [L : K] is finite, then
[J/A:V/M] <|L:K].

Proof. Since {s1, ... s,} islinearly dependent over K and since K is the field of fractions
of V, there exist elements a4, . .. a,, of V', not all zero, such that Y | a;s; = 0. The ideal
of V' generated by {ay,...a,} is principal and is generated by some a;. If b; = a;/a;
for each j = 1,...,n, then b; € V for each j = 1,...,n, and b; = 1. Passing to
residue classes modulo A, we obtain Y1 | b;5; = 0, where b; = 1 # 0. It follows that

{51,...,8,} is linearly dependent over V/M. O

Theorem 2.77. Let V be a DVR with maximal ideal M and field of fractions K, let
L be a finite extension of K of degree n, and let V' be the integral closure of V in L.
Assume that MV' = M' ... Mg? is the prime factorization of MV' in V', and that
[V'/M; : V/M| = f; for eachi=1,...,9. Then

9

V//MV':V/M] = eif; < n;

i=1
where equality holds if and only if V' is a finitely generated V —module.

Proof. Let i be fixed between 1 and g. Since V' is a Dedekind domain by Theorem
2.72] there are no ideals of V' properly between M and M*' and so MJ"/M*! is
one-dimensional as a vector space over V'/M; for each n > 0. Since M;" lies over M
in V', one can think of V//M?* as a vector space over V//M. Then V'/M: D M;/M" D
... D M7 /M!S = 0 is a decreasing chain of subspaces, and the corresponding factor
spaces are V'//M;, M;/M?, ... MS~'/MS (to within isomorphism). It follows that
[V//M[": V/M] = e;f;. Since the maximal ideals M; of V' are distinct, we have a ring
isomorphism

VMV 2V M @ @ VM,

where the isomorphism can also be taken as an isomorphism of vector spaces over V/M.
It follows that [V//MV': V/M] =>"7_, e;f;. Since MV lies over M in V', we conclude
from Lemma that Y 7 e fi <n.

Now let V' be a finitely generated module over V. Let V' = 2521 Vm;, where

mi,...,m; € V'. Then by Theorem [2.75] there exist x,...,z, € V'’ such that V' =
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Ve, @®---@® Va, If N is the set of nonzero elements of V', then we have
V=Vt ® - ®Vyry, =Ko, ®--- B Ku,.

But by Corollary [2.31} we have L = V{. Therefore, {x;,..., 25} is a vector space
basis for L over K, and s = n. The ideal M of V is principal, say M = (m). Thus,
MV ' =MVz,&®---® MVx,, and

VI IMV'Y (Vo / MVz) @& (Va,/MVr,).

Each V;/MVz; is one dimensional over V/M. Hence [V//MV' : V/M] = n =
iz €ifie
Conversely, assume that [V//MV’ : V/M]| = n. Choose elements yi,...,y, € V’
such that {y1 +MV",...y,+ MV} is linearly independent over V/M. By Lemmal[2.76]
{y1,.-.,yn} is a vector space basis for L/K. Let y € V'. Then there exist elements
ai,...,a, of K such that y = a1y; + - - - + a,y,. If some a; does not lie in V', then we
can choose a positive integer k such that m*a; € V for each i = 1, ..., n, and such that

mFas, is a unit of V for some iy. Therefore,

mky = (mkal)yl +--+ (mkan>yn7

and passing to residue classes modulo MV’ we have

0 =mFa g + - - - + mFa, gy,

where each mFa; is in V//M and hence m*a;, # 0. But this relation contradicts the linear
independence of {7, ...,7,} over V/M. Thus each a; liesin V, and y € Vy,+- - -+Vy,.
We conclude that V' = Vy; + - -- 4+ Vy,; that is, V' is a finite V-module. n

Corollary 2.78. Let D be a Dedekind domain with field of fractions K, let M be a
mazximal ideal of D, let L be an extension field of K such that [L : K| = n, and let
D’ be the integral closure of D in L. Assume that MD' = M{' ... My® is the prime
factorization of M D" in D', and that [D'/M; : D/M) = f; for each i =1,...,n. Then
[D'/MD'" : D/M] =39, e;f; < n, where equality holds if and only if D)y is a finite
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Dyr—module, where N = D \ M.

Proof. Note that D/, is the integral closure of the DVR D), in L, and
MDy = MDy Dy = (M Dy)* ... (M,Dy)%

is the prime factorization of M D), in D%. Moreover, D)y /M;D\ = D'/M; and
Dy /M Dy = D/M. Therefore, the corollary follows from the preceding theorem. [

For any ring R, an automorphism of R is a ring isomorphism of R onto itself. The

set of all automorphisms of R is a group with respect to composition of mappings.

Proposition 2.79. [8, Ezercise 13.86/Let R be a ring and < be the group of au-
tomorphisms of R. Let G be a finite subgroup of /. Then R® = {r € Rlo(r) =
r, for all o € G} is a subring of R and R is integral over RY. Now let P € Spec(R%)
and set T' = {Q € Spec(R)|QNRY = P}. Then for Q1,Q, € T there exists T € G such

that Q1 = 7(Q2).

Remark 2.80. In Corollary , if L/K is a Galois extension, the ideals M; are con-
jugate under elements of the Galois group of L/K. To see this consider the subring
(D)% of D', where G is the Galois group of L/K. (Note that G is, clearly, a subgroup
of the automorphism group of D'.) Since all the M;’s lie over M(D')¢, by Proposition
they are conjugate under the elements of GG. Therefore, in this case, we have

ep=e=-=¢, and fi=fo=-=f,

and we obtain that

MD/ - (MlMQ e Mg)e

for some positive integer e, and if [D’'/M; : D/M| = f, then [D'/MD’ : D/M] =efg <
n, where equality holds if and only if D’y is a finitely generated module over D), where

N =D\ M.

26



3 ALMOST DEDEKIND DOMAINS

In this section we mostly use the works in [2], and along this section we do not refer

to the works in there.

Definition 3.1. We call an integral domain D as almost Dedekind domain, if Dp is a

Dedekind domain for each P € Maz(D).

Let D be an almost Dedekind domain and let P € Max (D). Since a Dedekind do-
main is a Priifer domain, then Dp is a local Priifer domain and since every localization
of a Priifer domain is a valuation ring, it follows that Dp is a valuation ring. Clearly

Dp is Noetherian since it is Dedekind. Hence Dp is a DVR.

Theorem 3.2. Let D be an integral domain. Then D 1is an almost Dedekind domain
iof and only if primary ideals of D are prime powers and every prime ideal of D 1is

mazimal.

Proof. Suppose that D is an almost Dedekind domain. we first show that Spec(D) =
Max(D). So let P € Spec(D) be nonzero. Then there exists M € Maxz(D) such that
P C M. Clearly we have PD); C M D). Since extension of a prime ideal is prime
in Dy, and D), is a Dedekind domain, then we must have PD,, = M D,,. It follows
that P=PDyND =MDy, ND = M, since both M and P are prime. Now let () be
a P-primary ideal of D. Then we have QDp is PDp-primary. By the equivalence of
conditions (1) and (13) in Theorem [2.66] we have QDp = P"Dp for some nonnegative
integer n. Therefore, since maximality of P in D implies P" is P-primary, we have
Q=QDpND=P'DpND=P".

For the converse part of the proof, let D has the property that every prime ideal
of D is maximal, and suppose that primary ideals of D are prime powers. Since
Spec(D) = Maz(D), if P € Spec(D) is nonzero, then P is minimal. So PDp is the
unique nonzero prime ideal of Dp. If I is a proper ideal of Dp, then v/I = PDp and
since PDp is maximal, then [ is a PDp-primary ideal of Dp. So I N D is a P-primary
ideal of D, and by our assumption I N D = P* for some k¥ € N, and then we have,
I = (IND)Dp= PkDp. Therefore, every ideal of Dp is a prime power, which means
has a prime factorization. Hence Dp is a Dedekind domain. Since P is an arbitrary

prime ideal of D, then D is an almost Dedekind domain. O
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Corollary 3.3. Let D be an almost Dedekind domain and let I be a proper ideal of D,
then () I™ = (0).

n>1
Proof. Let P € Spec(D) with P O I. Forn = 1,2,..., we have I C P" C P"Dp.
Since Dp is a Dedekind domain, then (| P"Dp = (0) which implies that [ I" =

n>1 n>1

(0). O

Corollary 3.4. Let D be an almost Dedekind domain and let P € Spec(R). Then
there is no ideal I of D such that P> C I C P.

Proof. Suppose that there exists an ideal I of D such that P2 C I C P. By taking
extension to Dp, we have P2Dp C IDp C PDp. But since Dp is a Dedekind domain,

this is a contradiction by Theorem [2.66] and so such an ideal doesn’t exist. O

Corollary 3.5. Let D be an almost Dedekind domain and let P € Spec(D). Then the

set of P-primary ideals are totally ordered under inclusion.

Proof. Let P € Spec(D) and let {Q;}icr be the set of P-primary ideals of D. Clearly
{QiDp}ici is the set of PDp-primary ideals of Dp. Since Dp is a Dedekind domain,
then {Q; Dp}ic;s is totally ordered under inclusion. It follows that {Q;}ier = {Q:Dp N

D}er is also totally ordered under inclusion. O
Lemma 3.6. An almost Dedekind domain is integrally closed.

Proof. Let D be an almost Dedekind domain, by (1) of Lemma we have D =

(1 Dp. Since every localization of D is a Dedekind domain, they are all integrally
PeMaz(D)

closed by Theorem so the same is true for their intersection D. O]

Lemma 3.7. Let D be an almost Dedekind domain. Let A, B and C' be ideals of D.
Then the following statements hold:

(1) AN(B+C)=(ANnB)+(ANQC)
(2) (A:BNC)=(A:B)+(A:C)

Proof. Let P € Spec(D). Since Dp is a Dedekind domain, for any ideals A, B, C of D,

we clearly have

(Aﬁ(B—i—C))RP = ARpN(BRp+CRp) = (ARpNBRp)+(ARpNCRp) = ((AﬂB)-i—(AﬂC))RP
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Since this equality holds for every P € Spec(D), then we have the first equality.

For the second one, we need to show that for any P € Spec(D), we have
(/4: E?fW(j)}%P IZ(</42 lg)%—(/42 CU)]%p

The desired equality holds for any ideals ARp, BRp,CRp of Rp since Dp is a
Dedekind domain. Since we know that (A : B)Rp = (ARp : BRp), where A and B
are ideals of D, the above equation also holds. Since P is arbitrary, then the desired

equality holds for ideals of D, so the proof is complete. n

Now let D be an almost Dedekind domain and I be a nonzero ideal of D. Let
{M}xea be the set of maximal ideals of D. Then for I Z My we have IDy;, = Dy,
so IDy, N D = D = (M,)°. But for I C M,, we have that IDy; is M\Dyy,-
primary. Since D)y, is a Dedekind domain, it follows from Theorem that we have
IDy, = ]\ﬂfDMX for some nonnegative integer k, hence I Dy, N D = ]\/[)’f

If .# is the collection of nonzero ideals of D, then for each A € A, we set a function
fr: & — Z such that, for [ € &, fA(I) = k if IDy, N D = MY. By (2) of Lemma
it follows that

I =M = ((IDy, N D) (3)
AEA AEA

for each I € .77.
Furthermore, if we set D* = D\ {0}, then for each A\ € A we define f) : D* — Z by
Va(z) = fa((z)) for all z € D*. We shall introduce more details about the functions

V) and f). Before that, we shall give a small lemma.

Lemma 3.8. Discrete valuation rings (DVR) are maximal subrings of their field of

fractions.

Proof. Let V be a DVR with field of fractions K, and let m be an irreducible element
of V. Let V' be a subring of K such that V C V' C K. Let r € V' \ V, then there is a
unit v € V such that r = ur ™ with n > 0. Then, 7! = v~ '7""1r € V', and it follows
that all powers of 7, both positive and negative, are in V. Since every element of K

equals a unit in V' times a power of 7, we conclude that if V' # V', then V' = K. [0

Theorem 3.9. Let D be an almost Dedekind domain. Let {My}ren be the set of
mazimal ideals of D, & be the family of nonzero ideals of D. Let D* I, f\,V\ be as
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they defined above. Then the following statements holds:
(i) I C ME T Z M for some integer k. Furthermore, k = fy(1).

(ii) Va(zy) = Vi(z) + Vi(y) and Vy(z + y) > min{Vi(z), Vi(y)} for all z,y € D*.
So V) determines a valuation sy of the field of fractions K of D. Further, the

valuation ring of sy is Dy, .
(iii) For my € M, \ M? and for 0 # £ € K, there exist u,v € D\ M, such that

umix(ﬁ)

£ =

v

Proof. The existence of an integer k is obtained by Corollary [3.3] If ¢ is such that
I C M but I € Mt then IDy, = M{Dyy, for all 7 > ¢. If a € I\ My, then since
M = M Dy, ND we have a € IDyy, \ Myt Dy, . Hence we have 1Dy, = MiDyy,
and it follows that t = fy(a) as claimed.

Let x,y € D* and A € A. We first show that V) (zy) = Vi(x) + Vi(y).

Set Vi(z) = a,Va(y) = b so (z)Dy, N D = M, (y)Dar, N D = M2, Since (zy) =
(z)(y) we have (zy)Da, = (2)Dar, (y)Du,. Since we know (2)yDa, = ((2)Dar, N
D)Dyy, = (2)Dy, and (y)aDu, = ((y) D, N D) Dy, = (y) Dy, we have

(xy)Dar, = (2)Dary () Daay, = () Dary, ND) Dy ((y) Dasy, ND) Diry, = M Dy, MY Dg, = M3+ Dy,
and so (vy) Dy, N D = M{™ which implies
VA(xy) =a-+ b= V,\(CL) + V)\(b)

Now we’ll show that Vy(z +y) > min{Vi(z), Vi(y) }:
By Equation 1’ we have (x) C M{*(m) and (y) C M{*(y). Since we know (z +y) C

() + (y) then we have

(x+y) C(x)+ (y) C M/{A(I) + M/{A(y) _ Mr\nin{fx(m),h(y)}

hence fi(z +y) > min{ fr(z), fr(y)}.

Thus V), determines a valuation sy of the field of fractions K of D.
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From (i), the valuation ring of s, contains Dy, , since for z € Dy, we have sy(x) >
0 (x) C Dy, = (M)\DMA)O. Because D)y, is a maximal subring of K by Lemma
3.8, and so Dy, is the valuation ring of s,.

We have SA(mA) =1 by (’l), hence if Y= § o’ then we have S)\(y) = 0. It follows

ASA
that y is a unit of Dyy,. Set y = ¥ where u € D and v € D \ M. Since s5(v) = 0, we
have s)(u) = 0, which gives that u ¢ M,. O

Theorem 3.10. Let D be an almost Dedekind domain. Then D is a Dedekind domain
if and only if for each nonzero proper ideal I of D there exist only finitely many maximal
ideals which contain I. In particular, an almost Dedekind domain with only a finite

number of maximal ideals is a PID.

Proof. First, let D be a Dedekind domain. Let I be a nonzero proper ideal of D. Then
there exists P, ..., P, € Max(D) such that I = P, ... P,. We clearly have I C P; for
i=1,...,n. If Py € Spec(D) is such that I C P,, then since P; ... P, C P,, we have
P, C P, for some 7 =1,...,n. Since P, is maximal, then P, = F,. Hence [ is contained
in finitely many maximal ideals of D.

Now let D be an almost Dedekind domain such that every ideal I of D contained
in finitely many maximal ideals. Our aim is to show that D is a Dedekind domain.

Let I be an ideal of D and suppose that I is contained in My, ..., M, but not any
other maximal ideal of D. It suffices to show that D is Noetherian. Let a € I be
nonzero. Since Dy, is a DVR for ¢ = 1,.. .k then I D), is generated by an element,
since we can see [ as a subset of D), then we can choose the generator of 1D,
as an element a; of I, in fact 9 generates IDy;,. Then our aim is to show that
I=(a,ai,...,a;).

We have I = N IDynND = fk]]DMi N D. For the ideals I; = a;D, with

MeMaz(D) i=1

1=1,...,a; and Iy = aD + a1 D + ... + a;. D we have IDy;, = I,Dy;, C [yD)y,. Since
Iy = (k] IyDy, ND D (k] IDy, N D = I, then [ is finitely generated. Hence D is a

=1 =1

Dedekind domain. O]
Now we shall give some properties of overrings of an almost Dedekind domain.

Theorem 3.11. Let D be an almost Dedekind domain with field of fractions K such
that D # K. Let D' be an overring of D, and let A = {P € Spec(D)|PD" # D'}.
Then the following statements hold:
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(a) If M € Max(D') and if P= M N D, then Dp = D}, and M = PDpND'. As a

result, D" is an almost Dedekind domain.
(b) In the case that D is a Dedekind domain, we have D' is also a Dedekind domain.

c) For P € Spec(D) with P C D, P € A if and only if Dp O D'. Further
(c) p ; Y ,

D'= () Dp.
PeA

(d) Let I" be an ideal of D'. If I = 1' N D, then we have I' = 1D’.
(e) {PD'}pen is the set of prime ideals of D’.

