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ABSTRACT

FACTORIZATION OF IDEALS IN COMMUTATIVE
DOMAINS AND SOME GENERALIZATIONS OF

DEDEKIND DOMAINS

Akif VURAL

Master of Science, Department of Mathematics

Supervisor: Assoc. Prof. Bülent Saraç

July 2015, 117 pages

This thesis consists of six chapters. In the first chapter we give some conventions as

well as some basic definitions and facts. In the second chapter we investigate Prüfer and

Dedekind domains. In order to give a well-known characterization of Prüfer domains

in terms of their localizations at prime ideals, as a preparation, we start chapter 2

with the concept of valuations and rings defined by valuations (called valuation rings).

Besides the characterization of Prüfer domains using localizations we give many other

equivalent conditions for a domain to be a Prüfer domain. Then we define Dedekind

domains as Noetherian Prüfer domains and give a number of characterizations of them

in a similar way as we do for Prüfer domains. Thus one can compare the properties de-

termining Prüfer domains and Dedekind domains and see which properties of Dedekind

domains can be transferred if the domain lacks of Noetherian condition. In the end

of the second chapter, we prove that integral closures of a Dedekind domain R in any

finite extension of the field of fractions is again a Dedekind domain. This result will

be given analogously for almost Dedekind domains.

In the third chapter we give definition and important properties of almost Dedekind

domains. Since almost Dedekind domains are defined as generalizations of Dedekind

domains, we seek properties of Dedekind domains that remains valid for almost Dedekind

domains. In the next chapter we continue the study of almost Dedekind domains and
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give an investigation of this class of rings with the perspective of multiplication cancel-

lation of ideals. Also we consider the factorization of ideals into radical ideals (instead

of prime ideals as we consider in the case of Dedekind domains) and give a number of

equivalent conditions for an almost Dedekind domain to have the radical factorization

property. In fact, we deduce that the class of rings in which the radical factorization

is possible lies in the class of almost Dedekind domains.

In Chapter 5, we study partially ordered abelian groups and rings which can be

produced from ordered abelian groups. Moreover, we study some correspondences

between a certain kind of subsets (called segments) of a lattice ordered abelian group

and the ideals of the ring induced by the group. We see that such correspondences

can give us ideas to construct some rings with specified properties. Among these rings,

Bezout domains are of particular importance in our study of almost Dedekind domains.

Thus we give a method for constructing a Bezout domain from a lattice ordered abelian

group. In the last chapter, we use this method for a special lattice ordered abelian group

to give the first example of an almost Dedekind domain. In this chapter we give one

more example of an almost Dedekind domain with a different character.

Keywords: Dedekind domain, Prüfer domain, Valuation, Valuation ring, almost

Dedekind domain, prime ideal, radical ideal, integral extension.
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ÖZET

DEĞİŞMELİ HALKALARDA İDEALLERİN
FAKTORİZASYONU VE DEDEKİND BÖLGELERİN BAZI

GENELLEMELERİ

Akif VURAL

Yüksek Lisans, Matematik Bölümü

Danışman: Doç. Dr. Bülent Saraç

Temmuz 2015, 117 sayfa

Değişmeli halkalar teorisi cebirsel geometri ve kompleks analitik geometri gibi alan-

ların temellerinin oluşturulmasında önemli bir yere sahip olmakla beraber, analiz topoloji,

homolojik cebir ve cebirsel sayılar teorisi gibi matematiğin birçok alanı ile de çesitli

bağlantılara sahiptir.

Z tamsayılar halkasının sıfırdan farklı her elemanının asal sayıların (sıra gözetmek-

sizin) tek türlü çarpımı olarak yazılması, bu halkayı önemli bir halka sınıfı olan tek

türlü çarpanlara ayırma bölgeleri içinde görmemizi sağlamaktadır. En temel değişmeli

halka diyebileceğimiz Z halkasının bazı özellikleri, 1828 yılında Gauss tarafından Z[i]

halkası kullanılarak bulunmuş, ve böylece ele alınan halkanın bazı özelliklerinin daha

geniş halkalar içinde daha kolay elde edilebileceği görülmüştür. Ancak bu genişlemeler

içindeki “tamsayı” adı verilen elemanların çarpanlarına tek türlü olarak ayrılamadığı

1844 yılında Kummer tarafından farkedilmiştir. Dedekind 1871 yılında ideal kavramını

ortaya atarak eleman bazında tek türlü asal çarpanlara ayrılma özelliği bulunmayan

bazı halkaların ideallerinin asal ideallerinin çarpımı şeklinde tek türlü yazılabildiğini

göstermiş ve günümüzde son derece önemli kabul edilen Dedekind halkalarının temel-

lerini oluşturmuştur.

Tezin giriş kısmında, gerekli tanımlar ve bazı notasyonlardan bahsedildi. İkinci

kısımda Prüfer ve Dedekind bölgeler ile ilgili karakterizasyon vermek amacıyla, değer-

lendirmeler ve bu değerlendirmeler tarafından tanımlanan değerlendirme halkaları in-

celendi. Uyumlu bir tam sıralama bağıntısıyla donatılmış tam sıralı abel grupların ve
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izole altgruplarının tanımlarının verilmesinin ardından, G bir değerlendirmenin değer

grubu ve V bu değerlendirmenin tanımladığı değerlendirme halkası olmak üzere; G’nin

izole altgrupları ile V ’nin asal idealleri arasında var olan birebir karşılık gelme gös-

terildi. Daha sonra integral eleman tanımı verilerek integrallik özellikleri incelendi.

Kesirsel ideallerin tanım ve bazı özelliklerinin verilmesinin ardından ikinci bölümün

sonunda sırasıyla sonlu üretilmiş tüm ideallerinin tersinir olmasıyla tanımlanan Prüfer

bölgeler ve tüm ideallerinin asal ideallerin çarpımı olarak yazılabilmesiyle tanımlanan

Dedekind bölgeler karakterize edildi ve ideallerine ait özellikler çalışıldı. Dedekind

bölgelerin karakterizasyonu aşağıdaki gibidir:

Theorem. [1]R bir Noether tamlık bölgesi olmak üzere aşağıdakiler denktir:

• R bir Dedekind bölgedir.

• R integral kapalıdır ve sıfırdan farklı her asal ideali maksimaldir.

• R’nin iki eleman ile üretilmiş sıfırdan farklı tüm idealleri tersinirdir.

• A,B,C R’nin idealleri olmak üzere A 6= 0 ve AB = AC ise B = C’dir.

• Her M maksimal ideali için RM bir değerlendirme halkasıdır.

• A,B,C R’nin idealleri olmak üzere, A(B ∩ C) = AB ∩ AC sağlanır.

• A,B R’nin idealleri olmak üzere, (A+B)(A ∩B) = AB sağlanır.

• A ve B R’nin A ⊆ B koşulunu sağlayan idealleri ise A = BC olacak şekilde R’nin

bir C ideali vardır.

• A,B,C R’nin idealleri olmak üzere,
(
(A+B) : C

)
= (A : C) + (B : C) sağlanır.

• A,B,C R’nin idealleri olmak üzere
(
C : (A ∩B)

)
= (C : A) + (C : B) sağlanır.

• A,B,C R’nin idealleri olmak üzere A ∩ (B + C) = (A ∩B) + (A ∩ C) sağlanır.

• Her P maksimal ideali için P 2 ⊂ I ⊂ P olacak şekilde I ideali yoktur.

• Her P maksimal ideali için P -primary idealler P ’nin bir kuvvetidir.

• Her P maksimal ideali için P -primary idealler kümesi tam sıralıdır.
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• R’nin her üsthalkası (overring) flat üsthalkadır.

• R’nin her üsthalkası integral kapalıdır.

Bu bölümde verdiğimiz önemli bir sonuç ise bir Dedekind bölgenin kesirler cisminin

sonlu genişlemesi içindeki integral kapanışının yine bir Dedekind bölge olduğudur.

Tezin üçüncü kısmında bütün maksimal ideallerindeki yerelleştirmeleri Dedekind

bölge olan hemen hemen Dedekind bölgeleri ve ideal yapısı incelendi. Bölüm sonunda

Dedekind bölgeler için gördüğümüz bir teoremin hemen hemen Dedekind bölgeler için

de sağlandığını söyledik:

Theorem. [2, Corollary 4]D hemen hemen Dedekind bölge, K D’nin kesirler cismi, L

K’nın sonlu cisim genişlemesi ve D′ D’nin L içindeki integral kapanışı ise, D′ hemen

hemen Dedekind bölgedir.

Dördüncü kısımda değişmeli halkalarda sadeleştirme kurallarından bahsedildi. R

bir halka ve A,B ve C idealler olmak üzere AB = AC olması B = C olmasını AB 6= 0

koşulu altında gerektiriyorsa, R’ye “kısıtlanmış sadeleştirme kuralını (RCL) sağlar”

denir. Bahsi geçen gerektirme A 6= 0 koşulu altında sağlanıyorsa R’ye “sadeleştirme

kuralını (CL) sağlar” denir. AB = AC eşitliği, B = C eşitliğini A 6= 0 ve A sonlu

üretilmiş olduğunda gerektiriyorsa, R’ye “sonlu sadeleştirme kuralını (FCL) sağlar”

denir. Bu bölümde kısıtlanmış sadeleştirme kuralını sağlayan halkaların bir karak-

terizasyonu verildi. Ayrıca sonlu sadeleştirme kuralını sağlayan bir tamlık bölgesinin

integral kapalı olduğu sonucu verildi. Daha önceki bölümde özelliklerini incelediğimiz

hemen hemen Dedekind bölgelerin bir karakterizasyonu da bu bölümde aşağıdaki gibi

yer aldı:

Theorem. [3, Theorem 3]D bir tamlık bölgesi olsun. Bu durumda D’de sadeleştirme

kuralı sağlanır, ancak ve ancak D bir hemen hemen Dedekind bölgedir.

Tamlık bölgelerinde ideallerin tek türlü çarpanlara ayrılması hususunda Dedekind’in

sonucunun geliştirilemeyeceğine dair aşağıdaki sonuca da bu kısımda yer verildi:

Theorem. [3, Theorem 8]S bir halka ve S , S’nin idealerinin öyle bir ailesi olsun ki,

S’nin her ideali S ’nin sonlu sayıda elemanının çarpımı olarak tek türlü ifade edilsin.

Eğer S bir tamlık bölgesi ise, bu durumda S bir Dedekind bölge ve S , S’nin asal

ideallerinin kümesidir.
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Yine bu kısımda tüm idealleri radikal ideallerin bir çarpımı olarak yazılabilen SP-

bölgeler tanımlandı ve hemen hemen Dedekind bölgeler sınıfında karakterize edildi. Ve

son olarak SP-bölgelerin hemen hemen Dedekind olduğuna dair Vaughan ve Yeagy’nin

sonucuna yer verildi.

Theorem. [4, Theorem 2.1]R bir hemen hemen Dedekind bölge olmak üzere aşağıdak-

iler denktir:

• R bir SP-bölgedir.

• R’nin sıfırdan farklı her I öz ideali J1 ⊆ . . . ⊆ Jn koşulunu sağlayan Ji, i =

1, . . . , n radikal idealleri için I = J1 . . . Jn olarak tek türlü ifade edilebilir.

Theorem (Vaughan and Yeagy). [5, Theorem 2.4]Her SP-bölge bir hemen hemen

Dedekind bölgedir.

Beşinci kısımda, vereceğimiz bir hemen hemen Dedekind bölge örneği için gerekli

altyapıyı sağlamak amacıyla kısmen sıralı abel gruplar ile latis sıralı abel gruplar ince-

lendi. G latis sıralı abel grup, S G’nin bir altkümesi olmak üzere,

• S ⊂ G+,

• S filtredir, yani x ∈ S, y ∈ G ve y > x ise y ∈ S sağlanır,

• x, y ∈ S ise inf{x, y} ∈ S

özelliklerini sağlarsa, S’ye G’nin bir segmenti denir. x, y ∈ G+ \ S durumunda x+ y ∈

G+ \ S oluyor ise, S’ye bir asal segment denir.

G latis sıralı abel grup olsun. S G+’nınG+\S filtre olacak şekildeki bir alt yarıgrubu

olsun. HS = {g1 − g2|g1, g2 ∈ S} şeklinde tanımlansın. P G’nin bir asal segmenti ve

S = G+ \ P olduğu durumda G/Hs bölüm grubu GP ile gösterilir ve G’nin P asal

segmentindeki yerelleştirmesi olarak adlandırılır.

Bütün sonlu üretilmiş idealleri temel ideal olan tamlık bölgelerine Bezout bölge

denir. Bu kısımda Bezout bölgeler ile latis sıralı abel gruplar arasındaki ilişkiye yer

verildi. Öncelikli olarak bir Bezout bölgenin bölünebilirlik grubunun latis sıralı abel

grup olduğunu söyledik. Daha sonra R bir Bezout bölge ve G R’nin bölünebilirlik grubu

ise, R’nin öz idealleri ile G’nin segmentleri arasnda sıralamayı, asallık ve maksimallik

ilişkilerini koruyan birebir karşılık gelmenin varlığı gösterildi. Kısım sonunda aşağıdaki

teoreme yer verildi:
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Theorem (Krull-Kaplansky-Jaffard-Ohm). [6, p. 164]G latis sıralı bir abel grup

ise, bölünebilirlik grubu G’ye latis izomorf olan bir Bezout bölge vardır.

Son kısımda ise tez boyunca altyapısını oluşturduğumuz iki hemen hemen Dedekind

bölge örneğine yer vererek tezi tamamladık.

Anahtar Kelimeler: Dedekind bölge, Prüfer bölge, Değerlendirme, Değerlendirme

halkaları, hemen hemen Dedekind bölge, asal ideal, radikal ideal, integral genişleme.
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1 INTRODUCTION

Multiplicative Ideal Theory began with the works of Julius Wilhelm Richard Dedekind,

a famous German mathematician, at the end of the 19th century, by which he aimed to

repair the lack of unique factorization property of elements in an integral domain. In

these works, he considered integral domains in which factorizations of ideals into prime

ideals are possible, which constitute an important class of rings in today’s mathematics,

called Dedekind domains. Dedekind domains play an important role in Algebraic Num-

ber Theory and Algebraic Geometry. In 20th century (mostly in the second half), there

appeared many classes of integral domains which arise as generalizations of Dedekind

domains, including Prüfer domains (and valuation rings in a particular case) and al-

most Dedekind domains. In this thesis, we study the classes of Prüfer domains and

almost Dedekind domains and expose some properties in which these two classes differ

from or resemble to Dedekind domains.

We assume that the reader has knowledge of groups, rings, fields and modules taught

in first year graduate courses. Because the definitions of groups, rings and fields are

widely known concepts, we only remark here that modules are defined in exactly the

same way as vector spaces only with the difference on the scalar field which is taken to

be a ring in this case. There is an extensive study of module theory in the literature;

however, we need only some basic knowledge from that theory which can be found in

[7].

The symbol ⊆ will stand for “a subset of”, and the symbol ⊂ is spared for the strict

inclusion. The set of rational numbers, integers and natural numbers, respectively,

denoted by Q, Z, and N.

Let A be a nonempty set and suppose that there is a relation ≤ defined on A. If

≤ is reflexive and transitive, that is, if a ≤ a; and if a ≤ b and b ≤ c implies a ≤ c

for all a, b, c ∈ A, respectively, then we say that ≤ is a preorder on A, or that A is

preordered under ≤. Moreover, if, additionally, ≤ is anti-symmetric, that is a ≤ b and

b ≤ a implies a = b for all a, b ∈ A, then we say that ≤ is a partial order, and that A

is partially ordered under ≤. In the case that we have a ≤ b or b ≤ a for all a, b ∈ A in

a partially ordered set A, we say that ≤ is a total order on A, or A is totally ordered

under ≤. We shortly say A is ordered under ≤ if A is totally ordered under ≤.

One important case for partially ordered sets occurs when we consider the set of
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ideals of any ring. Recall that a nonempty set consisting of ideals of a ring is partially

ordered by inclusion. Recall also that a commutative ring R is said to be Noetherian if

every nonempty set of ideals of R satisfies the maximal condition, i.e., every nonempty

set of ideals of R has a maximal element with respect to inclusion. This notion can also

thought for modules over R by replacing the term “ideals” by “submodules”. Thus a

commutative ring R is a Noetherian ring if and only if it is Noetherian as a module over

itself. One important result for Noetherian modules states that if M is a Noetherian

R–module, then every submodule of M is finitely generated, and vice versa.

In our study, all rings considered are commutative with unity. Noetherian rings

have an important property which we give in the following theorem, known as the

Krull Intersection Theorem:

Theorem (Krull Intersection Theorem). Let R be a Noetherian ring and I an ideal of

R contained in the Jacobson radical of R (i.e., the intersection of all maximal ideals of

R). Then ⋂
n>0

In = 0.

Let R be a ring and let S be a nonempty subset of R. We say that S is a multiplica-

tively closed subset of R, if 0 /∈ S and a, b ∈ S implies that ab ∈ S. If the inclusion

relation between R and S is clear, we simply say S is a multiplicatively closed set.

Recall that we can form a ring if we put a certain equivalence relation on R× S, con-

sider the set of all equivalence classes, written as fractions, and define addition and

multiplication on this set, just as we do when constructing rationals from integers. The

resulting ring is called the ring of fractions of R with respect to S, denoted by S−1R

or RS.

Let R be a ring, and let a ∈ R. If there exists b ∈ R with b 6= 0 such that ab = 0,

then a is called a zero-divisor of R. If a ∈ R is not a zero-divisor, then it is called a

regular element of R. If S is the set of all regular elements of R, then S becomes a

multiplicatively closed set. In this case, S−1R is called the total quotient ring of R.

In the case that R is an integral domain, S becomes R \ {0} and so the total quotient

ring S−1R becomes the field of fractions of R. The field of fractions K of an integral

domain R is the smallest field that contains R. If K is the field of fractions of R, then

K = {ab−1|a, b ∈ R, b 6= 0}.

Let R be a ring and K be the total quotient ring of R. Then T is an overring of
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R means that T is a ring such that R ⊆ T ⊆ K. If R is an integral domain, and if T

is an overring of R, then T becomes an integral domain, and K becomes the field of

fractions of R, in which case K becomes also the field of fractions of T .

Let R′ be a ring and R be a subring of R′. For an a ∈ R′, if b0 + b1a + . . . +

bn−1a
n−1 + an = 0 holds for some b0, . . . , bn−1 ∈ R with n ≥ 1, then we say that a

is integral over R. If every element of R′ is integral over R, then we say that R′ is

integral over R, or R ⊆ R′ is an integral extension of rings. If the set of elements of

R′ which are integral over R is equal to R, then we say that R is integrally closed in

R′. In particular, if R′ is the total quotient ring of R, then we simply say that R is

integrally closed. It is well–known that the set of elements of R′ which are integral

over the ring R form a ring, called the integral closure of R in R′. When we just use

the term “integral closure”, we mean the integral closure in the total quotient ring, or

in the field of fractions if R is an integral domain.

Let R be a ring and I be an ideal of R. We define the radical of I as the set

{a ∈ R|an ∈ I for some n ∈ N}, and denote it by
√
I. We refer the reader to [8] for

detailed information about radicals and their arithmetic properties. If we have an ideal

Q of R such that
√
Q = P and for x, y ∈ R with xy ∈ Q, x /∈ Q implies that y ∈ P ,

then we call Q a P -primary ideal of R. Note that if Q is a P–primary ideal of R, then

P is a prime ideal of R, but not conversely. Note also that any ideal whose radical

is a maximal ideal, say M , is an M–primary ideal. It follows that if M is a maximal

ideal of R, then every power M i of M are M–primary ideals of R. The reader should

be careful in that there may be M–primary ideals other than powers of M in general

(see, for example [8, Example 4.11]).
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2 PRUFER AND DEDEKIND DOMAINS

Throughout this section we use [1] as reference, so we do not mention it again in this

section.

2.1 Valuations and Valuation Domains

Definition 2.1. An integral domain V is called a valuation ring, if it satisfies the

property that for any ideals A and B, either A ⊆ B or B ⊆ A.

Proposition 2.2. The following statements are equivalent for an integral domain V :

(1) V is a valuation ring.

(2) For any a, b ∈ V , either (a) ⊆ (b) or (b) ⊆ (a).

(3) If K is the field of fractions of V and x ∈ K, then either x ∈ V or x−1 ∈ V .

Proof. (1) implies (2) is clear. To show (2) implies (3), let x ∈ K. So x = a/b for some

a, b ∈ V with b 6= 0. If (a) ⊆ (b), then a = br for some r ∈ V , then x = a/b = r ∈ V .

If (b) ⊆ (a), then b = ar for some r ∈ V , and this gives that r = b/a = x−1 ∈ V . For

the last part of the proof, suppose for any element x of the field of fractions K of V ,

either x or x−1 belongs to V . Let A and B be ideals of V . Suppose A 6⊆ B. Then there

exists a ∈ A \ B. Let b ∈ B be nonzero. If a/b ∈ V , then we have a ∈ (b) ⊆ B, which

is a contradiction, so we have b/a ∈ V . Hence b ∈ (a) ⊆ A. Since b is an arbitrary

nonzero element of B, then B ⊆ A, hence V is a valuation ring.

Corollary 2.3. Each overring of a valuation ring is a valuation ring.

Proof. Let V be a valuation ring, and let V ′ be an overring of V . If K is the field of

fractions of V , then V ⊆ V ′ ⊂ K. In this case K is also the field of fractions of V ′.

Since an arbitrary element of K or its inverse belongs to V by Proposition 2.2, V ⊆ V ′

implies that it belongs to V ′, so this implies V ′ is a valuation ring.

Proposition 2.4. For a valuation ring V , the set of non-units of V is an ideal, which

is the unique maximal ideal of V .
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Proof. Let P be the set of non-units of V . Let a, b ∈ P \ {0}, c ∈ V . Clearly ac is

a non-unit of V so it belongs to P . We may assume without loss of generality that

a/b ∈ V . Then a− b =
(
a
b
− 1
)
b ∈ P . Thus P is an ideal of V . If I is a proper ideal

of P , then every element of I is a non-unit, since otherwise we have I = V . Then we

have I ⊆ P . Since every ideal is contained by P , then P is the unique maximal ideal

of V .

Proposition 2.5. Valuation rings are integrally closed.

Proof. Let V be a valuation ring with field of fractions K, and let x ∈ K be integral

over V . Say xn + an−1x
n−1 + . . . + a1x + a0 = 0 for some a0, . . . , an−1 ∈ V . If

x /∈ V , then x−1 ∈ V . By multiplying the equality with x1−n, we have that x =

−(an−1 + an−2x
−1 + . . . + a0x

1−n) ∈ V , which is a contradiction. Hence an element

which is integral over V must be an element of V .

Proposition 2.6. Let R be an integral domain and K be its field of fractions. Then

there exists a valuation ring V such that R ⊆ V ⊂ K.

Before proving this proposition, we shall give some definitions and state a lemma

which we use for the proof.

Let K be a field. Let φ be a homomorphism from a proper subring Kφ of K into

an algebraically closed field. φ is called a partial homomorphism on K. If we set S as

the set of such pairs and define an ordering ≤ on S by (φ,Kφ) ≤ (ψ,Kψ) if and only

if Kφ ⊆ Kψ and φ(a) = ψ(a) for all a ∈ Kφ, then S becomes a partially ordered set

under ≤. Then by Zorn’s Lemma, if (φ,Kφ) ∈ S , then there exists a maximal element

of S which is greater than or equal to (φ,Kφ). Such a maximal element is called a

maximal partial homomorphism.

Lemma 2.7. Let K be a field and let x ∈ K be nonzero. Let V be a subring of K with

unique maximal ideal P . Then either PV [x] 6= V [x] or PV [x−1] 6= V [x−1].

Proof. By the way of contradiction, assume that PV [x] = V [x] and PV [x−1] = V [x−1].

Then we have

a0 + a1x+ . . .+ akx
k = 1 (1)

and

bo + b1x
−1 + . . .+ bmx

−m = 1 (2)
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for some a0, . . . , ak, b0, . . . , bm ∈ P . We shall choose m and k be the smallest integers

satisfying above equations, and without loss of generality, assume that k ≤ m. Multi-

plying equation 2 by xk, we have (1− b0)xk = b1x
k−1 + . . .+ bk. Since b0 ∈ P and P is

the unique maximal ideal of V , then we have 1− b0 is a unit in V , hence

xk = (1− b0)−1b1x
k−1 + . . .+ (1− b0)−1bk

= c1x
k−1 + . . .+ ck

where c1, . . . , ck ∈ P . If we use this in equation 1, we have

1 = a0 + a1x+ . . .+ am−1x
m−1 + amx

m−k(c1x
k−1 + . . .+ ck)

= d0 + d1x+ . . .+ dm−1x
m−1

where d0, . . . , dm−1 ∈ P . This is a contradiction with the minimality of m, hence our

assumption is false.

Lemma 2.8. Let V be a subring of the field K. Then if there exists a homomorphism

φ from V into an algebraically closed field with (φ, V ) is a maximal partial homomor-

phism, then V is a valuation ring with field of fractions K.

Proof. Let L be an algebraically closed field. Let φ : V → L be a homomorphism such

that (φ, V ) is a maximal partial homomorphism. Let P = Ker φ. P is a prime ideal of

V since φ(1) = 1. Let u ∈ V \ P , then φ(u) is a unit in L, so there exists an extension

φ′ : VP → L of φ defined by φ′(a
s
) = φ(a)

φ(s)
for a ∈ V, s ∈ V \ P . This implies that

(V, φ) ≤ (VP , φ
′). But since (φ, P ) is maximal, then VP = V . This gives that P is the

unique maximal ideal of V .

Now let x ∈ K be nonzero. If we show that x ∈ V or x−1 ∈ V , then we are done.

By Lemma 2.7, we may assume that PV [x] 6= V [x], without loss of generality. Then

there exists M ∈ Max(V [x]) such that PV [x] ⊆ M , then M ∩ V = P since P is the

only maximal ideal of V . It follows that σ : V
P
→ V [x]

M
given by σ(a+P ) = a+M is an

injective homomorphism. It follows that V [x]
M

= σ(V
P

)[x+M ]. Now x+M is algebraic

over σ(V
P

) since V [x]
M

is a field. Hence, if φ̄ : V
P
→ L is given by φ̄(a + P ) = φ(a),

then we can extend φ̄σ−1 : σ(V
P

) → L to an injective homomorphism ψ : V [x]
M
→ L.

If we set π : V [x] → V [x]
M

as the canonical homomorphism, then since for all a ∈ V ,

ψπ(a) = ψ(a + M) = φ̄(a + P ) = φ(a) holds, we have (φ, V ) ≤ (ψπ, V [x]). It follows
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by the maximality of (φ, V ) that V = V [x] or x ∈ V . Hence V is a valuation ring.

Proof of Proposition 2.6. Let R be a ring with field of fractions K. Since R is a subring

of K, we can define a partial homomorphism φ0 from R into an algebraically closed

field L. If S is the family of all partial homomorphism, then clearly we have a maximal

partial homomorphism (φ, V ) such that (φ0, R) ≤ (φ, V ). This relation implies R ⊆

V ⊂ K, and by Lemma 2.8, the maximality of (φ, V ) implies that V is a valuation

ring.

Corollary 2.9. Let R be an integral domain and let K be the field of fractions of

R. The integral closure of R is the intersection of all the valuation rings of K which

contains R.

Proof. Denote the integral closure of R by R̄. By Proposition 2.5 we have that valuation

rings are integrally closed, then R̄ must be contained in the intersection of all valuation

rings of K which are containing R. Otherwise, there exist x ∈ R̄ such that x is not

belong to one of the valuation rings of K containing R. Since x is integral over R

implies x is integral over the containing valuation rings, it is a contradiction since x

doesn’t belong to at least one of the valuation rings. If we show that for any element

x of the field of fractions K, x /∈ R̄ implies that x doesn’t belong to the intersection

mentioned above, then the desired equality holds.

Let x ∈ K \ R̄. Then x /∈ R[x−1]. For otherwise, there exists f(X) ∈ R[X], of

degree n, such that x = f(x−1). By multiplying last equality with xn, we have that

xn+1−xn f(x−1) = 0, which gives that x ∈ R̄, a contradiction. Hence x−1 is not a unit

in R[x−1], so there exists a maximal ideal P of R[x−1] such that x−1 ∈ P .

Let L be the algebraic closure of R[x−1]
P

. The canonical homomorphism R[x−1] →
R[x−1]
P

furnishes us with a homomorphism Π : R[x−1] → L. Let (φ, V ) be a maximal

partial homomorphism of K into L such that (Π, R[x−1]) ≤ (φ, V ). By Lemma 2.8, V

is a valuation ring of K, and R ⊆ V . Since we have φ(x−1) = 0, then x /∈ V . Hence

x is not in the intersection of all the valuation rings of K which contain R. So the

desired equality holds.

For Noetherian rings, we can characterize valuation rings by much weaker conditions

than for arbitrary rings.
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Theorem 2.10. Let V be a Noetherian integral domain which is not a field. Then the

following statements are equivalent:

(1) V is a valuation ring.

(2) The set of non-units of V is a nonzero principal ideal.

(3) V is integrally closed and has exactly one nonzero prime ideal.

Proof. Firstly, suppose V is a valuation ring and let P be the set of non-units. Since

V is not a field, we have P 6= (0) and clearly P is an ideal. The fact that V is

Noetherian implies P is finitely generated, say P = (a1, . . . , an). Since V is a valuation

ring, then the ideals (a1), . . . , (an) give us a chain, without loss of generality suppose

(a1) ⊆ . . . ⊆ (an), and this implies P = (an), a principal ideal.

Now, suppose that P is the ideal of non-units of V , and K be the field of fractions

of V . Let P = (a) for some a ∈ P with a 6= 0. Clearly there is no maximal ideal

other than P . By the Krull Intersection Theorem, we have
⋂
n≥1

P n = (0), so if I 6= (0)

is a proper ideal of V , then there exists k ≥ 1 such that I ⊆ P k but I 6⊆ P k+1. Let

b ∈ I \ P k+1, then b = aku for some unit u ∈ V . Now if c ∈ P k, then for some d ∈ V ,

c = akd = bu−1d ∈ I. So this gives that I = P k. Since every ideal of V is a power of

P , and the only prime ideal which is a power of P is itself, then P is the only nonzero

prime ideal of V .

Now let c ∈ K be nonzero and integral over V , set c = r/s for some r, s ∈ V \ {0}.

Since r and s are both a product of a unit and some power of a, we may assume that

either r or s is a unit. Since c is integral over V , then there exist b0, . . . , bn−1 ∈ V such

that b0 +b1c+ . . .+bn−1c
n−1 +cn = 0. If we multiply the equality by sn, then we’ll have

rn+s bn−1r
n−1+. . .+sn−1b1r+snbo = 0 or rn = −s (sn−1b0 + sn−2b1r + . . .+ bn−1r

n−1).

If s is unit, then c ∈ V . If s is a non-unit then by the last equality, rn ∈ P and so

r ∈ P . So r is also non-unit, and this is a contradiction with our assumption. Hence s

is unit and c ∈ V , thus V is integrally closed.

For the last part, assume that V is integrally closed and has exactly one nonzero

prime ideal P . It suffices to show that P is principal.

Now let K be the field of fractions of V , and set P ∗ = {x ∈ K|xP ⊆ V }. Then

P ∗P is an ideal of V such that P ⊆ P ∗P ⊆ V . If P ∗P is strictly between P and V ,
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then we must have a maximal ideal, hence a prime ideal which contains P ∗P and it

contradicts the fact that P is the only nonzero prime ideal, so we either have P = P ∗P

or P ∗P = V .

Assume that P ∗P = P and let P = (a1, . . . , an). Let a ∈ P ∗, then we have aP ⊆ P .

And this gives us a ai =
n∑
j=1

rij aj where rij ∈ V . So we have that
n∑
j=1

(δija−rij)aj = 0 for

i = 1, . . . , n where δij =

 1 , i = j

0 , i 6= j
. Hence, since aj 6= 0 for at least one j = 1, . . . , n

and we are working in K, we have det[δija − rij] = 0. Thus, a is integral over V and

since V is integrally closed, a ∈ V . So P ∗ ⊆ V . This gives us P ∗ = V since we clearly

have V ⊆ P ∗.

Now we shall show that P ∗ = V leads us to a contradiction. Let a ∈ P be nonzero.

Set S =
{
an|n ∈ N \ {0}

}
. Our claim is that S−1V = K. By the way of contradiction,

suppose S−1V is not the field of fractions of V , then S−1V has a nonzero maximal ideal

P ′. Since a is a unit in S−1V , we have a /∈ P ′, hence P ′ ∩ V 6= P , and consequently

P ′ ∩ V = (0). However this can’t be true, since if c
an
∈ P ′ \ {0}, then c 6= 0 and

c ∈ P ′∩V . So we have K = S−1V , which gives that every element of K can be written

in the form b/an for some b ∈ V and n ∈ N.

Now if c ∈ V is nonzero, then 1
c

= b
an

for some n, and so an = cb ∈ (c). Thus,

for each a ∈ P , some power of a is in (c). Since P is finitely generated, then we have

P n ⊆ (c) for some smallest positive integer n. Let d ∈ P n−1, d /∈ (c), then dP ⊆ (c) and

so (d
c
)P ⊆ V . This gives that d

c
∈ P ∗, but d

c
/∈ V , hence P ∗ 6= V . This contradiction

gives us P ∗P 6= P , so we have P ∗P = V .

Since P ∗P = V , then there exist elements a1, . . . , ak ∈ P and b1, . . . , bk ∈ P ∗such

that
k∑
i=1

aibi = 1. So for some i = 1, . . . , k, we have aibi /∈ P . So we have elements

a ∈ P, b ∈ P ∗ with ab = u for some unit u in V . Then we have abu−1 = 1, and by

multiplying by c, we have c = abcu−1. Now bc ∈ V implies that c ∈ (a), and since c is

arbitrary in P , we have P = (a).

Since the unique prime ideal P of V is principal, every nonzero ideal of V can be

represented as a power of P as we have done above at paragraph 2 of this proof. Hence,

the set of ideals of V is totally ordered under inclusion, and V is a valuation ring.

Theorem 2.11. Let V be a valuation ring and let I be an ideal of V . Then

(1)
√
I is a prime ideal of V .
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(2) If J =
∞
∩
n=1

In, then J is a prime ideal of V such that every prime ideal of V which

is properly contained in I is contained by J .

Proof.

(1) We know that
√
I is the intersection of minimal prime ideals of I. Since the set

of ideals of V is totally ordered, then I has only one minimal prime ideal, which

must be equal to
√
I.

(2) First, we shall show that J is a prime ideal. So let a, b /∈ J , then a /∈ Im, b /∈ In

for some m,n ∈ N. Then we have that Im ⊂ (a) and In ⊂ (b). We also have that

Im(b) ⊆ (a)(b) = (ab). Actually we have Im(b) 6= (ab). Since we have Im ⊂ (a),

then there exists x ∈ V such that xa /∈ Im. If Im(b) = (ab), then yb = xab for

some y ∈ Im. Since b 6= 0, this implies that y = xa ∈ Im, a contradiction. Thus

Im(b) ⊂ (ab). Hence we have that In+m ⊆ Im(b) ⊂ (ab), and this gives that

ab /∈ In+m, so ab /∈ J . Hence J is a prime ideal of V .

Now if P is a prime ideal of V such that P ⊂ A, then every power of A lies outside

of P . For otherwise, An ⊆ P for n ∈ N implies A ⊆ P , which is impossible. Since

V is a valuation ring, we have that P ⊂ An for each n ∈ N, and hence P ⊆ J .

Lemma 2.12. Let V be a valuation ring and let K be the field of fractions of V . If A

and B are ideals of V such that A ⊂
√
B, then Ak ⊆ B for some k ∈ N.

Proof. Suppose that B ⊂ An for n ≥ 1. Let x ∈ A. Since A ⊂
√
B, then xk ∈ B for

some k ∈ N. But also since we have B ⊂ An for all n ≥ 1, then xk ∈ An for all n ≥ 1.

Then xk ∈ ∩
n≥1

An which is prime by (2) of Theorem 2.11, so x ∈ ∩
n≥1

An. Hence we have

that A ⊆ ∩
n≥1

An, and so A = An for all n ≥ 1. Hence A is prime and
√
An =

√
A = A.

Now, B ⊂ A implies that
√
B ⊆

√
A = A which is a contradiction with A ⊂

√
B.

Hence our assumption is false, so B contains some power of A.

Theorem 2.13. Let V be a valuation ring and let P ∈ Spec(V ). Then

(1) If Q is P -primary and x ∈ V \ P , then Q = Q (x).

(2) The product of P -primary ideals of V is again P -primary, and if P 6= P 2, then

the complete set of P -primary ideals consists of powers of P .
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(3) The intersection of all P -primary ideals is a prime ideal of V which contains all

prime ideals properly contained by P .

Proof. (1) Let K be the field of fractions of V . Since x /∈ P , then x /∈ Q, so we

have Q ⊂ (x). Let A = {y ∈ K|yx ∈ Q}. Since Q ⊂ (x), then we have A ⊂ V .

