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Differential equations are mostly used to model real life problems. However it is

known that in general, these equations do not have complete solutions. For that reason,

reseachers have tried to solve these problems by means of several numerical methods.

Among them, standard finite difference (SFD) is a frequently used method in order

to obtain numerical solutions of differential equation for a long time. However there

are many mathematical problems for which the SFD models do not perform well. In

recent years, nonstandard finite difference (NSFD) method which gets main motivation

from SFD method has been applied to various mathematical models for the purpose

of getting reliable numerical results. This topic is firstly studied in mid-1980s and

nowadays is playing an important role in the construction of reliable numerical models

in Science and Engineering.

In this thesis, we firstly introduced Exact Finite Difference models and NSFD mod-

els has been introduced for differential equations. Then NSFD schemes have been

constructed for some models for both ordinary and partial differential equations. A

NSFD models has been proposed for an automous differential equation which has three

distinct fixed points. This NSFD scheme differs from the one in literature. The differ-

ence of the proposed NSFD scheme in this thesis is the discretization of the nonlinear

term. For all mathematical models, numerical simulations are illustrated to see the

performance of the NSFD methods. As a result, it has been seen that NSFD models

give qualitatively correct behaviour for many cases.

Key words: Nonstandard Finite Difference Schemes, Exact Finite Difference Schemes,
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ÖZET

STANDARD OLMAYAN SONLU FARK YÖNTEMLERİYLE

DİFERANSİYEL DENKLEMLERİN C. ÖZÜMÜ

ERDİ KARA

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Doç. Dr. Canan KÖROĞLU

İkinci Tez Danışmanı: Doç. Dr. Ayhan AYDIN

Haziran 2015, 99 sayfa

Diferansiyel denklemler gerçek hayat problemlerinin modellenmesinde sıklıkla kul-

lanılmaktadır. Bununla birlikte genel olarak bu denklemler tam çözüme sahip değildirler.

Bu problemlerin çözümlerini elde etmek için araştırmacılar çeşitli sayısal yöntemler

kullanmışlardır. Bunların içinde, standard sonlu fark yöntemi diferensiyel denklem-

lerin sayısal çözümlerini elde etmek için sıklıkla kullanılan bir yöntemdir. Bununla

beraber bu yöntemin iyi sonuçlar vermediği birçok matematiksel model mevcuttur.

Son yıllarda ise, temel motivasyonunu standard sonlu fark yöntemlerinden alan yeni

bir yöntem olan standard olmayan sonlu fark yöntemi birçok matematiksel modele

uygulanmış ve başarılı sayısal sonuçlar elde edilmiştir. İlk kez 1980’lerin ortalarında

çalışılmaya başlanan bu method şimdilerde bilim ve mühendisliğin çeşitli dallarında

güvenilir sayısal modellerin oluşturulmasında önemli bir rol oynamaktadır.

Bu tezde öncelikle diferansiyel denklemler için Tam Sonlu Fark modeli ve standard

olmayan fark modeli kavramları tanıtılmışır. Hem adi hem de kısmi diferensiyel den-

klemler için çeşitli standard olmayan fark tasarıları oluşturulmuştur. Sonrasında üç

tane sabit noktaya sahip otonom tipte bir adi diferensiyel denklem için standard ol-

mayan bir sonlu fark modeli önerilmiştir. Bu modelde lineer olmayan terimlerin model-

lenmesi lokal olmayan bir ayrışımla oluşturulmuştur. Yöntemin performansını ölçmek

amacı ile verilen bütün matematiksel modeller için sayısal simülasyonlar gösterildi.

Sonuç olarak standard olmayan fark yönteminin incelenen modeller için niteliksel olarak

doğru sonuçlar vermekte olduğu görüldü.

Anahtar Kelimeler: Standard Olmayan Fark Modelleri, Tam Sonlu Fark Modeli
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INTRODUCTION

There are many real life problems that can be modelled by means of di¤erential

equations. Especially ordinary di¤erential equations have been used in physical

sciences about 17th-18th centuries. Beginning in the middle of the 19th century,

partial di¤erential equation has also started to play an important role in model-

ing extremely complicated physical and biological phenomena such as population

dynamics, �uid mechanics, quantum �eld theory etc. Therefore in order to un-

derstand these natural phenomena, it is very important to �nd the analytical or

approximate solutions of that di¤erential equations. Although there are some

methods to �nd the exact solutions of them, it is a well-known fact that any dif-

ferential equation -regardless of the choice of ordinary or partial- does not have

general solution. For that reason approximate or numerical solutions of di¤eren-

tial equation have been studied by researchers for a long time. Especially in the

last century, it has been found some methods related to these topic. Perturbation

methods, �nite di¤erence method, interpolation method, �nite element methods

etc. are some of these methods.