Proof. If M € Maxz(D’), then clearly P = M N D is a maximal ideal of D. If we set
S =R\ P, then we have Dp = S™'D C S7'D’' C D), C K. The only part we need to
prove is ST'D' C D),

Let ¢ € S™ID" where x € D',y € S. Since y € D \ P, then we have y ¢ M. Since
D C D', then we clearly have y € D"\ M, hence S €Dy

By Lemmawe have that Dp is the maximal subring of K, so we have Dp = D,.
Hence D), isa DVR and M D', = PDp is its maximal ideal. It follows that D’ is almost
Dedekind and we have M = M D), N D" = PDpN D"

Now suppose D is a Dedekind domain. By (a), D’ is an almost Dedekind domain.
By Theorem [3.10] it suffices to show that for an arbitrary nonzero ideal I’ of D’. There
are only finitely many maximal ideals of D’ which contain I’. Now let I’ be a nonzero
proper ideal of D', let I = I’ N D. Since D is a Dedekind domain, then [ = I'N D is
contained in only finitely many maximal ideals of D, say P,..., P,. By (a) we have
that PLDp, ND', ..., P,Dp N D" are all the prime ideals of D’ which contain I’. Hence
D’ is a Dedekind domain.

Let P € Spec(D) with P C D. If Dp O D', then clearly PD' C PDp C Dp. If we
have PD' = D' then P = PDpND O PD'ND = D'ND = D which is a contradiction,
hence we have PD" C D’. Now suppose that P # (0) and that PD' C D'. Let M €
Spec(D’) be such that PD" C M. It follows that P C PD'ND C MND C D. Since D
is an almost Dedekind domain, then P is a maximal ideal, so we have P = M N D, thus
by (a), we have Dp = D}y, 2 D'. Now if Max(D') = {Mx}xea, then D' = () D}, by
Lemma . By (@) and the first part of (c), we have for each A € A, D, /\:EAD(MWD)
and My N D € A. Thus the desired equality holds.
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Let I’ be an ideal of D'. If I' = (0) or I' = D', then the claim of (d) is clear. So
suppose that (0) C I’ C D'. We first prove that if P = M N D for some M € Max(D'),

then P* = M*N D for all k > 1:
Pt = P¥DpnD
— M'D\,ND
= M*D),n(D'N D)
= (M*D),nD)YNnD
= M*nD
Let I = I'N D, then ID' = (I'N D)D" C I' and hence f\(ID'") > f\(I') for each
A € A. Since for each nonzero ideal B of D' we have B = () M{*(B) , it suffices to
prove f\(ID") = fi(I) for all A € A in order to prove that [lﬁ\’ei I
By (a), it suffices to show that, if k is such that I’ C M} but I' ¢ My*!, then
ID' ¢ M. Set Py = My N D. Since we have Myt N D = PP then it suffices to
show that I ¢ P{**. This follows essentially from (iii) of Theorem .
We clearly have P = M N D C My N D = Py, so that if my € Py \ P}, then

ma € My \ M2 Tf € € I'\ MY then s,(€) = k and € = ™ for some u,v € D\ P,

So we have v& = umf € I\ PF*', for otherwise, sy(um}) > k + 1 which gives a
contradiction. Hence I & Pf“, and the result follows.

By (d), it P' € Spec(D') with P C D', then P’ = PD’ for some P € A. If
P € A, then by (c¢), we have Dp D D', so we have PDp N D" € Spec(D’). By
(d), PDpN D" = (PDpND')N D)D" = PD'. Tt follows that PD’ € Spec(D’) for
P e A. O

The following corollary is another result about almost Dedekind domains, which is

analogue of a theorem about Dedekind domains which we stated in Theorem [2.72]

Corollary 3.12. Let D be an almost Dedekind domain with field of fractions K. Let
L be a finite extension field of K and let D' be the integral closure of D in L. Then D’

18 almost Dedekind.

Proof. Let M € Spec(D’) be nonzero and proper, then P = M N D € Spec(D) is
also nonzero and proper. If we set S = D\ P, then Dp = S~'D. D’ is integral over
D implies that S™1D’ is integral over S™'D = Dp. Since D’ is integrally closed in
L, S7'D’ is integrally closed in S™'L = L. Hence S™'D’ is the integral closure of
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the DVR S7!'D in L. Consequently, S~'D’ is a Dedekind domain, and it follows that
D), = (S7'D')g-15 is a DVR. As a result, D’ is an almost Dedekind domain. O
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4 CANCELLATION LAW FOR IDEALS IN A COMMUTA-

TIVE RING

Detailed information about this section can be found in [4], [10] and [3] which are our
main references.

Let R be a commutative ring. If R satisfies the property that AB = AC for arbitrary
ideals A, B,C of R with AB # (0) implies that B = C, then we say the restricted
cancellation law (RCL) holds in R. RCL is a weakened form of the cancellation law
(CL), which is AB = AC for arbitrary ideals A, B,C of R with A # (0) implies that
B = C. A ring in which CL holds need to be an integral domain. In an integral
domain, RCL is equivalent to CL.

In this section we aim to answer that if CL holds in an integral domain R, is R
need to be a Dedekind domain. We shall show that if RCL holds in a ring R, then R is
either an integral domain, R is a special primary ring, or R is a primary ring in which
the product of any two non-units is zero. Furthermore, if RCL holds in a ring R, then
R is either of these latter three types.

Let D be an integral domain, then C'L holds for D if and only if for any P € Spec(D)
with P C D, the localization Dp is a rank one discrete valuation ring.

Then, we consider a ring S which has a collection .# of nonzero proper ideals of S
such that every nonzero proper ideal of S is uniquely written as a product of finitely
many elements of .. RCL holds in such an S. If S is not an integral domain, the

converse is also true.

4.1 Restricted Cancellation Law (RCL)

In this part, we shall investigate the structure of a ring D in which RCL holds. The

case that D is also a domain is our main concern.

Lemma 4.1. Let D be a ring which RCL holds, then CL holds in D if and only if D

15 an integral domain.

Proof. Let D be an integral domain. Let A, B, C be ideals of D such that A is nonzero
and AB = AC. In the case AB = AC = (0), since A # (0) and D is a domain, it
follows that B = C' = (0). If AB = AC # (0), then by RCL, we have B = C. Hence
CL holds for D.
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Now suppose that D is not an integral domain and let x € D be a nonzero zero-
divisor of D. Then we have ann(z) # (0). Since we know (z).ann(z) = 0.ann(z) and

x # 0, then CL doesn’t hold for D. m

Lemma 4.2. Let A, B, C be ideals of a ring D in which RCL holds. If AB C AC # (0),
then B C C holds.

Proof. If AB C AC, then we clearly have AB + AC' = A(B + C) = AC # (0), hence
by RCL, we have B + C' = (', and this implies B C C' as claimed. ]

Theorem 4.3. Let RCL holds for a ring D, then either D is a one-dimensional integral
domain, or D s a special primary ring, or D s a primary ring with mazimal ideal M
in which M? = (0). Conversely, RCL holds for a special primary ring or for a primary
ring with mazimal ideal M such that M?* = (0).

Proof. Suppose that P € Spec(D) with P C D. Let x € D\ P. Then

[P+ ()" = Pi+ P(x) + P*(a?) + P(2°) + ()
= [P+ @)P[P* + (2?)]

z* ¢ P implies that [P + (z)]* D (x)* # 0 so that we have [P + (z)]? = P? + (2?)
since [P + (x)]> # 0. Tt follows that we have

(2)P € P* + (a7) (4)

For p € P, there exist ¢ € P? and r» € D such that r2? = pr — ¢. It follows from
the facts rz? € P and 2? ¢ P that, r € P. Since pr = ra® + ¢, then we have
(r)P C P? + P(z?) = P[P + (2*)]. Now there are two possible cases we need to

consider:

1. For arbitrary P € Spec(D) with P C D and for all x € D \ P, we have
P[P+ (2%)] # (0)
2. For some P € Spec(D) with P C D and for some x € R\ P, we have

P[P + (2*)] = (0)

66



In the first case, D is not an integral domain since the inequality doesn’t hold for (0),
and so it is not a prime ideal of D. If M is a prime ideal of D and if x € D\ M, since
RCL holds for D, and since we know M (z) C M[M + (x?)], and M[M + (x?)] # (0), it
follows that (z) € M+ (z?). This implies that z —ra? = (1—rz) € M for some r € D.
Hence 1 —raz € M, and thus M + (z) = D, which means M is maximal. Since M is an
arbitrary prime ideal of D, then M is also minimal. Since by localizing at M we have
MRy = v/ORy; , then for m € M, we have (%)k = 0 for some integer k, then there
exists an element ¢t € D\ M such that m*t = 0. Tt follows that (m?*) = (mF)(m*, ).
If (m?) # (0), then by RCL, we have (m*) = (mF,t) which is impossible since ¢t ¢ M.
Hence m?* = 0, so every element of M is nilpotent. Since the set of nilpotent elements
of D is an ideal of D, then D is a primary ring with maximal ideal M.

Now if M? = (0) then we are done, so suppose M? # (0). We have M D> M? D
M3 > ... for otherwise RCL implies that M = D, a contradiction. If I is the ideal
generated by M \ M?, then M = M? + I. Tt follows that M? = M* + M?I + I? =
M?*[M? + I] 4+ I* = M? + I*?. Since we have M? # M?, then I? # (0). Hence there
exist x,y € I such that zy # 0. If 2% = 0, then

[MQ + <x>]k _ ;;)M%(x)k_i — Z:zk:lM%(x)k—z

_ MQIESMQi(x>k—1—i = M2[M? + (z)]F!

Since M? # M? + (), we have [M? + (x)]* = (0) and since (MZ)k C [M?+ (2)]F =
(0), we have that M?* C (x). We shall show that M C (z) by induction, and this
implies M = (z). After this, we shall show that {(z°)]i = 1,...,k} is the complete set
of proper ideals of D. Hence D is a special primary ring.

To this end, suppose that M C (x), where i > 2. Set I = (M*: (z)). We clearly
have M* = [(x). Since x ¢ M* and I C D, then we have I C M. Hence M* C M (x).
Since y € M \ M? is such that zy # 0, then M(x) # (0). It follows that by Lemma
.2 we have M~! C (z), hence we have M = (z) by induction.

Now let I be a nonzero proper ideal of D, our aim is to show that I is principal
and generated by a power of x. Since 2% = 0 € I, then there exists an integer j such
that 27 € I but 277! ¢ I. If we show I = (27), we are done. Since (z/) C I, suppose

by the way of contradiction that the inclusion is strict and let a € I'\ (27). Since M
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is the unique maximal ideal of D, then we have a € M. It follows that a = ra® for
some 7 € D\ M and an integer i. Clearly r is a unit of D and so r~'a = 2 € I.
Since a = r2’ and a ¢ (27), then we must have i < j. Since z* € I and 2771 ¢ I, then
i > j — 1. Since such an integer i doesn’t exist, then we must have I = (z7). Since
arbitrary proper ideal of D is generated by a power of x, then the set of all the proper
ideals is {(z), (z?),..., (2*) = (0)}. This proves that the claim of the theorem holds in
the first case.

For the second case, since P2 C P[P+ (z?)] = (0), then there exists a prime ideal P
of D such that P? = (0). So P is the unique minimal prime ideal of D. For otherwise,
if Q is a minimal prime ideal of D, then (0) = P? C Q implies that P C @, and so we
have P = () by the minimality of ().

If P is maximal, then R is a primary ring and P is its unique maximal ideal such
that P? = (0).

If P is non-maximal, and if M is a prime ideal distinct from P, since P is unique
minimal ideal of D, then M D P. If t € D\ M, then we have M[M + (t*)] # (0), since
for otherwise, M? = (0) C P gives a contradiction. It follows as in the first case that
M is maximal.

Now if b is a non-unit of D, then for some maximal ideal N of D, we have that
be N and N D P. Thus P+ (b) C N. If P? + P(b*) # (0), then P becomes maximal
as in the proof of the first case, which is not possible. Hence P? + P(b*) = (0). By
Equation [ we have that (b)P C P? + P(b%) so (b)P = P2 + P(b%) = (0). If b ¢ P,
then (b%) = (b)[(b) + P] and (b*) # (0) so (b) = (b) + P which implies P C (b). It
follows that for some ideal C' of D, P = (b)C'. Since P is a prime ideal of D and b ¢ P,
P =C,andso P = (b)P = (0). As a result, D is a one-dimensional integral domain.

For the last part of the proof, let S be a special primary ring. Let A, B, C be ideals
of S such that AB = AC and AB # (0). Let M be the unique maximal ideal of S.
Then we have AB = M*, A = M for some k,a € N. Suppose B # C, then there exist
b,c € N such that B = M® and C' = M¢. So M*M® = AB = M* = AC = M*M° so
Mo+t = Mote = MF. Since distinct powers of M are distinct if they are nonzero, we
have b = ¢ and thus B = C' which is a contradiction, hence B = C' and RCL holds in
S.

Now let T be a primary ring with maximal ideal M such that M? = (0). If we have
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AB = AC # (0), we have either A = R or B = C' = R, since for otherwise, if A and
B are both proper ideals, then A, B C M and so AB C M? = (0). In the case that
A =R, we have B= AB = AC = C so in both cases RCL holds. O]

Let R be an integral domain. We say that the finite cancellation law (FCL) holds
in R precisely when for arbitrary ideals A, B, C' of R with A # (0) is finitely generated,
AB = AC implies B = C.

Theorem 4.4. Let R be an integral domain. If FCL holds for R, then R is integrally

closed.

Proof. Let K be the field of fractions of R and let x € K be integral over R. Then the
fractional ideal F' of R generated by 1 and all positive powers of x is finitely generated
an idempotent. There exists a nonzero element d € R such that dFF = A is a finitely

generated ideal of R. So we have
A? = (d*)F? = (d*)F = (d)dF = (d)A

Since A is finitely generated and FCL holds in R, then we have A = (d). By FCL,
(d)F = A and (d) = A together implies that F' = R, hence + € F' = R, which gives
that R is integrally closed. O]

Theorem 4.5. Let D be an integral domain. Then CL holds in D if and only if D is

an almost Dedekind domain.

Proof. Suppose first that CL holds in D. Let P € Spec(R) with P C D. Since CL
implies FCL and by Theorem [2.40, we have that D is a Priifer domain, hence Dp is a
valuation ring. By Theorem [£.3] since the only domain case is being a one dimensional
integral domain, then Dp has rank-one. Now P C D so that P> ¢ PD = P since CL
holds in D. Since P? has radical P, a maximal ideal of D, then P? is a P-primary ideal
of D. Tt follows that P?Dp = (PDp)> C PDp. If m € PDp \ P?Dp then we have
mDp = PDp. Hence Dp is a rank-one DVR, so D is an almost Dedekind domain.
The converse part is straightforward since AB = AC with A # (0) implies that
for all P € Max(R), we have ARp # (0) and (ARp)(BRp) = (ARp)(CRp). Since
Rp is a Dedekind domain, we have BRp = C'Rp by Theorem [2.66] It follows that
B= () (BRpNR)= [) (CRpNR)=C. ]

PeMaxz(R) PeMax(R)
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4.2 Rings With Unique Ideal Factorization

In this section, S will be a ring in which there exists a collection .# of nonzero proper
ideals of S, such that every nonzero proper ideal of S can be uniquely written as a
product of elements of .. RCL holds in such a ring is a direct result of the uniqueness
of the representation. Clearly, if AB = AC with AB # (0), then AB and A can be
expressed as a product of the elements of .. The factor which are appear in the
factorization of AB but does not appear in the factorization of A gives the expression
of B. In the same way we can obtain C', and this implies that B = C.
In the view of Theorem [4.3] we obtain the following theorem:

Theorem 4.6. If S has proper divisors of zero, then one of the following statements

hold:
1. S is a special primary ring and . is the set of maximal ideals of S.

2. S is a primary ring with mazimal ideal M such that M? = (0), and . is the set

of all nonzero proper ideals of S.

Proof. Since S has proper zero-divisors, then S is not an integral domain. Then by
Theorem and its proof, we have either S is a special primary ring or a primary ring
with maximal ideal M such that M? = (0).

If S is a special primary ring with maximal ideal M, then by definition every ideal
of S is a power of M, so we have . = {M}.

If S is a primary ring with maximal ideal M such that M? = (0), then for a nonzero
ideal I of S, we must have I € ., for otherwise , if I = AB for some A, B € ., then
I = AB C M? = (0), which is a contradiction. Hence we have .¥ is the set of all

nonzero proper ideals of S. O]

Theorem 4.7. Let S be an integral domain. Then S is Dedekind and . s the set of

all nonzero prime ideals of S.