Furthermore, A is an ideal of V and Q = A (x):

Let a ∈ A, b ∈ V , then ax ∈ Q, since Q is an ideal of V , then abx ∈ Q, hence

ab ∈ A. If a, b ∈ A, then ax, bx ∈ Q, and this implies ax+ bx = (a+ b)x ∈ Q, so

we have a+ b ∈ A. Thus A is an ideal of V .

A (x) ⊆ Q is clear. If q ∈ Q ⊆ (x), then q = ax for some a ∈ V , but since

ax = q ∈ Q, then by definition of A, a ∈ A, so q ∈ A (x). Hence Q = A (x) ⊆ A.

Since Q is P -primary and (x) 6⊆ P , then we have A ⊆ Q. So A = Q. As a result,

we have Q = Q (x), as claimed.

(2) Let Q1, Q2 be P -primary ideals of V . Then we have
√
Q1Q2 = P :

Since Q1Q2 ⊆ Q1, then by taking radicals, we have
√
Q1Q2 ⊆ P . If x ∈ P =

√
Q1 =

√
Q2, then xn1 ∈ Q1, x

n2 ∈ Q2 for some n1, n2 ∈ N, then xn1+n2 ∈ Q1Q2,

this implies x ∈
√
Q1Q2. Hence P ⊆

√
Q1Q2.

Let x, y ∈ V with xy ∈ Q1Q2. Suppose that x /∈ P . Our aim is to show that

y ∈ Q1Q2. Since Q1 is P -primary, then we have Q1 = Q1 (x) by (1) of this

theorem. Then by multiplying with Q2, we have that xy ∈ Q1Q2 = (x)Q1Q2.

Since V is a domain, then this gives that y ∈ Q1Q2, hence Q1Q2 is P -primary.

For the last part, suppose P 6= P 2. Let Q be a P -primary ideal of V . Since

P 2 ⊂
√
Q = P , then by Lemma 2.12, Q contains a power of P 2, and so contains

a power of P . Set m be the minimal such power, so we have Pm ⊆ Q but

Pm−1 6⊆ Q. Let x ∈ Pm−1 \ Q, then we have Q ⊂ (x). If A = {y ∈ K|yx ∈ Q},

then Q = A (x). x /∈ Q implies A ⊆ P under the fact that Q is P -primary. So

Q = A (x) ⊆ P (x) ⊆ Pm, which gives that Q = Pm.

(3) If P is the only P -primary ideal, then there is nothing to prove. Suppose that

Q is a P -primary ideal of V such that Q 6= P . Let {Qα}α∈Γ be the set of all

P -primary ideals of V . Since we know a product of P -primary ideals is again

P -primary, then Qn is P -primary for all n ≥ 1. Hence
⋂
α∈Γ

Qα ⊆
⋂
n≥1

Qn. However
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by Lemma 2.12 each Qα contains a power of Q, thus
⋂
α∈Γ

Qα ⊇
⋂
n≥1

Qn. Hence⋂
α∈Γ

Qα =
⋂
n≥1

Qn.

Since Q is P -primary, Q properly contains each prime ideal of R which is properly

contained by P and by (2) of Theorem 2.11 every prime ideal which is properly

contained by Q is also contained by ∩
α∈Γ

Qα which is a prime ideal of V .

Let G be an abelian group with a defined total ordering ≤. If for arbitrary a, b, c ∈

G, a ≤ b implies that a + c ≤ b + c, then we say that G is an ordered group. For

example, the additive group of real numbers with the natural ordering of real numbers

is an ordered abelian group. Each subgroup of an ordered group is again an ordered

group with the induced ordering.

Let n ∈ N and {Gi}ni=1 be a family of ordered abelian groups. Let G =
n⊕
i=1

Gi. We

shall denote the elements of G by n-tuples (a1, . . . , an), where ai ∈ Gi, i = 1, . . . , n. For

any distinct elements (a1, . . . , an), (b1, . . . , bn) ∈ G, we write (a1, . . . , an) < (b1, . . . , bn)

if a1 < b1 or if ai = bi for i = 1, . . . , k − 1, and ak < bk for some k = 2, . . . , n.

This is clearly a total order on G. So G, with this ordering, becomes an ordered

abelian group. We may refer to this ordering as the lexicographic ordering of G.

Let G be an ordered abelian group and let {∞} be a set where ∞ is an element

such that ∞ /∈ G. Set G∗ = G ∪ {∞}. Define addition on G∗ such that for a, b ∈ G∗,

a+ b =

 a+ b (addition in G) if a, b ∈ G

∞ if a =∞ or b =∞

With this addition, G∗ becomes a commutative semigroup. Now we extend the ordering

of G to an ordering of G∗ by defining a ≤ ∞ for all a ∈ G∗. Thus G∗ is an ordered

semigroup in the sense that a ≤ b implies that a+ c ≤ b+ c for all a, b, c ∈ G∗.

Definition 2.14. Let K be a field, and let G be an ordered abelian group. Define a

surjective mapping v : K → G∗. If v satisfies the following conditions, than v is called

a valuation on K:

(1) v(a) =∞ if and only if a = 0.

(2) v(ab) = v(a) + v(b) for all a, b ∈ K.
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(3) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.

If v : K → G∗ is a valuation, then the group G is called the value group of the

valuation v. The mapping v from a field K into G∗ given by v(a) = 0 for all a ∈ K \{0}

and v(0) =∞ is clearly a valuation on K which is called a trivial valuation.

Let v be a valuation on a field K and set V = {a ∈ K|v(a) ≥ 0}.

If a, b ∈ V , then v(ab) ≥ v(a) + v(b) ≥ 0 and v(a + b) ≥ min{v(a), v(b)} ≥ 0, so

that ab, a + b ∈ V . Since v(−1) = v(1) = 0, and hence −1 ∈ V , we see that V is a

subring of K.

Let a ∈ K with a 6= 0. If a /∈ V , then v(a) < 0, so v(1/a) = −v(a) > 0. Thus

1/a ∈ V . Therefore V is a valuation ring. Note also that K is the field of fractions of

V , and the maximal ideal of V is M = {a ∈ K|v(a) > 0}:

Let a ∈ M, b ∈ V . Then we have v(a) > 0 and v(b) ≥ 0, so we have v(ab) =

v(a) + v(b) > 0, hence ab ∈M .

Let a, b ∈ M , then we have v(a), v(b) > 0, hence v(a + b) ≥ min{v(a), v(b)} > 0,

so a+ b ∈M .

So M is an ideal of V .

To show M is maximal, let x ∈ V \M . Since x ∈ V \M , then v(x) = 0. Since

v(1) = 0, then v(1/x) = v(1)− v(x) = 0, hence 1/x ∈ V , so x is a unit in V . Thus M

contains every non-unit element of V .

For x ∈ M , we have v(1/x) = v(1) − v(x) = −v(x) < 0, so 1/x /∈ V , hence x is a

non-unit. So, M is the set of non-units of V , therefore M is the unique maximal ideal

of V .

We shall now show that all valuation rings are determined by valuations in this

way.

Proposition 2.15. Let V be a valuation ring, and let K be the field of fractions of V .

Then there exists a valuation v on K such that V = {a ∈ K|v(a) ≥ 0}.

Proof. Let U be the group of non-units of V , then U is a subgroup of K∗ = K \ {0}.

Set G = K∗/U , with addition aU + bU = abU for a, b ∈ K∗. Define a relation on

G by bU ≤ aU if and only if a/b ∈ V . If aU = a′U and bU = b′U , then we have

a′/a, b′/b ∈ U , hence a/b ∈ V if and only if a′/b′ ∈ V which means ≤ is a well-defined

relation. This relation is a partial ordering:
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Clearly aU ≤ aU since a/a = 1 ∈ V , hence ≤ is reflexive. If aU ≤ bU and bU ≤ cU ,

then b/a, c/b ∈ V , hence c/a = (b/a) (c/b) ∈ V and this implies that aU ≤ cU , hence ≤

is transitive. To see ≤ is anti-symmetric, let aU ≤ bU and bU ≤ aU . Then a/b, b/a ∈ V

hence a/b ∈ U so aU = bU , hence ≤ is anti-symmetric.

Since V is a valuation ring, then ≤ is a total order on G since for a, b ∈ K∗, we

have either a/b ∈ V or b/a ∈ V . Finally, G is an ordered abelian group with ≤:

Let aU, bU, cU ∈ G with aU ≤ bU . Then b
a
∈ V . Clearly cb

ca
∈ V , and so caU ≤ cbU ,

or equivalently aU + cU ≤ bU + cU .

Now define v : K → G∗ by v(0) =∞ and v(a) = aU if a 6= 0, then v is a valuation:

Clearly v is surjective.

v(ab) = abU = aU + bU = v(a) + v(b).

v(a+ b) ≥ min{v(a), v(b)} if a = 0 or b = 0.

Now suppose a, b ∈ K∗, with aU ≤ bU . Then we have b
a
∈ V , and so b

a
+ 1 ∈ V . So

v( b
a

+ 1) ≥ v(1) = 0. Therefore v(a + b) = v
(
a ( b

a
+ 1)

)
= v(a) + v

(
b
a

+ 1
)
≥ v(a) ≥

min{v(a), v(b)}.

It follows that v is a valuation on K and V = {a ∈ K|v(a) ≥ 0}.

Definition 2.16. If V and v are related as in Proposition 2.15, we say that v is the

valuation determined by V .

Definition 2.17. If v is an arbitrary valuation on a field K, then {a ∈ K|v(a) ≥ 0} is

called the valuation ring of v.

Let v and v′ be valuations on a field K, with value groups G and G′ respectively.

We say v and v′ are equivalent valuations if and only if there exists an order-preserving

isomorphism φ from G onto G′ such that v′(a) = φ(v(a)) for all a ∈ K∗. This relation

between valuations are clearly an equivalence relation since it is reflexive, symmetric

and transitive. It is also clear that equivalent valuations have the same valuation ring.

Conversely, if two valuations on a field K both have the same valuation ring, then

they are equivalent. To verify this, we shall show that if v is a valuation on a field K,

V is the valuation ring determined by v, and v′ is the valuation determined by V , then

v and v′ is equivalent.

Let G be the value group of v and U be the group of units of V . Define φ : G →

K∗/U by φ(v(a)) = aU . If v(a) = v(b), then v(a/b) = 1 and this implies a/b ∈ U ,
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hence aU = bU , which gives that φ is well-defined. Since φ(v(a)) = v′(a) for all a ∈ K∗,

it is sufficient to show φ is an order preserving isomorphism. φ is a homomorphism

since

φ(v(a) + v(b)) = φ(v(ab)) = v′(ab) = v′(a) + v′(b) = φ(v(a)) + φ(v(b))

φ is clearly surjective. If aU = bU , then a
b
∈ U so v(a

b
) = 1 and this gives that

v(a) = v(b), hence φ is injective. To see that φ is order-preserving, let v(a) ≤ v(b),

then 0 = v(1) ≤ v( b
a
) so b

a
∈ V . So v′( b

a
) ≥ 0, hence v′(a) ≤ v′(b), this is φ(v(a)) ≤

φ(v(b)). It follows that φ is an order-preserving isomorphism, and this gives the desired

equivalence between v and v′.

Definition 2.18. Let G be an ordered abelian group. For a subgroup H of G, if for

each nonnegative element α of H, 0 < β ≤ α implies β ∈ H, then H is called an

isolated subgroup of G. If H is an isolated subgroup of G and H 6= G, then H is called

a proper isolated subgroup of G.

Definition 2.19. Let G be an ordered abelian group. If G has only finitely many

proper isolated subgroups, then the number of these subgroups of G is called the rank

of G. Thus, G has rank one if and only if G 6= 0 and the only proper isolated subgroup

of G is 0. If G has rank n, then we say that both v and V have rank n.

Definition 2.20. Let K be a field, and v be a valuation on K. Let G and V be the

value group and the valuation ring of v, respectively. If G is cyclic, then v is called a

discrete valuation, and V is called a discrete valuation ring (DVR). If v is a non-trivial

discrete valuation, then v has rank one.

Before we continue our study about the structure of valuation rings, we give some

examples:

Example 2.21. Let K be a field, and let R be the formal power series in indeterminate

X over K, i.e. R = K[[X]]. Then R is a discrete valuation ring:

We know that R = {
∞∑
i=0

kiX
i|ki ∈ K} and an element of R is unit if and only if its

constant term is unit. Hence XR is the set of all non-units of R. Let f(X), g(X) ∈ R,

set f(X) = X if0(X), g(X) = Xjg0(X), where i, j ≥ 0 and X - f0(X), g0(X). Clearly

we have f0(X) and g0(X) are units i R, then we have
(
f(X)

)
=
(
X i.f0(X)

)
= (X i) and
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similarly
(
g(X)

)
= (Xj). Now if we have i ≤ j, then

(
g(X)

)
= (Xj) ⊆ (X i) =

(
f(X)

)
,

otherwise
(
f(X)

)
= (X i) ⊆ (Xj) =

(
g(X)

)
. Thus R is a discrete valuation ring with

maximal ideal XR.

Example 2.22. Let D = Z(2) + XQ[[X]], where Z(2) is the localization of Z at 2Z.

Then D is a non-Noetherian valuation ring:

We clearly have D ⊆ Q[[X]]. Let α, β ∈ D. Set α = a + Xs1 and β = b + Xs2,

where a, b ∈ Z(2) and s1, s2 ∈ Q[[X]]. Since α, β ∈ Q[[X]], and Q[[X]] is a valuation

ring, we may choose λ ∈ Q[[X]] such that α = λβ. Set λ = l + Xs3, where l ∈ Q and

s3 ∈ Q[[X]]. α = λβ gives that a = lb. Set a = a1
a2
, b = b1

b2
and l = l1

l2
, where 2 - a2, b2

and GCD(l1, l2) = 1.

If 2 - l2, then l ∈ Z(2) hence λ ∈ D. So β | α in D. If 2 | l2, then since

GCD(l1, l2) = 1, we have 2 - l1. In the latter case, we have l−1 ∈ Z(2) and so λ−1 ∈ D.

It follows that αλ−1 = β, so α | β in D. Thus D is a valuation ring.

To see D is non-Noetherian, consider the chain

(X) ⊂ (X,
X

2
) ⊂ (X,

X

2
,
X

22
) ⊂ . . . ⊂ (X,

X

2
, . . . ,

X

2n
) ⊂ . . .

which is clearly infinite. Hence D is a non-Noetherian valuation ring.

To give another example, set D = k + XK[[X]], where K = k(Y ) for some inde-

terminate Y such that Y 6= X. The fact that D is a valuation ring can be similarly

obtained as the preceding example. Then if we consider the ideal (X, X
Y
, X
Y 2 , . . . ,

X
Y n
, . . .)

of D which is not finitely generated. We have that D is also a non-Noetherian valuation

ring.

Now we shall explore the relation between the ideal structure of a valuation ring and

the group structure of the value group of the valuation determined by that valuation

ring.

Theorem 2.23. Let K be a field, and let v be a valuation on K. Denote the value

group and valuation ring of v by G and V , respectively. Then there exists a one-to-one

order-reversing correspondence between the isolated subgroups of G and the prime ideals

of V .

Proof. Let I and P respectively denote the isolated subgroups of G and the set of
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prime ideals of V . For I ∈ I , set π(I) = {x ∈ V |v(x) /∈ I}, and for P ∈ P, set

κ(P ) = {α ∈ G|α,−α ∈ v(V \ P )}.

First of all, we shall show that π and κ are well-defined.

Let I ∈ I . We show that π(I) is a prime ideal of V .

Let x ∈ π(I), y ∈ V . Then v(xy) = v(x) + v(y) ≥ v(x). If we have xy /∈ π(I),

then v(xy) ∈ I, and since v(x), v(y) ≥ 0, then we have v(x), v(y) ∈ I, which is a

contradiction with the fact that v(x) /∈ I or x ∈ π(I). So we must have xy ∈ π(I).

If x, y ∈ π(I), then v(x), v(y) /∈ I. Since v(x + y) ≥ min{v(x), v(y)}, v(x + y) ∈ I

implies v(x) ∈ I or v(y) ∈ I, hence v(x+ y) /∈ I, thus x+ y ∈ π(I).

So π(I) is an ideal of V . Suppose that there exists a unit u ∈ V such that u ∈ π(I),

then v(u) = 0 /∈ I, since every subgroup must contain 0, it is a contradiction, so π(I)

is proper in V .

Now let x, y ∈ V with x, y /∈ π(I), then v(x), v(y) ∈ I and since I is a subgroup,

then v(x) + v(y) = v(xy) ∈ I, hence xy /∈ π(I). Thus π(I) ∈P.

Now let P ∈P. We shall show that κ(P ) is an isolated subgroup of G.

Since 1 ∈ V \ P , then 0 = v(1) ∈ v(V \ P ), hence 0 ∈ κ(P ).

Let α ∈ κ(P ), then by definition α,−α ∈ v(V \ P ), so clearly we have −α ∈ κ(P ).

Let α, β ∈ κ(P ). Then we have α, β ∈ v(V \ P ), set α = v(a), β = v(b), where

a, b ∈ V \ P . Since V \ P is multiplicatively closed, then ab ∈ V \ P hence v(ab) =

v(a) + v(b) = α + β ∈ v(V \ P ), similarly we have −(α + β) ∈ v(V \ P ), hence

α + β ∈ κ(P ). So κ(P ) is a subgroup of G.

Now let g ∈ G+, α ∈ κ(P ) with g ≤ α. Then α = v(a) for some a ∈ V \ P and

g = v(x) for some x ∈ V . Since α − g = v(a) − v(x) = v(a
x
) ≥ 0, then a

x
∈ V , hence

a ∈ (x). Since a /∈ P , then we must have x /∈ P . Thus g = v(x) ∈ v(V \ P ) so

g ∈ κ(P ). Therefore, κ(P ) is an isolated subgroup of G.

Now we shall show that π and κ are inverses of each other.

Let P ∈P. Our aim is to show that π (κ(P )) = P .

If x ∈ P , then v(x) ∈ v(P ), hence v(x) /∈ κ(P ), and this implies x ∈ π (κ(P )). So

P ⊆ π (κ(P )). On the other hand, if x ∈ V \ P , then v(x) /∈ v(P ), so v(x) ∈ κ(P ),

which means x /∈ π (κ(P )). Hence we have P = π (κ(P )).

Let I ∈ I . Our claim is that κ (π(I)) = I.

Let a ∈ I, then there exists x ∈ G+ such that v(x) = a. Since v(x) ∈ I, then
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x ∈ V \π(I) and this implies that a = v(x) ∈ v(V \π(I)), so by definition, a ∈ κ(π(I)).

If a ∈ V \ I, then there exists x ∈ G+ such that v(x) = a /∈ I. So x ∈ π(I). Hence

a = v(x) ∈ v(π(I)), which implies that a /∈ κ(π(I)). Thus κ(π(I)) = I as desired.

Since we know that κ and π are inverses of each other, showing one of them is

order-reversing is sufficient for us.

Let P,Q ∈P with P ⊆ Q. Our claim is that κ(Q) ⊆ κ(P ).

Let α ∈ κ(Q), then α ∈ v(V \ Q) ⊆ v(V \ P ) by definition, and this gives that

α ∈ κ(P ), which completes the proof.

From the correspondence defined in the proof of the theorem, we can say that if a

valuation ring has rank n and if V is the valuation ring of this valuation, then there

exists a chain P1 ⊂ . . . ⊂ Pn of prime ideals of V , but no longer such chain exists.

We now show that a Noetherian valuation ring is either a field or has rank one and

is discrete.

Theorem 2.24. A valuation ring which is not a field is Noetherian if and only if it

has rank one and is discrete.

Proof. Let V be a Noetherian valuation ring and suppose that it is not a field. Let

P be the unique maximal ideal of V . Then P = (a) for some nonzero a ∈ P . By

the Krull Intersection Theorem we have that
⋂
n≥1

P n = (0). If b ∈ V is nonzero, then

b = uan for some uniquely determined n ∈ N and a unit u in V . Actually, if K is the

field of fractions of V , then every x ∈ K may uniquely written as x = uan, where u is

a unit in V and n ∈ Z.

Let U be the multiplicative group of units in V , then φ : K∗/U → Z defined by

φ(bU) = n if b = uan, is an order-preserving isomorphism:

φ is clearly surjective. To see it is injective, let φ(xU) = φ(yU) = n, then x = u1a
n

and y = u2a
n for some u1, u2 ∈ U . Since x

y
= u1

u2
∈ U , then xU = yU , hence φ is

injective. φ is order-preserving since if xU ≤ yU , then y
x
∈ V , and so y = xt for some

t ∈ V . Now if x = u1a
n and t = u2a

m, then since t ∈ V , we have m ≥ 0, and clearly

y = u1u2a
m+n implies that φ(xU) = n ≤ m+ n = φ(yU).

Therefore, since V is order-isomorphic to Z, then V has rank one and is discrete.

For the converse part, let V be a valuation ring which has rank one and is dis-

crete. Let v be the valuation on K whose valuation ring and value group is V and Z,

respectively.
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Let I 6= (0) be an ideal of V . There exists a ∈ I such that v(a) = min{v(b)|b ∈ I}.

Let c ∈ I \ {0}, then v(a) ≤ v(c), hence v( c
a
) ≥ 0. This implies that c

a
∈ V and so

c ∈ (a). Since c is an arbitrary nonzero element in I and we also have a ∈ I, then we

have I = (a). Since arbitrary ideal of V is finitely generated, in fact principal, then V

is Noetherian.

2.2 Integrality

Proposition 2.25. Let R′ be a ring and let R be subring of R′, then for any a ∈ R′,

the following statements are equivalent:

(1) a is integral over R.

(2) R[a] is a finitely generated R-module.

(3) There exists a subring R′′ of R′ containing a, which is a finitely generated R-

module.

Proof. Suppose (1) holds. Then there exist b0, . . . , bn−1 ∈ R and n ≥ 1 such that b0 +

b1a+ . . .+bn−1a
n−1 +an = 0 holds. Our aim is to show that R[a] = R1+Ra+ . . .+Ran.

Let f(X) ∈ R[X] be such that deg f(X) = d > n. Set f(X) = c0 + c1X + . . .+ cdX
d,

then

f(a) = c0 + c1a+ . . .+ cd−1a
d−1 + cda

d−n an

= c0 + c1a+ . . .+ cd−1a
d−1 + cda

d−n(−b0 − b1a− . . .− bn−1a
n−1)

= c′0 + c′1a+ . . .+ c′d−1a
d−1

By repeating this argument, we finally have f(a) ∈ R1 +Ra+ . . . Ran. Thus (2) holds.

Since its obvious that (2) implies (3), for the final part, suppose that (3) holds and

let a1, . . . , an be the generators of R′′ as an R-module. For each i = 1, . . . , n we have

aai =
n∑
j=1

bijaj where bij ∈ R or
n∑
j=1

(bij − δija)aj = 0. If d = det[bij − δija], then daj = 0

for each j = 1, . . . , n. Since all elements of R′′ can be written as a linear combination

of aj’s, then dc = 0 for all c ∈ R′′. In particular, since 1 ∈ R′′, then 1d = d = 0. Since

d can be viewed as a polynomial in R[a] at degree n, and since an has 1 as coefficient,

then (3) holds.

19



Proposition 2.26. Let R be a subring of a ring R. Let R0 = {a ∈ R′|a is integral over R}.

Then R0 is a subring of R′, and R ⊆ R0.

Proof. It is clear that R ⊆ R0. Let a, b ∈ R0. Then R[a] is a finitely generated

R-module and R[a, b] = R[a][b] is a finitely generated R[a]-module. So we have that

R[a, b] is a finitely generated R-module. Since a− b, ab ∈ R[a, b], then they are integral

over R, hence a− b, ab ∈ R0, which gives that R0 is a subring of R′.

If R,R′ and R0 are defined as in the above proposition, then R0 is called the integral

closure of R in R′, or just the integral closure of R if R′ is the total quotient ring of R.

Proposition 2.27. Let R ⊆ R′ ⊆ R′′ be a chain of subrings. If R′ is integral over R

and if a ∈ R′′ is integral over R′, then a is integral over R.

Proof. Since a is integral over R′, there exists b0, . . . , bn ∈ R′ such that b0 + b1a+ . . .+

bn−1a
n−1 +an = 0. So a is integral over R[b0, . . . , bn−1]. Hence by the equivalence of (2)

of Theorem 2.25, R[b0, . . . , bn−1, a] is a finitely generated R-module. Since we clearly

have a ∈ R[b0, . . . , bn, a], then by (3) of Theorem 2.25, a is integral over R.

Proposition 2.28. Let R′ be a ring and R be a subring of R′, and let S be a multi-

plicatively closed set in R. Then S−1R may be considered as a subring of S−1R′. In

this case, R′ is integral over R implies that S−1R′ is integral over S−1R.

Proof. Let 0S = {r ∈ R|rs = 0 for some s ∈ S} and 0′S = {r′ ∈ R′|r′s = 0 for some s ∈

S}. We clearly have that 0S ⊆ 0′S ∩ R. So let a ∈ 0′S ∩ R. Then sa = 0 for some

s ∈ S, and since a ∈ R, then this implies a ∈ 0S. Hence 0S = 0′S ∩R. So the mapping

φ : S−1R→ S−1R′ defined by φ
(
a
s

)
= a

s
is an injective homomorphism. Since S−1R is

isomorphic to φ(S−1R), we can identify a
s
with its image, in this way we may consider

S−1R as a subring of S−1R′.

Now assume that R′ is integral over R. Let a
s
∈ S−1R′, where a ∈ R′, s ∈ S. Since

R′ is integral over R then there exist b0, . . . , bn−1 ∈ R such that b0+b1a+. . .+bn−1a
n−1+

an = 0. By multiplying with 1
sn
, we obtain that b0

s
+
(

b1
sn−1

) (
a
s

)
+
(

b2
sn−2

) (
a
s

)2
+ . . . +(

bn−1

s

) (
a
s

)n−1
+
(
a
s

)n
= 0 Therefore a

s
is integral over S−1R.

Lemma 2.29. Let R, S be commutative rings with R ⊆ S. Let R′ be the integral

closure of R in S, and let U be a multiplicatively closed set in R. Then U−1R′ is the

integral closure of U−1R in U−1S.
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Proof. Let s ∈ R′ be arbitrary. Since s is integral over R, then sn + rn−1s
n−1 + . . . +

r1s + r0 = 0 where r0, . . . , rn−1 ∈ R. Let u ∈ U be arbitrary. If we multiply the

equation by 1
un

, then we have

( s
u

)n
+
(rn−1

u

)( s
u

)n−1

+ . . .+
( r1

un−1

)( s
u

)
+
r0

un
= 0

So s
u
is integral over U−1R. Since s ∈ R′ is arbitrary, then U−1R′ is integral over U−1R.

Now we shall show that s
u
∈ U−1S, where s ∈ S, u ∈ U is integral over U−1R

implies that s
u
∈ U−1R′.

Since s
u
is integral over U−1R, then there exists n ∈ N, r0, . . . , rn−1 ∈ R, u0, . . . , un−1 ∈

U such that
(
s
u

)n
+
(
rn−1

un−1

) (
s
u

)n−1
+ . . .+

(
r1
u1

) (
s
u

)
+
(
r0
u0

)
= 0.

Set v = u0 . . . un−1. Then multiplying the above equation by uv
1

gives that(
vs
1

)n
+
(
r′n−1

1

) (
vs
1

)n−1
+ . . . +

( r1′
1

) (
vs
1

)
+
(
r′0
1

)
= 0. Thus there exists x ∈ U such

that x
(
(vs)n + r′n−1(vs)n−1 + . . .+ r′1(vs) + r′0

)
= 0. Multiplying by xn−1 and by re-

arranging the coefficients, we see that xvs is integral in R, hence belongs to R′. Then
s
u

= xvs
xvu
∈ U−1R′.

Corollary 2.30. Let R be a ring and U be a multiplicatively closed set in R. If R is

integrally closed, then U−1R is integrally closed.

Corollary 2.31. Let R be an integral domain with field of fractions K, let L be an

algebraic extension field of K, and let R′ be the integral closure of R in L. If S is the

set of all nonzero elements of R, then we have S−1R′ = L.

Proof. SinceK = S−1R, it follows from, Lemma 2.29, that S−1R′ is the integral closure

of K in L, which yields that S−1R′ = L, as desired.

Proposition 2.32. Suppose R is an integrally closed domain with field of fractions K.

Let L be an extension field of K and let α ∈ L. Then the following statements are

equivalent:

1. α is integral over R.

2. α is algebraic over K and the minimal polynomial m(X) of α over K has coeffi-

cients in R.
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Proof. Since (2) clearly implies (1), then it suffices to show (2) holds under the as-

sumption that α ∈ L is integral over K. Since α is integral over K, then there exists a

monic polynomial P (x) ∈ R[X] such that P (α) = 0. Since we also have P (X) ∈ K[X],

then α is algebraic over K. Let m(X) be the minimal polynomial of α over K[X].

Clearly m(X)
∣∣P (X). Let α = α1, . . . , αn be all roots of m(X) in an algebraic closure

of K. Since m(αi) = 0 for each i = 1, . . . , n and m(X)
∣∣P (X), then P (αi) = 0 for all

i = 1, . . . , n, hence each αi is integral over K. Set sj =
∑

1≤i1<...<ij≤n
(−1)jαi1 . . . αij for

every j = 1, . . . , n. Since we have m(X) = Xn + s1X
n−1 + . . .+ sn ∈ K[X], sj ∈ K for

all j = 1, . . . , n. By the definition of sj, each sj is integral over R. Since R is integrally

closed, then sj ∈ R for i = 1, . . . , n, so m(X) ∈ R[X] and the proof is complete.

Corollary 2.33. Let R be an integral domain with field of fractions K, and let R′ be

the integral closure of R in K. Let L be an extension field of K and assume that α ∈ L

is integral over R. Then the minimal polynomial m(X) of α over K lies in R′[X].

Hence each conjugate of α over K is also integral over R. Moreover, the ideal of R′[X]

consisting of those polynomials which have α as a root is principal generated by m(X).

Proof. Applying Proposition 2.32 for R′ instead of R we obtain the first statement of

the corollary. The second statement then follows easily since the conjugates of α are

those elements of L which are roots of m(X). The last statement follows easily from

the fact that m(X) is the minimal polynomial of α over K.

Corollary 2.34. Let R be an integrally closed domain with field of fractions K, and let

p(X) ∈ R[X] be a monic polynomial. If P (X) = a(X)b(X) with a(X), b(X) ∈ K[X]

are monic polynomials, then a(X), b(X) ∈ R[X].

Proof. We use induction on n = deg a(X). If n = 1, then a(X) = X − c for some

c ∈ K. Then a(c) = 0 implies that P (c) = 0, hence c is integral over R. Since R is

integrally closed, we have c ∈ R, therefore a(X) ∈ R[X].

Now let n > 1 and assume that the claim is true for a product P (X) in which one of

the factors has degree less than n. Consider an extension L of K such that L contains

a root α of a(X). Since α is also a root of P (X), it is integral over R, hence by

Proposition 2.32 it is algebraic over K with the minimal polynomial, say m(X), lying

in R[X]. Clearly m(X)
∣∣a(X). Let a(X) = m(X)a1(X). If a(X) = m(X), then we are

done. Otherwise, 1 ≤ deg a1(X) < deg a(X), and since P (X) = a1(X)
(
m(X)b(X)

)
,
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we have a1 ∈ R[X] by induction hypothesis . Since a1(X) and m(X) lie in R[X], then

we have a(X) ∈ R[X]. By symmetry, we also see that b(X) ∈ R[X], so the proof

complete.

A part of the following corollary states an important fact that if we have an integral

extension R ⊆ R′ of domains where R is integrally closed, any prime ideal of R extends

to R′ properly. This fact will be used frequently, without giving any reference, when we

consider the case where R is a domain with field of fractions K and R′ is the integral

closure of R in an extension field of K.

Corollary 2.35. Let R ⊆ S be an integral extension of rings where S is an integral

domain and R is integrally closed, and let K be the field of fractions of R. If s ∈ PS,

for some P ∈ Spec(R), then with the exception of the leading term, all the coefficients

of the minimal polynomial of s over K are elements of P . In particular, PS is a proper

ideal of S.

Proof. We can write s = p1s1 + . . . pmsm for some p1, . . . , pm ∈ P and s1, . . . , sm ∈ S.

Since s1, . . . , sm are all integral over R, the subring T = R[s1, . . . , sm] is a finitely

generated R–module. Let s ∈ PT . Using the determinant argument, we can find a

monic polynomial

p(X) = Xn + an−1X
n−1 + . . .+ a1X + a0

such that a0, . . . , an−1 ∈ P and P (s) = 0. Let m(X) be the minimal polynomial of

s over K. Then m(X)
∣∣p(X). Write p(X) = m(X)b(X) for some b(X) ∈ K[X]. By

Corollary 2.34, m(X), b(X) ∈ R[X]. If we write a(X) for any a(X) ∈ R[X] to denote

the image of a(X) in (R/P )[X] under the natural homomorphism R[X]→ (R/P )[X],

we obtain

xn = m(X).b(X),

which gives that m(X) and b(X) are powers of X, completing the proof.

2.3 Fractional Ideals

Let R be a ring, K be the total quotient ring of R and S be the set of regular elements

of R. Then a subset A of K is called a fractional ideal if it satisfies the following
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conditions:

(1) A is an R-module, that is, if a, b ∈ A and r ∈ R, then a− b, ra ∈ R.

(2) There exists d ∈ S such that dA ⊆ R.

Note that for condition (2), it is enough to find x ∈ K such that xA ⊆ R. Since we

can write x = d
s
, where d, s ∈ R, then d = sx implies that dA ⊆ s(xA) ⊆ R.

The ideals of R are also fractional ideals of R since if I is an ideal of R, then

1I = I ⊆ R. These ideals of R are called integral ideals instead of fractional ideals.

IfK is the total quotient ring of R, and x ∈ K, then xR = {xr|r ∈ R} is a fractional

ideal of R, and denoted by (x), such a fractional ideal of R is called principal.

Summation and multiplication of fractional ideals of R are defined as for integral

ideals of R. If A and B are fractional ideals of R, then A + B, AB and A ∩ B

are also fractional ideals of R. Moreover, if B contains a regular element of R, then

[A : B] = {x ∈ K|xB ⊆ A} is a fractional ideal of R:

[A : B] is clearly an R-module. Suppose that b and d are regular elements of R

such that b ∈ B and dA ⊆ R. Then we have bd[A : B] ⊆ dA ⊆ R. Hence [A : B] is a

fractional ideal of R. We also know that a fractional ideal of R is containing a regular

element of R if and only if it contains a regular element of K, the total quotient ring

of R.

The fractional ideal [A : B] need not to be the same as (A : B), since (A : B) is

defined as (A : B) = {x ∈ R|xB ⊆ A} = [A : B] ∩R.

We shall denote the set of all nonzero fractional ideals of R by F(R).

For A ∈ F(R), we say that A is invertible if and only if there exists a B ∈ F(R)

such that AB = R.

Proposition 2.36. Let R be a ring and let K be its total quotient ring.

1. If A ∈ F(R) is invertible, then A contains a regular element of R and is finitely

generated as an R-module.

2. Let A,B ∈ F(R) be such that A ⊆ B and suppose that B is invertible. Then

there exists an integral ideal C of R such that A = BC.

3. Let A ∈ F(R). Then A is invertible if and only if there exists B ∈ F(R) such

that AB = (d) for some regular element d of K.
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Proof.

1. Let B ∈ F(R) be such that AB = R. So we have 1 =
n∑
i=1

aibi for some a1, . . . , an ∈

A, b1, . . . , bn ∈ B. Let x ∈ A be arbitrary, then xbi ∈ AB = R, hence x =
n∑
i=1

ai(xbi). So a1, . . . , an generate A as an R-module. Now suppose that dB ⊆ R

for d, a regular element of R. Then d ∈ dR = dAB = A(dB) ⊆ AR = A. Thus

A contains a regular element of R.

2. Since B is invertible, there exists B′ ∈ F(R) such that BB′ = R. Set C = AB′,

then since A ⊆ B, we have C = AB′ ⊆ BB′ = R. It follows that BC =

B(AB′) = A(BB′) = AR = A.

3. Let x be a regular element of K and B ∈ F(R) be such that AB = (x), then

A(Bx−1) = R, hence A is invertible. Now let A is invertible, then there exists

C ∈ F(R) such that AC = R. If x ∈ K is a regular element of R, then

A(Cx) = (x), hence B = Cx is the desired fractional ideal of R.

Let A ∈ F(R) be invertible, then by (1) of Proposition 2.36, we have [R : A] ∈

F(R).

Proposition 2.37. Let A ∈ F(R) be invertible and let B ∈ F(R) be such that AB = R,

then B = [R : A].

Proof. Since we have AB = R, then B ⊆ [R : A]. We also have A[R : A] ⊆ R which

implies that [R : A] = R[R : A] = BA[R : A] ⊆ BR = B. Hence B = [R : A].

Let A ∈ F(R) be invertible. We shall denote [R : A] by A−1, and call it the inverse

of A. If A,B ∈ F(R) are both invertible, then AB is invertible, and (AB)−1 = A−1B−1.

Let K be the total quotient ring of R, and let x ∈ K. Then (x) is invertible if and

only if x is a regular element of K. In the latter case (x)−1 = (x−1).

Finally, let A1, . . . , Ak ∈ F(R) and set A = A1 . . . Ak. Then A is invertible if and

only if Ai is invertible for all i = 1, . . . , k. If A is invertible, then A−1
i = A−1

∏
j 6=i
Aj.