Proof. 1f S'is a field, both conclusion follows. Suppose that S is not a field. By Theorem
4.3 we have that S is one-dimensional. If every nonzero ideal of S is invertible, then
we conclude that S is a Dedekind domain by Theorem [2.63]

To this aim, we first show that an invertible ideal S’ € .% is prime. If xy € S’, then

since S is invertible, (z)(y) = (zy) = 5’1 for some ideal I of S. From the uniqueness
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of representation, S’ must be a factor either of (x) or of (y). For otherwise, this implies
that S’ has a factorization other that itself, hence it contradicts with S’ € .. Since S’
is a factor of either (z) or (y), then we have z € S or y € S”. So S’ is a prime ideal.
Let P € Spec(R) and let p € P. Let (p) = Sy...Sk for some Sy,...,5; € 7.
Clearly, S; € .7 is invertible for each i = 1,...  k, hence maximal by previous para-
graph. We have (p) = S;...S, C P, so we must have S;;, C P for some ip = 1,..., k.
It follows by the maximality of S;, that S;, = P, hence arbitrary prime ideal of S is
invertible and maximal. Therefore, we have that S is Dedekind, and every element of
< is invertible, therefore prime. Since we show that .# consists of all nonzero prime

ideals of S, then the proof is complete. O

4.3 Factoring With Radical Ideals and SP-Domains

Let R be a ring and let I be an ideal of R. If there exist finitely many radical ideals
Ji,...,Jy of Rsuch that I = J;...Jg, then we say that I has radical factorization or
I is an SP-ideal. If every ideal of R is an SP-ideal, then R is called as an SP-ring. In
the latter case if R is an integral domain, then R is called an SP-domain. Our aim in
this section is to show SP-domains are almost Dedekind domains.

Before showing an SP-domain is an almost Dedekind domain, we give a charac-
terization of SP-domains in the class of almost Dedekind domains. To this aim we

introduce some required notations and facts:

1. If A and B are finitely generated ideals of a Priifer domain R, then we have AN B

is finitely generated.

Proof: Since A and B are finitely generated ideals of a Priifer domain, then they
are invertible and so AB is invertible, so by Theorem we have that
AB = (AN B)(A+ B) and this implies A N B is invertible, hence finitely

generated.

2. If R is a Priifer domain and P € Spec(R), then (| P* is a prime ideal of R by
i>1
Proposition [2.45]

3. A maximal ideal M of a domain R is critical if and only if for each finite subset

A C M, there exists N € Max(R), need not to be distinct from M, such that
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A C N2. Another characterization for M € Max(R) to be critical can be given
as, M is critical if and only if every finitely generated ideal I of R such that

I C M is contained in the square of some maximal ideal.

. Let R be an almost Dedekind domain and let a € R be nonzero. Define the

mapping v, : Max(R) — Z by 7.(M) = wvpy(a), where vy is the rank one
discrete valuation corresponding to the valuation ring R,;. This mapping is

upper semi-continuous if for all n € Z, the set v, *([n, 00)) is closed.

Theorem 4.8. Let R be an almost Dedekind domain. Then the following statements

are equivalent:

1.

2

R is an SP-domain, i.e. R has radical factorization.

R has no critical mazximal ideals.

If A C R is a finitely generated ideal, then /A is also finitely generated.
Fach proper principal ideal of R is an SP-ideal.

For each nonzero a € R, the function v, : Max(R) — 7Z is upper semi-continuous

and has finite image.

For each proper ideal A of R, there exist radical ideals J, C Jo C ... C J, such
that A = J1J2 N Jn

Fvery proper nonzero ideal A of R can be represented uniquely as a product A =

Jido ... J, where J;, 1 =1,...n are radical ideals such that J, C Jo C ... C J,.

Proof.
(1) = (2) : Let M € Max(R) and let, a € R be nonzero. By (1), we have

(a) =

Jy...J, for some radical ideals Ji,...,J, of R. Since (a) = J;...J, C M,

then for some iy € {1,...,n}, we have J;; C M. J;, is invertible since (a) is, hence

Ji, is finitely generated. If there exists N € Max(R) with J;, € N, then since Ry

is one-dimensional, we have J;,Ry = NRy, so J; € N?. Hence, we found a finitely

generated ideal of R that contained in M but not in the square of any maximal ideals.

Hence M is not critical. Since M € Maz(R) is arbitrary, then (2) holds.
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(2) = (3) : To prove this part, we first show that for M € Maxz(R) and a finitely
generated ideal A C M, we have A C J C M for some finitely generated radical ideal
J of R. By our assumption, there exists a finitely generated ideal B such that B C M
and B ¢ N? for arbitrary N € Max(R). Set J = A+ B. Clearly A C J C M and
since A and B are both finitely generated, so is J. If N € Maz(R) such that J C N,
then JRy C NRy. By assumption, BRy € N%Ry, for otherwise B C BRy N R C
N?2Ry N R = N% Hence BRy = NRy. Since we have B C J C N, we must have
JRy = NRy. Since the last equality holds for arbitrary maximal ideal of R, then
J= (N (JRxNR)= () (NRyNR)= ()] N =+/J. Thus J is a radical

NeVar(J) NeVar(J) NeVar(J)

ideal.

Now let A be a proper ideal of R which is finitely generated and set J = v/A. Our
aim is to show that J is finitely generated. If A = (0), then there is nothing to
prove, so assume that A is nonzero. If we show that [R : J|Ry = [Ry : JRyy| for
all M € Max(R), then since JR), is principal for all M € Max(R), we have that
[R: J]J = R, which proves J is invertible, hence finitely generated.

Let K be the field of fractions of R, let M € Max(R) and let ¢ € K be such that
gJ C Ry;. Our aim is to find b € R\ M such that bgJ C R. As we have showed
before, there is a finitely generated ideal J; of R with A C J; € M. Since A and J;
are both invertible, there exists a finitely generated ideal By of R such that A = J; B;.
If By € M, then by repeating this argument, we have an ideal B, of R such that
By = JyB,. This repetition must stop after finitely many steps and we may have
A= Ji...J,B,, for some B, € M and Jy,...,J, radical ideals. For otherwise, we
have A C J;...J; for all £ > 1 and since J; € M, it follows that A C [ M™ = (0),

n>1
which is a contradiction.

Now J = VA = VI J.B, = JiNn...NJ,N+/B,, so since ¢JRy C Ry and
VB, € M, we have ¢(J; N ...NJ,) C Ry Since J; N...N J, is the intersection of
finitely generated ideals, then it is also finitely generated. It follows that there exists
b € R\ M such that bg(J;N...NJ,) C R. Hence bqJ C R, as claimed. It follows that
q € [R: J|Ryr, and thus [Rys : J] = [R: J|Ry for all M € Max(R) such that M D A.
If xJ C Ry, then clearly xJ Ry C Ry If yJ Ry C Ry, then since J C JRy,, we have
yJ CyJRy C Ry, hence [Ryy @ J] = [Ry 2 JRy] for all M € Maz(R). So the result

follows.
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(3) = (4) :Let A be a proper principal ideal of R. If A = (0), then the claim is
true. So suppose that A # (0). If we set J; = VA, since both J; and A are invertible,
then there exists an invertible ideal B; such that A = J;B;. If By = R, then we are
done. So suppose that B; # R. By setting J, = +/B;, we have that A = J,.J,B, for
some finitely generated ideal B, of R. Since .J; is finitely generated and J; = v/A, then
JI C AC J, for some n > 1. Since J, is a radical ideal of R, it follows that J; C J,.
To continue in this manner, either we have that A is an SP-ideal, or we obtain an
infinite chain of radical ideals J; € J, C ... such that A C J;...J; for each k > 1.
In the latter case, if M € Maxz(R) with |J Jx € M, then A C (| M"™ = (0), which
contradicts the fact that A is nonzero. Thkeilafore, A must have a ;L;cllical factorization.

(4) = (5) : Let @ € R be nonzero. We first show that 7, has finite image. By
our assumption, aR = Ji* ... J.*, for some k,ey,...,e; € N and for some Ji, ..., J;.
Let M € Maxz(R) such that o« € M. Set X = {i € {1,...,k}|J; C M}. For each
1 € X, since J; is a radical ideal and Rj; is a Dedekind domain, hence a DVR, we
have that J;Ry = MRy. We clearly have J;Ry; = Ry for i ¢ X. So we have
it Ry = JI MRy, and thus 7, (M) = va(a) = > e It follows that for
M € Mazx(R), eitllelgr Yo(M) = 0, or it equals to a sum of sofniz of e;’s. Hence, v, has
finite image.
Now, let n be a positive integer. Set V =~;1([n, 00)) = {M € Maz(R)|o € M"}. Our
aim is to show that V' is closed in Maxz(R). Let M € V, and let X defined as above.
Then, as noted above, }_e; = 7a(M) = n. Thus the set I = {xX c{1,..., k> e =
n} is not empty. Set AZE:X N (Z J;). If we show V = Var(A) = {M € Max(}l%e)fM 2
A}, then we conclude thatX ‘e/Fiszec)l(osed in Max(R).
If M € V, as we have established above, there exists X C {1, ..., k} such that Z e >n
and M 2 $J; 2 A. Thus, V C {M € Max(R)|M 2 A}. -
If M e ]\fa);(R) with M D A, then since F' has at most 2" elements, A is a finite
intersection. It follows that we have Z J; € M, for some X € F. For otherwise, if
there exist ay € (Y J;) \ M for all )ée)e( F,then [[axe N (X )\ M=A\M,

i€eX XEF XeF iex

which is a contradiction. Thus, J; C M for all i € X, therefore aR = Ji* ... JF C
[1J7 € [T M* € M". Hence o € M", and this implies M € V..
ZSei)r(lce we Z}fa)ui/e V =Var(A), it is closed in Max(R) by definition.

(5) = (6) : Let A be a nonzero proper ideal of R. Let M € Max(R). Set vy (A)
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be the smallest element in {vy(a)la € A}. Set X = {vy(A)|M € Max(R),A C M}.
We first show that X is finite. If a € A is nonzero, then by our assumption v, has
finite image, so {vy(a)|M € Max(R)} is finite. Since we have vy (A) < vy(a) for all
M € Max(R), then X is finite, say X = {f1,..., fu} besuchthat 0 < f1 < fo < ... <
fn. Set Vi = {M € Max(R)|A C M/i} for i = 1,...,n. Our claim is that each V; is a
closed subset of Max(R). For each i, we have the following:

V; = {M € Max(R)|Va € A,a € M7}
= {M € Max(R)|Na € A, M € ~;*([f;,0)) }
= 07;1([fi700))

acA

By our assumption, we have 7! ([ fi, oo)) is a closed subset of Max(R), so V; is closed
since it is the intersection of closed subsets.

For each i, set J; = (] M. Since V,, CV, 1 C ... C Vi, wehave AC J; C ... C J,.
MeV;

Now set B = J1f1 JQfQ_f1 ... Jfn=/n=1 Our aim is to show that A = B, and we shall show
this by proving that ARy, = BRyy for all M € Maxz(R).

Let M € Max(R) be such that B C M. Let k < n be the largest integer such that
Jy C M. Then BRy, = JI g~/ g IRy = MRy,

For M € Maxz(R), in the case that J; C M, we have J; = (| M C M, so there exists
My € V; such that My C M. Then My € Maz(R) impliefet‘lr/liat M € V;. Conversely,
M € V; clearly implies M O () M = J;. As a result, we have for M € Maxz(R),
M D J; is equivalent to M EA\%.% By this equivalence, V) is the smallest member of
the chain V,, C ... C V] such that M € V. Since vy (A) € {f1,..., fn}, it follows that
v (A) = fr. Hence ARy = M/*Ry; = BRy,;.

Now suppose that M € Maxz(R) is such that A C M. Then vy (A) = fi for some
k <mn,so ARy = MRy, Thus M € V,, but M ¢ V,, for k < m < n. Each V;
closed implies that J; C ... C J, € M but J,, € M for k < m < n. Hence we have
BRy = J{* . JF Ry = MPs Ry = ARy,

If M € Maz(R) is such that A, B € M, then clearly ARy, = Ry = BRy;.

Since the equality holds for arbitrary maximal ideal, we can conclude that A = B.

(6) = (7) : Let A be a nonzero proper ideal of R. Let J;...J, = A= K,... K,
be such that J; C ... C J, and K; C ... C K,,, where J1,...,J,,K;1,..., K,, are all
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radical ideals of R. By taking radicals, we have that VA =~/J;...J, =~/ N...N
VJ, = +/Ji = Ji. Similarly we can obtain vA = K;. Since R is an almost Dedekind
domain, we have CL holds in R, hence J; = K; implies that Jy...J, = Ky... K,,.
The proof now can be completed by induction.

By definition we clearly have (7) implies (1), hence the proof is complete.

]

An integral domain R is said to have property («) if every primary ideal of R is a
power of its radical. If R has property («), it is easy to see that for any P € Spec(R),
Rp and R/P both have property («). Now we shall give some properties of domains
having property ().

Lemma 4.9. Let R be a local integral domain with property («). Let M € Max(R).

If M is minimal over an ideal of the form t R+ P for some non-mazximal prime ideal P

and for somet € M\ P, then M = (| M™ is a prime ideal of R such that P C M C M.

n>1
Proof. If M is minimal over the ideal Iy = tR + P, then [; is M-primary. If we set
I, = t*R + P for k > 1, then the same conclusion holds. For each k € N, we have
I, O Iy since tF € I, \ Ix+1. Suppose otherwise, then tF = tF*1lr 4+ p for some r € R
and p € P, then we have t*(1 —tr) = p. Sincet € M\ P and p € P, we have 1 —tr € P.
This implies 1 € tR + P = I, which is impossible. By property («), for each k, there
exists an integer my > 1, such that I, = M™. Since M™ = I}, D [x,3 = M™+1
then each power of M is distinct. Hence as a result of property («), M™ = bR + M™
for each b € M™\ M"™! and all positive integers m > n.

Now let M = (\M™ = (\M™ 2 P . Since all powers of M are distinct, then
M D> M. For x,yn?M \ Mliz‘zhere are integers m,n such that x € M™\ M™"! and
y € M™\M™*!. This implies M" = xR+M"" and M™ = yR+M™". By multiplying
these equalities, we have M™™ = zyR + xM™" + yM™ 4 M™+2 Since every
power of M is distinct, then M™™™ > M™ "+ Since a M™t 4+ y M+ 4 M2 C
M™++1 then we must have xy ¢ M™*"*+! hence M is a prime ideal of R such that

PCMCcCM. [l

Lemma 4.10. Let R be an integral domain with property («). Let P € Spec(R). If
Q) € Spec(R) is minimal over an ideal of the form tR + P for some t € R\ P, then
Q= Q" is a prime ideal of R such that P C Q C Q.

n>1
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Proof. Since Rg has property («) with QRg is minimal over tRg+ PR, by Lemma ,

we have [ Q" Rg is a prime ideal of Rg that contains PR and is properly contained
n>1

in QRg. For each integer k > 1, set [}, = t* R+ P. By localizing I}, at ) and then taking
contraction back to R, we obtain Q-primary ideals which are powers of () by property
(a). Set my, be the integer such that Q™ = I;Rg N R. Now Lemma implies that
() Ik R is a prime ideal which contains PR and is properly contained in () Rg. Since

k>1

QR is minimal over I;, then by Lemma () Q"R is a prime ideal. It follows that

n>1
N IxRq is a prime ideal since (| Q"Rg = Q™ Rg = () [(IxRoNR)Rg| = N IkRg.
k>1 neN keN keN keN
Hence there exists Qo € Spec(R) with )y C @ such that ()[R = QoRg with
keN
P C Qy C Q" for each n > 1. It follows that Qy = [ Q" C Q. n
n>1

Lemma 4.11. Let R be an integral domain with property (o). Let N € Spec(R) with
N # (0). Then N = (N" is a prime ideal of R such that for all P € Spec(R)
n>1

with P C N we have P C N. Moreover, in the case that N # N?, we have NRy is

principal.

Proof. Let N € Spec(R) with N # (0). Let P € Spec(R) with P C N and let
t € N\ P. Then there exists @ € Spec(R) with @ C N such that () is minimal over

tR+ P. By Lemmal4.10, (] @™ is a prime ideal that contains P and properly contained

n>1
in Q. It is clear that (| N™ contains () Q™. Therefore (| N" contains every prime
n>1 n>1 n>1
ideal P of R such that P C N. In the case that N = N2 we have (| N" = N and we
n>1

are done. Hence, in the rest of the proof, we assume that N # N2

Set Q = (Y N" and let » € N\ N2. Since @) contains each prime ideal that is

n>1 a
properly contained in N and r ¢ ), N is a minimal prime over the ideal rR. It follows

that N Ry is the radical of rRy. Thus rRy is N Ry-primary. By property («), the only
possibility is to have NRy = rRy. So the last statement of the lemma has proved.
Now it remains to show that () is a prime ideal of R. Since NRy = rRy is principal,

each power of NRy is distinct. It follows that

QC([\N"Rv)NRCN

n>1

Since NRy is a minimal prime over 7Ry, choosing P = 0 in Lemma 4.9, we have

that () N"Ry is a prime ideal of Ry. Hence (ﬂ N"RN) N R is a prime ideal of R

n>1 n>1
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that is properly contained in N, so it is contained in (). Therefore

Q= (ﬂN"RN) N R € Spec(R)

n>1
O

Lemma 4.12 (Nakayama’s Lemma). Let R be a ring and let M be a finitely gen-
erated R-module. Let I be an ideal such that I C Jac(R), i.e. the intersection of all
maximal ideals of R. If M = IM, then M = 0.

Lemma 4.13. Let R be a local integral domain with mazimal ideal M. Let M be the
radical of a finitely generated ideal. Then M is principal if and only if {M"|n > 1} is
the complete set of M-primary ideals. Furthermore, in the case that M is principal,
we have (| M™ is a non-mazximal prime ideal that contains each non-mazximal prime
ideal of ﬁ21

Proof. Let M = (a) be principal. Our aim is to show that the only M-primary ideals
are powers of P and powers of M are distinct. Let ) be an M-primary ideal. Since
Vv/Q = M, then we have " € Q but a" ! ¢ Q for some positive integer n. Our claim is
that Q = (a"). Suppose there exists z € @\ (a™). Then x = a" *r for some r € R\ M
and k > 0. Since r is a unit in R, then (a" %) = (z) C @, but this contradicts our
assumption that "' ¢ Q. So we must have Q = (a"). Moreover, by Nakayama’s
Lemma, we have M® # M7 for i # j since M is finitely generated.

Conversely, assume that M is the radical of a finitely generated ideal I of R, and
let {M"|n > 1} be the complete set of M-primary ideals of R. Since M is maximal,
VI = M implies that I is M-primary, hence I = M" for some n € N. Then M?" =
I? C I and therefore M D M? O ... i.e. all powers of M are distinct. Moreover, for
each b € M" 1\ M™ we have M" ! = bR+ M™. Thus M" !, and by the same way,
MP¥ is finitely generated for & < n. In particular, M is finitely generated.

To see that M is principal, suppose by the way of contradiction that M is minimally
generated by n > 1 elements. Let M = (ay,...,a,). Since M # M?, suppose without
loss of generality that a,, ¢ M?. Since M? C (a?,...,a%_;,a,) C M and the minimal

prime ideal of (a?,... a2 _;,a,) is M, (a?,...,a%_,,a,) becomes an M-primary ideal
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and must therefore be equal to M. Consider the equation
e 2 2 2
ay =ria; +reay+ ...+ rp1a, 1 tra,

This implies that a;(1 —ra;) € (ag,...,a,). Since a; € M and M is the Jacobson
radical of R, then 1—rja; is a unit in R, hence a; € (as, . .., a,) which is a contradiction
with our assumption. So M must be principal.

Let M = (a). Now suppose that for some @ € Spec(R) \ Maz(R), and some
k> 1, we have Q C M* but Q € M*+1. Tt follows that Q + M**! is M-primary and
must be equal to M*. So we have a* = ¢ + ta**!, where t € R,q € Q. It follows
that a*(1 — ta) € Q. Since Q is a prime, we have either a € Q or 1 —ta € Q. If
a € @, then we have (a) = M C Q C M, a contradiction. If 1 —ta € @, then
le@+aR=0Q+ M= M, a contradiction again. Hence if Q € Spec(R) \ Max(R),
then Q C [ M™.

Contintélwith the assumption that M = (a) and let z,y ¢ [ M", so for some
kit € N, x € M\ M*1 and y € M*\ M**!. Then x = a*r, anZlZ; = a'ry for some
ri,ro € R\ M. It follows that zy = a**triry € M*\ M*1 Hence (| M" is a

n>1

prime ideal of R. M # M? implies that (| M™ C M, which means it is not a maximal
n>1

ideal of R. n

Lemma 4.14. Let R be an integral domain, and let P € Spec(R) with P # (0).

If A is a radical ideal contained in P but P is not minimal over A, then we have

(R: P)C(A:A).

Proof. Let x € (R : P), then zP C R. Since A C P we have tA C R. The
fact that P C R also implies that ztPA C A. Let Q be a minimal prime ideal of
A. Then we have zPA C A C Q. Since P Z @, and @) € Spec(R) then we have
A C Q. Then zA contained in each minimal prime ideal of A. Clearly this implies

that zA C () P =+A=A. It follows that z € (A : A). O

PeMin(A)

We have now able to prove that an SP-domain is an almost Dedekind domain.

Theorem 4.15 (Vaughan and Yeagy [5, Theorem 2.4]). [10, p.43, Theorem.
3.1.7] If R is an integral domain with radical factorization, then R is an almost

Dedekind domain.
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Proof. Let P € Spec(R) with P # (0) and let @ be a P-primary ideal of R. Let k € N,
and Q = Jy...Jy be the radical factorization of ). Since () is P-primary, if some
Jiy, € P, then H J; CQ = HJ C [IJ: Hence Q = H J; which is a contradiction.
Thus we have f] ZOC P for all zii 1,. 1#7% But since @) C Cl j : C P, by taking radicals, we
have J; = P for all 7, hence @) = P". Therefore, R has property («). If P is a minimal
prime of the zero ideal, then PRp is the only nonzero prime ideal of Rp, hence the
only way a nonzero ideal of Rp can factor into radical ideals is as a power of PRp.
Thus it suffices to show that R is one dimensional.

Suppose that dim R > 1. Let PN € Spec(R) with P C N be such that P is
minimal over a nonzero principal ideal sR, and N is minimal over an ideal of the form
tR+ P for somet € N\ P. Then NRy # N*Ry by Lemmaand so by Lemmam,
N Ry is principal and (| N C N contains each prime ideal that is properly contained
in P. "

Let sRy be such that sRy = Iy ... I,Ry with each I, Ry is a radical ideal of Ry.
Each I; Ry is invertible and at least one of them is contained in PRy. Without loss
of generality, suppose I Ry € PRy. Then N Ry is not minimal over I; Ry, hence by
Lemma we obtain the following

(Ry : NRy) C (I1Rn : I Ry)

This inclusion leads us to a contradiction since we have (I1Ry : [;Ry) = Ry and
Ry C (Ry : NRy). We shall prove that the strict inclusion holds. We know that
N Ry is principal, so set NRy = (%) for some n € N;s € R\ N. We clearly have %
in the field of fractions of R, but % ¢ Ry. For otherwise, there exist r € R,p € R\ N
such that % = - It follows that for some v € R \ N, unr =up € N. Since u ¢ N, and
N € Spec(R), then we have p € N, which is a contradiction.

We have %% = % € Ry, since  is the generator of N Ry, it follows that %NRR C

Ry. Hence % € (Ry : NRy) \ Ry. So we have Ry C (Ry : NRy). O

Corollary 4.16. An integral domain R is an SP-domain if and only if R is a Priifer

domain having no critical ideals and every prime ideal of R is mazimal.

Proof. Let R be an SP-domain, then by Theorem [{.15 R is an almost Dedekind

domain, hence a Priifer domain. It follows that every prime ideal of R is maximal by
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Theorem [3.2] and by Theorem [4.8 R has no critical maximal ideals.

Conversely, assume that R is a Priifer domain with no critical maximal ideals and
let Spec(R) = Max(R). Since an idempotent maximal ideal is critical, then we have
M # M? for all M € Max(R). Since R, is a valuation domain, it follows that MR,
is a principal ideal of Rj;;. With the fact that every prime ideal of R is maximal, R
becomes an almost Dedekind domain. By Theorem [{.8 R is an SP-domain. O
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5 RINGS PRODUCED BY ORDERED ABELIAN
GROUPS

We construct this section using the well-known theory of the ordered abelian groups

with the informations and definitions in [11] and [12].

5.1 Partially Ordered Abelian Groups

In this section, we shall study Abelian groups which has an order relation compatible
with the group operation. First of all we shall give some definitions in set theory.

If G is an abelian group and if < satisfies the property that a < b implies a+c < b+-c
for all a,b,c € G, then we say that < is compatible with the group operation on G.
G is called a partially (respectively totally) ordered group, if < is compatible with the
group operation of G and < is a partial (respectively total) order.

Let G be a partially ordered group under <. For a g € G, we say that ¢ is positive
if g > 0 and g is negative if ¢ < 0. We set Gt = {g € G|g > 0} as the set of positive
elements of G. G clearly satisfies the properties that, 0 € G*, G* N (-G*) = {0}
where —G™ is the set of inverses of element of G, and lastly, G is a subsemigroup of
G. Furthermore, if G is a totally ordered group, then for all ¢ € G, either ¢ € G or
—g € G is true. This is also a sufficient condition for G to be totally ordered, since if
x,y € G we either have x —y <0 orz —y > 0.

Let S be a partially ordered set, if for any a,b € S, there exists ¢ € S such
that a,b < ¢ (or ¢ < a,b) then we say S is filtered to the right (or left). If G is a
partially ordered group, then being filtered to the right and being filtered to the left
are equivalent for G. If these conditions are satisfied, then we say that G is filtered. For
a partially ordered group G, it is necessary and sufficient condition that G generates
G as a group.

Let S be a partially ordered set and let A C S be nonempty. If b € S satisfies a < b
for all @ € A, then we say that b is an upper bound of A. If b is an upper bound of A
and it satisfies b < ¢ for all upper bounds ¢ € S, then we say that b is the least upper
bound of A, and denote b = sup(A). Lower bound and the greatest lower bound are
defined similarly, and the greatest lower bound of A is denoted by inf(A).

We shall give some basic properties of sup(A) and inf(A) in the following theorem.
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Theorem 5.1. Let G be an abelian group which is partially ordered. Let A, B C G be

nonzero, and let a,b,x € G. Then following conditions hold:

(1)

sup(A) exists if and only if inf(—A) exists. If sup(A) exists, then sup(A) =
inf(—A).

If two of sup(A), sup(B) and sup(A+ B) exist, then third one also exists. In the
latter case, the equality sup(A) + sup(B) = sup(A + B) holds.

sup(A) exists if and only if sup(A + x) exists where A+ z = {a + z|a € A}, if
sup(A) exists, then we have sup(A + x) = sup(A) + .

sup(a,b) exists if and only if inf(a,b) exists. If inf(a,b) exists, then a +b =
sup(a,b) +inf(a,b).

If sup(A) = x and sup(B) = y exists, and if sup(x,y) ezists, then sup(AU B)
ezists and sup(AU B) = sup(z,y).

Proof.

1.

Suppose sup(A) exists and equals to x. Then for all a € A, we have z > a.
This implies —x < —a for all a € A, since —A = {—ala € A}, then —x is a
lower bound for —A. Now let y be a lower bound for —A, then y < —a for all
a € A, hence a < —y for all @ € A. Since —y becomes an upper bound for A
and sup(A) = x, then we have x < —y or y < —x. It gives that —z = inf(—A)
and the result follows. Similarly, we can see existence of inf(A) implies that
sup(—A) exists. By choosing —A as A, the result directly follows from the fact
that —(—A) = A.

Suppose that sup(A) = z and sup(B) = y. We clearly have = +y > a + b for
all @ € A,b € B, hence x + y is an upper bound for A + B. Let ¢t be an upper
bound of A+ B. Let ' € A. Since t > a’ + b for all b € B, we have t —a’ > b.
Since t — a’ is an upper bound, then we have t —a’ > y, which implies t —y > d’.
Since a’ is an arbitrary element of A, then we must have ¢ — y > x which gives
that t > x 4+ y. So we have sup(A) + sup(B) = = +y = sup(A + B).

Now let sup(A) = x and sup(A+ B) = z. Our aim is to show that sup(B) exists.

Let ¥ € B, then z > a+V for all a € A, hence z — V' > a implies that z — b’ > x.
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It follows that z — 2 > ¥, and since V' is arbitrary, then we must have z — x is an
upper bound of B. If w is an upper bound of B, then x4+ w is an upper bound of
A+ B, hence z < x + w, it follows that z — x < w which means z — z = sup(B).
We can prove the last possibility that sup(B) and sup(a+ B) exist implies sup(A)

exists by using a similar way, so the proof is complete.

3. Suppose that sup(A) =y, then y > a for all a € A. Since A+z = {a+zx|a € A},
then x +y > a + x for all a € A which implies x + y is an upper bound of
A+ z.Let z be an upper bound of A+ z, hence z > a+ x for all a € A, it follows
that z — 2 > a for all @ € A, and so z — x > y. Thus z > x + y which gives
sup(A) +z =2z +y = sup(A+ x).

If we choose A+ as A and —z as z, then sup((A+z)+(—2z)) = sup(A+z)+(—z)
or sup(A) = sup(A—+ x) — x, hence existence of sup(A+ ) implies sup(A) exists.

4. Suppose that sup(a,b) = z, then we shall show that inf(a,b) = a+ b— z. Since
a—xr <0and b—x <0, then we have a + b — 2z < band a+ b — x < a, then
a+ b — x is a lower bound of a and b. Set y be a lower bound of a and b, then
a,b<a+b—y, hence a+b—y is an upper bound of ¢ and b, then x < a+b—y
and consequently y < a+ b — x. Hence inf(a,b) =a+b—x=a+b— sup(a,b).
Similarly we can obtain that if inf(a,b) exists, then sup(a,b) exists and equal
to a+b—inf(a,b). If sup(a,b) exists it follows from the equalities above that
a+ b= sup(a,b) +inf(a,b).

5. Let sup(A) = z, sup(B) = y and sup(z,y) = k. Let u € AUB. If u € A, then we
have u < z < k, and if u € B, then u < y < k. Therefore, k is an upper bound of
AUB. Let m be an upper bound of AUB. Then we have m > a for all a € A and
m > b for all b € B. By definition of supremum, we have that m > x and m > y.

It follows from sup(z,y) = k that m > k. Hence sup(AU B) = k = sup(z,y).
[l

If G is a partially ordered abelian group under <, then the relation <’ on G which
is defined by a <’ b if and only if b < a is clearly a partially order on GG. It follows that
conditions (1), (2) and (3) of Theorem [5.1] also hold for the infimums.
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Now let a,b € G. If inf(a,b) exists and inf(a,b) = 0, then we say that a and b

are disjoint, or a is disjoint with b. By (4) of Theorem [5.1] it is the case that sup(a, b)

exists and sup(a,b) = a + b.

In particular, sup(a,0) exists if and only if inf(a,0) exists. If sup(a,0) exists we

denote sup(a,0) and —inf(a,0) by a® and a~, respectively.

Proposition 5.2. Let G be a partially ordered abelian group and let a,b,c,x,y € G.

Then the following statements hold:

(1)

If a =z — vy for some x,y € G and if sup(a,0) exists, then inf(x,y) exists,
r=at+inf(x,y) and y = a= +inf(x,y). Clearly at < x and a= < y, and
if x and y are disjoint, then x = a* and y = a~. In particular, a™ and a~ are

disjoint.

If a,b,c € GV is such that a and ¢ are disjoint, the existence of inf(a,b) implies

inf(a,b+ c) exists and inf(a,b+ c) =inf(a,b).

If a,b,c € G" is such that a and b are both disjoint with ¢, then a + b is also
disjoint with c¢. Additionally, if d € G, then a < ¢+ d implies that a < d.

If sup(a,b) exists and if n is a nonnegative integer, then sup(na,nb) exists and

sup(na,nb) = nsup(a,b). A similar statement holds for inf(a,b).

Proof.

1.

Suppose a® = sup(a, 0) exists and let a = 2 —y for some x,y € G*. Since we have
sup(—x, —y) = —inf(z,y) by (1) of Theorem[5.1] then we have a* = sup(a,0) =
sup(x —y,0) = sup(x — y,x — x) =z + sup(—y, —x) = = —inf(z,y). It follows
that x = a™ +inf(x,y). Similarly, we have a= = —inf(a,0) = —inf(x — y,0) =
—inf(x —y,y —y) =y —inf(x,y), hence y = a= +inf(z,y). It is clear that
x> a" and y > a”. If x and y are disjoint, that is inf(x,y) = 0, then we have
r=a" and y = a~. Since a = a™ — a~, then we have a™ = at +inf(at,a”),

thus a™ and a~ are disjoint, as claimed.

. Let inf(a,b) =k, then k < a and k < b. Since ¢ > 0, then £ < b <b+c. So k is

a lower bound of @ and b + ¢. Now let s be a lower bound for a and b + ¢. Then

s<aands<b+c. Since b >0, then we have s < a < a + b. Equivalently we
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have s—b < aand s—b < ¢. It follows that s —b <0 or s <b. So we have s < a

and s < b, which implies s < k. So k =inf(a,b+ c).