Let R be an integral domain. If A,B ∈ F(R), then all A+B,AB,A∩B and [A : B]

are fractional ideals of R. We have seen in Proposition 2.36 that invertible fractional

ideals are finitely generated. Now we investigate the integral domains for which the

converse is true.
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2.4 Prüfer Domains

Definition 2.38. We call an integral domain R as Prüfer domain, in the case that

each finitely generated ideal of R is invertible.

Let R be a Prüfer domain and let A ∈ F(R), then there exists a regular element

d ∈ R such that dA ⊆ R. Since R is Prüfer, then dA = (d)A is invertible. Both dA

and (d) is invertible gives that A is invertible.

Before giving a characterization of Prüfer domains, we mention a non-Noetherian

example of a Prüfer domain, which is actually a Bezout domain.

Example 2.39. [9, p. 775, Exercise 23]Let O be the ring of integers in an algebraic

closure Q of Q. Then O is a non-Noetherian Bezout domain.

Now we shall obtain some equivalent conditions for an integral domain to be a

Prüfer domain.

Theorem 2.40. Let R be an integral domain, then the following statements are equiv-

alent:

(1) R is a Prüfer domain.

(2) A nonzero ideal of R which is generated by two distinct elements is invertible.

(3) Let A,B,C are ideals of R such that A 6= (0). If AB = AC and A is finitely

generated, then B = C.

(4) For P ∈ Spec(R) with P ⊂ R, RP is a valuation ring.

(5) If A,B and C are ideals of R, then A(B ∩ C) = AB ∩ AC.

(6) If A and B are ideals of R, then (A+B)(A ∩B) = AB.

(7) If A is a finitely generated ideal of R and B is an ideal of R with B ⊆ A, then

there exists an ideal C of R such that B = AC.

(8) Let A,B and C are ideals of R. If C is finitely generated, then
(
(A+B) : C

)
=

(A : C) + (B : C).

(9) Let A,B and C are ideals of R. If A and B are finitely generated, then
(
C :

(A ∩B)
)

= (C : A) + (C : B).
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(10) Let A,B and C are ideals of R. Then A ∩ (B + C) = (A ∩B) + (A ∩ C).

Proof. We begin the proof by showing that (1) and (2) are equivalent. Clearly (1)

implies (2).

(2) ⇒ (1) : Assume that (2) holds and let C = (c1, . . . , cn) be a nonzero ideal of

R. We use induction on number of generators to see that C is invertible. The claim

is true for n = 1 and also n = 2 by our assumption. Let n > 2, and assume that

every nonzero ideal generated by n−1 elements is invertible. We may also assume that

c1, . . . , cn are all nonzero. Now set A = (c1, . . . , cn−1), B = (c2, . . . , cn), D = (c1, cn)

and E = c1A
−1D−1 + cnB

−1D−1. Our aim is to show that EC = R.
CE = C(c1A

−1D−1) + C(cnB
−1D−1)

= (A+ (cn))(c1A
−1D−1) + (B + (c1))(cnB

−1D−1)

= c1D
−1 + c1cnA

−1D−1 + c1cnB
−1D−1 + cnD

−1

= c1D
−1(R + cnB

−1) + cnD
−1(R + c1A

−1)

Since we have (c1) ⊆ A, (cn) ⊆ B, andA,B are invertible ideals, then c1A
−1, cnB

−1 ⊆

R this gives that CE = c1D
−1 + cnD

−1 = (c1 + cn)D−1 = DD−1 = R. Hence C is

invertible.

Now we have that (1) and (2) are equivalent.

(1) ⇒ (3) : Assume that AB = AC where A is finitely generated, and nonzero.

Since R is a Prüfer domain, then A is invertible, hence B = A−1(AB) = A−1(AC) = C.

(3) ⇒ (4) : Assume that (3) holds. In this case if A is finitely generated, then

AB ⊆ AC implies B ⊆ C, since if AB ⊆ AC, then AC = AB + AC = A(B + C), by

assumption it gives that C = B + C, hence B ⊆ C.

Now let P ∈ Spec(R) be proper in R. We shall show that if a
s
, b
t
∈ RP , we have

either (a
s
) ⊆ ( b

t
) or ( b

t
) ⊆ (a

s
). However, s, t /∈ P implies that 1

s
, 1
t
are units in RP ,

hence it suffices to show that we have either aRP ⊆ bRP or bRP ⊆ aRP . If we have

either a = 0 or b = 0, our claim is true, so we may further assume that a and b are

nonzero.

It is easy to check that we have (ab)(a, b) ⊆ (a2, b2)(a, b), and by (3), it implies

(ab) ⊆ (a2, b2). So ab = a2x+b2y for some x, y ∈ R. It follows that (yb)(a, b) ⊆ (a)(a, b):

Let (ybz)(au + bv) ∈ (yb)(a, b), where z, u, v ∈ R. Since we have b2y = ab − a2x,

then

(ybz)(au+ bv) = abyzu+ b2y(zv) = abyzu+ (ab− a2x)(zv) = abyzu+ abzv− a2xzv ∈
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(a)(a, b).

Since (yb)(a, b) ⊆ (a)(a, b) and (3) holds, then (yb) ⊆ (a), which implies yb = au

for some u ∈ R. So ab = xa2 + yb2 = xa2 + abu, or xa2 = ab(1− u)

Now if u /∈ P , then yb = au implies that a = b( y
u
) ∈ bRP . If u ∈ P , then 1−u /∈ P ,

hence xa2 = ab(1− u) implies that b = a( x
1−u) ∈ aRP .

(4)⇒ (5) : Assume that (4) holds, and let P ∈ Spec(R). If A,B,C are ideals of R,

then A(B ∩ C)RP = ARP (BRP ∩ CRP ). Since RP is a valuation ring, we either have

BRP ⊆ CRP or CRP ⊆ BRP . Without loss of generality, suppose that BRP ⊆ CRP ,

then clearly ARPBRP ⊆ ARPCRP . Hence;

A(B ∩ C)RP = ARP (BRP ∩ CRP )

= ARPBRP

= ARPBRP ∩ ARPCRP

= ABRP ∩ ACRP

= (AB ∩ AC)RP

Since we have A(B ∩ C)RP = (AB ∩ AC)RP for arbitrary P ∈ Spec(R), then we

have A(B ∩ C) = AB ∩ AC.

The result can be obtained similarly if we suppose CRP ⊆ BRP .

(5)⇒ (6) : Suppose (5) holds, then we have (A+B)(A∩B) = (A+B)A∩(A+B)B.

Since AB ⊆ A(A+B) and AB ⊆ (A+B)B, then AB ⊆ (A+B)(A ∩B).

For the converse inclusion, let (a+ b)x ∈ (A+B)(A ∩B), where a ∈ A, b ∈ B, x ∈

A ∩ B. Then ax ∈ AB and bx ∈ AB, hence (a + b)x ∈ AB, which proves that (6)

holds.

(6)⇒ (2) : Let C = (c1, c2) be a nonzero ideal of R. If c1 = 0 or c2 = 0, then C is

principal hence invertible. So we shall assume that both c1 and c2 are nonzero. Then

clearly A = (c1) and B = (c2) are invertible. Then ,

C(A ∩B)A−1B−1 = (A+B)(A ∩B)A−1B−1 = ABA−1B−1 = R

Hence C is invertible.

Up to now, we have shown that the conditions (1) through (6) are all equivalent.

Now we shall show that (7) is also equivalent to these:

28



(1) ⇒ (7) : Let R be a Prüfer domain, let A and B be ideals of R such that A is

finitely generated and B ⊆ A. If A = (0), then B = AC for every ideal C of R. If

A 6= (0), then A is invertible since it is finitely generated. By Proposition 2.36, there

exists an ideal C of R such that, B = AC.

(7)⇒ (4) : Assume that (7) holds and let P ∈ Spec(R) with P ⊂ R. We shall show

that if a, b ∈ R, then either aRP ⊆ bRP or bRP ⊆ aRP . We clearly have (a) ⊆ (a, b)

hence by our assumption, there exists an ideal A of R such that (a) = (a, b)A. Let

a = ax + by, for x, y ∈ A. If we have x ∈ P , then 1 − x /∈ P , hence a = b y
1−x ∈ bRP .

Since we have bA ⊆ (a), then bx ∈ (a), and so bx = au for some u ∈ R. In the case

that x /∈ P , we have b = au
x
∈ aRP . Hence RP is a valuation ring.

Now we have the equivalence of (1) through (7).

To complete the proof, we first show that (4) implies each of (8), (9) and (10), and

after that each of these implies one of the equivalent conditions we proved above.

(4) ⇒ (8) : Let A,B and C be ideals of R such that C is finitely generated. Let

P ∈ Max(R). Under the assumption that (4) holds, we have RP is a valuation ring,

then the equality in (8) holds for ideals of RP . After we show that (ARP : BRP ) =

(A : B)RP for A,B are ideals of R with B finitely generated, we shall complete the

proof as following:

((A+B) : C)RP = ((A+B)RP : CRP )

= (ARP +BRP : CRP )

= (ARP : CRP ) + (BRP : CRP )

= (A : C)RP + (B : C)RP

= ((A : C) + (B : C))RP

Since the equality holds for all P ∈Max(R), then ((A+B) : C) = (A : C) + (B : C).

Now we shall prove that (ARP : BRP ) = (A : B)RP for A,B ideals of R with B

finitely generated:

Let x
1
∈ (A : B)RP with x ∈ (A : B). Since xB ⊆ A, then clearly xBRP ⊆ ARP ,

thus x ∈ (ARP : BRP ). For the converse inclusion, suppose that B = (b1, . . . , bk). Let
r
s
∈ (ARP : BRP ), where r ∈ R, s ∈ R \ P . Since for all i = 1, . . .k, r

s
bi
1
∈ ARP , then

rbi
s

= ai
ti

for all i = 1, . . . , k with ai ∈ A, ti ∈ R \ P . Hence there exist s′i ∈ R \ P

such that rbitis′i = sais
′
i ∈ A. Set s′′ = t1 . . . tk.s

′
1 . . . s

′
k. Clearly we have s′′ ∈ R \ P .
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We have s′′rbi ∈ A for all i = 1, . . . , k. It follows that s′′rB ⊆ A since {bi}ki=1 is the

set of generators of B, hence s′′r ∈ (A : B). Therefore, r
s

= s′′r
s′′s
∈ (A : B)RP since

s′′r ∈ (A : B) and s′′s ∈ R \ P . Thus we have the desired equality.

(4)⇒ (9) : Suppose that (4) holds. Let P ∈ Spec(R) and let A,B and C be ideals

of R such that A and B are finitely generated. Then

(C : (A ∩B))RP ⊆ (CRP : (A ∩B)RP )

= (CRP : ARP ) + (CRP : BRP )

= (C : A)RP + (C : B)RP

= ((C : A) + (C : B))RP

⊆ (C : (A ∩B))RP

Thus we have (C : (A ∩B))RP = ((C : A) + (C : B))RP . Since it is true for arbitrary

P ∈ Spec(R), then we have the desired equality.

(4) ⇒ (10) : Assume that (4) holds, let A,B and C be ideals of R, and let P ∈

Max(R). Then we have

(A ∩ (B + C))RP = ARP ∩ (B + C)RP

= ARP ∩ (BRP + CRP )

= (ARP ∩BRP ) + (ARP ∩ CRP )

= (A ∩B)RP + (A ∩ C)RP

= ((A ∩B) + (A ∩ C))RP

Since the equality holds for arbitrary P ∈Max(R), then the desired equality holds.

(8)⇒ (2) : Let a, b ∈ R be nonzero, and suppose that (8) holds. Then we have

R =
(
(a, b) : (a, b)

)
=

(
(a) + (b) : (a, b)

)
=

(
(a) : (a, b)

)
+
(
(b) : (a, b)

)
=

(
(a) : (b)

)
+
(
(b) : (a)

)
By this equality 1 = x + y for some x, y ∈ R such that xb ∈ (a) and ya ∈ (b). So we

have that (xb)b ⊆ (ab) and (ya)a ⊆ (ab), and this implies that (a, b)(bx, ay) ⊆ (ab).

But since 1 = x + y, then ab = abx + aby, hence we have that (ab) = (a, b)(bx, ay).
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Now since (ab) is invertible, then (a, b) is invertible.

(9)⇒ (2) : Let a, b ∈ R be nonzero. Assume that (9) holds. Then

R =
(
(a) ∩ (b) : (a) ∩ (b)

)
=

(
(a) ∩ (b) : (a)

)
+
(
(a) ∩ (b) : (b)

)
=

(
(b) : (a)

)
+
(
(a) : (b)

)
So the result follows as above.

(10) ⇒ (4) : Assume that (10) holds. Let P ∈ Spec(R) be proper in R and let

a, b ∈ R. Since a ∈ (b) + (a− b), then we have

(a) = (a) ∩
(
(b) + (a− b)

)
=

(
(a) ∩ (b)

)
+
(
(a) ∩ (a− b)

)
Let a = t+ c(a− b) where t ∈ (a) ∩ (b), c ∈ R and c(a− b) ∈ (a). Set t = bu for some

u ∈ R. Since ca− cb ∈ (a), then cb ∈ (a), set cb = av for v ∈ R. Since a = t+ c(a− b),

then a(1− c) = t− cb = (u− c)b ∈ (b).

If c ∈ P , then 1 − c /∈ P , hence we have that a = bu−c
1−c ∈ bRP . If c /∈ P , then

b = av
c
∈ aRP . Hence RP is a valuation ring.

The following corollary says that, to obtain R is a Prüfer domain, it is sufficient to

check the localizations only at maximal ideals of R instead of at all prime ideals of R.

Corollary 2.41. Let R be an integral domain. Then R is a Prüfer domain if and only

if RP is a valuation ring for all P ∈Max(R).

Proof. Since for a Prüfer domain R, all localizations of R at prime ideals are valuation

rings, it is enough for us to check the sufficiency part. Let P ∈ Spec(R). Let P ′ ∈

Max(R) be such that P ⊆ P ′. Since we have R \ P ′ ⊆ R \ P , then we clearly have

RP ′ ⊆ RP , and RP ′ is a valuation ring by our assumption. Now by Corollary 2.3, we

have that RP is a valuation ring, since it is an overring of the valuation ring RP ′ . Hence

we have RP is a valuation ring for P ∈ Spec(R), then the equivalence of (1) and (6) of

Theorem 2.40 completes the proof.

Lemma 2.42. Let R be an integral domain. The following statements hold:

(1) R =
⋂

P∈Max(R)

RP .
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(2) Let I be an ideal of R, then I =
⋂

P∈Max(R)

(IRP ∩R).

(3) Let Q be an ideal of R such that
√
Q = P , a prime ideal of R. If QRM is

PRM -primary for each M ∈Max(R) with M ⊇ P , then Q is P -primary.

Proof. (1) Since R ⊆ RP for all P ∈ Max(R), then R ⊆
⋂

P∈Max(R)

RP . Now let

α ∈
⋂

P∈Max(R)

RP be arbitrary. Set I = {x ∈ R|xα ∈ R}. We check if I is an ideal

of R:

Clearly 0 ∈ I, hence I 6= ∅.

Let x ∈ I, r ∈ R. x ∈ I implies xα ∈ R, then rxα ∈ R, and so rx ∈ I.

If a, b ∈ I, then aα, bα ∈ R. It follows that aα+bα = (a+b)α ∈ R, thus a+b ∈ I.

Hence I is an ideal of R.

If we show that I = R, then 1 ∈ I, and so 1α = α ∈ R, which gives the desired

equality since α is an arbitrary element of the intersection. So by the way of

contradiction, suppose I ⊂ R. Then there existsM ∈Max(R) such that I ⊆M .

Since α ∈ RM , then α = x
y
, where x ∈ R, y ∈ R \M . Since yα = x ∈ R, then

y ∈ I ⊆ M , but this is a contradiction since y /∈ M . So we have I = R, and the

proof is complete.

(2) Set Max(R) = {Pλ}λ∈Λ. Then we clearly have I ⊆ IRPλ ∩ R for all λ ∈ Λ.

Suppose that
⋂
λ∈Λ

(IRPλ ∩ R) \ I 6= ∅ and let x ∈
⋂
λ∈Λ

(IRPλ ∩ R) \ I. Since x /∈ I,

then (I : (x)) is proper in R. So there exists λ0 ∈ Λ such that (I : (x)) ⊆ Pλ0 .

Since x ∈ IRPλ0
, then there exists c ∈ R \ Pλ0 such that cx ∈ I. It follows that

c ∈ (I : (x)) ⊆ Pλ0 which contradicts our choice of c. Hence such an x doesn’t

exist, so the equality holds.

(3) Since we have Q =
⋂

M∈Max(R)

(QRM ∩R), if we suppose xy ∈ Q with x /∈ P , then
xy
1
∈ QRM for all M ∈ Max(R) with M ⊇ P . x /∈ P implies x

1
/∈ PRM , since

otherwise, if x
1

= p
r
for some p ∈ P, r ∈ R \M , then there exists u ∈ R \M

such that uxr = up ∈ P and since ur ∈ R \ M ⊆ R \ P , we have x ∈ P , a

contradiction. Since we have x
1
/∈ PRM , then since QRM is PRM -primary, we

have y
1
∈ QRM , and this is true for all M ∈ Max(R) with M ⊇ P . Clearly,
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y ∈ QRM ∩ R for all M ∈ Max(R) with M ⊇ P . So by (2) of this lemma, we

have y ∈ Q, hence Q is P -primary.

Theorem 2.43. Let R be a Prüfer domain and let P ∈ Spec(R). Then the following

conditions hold:

(1) If Q is a P -primary ideal of R and x ∈ R \ P , then we have Q = Q[Q+ (x)].

(2) The set of P -primary ideals of R is closed under ideal multiplication.

Proof. Let M ∈ Max(R) be arbitrary. The first claim is clear if Q 6⊆ M , since it

implies QRM = Q2RM = RM . So assume that Q ⊆ M . Then since Q is P -primary,

we have QRM is PRM -primary in RM . Since RM is a valuation ring and x /∈ PRM ,

then by Theorem 2.13, we have QRM = Q(x)RM . This equality holds for arbitrary

M ∈Max(R), so we have Q = Q(x). Since Q2 ⊆ Q, then Q = Q2 +Q(x).

For the second claim, let Q1, Q2 be P -primary ideals of R. Then we clearly have

Q1RM and Q2RM are PRM -primary ideals. Since RM is a valuation ring, then by

Theorem 2.13 we have (Q1RM)(Q2RM) = Q1Q2RM is PRM -primary for all M ∈

Spec(R) withM ⊇ P . We clearly have
√
Q1Q2 = P , so by (3) of Lemma 2.42, we have

Q1Q2 is a P -primary ideal of R, hence product of P -primary ideals is P -primary.

Let R be a Prüfer domain. Let P ∈ Spec(R) be such that there exists a P -primary

ideal of R which is different from P . To obtain some information about the P -primary

ideals of R, we shall use the correspondence between the P -primary ideals of R and

the PRP -primary ideals of RP . First of all, the set of P -primary ideals of R is totally

ordered by inclusion, and as a result of Theorem 2.13, if P̄ is the intersection of all

P -primary ideals of R, then P̄ is prime and there is no prime ideal between P and P̄ .

Hence the valuation ring RP/P̄RP has rank one.

Let ∗ : R → RP → RP/P̄RP be the composition of the natural homomorphisms.

If I is an ideal of R, then we shall use the notation I∗ instead of ∗(I). In this case,

there is a one-to-one order preserving correspondence between the P -primary ideals Q

of R and the P ∗-primary ideals Q∗ of R∗. Under this correspondence Q and Q∗ are the

corresponded ideals of each other. This correspondence gives us the ability to focus

only rank one valuation rings to prove some results on Prüfer domains as below.
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Lemma 2.44. Let V be a rank one valuation ring and let P be its maximal ideal. Let

Q be a P -primary ideal of R. Then following statements hold:

1. If Q 6= Q2, then
⋂
n≥1

Qn = 0.

2. If for some i ∈ N, Qi = Qi+1 , then Q = Q2 = P .

Proof. By Theorem 2.11, we have
⋂
n≥1

Qn is a prime ideal of V . Now if Q 6= Q2, then⋂
n≥1

Qn ⊂ Q ⊆ P , and since V has rank one, we have
⋂
n≥1

Qn = 0. Suppose that there

exists i ∈ N such that Qi = Qi+1, then
⋂
n≥1

Qn = Qi is a prime ideal of V . Since V is

an integral domain, then Qi = 0 implies Q = 0, so we must have Qi = P . Therefore

we have P = Qi ⊆ Qi−1 ⊆ . . . ⊆ Q ⊆ P or simply Q = Q2 = P .

Proposition 2.45. Let R be a Prüfer domain. If Q is a P -primary ideal of R, then
∞⋂
n=1

Qn ∈ Spec(R).

Proof. Observe that we immediately have

∞⋂
n=1

Qn ⊆
[( ∞⋂

n=1

Qn
)
RP

]
∩R ⊆

( ∞⋂
n=1

(QRP )n
)
∩R.

On the other hand, since Qn is a P–primary ideal of R by Theorem 2.43 (2), we also

have ( ∞⋂
n=1

(QRP )n
)
∩R ⊆ QnRp ∩R = Qn

for each n ≥ 1. It follows that

∞⋂
n=1

Qn =

[( ∞⋂
n=1

Qn
)
RP

]
∩R =

( ∞⋂
n=1

(QRP )n
)
∩R.

If P̄ and the homomorphism ∗ are defined as above, then the correspondence con-

structed by ∗ and Lemma 2.44 complete the proof.

Now we shall give a characterization of Prüfer domain in terms of their overrings.

Before this, we need some definitions and theorems.

Theorem 2.46 (The Lying-Over Theorem). Let R′ be a ring and let R be its

subring. If R′ is integral over R, then for each P ∈ Spec(R), there exists P ′ ∈ Spec(R′)

such that P ′∩R = P . Moreover, P is a maximal ideal of R if and only if P ′ is a maximal

ideal of R′.
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Recall that an R-module M is flat if for each embedding f : N1 → N2 of R-

modules, 1M⊗f : M⊗RN1 →M⊗RN2 is also an embedding, where 1M is the identity

homomorphism of M .

Definition. An overring T of a ring R is called a flat overring, if T is a flat R-module.

Lemma 2.47. Let R be a ring and M be an R-module. Then there is a group isomor-

phism Ψ : M ⊗R R→M defined by Ψ(m⊗ a) = ma for all a ∈ R and m ∈M .

Lemma 2.48. Let R be a ring and M be an R-module such that, for an ideal I of R

and f : I → R given by f(a) = a for all a ∈ I, 1M ⊗ f is injective, then M is flat.

Although flatness of a module mostly defined homologically, we shall give an element-

wise characterization of flatness which is useful for our study.

Lemma 2.49. Let R′ be a ring and let R be a subring of R′, let x1, . . . , xn be indeter-

minates. Then R′ is a flat R-module if and only if for every solution c1, . . . , cn in R′

of a system of equations
n∑
i=1

xiaih = 0, h = 1, . . . , r

where aih ∈ R for each i and h, we have d1, . . . dk ∈ R′ and bji ∈ R for each i and j

such that

ci =
k∑
j=1

djbji, i = 1, . . . , n and
n∑
i=1

bjiaih = 0, j = 1, . . . , k, h = 1, . . . , r.

Proposition 2.50. Let R be an integral domain, and let T be an overring of R. Then

the following statements are equivalent:

(1) For P ∈ Spec(R), either PT = T or T ⊆ RP holds.

(2) For all x
y
∈ T with x, y ∈ R, (y : x)T = T .

Proof. First, suppose that (1) holds. Let x
y
∈ T and by the way of contradiction,

suppose that (y : x)T 6= T . Then there exists P ∈ Spec(R) such that (y : x) ⊆ P

and PT 6= T . By our assumption, T ⊆ RP and so x
y
∈ RP . Hence there exist

a ∈ R, s ∈ R \ P such that x
y

= a
s
and it follows that for some u ∈ R \ P we have

xsu = ayu ∈ (y). So we have su ∈ (y : x) ⊆ P , which is a contradiction. Thus

(y : x)T = T .
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Now assume that (2) holds. Let P ∈ Spec(R) with PT 6= T . Our aim is to show

that T ⊆ RP . So let x
y
∈ T . Then (y : x)T = T and this gives (y : x) 6⊆ P , since

otherwise (y : x)T = T implies PT = T , a contradiction. Now let u ∈ (y : x) \P , then

ux = yr for some r ∈ R. So we have x
y

= r
u
∈ RP since u /∈ P , hence T ⊆ RP .

Proposition 2.51. Let R be an integral domain and T be an overring of R. Then T

is a flat overring if and only the equivalent conditions of Proposition 2.50 holds for T .

Proof. First suppose that T is a flat overring of R. Our aim is to show that condition

(1) of Proposition 2.50 holds. If x
y
∈ T , then y

(
x
y

)
−x 1 = 0, so by Lemma 2.49, there

exists zjk ∈ R, j = 1, . . . , r, k = 1, 2 and b1, . . . , br ∈ T such that

x
y

=
r∑
j=1

bjzj1,

1 =
r∑
j=1

bjzj2,

zj1y − zj2x = 0, j = 1, . . . , r

Let P ∈ Spec(R). In the case that zj2 ∈ P , for j = 1, . . . , r, then we clearly have

PT = T . So suppose zj2 /∈ P for some j = 1, . . . , r. It follows that (y : x) 6⊆ P and

hence, we have either PT = T or (y : x) 6⊆ P for all x
y
∈ T . If PT = T , then we

are done, so suppose that (y : x) 6⊆ P for all x
y
∈ T . For each x

y
∈ T , there exists

s ∈ (y : x)\P and this gives that, there exist a ∈ R such that ay = sx, since s ∈ R \P

we have that x
y

= a
s
∈ RP .

For the converse part of the proof, suppose that condition (2) of Proposition 2.50

holds for T . By lemmas 2.47 and 2.48, it suffices to prove that for an ideal I of R, the

homomorphism φ : I ⊗R T → T given by φ(a⊗ b) = ab for all a ∈ I, b ∈ T is injective.

So let c ∈ I ⊗R T , then there exist ai ∈ I, bi ∈ T for i = 1, . . . , s such that

c =
s∑
i=1

ai ⊗ bi. There exist b, c1, . . . , cs ∈ R such that bi = ci
b
for i = 1, . . . , s; thus

c =
s∑
i=1

ai ⊗ ci
b
. By our assumption, (b : ci)T = T for i = 1, . . . , s. It follows that if we

set C =
s⋂
i=1

(b : ci), then we have CT = T . Now suppose that φ(c) = φ(
s∑
i=1

ai ⊗ ci
b
) = 0,

that is
s∑
i=1

aici
b

= 0. Let d ∈ C, so we have dci ∈ (b) for i = 1, . . . , s, hence dci
b
∈ R for
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i = 1, . . . , s; thus

dc =
s∑
i=1

ai ⊗ dci
b

=
s∑
i=1

(
daici
b
⊗ 1
)

=

(
d
s∑
i=1

aici
b

)
⊗ 1 = 0

It follows that cC = 0 and so 0 = 0T = cCT = cT . Since c ∈ cT , then we have c = 0,

which gives that φ is injective. Hence T is a flat R-module.

Proposition 2.52. Let R be an integral domain and T be an overring of R. Then the

following statements are equivalent:

(1) T is a flat overring of R.

(2) TP = RP∩R for all P ∈Max(T ).

(3) T =
⋂

P∈Max(T )

RP∩R.

Proof. Assume that T is a flat overring of R and let P ∈Max(T ). Our aim is to show

that (2) holds. We clearly have RP∩R ⊆ TP . So let x
y
∈ TP , where x, y ∈ T with y /∈ P .

Then there exist u, v, s ∈ R such that x = u
s
and y = v

s
. Set C = (s : u) ∩ (s : v).

By Proposition2.51, we have CT = T , thus C 6⊆ P ∩ R. Let z ∈ C \ (P ∩ R). Then

zx, zy ∈ R and zy /∈ P , hence zy /∈ P ∩ R. It follows that x
y

= zx
zy
∈ RP∩R, and this

gives TP ⊆ RP∩R.

Now suppose (2) holds, then since we know T =
⋂

P∈Max(T )

TP , by condition (2), this

is T =
⋂

P∈Max(R)

RP∩R. So (2) implies (3).

Finally, suppose (3) holds. Let Q ∈ Spec(R) be such that QT 6= T . Then QT ⊆ P

for some P ∈Max(R) and so Q ⊆ P∩R. This gives RP∩R ⊆ RQ. But since T ⊆ RP∩R,

then we have T ⊆ RQ. Hence T is a flat overring of R.

Proposition 2.53. Let R be an integral domain and let T and T ′ be overrings of R

such that T ⊆ T ′. Then the following statements hold:

(1) T ′ is a flat overring of R implies that T ′ is a flat overring of T .

(2) If T ′ is a flat overring of T and T is a flat overring of R, then T ′ is a flat overring

of R.
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Proof. For the first part, assume that T ′ is a flat overring of R. Let a, b ∈ T be such

that a
b
∈ T ′. Since a and b are both elements of the field of fractions of R and finitely

many elements of K can be written in a common denominator, then we can write a = c
s

and b = d
s
, where s, c, d ∈ R. Then we have a

b
= c

d
∈ T ′. Hence by Proposition 2.51,

we have (d : c)T = T . So there exist t1, . . . , tk ∈ T ′ and u1, . . . , uk ∈ (d : c) such that

1 =
k∑
i=1

tiui. Since ui ∈ (d : c), then uic ∈ (d) = Td for i = 1, . . . , k. It follows that

uia ∈ Tb for i = 1, . . . , k. Hence, (Tb : Ta)T ′ = T ′. Therefore, T ′ is a flat overring of

T .

For the second part, let P ′′ ∈Max(T ′). Set P ′ = P ′′∩T and P = P ′∩R. Clearly we

have P ′ ∈Max(T ) and P ∈Max(R). Moreover, we have P = P ′ ∩R = P ′′ ∩ T ∩R =

P ′′ ∩ R. Since T ′ is a flat overring of T and for P ′′ ∈ Max(T ′), P ′ = P ′′ ∩ T holds,

then by Proposition 2.52, we have (T ′)P ′′ = (T )P ′ . Similarly since T is a flat overring

of R, and we have P ′ ∈ Max(T ), then again by Proposition 2.52, P = P ′ ∩ R implies

that (T )P ′ = RP . Hence we have (T ′)P ′′ = RP for arbitrary P ′′ ∈ Max(T ′). It again

follows from Proposition 2.52 that, T ′′ is a flat overring of R.

Theorem 2.54. The only integral flat overring of an integral domain R is R itself.

Proof. Let R be an integral domain and T be a flat overring of R. Let x
y
∈ T , then by

Proposition 2.51, we have (y : x)T = T . If P ∈ Spec(R), then by Lying-Over Theorem,

there exists P ′ ∈ Spec(T ) such that P ′ ⊂ T and P ′ ∩R = P . Since PT ⊆ P ′, we have

PT 6= T . It follows with the fact (y : x)T = T that (y : x) is not contained in any

prime ideal of R, hence (y : x) = R. Thus 1x ∈ (y), and this implies x
y
∈ R. Hence

T = R.

Theorem 2.55. Let R be an integral domain. Then R is Prüfer if and only if each

overring of R is a flat R-module.

Proof. Suppose first that each overring of R is flat. Let P ∈Max(R). By Proposition

2.53 since RP is an overring of R and every overring of R which contains RP is flat,

then every overring of RP is flat. Our aim is to show that RP is a valuation ring, so

let a, b ∈ RP be such that aRP 6⊆ bRP . If b = 0, then we clearly have bRP ⊆ aRP ,

and this is what we aim to show, hence let b 6= 0. We have (bRP : aRP ) 6= RP , and

so (bRP : aRP ) ⊆ PRP , since PRP is the unique maximal ideal of RP . The ring

RP [a
b
] =

{
f(a

b
)|f(X) ∈ RP [X]

}
is an overring of RP , so it is a flat overring of RP .
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By Proposition 2.51, since a
b
∈ RP [a

b
], we have (bRP : aRP )Rp[

a
b
] = RP [a

b
]. So we

have x1b1 + . . . + xnbn = 1 for some x1, . . . , xn ∈ (bRP : aRP ) and b1, . . . , bn ∈ RP [a
b
].

For i = 1, . . . , n there exists aij ∈ RP where j = 1, . . . , s for some s ∈ N such that

bi =
s∑
j=0

aij(
a
b
)j. Then we have 1 =

n∑
i=1

xibi =
n∑
i=1

xi
s∑
j=0

aij(
a
b
)j =

s∑
j=0

dj(
a
b
)j where dj =

n∑
i=1

xiaij ∈ (bRP : aRP ) for j = 0, . . . , s. Since (bRP : aRP ) 6= RP , then dj is not a unit

in RP for j = 0, . . . , s. Since d0 is not a unit, then 1−d0 is a unit in Rp. If we multiply

the equality by (1− d0)s−1( b
a
)s, then we have

(
(1− d0)

(
b

a

))s
− d1

(
(1− d0)

(
b

a

))s−1

− . . .− ds(1− d0)s−1 = 0

Thus (1 − d0)
(
b
a

)
is an integral element over RP . Since RP

[
(1− d0)

(
b
a

)]
is a flat

overring of RP , by Theorem 2.54, RP = RP

[
(1− d0)

(
b
a

)]
, hence (1 − d0)

(
b
a

)
∈ RP .

Since 1− d0 is a unit in RP , then we have b ∈ aRP or equivalently bRP ⊆ aRP . Hence

the localization RP at an arbitrary prime ideal P is a valuation ring. Therefore, R is

a Prüfer domain.

Now assume that R is a Prüfer domain, and let T be an overring of R. Let P ∈

Max(T ). Clearly TP is an overring of the valuation ring RP∩R, hence TP is a valuation

ring.

Let x ∈ TP . If x /∈ RP∩R, then since RP∩R is a valuation ring, we have 1
x
∈ RP∩R

and since it is not a unit in RP∩R, then 1
x
∈ (P∩R)RP∩R ⊆ PTP . This is a contradiction

since x ∈ TP , hence 1
x
is a unit in TP . So TP = RP∩R. Since this is true for arbitrary

maximal ideal of T , then T is a flat overring of R by Proposition 2.52.

The following two corollaries can easily be obtained from Theorem 2.55, its proof,

and Proposition 2.52.

Corollary 2.56. Each overring of a Prüfer domain is a Prüfer domain.

Corollary 2.57. Let R be a Prüfer domain and T be an overring of R. If Γ = {P ∈

Spec(R)|PT 6= T}, then T =
⋂
P∈Γ

RP .

We shall give another characterization of Prüfer domains in terms of their overrings.

Theorem 2.58. Let R be an integral domain. Then R is a Prüfer ring if and only if

each overring of R is integrally closed.
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Proof. Let R be a Prüfer domain, then by Corollary 2.57, each overring of R is an

intersection of some valuation rings. Since valuation rings are integrally closed by

Proposition 2.5, the same is true of their intersection R.

Now assume that each overring of R is integrally closed. Let P ∈ Max(R). Our

aim is to show that RP is a valuation ring, for once this is done, R becomes Prüfer

since P is an arbitrary maximal ideal of R. Let K be the field of fractions of R and

let a ∈ K \ RP be nonzero, we shall show 1
a
∈ RP . Since RP [a2] is an overring of RP ,

then it is integrally closed. Clearly a is integral over RP [a2], hence a ∈ RP [a2]. Then

a = b0 + b1a
2 + . . .+ bna

2n for some b0, . . . , bn ∈ RP . Multiplying by b2n−1
0 /a2n, we get(

b0
a

)2n −
(
b0
a

)2n−1
+ b1b0

(
b0
a

)2n−2
+ . . . + bnb

2n−1
0 = 0. Hence b0

a
is integral over RP , so

it belongs to RP . Now if b0
a
is unit in RP , then a ∈ RP . If b0

a
is not a unit in RP , then

1− b0
a
is a unit in RP . Multiplying the equation which we express a in terms of powers

of a2 by 1
a2n

, we have

(
1− b0

a

)(
1

a

)2n−1

− b1b0

(
1

a

)2n−2

− . . .− bn = 0

Since
(
1− b0

a

)
is a unit in RP , then 1

a
is integral over RP , thus 1

a
∈ RP . So RP is a

valuation ring and the result follows.

2.5 Dedekind Domains

Definition 2.59. An integral domain is said to be a Dedekind domain, if every ideal

of R is a product of prime ideals.

Proposition 2.60. Let R be an integral domain and let I be a proper ideal of R such

that I = P1 . . . Pn, where all Pi’s are invertible prime ideals of R. Then this is the

unique way of expressing I as a product of invertible prime ideals of R, up to the order

of the factors.

Proof. Let I = P ′1 . . . P
′
m , where P ′i is an invertible prime ideal of R for i = 1, . . . ,m.

Without loss of generality, assume that P1 is minimal among P1, . . . , Pn. Since I =

P ′1 . . . P
′
m ⊆ P1, then P ′j ⊆ P1 for some j = 1, . . . ,m, say P ′1 ⊆ P1. Similarly I =

P1 . . . Pn ⊆ P ′1 implies that Pi ⊆ P ′1 for some i = 1, . . . , n. Since this inclusion implies

Pi ⊆ P1, by the choice of P1, we must have i = 1, hence P1 = P ′1. Since P1 is invertible,
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then we have P2 . . . Pn = P ′2 . . . P
′
m. By continuing in this way, we must have n = m,

and there exists a permutation σ ∈ Sn such that Pi = P ′σ(i) for i = 1, . . . , n.