3. Let inf(a,c) = inf(b,c) = 0. We clearly have a, b, c > 0, hence a+b, c > 0 which
means 0 is a lower bound for a + b and c. If k£ is a lower bound for a + b and c,
then a+b > k and ¢ > k and since b € G, then we have a > k—b and ¢ > k —b.
inf(a,c) = 0 now implies that 0 > k& — b or b > k. Since we have b > k and
¢ >k, then inf(b, c¢) = 0 implies that £ < 0. Hence 0 = inf(a + b, c).

Now let a < ¢ + d for some d € G. Then we have a > a —d and ¢ > a — d.

Since inf(a,c) = 0 it follows that 0 > a — d or a < d equivalently.

4. Since sup(a,b) exists, then we have (a — b)* = sup(a — b,0) = sup(a,b) —b. We
have a—b = (a—b)"—(a—b)~, and inf((a+b)", (a+b)~) = 0. It follows from (3)
that inf(n(a—b)*,n(a—b)~) = 0. Moreover, n(a—b) = n(a—b)* —n(a—b)~. By
(1), sup(na—nb,0) exists and we have n(a—b)" = sup(na—nb,0) = n(sup(a, b)—
b) = nsup(a,b) — nb. Hence we have that sup(na, nb) exists, and sup(na,nb) =
sup(na —nb,0) +nb = n sup(a,b). Now (4) of p.1] implies that in f(na, nb) exists
and inf(na,nb) = na + nb — sup(na,nb) = n(a+ b — sup(a,b)) = ninf(a,b).

5.2 Lattice Ordered Abelian Groups

We call a partially ordered abelian group G as lattice ordered, if for each a,b € G,

sup(a, b) exists. If this is the case, the partial order on G is called a lattice order.
Theorem 5.3. Let G be a partially ordered abelian group.

1. If G is filtered, then the following conditions are equivalent:

(a) The order on G is a lattice order.
(b) For all a,b € G, sup(a,b) exists.

(c) For all a,b € GT, inf(a,b) exists.

2. If G is lattice ordered, for each finite subset A = {ay,...,a,} of G, sup(A) and
inf(A) exists.
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3. If G is lattice ordered and if A = {ay,...,a,} € GT, then the following conditions

are equivalent:

(a) inf(A) =0.
(b) For each x € G with © # 0, there exists y € G with 0 < y < x such that

inf(y,a;) =0 for some a; € A.
Proof.

1. By definition, (a) implies (b) is clear. By (4) of we have (b) and (c) are
equivalent. Hence it suffices to show (b) implies (a) to complete the proof. Let
g,h € G. Choose t € G such that t < gand ¢t < h. Then g—t,h—t € G*, and by
assumption, sup(g—t, h—t) exists. Since we have sup(g—t,h—t)+t = sup(g, h),
then sup(g, h) exists. Thus G is a lattice ordered group.

2. Let G be a lattice ordered group. Since we have sup(a;,ay) exists for aj,as €
(G, then suppose as induction hypothesis that supremum exists for arbitrary
set which has n — 1 or less elements of G. Let A = {ay,...,a,}, and A" =
{ai,...,a,—1}. By induction hypothesis, sup(A’) exists, say © = sup(A’). Set
sup(x,a,) = k. Our claim is that sup(A) = k. Clearly, k¥ > = > a; for
it =1,...,n—1and k£ > a,, hence k is an upper bound of A. Let m be an
upper bound of A. It follows that m > a; for all i = 1,...,n. Since m is an
upper bound of A’, then we have m > x. But then m > x and m > a,, together
implies that m > k. Hence k = sup(A). For a finite subset A of G, existence of
inf(A) can be obtained similarly.

3. Let A = {ay,...,a,} € G*. First suppose that inf(A) = a > 0. Suppose
that y € G be such that 0 < y < a with inf(y,a;) = 0 for some i = 1,...,n.
Since y < a and a < a;, then we have y < a; and so inf(y,a;)) = y = 0.
This is a contradiction with 0 < y. Hence such an element doesn’t exist. Con-
versely, let inf(A) = 0 and let x > 0. The we have that = > inf(x,a;) >
inf(x,a;,a2) > ... > inf(x,a,...,a,) = 0. If inf(x,aq) = 0, then choos-
ing y = = gives the desired result. Otherwise, choose y = inf(x,ai,...,a;)
such that inf(z,a1,...,a;) # 0 but inf(z,ay,...,a;,a;11) = 0. This gives that

inf(y,a;+1) = 0. Since we find such a y, then the proof is complete.
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]

Theorem 5.4. Let G be a partially ordered abelian group, then G s lattice ordered if
and only if each element of G can be expressed as a difference of two disjoint elements

of GT.

Proof. Let G be a lattice ordered group, then for a € G, a™ = sup{a,0} exists.
By (4) of Theorem 5.1} we have a = a™ — a~. By (1) of Proposition 5.2 we have
inf{a*,a”} = 0 so we are done.

Now let a,b € G. Our aim is to show, under the assumption that each element of
G can be expressed as a difference of two disjoint elements of G*, sup{a, b} exists. Set
a =1z —y; where x1,y; € GT and inf{xy,11} = 0.

sup{a,0} = sup{zy —y1, 51 — 1} = sup{z, )} —y = 1 +y1 — Y1 = 131, SO
at = sup{a,0} = z1. Similarly, a= = —inf{a,0} = y;. Thus our assumption implies
that for every element z of G, ™ = sup{x,0} and 2= = —inf{zx,0} exist.

Now let a,b € G, our claim is that sup{a,b} exists. Since sup{a,b} = sup{a —
b,0} 4+ b and sup{a — b, 0} exists, then sup{a, b} exists. Hence G is lattice ordered. [

Let R be an integral domain with the field of fractions @), and let U be the mul-
tiplicative group of units of R. Set G = Q*/U where Q* denotes the set of nonzero
elements of ), and set Il : Q* — G be the canonical epimorphism. In this case G is
called the group of divisibility of R.

Define an ordering on G by

aU <bU < a'beR

We shall view G as additive group with addition aU + bU = abU. Then (G, +)
becomes a partially ordered group with G* =TI(R*) = {aUla € R* = R\ {0} }.

Let G be a totally ordered group and let v : Q* — G be a valuation. If R = {z €
Q*|v(z) > 0} U {0} then R is a valuation domain, @ is the field of fractions of R, and
G is order-isomorphic to the group of divisibility of R.

R is a valuation domain if and only if its group of divisibility is totally ordered.

G is a lattice ordered group if G is a partially ordered group such that inf{g,h}
and sup{g, h} exist in G for all g,h € G. Since sup{g, h} = —inf{g, h}, it is sufficient

for us to check only infimums of supremums exist.
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If G is a lattice ordered group and X C G, then X is a sublattice of G if infx{z,y} =
infg{z,y} for all x,y € X.

If G and G’ are lattice ordered groups and f : G — G’, then f is a lattice homomor-
phism provided that f is a group homomorphism and f(inf{g,h}) =inf{f(g), f(h)}
for all g, h € G. Clearly such an f will also satisfy f(sup{g,h}) = sup{f(g), f(h)} for
all g,h € G. And as a result, f is an order homomorphism, and f(G) is a sublattice of
G

Let {G,|a € T'} be a family of partially ordered groups, and let G = [[ G,. Then

acl’
G can be ordered in two different ways as follows:

(I) For (z4), (ya) € G, define (x,) < (yo) if z4 < y, for all @ € I'. This is called
the product ordering on G and makes G into a partially ordered group. If each
of GG, is a lattice ordered group, then G is also a lattice ordered group with the

product ordering.

(I1) For (z4), (ya) € G, define (z,) < (ya) if (20) = (Ya) OF Zoy < Yo, Where ag =
inf{a € I'|xy # yo}. This is called the lexicographic ordering on G, and makes
G a partially ordered group. If each of GG, is a totally ordered group, then G is

also a totally ordered group with the lexicographic ordering.

Definition 5.5. Let G be a lattice ordered group. A subset S of G is called a segment
of G if it satisfies the following conditions:

(i) ScCG*t

(13) S is filtered, i.e. x € S,y € G and y > = implies y € S.

(i7) x,y € S implies inf{z,y} € S.
S is called a prime segment of G, if S is a segment of G and G* \ S is a semigroup,

Le. z,y € GT\ S implies x +y € GT \ S. Note that the empty set is always a prime
segment. We shall denote the set of prime segments in a lattice ordered group G with

Spec(@G).

Notation. Let G be a lattice ordered abelian group, and let S be a subsemigroup of
G such that G*\ S is filtered. Define Hg = {g1 — ¢2|g1, 92 € S}. Evidently, Hg is a
subgroup of G (generated by S). Now form the quotient group G/Hg, which we shall
denote by Gf.

Theorem 5.6. With the above notation, the following statements hold:

89



(1) Gg s a lattice ordered group with the ordering defined by

g1+H5§gg+Hs <= dh € Hg such thatgg—gl+h20

Moreover, the canonical mapping @ : G — Gg s a lattice homomorphism.

(2) If A is a segment of G with ANS = (), then w(A) is a segment of Gg. Conversely,
if A is a segment of G, then 7= (A) is a segment of G such that 7= (A)NS = 0.
Moreover, every segment of Gg is of the form w(A), where A is a segment of G

such that AN S = 0.
(3) If B is a segment of G such that BN S # 0, then ©(B) = G¥.

(4) If P is a prime segment of G such that PNS = 0, then w(P) is a prime segment of
Gs. Conversely, if P is a prime segment of Gg, then 7= *(P) is a prime segment
of G such that 7= (P)NS = (. Moreover, 7! (n(P)) = P for any prime segment
P of G such that PN S = (.

(5) There is a one-to-one correspondence between prime segments P of G such that

PNS =0 and prime segments P of Gg defined by
¢: P —7(P)

whose 1nverse is given by

U:P—aY(P)

Proof. (1) Clearly, the given relation is reflexive and transitive. To see the anti-
symmetry, let g1+ Hg < go+ Hg and go+ Hg < g1+ Hg for some g1, go € G. Then,
by definition, there exist h, h’ € Hg such that go—¢g;+h > 0 and g1 —go+h' > 0.
By adding suitable element of S to h and h’, we may assume that h,h" € S. Then

(1 —go+ M)+ (g2—g1+h)=H"+heS

Ifg:—g1+h € GT\S, then since g —g1+h < (g1 =92+ 1)+ (92— g1 +h) = I/ +h,
and since G\ S is filtered, we have h + h' € G* \ S, a contradiction. It follows

that, go —g1 +h € S, and so go — g1 = go — g1 + h — h € Hg. Therefore,
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g1 +Hs =g+ Hg.

Now, if g1 + Hg < g2+ Hg, then go — g1 +h > 0 for some h € Hg. For any g € G,
(92+9) — (91 +9)+H >0, and so

(1 + Hs) + (9 + Hs) < (g2 + Hs) + (g9 + Hs)

It therefore follows that Gg is an ordered abelian group. It remains to show
that infimums of any two elements of Gg exists. Let g1,92 € G, and let g =
inf{g1,g2}. It is immediate that g + Hg < g; + Hg for i = 1,2. Let ¢’ € G be
such that ¢’ + Hg < g; + Hg for i = 1,2. Then there exist hy, hy € Hg such that
gi—¢g +h; >0 for i =1,2. As before, we may assume that hy = hy = h € S.
Since g; > ¢’ —h for i = 1,2, then we have g > ¢’ —h, and so g—¢'+h > 0, which
gives that ¢’ + Hg < g+ Hg. Thus g+ Hg = inf{g1 + Hs, go + Hs}. Hence, Gg

is a lattice ordered abelian group.

The fact that 7 is a lattice homomorphism is straightforward since for g, go € G,

inf{g1 + Hs, g2 + Hs} = inf{g1, 92} + Hs.

Let A be a segment of G with ANS = 0. If 7(A) = G¢, then there exists a € A
such that 7(a) = a+ Hg = Hg and this implies a € Hg. So there exist s1, 52 € S
such that a = s; — s9, or 1 = a + s3 > a. Since A is a segment and a € A, this

gives that s; € A, contrary to our assumption AN S = 0. So 7(A) C G&.

Let m(a) = a+ Hg € 7(A) and g+ Hg € G¢ be such that 7(a) = a+Hg < g+ Hs.
Then there exists h € Hg such that ¢ —a + h > 0, clearly we may assume that
h > 0. So we have g + h > a, and since A is a segment, then we have g+ h € A.
Thus 7(g+h) =g+h+ Hs =g+ Hg € m(A).

Let a + Hg,b + Hs € w(A), where a,b € A. Since A is a segment, we have
inf{a,b} € A, and so inf{a + Hg,b+ Hg} = inf{a,b} + Hs = w(inf{a,b}) €
m(A).

Thus 7(A) is a segment of Gg.

Now let A be a segment of Gg. Since A C G, then we have 771(A) C GT, for
otherwise, if 771(A) = G, then since 7 is surjective we have A = 7(771(A)) =

G, a contradiction.
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Let a € 71(A) and g € G be such that a < g. Then we have 7(a) < 7(g), and
since A is a segment and 7(a) € m(7*(A)) = A, then 7(g) € A which implies
gen(A).

Let a,b € 7 '(A), then m(a) = a+ Hg,m(b) = b+ Hg € A, since A is a segment
of G&, then we have inf{a+ Hg,b+ Hs} = inf{a,b} + Hs = n(inf{a,b}) € A,
then inf{a,b} € 771 (A).

Thus 77!(A) is a segment of G.

Suppose that 771(A)NS # 0. Let x € 7 (A)N S, then n(z) = x + Hs € A and
n(zr) =x+ Hg € n(S) = S+ Hg = {s+ Hg|s € S}. But since S C Hg, then
we have x € Hg. This is a contradiction since x + Hg = 0 + Hg € A and this
implies that A = G{. So we must have 771(A) N S = 0.

Since we have (771 (A)) = A for all segments A of Gg, and 771(A) is a segment
of G such that 77'(A) NS = 0, then the last sentence of our claim is already

proved.

Let B is a segment of G such that BNS # 0. Let b € BNS, then n(b) = b+ Hg €
7(B). Since b € S C Hg, then b+ Hg = 0+ Hg. We can show 7(B) is filtered
as we have showed 7(A) is filtered in (2) of this proof. Since 0 + Hg € 7(B), we
have (B) = G§.

Let P be a prime segment of G such that P NS = ), by (2) of this proof = (P)
is a segment of Gg. Now let a + Hs,b + Hs € G& \ m(P). We claim that
a,b € GT\ P. If a <0, then a + Hs < 0+ Hg, and since a + Hs € G¢, then
a € Hg. So a = s; — sy for some s1,s5 € S. Then since GT \ S is filtered,
a =5 — Sy <s; and s; € S implies a € S C G, a contradiction. Then we have
a € G*, and similarly, b € G*. Clearly if a,b € P, then 7(a), 7(b) € 7(P). Thus

we have a,b € G\ P. Since P is a prime segment, this implies a +b € G*\ P.

Now our claim is that if x € GT\ P, then n(z) € G5\ m(P). Let x € GT\ P.
x € G implies that © > 0 and so x + Hg > 0+ Hg. Thus = + Hg € G{. Now
suppose that x ¢ P and n(z) = x4+ Hg € n(P). Then x4+ Hg = p+ Hg for some
p € P. And this implies p — xz € Hg and so p — x = s1 — s9 for some s1, 89 € S.
Then p 4+ s, = x + s1 > p, and since p € P, then we have x + s; € P. The facts
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that P is a prime segment and x ¢ P implies that s; € P. But then we have

s1 € SN P which is a contradiction. So our claim is true.

Since we have shown that a4+ b € G\ P, then we have w(a+b) = w(a) + 7(b) €

G{\ 7(P). Hence, 7(P) is a prime segment of G.

Now let P be a prime segment of Gg. It has shown in (2) of this proof that
7~ 1(P) is a segment of G such that 771 (P)NS = 0. The only part we shall show
that 7—1(P) is prime. Let a,b € G* \ 7~ !(P), then as we have shown above,
m(a),7(b) € GE\ 7 (7 1 (P)) = G{ \ 'P. Then w(a+0b) = 7(a) + 7(b) € GL\ P
since P is a prime segment of G5. And this implies that a +b € GT\ 771(P) as
in the first paragraph of this part of the proof. So 77(P) is a prime segment of
G.

Now, let P be a prime segment of G such that P NS = (). It is well-known from
set theory that P C 7! (w(P)). So we shall show the converse inclusion. Since 7
is an order homomorphism, then 7! (7(P)) C G*. So let z € 7! (7(P)), then
m(x) € m(P). Since we have shown above that for any prime segment P of G
with PNS =0, if z € GT\ P, then (x) € G{\7(P). Then m(z) € n(P) implies
that z € P. Thus P = 7! (n(P)).

(5) Let & and Ps denote respectively the prime segments P of G with PN S =0

and the prime segments of G.

Set & : P — P defined by &(P) = n(P) for all P € &, and set U : Py — &
defined by ¥(P) = 7~ 1(P) for all P € Ps.

We have shown in (4) that both ® and ¥ are well-defined mappings. We shall
show that ® and ¥ are inverses of each other:

For any P € &, ¥ (®(P)) = n' (7(P)) = P as we have shown in (4), and by
the same part, we have that ® (¥(P)) = (7~ }(P)) = P for any P € Ps.

Thus these mappings give us the desired correspondence.

]

Corollary 5.7. Let G be a lattice ordered group and let P be a prime segment of G.
If S = G*\ P, then Gg is a lattice ordered group with unique mazximal segment w(P).
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Every segment of Gg is of the form w(I) for some segment I of G with I C P.

In particular, Gg is totally ordered.

Definition 5.8. If G is a lattice ordered group, and if S = GT\ P for a prime segment
P of G, then Gg will be called as the localization of G at P, and denoted as Gp.

Now we turn our attention to totally ordered groups G and show that we can
construct valuation domains whose group of divisibility is lattice-isomorphic to G. But

before, we need to give the following lemma:

Lemma 5.9. Let R be a domain with field of fractions Q, let G be a totally ordered

group, and set v : R* — G be a mapping which satisfies the following properties:
(1) v is surjective.
(2) v(ab) = v(a) +v(b) for all a,b € R*.
(3) v(a+b) > min{v(a),v(b)} for all a,b € R*.
Then v : Q* — G defined by v(a/b) = v(a) — v(b) is a valuation on Q.

Proof. Since for a € R*, we have v(1/a) = v(1) — v(a) = —v(a) and v is surjective,
then v is clearly surjective.
Let a,b € Q*, then a = x1/y1,b = x3/ys for some x1, 9, y1y2 € R*.
v(ab) = v(x1r2/y1y2) = v(2172) — v(Y1y2) = v(21) + v(w2) — V(Y1) — v(Y2)
= v(z1) —v(yr) +v(22) — 0(y2) = 0(21/y1) + 0(22/Y2)
= 9(a) +v(b)

O(z1/y1 + T2/Yy2) = 0 (2192 + T2y1) /Y1Y2)

—
IS
-+
=

SN~—

Il

v(z1y2 + 22y1) — v(Y142)

v

min{v(z1y2), v(z2y1)} — v(Y1y2)
= min{v(z1ys) — v(y1y2), v(v2y1) — v(Y1y2) }
= min{v(z1/y1), 0(z2/y2)}
= min{v(a),v(b)}
Thus v is a valuation on Q). n
Theorem 5.10 (W. Krull [6l, p. 164]). [11, Theorem 1.1] If G is a totally ordered group,
then there exists a valuation domain whose group of divisibility is order-isomorphic to

G.
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Proof. Let K be a field and let S be the group algebra K[G] = {ikigiln eENk € K,g; € G}.
=1
Let @ be the field of fractions of S, and define v : Q* — G by

Z)‘igi
=1

n = inf{gi}it — mf{Q; ?:1
> 1id;
j=1

where A;, i; € K*, gi, g; € G. Our claim is to show that v is a valuation. To this aim,
we shall show that v' : S* — G* where G* denotes the positive elements of G, defined
by v’ (i)\lgz) =inf{g}i, for \; € K, g; € G, satisfies the properties in Lemma .
Then s;;(lze v(a/b) = v'(a) — v'(b), v becomes a valuation on G.

Since every element of G is also an element of S, then for g € G*, v'(g) = g, hence
v’ is surjective.

Let a,b € S with a = Y \igi, b= > j1;g; where \;, ji; € K, gi, g; € G. Then v'(ab) =
: =

=1

v (i i (Ai/ﬁj)(gig})). By definition, v'(a) = inf{g;}i2, and v'(b) = inf{g;}}_,. Since
G i:;ti;tally ordered group, then we have v'(a) = g, and v'(b) = gj, for some iy €
{1,...,m} and jo € {1,...,n}. Then clearly g;,g}, < gagj for all a = 1..m,3 = 1..n,
which gives us v'(ab) = v'(a)v'(b).
V(a+0b) = v’(i)\igi + ilmg;)
i= =

= mf{gmg}}g?;:)ug)

= inf {mf{g,}z";l,mf{g; i1

= inf{v'(a),v'(b)}

= min{v'(a),v'(b)}

Now set R = {z € Q*|v(z) > 0} U {0}, the valuation ring corresponding to the
valuation v, then R is the desired ring since if v is the valuation determined by R, and
as a result, v and v are equivalent:

Set U be the group of units of R, then v : Q* — Q*/U. Define ¢ : G — Q*/U
by ¢(v(a)) = aU = v(a) for all a € Q*. If v(a) = v(b), then v(a/b) = 1so a/b € U
and then v(a) = aU = bU = v(b), thus ¢ is well-defined. Since ¢(v(a)) = v(a), then it
remains to show that ¢ is an order-preserving isomorphism:

¢ is a homomorphism, since ¢(v(a) + v(b)) = ¢(v(ab)) = abU = aU + bU =
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d(v(a)) + ¢(v(b)). Tt is injective since ¢p(v(a)) = 0 implies a € U and so v(a) = 0. It
is clear that ¢ is surjective. Thus ¢ is an isomorphism. Now we shall show that ¢ is
order-preserving. If v(a) < v(b), then b/a € R, so aU < bU, thus ¢(v(a)) < ¢(v(D)),

which means ¢ is order-preserving. O

5.3 Constructing Bezout Domains

In the end of the preceding section we have shown that for any totally ordered abelian
group G there corresponds a valuation ring whose group of divisibility is isomorphic to
G. In this section, we look for a similar correspondence when we take the group to be

a lattice ordered abelian group.

Definition 5.11. An integral domain is called a Bezout domain if every finitely gen-

erated ideal of R is principal.

Proposition 5.12. Let R be a Bezout domain. For any a,b € R*, aR + bR = cR
implies inf{aU,bU} = cU.

Proof. Let a,b € R* with aR + bR = cR, then we have aR C cR and bR C cR. So
¢ ta,c b € R, and this implies cU < aU and cU < bU. Let qU < aU and qU < bU for
some ¢ € R*, then since ¢ € Q*, we have ¢ 'a,¢ 'b € R. And this gives us aR C ¢R
and bR C ¢R, which implies ¢cR = aR + bR C ¢R, thus ¢ 'c € R. Hence qU < cU,
which proves that inf{aU,bU} = cU. O

Proposition 5.13. Let R be a Bezout domain, then the group of divisibility of R is a

lattice ordered group.

Proof. Let @ be the field of fractions of R, and let G be the group of divisibility of
R. Tt is sufficient for us to show that for any z,y € Q*, inf{zU,yU} exists. Since
x,y € QF, there exists d € R* such that dx,dy € R*. Set ¢cR = dxR + dyR, where
¢ € R*, such an element exists since R is a Bezout domain. Then by Proposition
inf{dzU,dyU} = cU. Since drR C cR, then we have ¢c"'dz € R. So we have
(¢c7'd)™'U < 22U, or d™'cU < zU. Similarly, since dyR C cR, we have d~*cU < yU.
Now let z € Q* with 2U < 2U and 2U < yU. Then z 'z, 2z 'y € R, and this implies
xR C zR and yR C zR, or xR+ yR C zR. Hence we have cR = deR + dyR C dzR.
Since cR C dzR, we have (dz)"'c = z7'd~'c € R, and this implies 2U < d~'cU. Thus
inf{zxU,yU} = d 'cU. And this proves that G is a lattice ordered group. O
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Lemma 5.14. Let R be a Bezout domain. If a,b € R*, then sup{aU,bU} € R* and if
sup{aU,bU} = qU, then qR = aR N bR.

Proof. Let a,b € R* and let qU = sup{aU,bU}, where ¢ € Q*. Then since aU < qU
and bU < qU, we have a='q,b~'q¢ € R, so ¢ € aRNbR. Thus we have ¢ € R*, and so
qR C aRNbR. Let r be a nonzero element of aR N bR. Write r = ar; = bry where
ri,ro € R. rU = ariU = aU 4+ riU > aU. Similarly, rU > bU. Then rU > qU, which
implies ¢~ € R, and so r € ¢R. Thus we have ¢R = aR N bR. O]

Corollary 5.15. Intersection of two principal ideals in a Bezout domain is principal.

The converse is not true in general.

As a counter example, let K be a field and let R = k[X, Y], the polynomial ring
over K with indeterminates X and Y. Intersection of any two principal ideal of R is
principal but R is not a Bezout domain. By divisibility properties in R we know that
fRNgR = LCM{f,g}R for any f,g € R*. But the ideal (X,Y’) is not principal but

finitely generated, so R is not a Bezout domain.

Proposition 5.16. Let G be the group of divisibility of R, let (Q be the field of fractions
of R and let 11 : Q* — G = Q* /U be the canonical epimorphism and suppose that R is
a Bezout domain. Then, there is a one-to-one order-preserving correspondence between,
the set of all proper ideals of R and the set of all segments of G. A proper ideal J of R
corresponds to the segment I1(J*) of G. Under this correspondence, prime (respectively

mazimal) ideals correspond to prime (respectively mazimal) segments.

Proof. Set ¥ : ./} — Y defined by (/) = II(I*) for all I € .#}, and set @ : S —
&} defined by ®(S) = II71(S) U {0} for all S € #;. We shall show that ¥ and @
are well-defined and inverses of each other, then these mappings give us the desired
correspondence.

First of all, we shall show that, for any nonzero ideal I of R, ¥(I) is a segment of
G.

Let I be a nonzero proper ideal of R. Then W(I) = II(/*). Since I* C R*, then
U(I) =1II(I*) Cc TI(R*) = G™.

Let II(a) = aU € II(I*) and qU € Gt with aU < qU. Then a 'q € R. Since
a € I*, then a(a™'q) = q € I'*, and so II(q) = qU € II(I*).
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Now, let a,b € I*. Then Il(a) = aU,I1(b) = bU € II(I*). Set cR = aR + bR where
¢ € R*. Since a,b € I*, then aR,bR C I* and so cR C I*, thus ¢ € I*. Now by
Proposition [5.12] we have II(¢) = ¢U = inf{aU,bU} € II(I*).

Thus U(I) = II(]*) is a segment of G.

Secondly, we shall show that, for any nonempty segment S of G, ®(S) is an ideal
of R.

Let S be a nonempty segment of G. Then ®(S) = II7'(S) U {0}.

Let a,b € II7'(S) be nonzero, then I1(a) = aU,1I(b) = bU € S. Set cR = aR + bR
with ¢ € R*. By Proposition [5.12, ¢U = inf{aU,bU} and since S is a segment, then
we have cU € S. Since cR D (a + b)R, then we have (a + b)U > cU. And again since
S is a segment, we have (a + 0)U = (a +b) € S. Thus a + b € IT71(9).

Let a € TI7!(S) be nonzero and r € R*. Then we have II(a) € S and II(r) € G™.
Since we have 0 < II(r), then by adding II(a) at both sides, we have II(a) < II(a) +
[(r) = (ar). So because S is a segment of G, we have lI(ar) € S and so ar € IT71(S).
Hence ®(5) is an ideal of R.

Lastly, if S = (), then ®(@) = II7*(0) U {0} = {0} is an ideal. And if I = 0, then
U(0) =II(0) = 0, is a segment.

Thus we have shown that both mappings are well-defined.

Let S be a segment of G. W (®(S)) = ¥ (II"1(S)U{0}) = II(IT7'(9)) = S, last
equality holds since II is surjective.

Let I be a proper ideal of R. ®(W(I)) = ®(I1(I*)) = IT-1(T1(*)) U {0}.

Now we shall to show that ITT-*(TI(7*)) = I* holds:

I* C T Y(TI(1*)) is a well-known fact in set theory, so we shall prove the converse
inclusion. Let a € II"Y(II(I*)), then II(a) = aU € TI(I*). So there exists b € I* such
that II(a) = II(b) or aU = bU. Then we have a/b € R. Since b € I*, then we have
b(a/b) = a € I*. Thus we have II7!(II(I*)) = I* and if we use this fact, we have
O(U(I))=1"uU{0}=1.

So ® and VU are inverses of each other.

Now we shall show W is order-preserving. Since @ is its inverse, it also becomes
order-preserving after this:

Let I, J be ideals of R such that I C J. Then we have I* C J*. Let Il(a) € II(I*)
where a € I*, then we clearly have a € J* and so II(a) € II(J*). So ¥(I) =II(I*) C
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U(J) =1II(J*). Thus both ¥ and ® are order-preserving.

Now let P be a prime ideal of R. Our aim is to show that U(P) = II(P*) is a
prime segment of G. Let aU,0U € G* \ II(P*). Then by the definition of G, we
have a,b € R*\ P*. Then since P* is prime, we have ab € R*\ P*. And hence
abU = aU + bU € G\ TI(P*). So W(P) is a prime segment of G.

Let S be a prime segment of G. Our aim is to show that ®(S) = I17'(S) U {0} is
a prime ideal of R. Let a,b € R\ II"*(S) be nonzero, then aU,bU € G\ S. Since
S is a prime segment, we have aU + bU = abU € G\ S. Since abU ¢ S, then
ab ¢ TI71(S). Since a and b are both nonzero and R is a domain, then ab # 0. So we
have ab € R\ (IT"*(S) U{0}) = R\ ®(S). Thus ®(S) is a prime ideal of R.

After we showed that these mappings are order-preserving and the correspondence
between proper ideals of R and segments of G, the correspondence between maximal

ideals of R and maximal segments of GG is straightforward by their definitions. m

Let G be the group of divisibility of R and suppose that R is a Bezout domain. Let
P € Spec(R). Define H to be the subgroup of G generated by G* \ m(P*), i.e.,

k
H = {ngz\k‘EN,nlEZ,gz€G+\7T(P*)}
i=1

= {91 — 92|91, 92 € GT \ w(P*)}
= {91 — g2[g1,92 € 7(R*\ P*) = n(R\ P)}
= {rU —sU|r,s € R\ P}

G/H is an ordered group with the ordering given by
g1+ H > g9 + H if there exists h € H such that ¢ — g2 + h > 0.

Indeed, the only challenging part is anti-symmetry.

Suppose g1+H > go+H and go+H > g1+ H. Then there exist hy, ho € H such that
g1 — 9o+ h1 >0 and g — g1 + he > 0. By considering hq, hy as differences of elements
of GT\ m(P*), we may add suitable positive elements in G to have h := h; = hy > 0.
So we have g1 — go +h >0 and go — g1 + h > 0. Then we have —h < g; — g5 < h.

Now our claim is that if g € G, h € H' be such that —h < g < h, then ¢ € H. For
once this is proved, we have g, — go € H and so g + H = g + H, which gives that the

relation defined above is anti-symmetric, and so is an ordering.
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Let h € H*, then h ¢ w(P*), for otherwise, let h € w(P*) and set h = hy — ho,
where hy, he € Gt \ w(P*). Then hy = h + hy > h which implies hy € 7(P*), which is
a contradiction.

Since we have —h < ¢, then g + h € G*. If g+ h € w(P*), then since m(P*)
is a prime segment, we have either g € 7(P*) or h € w(P*). Since h € H implies
h ¢ ©(P*), and g < h implies g ¢ 7(P*), then we must have g + h ¢ w(P*). So
g+he G\ m(P*) C H. Then we have g = (9 + h) — h € H, since both g + h and h

are elements of G* \ 7(P*).

Proposition 5.17. If P is a prime ideal of a Bezoult domain R, then the group of

divisibility of Rp is order-isomorphic to Gp.

Proof. Let G = Q*/U be the group of divisibility of R, where @ is the field of fractions
of R and U is the multiplicative group of units of R. Let Up be the group of units in
Rp, where P € Spec(R), and set G' = Q*/Up be the group of divisibility of Rp. Set
7 Q" — Q*/U be the canonical epimorphism.

Let U: & — @' = l}% defined by V(aU + H) = aUp. Our aim is to show that U is
an order isomorphism.

First of all, we shall show that U is well-defined.

Let aU + H =bU + H € G/H, then aU — bU € H, then ab™'U = rs~'U for some
r,s € R\ P. Then ab™' = rs~'u for some v € U. Since ru € R\ P and s € R\ P,
then ab=! € Up, so aUp = bUp. Thus ¥ is well-defined.

U is clearly surjective, now we shall show W is injective.

Let aUp = bUp, so we have ab~! € Up, and so a,b € R\ P. Since aU,bU € 7(R\ P),
then (ab™')U = aU —bU € H, so aU + H = bU + H. Hence ¥ is injective.

To see that ¥ is a homomorphism, let aU + H,bU + H € G/H.

U ((aU+ H)+ (bU + H)) = ¥(abU + H) = abUp = aUp + bUp = V(aU + H) +
V(U + H).