Theorem 2.61. Let R be a Dedekind domain, and let I be a nonzero proper ideal of

R. Then I is expressible as a product of prime ideals of R. Moreover, this expression

is unique up to the order of the factors.

Proof. Firstly, we shall show that an invertible prime ideal of R is maximal. Let P

be an invertible prime ideal of R. Our aim is to show P is maximal by proving that

P + (a) = R for any a ∈ R \ P .

Suppose that for some a ∈ R\P , we have P +(a) ⊂ R, then P +(a) = P1 . . . Pk and

P + (a2) = Q1 . . . Qm, where Pi and Qj are prime ideals for i = 1, . . . , k, j = 1, . . . ,m.

Let φ : R→ R/P be the canonical epimorphism, and let R′, P ′i , Q′j and a′ be the images

of R,Pi, Qj and a, respectively, under φ. In this case, we clearly have a′R′ = P ′1 . . . P
′
k

and a′2R′ = Q′1 . . . Q
′
m. Since a′ 6= 0, then the ideals a′R′ and a′2R′ are both invertible,

so it is also true for each P ′i and Q′j. Since we have P ′21 . . . P ′2k = Q′1 . . . Q
′
m, then by

Proposition 2.60, m = 2k. So we may order the primes such that Q2i−1 = Q2i = Pi for

i = 1, . . . , k. Hence
(
P+(a)

)2
= P+(a2), and it follows that P ⊆

(
P+(a)

)2 ⊆ P 2+(a).

So if b ∈ P , then b = c+da for some c ∈ P 2, d ∈ R. da = b− c ∈ P and a /∈ P together

implies that d ∈ P , hence P ⊆ P 2 + Pa. Since P is invertible, then there exists a

fractional ideal A such that PA = R. Then R = PA ⊆ P 2A+ PA(a) = P + (a). This

contradicts with our assumption, hence P is maximal.

To complete the proof, we shall show that every nonzero prime ideal of R is invert-

ible. Then our claim is clear by Proposition 2.60.

Let P ∈ Spec(R) be nonzero. If R = P , then P is invertible, hence there is nothing

to prove. So suppose that P ⊂ R. Let a ∈ P be nonzero. Write (a) = P1 . . . Ps, where

each Pi is a prime ideal of R. Since (a) is invertible, then each Pi is invertible, hence

maximal for i = 1, . . . , s. Then (a) = P1 . . . Ps ⊆ P implies that Pi ⊆ P for some

i = 1, . . . , s. By the maximality of Pi, we have P = Pi, thus P is invertible.

Proposition 2.62. Let R be an integral domain. Then R is a Dedekind domain if

and only if the set of nonzero fractional ideals of R is a group with respect to ideal

multiplication.

Proof. Firstly, suppose that R is a Dedekind domain. Let F(R) be the set of nonzero

fractional ideals of R. We have mentioned that F(R) is closed under multiplication
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of fractional ideals. With respect to this multiplication, F(R) is a semigroup with

identity element R. By Theorem 2.61 and its proof, we have that every ideal of R is

invertible, since it is a product of prime ideals of R, which are invertible. Let A ∈ F(R)

be arbitrary, then there exists d ∈ R such that dA ⊆ R. So there exists a fractional

ideal B of R such that (dA)B = R. It follows that (dB)A = R, hence A has an inverse

in F(R). Thus F(R) is a group.

For the sufficiency part, we shall show every ideal of R is a product of prime ideals.

Let S be the set of all nonzero proper ideals of R which are not expressible as a

product of prime ideals. Our aim is to show S = ∅ if F(R) is a group. By the way

of contradiction, assume that S 6= ∅. Since every nonzero ideal of R is invertible,

then R is Noetherian. So by the maximal condition, S has a maximal element, say

A. Since A is proper in R, then A ⊆ M for some M ∈ Max(R). Clearly, A ∈ S

implies A 6= M . Let B ∈ F(R) be such that MB = R. Since A ⊆ M , then we have

AB ⊆ MB = R, and since R = MB ⊆ B, then A = AR ⊆ AB. If A ⊂ AB, then the

maximality of A in S implies that AB /∈ S , hence AB is a product of some prime

ideals. But it follows that A = A(BM) = (AB)M is also a product of prime ideals

which is a contradiction. So we must have A = AB, so AM = (AB)M = A. Since

A ∈ F(R), then it is invertible, so we have M = R which is impossible. Hence our

assumption that S 6= ∅ is false. Therefore, R is a Dedekind domain.

From Theorem 2.61 and Proposition 2.62, the following corollary can be given:

Corollary 2.63. Let R be an integral domain. Then R is a Dedekind domain if and

only if every nonzero ideal of R is invertible.

Corollary 2.64. If R is a Dedekind domain, then R is a Noetherian domain with

Spec(R) = Max(R).

Proof. It is clear from the proof of Theorem 2.61 that Spec(R) = Max(R). It follows

directly from Proposition 2.36 and Theorem 2.63 that every nonzero proper ideal of R

is finitely generated. Hence R is Noetherian.

Proposition 2.65. Let R be a Dedekind domain and let I be an ideal of R. If I =

P1 . . . Pn for some P1, . . . , Pn ∈ Spec(R), then {P1, . . . , Pn} = {P ∈ Spec(R)|I ⊆ P}.

Thus, every ideal in a Dedekind domain contained by only a finite number of prime

ideals.
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Proof. Let I = P1 . . . Pn where Pi ∈ Spec(R) for all i = 1, . . . , n. Let P ∈ Spec(R)

with I ⊆ P . Then we have I = P1 . . . Pn ⊆ P , hence Pi ⊆ P for some i = 1, . . . , n. By

Corollary 2.64, we have Pi = P . Hence a prime ideal containing I must be occur in

the factorization of I. Conversely, if I = P1 . . . Pn, then we clearly have I ⊆ Pi for all

i = 1, . . . , n which completes the proof.

Now we shall give several characterizations for a Noetherian integral domain to be

a Dedekind domain.

Theorem 2.66. If R is Noetherian integral domain, then the following statements are

equivalent:

(1) R is a Dedekind domain.

(2) R is integrally closed and every prime ideal of R is maximal.

(3) Each nonzero ideal of R which generated by two elements is invertible.

(4) If A,B,C are ideals of R such that AB = AC with A is nonzero, then B = C.

(5) For P ∈Max(R), RP is a valuation ring.

(6) If A,B and C are ideals of R, then A(B ∩ C) = AB ∩ AC.

(7) If A and B are ideals of R, then (A+B)(A ∩B) = AB.

(8) If A and B are ideals of R with A ⊆ B, then there exists an ideal C of R such

that A = BC.

(9) If A,B and C are ideals of R, then (A+B : C) = (A : C) + (B : C).

(10) If A,B and C are ideals of R, then (A : B ∩ C) = (A : B) + (A : C).

(11) If A,B and C are ideals of R, then A ∩ (B + C) = A ∩B + A ∩ C.

(12) If P ∈Max(R), then there are no ideals of R strictly between R and R2.

(13) If P ∈Max(R), then every P -primary ideal of R is a power of P .

(14) If P ∈ Max(R), then the set of P -primary ideals of R is totally ordered by

inclusion.
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(15) Each overring of R is a flat overring.

(16) Each overring of R is integrally closed.

Proof. Let R be a Noetherian integral domain.By Theorem 2.63, being a Dedekind

domain and being a Prüfer domain are equivalent for R. So by theorems 2.40, 2.55

and 2.58 we have all the conditions except (2), (12), (13), (14) are equivalent. Thus it

suffices to prove that these are also equivalent to others.

(1) ⇒ (2) : Let R be a Dedekind domain. Then R is integrally closed since it is a

Prüfer domain. R has Krull dimension one by Corollary 2.64.

(2) ⇒ (5) : Assume that R is integrally closed and has the property that every

prime ideal of R is maximal. Let P ∈ Max(R) be nonzero. Then RP is Noetherian.

RP is integrally closed by Corollary 2.30. Furthermore, PRP is the only nonzero prime

ideal of RP . Therefore RP is a valuation ring by Theorem 2.10.

(5) ⇒ (12) : Let P ∈ Max(R). If P = (0) the claim is obvious. So assume that

P 6= (0) and that RP is a valuation ring. Let I be an ideal of R with P 2 ⊆ I ⊆ P .

Clearly I is P -primary. It follows that I = IRP ∩R. But P 2RP ⊆ IRP ⊆ PRP implies

that we have either PRP = IRP or P 2RP = IRP . Since I = IRP ∩ R, then we have

either P = I or P 2 = I.

(12) ⇒ (5) : Assume that (12) holds. Let P ∈ Max(R) be nonzero. Then clearly

PRP 6= (0) in RP . By the Krull Intersection Theorem, we have
⋂
n≥1

P nRP = (0). It

follows that PRP 6= P 2RP . By our assumption, there are no ideals between PRP and

P 2RP . Let P̄ denotes PRP . Let a ∈ P̄ \ P̄ 2. Then clearly P̄ = P̄ 2 + aRP . Multiplying

by P̄ gives that P̄ 2 = P̄ 3 + aPRP , if we add aRP at both sides, since aPRP ⊆ aRP ,

we have that P̄ = P̄ 2 + aRP = P̄ 3 + aRP . By continuing in this way, we have that

P̄ = P̄ n + aRP for all n ∈ N. Hence P̄ =
⋂
n≥1

(aRP + P̄ n).

Since P̄ /aRp is the unique maximal ideal of the Noetherian valuation ring RP/aRP ,

we have the following:

P̄

aRP

=
∩
n≥1

(
aRP + P̄ n

)
aRP

=
⋂
n≥1

aRP + P̄ n

aRp

=
⋂
n≥1

(
P ′

aRp

)n
= (0)

This implies that P̄ = aRP , and since the set of non-units P̄ is principal, it follows

from Theorem 2.10 that RP is a valuation ring.
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(1) ⇒ (13) : Let R be a Dedekind domain, and let P ∈ Max(R). If P = 0, then

the only P -primary ideal of R is P . So suppose that P 6= (0) and let Q be a P -primary

ideal of R. Since R is a Dedekind domain, there exists P1, . . . , Pn ∈ Spec(R) such that

Q = P1 . . . Pn. Since we have P =
√
Q =

√
P1 . . . Pn =

√
P1∩ . . .∩

√
Pn = P1∩ . . .∩Pn

and by the maximality of P , we have Pi = P for i = 1, . . . , n hence Q = P n.

(13)⇒ (12) : This is clear since an ideal between P and P 2 has radical P and so is

P -primary.

(5)⇒ (14) : Since RP is a valuation ring and so ideals of RP are totally ordered, the

order-preserving correspondence between the P -primary ideals of R and PRP -primary

ideals of RP implies that the set of P -primary ideals of R is totally ordered.

(14) ⇒ (12) : Let P ∈ Max(R). If P = (0) then there is nothing to prove. So

assume that P 6= (0) and the set of P -primary ideals of R is totally ordered. Clearly

P/P 2 is a vector space over R/P . The set of subspaces of P/P 2, whose elements are

of the form I/P 2, for some ideal I of R such that P 2 ⊆ I ⊆ P . Since such ideals are

P -primary and has a total order, then the set of subspaces of P/P 2 is totally ordered.

Therefore P/P 2 is one dimensional. Hence, if I is an ideal of R such that P 2 ⊆ I ⊆ P ,

then we have either I
P 2 = P

P 2 or I
P 2 = P 2

P 2 , and it follows that we have either I = P or

I = P 2.

Theorem 2.67. Let R be an integral domain. R is a Dedekind domain if and only if

(I) for any a ∈ R there exists only finite number of prime ideals P such that a ∈ P .

(II) for every nonzero P ∈ Spec(R), RP is a DVR.

Proof. Let R be a Dedekind domain. Let a ∈ R be nonzero. Then by Proposition

2.65, we have (a) is contained by only finitely many prime ideals of R, hence the same

is true for the element a, therefore (I) holds. By Theorem 2.66, RP is a valuation ring

for all P ∈ Spec(R), and it is clear that RP is Noetherian since R is. Hence (II) holds.

Now, let R be an integral domain which satisfies conditions (I) and (II). By

Theorem 2.66, it suffices to show that R is Noetherian. To this aim, we shall show that

every nonzero proper ideal of R is finitely generated. Let I be such an ideal and let a ∈ I

be nonzero. Let P1, . . . , Pn be all prime ideals that contains a. Since for P ∈ Spec(R),

RP is a DVR, then there exists ci ∈ RPi such that IRPi = ciRPi . We may assume that

ci ∈ I. Now, consider the ideal C = Ra + Rc1 + . . . + Rcn ⊆ I. If P ∈ Spec(R) with
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I 6⊆ P , then 1
a
∈ RP , hence RP = CRP ⊆ IRP ⊆ RP , and so CRP = IRP . If P = Pi

for some i = 1, . . . , n, then ci ∈ C implies that IRPi = ciRPi ⊆ CRPi ⊆ IRPi , and so

CRP = IRP . It follows that C = I, hence I is finitely generated.

Before we continue our study about Dedekind domains on overrings and integral

closures in finite extension fields, we shall give an example of a Dedekind domain.

Let K be an extension field of Q, an element α ∈ K is called an algebraic integer, if

α is integral over Z. The integral closure of Z in K is called the ring of integers of K,

and is denoted by OK . If K is an extension of finite degree over Q, then K is called a

number field. Now we shall show that OK is a Dedekind domain if K is a number field.

To this aim we shall prove that K is the field of fractions of OK , hence it is integrally

closed. Moreover, we shall prove OK is Noetherian and has the property that every

prime ideal of OK is maximal.

Theorem 2.68. Let K be a number field of degree n over Q. Then the following

statements hold:

1. For every β ∈ K, there exists some nonzero d ∈ Z such that dβ ∈ OK. In

particular, K is the field of fractions of OK.

2. If β1, . . . , βn is a Q-basis of K, then there exists an integer d such that dβ1, . . . , dβn

is a basis for a free Z-submodule of OK of rank n. Each basis of the Z-module

OK is also a basis for K as a vector space over Q.

3. The ring OK is a Noetherian ring and is a free Z-module of rank n.

Proof. Let β ∈ K, and let xk + ak−1x
k−1 + . . . + a0 be the minimal polynomial of β

over K. If d is a common denominator for the coefficients, then multiplying through

by dk gives that

(dβ)k + dak−1(dβ)k−1 + . . .+ dk−1a1(dβ) + dka0 = 0,

and dka0, d
k−1a1, . . . , dak−1 ∈ Z. Hence dβ ∈ OK . It follows from β = dβ

d
that K is the

field of fractions of OK . Hence the proof of (1) is complete.

If now β1, . . . , βn is a Q-basis for K over Q, then there is a nonzero integer d such

that dβ1, . . . dβn ∈ OK . These elements are still linearly independent over Q, so in
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particular, are linearly independent over Z, hence generate a free submodule of OK of

rank n, which proves the first statement in (2).

Since OK is a subring of the field K, it is a torsion-free Z-module. If OK were

contained in some finitely generated Z-module, it would follow that OK is also finitely

generated over Z, hence it is a free Z-module. If L is a normal closure of K, in some

algebraic closure of Q, then OK ⊆ OL and so it suffices to see that OL is contained in a

finitely generated Z-module. Since L is a finite extension of K, then by the transitivity

of dimensionality, we have L is a finite extension of Q. Let α1, . . . , αm be a Q-basis for

L over Q. Multiplying by an integer d, if necessary, we may assume that each αi is an

algebraic integer, i.e., α1, . . . , αn ∈ OL. For each fixed θ 6= 0 in L, the map Tθ : L→ Q

defined by Tθ(α) = TrL/Q(θα) for each α ∈ L, is a Q-linear transformation. Tθ 6= 0

since we have Tθ(θ−1) = TrL/Q(1) = m. It follows that the map

L → HomQ(L,Q)

θ 7→ Tθ

is an injective homomorphism of vector spaces over Q. Since both spaces have the same

dimension over Q, the map is an isomorphism; in other words, every linear functional

on L is of the form Tθ for some θ ∈ L. In particular, there are elements α′1, . . . , α′m ∈ L

such that {Tα′1 , . . . , Tα′m} give the dual basis of α1, . . . , αm, i.e.

TrL/Q(αiα
′
j) =

 1 , i = j

0 , i 6= j

Since α′1, . . . , α′m are linearly independent, they give a basis for L over Q. Hence

every element β of OL can be written as

β = a1α
′
1 + . . .+ amα

′
m

with a1, . . . , am ∈ Q. Multiplying by αj and taking the trace shows that

TrL/Q(βαj) = a1TrL/Q(α′1αj) + . . .+ aiTrL/Q(α′iαj) + . . .+ amTrL/Q(α′mαj) = aj

But β and αj are both elements of OL, so also βαj ∈ OL and this implies that aj =
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TrL/Q(βαj) ∈ Z since we know that the trace of βαj is a coefficient of the minimal

polynomial of βαj over Q, which is an element of Z[X], as noted above. It follows that

OL ⊆ Zα′1 + . . .Zα′m

so that OL is contained in a finitely generated Z-module, proving that OK is a free

Z-module.

Since we can embed OK ⊗ Q into K, in a natural way, we have rankZOK =

dim(OK ⊗ Q) ≤ dimQK = n. Because OK also contains a free Z-module of rank

n, it follows that Z-rank of OK is precisely n. Note that any Z-linear dependence rela-

tion among elements in OK is a Q-linear dependence relation in K, and multiplying a

Q-linear dependence relation of elements of OK in K by a common denominator for the

coefficients yields a Z-linear dependence relation in OK . Thus the second statement in

(2) follows.

Finally, any ideal I in OK is a Z-submodule of a free Z-module of rank n, so is a

free Z-module of rank n at most, and a set of Z-module generators for I is also a set

of OK-generators, hence every ideal of OK can be generated by at most n elements,

which implies that OK is a Noetherian ring and completes the proof.

If P is a nonzero prime ideal in the ring of integer OK of a number field K, then

P ∩Z is a prime ideal in Z. If α ∈ P is nonzero, then the constant term of the minimal

polynomial for α over Q is then an element in P ∩ Z , which shows that P ∩ Z 6= ∅.

Hence P ∩ Z = pZ for some prime number p. Since pZ is maximal, it follows from the

Lying-over Theorem that nonzero prime ideals P in OK are maximal.

Now, since we have shown that OK is a Noetherian ring which is integrally closed

and has the property that every nonzero prime ideal is maximal, then by Theorem

2.66, OK is a Dedekind domain.

Theorem 2.69. If T is an overring of a Dedekind domain R, then T is also a Dedekind

domain.

Proof. Let R be a Dedekind domain. If R is a field then our claim is clear since R

itself is the only overring of R. So suppose that R is not a field. Let T be an overring

of R, which is not the field of fractions of R. Let M ∈ Max(T ) be nonzero. Since R

is a Prüfer domain, by Proposition 2.52, we have that TM = RM∩R. Hence, we have
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M ∩ R 6= (0) since RM∩R is not a field. It follows that M ∩ R ∈ Max(R), and so

TM = RM∩R is a DVR.

Let I be an ideal of T . If M ∈ Max(T ), then there exists a nonnegative integer

x(M) such that ATM = Mx(M)TM . We clearly have x(M) > 0 if and only if I ⊆ M ,

and since I = (I ∩ R)T , then x(M) > 0 for only finitely many M ∈ Max(M). By (2)

of 2.42, we have that I =
⋂

M∈Max(T )

(ITM ∩ T ) =
⋂

M∈Max(T )

Mx(M). Since the maximal

ideals of T are pairwise comaximal, then it follows that I =
∏

M∈Max(T )

Mx(M). Hence T

is a Dedekind domain.

Let R be a Dedekind domain with field of fractions K. We shall show that if R′ is

the integral closure of R in a finite extension field K ′ of K, then R′ is also a Dedekind

domain. Since K ′ can be viewed as a purely inseparable extension of some separable

extension of K, then we shall prove that in both cases the integral closure of R is a

Dedekind domain.

Theorem 2.70. Let R,R′, K and K ′ be as in the preceding paragraph. If K ′/K is

finite and separable, then R′ is a Dedekind domain.

Proof. If we show that R′ is a Noetherian ring, then by Theorem 2.66, it is sufficient for

us to show that R′ is integrally closed and has Krull dimension one. But since R′ is the

integral closure of R, it is integrally closed by definition. R′ has Krull dimension one

is a direct result of the Lying-Over Theorem. Hence if we show that R′ is Noetherian,

then we are done.

Clearly, K ′ is the field of fractions of R′. If a ∈ K ′, then ak + bk−1a
k−1 + · · · +

b1a + b0 = 0 for some b0, . . . , bk−1 ∈ K. Since each bi has the form ci
si

and there are

a finite number of bi, we can write them in a common denominator. So let bi = ci
s
,

where ci, s ∈ R for i = 1, . . . , k − 1. If we multiply the equation with sk, we obtain

(sa)k + ck−1(sa)
k−1 + . . .+ c1s

k−2(sk) + c0s
k−1 = 0, thus sa ∈ R′ and a = sa

s
.

If u1, . . . , un is a basis of K ′/K, then there exists v1, . . . , vn, s ∈ R′ such that ui = vi
s

for i = 1, . . . n. As in the preceding paragraph we may choose s ∈ R. So v1, . . . , vn are

linearly independent over K and they form a basis of K ′/K. Without loss of generality,

we may assume that u1, . . . , un ∈ R′.

Let M = {a1u1 + . . . + anun|ai ∈ R, i = 1, . . . n}. M is clearly an R-module an

M ⊆ R′. Set M∗ = {b ∈ K ′|TK′/K(ab) ∈ R for all a ∈ M}, where TK′/K is the trace

49



mapping of K ′/K. Define R′∗ like above. By the properties of trace mapping, we have

that M∗ and R′∗ are both R-modules, and we have that M ⊆ R′ ⊆ R′∗ ⊆ M∗. After

we show that M∗ is finitely generated R-module, then R′ and all ideals of R′ becomes

finitely generated since any submodule of a finitely generated module over a Noetherian

ring is again finitely generated, so we can conclude that R′ is a Noetherian ring.

Let w1, . . . , wn ∈ K. Consider the following equations in n unknowns:

n∑
j=1

TK′/K(uiuj)xj = wi, i = 1, . . . , n

SinceK ′/K is separable, det
[
TK′/K(uiuj)

]
6= 0. Thus this system has a unique solution

a1, . . . , an ∈ K. It follows that a = a1u1 + . . .+ anun is the unique common solution of

the equations

TK′/K(uix) = wi, i = 1, . . . , n

Thus, for a fixed j, the equations

TK′/K(uix) = δij, i = 1, . . . , n

has a unique common solution u′i.

Now suppose that c1u
′
1 + . . .+ cnu

′
n = 0, for some c1, . . . , cn ∈ K. For i = 1, . . . , n,

we have
0 = TK′/K

(
ui(c1u

′
1 + . . .+ cnu

′
n)
)

=
n∑
j=1

cj
(
TK′/K(uiu

′
j)
)

= ci

It follows that u′1, . . . , u′n are linearly independent in K, hence they form a basis of

K ′/K.

Now we shall show u′1, . . . u
′
n ∈M∗ and they generate M∗ as an R-module.

Let a ∈M , then there exists a1, . . . , an ∈ R such that a = a1u1 + . . .+ anun. Then

TK′/K(au′j) = TK′/K
(
(a1u1 + . . .+ anun)u′j

)
=

n∑
i=1

aiTK′/K(uiu
′
j)

= aj ∈ R
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hence u′j ∈M∗ for j = 1, . . . , n.

Finally, if b ∈ M∗ with b = b1u
′
1 + . . . + bnu

′
n where b1, . . . , bn ∈ K, then for i =

1, . . . , n, we have bi = TK′/K
(
ui(b1u

′
1 + . . .+ bnu

′
n)
)
∈ R. So the proof is completed.

Theorem 2.71. Let R,R′, K and K ′ be as in the paragraph above Theorem 2.70. If

K ′/K is finite and purely inseparable, then R′ is a Dedekind domain.

Proof. Since K ′/K is finite and purely inseparable, then K has prime characteristic p,

and there exists e ∈ N+ such that for all a ∈ K ′, ape ∈ K.

If f is a positive integer, then set Kf =
{
a ∈ K ′|apf ∈ K

}
. Then Kf is a subfield

of K ′, and we have K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Ke = K ′. Clearly a ∈ Kf implies

ap ∈ Kf−1 for all f = 1, . . . , e. So it suffices to show that R′ is a Dedekind domain in

the case that ap ∈ K for all a ∈ K ′.

Let K ′ be such that ap ∈ K for all a ∈ K ′. Then we have R′ = {a ∈ K ′|ap ∈ R}:

Clearly if ap ∈ R, a is a root of Xp−ap ∈ R[X], hence a ∈ R′. Conversely if a ∈ R′,

then ap ∈ K by our assumption, and clearly ap ∈ R′, hence ap ∈ K ∩R′ = R.

Let C be an algebraic closure of K such that K ′ ⊆ C. Let K ′′ = {c ∈ C|cp ∈ K},

and let R′′ be the integral closure of R in K ′′. Then we have R′′ = {c ∈ K ′′|cp ∈ R}.

In this case we have K ′ ⊆ K ′′ and R′ ⊆ R′′.

The surjective mapping φ : K ′′ → K given by φ(c) = cp for all c ∈ K ′′ is an

isomorphism, so its restriction to R′′, maps R′′ isomorphically onto R. Therefore R′′ is

a Dedekind domain, since R is.

If I be a nonzero ideal of R′, then IR′′ is invertible by Theorem 2.63. By Proposition

2.37, we have that (IR′′)[R′′ : IR′′] = R′′. Let 1 = a1b1 + . . .+akbk where a1, . . . , ak ∈ I

and b1, . . . , bk ∈ [R′′ : IR′′]. Then we have 1 = ap1b
p
1 + . . . + apkb

p
k. For all i = 1, . . . , k,

we have bpi ∈ K and bpi a ∈ R′′ ∩K ′ = R′ for all a ∈ I. Hence bpi ∈ [R′ : I]. Since we

have api ∈ I, for all i = 1, . . . , k, it follows that I[R′ : I] = R′, so I is an invertible ideal

of R′. Thus, by Theorem 2.63, R′ is a Dedekind domain.

What we have done in Theorem 2.70 and Theorem 2.71 can be combined to obtain

Theorem 2.72. If R is a Dedekind domain with field of fractions K and R′ is the

integral closure of R in a finite field extension of K, then R′ is a Dedekind domain.

Let R be a Dedekind domain with the field of fractions K, let L be a finite algebraic

extension of K, and let R′ be the integral closure of R in L. Then by Theorem 2.72,
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R′ is also a Dedekind domain. Therefore if P is a maximal ideal of R, then PR′ can be

expressed as a product of maximal ideals of R′, say PR′ = M e1
1 . . .M

eg
g . Observe that

M1, . . . ,Mg are all maximal ideals of R′ containing P and they lie over P . Our next aim

is to expose some arithmetic relations between the exponents ei and the dimensionality

[L : K]. But before, we need to give the following sequence of preparatory results.

Lemma 2.73. [13, Exercise 39.6] Let R be a principal ideal ring (i.e., a ring in which

every ideal is principal) and let x1, . . . , xn, x ∈ R. If (x1, . . . , xn) = (x), then there

exist y1, . . . , yn ∈ R such that xi = yix for each i = 1, . . . , n and (y1, . . . , yn) = R.

Proof. It is easy to see the lemma if we take R to be a factor of a PID. However, if

R is a principal ideal ring, then it is a finite product of homomorphic images of PIDs

(see Theorem 1 of [2]).

Lemma 2.74. Let R be a principal ideal ring, let r1, . . . , rn ∈ R be such that (r1, . . . , rn) =

R, and let M = Rx1 + · · ·+Rxn be a finitely generated R–module generated by n ele-

ments x1, . . . , xn. Then there exists a generator set of M with cardinality n containing

x = r1x1 + · · ·+ rnxn.

Proof. We use induction on n. If n = 1, then r1 is a unit element of R, so r1x1 generates

M . Now consider the case where n = 2. By assumption, there exist s1, s2 ∈ R such

that s1r1 + s2r2 = 1. Let x = r1x1 + r2x2 and y = s2x1 − s1x2. Then x1 = s1x + r2y

and x2 = s2x− r1y. Hence x and y generate M .

Now assume that the lemma is valid for n = k. LetM = Rm1 + · · ·+Rmk+Rmk+1

and let (r) = (r1, . . . , rk). Choose s1, . . . , sk ∈ R such that ri = sir for each i =

1, . . . , k and (s1, . . . , sk) = R by Lemma 2.73. If u = s1m1 + · · · + skmk, then the

induction hypothesis implies that u is one of a set of k generators of Rm1 + · · ·+Rmk,

say Rm1 + · · · + Rmk = Ru1 + · · · + Ruk−1 + Ru. We have x = ru + rk+1mk+1,

where (r, rk+1) = (r1, . . . , rk, rk+1) = R. Therefore the case where n = 2 shows that

Ru+Rmk+1 = Rx+Ry for some y. It follows that

Rm1 + · · ·+Rmk +Rmk+1 = Ru1 + · · ·+Ruk−1 +Ru+Rmk+1

= Ru1 + · · ·+Ruk−1 +Rx+Ry.

This completes the inductive step.
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Theorem 2.75. Let R be a principal ideal ring and let M = Rx1 + · · · + Rxn be a

finitely generated R–module. Then there exist t1, . . . tm ∈ M , with m ≤ n, such that

M = Rt1 ⊕ · · · ⊕Rtm.

Proof. We use induction on n. If n = 1, then there is nothing to prove. Let n > 1

and assume that the theorem is valid for n = k. Let M = Rm1 + · · · + Rmk+1. We

consider the set S of all ideals By, where y is an element of any generator set of M of

cardinality k+ 1. Since R is Noetherian, S contains a maximal member, say Bx = (t).

Let {x1, . . . , xk, x} be a generator set of M . Assume that we have a relation

r1x1 + · · ·+ rkxk + rx = 0,

where rx 6= 0. Let (r, t) = (s). Then we have Bx = (t) ⊂ (s). Write s = ar + bt where

a, b ∈ R. Then sx = arx+ btx = arx so that

0 = ar1x1 + · · ·+ arkxk + arx = s1x1 + · · ·+ skxk + sx,

where si = ari for each i = 1, . . . , k. Let (u) = (s1, . . . , sk, s) and choose, by

Lemma 2.73, v1, . . . , vk, v ∈ R such that si = viu for each i = 1, . . . , k, s = vu, and

(v1, . . . , vk, v) = R. If m = v1x1 + · · ·+vkxk+vx, then m is one of a set of k+1 genera-

tors of M by Lemma 2.74. Moreover, u ∈ Bm implies that Bm ⊇ (u) ⊇ (s) ⊃ (t) = Bx,

which contradicts with the choice of Bx. Therefore, a relation

r1x1 + · · ·+ rkxk + rx = 0

implies that rx = 0. Thus M = (Rx1 + · · · + Rxk) ⊕ Rx. The induction hypothesis

implies that Rx1 + · · · + Rxk = Ry1 ⊕ · · · ⊕ Ryr for some r ≤ k. This completes the

proof.

Lemma 2.76. Let V be a valuation ring with maximal ideal M and let K be its field

of fractions. Assume that V is a subring of a domain J with field of fractions L. If

A is an ideal of J lying over M , we consider J/A as a vector space over V/M . If

{s1, . . . , sn} is a linearly dependent subset of J over K, then {s1 + A, . . . , sn + A} is
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linearly dependent over V/M . Therefore, if [L : K] is finite, then

[J/A : V/M ] ≤ [L : K].

Proof. Since {s1, . . . sn} is linearly dependent overK and sinceK is the field of fractions

of V , there exist elements a1, . . . an of V , not all zero, such that
∑n

i=1 aisi = 0. The ideal

of V generated by {a1, . . . an} is principal and is generated by some ai. If bj = aj/ai

for each j = 1, . . . , n, then bj ∈ V for each j = 1, . . . , n, and bi = 1. Passing to

residue classes modulo A, we obtain
∑n

i=1 b̄j s̄j = 0̄, where b̄i = 1̄ 6= 0. It follows that

{s̄1, . . . , s̄n} is linearly dependent over V/M .

Theorem 2.77. Let V be a DVR with maximal ideal M and field of fractions K, let

L be a finite extension of K of degree n, and let V ′ be the integral closure of V in L.

Assume that MV ′ = M e1
1 . . .M

eg
g is the prime factorization of MV ′ in V ′, and that

[V ′/Mi : V/M ] = fi for each i = 1, . . . , g. Then

[V ′/MV ′ : V/M ] =

g∑
i=1

eifi ≤ n;

where equality holds if and only if V ′ is a finitely generated V –module.

Proof. Let i be fixed between 1 and g. Since V ′ is a Dedekind domain by Theorem

2.72, there are no ideals of V ′ properly between Mn
i and Mn+1

i , and so Mn
i /M

n+1
i is

one–dimensional as a vector space over V ′/Mi for each n > 0. Since M ei
i lies over M

in V , one can think of V ′/M ei
i as a vector space over V/M . Then V ′/M ei

i ⊃Mi/M
ei
i ⊃

. . . ⊃ M ei
i /M

ei
i = 0 is a decreasing chain of subspaces, and the corresponding factor

spaces are V ′/Mi, Mi/M
2
i , . . . , M

ei−1
i /M ei

i (to within isomorphism). It follows that

[V ′/M ei
i : V/M ] = eifi. Since the maximal ideals Mi of V ′ are distinct, we have a ring

isomorphism

V ′/MV ′ ∼= V ′/M e1
1 ⊕ · · · ⊕ V ′/M eg

g ,

where the isomorphism can also be taken as an isomorphism of vector spaces over V/M .

It follows that [V ′/MV ′ : V/M ] =
∑g

i=1 eifi. Since MV ′ lies over M in V , we conclude

from Lemma 2.76 that
∑g

i=1 eifi ≤ n.

Now let V ′ be a finitely generated module over V . Let V ′ =
∑t

i=1 V mi, where

m1, . . . ,mt ∈ V ′. Then by Theorem 2.75, there exist x1, . . . , xs ∈ V ′ such that V ′ =
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V x1 ⊕ · · · ⊕ V xs. If N is the set of nonzero elements of V , then we have

V ′N = VNx1 ⊕ · · · ⊕ VNxs = Kx1 ⊕ · · · ⊕Kxs.

But by Corollary 2.31, we have L = V ′N . Therefore, {x1, . . . , xs} is a vector space

basis for L over K, and s = n. The ideal M of V is principal, say M = (m). Thus,

MV ′ = MV x1 ⊕ · · · ⊕MV xn, and

V ′/MV ′ ∼= (V x1/MV x1)⊕ · · · ⊕ (V xn/MV xn).

Each V xi/MV xi is one dimensional over V/M . Hence [V ′/MV ′ : V/M ] = n =∑g
i=1 eifi.

Conversely, assume that [V ′/MV ′ : V/M ] = n. Choose elements y1, . . . , yn ∈ V ′

such that {y1 +MV ′, . . . yn+MV ′} is linearly independent over V/M . By Lemma 2.76,

{y1, . . . , yn} is a vector space basis for L/K. Let y ∈ V ′. Then there exist elements

a1, . . . , an of K such that y = a1y1 + · · ·+ anyn. If some ai does not lie in V , then we

can choose a positive integer k such that mkai ∈ V for each i = 1, . . . , n, and such that

mkai0 is a unit of V for some i0. Therefore,

mky = (mka1)y1 + · · ·+ (mkan)yn,

and passing to residue classes modulo MV ′, we have

0̄ = mka1y1 + · · ·+mkanyn,

where eachmkai is in V/M and hencemkai0 6= 0. But this relation contradicts the linear

independence of {y1, . . . , yn} over V/M . Thus each ai lies in V , and y ∈ V y1+· · ·+V yn.

We conclude that V ′ = V y1 + · · ·+ V yn; that is, V ′ is a finite V –module.

Corollary 2.78. Let D be a Dedekind domain with field of fractions K, let M be a

maximal ideal of D, let L be an extension field of K such that [L : K] = n, and let

D′ be the integral closure of D in L. Assume that MD′ = M e1
1 . . .M

eg
g is the prime

factorization of MD′ in D′, and that [D′/Mi : D/M ] = fi for each i = 1, . . . , n. Then

[D′/MD′ : D/M ] =
∑g

i=1 eifi ≤ n, where equality holds if and only if D′N is a finite
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DM–module, where N = D \M .

Proof. Note that D′N is the integral closure of the DVR DM in L, and

MD′N = MDMD
′
N = (M1D

′
N)e1 . . . (MgD

′
N)eg

is the prime factorization of MD′N in D′N . Moreover, D′N/MiD
′
N
∼= D′/Mi and

DM/MDM
∼= D/M . Therefore, the corollary follows from the preceding theorem.

For any ring R, an automorphism of R is a ring isomorphism of R onto itself. The

set of all automorphisms of R is a group with respect to composition of mappings.