Now let aU + H,bU + H € G/H be such that aU + H < bU + H. Then there exists
h € H such that bU —aU + h > 0, since h € H, then there exist 7, s € R\ P such that
h =rU—sU. So we have bU —aU +1rU —sU > 0, which implies %U > 0, hence Z—g € R.
Since R C Rp, then % € Rp, and since - € Up, then we have g = 2—2 -* € Rp. And
this gives that aUp < bUp. Thus V is order-preserving. Since ¥ is an isomorphism,

U~ is also order-preserving.
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Lastly, we shall show that V(inf{aU+ H,bU+ H}) = inf{V(aU+H),¥(bU+H)}
for all aU + H,bU + H € G/H.

Set ¢cU + H = inf{aU + H,bU + H}.Then our claim is that U(cU + H) = cUp =
inf{¥(aU + H),¥(bU + H)}.

cU+ H < aU+ H implies that ‘C% € Rforsomery,s; € R\P,and cU+H < bU+H
implies that gg—; € R for some 19,85 € R\ P.

So we have
a/s; b/ss
c/r1’ c/ry

This gives that (;=)Up < (£)Up and (;2)Up < (%)UP,

a
S1

€ RCRp

(ﬁ)Up < (i)Up implies that cUp — rUp < aUp — s1Up, so we have cUp — aUp <
rUp — s1Up = (r1/s1)Up = Up, hence cUp < aUp. Similarly, we have cUp < bUp.

Now if 2Up < aUp and zUp < bUp, then ¥ (zU + H) < V(aU + H) and ¥ (zU +
H) < ¥(bU + H). Since ¥~ ! is order-preserving, then U + H < aU + H and
U+ H <bU+ H, sozU+ H < cU+ H since cU + H = inf{aU + H,bU + H}. Now
since WU is order-preserving, we have zUp = V(22U + H) < V(cU + H) = c¢Up. Hence
Up = inf{¥(alU + H), U(bU + H)}. 0

Proposition 5.18. Let {G,}aer be a family of lattice ordered groups, and let G =
P G, be ordered with product ordering. Set 7, : G — G, be the canonical epimorphism
ael

for all a € T. If P € Spec(G), then either P = () or there exists « € T and P, €

Spec(Gy) such that P = G N Y (P,).

Proof. There exists a € T" such that 7, (z) # 0 for all z € P. For otherwise, suppose
that for all o; € T', there exists z; € P such that m,,(z;) = 0. Since P is a segment of
G, then inf{z;} = 0 € P, which is a contradiction. Thus such an « € T" exists.

Set P, = mo(P). Our aim is to show that P, € Spec(G,) and P = G Nnx'(P,).

First of all, we need to show that P, is a segment of G,.

Clearly, 7, is order-preserving. We know that P, = 7,(P) and by the way we
choose «, 0 ¢ P,, so P, C G.

Let z € P,,y € G, be such that y > z. Set Z,§ € G be such that 7,(z) = =z,
7o(y) = y and 7, (x) = m,(y) for all v # a. Then clearly z € P, j € G and § > Z.
Since P is filtered, then § € P, and so m,(y) =y € P,. Thus P, is filtered.

Let z,y € P,. Our aim is to show that inf{z,y} € P,. Let &,y € P be such
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that 7,(%) = x and 7,(y) = y. Since P is a segment, then inf{Z,§} € P. We have
inf{z,y} = inf{r.(2),7.(9)} = ma(inf{Z,7}) € 7o (P) = P,. So P, is a segment of
Ga.

Now let 2,y € GI \ P,. Then there exist Z,5 € G*\ P such that 7,(Z) = x and
7o (§) = y. Since P € Spec(G), then 247y € GT\ P, and s0 7, (Z+7) = 7o (Z) +7,(7) =
r+y € my(GH\ P)=GI\ P,. Thus P, € Spec(G,).

Now we shall prove that P = GT N7, (P,). We know that P C G* N7, (P,). We
suppose by the way of contradiction that P € G N« ' (P,).

Let z € (GNwY(P,))\ P. Then z € G and 7, (z) € P, = m,(P). So there exists
y € P such that m,(z) = m,(y).

Now let y1,42 € G be such that 7, (y;) = y for v # «, and 7,(y1) = 0, and
Yo =Y — 1. Since y = y1 + y2 € P and P is a prime segment of GG, then either y; € P
orys € P. Ify; € P, then m,(y;) = 0 € m,(P) = P,, which is a contradiction, then we
have y, € P. In this case, we have 7, (x) = m,(y2), and all other components of y, are
zero. Then we have y; < x. So y, € P implies x € P, which is again a contradiction.

Thus such an x doesn’t exist. Hence we have P = G N} (P,). O

Proposition 5.19. Let G be a lattice ordered group. Then every segment of G is

contained in a mazrimal segment.

Proof. Let I' be the set of segments of GG such that, for S € I', S is not contained in a
maximal segment. Our aim is to show that I' = () by using Zorn’s Lemma.

Suppose I # ). Let S,, € S,, C ... be a chain of segments in I'. Then S = [JS,,
is a segment of G: h

If S =G, then 0 € S = [JS,,, so 0 € S,, for some j, which contradicts with the
fact that S, is a segment. SoaiS c GT.

Let z € S,y € G be such that y > x. Since s € S, then there exist j such that
T € S,;, and since S,; is a segment of G, then y € S, C S.

Let z,y € S, then there exist j,k such that z € S, and y € S,,. Then we have
either x,y € Sy, or x,y € S,, . It is clear that, in both cases we have inf{z,y} € S.

Now if S ¢ I, then S contained in a maximal segment M. In this case, all S,,’s

are contained in that maximal segment M, which is a contradiction. So we must have

Sel.
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By Zorn’s Lemma, I" has a maximal element, say 1. T is not a maximal segment
since T' € T', so there exist a segment 7" of G such that T" C T". Since T is maximal
in I, then 7" ¢ T' and hence contained in a maximal segment M’. This is again
contradiction, since we have that 7' C 7" C M’. So our assumption that I" # () is false,

and every segment of G contained in a maximal segment. O

Proposition 5.20. If G is a lattice ordered group with unique maximal segment, then

G s totally ordered.

Proof. Let M be the unique maximal segment of G. Let a € G* \ {0}. Set S, = {z €
GTlx > a}. Our claim is that, S, is a segment of G:

Since a € G* \ {0}, then a > 0 and so 0 ¢ S,, which implies S, C G™.

Let © € S,,y € G with y > x. Then y > x > a, implies that y € S,,.

Let z,y € S,, then we have that > a and y > a, so inf{x,y} > a, which gives
that inf{z,y} € S,.

So S, is a segment of G. Then by Proposition [5.19] S, is contained in a maximal
segment, in this case, the unique maximal segment M.

We have that for any a € Gt \ {0}, a € S, € M, hence Gt \ {0} = M.

Now let z € G. Then by Theorem, r =y—zforsomey,z € Gt withinf{y,z} =
0. Ify,z € GT\ {0} = M, then since M is a segment, we have inf{y,z} =0 € M,
which is impossible. So either y = 0 or z = 0. If y = 0, then x € G, if z = 0,
then x € GT. Since every element of G is either positive or negative, then G is totally

ordered. O

Lemma 5.21. Let {G;}icr be a family of totally ordered groups. Let v; : Q* — G; be

valuations on Q. Then v = []v; : Q* — v(Q*) C [[G; is a valuation.
iel el

Proof. Let x,y € Q*. Then
v(zy) = (vi(ry))ie;
= (vi(2) +vi(Y))ier
= (vi(@))ier + (0i(Y))er

= (@) +o(y)
and
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ve+y) = (il@+Y))e
> (min{vi(z), vi(Y)});c;
= min {(Ui(x))ief ) (Ui(y))iel}

= man {v(z),v(y)}
Hence v = []v; is a valuation. U
i€l

Theorem 5.22 (Krull-Kaplansky-Jaffard-Ohm). If G is a lattice ordered group,
then there exists a Bezout domain whose group of divisibility is lattice isomorphic to

G.

Proof. Let G be a lattice ordered group and let I' be the set of maximal segments of

G. By Corollary G is a totally ordered group for every M € I'. Then

f=1lfu:6— J[Gu=¢

Mel’ Merl

is a lattice embedding of G into G’, where G’ has the product ordering:
We know that Hy = {91 — ¢2|g1,92 € G\ M }. Let x € Hy;, then x = g; — g for
some g1,g92 € GT\ M. Since x < gy, then z ¢ M.

Ifxe () Hy,thenz ¢ M for all M € Maz(G). Since for all z € GT\ {0},
MeMax(G)

Sy ={g € G|g > x} is a segment of G and must contained in a maximal segment, then

we have z = 0. Thus (| Hy =0.
MeMax(G)
Hence the kernel of the homomorphism f is zero, and so f is an embedding.

Let 7, be the canonical projection of G into Gy, for all M € I". Let k be a field and
let {Y,|g € G} be a set of indeterminates over k, indexed by G. Let Q = k ({Y,}4eq)-
We shall define a valuation vy : Q* — G)y.

First, consider monomials in S*, where S = k [{Y} },c¢] and define
unr (Y YY) = ni(mar o f)(gi)
i=1

where ¢ € k*,g; € G and n; € Z". For any p € S*, we define vy;(p) to be the infimum
of vyr(m;)’s where the m;’s are distinct monomials which appear in p. With these

definitions, we have v, satisfies the following properties:
L. v (pg) = vm(p) + var(q)

2. vy (p+q) > min{oy(p), var(q)}
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Let p,q € S. Then vy (pq) = inf{va(m;n;)}, where m;’s and n;’s are distinct monomi-
als respectively in p and ¢. We clearly have vy (p) = var(my,) and va(q) = var(nj,) for
some ig and jo. We have var(mi,) +var(nj,) = vim(migny,) since vy (Y Yoz . Y1) =
Si(m © f)(g) = L furlgi). Then vys(pa) = inf {ons(min,)} = inf{oss(m;) +
or(ny)} = inf{onr(mo)} + inf {oar(n;)} = var(p) + var(g).

Let p,q € S. Our aim is to show that vy (p + ¢) > min{vnm(p),vam(q)}. Set
vapr(p+q) = va(s;) where s;is one of the monomials in p+ ¢. Since s; is a monomial in
p, in ¢ or in both, we have that vy (p) < var(s;), var(q) < var(s;) or both. This clearly
implies that va(p + q) > min{va(p), var(q)}-

Now for p,p’ € S*, we let

This defines vy : Q* — Gy, which is a valuation by Lemma[5.9) Now, define v : Q* —

G’ by v = ][] va. Then v is a valuation by Lemma [5.21}
Mer

Let R = {x € Q*|v(z) > 0} U {0}. Then R is an integral domain with field

of fractions () and with divisibility group v(Q*). Note that if ¢ € G, then v(Y,) =
f(g), and so f(G) C v(Q"). Now let p/p’ € Q*, then v(p/p’) = v(p) — v(p'). Since
vy (Y. Y ) = inl o f(gi), thenv(cYt ... Y i) = zrjnzf(gl) =f (inzgl) €
f(G). Thus v(Q*) :Z:f1 (G) = G. Thus the group of divisibili’gflof R is lattice igzolmorphic
to G.

Now it remains to show that R is a Bezout domain. To this aim, we shall show
that if z,2’ € R with = # 2/, then the ideal (z,2') is principal.

Let x € R*. Then v(x) = f(g) > 0 for some g € G. Notice that v(cY*...Y]") =
ini flg)=f (inZ g,-) , and the valuation of any element in QQ* is a difference of such
Ze:léments. .

Let 2/ € R* with z # 2, for which v(2') = f(¢') > 0 where ¢ € G. Since
v(z) = v(Y,) and v(z’') = v(Yy), /Y, and 2'/Y}, are unit elements of R. Then (z,y) =
(Y Yy)- 16 £g) = £(g), then Yo/ Yy € R, and so (¥, Yy) = (V). Similarly, if f(g) <
f(g'), then (Y, Yy) = (Yy). Otherwise, inf{f(g), f(¢")} < f(g) andinf{f(g), f(g')} <
£(g'). and so (Y, Yy) = (¥, + Yy) since Y,/(Y, + Yy), Y/ (Y, + Yy) € R. In any case,

we have (z,y) = (Y}, Y}) is principal, and R is a Bezout domain. m
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6 TWO EXAMPLES OF ALMOST DEDEKIND DO-
MAINS

6.1 A Bezout Domain Example

Proposition 6.1. Let G, H be lattice ordered groups and let ¢ : G — H be a surjective
lattice homomorphism. Then there is a correspondence between the prime segments P

of G with PN Ker¢ =0 and the prime segments of H given by

{P € Spec(G)|PN Ker¢g =0} <— Spec(H)

(]

P —  (P)
o~ H(P)NGF &P

Moreover, we have ¥(®(P)) = P for P € Spec(G) with P N Ker¢ = ), and
O(U(P)) =P for P € Spec(H).

Proof. We denote {P € Spec(G)|P N Ker¢ =0} by Specd (G).

Let P € Spec(G). Our aim is to show that ¢(P) € Spec(H).

First of all we shall show that ¢(P) is a segment of H.

Since P N Ker¢ = (), then 0 ¢ ¢(P), and since ¢ is an order homomorphism, then we
have ¢(P) C HT.

Let ¢(p) € ¢(P) and h € H be such that ¢(p) < h. Since ¢ is surjective, then there
exists g € G such that ¢(g) = h, so we have ¢(p) < ¢(g). If g < p, then we must have
®(g) < ¢(p), so we have that p < g. Since p € P and P is a segment, last inequality
implies that g € P and so ¢(g) = h € ¢(P).

Now let ¢(z), ¢(y) € ¢(P), where x,y € P. x,y € P implies that inf{z,y} € P, and
since ¢ is a lattice homomorphism, then inf{¢(x), ¢(y)} = ¢(inf{z,y}) € ¢(P).
Thus ¢(P) is a segment of H.

Now we shall show that ¢(P) is a prime segment.

Let z +y € ¢(P), set x +y = ¢(p) for some p € P. Since ¢ is surjective, then
= ¢(91),y = d(ga) for some g1, 90 € G. If we set g = inf{g1 + go,p}, then ¢(g) =

o(inf{g+g2,p}) = inf{d(g1+92), ¢(p)} = inf{z+y,x+y} = +y. Then ¢(p—yg) =
o(p) — ¢(g) = 0, hence p — g € Ker¢, and this implies that p — g ¢ P. Since

p=(p—g)+g€ P and P € Spec(G), then we have g € P. Since g < g1 + g2, then
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g1+ g2 € P. Again, since P € Spec(G), then we have either g; € P or g, € P. So we
have either z = ¢(g1) € ¢(P) or y = ¢(g2) € ¢(P). Hence ¢(P) € Spec(H).

Now let P € Spec(H). Our aim is to show that P := ¢~ (P) NG € Sped (G).

First of all we shall show that P is a segment of G. Clearly P C G"and if 0 € P, then
0 = ¢(0) € ¢(P) C P, and this contradicts with the fact that P is a segment of H.
Then we have P C G™.

Let x € Py € G with 0 < 2 < y. Then ¢(x) < ¢(y) and since ¢(x) € ¢(P) C P, so
¢(z) > 0. Then ¢(y) > 0, and this implies y ¢ Ker¢. Since y < 0 implies ¢(y) < 0,
then we have y € ¢~ Y(P)NG* = P.

Let x,y € P. Our aim is to show that inf{z,y} € P.

Since z,y € G, we have inf{z,y} € G*. So it suffices to show that ¢ (inf{z,y}) € P.
o(inf{z,y}) = inf{p(x),d(y)}, and since ¢(x),d(y) € P and P is a segment of H,

then inf {¢(z), ¢(y)} = ¢ (inf{z,y}) € P.
Hence P = ¢~ '(P)NGT is a segment of G.

Clearly PN Ker¢ = (), for otherwise 0 € ¢(P) implies that 0 € P, which is impossible.
Now we shall show that P € Spec(G).

Let g1,90 € G with g1 + go € P, so we have ¢(g1 + ¢2) = ¢(g1) + ¢(g2) € P, since
P € Spec(H), then either ¢(g;) € P or ¢(g2) € P, and this implies g; € ¢~ (P) or
go € o1 (P). So we have that g; € P or g, € P, hence P € Spec(G).

Now we show that U and & are inverses of each other.

Let P € Sped (G). We first show that ¥(®(P)) = ¢~ (¢(P)) NGt = P.

It is well-known in set theory that P C ¢~ '(¢(P)) and since P = P N G, then
P C ¢~ Y(¢(P)) N G*. So we shall prove the reverse inclusion. Let ¢ € G* with
#(g) € ¢(P). Then there exists p € P such that ¢(p) = ¢(g). So we have g—p € Kerg.
Set ' = inflg.p}. 6(g") = olinflg.p}) = infl6(9),6()} = 6(g) = 6(p). Then
p—¢g € Ker¢ NGT C GT\ P. Since p = (p—¢')+ ¢ and P € Spec(G), then
p—g ¢ P,so g € P. With the fact that ¢’ < g, we have g € P. Hence P = U (®(P).
Let P € Spec(H). We show that ®(¥(P)) = ¢(P) = P, where P = ¢~ '(P) N G*.
Clearly ¢(P) C P. Now let h € P. Since ¢ is surjective, then h = ¢(g) for some g € G.
Clearly h = ¢(g) € H". Set gt = sup{g,0} and g~ = —inf{g,0}. Then we have that
g=g*t—g, where g*, g7 € G". Now h = ¢(g) = #(9") — ¢(g™) € P.

6(g) = o(—inf{g,0}) = —inf{9(g),0} = 0, then we have 6(g) = 6(g*) € P. So g* €
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¢~ (P)NGT = P, which implies that h = ¢(g*) € ¢(P). Hence P = ®(¥(P)). O

Example 6.2. Let N = {1,2,3,...} and Z" = {0,1,2,...}.

Let G be the group of all sequences of elements of Z" indexed by N such that all
components are constant after some integer n. We shall call the constant part of such
an element f of G by the infinite block of f, and denote by f... G is a lattice ordered
group with the ordering f < ¢ if and only if f; < g; for all + € N.

Let P, = {fe€G"|fi >0} and P, = {f € GT|TIn € N,Vi >n,f; >0} = {f €
G| fs > 0}.

We first show that for arbitrary ¢« € N, P; and P, are prime segments of G. Let
1€ N.

Clearly, 0 ¢ P; and 0 ¢ P,, so by definitions, we have P;, P,, C G*.

Let fe P,ge G with f <g,then0< f; <g;,andsoge P,. Let f e P,ge G
with f < g, then 0 < f, < g implies that g € P..

If f,g € P;, then f;, g; > 0. Theninf{f;, g;} = min{fi, g;} > 0, hence (inf{f,g}), >
0 and this implies inf{f, g} € P;.

If f,g € Py, then foo > 0 and g, > 0. Then we have that (inf{f,g9})e =
inf{foos oo} = Min{ foo, oo} > 0, and this implies that inf{f, g} € Psx. So P; and
P, are segments of G.

Now let f,g € GT\ P, then f; =g, =0,50 (f +9);i = fi + g: = 0. Let j € N with
J # 1, then since f;, g; > 0 we have (f +¢); = fi+¢g; > 0. Thus f+g € G\ P;. Hence
P; is a prime segment.

Let f,g € Gt such that f+g € P, our aim is to show that either f € P, or g € Ps.
Suppose that f ¢ P, then f., = 0. Since we know that 0 < (f49)oo = foo + 90 = oo,
then g € P,. Thus P, and P, are prime segments of G. Note that for i, j € N U {oco}
with i # j we have P, Z P; since if f € GT with f; > 0 and f; =0, then f € P\ P;.

Let @ be a segment of GG, our claim is that @) is contained in either P, or one of
the P;’s:

Suppose by the way of contradiction that @@ € P; for all : € N and Q) € P,,. Since
for i € N, Q € P;, then there exists f* € @ such that f* ¢ P, ie., (f'); = 0. Since
Q < P, then there exists f € @ such that f,, = 0, i.e., there exists n € N such that
for all i > n, f; = 0. Now since f, f1,..., f* € Q, then inf{f, f',....f"} =0 € Q,

which is impossible. Thus our claim is true.
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Since P;’s and P, are prime segments of G, for which they do not contain each
other, and every other segment must be included by at least one of them. Then these
are the only maximal segments of G.

Now define ¢; : G — Z,i = 1,2,...,00 defined by ¢;(f) = fi,i = 1,2,... and
Ooo(f) = foo- All ¢;’s are lattice homomorphisms of G onto Z. Now we shall show that
Z has unique prime segment Z* \ {0}. Let S be a prime segment of Z. Then S has
a minimum element z, our aim is to show that x = 1. Suppose that, by the way of
contradiction, x > 1. Then we have x — 1,1 € Z*. Since (z — 1)+ 1 =z € S, then
either we have x — 1 € S or 1 € S. Both cases contradicts with the minimality of x in
S. Hence we must have x = 1, and so S = Z* \ {0}.

Since Z has unique prime segment, it follows from the correspondence between
prime segments under a lattice homomorphism defined above, P; contains no prime
segment properly. Thus P;’s are the only prime segments of G for i = 1,2, ..., 00; and
forv=1,2,...,00, Gp’s are order isomorphic to Z.

Now we shall show that f = 1 € G has infinitely many minimal prime divisors:

Clearly, since f; > Oforalli =1,2,...00, we have that f € P, forall: =1,2,..., 00.
Since we have shown that for i # j, P, € P; fori,j = 1,2,...,00, then all F;’s are the
minimal prime divisors of f = 1, and this implies that G is not Noetherian.

By Theorem there exists a Bezout domain R, whose group of divisibility is
lattice isomorphic to GG. Let I be the ideal of R which corresponds to f = 1 under
the correspondence given by Proposition . Let P, and P, be ideals of R which
correspond to P, and P, for all i > 1, respectively. Then we have I C P, for all i > 1
and I C P,,. Moreover we have P, ¢ P; for i = 1,2,...,00. Hence {P;}3°, is the set
of minimal prime ideals of I, and since [ has infinitely minimal prime divisors, then R
is not Noetherian. The correspondence of Proposition clearly holds between the
ideals and segments of localizations of R and G, hence we have each localization Rp is

also order isomorphic to Z, hence the Bezout domain R is an almost Dedekind domain.

6.2 An Example in Algebraic Integers

We give another example of an almost Dedekind domain which consists of algebraic
integers. The idea of construction is based on starting from an almost Dedekind (or

Dedekind) domain Dy (which will be Z in our case) with field of fractions K and
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considering an algebraic extension K of Ky which is expressed as the union of an
ascending net {K,}rea of intermediate fields, each of which is finite over Ky. Then
we form the ring D = |J D,, where D, denotes the integral closure of Dy in K. Note
that D is the integral )flgsure of Dy in K. If we fix a maximal ideal P of D and set
P, = PN D,, then there are only a finite number of maximal ideals of D, lying over
Py = PN Dy, and Py is one of them, and FyD, is a finite product of powers of the
maximal ideals of D) containing F,. Assume that P, occurs as a factor of PyD, to the
exponent ey. One important result in [13] (see Corollary 42.2) says that if the set {e,}
is bounded for every maximal ideal P of D, then D is an almost Dedekind domain.

We shall use this result (without giving a proof) in Example below. Before giving

Example [6.5] we need the following two results.

Lemma 6.3. Let R be a ring. Let {Ay,...A,} be a set of pairwise comazimal ideals
of R. Then for any finite subset {f1,... fn} of R[X]|, where every f; is monic of degree
k, there exists a monic polynomial f € R[X] of degree k such that f = f; (mod A;[X])

for everyi=1,...,n.

Proof. We use induction on n. Let n = 2. Since A; and A, are comaximal, we may

pick a1 € A1, ay € Ay such that a; + as = 1. Letting

[ =axfi +ayfa,

we obtain that f is monic of degree k,

f=fi=(aa—1)fit+afo=a(fe— fi) € Ai[X],

and

f—=fa=aa(fr — fo) € Aj[X].

Now assume that there exists a monic polynomial g € R[X| of degree k such that g = f;
(mod A;[X]) fori =1,...,n — 1. Then since A;...A,_; and A,, are comaximal, the
case where n = 2 gives rise to a monic polynomial f of degree k£ such that f =
g (mod A;... A, 1[X]) and such that f = f, (mod A,[X]). Consequently, f = f;
(mod A;[X]) for each i =1,...,n. O

Let v be a rank one valuation on the field F'. Let V' be the valuation ring associated
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with v. Let M be the maximal ideal of V' and let L be an algebraic extension field of
F. We say that a valuation ring W on L is an extension of V to Lif WNK = V.
Let {Vi}.ea be the set of extensions of V' to L, and for each A € A, let M, be the
maximal ideal of V). If |[A| =1 and M; = MV}, we say that v is inertial with respect
to L; if |A| =1 and M; D MV, then v ramifies with respect to L. If [A] > 1, then v
decomposes with respect to L; and if My = MV, for every A € A, then v is unramified
with respect to L. If R is an integrally closed domain with field of fractions K and if P
is a prime ideal of R such that Rp is a DVR, then we say that P is inertial, ramifies,
decomposes, or is unramified with respect to L if Rp is inertial, ramifies, decomposes,

or is unramified with respect to L.

Theorem 6.4. Let D be a Dedekind domain with field of fractions K and let{Py, ..., P,},
{Q1,...,Qs}, and {M, ..., My}, where r > 1, be three sets of distinct mazximal ideals
of D, each with finite residue field. Then there exists a simple quadratic extension field
K(u) of K, with u integral over D and separable over K, such that each P; is inertial
with respect to K(u), each Q; ramifies with respect to K(u), and each M; decomposes
with respect to K (u).

Proof. Since D/P; is a finite field (by assumption) for each ¢ = 1,... r, there is a
separable monic polynomial f;(X) € D[X] of degree 2 such that f;(X) is irreducible
modulo P;[X]. Since D is a Dedekind domain Q; # @Q? for each i = 1,...,s; so we
may choose ¢; € @Q; \ Q?. Since the ideals {Py,..., P}, {Q3%,...,Q%}, {My,..., M}
are pairwise comaximal, by Lemma , there exists a monic polynomial f € D[X] of

degree 2 such that

f = fi (mod P[X]), 1<i<r;
f= X*+q¢ (mod QX]), 1<i<s;

f = X(X+1) (mod Mj[X]), 1<i<t

Notice that f is irreducible in D[X] as it is monic and irreducible modulo P;[X]. Hence
f is also irreducible in K[X] by Corollary since D is integrally closed. Now f has
the form X2 + aX +b. If a # 0, then f is separable over K. (Note that if ¢ > 1, then
we must have a # 0 since f = X? + X (mod M;[X]).) On the other hand if a = 0,

111



then we choose a nonzero element y in

@a)m(@@f)-

Replacing f by f + yX, we get a separable polynomial which satisfies the congruences
given above. In any case, we can assume that f is separable over K. Let u be a root of
f in an extension field of K and let D’ be the integral closure of D in K (u). Note that
K(u)/K is a Galois extension since any separable extension of degree 2 is Galois. If
P is a maximal ideal of D and if PD’ = (P; ... P,p))®") (using Remark , where
[D'/Pypy : D/P] = f(P), then e(P)f(P)g(P) = 2 since [D'/PD" : D/P] < [K(u) :
K] = 2 by Lemma [2.76] and since [D'/PD’ : D/P] > 1 as u € D'\ D. Hence to
prove that each M; decomposes with respect to K (u), it is sufficient to show that M;
is contained in two distinct maximal ideals of D’; to show that each (); ramifies with
respect to K (u), it is sufficient to show that @); is contained in the square of a maximal
ideal of D’; and to show that P, is inertial with respect to K (u), it is sufficient to show
that there is a maximal ideal U; of D’ lying over P; such that [D'/U; : D/F;] > 2.
Note that the kernel of the canonical homomorphism D[X] — DJu] is the principal
ideal generated by f by Corollary 2.33] Then for each maximal ideal P of D, we have

Dlu]/Plu] = [DIX]/(NI/IPX) +()/(f)]
= DIX]/(PIX]+(f))
= (DIX]/PIX]/IPIXT+ (F)/PIX]]

12

(D/P)X]/(f),

where f denotes the image of f under the canonical mapping D[X] — (D/P)[X].

If P = P, then f is irreducible in (D/P)[X] and has degree 2 so that (D/P)[X]/(f)
is a field extension of degree 2 over D/P. Therefore Plu| is a maximal ideal in D[u]
and [D[u|/Plu] : D/P] = 2. Since u is integral over D, D[u] C D’. Thus there exists
a maximal ideal P’ of D’ lying over Plu]. Therefore, D/P C Dlu]/P[u] C D'/P" and
[D'/P': D/P] > 2. Hence P, is inertial with respect to K (u) for each i =1,...,7.

If P = Q; then f = X2 1In this case D[u]/P[u] has a unique maximal ideal
H; = Plu] + (u). Also we have H? C P[u|. We shall show that P[u] C H?. It suffices
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to show that
P C H} = P?lu] + uP[u] + (u?).

By choice of ¢;, we have P = P? + (g;) since P is a maximal ideal in the Dedekind
domain D (which implies that there are no ideals properly between P and P?). Since,
clearly, P? C H?, we need only show that ¢; € H?. We have f = X?+¢; (mod Q?[X]),
and hence f = X? + aX + b for some a € Q?, and b € D such that b — ¢; € Q? . We
have

b=—u®—au € (v®) +uP?u] C HZ,

and b—q; € Q? C H?. Tt follows that ¢; € H?, which gives that P[u] = H?, as claimed.
Again, since D’ is integral over D|u], there exists a maximal ideal of D’, P’ say, lying
over H;. Therefore, P C H? C (P’)? and P ramifies with respect to K (u).

Finally, if P = M;, then f = X (X + 1), in which case (D/P)[X]/(f) has exactly
two maximal ideals. It follows that there exist distinct maximal ideals U; and Us of
Dlu] containing P[u], and that there exist maximal ideals U] and U} of D’ lying over
Uy and Uy, respectively. Therefore, U] and U} are distinct maximal ideals of D’ lying

over P and P decomposes with respect to K (u). O

Example 6.5. Let {p;,ps,...} be the sequence of prime numbers. By the preceding
theorem, there exists an algebraic integer u; of degree 2 over Q such that (p;) decom-
poses with respect to Q(u;). Let Z; be the integral closure of Z in F; = Q(u7). Assume
that p1Z; = Ml(l)MZ(D. Again by the preceding theorem, we may choose an algebraic
integer us such that us has degree 2 over Fi, Ml(l) and each prime of Z; lying over
(p2) in Z is inertial with respect to Fy = Fj(us), and such that MQ(I) decomposes with
respect to Fy. Thus if Z5 is the integral closure of Z in F5, then M2(1)22 = MQ(Z)MPEQ).
If Ml(l)ZQ = Ml(z), then {Ml(z), MQ(Q), MéQ)} is the set of primes of Dy lying over (p;) in
Z.

By induction we may choose algebraic integers wy,us, ..., u; such that if F; =
Q(ug, ... u;) and if Z; is the integral closure of Z in F; for each i = 1,..., k, then the

following are satisfied:
1. [Fip F]=2for 1 <i<k-—1.

2. For each i = 1,...,k — 1, there exist ¢ + 1 prime ideals {Ml(i), Méi), . ,Mi(_?l}

of Z; lying over (p;) in Z such that Ml(i)7 MQ(i), . Mi(i) decomposes with respect
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to Fj11, and M(Hl) = M@ZZ-H7 and such that MZ+1 decomposes with respect to
E-‘rh say Mz(Jr)le-l Mz(i—"l_l)Mz(i—gl)

3. Each prime ideal of Z; lying over any of the primes (ps), (p3), ..., (pir1) of Z is

inertial with respect to Fj 1 fori=1,... k — 1.

Then the union of {Ml(k) M,i Y1)y and the set of maximal ideals of Zj, lying over
one of the primes (ps), ..., (pr+1) of Z is a finite set of prime ideals of the Dedekind
domain Zj, each with finite residue field. It follows from Theorem [6.4] that there is
an algebraic integer wuy,q of degree 2 over Fj such that if Z;,; is the integral closure

of Zy in Fyyq1 = Fy(ugy1), then each of Ml(k), . ,M,gk) and each maximal ideal of Z,

lying over any of the prime ideals (ps), (p3), ..., (Pry1) of Z is inertial with respect
to Zyy1; and M,gi)l decomposes with respect to Z;. Now let M;kﬂ) = M](k)ZkH for
i =1,...,k, and let Mk+)1Zk+1 M,iﬁl)M,Elfgl). Then, clearly, {Ml(kH) klr;)}

is a set of k£ + 2 maximal ideals of Zy, lying over (p;) in Z. If M is a maximal ideal
of Zy41 lying over (p;) in Z, then M must lie over a maximal ideal of Z; which lies
over (p1) in Z, that is, MNZ;, € {Ml(k), . ,M,g?l}, so that M € {Ml(kﬂ)7 cee M,gl_f;l)}
Therefore, conditions (1)-(3) hold for each i =1,... k.

By induction, there exists a sequence {uq,us, ...} of algebraic integers such that if
F; = Q(uy,...,u;) and Z; is the integral closure of Z in F;, then conditions (1)-(3) are
valid for each ¢ > 0.

Now let F' = UF and Z' = U Z;. Then Z' is the integral closure of Z in F. It
follows from [13] C(l)rollary 42.2] (Zall)phed for Dy = Z) that Z’ is an almost Dedekind

domain. However, Z’ is not Dedekind since p; belongs to infinitely many maximal

ideals of Z'.
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