Proposition 2.79. [8, Exercise 13.36]Let R be a ring and A be the group of au-

tomorphisms of R. Let G be a finite subgroup of A . Then RG = {r ∈ R|σ(r) =

r, for all σ ∈ G} is a subring of R and R is integral over RG. Now let P ∈ Spec(RG)

and set Γ = {Q ∈ Spec(R)|Q∩RG = P}. Then for Q1, Q2 ∈ Γ there exists τ ∈ G such

that Q1 = τ(Q2).

Remark 2.80. In Corollary 2.78, if L/K is a Galois extension, the ideals Mi are con-

jugate under elements of the Galois group of L/K. To see this consider the subring

(D′)G of D′, where G is the Galois group of L/K. (Note that G is, clearly, a subgroup

of the automorphism group of D′.) Since all the Mi’s lie over M(D′)G, by Proposition

2.79, they are conjugate under the elements of G. Therefore, in this case, we have

e1 = e2 = · · · = eg and f1 = f2 = · · · = fg,

and we obtain that

MD′ = (M1M2 . . .Mg)
e

for some positive integer e, and if [D′/M1 : D/M ] = f , then [D′/MD′ : D/M ] = efg ≤

n, where equality holds if and only if D′N is a finitely generated module over DM , where

N = D \M .
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3 ALMOST DEDEKIND DOMAINS

In this section we mostly use the works in [2], and along this section we do not refer

to the works in there.

Definition 3.1. We call an integral domain D as almost Dedekind domain, if DP is a

Dedekind domain for each P ∈Max(D).

Let D be an almost Dedekind domain and let P ∈Max(D). Since a Dedekind do-

main is a Prüfer domain, then DP is a local Prüfer domain and since every localization

of a Prüfer domain is a valuation ring, it follows that DP is a valuation ring. Clearly

DP is Noetherian since it is Dedekind. Hence DP is a DVR.

Theorem 3.2. Let D be an integral domain. Then D is an almost Dedekind domain

if and only if primary ideals of D are prime powers and every prime ideal of D is

maximal.

Proof. Suppose that D is an almost Dedekind domain. we first show that Spec(D) =

Max(D). So let P ∈ Spec(D) be nonzero. Then there exists M ∈ Max(D) such that

P ⊆ M . Clearly we have PDM ⊆ MDM . Since extension of a prime ideal is prime

in DM , and DM is a Dedekind domain, then we must have PDM = MDM . It follows

that P = PDM ∩D = MDM ∩D = M , since both M and P are prime. Now let Q be

a P -primary ideal of D. Then we have QDP is PDP -primary. By the equivalence of

conditions (1) and (13) in Theorem 2.66, we have QDP = P nDP for some nonnegative

integer n. Therefore, since maximality of P in D implies P n is P -primary, we have

Q = QDP ∩D = P nDP ∩D = P n.

For the converse part of the proof, let D has the property that every prime ideal

of D is maximal, and suppose that primary ideals of D are prime powers. Since

Spec(D) = Max(D), if P ∈ Spec(D) is nonzero, then P is minimal. So PDP is the

unique nonzero prime ideal of DP . If I is a proper ideal of DP , then
√
I = PDP and

since PDP is maximal, then I is a PDP -primary ideal of DP . So I ∩D is a P -primary

ideal of D, and by our assumption I ∩ D = P k for some k ∈ N, and then we have,

I = (I ∩D)DP = P kDP . Therefore, every ideal of DP is a prime power, which means

has a prime factorization. Hence DP is a Dedekind domain. Since P is an arbitrary

prime ideal of D, then D is an almost Dedekind domain.
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Corollary 3.3. Let D be an almost Dedekind domain and let I be a proper ideal of D,

then
⋂
n≥1

In = (0).

Proof. Let P ∈ Spec(D) with P ⊇ I. For n = 1, 2, . . ., we have In ⊆ P n ⊆ P nDP .

Since DP is a Dedekind domain, then
⋂
n≥1

P nDP = (0) which implies that
⋂
n≥1

In =

(0).

Corollary 3.4. Let D be an almost Dedekind domain and let P ∈ Spec(R). Then

there is no ideal I of D such that P 2 ⊂ I ⊂ P .

Proof. Suppose that there exists an ideal I of D such that P 2 ⊂ I ⊂ P . By taking

extension to DP , we have P 2DP ⊂ IDP ⊂ PDP . But since DP is a Dedekind domain,

this is a contradiction by Theorem 2.66 and so such an ideal doesn’t exist.

Corollary 3.5. Let D be an almost Dedekind domain and let P ∈ Spec(D). Then the

set of P -primary ideals are totally ordered under inclusion.

Proof. Let P ∈ Spec(D) and let {Qi}i∈I be the set of P -primary ideals of D. Clearly

{QiDP}i∈i is the set of PDP -primary ideals of DP . Since DP is a Dedekind domain,

then {QiDP}i∈I is totally ordered under inclusion. It follows that {Qi}i∈I = {QiDP ∩

D}i∈I is also totally ordered under inclusion.

Lemma 3.6. An almost Dedekind domain is integrally closed.

Proof. Let D be an almost Dedekind domain, by (1) of Lemma 2.42, we have D =⋂
P∈Max(D)

DP . Since every localization of D is a Dedekind domain, they are all integrally

closed by Theorem 2.66 so the same is true for their intersection D.

Lemma 3.7. Let D be an almost Dedekind domain. Let A,B and C be ideals of D.

Then the following statements hold:

(1) A ∩ (B + C) = (A ∩B) + (A ∩ C)

(2) (A : B ∩ C) = (A : B) + (A : C)

Proof. Let P ∈ Spec(D). Since DP is a Dedekind domain, for any ideals A,B,C of D,

we clearly have

(
A∩(B+C)

)
RP = ARP∩(BRP+CRP ) = (ARP∩BRP )+(ARP∩CRP ) =

(
(A∩B)+(A∩C)

)
RP

58



Since this equality holds for every P ∈ Spec(D), then we have the first equality.

For the second one, we need to show that for any P ∈ Spec(D), we have

(A : B ∩ C)RP =
(
(A : B) + (A : C)

)
RP

The desired equality holds for any ideals ARP , BRP , CRP of RP since DP is a

Dedekind domain. Since we know that (A : B)RP = (ARP : BRP ), where A and B

are ideals of D, the above equation also holds. Since P is arbitrary, then the desired

equality holds for ideals of D, so the proof is complete.

Now let D be an almost Dedekind domain and I be a nonzero ideal of D. Let

{Mλ}λ∈Λ be the set of maximal ideals of D. Then for I 6⊆ Mλ we have IDMλ
= DMλ

,

so IDMλ
∩ D = D = (Mλ)

0. But for I ⊆ Mλ, we have that IDMλ
is MλDMλ

-

primary. Since DMλ
is a Dedekind domain, it follows from Theorem 2.66 that we have

IDMλ
= Mk

λDMλ
for some nonnegative integer k, hence IDMλ

∩D = Mk
λ .

If I is the collection of nonzero ideals of D, then for each λ ∈ Λ, we set a function

fλ : I → Z such that, for I ∈ I , fλ(I) = k if IDMλ
∩ D = Mk

λ . By (2) of Lemma

2.42, it follows that

I =
⋂
λ∈Λ

M
fλ(I)
λ =

⋂
λ∈Λ

(IDMλ
∩D) (3)

for each I ∈ S .

Furthermore, if we set D∗ = D \ {0}, then for each λ ∈ Λ we define fλ : D∗ → Z by

Vλ(x) = fλ
(
(x)
)
for all x ∈ D∗. We shall introduce more details about the functions

Vλ and fλ. Before that, we shall give a small lemma.

Lemma 3.8. Discrete valuation rings (DVR) are maximal subrings of their field of

fractions.

Proof. Let V be a DVR with field of fractions K, and let π be an irreducible element

of V . Let V ′ be a subring of K such that V ⊆ V ′ ⊆ K. Let r ∈ V ′ \ V , then there is a

unit u ∈ V such that r = uπ−n with n > 0. Then, π−1 = u−1πn−1r ∈ V ′, and it follows

that all powers of π, both positive and negative, are in V ′. Since every element of K

equals a unit in V times a power of π, we conclude that if V 6= V ′, then V ′ = K.

Theorem 3.9. Let D be an almost Dedekind domain. Let {Mλ}λ∈Λ be the set of

maximal ideals of D, I be the family of nonzero ideals of D. Let D∗, I, fλ, Vλ be as
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they defined above. Then the following statements holds:

(i) I ⊆Mk
λ , I 6⊆Mk+1

λ for some integer k. Furthermore, k = fλ(I).

(ii) Vλ(xy) = Vλ(x) + Vλ(y) and Vλ(x + y) ≥ min{Vλ(x), Vλ(y)} for all x, y ∈ D∗.

So Vλ determines a valuation sλ of the field of fractions K of D. Further, the

valuation ring of sλ is DMλ
.

(iii) For mλ ∈Mλ \M2
λ and for 0 6= ξ ∈ K, there exist u, v ∈ D \Mλ such that

ξ =
um

sλ(ξ)
λ

v
.

Proof. The existence of an integer k is obtained by Corollary 3.3. If t is such that

I ⊆M t
λ but I 6⊆M t+1

λ , then IDMλ
= M r

λDMλ
for all r ≥ t. If a ∈ I \M t+1

λ , then since

M t+1
λ = M t+1

λ DMλ
∩D we have a ∈ IDMλ

\M t+1
λ DMλ

. Hence we have IDMλ
= M t

λDMλ

and it follows that t = fλ(a) as claimed.

Let x, y ∈ D∗ and λ ∈ Λ. We first show that Vλ(xy) = Vλ(x) + Vλ(y).
Set Vλ(x) = a, Vλ(y) = b so (x)DMλ

∩ D = Ma
λ , (y)DMλ

∩ D = M b
λ. Since (xy) =

(x)(y) we have (xy)DMλ
= (x)DMλ

(y)DMλ
. Since we know (x)λDMλ

=
(
(x)DMλ

∩
D
)
DMλ

= (x)DMλ
and (y)λDMλ

=
(
(y)DMλ

∩D
)
DMλ

= (y)DMλ
, we have

(xy)DMλ
= (x)DMλ

(y)DMλ
=
(
(x)DMλ

∩D
)
DMλ

(
(y)DMλ

∩D
)
DMλ

=Ma
λDMλ

M b
λDMλ

=Ma+b
λ DMλ

and so (xy)DMλ
∩D = Ma+b

λ which implies

Vλ(xy) = a+ b = Vλ(a) + Vλ(b)

Now we’ll show that Vλ(x+ y) ≥ min{Vλ(x), Vλ(y)}:

By Equation (3) we have (x) ⊆M
fλ(x)
λ and (y) ⊆M

fλ(y)
λ . Since we know (x+ y) ⊆

(x) + (y) then we have

(x+ y) ⊆ (x) + (y) ⊆M
fλ(x)
λ +M

fλ(y)
λ = M

min{fλ(x),fλ(y)}
λ

hence fλ(x+ y) ≥ min{fλ(x), fλ(y)}.

Thus Vλ determines a valuation sλ of the field of fractions K of D.
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From (i), the valuation ring of sλ contains DMλ
, since for x ∈ DMλ

we have sλ(x) ≥

0 ⇔ (x) ⊆ DMλ
=
(
MλDMλ

)0. Because DMλ
is a maximal subring of K by Lemma

3.8, and so DMλ
is the valuation ring of sλ.

We have sλ(mλ) = 1 by (i), hence if y = ξ
m
λsλ(ξ)

, then we have sλ(y) = 0. It follows

that y is a unit of DMλ
. Set y = u

v
where u ∈ D and v ∈ D \Mλ. Since sλ(v) = 0, we

have sλ(u) = 0, which gives that u /∈Mλ.

Theorem 3.10. Let D be an almost Dedekind domain. Then D is a Dedekind domain

if and only if for each nonzero proper ideal I of D there exist only finitely many maximal

ideals which contain I. In particular, an almost Dedekind domain with only a finite

number of maximal ideals is a PID.

Proof. First, let D be a Dedekind domain. Let I be a nonzero proper ideal of D. Then

there exists P1, . . . , Pn ∈ Max(D) such that I = P1 . . . Pn. We clearly have I ⊆ Pi for

i = 1, . . . , n. If P0 ∈ Spec(D) is such that I ⊆ P0, then since P1 . . . Pn ⊆ P0, we have

Pi ⊆ P0 for some i = 1, . . . , n. Since Pi is maximal, then Pi = P0. Hence I is contained

in finitely many maximal ideals of D.

Now let D be an almost Dedekind domain such that every ideal I of D contained

in finitely many maximal ideals. Our aim is to show that D is a Dedekind domain.

Let I be an ideal of D and suppose that I is contained in M1, . . . ,Mk but not any

other maximal ideal of D. It suffices to show that D is Noetherian. Let a ∈ I be

nonzero. Since DMi
is a DVR for i = 1, . . .,k then IDMi

is generated by an element,

since we can see I as a subset of IDMi
, then we can choose the generator of IDMi

as an element ai of I, in fact ai
1

generates IDMi
. Then our aim is to show that

I = (a, a1, . . . , ak).

We have I =
⋂

M∈Max(D)

IDM ∩ D =
k⋂
i=1

IDMi
∩ D. For the ideals Ii = aiD, with

i = 1, . . . , ak and I0 = aD + a1D + . . . + akD we have IDMi
= IiDMi

⊆ I0DMi
. Since

I0 =
k⋂
i=1

I0DMi
∩ D ⊇

k⋂
i=1

IDMi
∩ D = I, then I is finitely generated. Hence D is a

Dedekind domain.

Now we shall give some properties of overrings of an almost Dedekind domain.

Theorem 3.11. Let D be an almost Dedekind domain with field of fractions K such

that D 6= K. Let D′ be an overring of D, and let ∆ = {P ∈ Spec(D)|PD′ 6= D′}.

Then the following statements hold:
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(a) If M ∈Max(D′) and if P = M ∩D, then DP = D′M and M = PDP ∩D′. As a

result, D′ is an almost Dedekind domain.

(b) In the case that D is a Dedekind domain, we have D′ is also a Dedekind domain.

(c) For P ∈ Spec(D) with P ⊂ D, P ∈ ∆ if and only if DP ⊇ D′. Further,

D′ =
⋂
P∈∆

DP .

(d) Let I ′ be an ideal of D′. If I = I ′ ∩D, then we have I ′ = ID′.

(e) {PD′}P∈∆ is the set of prime ideals of D′.

Proof. If M ∈ Max(D′), then clearly P = M ∩D is a maximal ideal of D. If we set

S = R \ P , then we have DP = S−1D ⊆ S−1D′ ⊆ D′M ⊂ K. The only part we need to

prove is S−1D′ ⊆ D′M :

Let x
y
∈ S−1D′ where x ∈ D′, y ∈ S. Since y ∈ D \ P , then we have y /∈ M . Since

D ⊆ D′, then we clearly have y ∈ D′ \M , hence x
y
∈ D′M .

By Lemma 3.8 we have that DP is the maximal subring of K, so we have DP = D′M .

HenceD′M is a DVR andMD′M = PDP is its maximal ideal. It follows thatD′ is almost

Dedekind and we have M = MD′M ∩D′ = PDP ∩D′.

Now suppose D is a Dedekind domain. By (a), D′ is an almost Dedekind domain.

By Theorem 3.10, it suffices to show that for an arbitrary nonzero ideal I ′ of D′. There

are only finitely many maximal ideals of D′ which contain I ′. Now let I ′ be a nonzero

proper ideal of D′, let I = I ′ ∩D. Since D is a Dedekind domain, then I = I ′ ∩D is

contained in only finitely many maximal ideals of D, say P1, . . . , Pn. By (a) we have

that P1DP1 ∩D′, . . . , PnDPn ∩D′ are all the prime ideals of D′ which contain I ′. Hence

D′ is a Dedekind domain.

Let P ∈ Spec(D) with P ⊂ D. If DP ⊇ D′, then clearly PD′ ⊆ PDP ⊆ DP . If we

have PD′ = D′, then P = PDP ∩D ⊇ PD′∩D = D′∩D = D which is a contradiction,

hence we have PD′ ⊂ D′. Now suppose that P 6= (0) and that PD′ ⊂ D′. Let M ∈

Spec(D′) be such that PD′ ⊆M . It follows that P ⊆ PD′∩D ⊆M ∩D ⊂ D. Since D

is an almost Dedekind domain, then P is a maximal ideal, so we have P = M ∩D, thus

by (a), we have DP = D′M ⊇ D′. Now if Max(D′) = {Mλ}λ∈Λ, then D′ =
⋂
λ∈Λ

D′Mλ
by

Lemma 2.42. By (a) and the first part of (c), we have for each λ ∈ Λ, D′Mλ
= D(Mλ∩D)

and Mλ ∩D ∈ ∆. Thus the desired equality holds.
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Let I ′ be an ideal of D′. If I ′ = (0) or I ′ = D′, then the claim of (d) is clear. So

suppose that (0) ⊂ I ′ ⊂ D′. We first prove that if P = M ∩D for someM ∈Max(D′),

then P k = Mk ∩D for all k ≥ 1:
P k = P kDP ∩D

= MkD′M ∩D

= MkD′M ∩ (D′ ∩D)

= (MkD′M ∩D′) ∩D

= Mk ∩D
Let I = I ′ ∩ D, then ID′ = (I ′ ∩ D)D′ ⊆ I ′ and hence fλ(ID′) ≥ fλ(I

′) for each

λ ∈ Λ. Since for each nonzero ideal B of D′ we have B =
⋂
λ∈Λ

M
fλ(B)
λ , it suffices to

prove fλ(ID′) = fλ(I) for all λ ∈ Λ in order to prove that ID′ = I ′.

By (a), it suffices to show that, if k is such that I ′ ⊆ Mk
λ but I ′ 6⊆ Mk+1

λ , then

ID′ 6⊆ Mk+1
λ . Set Pλ = Mλ ∩D. Since we have Mk+1

λ ∩D = P k+1
λ , then it suffices to

show that I 6⊆ P k+1
λ . This follows essentially from (iii) of Theorem 3.9.

We clearly have P 2
λ = M2

λ ∩ D ⊂ Mλ ∩ D = Pλ, so that if mλ ∈ Pλ \ P 2
λ , then

mλ ∈ Mλ \M2
λ . If ξ ∈ I ′ \Mk+1

λ , then sλ(ξ) = k and ξ =
umkλ
v

for some u, v ∈ D \ Pλ.

So we have vξ = umk
λ ∈ I \ P k+1

λ , for otherwise, sλ(umk
λ) ≥ k + 1 which gives a

contradiction. Hence I 6⊆ P k+1
λ , and the result follows.

By (d), if P ′ ∈ Spec(D′) with P ′ ⊂ D′, then P ′ = PD′ for some P ∈ ∆. If

P ∈ ∆, then by (c), we have DP ⊇ D′, so we have PDP ∩ D′ ∈ Spec(D′). By

(d), PDP ∩ D′ =
(
(PDP ∩ D′) ∩ D

)
D′ = PD′. It follows that PD′ ∈ Spec(D′) for

P ∈ ∆.

The following corollary is another result about almost Dedekind domains, which is

analogue of a theorem about Dedekind domains which we stated in Theorem 2.72.

Corollary 3.12. Let D be an almost Dedekind domain with field of fractions K. Let

L be a finite extension field of K and let D′ be the integral closure of D in L. Then D′

is almost Dedekind.

Proof. Let M ∈ Spec(D′) be nonzero and proper, then P = M ∩ D ∈ Spec(D) is

also nonzero and proper. If we set S = D \ P , then DP = S−1D. D′ is integral over

D implies that S−1D′ is integral over S−1D = DP . Since D′ is integrally closed in

L, S−1D′ is integrally closed in S−1L = L. Hence S−1D′ is the integral closure of
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the DVR S−1D in L. Consequently, S−1D′ is a Dedekind domain, and it follows that

D′M = (S−1D′)S−1M is a DVR. As a result, D′ is an almost Dedekind domain.
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4 CANCELLATION LAW FOR IDEALS IN A COMMUTA-

TIVE RING

Detailed information about this section can be found in [4], [10] and [3] which are our

main references.

LetR be a commutative ring. IfR satisfies the property thatAB = AC for arbitrary

ideals A,B,C of R with AB 6= (0) implies that B = C, then we say the restricted

cancellation law (RCL) holds in R. RCL is a weakened form of the cancellation law

(CL), which is AB = AC for arbitrary ideals A,B,C of R with A 6= (0) implies that

B = C. A ring in which CL holds need to be an integral domain. In an integral

domain, RCL is equivalent to CL.

In this section we aim to answer that if CL holds in an integral domain R, is R

need to be a Dedekind domain. We shall show that if RCL holds in a ring R, then R is

either an integral domain, R is a special primary ring, or R is a primary ring in which

the product of any two non-units is zero. Furthermore, if RCL holds in a ring R, then

R is either of these latter three types.

LetD be an integral domain, then CL holds forD if and only if for any P ∈ Spec(D)

with P ⊂ D, the localization DP is a rank one discrete valuation ring.

Then, we consider a ring S which has a collection S of nonzero proper ideals of S

such that every nonzero proper ideal of S is uniquely written as a product of finitely

many elements of S . RCL holds in such an S. If S is not an integral domain, the

converse is also true.

4.1 Restricted Cancellation Law (RCL)

In this part, we shall investigate the structure of a ring D in which RCL holds. The

case that D is also a domain is our main concern.

Lemma 4.1. Let D be a ring which RCL holds, then CL holds in D if and only if D

is an integral domain.

Proof. Let D be an integral domain. Let A,B,C be ideals of D such that A is nonzero

and AB = AC. In the case AB = AC = (0), since A 6= (0) and D is a domain, it

follows that B = C = (0). If AB = AC 6= (0), then by RCL, we have B = C. Hence

CL holds for D.
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Now suppose that D is not an integral domain and let x ∈ D be a nonzero zero-

divisor of D. Then we have ann(x) 6= (0). Since we know (x).ann(x) = 0.ann(x) and

x 6= 0, then CL doesn’t hold for D.

Lemma 4.2. Let A,B,C be ideals of a ring D in which RCL holds. If AB ⊆ AC 6= (0),

then B ⊆ C holds.

Proof. If AB ⊆ AC, then we clearly have AB + AC = A(B + C) = AC 6= (0), hence

by RCL, we have B + C = C, and this implies B ⊆ C as claimed.

Theorem 4.3. Let RCL holds for a ring D, then either D is a one-dimensional integral

domain, or D is a special primary ring, or D is a primary ring with maximal ideal M

in which M2 = (0). Conversely, RCL holds for a special primary ring or for a primary

ring with maximal ideal M such that M2 = (0).

Proof. Suppose that P ∈ Spec(D) with P ⊂ D. Let x ∈ D \ P . Then

[P + (x)]4 = P 4 + P 3(x) + P 2(x2) + P (x3) + (x4)

= [P + (x)]2[P 2 + (x2)]

x4 /∈ P implies that [P + (x)]4 ⊇ (x)4 6= 0 so that we have [P + (x)]2 = P 2 + (x2)

since [P + (x)]2 6= 0. It follows that we have

(x)P ⊆ P 2 + (x2) (4)

For p ∈ P , there exist q ∈ P 2 and r ∈ D such that rx2 = px − q. It follows from

the facts rx2 ∈ P and x2 /∈ P that, r ∈ P . Since px = rx2 + q, then we have

(x)P ⊆ P 2 + P (x2) = P [P + (x2)]. Now there are two possible cases we need to

consider:

1. For arbitrary P ∈ Spec(D) with P ⊂ D and for all x ∈ D \ P , we have

P [P + (x2)] 6= (0)

2. For some P ∈ Spec(D) with P ⊂ D and for some x ∈ R \ P , we have

P [P + (x2)] = (0)
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In the first case, D is not an integral domain since the inequality doesn’t hold for (0),

and so it is not a prime ideal of D. If M is a prime ideal of D and if x ∈ D \M , since

RCL holds for D, and since we know M(x) ⊆M [M + (x2)], and M [M + (x2)] 6= (0), it

follows that (x) ⊆M+(x2). This implies that x−rx2 = x(1−rx) ∈M for some r ∈ D.

Hence 1− rx ∈M , and thus M + (x) = D, which means M is maximal. Since M is an

arbitrary prime ideal of D, then M is also minimal. Since by localizing at M we have

MRM =
√

0RM , then for m ∈ M , we have
(
m
1

)k
= 0 for some integer k, then there

exists an element t ∈ D \M such that mkt = 0. It follows that (m2k) = (mk)(mk, t).

If (m2k) 6= (0), then by RCL, we have (mk) = (mk, t) which is impossible since t /∈M .

Hence m2k = 0, so every element of M is nilpotent. Since the set of nilpotent elements

of D is an ideal of D, then D is a primary ring with maximal ideal M .

Now if M2 = (0) then we are done, so suppose M2 6= (0). We have M ⊃ M2 ⊃

M3 ⊃ . . . for otherwise RCL implies that M = D, a contradiction. If I is the ideal

generated by M \M2, then M = M2 + I. It follows that M2 = M4 + M2I + I2 =

M2[M2 + I] + I2 = M3 + I2. Since we have M2 6= M3, then I2 6= (0). Hence there

exist x, y ∈ I such that xy 6= 0. If xk = 0, then

[M2 + (x)]k =
k∑
i=0

M2i(x)k−i =
k∑
i=1

M2i(x)k−i

= M2
k−1∑
i=0

M2i(x)k−1−i = M2[M2 + (x)]k−1

Since M2 6= M2 + (x), we have [M2 + (x)]k = (0) and since
(
M2
)k ⊆ [M2 + (x)]k =

(0), we have that M2k ⊆ (x). We shall show that M ⊆ (x) by induction, and this

implies M = (x). After this, we shall show that {(xi)|i = 1, . . . , k} is the complete set

of proper ideals of D. Hence D is a special primary ring.

To this end, suppose that M i ⊆ (x), where i ≥ 2. Set I =
(
M i : (x)

)
. We clearly

have M i = I(x). Since x /∈ M i and I ⊂ D, then we have I ⊆ M . Hence M i ⊆ M(x).

Since y ∈ M \M2 is such that xy 6= 0, then M(x) 6= (0). It follows that by Lemma

4.2, we have M i−1 ⊆ (x), hence we have M = (x) by induction.

Now let I be a nonzero proper ideal of D, our aim is to show that I is principal

and generated by a power of x. Since xk = 0 ∈ I, then there exists an integer j such

that xj ∈ I but xj−1 /∈ I. If we show I = (xj), we are done. Since (xj) ⊆ I, suppose

by the way of contradiction that the inclusion is strict and let a ∈ I \ (xj). Since M
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is the unique maximal ideal of D, then we have a ∈ M . It follows that a = rxi for

some r ∈ D \M and an integer i. Clearly r is a unit of D and so r−1a = xi ∈ I.

Since a = rxi and a /∈ (xj), then we must have i < j. Since xi ∈ I and xj−1 /∈ I, then

i > j − 1. Since such an integer i doesn’t exist, then we must have I = (xj). Since

arbitrary proper ideal of D is generated by a power of x, then the set of all the proper

ideals is {(x), (x2), . . . , (xk) = (0)}. This proves that the claim of the theorem holds in

the first case.

For the second case, since P 2 ⊆ P [P +(x2)] = (0), then there exists a prime ideal P

of D such that P 2 = (0). So P is the unique minimal prime ideal of D. For otherwise,

if Q is a minimal prime ideal of D, then (0) = P 2 ⊆ Q implies that P ⊆ Q, and so we

have P = Q by the minimality of Q.

If P is maximal, then R is a primary ring and P is its unique maximal ideal such

that P 2 = (0).

If P is non-maximal, and if M is a prime ideal distinct from P , since P is unique

minimal ideal of D, then M ⊃ P . If t ∈ D \M , then we have M [M + (t2)] 6= (0), since

for otherwise, M2 = (0) ⊆ P gives a contradiction. It follows as in the first case that

M is maximal.

Now if b is a non-unit of D, then for some maximal ideal N of D, we have that

b ∈ N and N ⊃ P . Thus P + (b) ⊆ N . If P 2 + P (b2) 6= (0), then P becomes maximal

as in the proof of the first case, which is not possible. Hence P 2 + P (b2) = (0). By

Equation 4, we have that (b)P ⊆ P 2 + P (b2) so (b)P = P 2 + P (b2) = (0). If b /∈ P ,

then (b2) = (b)[(b) + P ] and (b2) 6= (0) so (b) = (b) + P which implies P ⊆ (b). It

follows that for some ideal C of D, P = (b)C. Since P is a prime ideal of D and b /∈ P ,

P = C, and so P = (b)P = (0). As a result, D is a one-dimensional integral domain.

For the last part of the proof, let S be a special primary ring. Let A,B,C be ideals

of S such that AB = AC and AB 6= (0). Let M be the unique maximal ideal of S.

Then we have AB = Mk, A = Ma for some k, a ∈ N. Suppose B 6= C, then there exist

b, c ∈ N such that B = M b and C = M c. So MaM b = AB = Mk = AC = MaM c so

Ma+b = Ma+c = Mk. Since distinct powers of M are distinct if they are nonzero, we

have b = c and thus B = C which is a contradiction, hence B = C and RCL holds in

S.

Now let T be a primary ring with maximal ideal M such that M2 = (0). If we have
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AB = AC 6= (0), we have either A = R or B = C = R, since for otherwise, if A and

B are both proper ideals, then A,B ⊆ M and so AB ⊆ M2 = (0). In the case that

A = R, we have B = AB = AC = C so in both cases RCL holds.

Let R be an integral domain. We say that the finite cancellation law (FCL) holds

in R precisely when for arbitrary ideals A,B,C of R with A 6= (0) is finitely generated,

AB = AC implies B = C.

Theorem 4.4. Let R be an integral domain. If FCL holds for R, then R is integrally

closed.

Proof. Let K be the field of fractions of R and let x ∈ K be integral over R. Then the

fractional ideal F of R generated by 1 and all positive powers of x is finitely generated

an idempotent. There exists a nonzero element d ∈ R such that dF = A is a finitely

generated ideal of R. So we have

A2 = (d2)F 2 = (d2)F = (d)dF = (d)A

Since A is finitely generated and FCL holds in R, then we have A = (d). By FCL,

(d)F = A and (d) = A together implies that F = R, hence x ∈ F = R, which gives

that R is integrally closed.

Theorem 4.5. Let D be an integral domain. Then CL holds in D if and only if D is

an almost Dedekind domain.

Proof. Suppose first that CL holds in D. Let P ∈ Spec(R) with P ⊂ D. Since CL

implies FCL and by Theorem 2.40, we have that D is a Prüfer domain, hence DP is a

valuation ring. By Theorem 4.3, since the only domain case is being a one dimensional

integral domain, then DP has rank-one. Now P ⊂ D so that P 2 ⊂ PD = P since CL

holds in D. Since P 2 has radical P , a maximal ideal of D, then P 2 is a P -primary ideal

of D. It follows that P 2DP = (PDP )2 ⊂ PDP . If m ∈ PDP \ P 2DP then we have

mDP = PDP . Hence DP is a rank-one DVR, so D is an almost Dedekind domain.

The converse part is straightforward since AB = AC with A 6= (0) implies that

for all P ∈ Max(R), we have ARP 6= (0) and (ARP )(BRP ) = (ARP )(CRP ). Since

RP is a Dedekind domain, we have BRP = CRP by Theorem 2.66. It follows that

B =
⋂

P∈Max(R)

(BRP ∩R) =
⋂

P∈Max(R)

(CRP ∩R) = C.
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4.2 Rings With Unique Ideal Factorization

In this section, S will be a ring in which there exists a collection S of nonzero proper

ideals of S, such that every nonzero proper ideal of S can be uniquely written as a

product of elements of S . RCL holds in such a ring is a direct result of the uniqueness

of the representation. Clearly, if AB = AC with AB 6= (0), then AB and A can be

expressed as a product of the elements of S . The factor which are appear in the

factorization of AB but does not appear in the factorization of A gives the expression

of B. In the same way we can obtain C, and this implies that B = C.

In the view of Theorem 4.3, we obtain the following theorem:

Theorem 4.6. If S has proper divisors of zero, then one of the following statements

hold:

1. S is a special primary ring and S is the set of maximal ideals of S.

2. S is a primary ring with maximal ideal M such that M2 = (0), and S is the set

of all nonzero proper ideals of S.

Proof. Since S has proper zero-divisors, then S is not an integral domain. Then by

Theorem 4.3 and its proof, we have either S is a special primary ring or a primary ring

with maximal ideal M such that M2 = (0).

If S is a special primary ring with maximal ideal M , then by definition every ideal

of S is a power of M , so we have S = {M}.

If S is a primary ring with maximal idealM such thatM2 = (0), then for a nonzero

ideal I of S, we must have I ∈ S , for otherwise , if I = AB for some A,B ∈ S , then

I = AB ⊆ M2 = (0), which is a contradiction. Hence we have S is the set of all

nonzero proper ideals of S.

Theorem 4.7. Let S be an integral domain. Then S is Dedekind and S is the set of

all nonzero prime ideals of S.

Proof. If S is a field, both conclusion follows. Suppose that S is not a field. By Theorem

4.3, we have that S is one-dimensional. If every nonzero ideal of S is invertible, then

we conclude that S is a Dedekind domain by Theorem 2.63.

To this aim, we first show that an invertible ideal S ′ ∈ S is prime. If xy ∈ S ′, then

since S ′ is invertible, (x)(y) = (xy) = S ′I for some ideal I of S. From the uniqueness
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of representation, S ′ must be a factor either of (x) or of (y). For otherwise, this implies

that S ′ has a factorization other that itself, hence it contradicts with S ′ ∈ S . Since S ′

is a factor of either (x) or (y), then we have x ∈ S ′ or y ∈ S ′. So S ′ is a prime ideal.

Let P ∈ Spec(R) and let p ∈ P . Let (p) = S1 . . . Sk for some S1, . . . , Sk ∈ S .

Clearly, Si ∈ S is invertible for each i = 1, . . . , k, hence maximal by previous para-

graph. We have (p) = S1 . . . Sk ⊆ P , so we must have Si0 ⊆ P for some i0 = 1, . . . , k.

It follows by the maximality of Si0 that Si0 = P , hence arbitrary prime ideal of S is

invertible and maximal. Therefore, we have that S is Dedekind, and every element of

S is invertible, therefore prime. Since we show that S consists of all nonzero prime

ideals of S, then the proof is complete.

4.3 Factoring With Radical Ideals and SP-Domains

Let R be a ring and let I be an ideal of R. If there exist finitely many radical ideals

J1, . . . , Jk of R such that I = J1 . . . Jk, then we say that I has radical factorization or

I is an SP-ideal. If every ideal of R is an SP-ideal, then R is called as an SP-ring. In

the latter case if R is an integral domain, then R is called an SP-domain. Our aim in

this section is to show SP-domains are almost Dedekind domains.

Before showing an SP-domain is an almost Dedekind domain, we give a charac-

terization of SP-domains in the class of almost Dedekind domains. To this aim we

introduce some required notations and facts:

1. If A and B are finitely generated ideals of a Prüfer domain R, then we have A∩B

is finitely generated.

Proof: Since A and B are finitely generated ideals of a Prüfer domain, then they

are invertible and so AB is invertible, so by Theorem 2.40, we have that

AB = (A ∩ B)(A + B) and this implies A ∩ B is invertible, hence finitely

generated.

2. If R is a Prüfer domain and P ∈ Spec(R), then
⋂
i≥1

P i is a prime ideal of R by

Proposition 2.45.

3. A maximal ideal M of a domain R is critical if and only if for each finite subset

A ⊆ M , there exists N ∈ Max(R), need not to be distinct from M , such that

71



A ⊆ N2. Another characterization for M ∈ Max(R) to be critical can be given

as, M is critical if and only if every finitely generated ideal I of R such that

I ⊆M is contained in the square of some maximal ideal.

4. Let R be an almost Dedekind domain and let a ∈ R be nonzero. Define the

mapping γa : Max(R) → Z by γa(M) = vM(a), where vM is the rank one

discrete valuation corresponding to the valuation ring RM . This mapping is

upper semi-continuous if for all n ∈ Z, the set γ−1
a ([n,∞)) is closed.

Theorem 4.8. Let R be an almost Dedekind domain. Then the following statements

are equivalent:

1. R is an SP-domain, i.e. R has radical factorization.

2. R has no critical maximal ideals.

3. If A ⊂ R is a finitely generated ideal, then
√
A is also finitely generated.

4. Each proper principal ideal of R is an SP-ideal.

5. For each nonzero a ∈ R, the function γa : Max(R)→ Z is upper semi-continuous

and has finite image.

6. For each proper ideal A of R, there exist radical ideals J1 ⊆ J2 ⊆ . . . ⊆ Jn such

that A = J1J2 . . . Jn.

7. Every proper nonzero ideal A of R can be represented uniquely as a product A =

J1J2 . . . Jn where Ji, i = 1, . . . n are radical ideals such that J1 ⊆ J2 ⊆ . . . ⊆ Jn.

Proof.

(1) ⇒ (2) : Let M ∈ Max(R) and let, a ∈ R be nonzero. By (1), we have

(a) = J1 . . . Jn for some radical ideals J1, . . . , Jn of R. Since (a) = J1 . . . Jn ⊆ M ,

then for some i0 ∈ {1, . . . , n}, we have Ji0 ⊆ M . Ji0 is invertible since (a) is, hence

Ji0 is finitely generated. If there exists N ∈ Max(R) with Ji0 ⊆ N , then since RN

is one-dimensional, we have Ji0RN = NRN , so Ji 6⊆ N2. Hence, we found a finitely

generated ideal of R that contained in M but not in the square of any maximal ideals.

Hence M is not critical. Since M ∈Max(R) is arbitrary, then (2) holds.
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(2) ⇒ (3) : To prove this part, we first show that for M ∈ Max(R) and a finitely

generated ideal A ⊆ M , we have A ⊆ J ⊆ M for some finitely generated radical ideal

J of R. By our assumption, there exists a finitely generated ideal B such that B ⊆M

and B 6⊆ N2 for arbitrary N ∈ Max(R). Set J = A + B. Clearly A ⊆ J ⊆ M and

since A and B are both finitely generated, so is J . If N ∈ Max(R) such that J ⊆ N ,

then JRN ⊆ NRN . By assumption, BRN 6⊆ N2RN , for otherwise B ⊆ BRN ∩ R ⊆

N2RN ∩ R = N2. Hence BRN = NRN . Since we have B ⊆ J ⊆ N , we must have

JRN = NRN . Since the last equality holds for arbitrary maximal ideal of R, then

J =
⋂

N∈V ar(J)

(JRN ∩R) =
⋂

N∈V ar(J)

(NRN ∩R) =
⋂

N∈V ar(J)

N =
√
J . Thus J is a radical

ideal.

Now let A be a proper ideal of R which is finitely generated and set J =
√
A. Our

aim is to show that J is finitely generated. If A = (0), then there is nothing to

prove, so assume that A is nonzero. If we show that [R : J ]RM = [RM : JRM ] for

all M ∈ Max(R), then since JRM is principal for all M ∈ Max(R), we have that

[R : J ]J = R, which proves J is invertible, hence finitely generated.

Let K be the field of fractions of R, let M ∈ Max(R) and let q ∈ K be such that

qJ ⊆ RM . Our aim is to find b ∈ R \M such that bqJ ⊆ R. As we have showed

before, there is a finitely generated ideal J1 of R with A ⊆ J1 ⊆ M . Since A and J1

are both invertible, there exists a finitely generated ideal B1 of R such that A = J1B1.

If B1 ⊆ M , then by repeating this argument, we have an ideal B2 of R such that

B1 = J2B2. This repetition must stop after finitely many steps and we may have

A = J1 . . . JnBn, for some Bn 6⊆ M and J1, . . . , Jn radical ideals. For otherwise, we

have A ⊆ J1 . . . Jk for all k ≥ 1 and since Ji ⊆ M , it follows that A ⊆
⋂
n≥1

Mn = (0),

which is a contradiction.

Now J =
√
A =

√
J1 . . . JnBn = J1 ∩ . . . ∩ Jn ∩

√
Bn, so since qJRM ⊆ RM and

√
Bn 6⊆ M , we have q(J1 ∩ . . . ∩ Jn) ⊆ RM . Since J1 ∩ . . . ∩ Jn is the intersection of

finitely generated ideals, then it is also finitely generated. It follows that there exists

b ∈ R \M such that bq(J1 ∩ . . .∩ Jn) ⊆ R. Hence bqJ ⊆ R, as claimed. It follows that

q ∈ [R : J ]RM , and thus [RM : J ] = [R : J ]RM for all M ∈Max(R) such that M ⊇ A.

If xJ ⊆ RM , then clearly xJRM ⊆ RM . If yJRM ⊆ RM , then since J ⊆ JRM , we have

yJ ⊆ yJRM ⊆ RM , hence [RM : J ] = [RM : JRM ] for all M ∈ Max(R). So the result

follows.
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(3) ⇒ (4) :Let A be a proper principal ideal of R. If A = (0), then the claim is

true. So suppose that A 6= (0). If we set J1 =
√
A, since both J1 and A are invertible,

then there exists an invertible ideal B1 such that A = J1B1. If B1 = R, then we are

done. So suppose that B1 6= R. By setting J2 =
√
B1, we have that A = J1J2B2 for

some finitely generated ideal B2 of R. Since J1 is finitely generated and J1 =
√
A, then

Jn1 ⊆ A ⊆ J2 for some n ≥ 1. Since J2 is a radical ideal of R, it follows that J1 ⊆ J2.

To continue in this manner, either we have that A is an SP-ideal, or we obtain an

infinite chain of radical ideals J1 ⊆ J2 ⊆ . . . such that A ⊆ J1 . . . Jk for each k ≥ 1.

In the latter case, if M ∈ Max(R) with
⋃
k≥1

Jk ⊆ M , then A ⊆
⋂
n≥1

Mn = (0), which

contradicts the fact that A is nonzero. Therefore, A must have a radical factorization.

(4) ⇒ (5) : Let α ∈ R be nonzero. We first show that γα has finite image. By

our assumption, αR = Je11 . . . Jekk , for some k, e1, . . . , ek ∈ N and for some J1, . . . , Jk.

Let M ∈ Max(R) such that α ∈ M . Set X =
{
i ∈ {1, . . . , k}|Ji ⊆ M

}
. For each

i ∈ X, since Ji is a radical ideal and RM is a Dedekind domain, hence a DVR, we

have that JiRM = MRM . We clearly have JiRM = RM for i /∈ X. So we have

Je11 . . . Jekk RM =
∏
i∈X

M eiRM , and thus γα(M) = vM(α) =
∑
i∈X

ei. It follows that for

M ∈ Max(R), either γα(M) = 0, or it equals to a sum of some of ei’s. Hence, γα has

finite image.

Now, let n be a positive integer. Set V = γ−1
α

(
[n,∞)

)
= {M ∈Max(R)|α ∈Mn}. Our

aim is to show that V is closed in Max(R). Let M ∈ V , and let X defined as above.

Then, as noted above,
∑
i∈X

ei = γα(M) ≥ n. Thus the set F =
{
X ⊆ {1, . . . , k}|

∑
i∈X

ei ≥

n
}
is not empty. Set A =

⋂
X∈F

(∑
i∈X

Ji
)
. If we show V = V ar(A) = {M ∈Max(R)|M ⊇

A}, then we conclude that V is closed in Max(R).

IfM ∈ V , as we have established above, there existsX ⊂ {1, . . . , k} such that
∑
i∈X

ei ≥ n

and M ⊇
∑
i∈X

Ji ⊇ A. Thus, V ⊆ {M ∈Max(R)|M ⊇ A}.

If M ∈ Max(R) with M ⊇ A, then since F has at most 2n elements, A is a finite

intersection. It follows that we have
∑
i∈X

Ji ⊆ M , for some X ∈ F . For otherwise, if

there exist αX ∈
(∑
i∈X

Ji
)
\M for all X ∈ F , then

∏
X∈F

αX ∈
⋂
X∈F

(∑
i∈X

Ji
)
\M = A \M ,

which is a contradiction. Thus, Ji ⊆ M for all i ∈ X, therefore αR = Je11 . . . Jekk ⊆∏
i∈X

Jeii ⊆
∏
i∈X

M ei ⊆Mn. Hence α ∈Mn, and this implies M ∈ V .

Since we have V = V ar(A), it is closed in Max(R) by definition.

(5) ⇒ (6) : Let A be a nonzero proper ideal of R. Let M ∈ Max(R). Set vM(A)
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be the smallest element in {vM(a)|a ∈ A}. Set X = {vM(A)|M ∈ Max(R), A ⊆ M}.

We first show that X is finite. If α ∈ A is nonzero, then by our assumption γα has

finite image, so {vM(α)|M ∈ Max(R)} is finite. Since we have vM(A) ≤ vM(a) for all

M ∈Max(R), then X is finite, say X = {f1, . . . , fn} be such that 0 < f1 < f2 < . . . <

fn. Set Vi = {M ∈ Max(R)|A ⊆ M fi} for i = 1, . . . , n. Our claim is that each Vi is a

closed subset of Max(R). For each i, we have the following:

Vi = {M ∈Max(R)|∀a ∈ A, a ∈M fi}

=
{
M ∈Max(R)|∀a ∈ A,M ∈ γ−1

α

(
[fi,∞)

)}
=

⋂
a∈A

γ−1
α

(
[fi,∞)

)

By our assumption, we have γ−1
α

(
[fi,∞)

)
is a closed subset of Max(R), so Vi is closed

since it is the intersection of closed subsets.

For each i, set Ji =
⋂

M∈Vi
M . Since Vn ⊆ Vn−1 ⊆ . . . ⊆ V1, we have A ⊆ J1 ⊆ . . . ⊆ Jn.

Now set B = Jf11 J
f2−f1
2 . . . Jfn−fn−1

n . Our aim is to show that A = B, and we shall show

this by proving that ARM = BRM for all M ∈Max(R).

Let M ∈ Max(R) be such that B ⊆ M . Let k ≤ n be the largest integer such that

Jk ⊆M . Then BRM = Jf11 J
f2−f1
2 . . . J

fk−fk−1

k RM = M fkRM .

For M ∈Max(R), in the case that Ji ⊆M , we have Ji =
⋂

M∈Vi
M ⊆M , so there exists

M0 ∈ Vi such that M0 ⊆ M . Then M0 ∈ Max(R) implies that M ∈ Vi. Conversely,

M ∈ Vi clearly implies M ⊇
⋂

M∈Vi
M = Ji. As a result, we have for M ∈ Max(R),

M ⊇ Ji is equivalent to M ∈ Vi. By this equivalence, Vk is the smallest member of

the chain Vn ⊆ . . . ⊆ V1 such that M ∈ Vk. Since vM(A) ∈ {f1, . . . , fn}, it follows that

vM(A) = fk. Hence ARM = M fkRM = BRM .

Now suppose that M ∈ Max(R) is such that A ⊆ M . Then vM(A) = fk for some

k ≤ n, so ARM = M fkRM . Thus M ∈ Vk but M /∈ Vm for k < m ≤ n. Each Vi

closed implies that J1 ⊆ . . . ⊆ Jk ⊆ M but Jm 6⊆ M for k < m ≤ n. Hence we have

BRM = Jf11 . . . J
fk−fk−1

k RM = M fkRM = ARM .

If M ∈Max(R) is such that A,B 6⊆M , then clearly ARM = RM = BRM .

Since the equality holds for arbitrary maximal ideal, we can conclude that A = B.

(6) ⇒ (7) : Let A be a nonzero proper ideal of R. Let J1 . . . Jn = A = K1 . . . Km

be such that J1 ⊆ . . . ⊆ Jn and K1 ⊆ . . . ⊆ Km, where J1, . . . , Jn, K1, . . . , Km are all
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radical ideals of R. By taking radicals, we have that
√
A =

√
J1 . . . Jn =

√
J1 ∩ . . . ∩

√
Jn =

√
J1 = J1. Similarly we can obtain

√
A = K1. Since R is an almost Dedekind

domain, we have CL holds in R, hence J1 = K1 implies that J2 . . . Jn = K2 . . . Km.

The proof now can be completed by induction.

By definition we clearly have (7) implies (1), hence the proof is complete.

An integral domain R is said to have property (α) if every primary ideal of R is a

power of its radical. If R has property (α), it is easy to see that for any P ∈ Spec(R),

RP and R/P both have property (α). Now we shall give some properties of domains

having property (α).

Lemma 4.9. Let R be a local integral domain with property (α). Let M ∈ Max(R).

If M is minimal over an ideal of the form tR+P for some non-maximal prime ideal P

and for some t ∈M \P , then M̄ =
⋂
n≥1

Mn is a prime ideal of R such that P ⊆ M̄ ⊂M .

Proof. If M is minimal over the ideal I1 = tR + P , then I1 is M -primary. If we set

Ik = tkR + P for k ≥ 1, then the same conclusion holds. For each k ∈ N, we have

Ik ⊃ Ik+1 since tk ∈ Ik \ Ik+1. Suppose otherwise, then tk = tk+1r + p for some r ∈ R

and p ∈ P , then we have tk(1−tr) = p. Since t ∈M \P and p ∈ P , we have 1−tr ∈ P .

This implies 1 ∈ tR + P = I1, which is impossible. By property (α), for each k, there

exists an integer mk ≥ 1, such that Ik = Mmk . Since Mmk = Ik ⊃ Ik+1 = Mmk+1 ,

then each power of M is distinct. Hence as a result of property (α), Mn = bR + Mm

for each b ∈Mn \Mn+1 and all positive integers m > n.

Now let M̄ =
⋂
n≥1

Mn =
⋂
k≥1

Mmk ⊇ P . Since all powers of M are distinct, then

M ⊃ M̄ . For x, y ∈ M \ M̄ , there are integers m,n such that x ∈ Mn \Mn+1 and

y ∈Mm\Mm+1. This impliesMn = xR+Mn+1 andMm = yR+Mm+1. By multiplying

these equalities, we have Mm+n = xyR + xMm+1 + yMn+1 + Mm+n+2. Since every

power of M is distinct, then Mm+n ⊃ Mm+n+1. Since xMm+1 + yMn+1 + Mm+n+2 ⊆

Mm+n+1, then we must have xy /∈ Mm+n+1, hence M̄ is a prime ideal of R such that

P ⊆ M̄ ⊂M .

Lemma 4.10. Let R be an integral domain with property (α). Let P ∈ Spec(R). If

Q ∈ Spec(R) is minimal over an ideal of the form tR + P for some t ∈ R \ P , then

Q̄ =
⋂
n≥1

Qn is a prime ideal of R such that P ⊆ Q̄ ⊂ Q.
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Proof. Since RQ has property (α) with QRQ is minimal over tRQ+PRQ, by Lemma 4.9,

we have
⋂
n≥1

QnRQ is a prime ideal of RQ that contains PRQ and is properly contained

in QRQ. For each integer k ≥ 1, set Ik = tkR+P . By localizing Ik at Q and then taking

contraction back to R, we obtain Q-primary ideals which are powers of Q by property

(α). Set mk be the integer such that Qmk = IkRQ ∩ R. Now Lemma 4.9 implies that⋂
k≥1

IkRQ is a prime ideal which contains PRQ and is properly contained in QRQ. Since

QRQ is minimal over I1, then by Lemma 4.9
⋂
n≥1

QnRQ is a prime ideal. It follows that⋂
k≥1

IkRQ is a prime ideal since
⋂
n∈N

QnRQ =
⋂
k∈N

QmkRQ =
⋂
k∈N

[
(IkRQ∩R)RQ

]
=
⋂
k∈N

IkRQ.

Hence there exists Q0 ∈ Spec(R) with Q0 ⊂ Q such that
⋂
k∈N

IkRQ = Q0RQ with

P ⊆ Q0 ⊆ Qn for each n ≥ 1. It follows that Q0 =
⋂
n≥1

Qn ⊂ Q.

Lemma 4.11. Let R be an integral domain with property (α). Let N ∈ Spec(R) with

N 6= (0). Then N̄ =
⋂
n≥1

Nn is a prime ideal of R such that for all P ∈ Spec(R)

with P ⊂ N we have P ⊆ N̄ . Moreover, in the case that N 6= N2, we have NRN is

principal.

Proof. Let N ∈ Spec(R) with N 6= (0). Let P ∈ Spec(R) with P ⊂ N and let

t ∈ N \ P . Then there exists Q ∈ Spec(R) with Q ⊆ N such that Q is minimal over

tR+P . By Lemma 4.10,
⋂
n≥1

Qn is a prime ideal that contains P and properly contained

in Q. It is clear that
⋂
n≥1

Nn contains
⋂
n≥1

Qn. Therefore
⋂
n≥1

Nn contains every prime

ideal P of R such that P ⊂ N . In the case that N = N2, we have
⋂
n≥1

Nn = N and we

are done. Hence, in the rest of the proof, we assume that N 6= N2.

Set Q̄ =
⋂
n≥1

Nn and let r ∈ N \ N2. Since Q̄ contains each prime ideal that is

properly contained in N and r /∈ Q̄, N is a minimal prime over the ideal rR. It follows

that NRN is the radical of rRN . Thus rRN is NRN -primary. By property (α), the only

possibility is to have NRN = rRN . So the last statement of the lemma has proved.

Now it remains to show that Q̄ is a prime ideal of R. Since NRN = rRN is principal,

each power of NRN is distinct. It follows that

Q̄ ⊆ (
⋂
n≥1

NnRN) ∩R ⊂ N

Since NRN is a minimal prime over rRN , choosing P = 0 in Lemma 4.9, we have

that
⋂
n≥1

NnRN is a prime ideal of RN . Hence
( ⋂
n≥1

NnRN

)
∩ R is a prime ideal of R
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that is properly contained in N , so it is contained in Q̄. Therefore

Q̄ =
(⋂
n≥1

NnRN

)
∩R ∈ Spec(R)

Lemma 4.12 (Nakayama’s Lemma). Let R be a ring and let M be a finitely gen-

erated R-module. Let I be an ideal such that I ⊆ Jac(R), i.e. the intersection of all

maximal ideals of R. If M = IM , then M = 0.

Lemma 4.13. Let R be a local integral domain with maximal ideal M . Let M be the

radical of a finitely generated ideal. Then M is principal if and only if {Mn|n ≥ 1} is

the complete set of M-primary ideals. Furthermore, in the case that M is principal,

we have
⋂
n≥1

Mn is a non-maximal prime ideal that contains each non-maximal prime

ideal of R.

Proof. Let M = (a) be principal. Our aim is to show that the only M -primary ideals

are powers of P and powers of M are distinct. Let Q be an M -primary ideal. Since
√
Q = M , then we have an ∈ Q but an−1 /∈ Q for some positive integer n. Our claim is

that Q = (an). Suppose there exists x ∈ Q \ (an). Then x = an−kr for some r ∈ R \M

and k > 0. Since r is a unit in R, then (an−k) = (x) ⊆ Q, but this contradicts our

assumption that an−1 /∈ Q. So we must have Q = (an). Moreover, by Nakayama’s

Lemma, we have M i 6= M j for i 6= j since M is finitely generated.

Conversely, assume that M is the radical of a finitely generated ideal I of R, and

let {Mn|n ≥ 1} be the complete set of M -primary ideals of R. Since M is maximal,
√
I = M implies that I is M -primary, hence I = Mn for some n ∈ N. Then M2n =

I2 ⊂ I and therefore M ⊃ M2 ⊃ . . . i.e. all powers of M are distinct. Moreover, for

each b ∈ Mn−1 \Mn, we have Mn−1 = bR + Mn. Thus Mn−1, and by the same way,

Mk is finitely generated for k ≤ n. In particular, M is finitely generated.

To see thatM is principal, suppose by the way of contradiction thatM is minimally

generated by n > 1 elements. Let M = (a1, . . . , an). Since M 6= M2, suppose without

loss of generality that an /∈ M2. Since M2 ⊂ (a2
1, . . . , a

2
n−1, an) ⊆ M and the minimal

prime ideal of (a2
1, . . . , a

2
n−1, an) is M , (a2

1, . . . , a
2
n−1, an) becomes an M -primary ideal
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and must therefore be equal to M . Consider the equation

a1 = r1a
2
1 + r2a

2
2 + . . .+ rn−1a

2
n−1 + ran

This implies that a1(1− r1a1) ∈ (a2, . . . , an). Since a1 ∈M and M is the Jacobson

radical of R, then 1−r1a1 is a unit in R, hence a1 ∈ (a2, . . . , an) which is a contradiction

with our assumption. So M must be principal.

Let M = (a). Now suppose that for some Q ∈ Spec(R) \ Max(R), and some

k ≥ 1, we have Q ⊆ Mk but Q 6⊆ Mk+1. It follows that Q + Mk+1 is M -primary and

must be equal to Mk. So we have ak = q + tak+1, where t ∈ R, q ∈ Q. It follows

that ak(1 − ta) ∈ Q. Since Q is a prime, we have either a ∈ Q or 1 − ta ∈ Q. If

a ∈ Q, then we have (a) = M ⊆ Q ⊂ M , a contradiction. If 1 − ta ∈ Q, then

1 ∈ Q + aR = Q + M = M , a contradiction again. Hence if Q ∈ Spec(R) \Max(R),

then Q ⊆
⋂
n≥1

Mn.

Continue with the assumption that M = (a) and let x, y /∈
⋂
n≥1

Mn, so for some

k, t ∈ N, x ∈ Mk \Mk+1 and y ∈ M t \M t+1. Then x = akr1 and y = atr2 for some

r1, r2 ∈ R \M . It follows that xy = ak+tr1r2 ∈ Mk+t \Mk+t+1. Hence
⋂
n≥1

Mn is a

prime ideal of R. M 6= M2 implies that
⋂
n≥1

Mn ⊂M , which means it is not a maximal

ideal of R.

Lemma 4.14. Let R be an integral domain, and let P ∈ Spec(R) with P 6= (0).

If A is a radical ideal contained in P but P is not minimal over A, then we have

(R : P ) ⊆ (A : A).

Proof. Let x ∈ (R : P ), then xP ⊆ R. Since A ⊂ P we have xA ⊆ R. The

fact that xP ⊆ R also implies that xPA ⊆ A. Let Q be a minimal prime ideal of

A. Then we have xPA ⊆ A ⊆ Q. Since P 6⊆ Q, and Q ∈ Spec(R) then we have

xA ⊆ Q. Then xA contained in each minimal prime ideal of A. Clearly this implies

that xA ⊆
⋂

P∈Min(A)

P =
√
A = A. It follows that x ∈ (A : A).

We have now able to prove that an SP-domain is an almost Dedekind domain.

Theorem 4.15 (Vaughan and Yeagy [5, Theorem 2.4]). [10, p.43, Theorem.

3.1.7] If R is an integral domain with radical factorization, then R is an almost

Dedekind domain.
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Proof. Let P ∈ Spec(R) with P 6= (0) and let Q be a P -primary ideal of R. Let k ∈ N,

and Q = J1 . . . Jk be the radical factorization of Q. Since Q is P -primary, if some

Ji0 6⊆ P , then
∏
i 6=i0

Ji ⊆ Q =
n∏
i=1

Ji ⊆
∏
i 6=i0

Ji. Hence Q =
∏
i 6=i0

Ji which is a contradiction.

Thus we have Ji ⊆ P for all i = 1, . . . , n. But since Q ⊆ Ji ⊆ P , by taking radicals, we

have Ji = P for all i, hence Q = P n. Therefore, R has property (α). If P is a minimal

prime of the zero ideal, then PRP is the only nonzero prime ideal of RP , hence the

only way a nonzero ideal of RP can factor into radical ideals is as a power of PRP .

Thus it suffices to show that R is one dimensional.

Suppose that dimR > 1. Let P,N ∈ Spec(R) with P ⊂ N be such that P is

minimal over a nonzero principal ideal sR, and N is minimal over an ideal of the form

tR+P for some t ∈ N \P . Then NRN 6= N2RN by Lemma 4.9 and so by Lemma 4.11,

NRN is principal and
⋂
n≥1

Nn ⊂ N contains each prime ideal that is properly contained

in P .

Let sRN be such that sRN = I1 . . . InRN with each IiRN is a radical ideal of RN .

Each IiRN is invertible and at least one of them is contained in PRN . Without loss

of generality, suppose I1RN ⊆ PRN . Then NRN is not minimal over I1RN , hence by

Lemma 4.14, we obtain the following

(RN : NRN) ⊆ (I1RN : I1RN)

This inclusion leads us to a contradiction since we have (I1RN : I1RN) = RN and

RN ⊂ (RN : NRN). We shall prove that the strict inclusion holds. We know that

NRN is principal, so set NRN =
(
n
s

)
for some n ∈ N, s ∈ R \ N . We clearly have 1

n

in the field of fractions of R, but 1
n
/∈ RN . For otherwise, there exist r ∈ R, p ∈ R \N

such that 1
n

= r
p
. It follows that for some u ∈ R \N , unr = up ∈ N . Since u /∈ N , and

N ∈ Spec(R), then we have p ∈ N , which is a contradiction.

We have 1
n
n
s

= 1
s
∈ RN , since n

s
is the generator of NRN , it follows that 1

n
NRR ⊆

RN . Hence 1
n
∈ (RN : NRN) \RN . So we have RN ⊂ (RN : NRN).

Corollary 4.16. An integral domain R is an SP-domain if and only if R is a Prüfer

domain having no critical ideals and every prime ideal of R is maximal.

Proof. Let R be an SP-domain, then by Theorem 4.15, R is an almost Dedekind

domain, hence a Prüfer domain. It follows that every prime ideal of R is maximal by
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Theorem 3.2 and by Theorem 4.8, R has no critical maximal ideals.

Conversely, assume that R is a Prüfer domain with no critical maximal ideals and

let Spec(R) = Max(R). Since an idempotent maximal ideal is critical, then we have

M 6= M2 for all M ∈Max(R). Since RM is a valuation domain, it follows that MRM

is a principal ideal of RM . With the fact that every prime ideal of R is maximal, R

becomes an almost Dedekind domain. By Theorem 4.8, R is an SP-domain.
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5 RINGS PRODUCED BY ORDERED ABELIAN

GROUPS

We construct this section using the well-known theory of the ordered abelian groups

with the informations and definitions in [11] and [12].

5.1 Partially Ordered Abelian Groups

In this section, we shall study Abelian groups which has an order relation compatible

with the group operation. First of all we shall give some definitions in set theory.

If G is an abelian group and if ≤ satisfies the property that a ≤ b implies a+c ≤ b+c

for all a, b, c ∈ G, then we say that ≤ is compatible with the group operation on G.

G is called a partially (respectively totally) ordered group, if ≤ is compatible with the

group operation of G and ≤ is a partial (respectively total) order.

Let G be a partially ordered group under ≤. For a g ∈ G, we say that g is positive

if g ≥ 0 and g is negative if g ≤ 0. We set G+ = {g ∈ G|g ≥ 0} as the set of positive

elements of G. G+ clearly satisfies the properties that, 0 ∈ G+, G+ ∩ (−G+) = {0}

where −G+ is the set of inverses of element of G+, and lastly, G+ is a subsemigroup of

G. Furthermore, if G is a totally ordered group, then for all g ∈ G, either g ∈ G+ or

−g ∈ G+ is true. This is also a sufficient condition for G to be totally ordered, since if

x, y ∈ G we either have x− y ≤ 0 or x− y ≥ 0.

Let S be a partially ordered set, if for any a, b ∈ S, there exists c ∈ S such

that a, b ≤ c (or c ≤ a, b) then we say S is filtered to the right (or left). If G is a

partially ordered group, then being filtered to the right and being filtered to the left

are equivalent for G. If these conditions are satisfied, then we say that G is filtered. For

a partially ordered group G, it is necessary and sufficient condition that G+ generates

G as a group.

Let S be a partially ordered set and let A ⊆ S be nonempty. If b ∈ S satisfies a ≤ b

for all a ∈ A, then we say that b is an upper bound of A. If b is an upper bound of A

and it satisfies b ≤ c for all upper bounds c ∈ S, then we say that b is the least upper

bound of A, and denote b = sup(A). Lower bound and the greatest lower bound are

defined similarly, and the greatest lower bound of A is denoted by inf(A).

We shall give some basic properties of sup(A) and inf(A) in the following theorem.
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Theorem 5.1. Let G be an abelian group which is partially ordered. Let A,B ⊆ G be

nonzero, and let a, b, x ∈ G. Then following conditions hold:

(1) sup(A) exists if and only if inf(−A) exists. If sup(A) exists, then sup(A) =

inf(−A).

(2) If two of sup(A), sup(B) and sup(A+B) exist, then third one also exists. In the

latter case, the equality sup(A) + sup(B) = sup(A+B) holds.

(3) sup(A) exists if and only if sup(A + x) exists where A + x = {a + x|a ∈ A}, if

sup(A) exists, then we have sup(A+ x) = sup(A) + x.

(4) sup(a, b) exists if and only if inf(a, b) exists. If inf(a, b) exists, then a + b =

sup(a, b) + inf(a, b).

(5) If sup(A) = x and sup(B) = y exists, and if sup(x, y) exists, then sup(A ∪ B)

exists and sup(A ∪B) = sup(x, y).

Proof.

1. Suppose sup(A) exists and equals to x. Then for all a ∈ A, we have x ≥ a.

This implies −x ≤ −a for all a ∈ A, since −A = {−a|a ∈ A}, then −x is a

lower bound for −A. Now let y be a lower bound for −A, then y ≤ −a for all

a ∈ A, hence a ≤ −y for all a ∈ A. Since −y becomes an upper bound for A

and sup(A) = x, then we have x ≤ −y or y ≤ −x. It gives that −x = inf(−A)

and the result follows. Similarly, we can see existence of inf(A) implies that

sup(−A) exists. By choosing −A as A, the result directly follows from the fact

that −(−A) = A.

2. Suppose that sup(A) = x and sup(B) = y. We clearly have x + y ≥ a + b for

all a ∈ A, b ∈ B, hence x + y is an upper bound for A + B. Let t be an upper

bound of A + B. Let a′ ∈ A. Since t ≥ a′ + b for all b ∈ B, we have t − a′ ≥ b.

Since t− a′ is an upper bound, then we have t− a′ ≥ y, which implies t− y ≥ a′.

Since a′ is an arbitrary element of A, then we must have t − y ≥ x which gives

that t ≥ x+ y. So we have sup(A) + sup(B) = x+ y = sup(A+B).

Now let sup(A) = x and sup(A+B) = z. Our aim is to show that sup(B) exists.

Let b′ ∈ B, then z ≥ a+ b′ for all a ∈ A, hence z− b′ ≥ a implies that z− b′ ≥ x.
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It follows that z− x ≥ b′, and since b′ is arbitrary, then we must have z− x is an

upper bound of B. If w is an upper bound of B, then x+w is an upper bound of

A+B, hence z ≤ x+w, it follows that z − x ≤ w which means z − x = sup(B).

We can prove the last possibility that sup(B) and sup(a+B) exist implies sup(A)

exists by using a similar way, so the proof is complete.

3. Suppose that sup(A) = y, then y ≥ a for all a ∈ A. Since A+x = {a+x|a ∈ A},

then x + y ≥ a + x for all a ∈ A which implies x + y is an upper bound of

A+x.Let z be an upper bound of A+x, hence z ≥ a+x for all a ∈ A, it follows

that z − x ≥ a for all a ∈ A, and so z − x ≥ y. Thus z ≥ x + y which gives

sup(A) + x = x+ y = sup(A+ x).

If we choose A+x as A and −x as x, then sup
(
(A+x)+(−x)

)
= sup(A+x)+(−x)

or sup(A) = sup(A+x)−x, hence existence of sup(A+x) implies sup(A) exists.

4. Suppose that sup(a, b) = x, then we shall show that inf(a, b) = a+ b− x. Since

a − x ≤ 0 and b − x ≤ 0, then we have a + b − x ≤ b and a + b − x ≤ a, then

a + b − x is a lower bound of a and b. Set y be a lower bound of a and b, then

a, b ≤ a+ b− y, hence a+ b− y is an upper bound of a and b, then x ≤ a+ b− y

and consequently y ≤ a+ b− x. Hence inf(a, b) = a+ b− x = a+ b− sup(a, b).

Similarly we can obtain that if inf(a, b) exists, then sup(a, b) exists and equal

to a + b − inf(a, b). If sup(a, b) exists it follows from the equalities above that

a+ b = sup(a, b) + inf(a, b).

5. Let sup(A) = x, sup(B) = y and sup(x, y) = k. Let u ∈ A∪B. If u ∈ A, then we

have u ≤ x ≤ k, and if u ∈ B, then u ≤ y ≤ k. Therefore, k is an upper bound of

A∪B. Let m be an upper bound of A∪B. Then we have m ≥ a for all a ∈ A and

m ≥ b for all b ∈ B. By definition of supremum, we have that m ≥ x and m ≥ y.

It follows from sup(x, y) = k that m ≥ k. Hence sup(A ∪B) = k = sup(x, y).

If G is a partially ordered abelian group under ≤, then the relation ≤′ on G which

is defined by a ≤′ b if and only if b ≤ a is clearly a partially order on G. It follows that

conditions (1), (2) and (3) of Theorem 5.1 also hold for the infimums.
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Now let a, b ∈ G. If inf(a, b) exists and inf(a, b) = 0, then we say that a and b

are disjoint, or a is disjoint with b. By (4) of Theorem 5.1, it is the case that sup(a, b)

exists and sup(a, b) = a+ b.

In particular, sup(a, 0) exists if and only if inf(a, 0) exists. If sup(a, 0) exists we

denote sup(a, 0) and −inf(a, 0) by a+ and a−, respectively.

Proposition 5.2. Let G be a partially ordered abelian group and let a, b, c, x, y ∈ G.

Then the following statements hold:

(1) If a = x − y for some x, y ∈ G+ and if sup(a, 0) exists, then inf(x, y) exists,

x = a+ + inf(x, y) and y = a− + inf(x, y). Clearly a+ ≤ x and a− ≤ y, and

if x and y are disjoint, then x = a+ and y = a−. In particular, a+ and a− are

disjoint.

(2) If a, b, c ∈ G+ is such that a and c are disjoint, the existence of inf(a, b) implies

inf(a, b+ c) exists and inf(a, b+ c) = inf(a, b).

(3) If a, b, c ∈ G+ is such that a and b are both disjoint with c, then a + b is also

disjoint with c. Additionally, if d ∈ G+, then a ≤ c+ d implies that a ≤ d.

(4) If sup(a, b) exists and if n is a nonnegative integer, then sup(na, nb) exists and

sup(na, nb) = n sup(a, b). A similar statement holds for inf(a, b).

Proof.

1. Suppose a+ = sup(a, 0) exists and let a = x−y for some x, y ∈ G+. Since we have

sup(−x,−y) = −inf(x, y) by (1) of Theorem 5.1, then we have a+ = sup(a, 0) =

sup(x− y, 0) = sup(x− y, x− x) = x + sup(−y,−x) = x− inf(x, y). It follows

that x = a+ + inf(x, y). Similarly, we have a− = −inf(a, 0) = −inf(x− y, 0) =

−inf(x − y, y − y) = y − inf(x, y), hence y = a− + inf(x, y). It is clear that

x ≥ a+ and y ≥ a−. If x and y are disjoint, that is inf(x, y) = 0, then we have

x = a+ and y = a−. Since a = a+ − a−, then we have a+ = a+ + inf(a+, a−),

thus a+ and a− are disjoint, as claimed.

2. Let inf(a, b) = k, then k ≤ a and k ≤ b. Since c ≥ 0, then k ≤ b ≤ b+ c. So k is

a lower bound of a and b+ c. Now let s be a lower bound for a and b+ c. Then

s ≤ a and s ≤ b + c. Since b ≥ 0, then we have s ≤ a ≤ a + b. Equivalently we
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have s− b ≤ a and s− b ≤ c. It follows that s− b ≤ 0 or s ≤ b. So we have s ≤ a

and s ≤ b, which implies s ≤ k. So k = inf(a, b+ c).

3. Let inf(a, c) = inf(b, c) = 0. We clearly have a, b, c ≥ 0, hence a+ b, c ≥ 0 which

means 0 is a lower bound for a + b and c. If k is a lower bound for a + b and c,

then a+ b ≥ k and c ≥ k and since b ∈ G+, then we have a ≥ k− b and c ≥ k− b.

inf(a, c) = 0 now implies that 0 ≥ k − b or b ≥ k. Since we have b ≥ k and

c ≥ k, then inf(b, c) = 0 implies that k ≤ 0. Hence 0 = inf(a+ b, c).

Now let a ≤ c + d for some d ∈ G+. Then we have a ≥ a − d and c ≥ a − d.

Since inf(a, c) = 0 it follows that 0 ≥ a− d or a ≤ d equivalently.

4. Since sup(a, b) exists, then we have (a− b)+ = sup(a− b, 0) = sup(a, b)− b. We

have a−b = (a−b)+−(a−b)−, and inf
(
(a+b)+, (a+b)−

)
= 0. It follows from (3)

that inf
(
n(a−b)+, n(a−b)−

)
= 0. Moreover, n(a−b) = n(a−b)+−n(a−b)−. By

(1), sup(na−nb, 0) exists and we have n(a−b)+ = sup(na−nb, 0) = n
(
sup(a, b)−

b
)

= n sup(a, b)− nb. Hence we have that sup(na, nb) exists, and sup(na, nb) =

sup(na− nb, 0) + nb = n sup(a, b). Now (4) of 5.1 implies that inf(na, nb) exists

and inf(na, nb) = na+ nb− sup(na, nb) = n
(
a+ b− sup(a, b)

)
= n inf(a, b).

5.2 Lattice Ordered Abelian Groups

We call a partially ordered abelian group G as lattice ordered, if for each a, b ∈ G,

sup(a, b) exists. If this is the case, the partial order on G is called a lattice order.

Theorem 5.3. Let G be a partially ordered abelian group.

1. If G is filtered, then the following conditions are equivalent:

(a) The order on G is a lattice order.

(b) For all a, b ∈ G+, sup(a, b) exists.

(c) For all a, b ∈ G+, inf(a, b) exists.

2. If G is lattice ordered, for each finite subset A = {a1, . . . , an} of G, sup(A) and

inf(A) exists.
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3. If G is lattice ordered and if A = {a1, . . . , an} ⊆ G+, then the following conditions

are equivalent:

(a) inf(A) = 0.

(b) For each x ∈ G+ with x 6= 0, there exists y ∈ G with 0 < y ≤ x such that

inf(y, ai) = 0 for some ai ∈ A.

Proof.

1. By definition, (a) implies (b) is clear. By (4) of 5.1, we have (b) and (c) are

equivalent. Hence it suffices to show (b) implies (a) to complete the proof. Let

g, h ∈ G. Choose t ∈ G such that t ≤ g and t ≤ h. Then g−t, h−t ∈ G+, and by

assumption, sup(g−t, h−t) exists. Since we have sup(g−t, h−t)+t = sup(g, h),

then sup(g, h) exists. Thus G is a lattice ordered group.

2. Let G be a lattice ordered group. Since we have sup(a1, a2) exists for a1, a2 ∈

G, then suppose as induction hypothesis that supremum exists for arbitrary

set which has n − 1 or less elements of G. Let A = {a1, . . . , an}, and A′ =

{a1, . . . , an−1}. By induction hypothesis, sup(A′) exists, say x = sup(A′). Set

sup(x, an) = k. Our claim is that sup(A) = k. Clearly, k ≥ x ≥ ai for

i = 1, . . . , n − 1 and k ≥ an, hence k is an upper bound of A. Let m be an

upper bound of A. It follows that m ≥ ai for all i = 1, . . . , n. Since m is an

upper bound of A′, then we have m ≥ x. But then m ≥ x and m ≥ an together

implies that m ≥ k. Hence k = sup(A). For a finite subset A of G, existence of

inf(A) can be obtained similarly.

3. Let A = {a1, . . . , an} ⊆ G+. First suppose that inf(A) = a > 0. Suppose

that y ∈ G be such that 0 < y ≤ a with inf(y, ai) = 0 for some i = 1, . . . , n.

Since y ≤ a and a ≤ ai, then we have y ≤ ai and so inf(y, ai) = y = 0.

This is a contradiction with 0 < y. Hence such an element doesn’t exist. Con-

versely, let inf(A) = 0 and let x > 0. The we have that x ≥ inf(x, a1) ≥

inf(x, a1, a2) ≥ . . . ≥ inf(x, a1, . . . , an) = 0. If inf(x, a1) = 0, then choos-

ing y = x gives the desired result. Otherwise, choose y = inf(x, a1, . . . , ai)

such that inf(x, a1, . . . , ai) 6= 0 but inf(x, a1, . . . , ai, ai+1) = 0. This gives that

inf(y, ai+1) = 0. Since we find such a y, then the proof is complete.
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Theorem 5.4. Let G be a partially ordered abelian group, then G is lattice ordered if

and only if each element of G can be expressed as a difference of two disjoint elements

of G+.

Proof. Let G be a lattice ordered group, then for a ∈ G, a+ = sup{a, 0} exists.

By (4) of Theorem 5.1, we have a = a+ − a−. By (1) of Proposition 5.2, we have

inf{a+, a−} = 0 so we are done.

Now let a, b ∈ G. Our aim is to show, under the assumption that each element of

G can be expressed as a difference of two disjoint elements of G+, sup{a, b} exists. Set

a = x1 − y1 where x1, y1 ∈ G+ and inf{x1, y1} = 0.

sup{a, 0} = sup{x1 − y1, y1 − y1} = sup{x1, y1} − y1 = x1 + y1 − y1 = x1, so

a+ = sup{a, 0} = x1. Similarly, a− = −inf{a, 0} = y1. Thus our assumption implies

that for every element x of G, x+ = sup{x, 0} and x− = −inf{x, 0} exist.

Now let a, b ∈ G, our claim is that sup{a, b} exists. Since sup{a, b} = sup{a −

b, 0}+ b and sup{a− b, 0} exists, then sup{a, b} exists. Hence G is lattice ordered.

Let R be an integral domain with the field of fractions Q, and let U be the mul-

tiplicative group of units of R. Set G = Q∗/U where Q∗ denotes the set of nonzero

elements of Q, and set Π : Q∗ → G be the canonical epimorphism. In this case G is

called the group of divisibility of R.

Define an ordering on G by

aU ≤ bU ⇐⇒ a−1b ∈ R

We shall view G as additive group with addition aU + bU = abU . Then (G,+)

becomes a partially ordered group with G+ = Π(R∗) =
{
aU |a ∈ R∗ = R \ {0}

}
.

Let G be a totally ordered group and let v : Q∗ → G be a valuation. If R = {x ∈

Q∗|v(x) ≥ 0} ∪ {0} then R is a valuation domain, Q is the field of fractions of R, and

G is order-isomorphic to the group of divisibility of R.

R is a valuation domain if and only if its group of divisibility is totally ordered.

G is a lattice ordered group if G is a partially ordered group such that inf{g, h}

and sup{g, h} exist in G for all g, h ∈ G. Since sup{g, h} = −inf{g, h}, it is sufficient

for us to check only infimums of supremums exist.
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IfG is a lattice ordered group andX ⊆ G, thenX is a sublattice ofG if infX{x, y} =

infG{x, y} for all x, y ∈ X.

If G and G′ are lattice ordered groups and f : G→ G′, then f is a lattice homomor-

phism provided that f is a group homomorphism and f(inf{g, h}) = inf{f(g), f(h)}

for all g, h ∈ G. Clearly such an f will also satisfy f(sup{g, h}) = sup{f(g), f(h)} for

all g, h ∈ G. And as a result, f is an order homomorphism, and f(G) is a sublattice of

G′.

Let {Gα|α ∈ Γ} be a family of partially ordered groups, and let G =
∏
α∈Γ

Gα. Then

G can be ordered in two different ways as follows:

(I) For (xα), (yα) ∈ G, define (xα) ≤ (yα) if xα ≤ yα for all α ∈ Γ. This is called

the product ordering on G and makes G into a partially ordered group. If each

of Gα is a lattice ordered group, then G is also a lattice ordered group with the

product ordering.

(II) For (xα), (yα) ∈ G, define (xα) ≤ (yα) if (xα) = (yα) or xα0 < yα0 where α0 =

inf{α ∈ Γ|xα 6= yα}. This is called the lexicographic ordering on G, and makes

G a partially ordered group. If each of Gα is a totally ordered group, then G is

also a totally ordered group with the lexicographic ordering.

Definition 5.5. Let G be a lattice ordered group. A subset S of G is called a segment

of G if it satisfies the following conditions:
(i) S ⊂ G+

(ii) S is filtered, i.e. x ∈ S, y ∈ G and y > x implies y ∈ S.

(iii) x, y ∈ S implies inf{x, y} ∈ S.
S is called a prime segment of G, if S is a segment of G and G+ \S is a semigroup,

i.e. x, y ∈ G+ \ S implies x + y ∈ G+ \ S. Note that the empty set is always a prime

segment. We shall denote the set of prime segments in a lattice ordered group G with

Spec(G).

Notation. Let G be a lattice ordered abelian group, and let S be a subsemigroup of

G+ such that G+ \ S is filtered. Define HS = {g1 − g2|g1, g2 ∈ S}. Evidently, HS is a

subgroup of G (generated by S). Now form the quotient group G/HS, which we shall

denote by GS.

Theorem 5.6. With the above notation, the following statements hold:
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(1) GS is a lattice ordered group with the ordering defined by

g1 +HS ≤ g2 +HS ⇐⇒ ∃h ∈ HS such that g2 − g1 + h ≥ 0

Moreover, the canonical mapping π : G→ GS is a lattice homomorphism.

(2) If A is a segment of G with A∩S = ∅, then π(A) is a segment of GS. Conversely,

if A is a segment of GS, then π−1(A) is a segment of G such that π−1(A)∩S = ∅.

Moreover, every segment of GS is of the form π(A), where A is a segment of G

such that A ∩ S = ∅.

(3) If B is a segment of G such that B ∩ S 6= ∅, then π(B) = G+
S .

(4) If P is a prime segment of G such that P∩S = ∅, then π(P ) is a prime segment of

GS. Conversely, if P is a prime segment of GS, then π−1(P) is a prime segment

of G such that π−1(P)∩S = ∅. Moreover, π−1 (π(P )) = P for any prime segment

P of G such that P ∩ S = ∅.

(5) There is a one-to-one correspondence between prime segments P of G such that

P ∩ S = ∅ and prime segments P of GS defined by

Φ : P → π(P )

whose inverse is given by

Ψ : P → π−1(P)

Proof. (1) Clearly, the given relation is reflexive and transitive. To see the anti-

symmetry, let g1+HS ≤ g2+HS and g2+HS ≤ g1+HS for some g1, g2 ∈ G. Then,

by definition, there exist h, h′ ∈ HS such that g2−g1 +h ≥ 0 and g1−g2 +h′ ≥ 0.

By adding suitable element of S to h and h′, we may assume that h, h′ ∈ S. Then

(g1 − g2 + h′) + (g2 − g1 + h) = h′ + h ∈ S

If g2−g1 +h ∈ G+\S, then since g2−g1 +h ≤ (g1−g2 +h′)+(g2−g1 +h) = h′+h,

and since G+ \ S is filtered, we have h+ h′ ∈ G+ \ S, a contradiction. It follows

that, g2 − g1 + h ∈ S, and so g2 − g1 = g2 − g1 + h − h ∈ HS. Therefore,
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g1 +HS = g2 +HS.

Now, if g1 +HS ≤ g2 +HS, then g2−g1 +h ≥ 0 for some h ∈ HS. For any g ∈ G,

(g2 + g)− (g1 + g) +H ≥ 0, and so

(g1 +HS) + (g +HS) ≤ (g2 +HS) + (g +HS)

It therefore follows that GS is an ordered abelian group. It remains to show

that infimums of any two elements of GS exists. Let g1, g2 ∈ G, and let g =

inf{g1, g2}. It is immediate that g + HS ≤ gi + HS for i = 1, 2. Let g′ ∈ G be

such that g′ +HS ≤ gi +HS for i = 1, 2. Then there exist h1, h2 ∈ HS such that

gi − g′ + hi ≥ 0 for i = 1, 2. As before, we may assume that h1 = h2 = h ∈ S.

Since gi ≥ g′−h for i = 1, 2, then we have g ≥ g′−h, and so g−g′+h ≥ 0, which

gives that g′ +HS ≤ g +HS. Thus g +HS = inf{g1 +HS, g2 +HS}. Hence, GS

is a lattice ordered abelian group.

The fact that π is a lattice homomorphism is straightforward since for g1, g2 ∈ G,

inf{g1 +HS, g2 +HS} = inf{g1, g2}+HS.

(2) Let A be a segment of G with A ∩ S = ∅. If π(A) = G+
S , then there exists a ∈ A

such that π(a) = a+HS = HS and this implies a ∈ HS. So there exist s1, s2 ∈ S

such that a = s1 − s2, or s1 = a + s2 ≥ a. Since A is a segment and a ∈ A, this

gives that s1 ∈ A, contrary to our assumption A ∩ S = ∅. So π(A) ⊂ G+
S .

Let π(a) = a+HS ∈ π(A) and g+HS ∈ G+
S be such that π(a) = a+HS ≤ g+HS.

Then there exists h ∈ HS such that g − a + h ≥ 0, clearly we may assume that

h ≥ 0. So we have g + h ≥ a, and since A is a segment, then we have g + h ∈ A.

Thus π(g + h) = g + h+HS = g +HS ∈ π(A).

Let a + HS, b + HS ∈ π(A), where a, b ∈ A. Since A is a segment, we have

inf{a, b} ∈ A, and so inf{a + HS, b + HS} = inf{a, b} + HS = π(inf{a, b}) ∈

π(A).

Thus π(A) is a segment of GS.

Now let A be a segment of GS. Since A ⊂ G+
S , then we have π−1(A) ⊂ G+, for

otherwise, if π−1(A) = G+, then since π is surjective we have A = π(π−1(A)) =

G+
S , a contradiction.
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Let a ∈ π−1(A) and g ∈ G+ be such that a ≤ g. Then we have π(a) ≤ π(g), and

since A is a segment and π(a) ∈ π(π−1(A)) = A, then π(g) ∈ A which implies

g ∈ π−1(A).

Let a, b ∈ π−1(A), then π(a) = a+HS, π(b) = b+HS ∈ A, since A is a segment

of G+
S , then we have inf{a+HS, b+HS} = inf{a, b}+HS = π(inf{a, b}) ∈ A,

then inf{a, b} ∈ π−1(A).

Thus π−1(A) is a segment of G.

Suppose that π−1(A)∩S 6= ∅. Let x ∈ π−1(A)∩S, then π(x) = x+HS ∈ A and

π(x) = x + HS ∈ π(S) = S + HS = {s + HS|s ∈ S}. But since S ⊆ HS, then

we have x ∈ HS. This is a contradiction since x + HS = 0 + HS ∈ A and this

implies that A = G+
S . So we must have π−1(A) ∩ S = ∅.

Since we have π(π−1(A)) = A for all segments A of GS, and π−1(A) is a segment

of G such that π−1(A) ∩ S = ∅, then the last sentence of our claim is already

proved.

(3) Let B is a segment of G such that B∩S 6= ∅. Let b ∈ B∩S, then π(b) = b+HS ∈

π(B). Since b ∈ S ⊆ HS, then b + HS = 0 + HS. We can show π(B) is filtered

as we have showed π(A) is filtered in (2) of this proof. Since 0 +HS ∈ π(B), we

have π(B) = G+
S .

(4) Let P be a prime segment of G such that P ∩ S = ∅, by (2) of this proof π(P )

is a segment of GS. Now let a + HS, b + HS ∈ G+
S \ π(P ). We claim that

a, b ∈ G+ \ P . If a < 0, then a + HS ≤ 0 + HS, and since a + HS ∈ G+
S , then

a ∈ HS. So a = s1 − s2 for some s1, s2 ∈ S. Then since G+ \ S is filtered,

a = s1 − s2 ≤ s1 and s1 ∈ S implies a ∈ S ⊆ G+, a contradiction. Then we have

a ∈ G+, and similarly, b ∈ G+. Clearly if a, b ∈ P , then π(a), π(b) ∈ π(P ). Thus

we have a, b ∈ G+ \ P . Since P is a prime segment, this implies a+ b ∈ G+ \ P .

Now our claim is that if x ∈ G+ \ P , then π(x) ∈ G+
S \ π(P ). Let x ∈ G+ \ P .

x ∈ G+ implies that x ≥ 0 and so x + HS ≥ 0 + HS. Thus x + HS ∈ G+
S . Now

suppose that x /∈ P and π(x) = x+HS ∈ π(P ). Then x+HS = p+HS for some

p ∈ P . And this implies p− x ∈ HS and so p− x = s1 − s2 for some s1, s2 ∈ S.

Then p+ s2 = x+ s1 ≥ p, and since p ∈ P , then we have x+ s1 ∈ P . The facts
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that P is a prime segment and x /∈ P implies that s1 ∈ P . But then we have

s1 ∈ S ∩ P which is a contradiction. So our claim is true.

Since we have shown that a+ b ∈ G+ \P , then we have π(a+ b) = π(a) + π(b) ∈

G+
S \ π(P ). Hence, π(P ) is a prime segment of GS.

Now let P be a prime segment of GS. It has shown in (2) of this proof that

π−1(P) is a segment of G such that π−1(P)∩S = ∅. The only part we shall show

that π−1(P) is prime. Let a, b ∈ G+ \ π−1(P), then as we have shown above,

π(a), π(b) ∈ G+
S \ π (π−1(P)) = G+

S \ P . Then π(a + b) = π(a) + π(b) ∈ G+
S \ P

since P is a prime segment of GS. And this implies that a+ b ∈ G+ \ π−1(P) as

in the first paragraph of this part of the proof. So π−1(P) is a prime segment of

G.

Now, let P be a prime segment of G such that P ∩ S = ∅. It is well-known from

set theory that P ⊆ π−1 (π(P )). So we shall show the converse inclusion. Since π

is an order homomorphism, then π−1 (π(P )) ⊆ G+. So let x ∈ π−1 (π(P )), then

π(x) ∈ π(P ). Since we have shown above that for any prime segment P of G

with P ∩S = ∅, if x ∈ G+ \P , then π(x) ∈ G+
S \π(P ). Then π(x) ∈ π(P ) implies

that x ∈ P . Thus P = π−1 (π(P )).

(5) Let P and PS denote respectively the prime segments P of G with P ∩ S = ∅

and the prime segments of GS.

Set Φ : P →PS defined by Φ(P ) = π(P ) for all P ∈P, and set Ψ : PS →P

defined by Ψ(P) = π−1(P) for all P ∈PS.

We have shown in (4) that both Φ and Ψ are well-defined mappings. We shall

show that Φ and Ψ are inverses of each other:

For any P ∈ P, Ψ (Φ(P )) = π−1 (π(P )) = P as we have shown in (4), and by

the same part, we have that Φ (Ψ(P)) = π (π−1(P)) = P for any P ∈PS.

Thus these mappings give us the desired correspondence.

Corollary 5.7. Let G be a lattice ordered group and let P be a prime segment of G.

If S = G+ \ P , then GS is a lattice ordered group with unique maximal segment π(P ).
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Every segment of GS is of the form π(I) for some segment I of G with I ⊆ P .

In particular, GS is totally ordered.

Definition 5.8. If G is a lattice ordered group, and if S = G+ \P for a prime segment

P of G, then GS will be called as the localization of G at P , and denoted as GP .

Now we turn our attention to totally ordered groups G and show that we can

construct valuation domains whose group of divisibility is lattice-isomorphic to G. But

before, we need to give the following lemma:

Lemma 5.9. Let R be a domain with field of fractions Q, let G be a totally ordered

group, and set v : R∗ → G+ be a mapping which satisfies the following properties:

(1) v is surjective.

(2) v(ab) = v(a) + v(b) for all a, b ∈ R∗.

(3) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ R∗.

Then v̄ : Q∗ → G defined by v̄(a/b) = v(a)− v(b) is a valuation on Q.

Proof. Since for a ∈ R∗, we have v̄(1/a) = v(1) − v(a) = −v(a) and v is surjective,

then v̄ is clearly surjective.

Let a, b ∈ Q∗, then a = x1/y1, b = x2/y2 for some x1, x2, y1y2 ∈ R∗.
v̄(ab) = v̄(x1x2/y1y2) = v(x1x2)− v(y1y2) = v(x1) + v(x2)− v(y1)− v(y2)

= v(x1)− v(y1) + v(x2)− v(y2) = v̄(x1/y1) + v̄(x2/y2)

= v̄(a) + v̄(b)

v̄(a+ b) = v̄(x1/y1 + x2/y2) = v̄ ((x1y2 + x2y1)/y1y2)

= v(x1y2 + x2y1)− v(y1y2)

≥ min{v(x1y2), v(x2y1)} − v(y1y2)

= min{v(x1y2)− v(y1y2), v(x2y1)− v(y1y2)}

= min{v̄(x1/y1), v̄(x2/y2)}

= min{v̄(a), v̄(b)}
Thus v̄ is a valuation on Q.

Theorem 5.10 (W. Krull [6, p. 164]). [11, Theorem 1.1] If G is a totally ordered group,

then there exists a valuation domain whose group of divisibility is order-isomorphic to

G.
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Proof. LetK be a field and let S be the group algebra K[G] =

{
n∑
i=1

kigi|n ∈ N, ki ∈ K, gi ∈ G
}
.

Let Q be the field of fractions of S, and define v : Q∗ → G by

v


m∑
i=1

λigi

n∑
j=1

µjg′j

 = inf{gi}mi=1 − inf{g′j}nj=1

where λi, µj ∈ K∗, gi, g′j ∈ G. Our claim is to show that v is a valuation. To this aim,

we shall show that v′ : S∗ → G+ where G+ denotes the positive elements of G, defined

by v′
(

m∑
i=1

λigi

)
= inf {gi}mi=1 for λi ∈ K, gi ∈ G, satisfies the properties in Lemma 5.9.

Then since v(a/b) = v′(a)− v′(b), v becomes a valuation on G.

Since every element of G+ is also an element of S, then for g ∈ G+, v′(g) = g, hence

v′ is surjective.

Let a, b ∈ S with a =
m∑
i=1

λigi, b =
n∑
j=1

µjg
′
j where λi, µj ∈ K, gi, g′j ∈ G. Then v′(ab) =

v′

(
m∑
i=1

n∑
j=1

(λiµj)(gig
′
j)

)
. By definition, v′(a) = inf{gi}mi=1 and v′(b) = inf{g′j}nj=1. Since

G is a totally ordered group, then we have v′(a) = gi0 and v′(b) = g′j0 for some i0 ∈

{1, . . . ,m} and j0 ∈ {1, . . . , n}. Then clearly gi0g′j0 ≤ gαg
′
β for all α = 1..m, β = 1..n,

which gives us v′(ab) = v′(a)v′(b).

v′(a+ b) = v′(
m∑
i=1

λigi +
n∑
j=1

µig
′
j)

= inf{gi, g′j}
(m,n)
(i,j)=(1,1)

= inf
{
inf{gi}mi=1, inf{g′j}nj=1

}
= inf{v′(a), v′(b)}

= min{v′(a), v′(b)}

Now set R = {x ∈ Q∗|v(x) ≥ 0} ∪ {0}, the valuation ring corresponding to the

valuation v, then R is the desired ring since if v̄ is the valuation determined by R, and

as a result, v and v̄ are equivalent:

Set U be the group of units of R, then v̄ : Q∗ → Q∗/U . Define φ : G → Q∗/U

by φ(v(a)) = aU = v̄(a) for all a ∈ Q∗. If v(a) = v(b), then v(a/b) = 1 so a/b ∈ U

and then v̄(a) = aU = bU = v̄(b), thus φ is well-defined. Since φ(v(a)) = v̄(a), then it

remains to show that φ is an order-preserving isomorphism:

φ is a homomorphism, since φ(v(a) + v(b)) = φ(v(ab)) = abU = aU + bU =
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φ(v(a)) + φ(v(b)). It is injective since φ(v(a)) = 0 implies a ∈ U and so v(a) = 0. It

is clear that φ is surjective. Thus φ is an isomorphism. Now we shall show that φ is

order-preserving. If v(a) ≤ v(b), then b/a ∈ R, so aU ≤ bU , thus φ(v(a)) ≤ φ(v(b)),

which means φ is order-preserving.

5.3 Constructing Bezout Domains

In the end of the preceding section we have shown that for any totally ordered abelian

group G there corresponds a valuation ring whose group of divisibility is isomorphic to

G. In this section, we look for a similar correspondence when we take the group to be

a lattice ordered abelian group.

Definition 5.11. An integral domain is called a Bezout domain if every finitely gen-

erated ideal of R is principal.

Proposition 5.12. Let R be a Bezout domain. For any a, b ∈ R∗, aR + bR = cR

implies inf{aU, bU} = cU .

Proof. Let a, b ∈ R∗ with aR + bR = cR, then we have aR ⊆ cR and bR ⊆ cR. So

c−1a, c−1b ∈ R, and this implies cU ≤ aU and cU ≤ bU . Let qU ≤ aU and qU ≤ bU for

some q ∈ R∗, then since q ∈ Q∗, we have q−1a, q−1b ∈ R. And this gives us aR ⊆ qR

and bR ⊆ qR, which implies cR = aR + bR ⊆ qR, thus q−1c ∈ R. Hence qU ≤ cU ,

which proves that inf{aU, bU} = cU .

Proposition 5.13. Let R be a Bezout domain, then the group of divisibility of R is a

lattice ordered group.

Proof. Let Q be the field of fractions of R, and let G be the group of divisibility of

R. It is sufficient for us to show that for any x, y ∈ Q∗, inf{xU, yU} exists. Since

x, y ∈ Q∗, there exists d ∈ R∗ such that dx, dy ∈ R∗. Set cR = dxR + dyR, where

c ∈ R∗, such an element exists since R is a Bezout domain. Then by Proposition

5.12, inf{dxU, dyU} = cU . Since dxR ⊆ cR, then we have c−1dx ∈ R. So we have

(c−1d)−1U ≤ xU , or d−1cU ≤ xU . Similarly, since dyR ⊆ cR, we have d−1cU ≤ yU .

Now let z ∈ Q∗ with zU ≤ xU and zU ≤ yU . Then z−1x, z−1y ∈ R, and this implies

xR ⊆ zR and yR ⊆ zR, or xR + yR ⊆ zR. Hence we have cR = dxR + dyR ⊆ dzR.

Since cR ⊆ dzR, we have (dz)−1c = z−1d−1c ∈ R, and this implies zU ≤ d−1cU . Thus

inf{xU, yU} = d−1cU . And this proves that G is a lattice ordered group.
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Lemma 5.14. Let R be a Bezout domain. If a, b ∈ R∗, then sup{aU, bU} ∈ R∗ and if

sup{aU, bU} = qU , then qR = aR ∩ bR.

Proof. Let a, b ∈ R∗ and let qU = sup{aU, bU}, where q ∈ Q∗. Then since aU ≤ qU

and bU ≤ qU , we have a−1q, b−1q ∈ R, so q ∈ aR ∩ bR. Thus we have q ∈ R∗, and so

qR ⊆ aR ∩ bR. Let r be a nonzero element of aR ∩ bR. Write r = ar1 = br2 where

r1, r2 ∈ R. rU = ar1U = aU + r1U ≥ aU . Similarly, rU ≥ bU . Then rU ≥ qU , which

implies q−1r ∈ R, and so r ∈ qR. Thus we have qR = aR ∩ bR.

Corollary 5.15. Intersection of two principal ideals in a Bezout domain is principal.

The converse is not true in general.

As a counter example, let K be a field and let R = k[X, Y ], the polynomial ring

over K with indeterminates X and Y . Intersection of any two principal ideal of R is

principal but R is not a Bezout domain. By divisibility properties in R we know that

fR ∩ gR = LCM{f, g}R for any f, g ∈ R∗. But the ideal (X, Y ) is not principal but

finitely generated, so R is not a Bezout domain.

Proposition 5.16. Let G be the group of divisibility of R, let Q be the field of fractions

of R and let Π : Q∗ → G = Q∗/U be the canonical epimorphism and suppose that R is

a Bezout domain. Then, there is a one-to-one order-preserving correspondence between

the set of all proper ideals of R and the set of all segments of G. A proper ideal J of R

corresponds to the segment Π(J∗) of G. Under this correspondence, prime (respectively

maximal) ideals correspond to prime (respectively maximal) segments.

Proof. Set Ψ : I ∗
R → SG defined by Ψ(I) = Π(I∗) for all I ∈ I ∗

R, and set Φ : SG →

I ∗
R defined by Φ(S) = Π−1(S) ∪ {0} for all S ∈ SG. We shall show that Ψ and Φ

are well-defined and inverses of each other, then these mappings give us the desired

correspondence.

First of all, we shall show that, for any nonzero ideal I of R, Ψ(I) is a segment of

G.

Let I be a nonzero proper ideal of R. Then Ψ(I) = Π(I∗). Since I∗ ⊂ R∗, then

Ψ(I) = Π(I∗) ⊂ Π(R∗) = G+.

Let Π(a) = aU ∈ Π(I∗) and qU ∈ G+ with aU ≤ qU . Then a−1q ∈ R. Since

a ∈ I∗, then a(a−1q) = q ∈ I∗, and so Π(q) = qU ∈ Π(I∗).
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Now, let a, b ∈ I∗. Then Π(a) = aU,Π(b) = bU ∈ Π(I∗). Set cR = aR + bR where

c ∈ R∗. Since a, b ∈ I∗, then aR, bR ⊆ I∗ and so cR ⊆ I∗, thus c ∈ I∗. Now by

Proposition 5.12, we have Π(c) = cU = inf{aU, bU} ∈ Π(I∗).

Thus Ψ(I) = Π(I∗) is a segment of G.

Secondly, we shall show that, for any nonempty segment S of G, Φ(S) is an ideal

of R.

Let S be a nonempty segment of G. Then Φ(S) = Π−1(S) ∪ {0}.

Let a, b ∈ Π−1(S) be nonzero, then Π(a) = aU,Π(b) = bU ∈ S. Set cR = aR + bR

with c ∈ R∗. By Proposition 5.12, cU = inf{aU, bU} and since S is a segment, then

we have cU ∈ S. Since cR ⊇ (a + b)R, then we have (a + b)U ≥ cU . And again since

S is a segment, we have (a+ b)U = Π(a+ b) ∈ S. Thus a+ b ∈ Π−1(S).

Let a ∈ Π−1(S) be nonzero and r ∈ R∗. Then we have Π(a) ∈ S and Π(r) ∈ G+.

Since we have 0 ≤ Π(r), then by adding Π(a) at both sides, we have Π(a) ≤ Π(a) +

Π(r) = Π(ar). So because S is a segment of G, we have Π(ar) ∈ S and so ar ∈ Π−1(S).

Hence Φ(S) is an ideal of R.

Lastly, if S = ∅, then Φ(∅) = Π−1(∅) ∪ {0} = {0} is an ideal. And if I = 0, then

Ψ(0) = Π(∅) = ∅, is a segment.

Thus we have shown that both mappings are well-defined.

Let S be a segment of G. Ψ (Φ(S)) = Ψ (Π−1(S) ∪ {0}) = Π (Π−1(S)) = S, last

equality holds since Π is surjective.

Let I be a proper ideal of R. Φ(Ψ(I)) = Φ(Π(I∗)) = Π−1(Π(I∗)) ∪ {0}.

Now we shall to show that Π−1(Π(I∗)) = I∗ holds:

I∗ ⊆ Π−1(Π(I∗)) is a well-known fact in set theory, so we shall prove the converse

inclusion. Let a ∈ Π−1(Π(I∗)), then Π(a) = aU ∈ Π(I∗). So there exists b ∈ I∗ such

that Π(a) = Π(b) or aU = bU . Then we have a/b ∈ R. Since b ∈ I∗, then we have

b(a/b) = a ∈ I∗. Thus we have Π−1
(
Π(I∗)

)
= I∗ and if we use this fact, we have

Φ(Ψ(I)) = I∗ ∪ {0} = I.

So Φ and Ψ are inverses of each other.

Now we shall show Ψ is order-preserving. Since Φ is its inverse, it also becomes

order-preserving after this:

Let I, J be ideals of R such that I ⊆ J . Then we have I∗ ⊆ J∗. Let Π(a) ∈ Π(I∗)

where a ∈ I∗, then we clearly have a ∈ J∗ and so Π(a) ∈ Π(J∗). So Ψ(I) = Π(I∗) ⊆
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Ψ(J) = Π(J∗). Thus both Ψ and Φ are order-preserving.

Now let P be a prime ideal of R. Our aim is to show that Ψ(P ) = Π(P ∗) is a

prime segment of G. Let aU, bU ∈ G+ \ Π(P ∗). Then by the definition of G+, we

have a, b ∈ R∗ \ P ∗. Then since P ∗ is prime, we have ab ∈ R∗ \ P ∗. And hence

abU = aU + bU ∈ G+ \ Π(P ∗). So Ψ(P ) is a prime segment of G.

Let S be a prime segment of G. Our aim is to show that Φ(S) = Π−1(S) ∪ {0} is

a prime ideal of R. Let a, b ∈ R \ Π−1(S) be nonzero, then aU, bU ∈ G+ \ S. Since

S is a prime segment, we have aU + bU = abU ∈ G+ \ S. Since abU /∈ S, then

ab /∈ Π−1(S). Since a and b are both nonzero and R is a domain, then ab 6= 0. So we

have ab ∈ R \ (Π−1(S) ∪ {0}) = R \ Φ(S). Thus Φ(S) is a prime ideal of R.

After we showed that these mappings are order-preserving and the correspondence

between proper ideals of R and segments of G, the correspondence between maximal

ideals of R and maximal segments of G is straightforward by their definitions.

Let G be the group of divisibility of R and suppose that R is a Bezout domain. Let

P ∈ Spec(R). Define H to be the subgroup of G generated by G+ \ π(P ∗), i.e.,

H =

{
k∑
i=1

nigi|k ∈ N, ni ∈ Z, gi ∈ G+ \ π(P ∗)

}
= {g1 − g2|g1, g2 ∈ G+ \ π(P ∗)}

= {g1 − g2|g1, g2 ∈ π(R∗ \ P ∗) = π(R \ P )}

= {rU − sU |r, s ∈ R \ P}

G/H is an ordered group with the ordering given by

g1 +H ≥ g2 +H if there exists h ∈ H such that g1 − g2 + h ≥ 0.

Indeed, the only challenging part is anti-symmetry.

Suppose g1+H ≥ g2+H and g2+H ≥ g1+H. Then there exist h1, h2 ∈ H such that

g1 − g2 + h1 ≥ 0 and g2 − g1 + h2 ≥ 0. By considering h1, h2 as differences of elements

of G+ \ π(P ∗), we may add suitable positive elements in G to have h := h1 = h2 ≥ 0.

So we have g1 − g2 + h ≥ 0 and g2 − g1 + h ≥ 0. Then we have −h ≤ g1 − g2 ≤ h.

Now our claim is that if g ∈ G, h ∈ H+ be such that −h ≤ g ≤ h, then g ∈ H. For

once this is proved, we have g1− g2 ∈ H and so g1 +H = g2 +H, which gives that the

relation defined above is anti-symmetric, and so is an ordering.
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Let h ∈ H+, then h /∈ π(P ∗), for otherwise, let h ∈ π(P ∗) and set h = h1 − h2,

where h1, h2 ∈ G+ \ π(P ∗). Then h1 = h+ h2 ≥ h which implies h1 ∈ π(P ∗), which is

a contradiction.

Since we have −h ≤ g, then g + h ∈ G+. If g + h ∈ π(P ∗), then since π(P ∗)

is a prime segment, we have either g ∈ π(P ∗) or h ∈ π(P ∗). Since h ∈ H implies

h /∈ π(P ∗), and g ≤ h implies g /∈ π(P ∗), then we must have g + h /∈ π(P ∗). So

g + h ∈ G+ \ π(P ∗) ⊆ H. Then we have g = (g + h)− h ∈ H, since both g + h and h

are elements of G+ \ π(P ∗).

Proposition 5.17. If P is a prime ideal of a Bezout domain R, then the group of

divisibility of RP is order-isomorphic to GP .

Proof. Let G = Q∗/U be the group of divisibility of R, where Q is the field of fractions

of R and U is the multiplicative group of units of R. Let UP be the group of units in

RP , where P ∈ Spec(R), and set G′ = Q∗/UP be the group of divisibility of RP . Set

π : Q∗ → Q∗/U be the canonical epimorphism.

Let Ψ : G
H
→ G′ =

R∗P
UP

defined by Ψ(aU +H) = aUP . Our aim is to show that Ψ is

an order isomorphism.

First of all, we shall show that Ψ is well-defined.

Let aU +H = bU +H ∈ G/H, then aU − bU ∈ H, then ab−1U = rs−1U for some

r, s ∈ R \ P . Then ab−1 = rs−1u for some u ∈ U . Since ru ∈ R \ P and s ∈ R \ P ,

then ab−1 ∈ UP , so aUP = bUP . Thus Ψ is well-defined.

Ψ is clearly surjective, now we shall show Ψ is injective.

Let aUP = bUP , so we have ab−1 ∈ UP , and so a, b ∈ R\P . Since aU, bU ∈ π(R\P ),

then (ab−1)U = aU − bU ∈ H, so aU +H = bU +H. Hence Ψ is injective.

To see that Ψ is a homomorphism, let aU +H, bU +H ∈ G/H.

Ψ ((aU +H) + (bU +H)) = Ψ(abU + H) = abUP = aUP + bUP = Ψ(aU + H) +

Ψ(bU +H).

Now let aU +H, bU +H ∈ G/H be such that aU +H ≤ bU +H. Then there exists

h ∈ H such that bU − aU + h ≥ 0, since h ∈ H, then there exist r, s ∈ R \P such that

h = rU−sU . So we have bU−aU+rU−sU ≥ 0, which implies br
as
U ≥ 0, hence br

as
∈ R.

Since R ⊆ RP , then br
as
∈ RP , and since r

s
∈ UP , then we have b

a
= br

as
· s
r
∈ RP . And

this gives that aUP ≤ bUP . Thus Ψ is order-preserving. Since Ψ is an isomorphism,

Ψ−1 is also order-preserving.
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Lastly, we shall show that Ψ(inf{aU+H, bU+H}) = inf{Ψ(aU+H),Ψ(bU+H)}

for all aU +H, bU +H ∈ G/H.

Set cU + H = inf{aU + H, bU + H}.Then our claim is that Ψ(cU + H) = cUP =

inf{Ψ(aU +H),Ψ(bU +H)}.

cU+H ≤ aU+H implies that ar1
cs1
∈ R for some r1, s1 ∈ R\P , and cU+H ≤ bU+H

implies that br2
cs2
∈ R for some r2, s2 ∈ R \ P .

So we have
a/s1

c/r1

,
b/s2

c/r2

∈ R ⊆ RP

This gives that ( c
r1

)UP ≤ ( a
s1

)UP and ( c
r2

)UP ≤ ( b
s2

)UP .

( c
r1

)UP ≤ ( a
s1

)UP implies that cUP − r1UP ≤ aUP − s1UP , so we have cUP − aUP ≤

r1UP − s1UP = (r1/s1)UP = UP , hence cUP ≤ aUP . Similarly, we have cUP ≤ bUP .

Now if xUP ≤ aUP and xUP ≤ bUP , then Ψ(xU + H) ≤ Ψ(aU + H) and Ψ(xU +

H) ≤ Ψ(bU + H). Since Ψ−1 is order-preserving, then xU + H ≤ aU + H and

xU +H ≤ bU +H, so xU +H ≤ cU +H since cU +H = inf{aU +H, bU +H}. Now

since Ψ is order-preserving, we have xUP = Ψ(xU + H) ≤ Ψ(cU + H) = cUP . Hence

cUP = inf{Ψ(aU +H),Ψ(bU +H)}.

Proposition 5.18. Let {Gα}α∈Γ be a family of lattice ordered groups, and let G =⊕
α∈Γ

Gα be ordered with product ordering. Set πα : G→ Gα be the canonical epimorphism

for all α ∈ Γ. If P ∈ Spec(G), then either P = ∅ or there exists α ∈ Γ and Pα ∈

Spec(Gα) such that P = G+ ∩ π−1
α (Pα).

Proof. There exists α ∈ Γ such that πα(x) 6= 0 for all x ∈ P . For otherwise, suppose

that for all αi ∈ Γ, there exists xi ∈ P such that παi(xi) = 0. Since P is a segment of

G, then inf{xi} = 0 ∈ P , which is a contradiction. Thus such an α ∈ Γ exists.

Set Pα = πα(P ). Our aim is to show that Pα ∈ Spec(Gα) and P = G+ ∩ π−1
α (Pα).

First of all, we need to show that Pα is a segment of Gα.

Clearly, πα is order-preserving. We know that Pα = πα(P ) and by the way we

choose α, 0 /∈ Pα, so Pα ⊂ G+
α .

Let x ∈ Pα, y ∈ Gα be such that y > x. Set x̃, ỹ ∈ G be such that πα(x̃) = x,

πα(ỹ) = y and πγ(x) = πγ(y) for all γ 6= α. Then clearly x̃ ∈ P , ỹ ∈ G and ỹ > x̃.

Since P is filtered, then ỹ ∈ P , and so πα(ỹ) = y ∈ Pα. Thus Pα is filtered.

Let x, y ∈ Pα. Our aim is to show that inf{x, y} ∈ Pα. Let x̃, ỹ ∈ P be such
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that πα(x̃) = x and πα(ỹ) = y. Since P is a segment, then inf{x̃, ỹ} ∈ P . We have

inf{x, y} = inf{πα(x̃), πα(ỹ)} = πα(inf{x̃, ỹ}) ∈ πα(P ) = Pα. So Pα is a segment of

Gα.

Now let x, y ∈ G+
α \ Pα. Then there exist x̃, ỹ ∈ G+ \ P such that πα(x̃) = x and

πα(ỹ) = y. Since P ∈ Spec(G), then x̃+ỹ ∈ G+\P , and so πα(x̃+ỹ) = πα(x̃)+πα(ỹ) =

x+ y ∈ πα(G+ \ P ) = G+
α \ Pα. Thus Pα ∈ Spec(Gα).

Now we shall prove that P = G+∩π−1
α (Pα). We know that P ⊆ G+∩π−1

α (Pα). We

suppose by the way of contradiction that P ⊂ G+ ∩ π−1
α (Pα).

Let x ∈ (G ∩ π−1
α (Pα)) \P . Then x ∈ G+ and πα(x) ∈ Pα = πα(P ). So there exists

y ∈ P such that πα(x) = πα(y).

Now let y1, y2 ∈ G be such that πγ(y1) = y for γ 6= α, and πα(y1) = 0, and

y2 = y − y1. Since y = y1 + y2 ∈ P and P is a prime segment of G, then either y1 ∈ P

or y2 ∈ P . If y1 ∈ P , then πα(y1) = 0 ∈ πα(P ) = Pα, which is a contradiction, then we

have y2 ∈ P . In this case, we have πα(x) = πα(y2), and all other components of y2 are

zero. Then we have y2 ≤ x. So y2 ∈ P implies x ∈ P , which is again a contradiction.

Thus such an x doesn’t exist. Hence we have P = G+ ∩ π−1
α (Pα).

Proposition 5.19. Let G be a lattice ordered group. Then every segment of G is

contained in a maximal segment.

Proof. Let Γ be the set of segments of G such that, for S ∈ Γ, S is not contained in a

maximal segment. Our aim is to show that Γ = ∅ by using Zorn’s Lemma.

Suppose Γ 6= ∅. Let Sα1 ⊆ Sα2 ⊆ . . . be a chain of segments in Γ. Then S =
⋃
αi

Sαi

is a segment of G:

If S = G+, then 0 ∈ S =
⋃
αi

Sαi , so 0 ∈ Sαj for some j, which contradicts with the

fact that Sαj is a segment. So S ⊂ G+.

Let x ∈ S, y ∈ G+ be such that y > x. Since s ∈ S, then there exist j such that

x ∈ Sαj , and since Sαj is a segment of G, then y ∈ Sαj ⊆ S.

Let x, y ∈ S, then there exist j, k such that x ∈ Sαj and y ∈ Sαk . Then we have

either x, y ∈ Sαj or x, y ∈ Sαk . It is clear that, in both cases we have inf{x, y} ∈ S.

Now if S /∈ Γ, then S contained in a maximal segment M . In this case, all Sαi ’s

are contained in that maximal segment M , which is a contradiction. So we must have

S ∈ Γ.
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By Zorn’s Lemma, Γ has a maximal element, say T . T is not a maximal segment

since T ∈ Γ, so there exist a segment T ′ of G such that T ⊆ T ′. Since T is maximal

in Γ, then T ′ /∈ Γ and hence contained in a maximal segment M ′. This is again

contradiction, since we have that T ⊆ T ′ ⊆M ′. So our assumption that Γ 6= ∅ is false,

and every segment of G contained in a maximal segment.

Proposition 5.20. If G is a lattice ordered group with unique maximal segment, then

G is totally ordered.

Proof. Let M be the unique maximal segment of G. Let a ∈ G+ \ {0}. Set Sa = {x ∈

G+|x ≥ a}. Our claim is that, Sa is a segment of G:

Since a ∈ G+ \ {0}, then a > 0 and so 0 /∈ Sa, which implies Sa ⊂ G+.

Let x ∈ Sa, y ∈ G+ with y > x. Then y > x ≥ a, implies that y ∈ Sa.

Let x, y ∈ Sa, then we have that x ≥ a and y ≥ a, so inf{x, y} ≥ a, which gives

that inf{x, y} ∈ Sa.

So Sa is a segment of G. Then by Proposition 5.19, Sa is contained in a maximal

segment, in this case, the unique maximal segment M.

We have that for any a ∈ G+ \ {0}, a ∈ Sa ⊆M , hence G+ \ {0} = M .

Now let x ∈ G. Then by Theorem 5.4, x = y−z for some y, z ∈ G+ with inf{y, z} =

0. If y, z ∈ G+ \ {0} = M , then since M is a segment, we have inf{y, z} = 0 ∈ M ,

which is impossible. So either y = 0 or z = 0. If y = 0, then x ∈ G−, if z = 0,

then x ∈ G+. Since every element of G is either positive or negative, then G is totally

ordered.

Lemma 5.21. Let {Gi}i∈I be a family of totally ordered groups. Let vi : Q∗ → Gi be

valuations on Q. Then v =
∏
i∈I
vi : Q∗ → v(Q∗) ⊆

∏
i∈I
Gi is a valuation.

Proof. Let x, y ∈ Q∗. Then
v(xy) = (vi(xy))i∈I

= (vi(x) + vi(y))i∈I

= (vi(x))i∈I + (vi(y))i∈I

= v(x) + v(y)

and

103



v(x+ y) = (vi(x+ y))i∈I

≥ (min{vi(x), vi(y)})i∈I
= min

{
(vi(x))i∈I , (vi(y))i∈I

}
= min {v(x), v(y)}

Hence v =
∏
i∈I
vi is a valuation.

Theorem 5.22 (Krull-Kaplansky-Jaffard-Ohm). If G is a lattice ordered group,

then there exists a Bezout domain whose group of divisibility is lattice isomorphic to

G.

Proof. Let G be a lattice ordered group and let Γ be the set of maximal segments of

G. By Corollary 5.7 GM is a totally ordered group for every M ∈ Γ. Then

f =
∏
M∈Γ

fM : G −→
∏
M∈Γ

GM = G′

is a lattice embedding of G into G′, where G′ has the product ordering:

We know that HM = {g1 − g2|g1, g2 ∈ G+ \M}. Let x ∈ HM , then x = g1 − g2 for

some g1, g2 ∈ G+ \M . Since x ≤ g1, then x /∈M .

If x ∈
⋂

M∈Max(G)

HM , then x /∈ M for all M ∈ Max(G). Since for all x ∈ G+ \ {0},

Sx = {g ∈ G|g ≥ x} is a segment of G and must contained in a maximal segment, then

we have x = 0. Thus
⋂

M∈Max(G)

HM = 0.

Hence the kernel of the homomorphism f is zero, and so f is an embedding.

Let πM be the canonical projection ofG′ intoGM , for allM ∈ Γ. Let k be a field and

let {Yg|g ∈ G} be a set of indeterminates over k, indexed by G. Let Q = k ({Yg}g∈G).

We shall define a valuation vM : Q∗ → GM .

First, consider monomials in S∗, where S = k [{Yg}g∈G] and define

vM (cY n1
g1 Y

n2
g2 . . . Y nr

gr ) =
r∑
i=1

ni(πM ◦ f)(gi)

where c ∈ k∗, gi ∈ G and ni ∈ Z+. For any p ∈ S∗, we define vM(p) to be the infimum

of vM(mi)’s where the mi’s are distinct monomials which appear in p. With these

definitions, we have vM satisfies the following properties:

1. vM(pq) = vM(p) + vM(q)

2. vM(p+ q) ≥ min{vM(p), vM(q)}

104



Let p, q ∈ S. Then vM(pq) = inf{vM(minj)}, wheremi’s and nj’s are distinct monomi-

als respectively in p and q. We clearly have vM(p) = vM(mi0) and vM(q) = vM(nj0) for

some i0 and j0. We have vM(mi0)+vM(nj0) = vm(mi0nj0) since vM(cY n1
g1
Y n2
g2
. . . Y nr

gr ) =
r∑
i=1

ni(πM ◦ f)(gi) =
r∑
i=1

ni fM(gi). Then vM(pq) = inf{vM(minj)} = inf{vM(mi) +

vM(nj)} = inf{vM(mi)}+ inf{vM(nj)} = vM(p) + vM(q).

Let p, q ∈ S. Our aim is to show that vM(p + q) ≥ min{vM(p), vM(q)}. Set

vM(p+ q) = vM(si) where siis one of the monomials in p+ q. Since si is a monomial in

p, in q or in both, we have that vM(p) ≤ vM(si), vM(q) ≤ vM(si) or both. This clearly

implies that vM(p+ q) ≥ min{vM(p), vM(q)}.

Now for p, p′ ∈ S∗, we let

vM(
p

p′
) = vM(p)− vM(p′)

This defines vM : Q∗ → GM , which is a valuation by Lemma 5.9. Now, define v : Q∗ →

G′ by v =
∏
M∈Γ

vM . Then v is a valuation by Lemma 5.21.

Let R = {x ∈ Q∗|v(x) ≥ 0} ∪ {0}. Then R is an integral domain with field

of fractions Q and with divisibility group v(Q∗). Note that if g ∈ G, then v(Yg) =

f(g), and so f(G) ⊆ v(Q∗). Now let p/p′ ∈ Q∗, then v(p/p′) = v(p) − v(p′). Since

vM(cY n1
g1
. . . Y nr

gr ) =
r∑
i=1

ni πM ◦f(gi), then v(cY n1
g1
. . . Y nr

gr ) =
r∑
i=1

ni f(gi) = f

(
r∑
i=1

nigi

)
∈

f(G). Thus v(Q∗) = f(G) ∼= G. Thus the group of divisibility of R is lattice isomorphic

to G.

Now it remains to show that R is a Bezout domain. To this aim, we shall show

that if x, x′ ∈ R with x 6= x′, then the ideal (x, x′) is principal.

Let x ∈ R∗. Then v(x) = f(g) ≥ 0 for some g ∈ G. Notice that v(cY n1
g1
. . . Y nr

gr ) =
r∑
i=1

ni f(gi) = f

(
r∑
i=1

nigi

)
, and the valuation of any element in Q∗ is a difference of such

elements.

Let x′ ∈ R∗ with x 6= x′, for which v(x′) = f(g′) ≥ 0 where g′ ∈ G. Since

v(x) = v(Yg) and v(x′) = v(Yg′), x/Yg and x′/Yg′ are unit elements of R. Then (x, y) =

(Yg, Yg′). If f(g) ≥ f(g′), then Yg/Yg′ ∈ R, and so (Yg, Yg′) = (Yg′). Similarly, if f(g) ≤

f(g′), then (Yg, Yg′) = (Yg). Otherwise, inf{f(g), f(g′)} < f(g) and inf{f(g), f(g′)} <

f(g′), and so (Yg, Yg′) = (Yg + Yg′) since Yg/(Yg + Yg′), Yg′/(Yg + Yg′) ∈ R. In any case,

we have (x, y) = (Yg, Yg′) is principal, and R is a Bezout domain.
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6 TWO EXAMPLES OF ALMOST DEDEKIND DO-

MAINS

6.1 A Bezout Domain Example

Proposition 6.1. Let G,H be lattice ordered groups and let φ : G→ H be a surjective

lattice homomorphism. Then there is a correspondence between the prime segments P

of G with P ∩Kerφ = ∅ and the prime segments of H given by

{P ∈ Spec(G)|P ∩Kerφ = ∅} ←→ Spec(H)

P
Φ−→ φ(P )

φ−1(P) ∩G+ Ψ←− P

Moreover, we have Ψ(Φ(P )) = P for P ∈ Spec(G) with P ∩ Kerφ = ∅, and

Φ(Ψ(P)) = P for P ∈ Spec(H).

Proof. We denote {P ∈ Spec(G)|P ∩Kerφ = ∅} by Spec′(G).

Let P ∈ Spec′(G). Our aim is to show that φ(P ) ∈ Spec(H).

First of all we shall show that φ(P ) is a segment of H.

Since P ∩Kerφ = ∅, then 0 /∈ φ(P ), and since φ is an order homomorphism, then we

have φ(P ) ⊂ H+.

Let φ(p) ∈ φ(P ) and h ∈ H be such that φ(p) < h. Since φ is surjective, then there

exists g ∈ G such that φ(g) = h, so we have φ(p) < φ(g). If g ≤ p, then we must have

φ(g) ≤ φ(p), so we have that p < g. Since p ∈ P and P is a segment, last inequality

implies that g ∈ P and so φ(g) = h ∈ φ(P ).

Now let φ(x), φ(y) ∈ φ(P ), where x, y ∈ P . x, y ∈ P implies that inf{x, y} ∈ P , and

since φ is a lattice homomorphism, then inf{φ(x), φ(y)} = φ(inf{x, y}) ∈ φ(P ).

Thus φ(P ) is a segment of H.

Now we shall show that φ(P ) is a prime segment.

Let x + y ∈ φ(P ), set x + y = φ(p) for some p ∈ P . Since φ is surjective, then

x = φ(g1), y = φ(g2) for some g1, g2 ∈ G. If we set g = inf{g1 + g2, p}, then φ(g) =

φ(inf{g1 +g2, p}) = inf{φ(g1 +g2), φ(p)} = inf{x+y, x+y} = x+y. Then φ(p−g) =

φ(p) − φ(g) = 0, hence p − g ∈ Kerφ, and this implies that p − g /∈ P . Since

p = (p − g) + g ∈ P and P ∈ Spec(G), then we have g ∈ P . Since g ≤ g1 + g2, then
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g1 + g2 ∈ P . Again, since P ∈ Spec(G), then we have either g1 ∈ P or g2 ∈ P . So we

have either x = φ(g1) ∈ φ(P ) or y = φ(g2) ∈ φ(P ). Hence φ(P ) ∈ Spec(H).

Now let P ∈ Spec(H). Our aim is to show that P := φ−1(P) ∩G+ ∈ Spec′(G).

First of all we shall show that P is a segment of G. Clearly P ⊆ G+and if 0 ∈ P , then

0 = φ(0) ∈ φ(P ) ⊆ P , and this contradicts with the fact that P is a segment of H.

Then we have P ⊂ G+.

Let x ∈ P, y ∈ G with 0 < x < y. Then φ(x) ≤ φ(y) and since φ(x) ∈ φ(P ) ⊆ P , so

φ(x) > 0. Then φ(y) > 0, and this implies y /∈ Kerφ. Since y < 0 implies φ(y) ≤ 0,

then we have y ∈ φ−1(P) ∩G+ = P .

Let x, y ∈ P . Our aim is to show that inf{x, y} ∈ P .

Since x, y ∈ G+, we have inf{x, y} ∈ G+. So it suffices to show that φ (inf{x, y}) ∈ P .

φ(inf{x, y}) = inf{φ(x), φ(y)}, and since φ(x), φ(y) ∈ P and P is a segment of H,

then inf {φ(x), φ(y)} = φ (inf{x, y}) ∈ P .

Hence P = φ−1(P) ∩G+ is a segment of G.

Clearly P ∩Kerφ = ∅, for otherwise 0 ∈ φ(P ) implies that 0 ∈ P , which is impossible.

Now we shall show that P ∈ Spec(G).

Let g1, g2 ∈ G+ with g1 + g2 ∈ P , so we have φ(g1 + g2) = φ(g1) + φ(g2) ∈ P , since

P ∈ Spec(H), then either φ(g1) ∈ P or φ(g2) ∈ P , and this implies g1 ∈ φ−1(P) or

g2 ∈ φ−1(P). So we have that g1 ∈ P or g2 ∈ P , hence P ∈ Spec(G).

Now we show that Ψ and Φ are inverses of each other.

Let P ∈ Spec′(G). We first show that Ψ(Φ(P )) = φ−1(φ(P )) ∩G+ = P .

It is well-known in set theory that P ⊆ φ−1(φ(P )) and since P = P ∩ G+, then

P ⊆ φ−1(φ(P )) ∩ G+. So we shall prove the reverse inclusion. Let g ∈ G+ with

φ(g) ∈ φ(P ). Then there exists p ∈ P such that φ(p) = φ(g). So we have g−p ∈ Kerφ.

Set g′ = inf{g, p}. φ(g′) = φ(inf{g, p}) = inf{φ(g), φ(p)} = φ(g) = φ(p). Then

p − g′ ∈ Kerφ ∩ G+ ⊆ G+ \ P . Since p = (p − g′) + g′ and P ∈ Spec′(G), then

p− g′ /∈ P , so g′ ∈ P . With the fact that g′ ≤ g, we have g ∈ P . Hence P = Ψ(Φ(P ).

Let P ∈ Spec(H). We show that Φ(Ψ(P)) = φ(P ) = P , where P = φ−1(P) ∩ G+.

Clearly φ(P ) ⊆ P . Now let h ∈ P . Since φ is surjective, then h = φ(g) for some g ∈ G.

Clearly h = φ(g) ∈ H+. Set g+ = sup{g, 0} and g− = −inf{g, 0}. Then we have that

g = g+ − g−, where g+, g− ∈ G+. Now h = φ(g) = φ(g+)− φ(g−) ∈ P .

φ(g−) = φ(−inf{g, 0}) = −inf{φ(g), 0} = 0, then we have φ(g) = φ(g+) ∈ P . So g+ ∈
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φ−1(P) ∩G+ = P , which implies that h = φ(g+) ∈ φ(P ). Hence P = Φ(Ψ(P)).

Example 6.2. Let N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}.

Let G be the group of all sequences of elements of Z+ indexed by N such that all

components are constant after some integer n. We shall call the constant part of such

an element f of G by the infinite block of f , and denote by f∞. G is a lattice ordered

group with the ordering f ≤ g if and only if fi ≤ gi for all i ∈ N .

Let Pi = {f ∈ G+|fi > 0} and P∞ = {f ∈ G+|∃n ∈ N,∀i > n, fi > 0} = {f ∈

G+|f∞ > 0}.

We first show that for arbitrary i ∈ N , Pi and P∞ are prime segments of G. Let

i ∈ N .

Clearly, 0 /∈ Pi and 0 /∈ P∞ so by definitions, we have Pi, P∞ ⊂ G+.

Let f ∈ Pi, g ∈ G with f ≤ g, then 0 < fi ≤ gi, and so g ∈ Pi. Let f ∈ P∞, g ∈ G

with f ≤ g, then 0 < f∞ ≤ g∞ implies that g ∈ P∞.

If f, g ∈ Pi, then fi, gi > 0. Then inf{fi, gi} = min{fi, gi} > 0, hence (inf{f, g})i >

0 and this implies inf{f, g} ∈ Pi.

If f, g ∈ P∞, then f∞ > 0 and g∞ > 0. Then we have that (inf{f, g})∞ =

inf{f∞, g∞} = min{f∞, g∞} > 0, and this implies that inf{f, g} ∈ P∞. So Pi and

P∞ are segments of G.

Now let f, g ∈ G+ \ Pi, then fi = gi = 0, so (f + g)i = fi + gi = 0. Let j ∈ N with

j 6= i, then since fi, gi ≥ 0 we have (f + g)i = fi + gi ≥ 0. Thus f + g ∈ G+ \Pi. Hence

Pi is a prime segment.

Let f, g ∈ G+ such that f+g ∈ P∞, our aim is to show that either f ∈ P∞ or g ∈ P∞.

Suppose that f /∈ P∞, then f∞ = 0. Since we know that 0 < (f+g)∞ = f∞+g∞ = g∞,

then g ∈ P∞. Thus Pi and P∞ are prime segments of G. Note that for i, j ∈ N ∪ {∞}

with i 6= j we have Pi 6⊆ Pj since if f ∈ G+ with fi > 0 and fj = 0, then f ∈ Pi \ Pj.

Let Q be a segment of G, our claim is that Q is contained in either P∞ or one of

the Pi’s:

Suppose by the way of contradiction that Q 6⊆ Pi for all i ∈ N and Q 6⊆ P∞. Since

for i ∈ N , Q 6⊆ Pi, then there exists f i ∈ Q such that f i /∈ Pi, i.e., (f i)i = 0. Since

Q 6⊆ P∞, then there exists f ∈ Q such that f∞ = 0, i.e., there exists n ∈ N such that

for all i > n, fi = 0. Now since f, f 1, . . . , fn ∈ Q, then inf{f, f 1, . . . , fn} = 0 ∈ Q,

which is impossible. Thus our claim is true.
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Since Pi’s and P∞ are prime segments of G, for which they do not contain each

other, and every other segment must be included by at least one of them. Then these

are the only maximal segments of G.

Now define φi : G → Z, i = 1, 2, . . . ,∞ defined by φi(f) = fi, i = 1, 2, . . . and

φ∞(f) = f∞. All φi’s are lattice homomorphisms of G onto Z. Now we shall show that

Z has unique prime segment Z+ \ {0}. Let S be a prime segment of Z. Then S has

a minimum element x, our aim is to show that x = 1. Suppose that, by the way of

contradiction, x > 1. Then we have x − 1, 1 ∈ Z+. Since (x − 1) + 1 = x ∈ S, then

either we have x− 1 ∈ S or 1 ∈ S. Both cases contradicts with the minimality of x in

S. Hence we must have x = 1, and so S = Z+ \ {0}.

Since Z has unique prime segment, it follows from the correspondence between

prime segments under a lattice homomorphism defined above, Pi contains no prime

segment properly. Thus Pi’s are the only prime segments of G for i = 1, 2, . . . ,∞; and

for i = 1, 2, . . . ,∞, GPi ’s are order isomorphic to Z.

Now we shall show that f = 1 ∈ G has infinitely many minimal prime divisors:

Clearly, since fi > 0 for all i = 1, 2, . . .∞, we have that f ∈ Pi for all i = 1, 2, . . . ,∞.

Since we have shown that for i 6= j, Pi 6⊆ Pj for i, j = 1, 2, . . . ,∞, then all Pi’s are the

minimal prime divisors of f = 1, and this implies that G is not Noetherian.

By Theorem 5.22 there exists a Bezout domain R, whose group of divisibility is

lattice isomorphic to G. Let I be the ideal of R which corresponds to f = 1 under

the correspondence given by Proposition 5.16. Let P̄i and P̄∞ be ideals of R which

correspond to Pi and P∞ for all i ≥ 1, respectively. Then we have I ⊆ P̄i for all i ≥ 1

and I ⊆ P̄∞. Moreover we have P̄i * P̄j for i = 1, 2, . . . ,∞. Hence {P̄i}∞i=1 is the set

of minimal prime ideals of I, and since I has infinitely minimal prime divisors, then R

is not Noetherian. The correspondence of Proposition 5.16 clearly holds between the

ideals and segments of localizations of R and G, hence we have each localization RP̄i is

also order isomorphic to Z, hence the Bezout domain R is an almost Dedekind domain.

6.2 An Example in Algebraic Integers

We give another example of an almost Dedekind domain which consists of algebraic

integers. The idea of construction is based on starting from an almost Dedekind (or

Dedekind) domain D0 (which will be Z in our case) with field of fractions K0 and
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considering an algebraic extension K of K0 which is expressed as the union of an

ascending net {Kλ}λ∈Λ of intermediate fields, each of which is finite over K0. Then

we form the ring D =
⋃
λ∈Λ

Dλ, where Dλ denotes the integral closure of D0 in K. Note

that D is the integral closure of D0 in K. If we fix a maximal ideal P of D and set

Pλ = P ∩Dλ, then there are only a finite number of maximal ideals of Dλ lying over

P0 = P ∩ D0, and Pλ is one of them, and P0Dλ is a finite product of powers of the

maximal ideals of Dλ containing P0. Assume that Pλ occurs as a factor of P0Dλ to the

exponent eλ. One important result in [13] (see Corollary 42.2) says that if the set {eλ}

is bounded for every maximal ideal P of D, then D is an almost Dedekind domain.

We shall use this result (without giving a proof) in Example 6.5 below. Before giving

Example 6.5, we need the following two results.

Lemma 6.3. Let R be a ring. Let {A1, . . . An} be a set of pairwise comaximal ideals

of R. Then for any finite subset {f1, . . . fn} of R[X], where every fi is monic of degree

k, there exists a monic polynomial f ∈ R[X] of degree k such that f ≡ fi (mod Ai[X])

for every i = 1, . . . , n.

Proof. We use induction on n. Let n = 2. Since A1 and A2 are comaximal, we may

pick a1 ∈ A1, a2 ∈ A2 such that a1 + a2 = 1. Letting

f = a2f1 + a1f2,

we obtain that f is monic of degree k,

f − f1 = (a2 − 1)f1 + a1f2 = a1(f2 − f1) ∈ A1[X],

and

f − f2 = a2(f1 − f2) ∈ A2[X].

Now assume that there exists a monic polynomial g ∈ R[X] of degree k such that g ≡ fi

(mod Ai[X]) for i = 1, . . . , n − 1. Then since A1 . . . An−1 and An are comaximal, the

case where n = 2 gives rise to a monic polynomial f of degree k such that f ≡

g (mod A1 . . . An−1[X]) and such that f ≡ fn (mod An[X]). Consequently, f ≡ fi

(mod Ai[X]) for each i = 1, . . . , n.

Let v be a rank one valuation on the field F . Let V be the valuation ring associated
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with v. Let M be the maximal ideal of V and let L be an algebraic extension field of

F . We say that a valuation ring W on L is an extension of V to L if W ∩ K = V .

Let {Vλ}λ∈Λ be the set of extensions of V to L, and for each λ ∈ Λ, let Mλ be the

maximal ideal of Vλ. If |Λ| = 1 and M1 = MV1, we say that v is inertial with respect

to L; if |Λ| = 1 and M1 ⊃ MV1, then v ramifies with respect to L. If |Λ| > 1, then v

decomposes with respect to L; and if Mλ = MVλ for every λ ∈ Λ, then v is unramified

with respect to L. If R is an integrally closed domain with field of fractions K and if P

is a prime ideal of R such that RP is a DVR, then we say that P is inertial, ramifies,

decomposes, or is unramified with respect to L if RP is inertial, ramifies, decomposes,

or is unramified with respect to L.

Theorem 6.4. Let D be a Dedekind domain with field of fractions K and let {P1, . . . , Pr},

{Q1, . . . , Qs}, and {M1, . . . ,Mt}, where r ≥ 1, be three sets of distinct maximal ideals

of D, each with finite residue field. Then there exists a simple quadratic extension field

K(u) of K, with u integral over D and separable over K, such that each Pi is inertial

with respect to K(u), each Qi ramifies with respect to K(u), and each Mi decomposes

with respect to K(u).

Proof. Since D/Pi is a finite field (by assumption) for each i = 1, . . . , r, there is a

separable monic polynomial fi(X) ∈ D[X] of degree 2 such that fi(X) is irreducible

modulo Pi[X]. Since D is a Dedekind domain Qi 6= Q2
i for each i = 1, . . . , s; so we

may choose qi ∈ Qi \ Q2
i . Since the ideals {P1, . . . , Pr}, {Q2

1, . . . , Q
2
s}, {M1, . . . ,Mt}

are pairwise comaximal, by Lemma 6.3, there exists a monic polynomial f ∈ D[X] of

degree 2 such that

f ≡ fi (mod Pi[X]), 1 ≤ i ≤ r;

f ≡ X2 + qi (mod Q2
i [X]), 1 ≤ i ≤ s;

f ≡ X(X + 1) (mod Mi[X]), 1 ≤ i ≤ t.

Notice that f is irreducible in D[X] as it is monic and irreducible modulo P1[X]. Hence

f is also irreducible in K[X] by Corollary 2.34 since D is integrally closed. Now f has

the form X2 + aX + b. If a 6= 0, then f is separable over K. (Note that if t ≥ 1, then

we must have a 6= 0 since f ≡ X2 + X (mod M1[X]).) On the other hand if a = 0,
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then we choose a nonzero element y in

( r⋂
i=1

Pi
)
∩
( s⋂
i=1

Q2
i

)
.

Replacing f by f + yX, we get a separable polynomial which satisfies the congruences

given above. In any case, we can assume that f is separable over K. Let u be a root of

f in an extension field of K and let D′ be the integral closure of D in K(u). Note that

K(u)/K is a Galois extension since any separable extension of degree 2 is Galois. If

P is a maximal ideal of D and if PD′ = (P1 . . . Pg(P ))
e(P ) (using Remark 2.80), where

[D′/Pg(P ) : D/P ] = f(P ), then e(P )f(P )g(P ) = 2 since [D′/PD′ : D/P ] ≤ [K(u) :

K] = 2 by Lemma 2.76 and since [D′/PD′ : D/P ] > 1 as u ∈ D′ \ D. Hence to

prove that each Mi decomposes with respect to K(u), it is sufficient to show that Mi

is contained in two distinct maximal ideals of D′; to show that each Qi ramifies with

respect to K(u), it is sufficient to show that Qi is contained in the square of a maximal

ideal of D′; and to show that Pi is inertial with respect to K(u), it is sufficient to show

that there is a maximal ideal Ui of D′ lying over Pi such that [D′/Ui : D/Pi] ≥ 2.

Note that the kernel of the canonical homomorphism D[X]→ D[u] is the principal

ideal generated by f by Corollary 2.33. Then for each maximal ideal P of D, we have

D[u]/P [u] ∼= [D[X]/(f)]/[(P (X) + (f))/(f)]

∼= D[X]/(P [X] + (f))

∼= (D[X]/P [X])/[(P [X] + (f))/P [X]]

∼= (D/P )[X]/(f̄),

where f̄ denotes the image of f under the canonical mapping D[X]→ (D/P )[X].

If P = Pi, then f̄ is irreducible in (D/P )[X] and has degree 2 so that (D/P )[X]/(f̄)

is a field extension of degree 2 over D/P . Therefore P [u] is a maximal ideal in D[u]

and [D[u]/P [u] : D/P ] = 2. Since u is integral over D, D[u] ⊆ D′. Thus there exists

a maximal ideal P ′ of D′ lying over P [u]. Therefore, D/P ⊂ D[u]/P [u] ⊆ D′/P ′ and

[D′/P ′ : D/P ] ≥ 2. Hence Pi is inertial with respect to K(u) for each i = 1, . . . , r.

If P = Qi, then f̄ = X2. In this case D[u]/P [u] has a unique maximal ideal

Hi = P [u] + (u). Also we have H2
i ⊆ P [u]. We shall show that P [u] ⊆ H2

i . It suffices
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to show that

P ⊆ H2
i = P 2[u] + uP [u] + (u2).

By choice of qi, we have P = P 2 + (qi) since P is a maximal ideal in the Dedekind

domain D (which implies that there are no ideals properly between P and P 2). Since,

clearly, P 2 ⊆ H2
i , we need only show that qi ∈ H2

i . We have f ≡ X2 +qi (mod Q2
i [X]),

and hence f = X2 + aX + b for some a ∈ Q2
i , and b ∈ D such that b − qi ∈ Q2

i . We

have

b = −u2 − au ∈ (u2) + uP 2[u] ⊆ H2
i ,

and b− qi ∈ Q2
i ⊆ H2

i . It follows that qi ∈ H2
i , which gives that P [u] = H2

i , as claimed.

Again, since D′ is integral over D[u], there exists a maximal ideal of D’, P ′ say, lying

over Hi. Therefore, P ⊆ H2
i ⊆ (P ′)2 and P ramifies with respect to K(u).

Finally, if P = Mi, then f̄ = X(X + 1), in which case (D/P )[X]/(f̄) has exactly

two maximal ideals. It follows that there exist distinct maximal ideals U1 and U2 of

D[u] containing P [u], and that there exist maximal ideals U ′1 and U ′2 of D′ lying over

U1 and U2, respectively. Therefore, U ′1 and U ′2 are distinct maximal ideals of D′ lying

over P and P decomposes with respect to K(u).

Example 6.5. Let {p1, p2, . . .} be the sequence of prime numbers. By the preceding

theorem, there exists an algebraic integer u1 of degree 2 over Q such that (p1) decom-

poses with respect to Q(u1). Let Z1 be the integral closure of Z in F1 = Q(u1). Assume

that p1Z1 = M
(1)
1 M

(1)
2 . Again by the preceding theorem, we may choose an algebraic

integer u2 such that u2 has degree 2 over F1, M
(1)
1 and each prime of Z1 lying over

(p2) in Z is inertial with respect to F2 = F1(u2), and such that M (1)
2 decomposes with

respect to F2. Thus if Z2 is the integral closure of Z in F2, then M
(1)
2 Z2 = M

(2)
2 M

(2)
3 .

If M (1)
1 Z2 = M

(2)
1 , then {M (2)

1 ,M
(2)
2 ,M

(2)
3 } is the set of primes of D2 lying over (p1) in

Z.

By induction we may choose algebraic integers u1, u2, . . . , uk such that if Fi =

Q(u1, . . . ui) and if Zi is the integral closure of Z in Fi for each i = 1, . . . , k, then the

following are satisfied:

1. [Fi+1 : Fi] = 2 for 1 ≤ i ≤ k − 1.

2. For each i = 1, . . . , k − 1, there exist i + 1 prime ideals {M (i)
1 ,M

(i)
2 , . . . ,M

(i)
i+1}

of Zi lying over (p1) in Z such that M (i)
1 ,M

(i)
2 , . . . ,M

(i)
i decomposes with respect
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to Fi+1, and M
(i+1)
j = M

(i)
j Zi+1, and such that M (i)

i+1 decomposes with respect to

Fi+1, say M
(i)
i+1Zi+1 = M

(i+1)
i+1 M

(i+1)
i+2 .

3. Each prime ideal of Zi lying over any of the primes (p2), (p3), . . . , (pi+1) of Z is

inertial with respect to Fi+1 for i = 1, . . . , k − 1.

Then the union of {M (k)
1 , . . . ,M

(k)
k+1} and the set of maximal ideals of Zk lying over

one of the primes (p2), . . . , (pk+1) of Z is a finite set of prime ideals of the Dedekind

domain Zk, each with finite residue field. It follows from Theorem 6.4 that there is

an algebraic integer uk+1 of degree 2 over Fk such that if Zk+1 is the integral closure

of Zk in Fk+1 = Fk(uk+1), then each of M (k)
1 , . . . ,M

(k)
k and each maximal ideal of Zk

lying over any of the prime ideals (p2), (p3), . . . , (pk+1) of Z is inertial with respect

to Zk+1; and M
(k)
k+1 decomposes with respect to Zk+1. Now let M (k+1)

j = M
(k)
j Zk+1 for

i = 1, . . . , k, and let M (k)
k+1Zk+1 = M

(k+1)
k+1 M

(k+1)
k+2 . Then, clearly, {M (k+1)

1 , . . . ,M
(k+1)
k+2 }

is a set of k + 2 maximal ideals of Zk+1 lying over (p1) in Z. If M is a maximal ideal

of Zk+1 lying over (p1) in Z, then M must lie over a maximal ideal of Zk which lies

over (p1) in Z, that is, M ∩Zk ∈ {M (k)
1 , . . . ,M

(k)
k+1}, so thatM ∈ {M (k+1)

1 , . . . ,M
(k+1)
k+2 }.

Therefore, conditions (1)-(3) hold for each i = 1, . . . , k.

By induction, there exists a sequence {u1, u2, . . .} of algebraic integers such that if

Fi = Q(u1, . . . , ui) and Zi is the integral closure of Z in Fi, then conditions (1)-(3) are

valid for each i > 0.

Now let F =
∞⋃
i=1

Fi and Z ′ =
∞⋃
i=1

Zi. Then Z ′ is the integral closure of Z in F . It

follows from [13, Corollary 42.2] (applied for D0 = Z) that Z ′ is an almost Dedekind

domain. However, Z ′ is not Dedekind since p1 belongs to infinitely many maximal

ideals of Z ′.
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