One of the main concerns about the numerical solutions of di¤erential equa-

tion is which of the methods works more e¢ cient for the equation. On the other

hand it is a natural expectation that the method which is used to approximate

solution should have the same qualitative properties with the corresponding dif-

ferential equation. For instance, if the exact solution of the di¤erential equation is

bounded or oscillatory then the related method must be also bounded and oscil-

latory. Therefore �nding and implementing the most appropriate method for any

given di¤erential equation has been a great deal of interest.

The Finite Di¤erence Method (FDM) is one of the most used techniques to

�nd the approximate solution of the di¤erential equations. This method is mainly

based on the replacement of the continuous variables in the di¤erential equation

by a model including discrete variables. In fact this is a procedure for constructing

approximate values of the exact solution at the mesh points [1]. In this thesis, after

giving a brief information about the �nite di¤erence method and its applications

to di¤erential equation, we will deal with a special kind of this method which is

called non-standard �nite di¤erence (NSFD) method.
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This thesis explains why NSFD method has started to play a signi�cant role

in modeling of di¤erential equation and what sides of this method have a superior

to standard �nite di¤erence (SFD) models. Now we will make a brief summarize

about the historical development of this method and some considerable works on

this topic. In order to make this summary, we have taken advantage of the survey

article which is done by Kailash C.Patidar [2].

It will be useful to emphasize a point about the terminology. In fact, any

method which does not have a standard form can be named as non-standard. How-

ever NSFD models are those which use one of the rules submitted by R.Mickens.

R.Mickens mentions in details about these construction rules in his reference book

[3].We will also examine these rules in this thesis.

NSFD schemes has been introduced and constructed by R.E.Mickens for the

�rst time in mid-1980s. In 1988, R. Mickens proved an important theorem by using

the group properties. That theorem states that every ordinary di¤erential equation

has an exact �nite di¤erence scheme which means that on the computational grid,

the solution to the di¤erence equation is exactly equal to the solution to the

di¤erential equation [4]. He provided some examples of exact schemes by means

of this theorem in this paper.

Then in their article [5], Mickens and Smith published a paper about the in-

�uence of the denominator function in discrete modeling of derivative term for

ordinary di¤erential equation and found some denominator functions for which

the numerical instabilities do not occur in the discrete models to the di¤erential

equations .

In the following years, Mickens presented some NSFD schemes for the time-

dependent Schrödinger equation [6] and Fisher partial di¤erential equation [7].

In the paper [8], Mickens and Ramadhani constructed a NSFD schemes for two-

coupled ODE system with a single real �xed point and then implemented these

result for constructing NSFD schemes for some di¤erential equation like Damped

Harmonic Oscillator, Van-Der Pol Oscillator and Batch Fermentation Process.

In 1994, Mickens described several ways to construct NSFD schemes for both

ordinary and partial di¤erential equation in his book [3]. He provides lots of

examples to illustrate the powerful sides of NSFD schemes when compared the

other methods. One can consider this book as the �rst and the most important
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reference book related to this topic.

Zhao L. [9] used a kind of 3-dimensional di¤erence method in non-standard

form in order to calculate the frequencies of resonators and also examined boundary

conditions. In addition, they reduced the numerical error from %8.6 to % 3.0 by

using NSFD schemes.

In 1997, Cole J. presented a new NSFD algorithm for Maxwell�s equations.

This algorithm has a signi�cant superiority to standard ones both in terms of

computational and stability [10]. And then he obtained a nonstandard second

order �nite di¤erences for Yee algorithm with the same accuracy as the stand-

ard ones. Additionally this new algorithm requires less iteration for solving the

problem [11]. He also applied NSFD method to higher dimensional problems and

acquired e¢ cient algorithms related to these type of problem [12].

Kojouharov and Chen described a non-standard model for 1-dimensinonal tran-

sient convective transport equation which includes nonlinear term for reaction [13].

Their approach has zero local truncation error and it also eliminates the numerical

instabilities in the equation .

In [14] and [15], Mickens analyze the coupled non-linear reaction-di¤usion PDE

and an ordinary di¤erential equation related to travelling wave solutions to the

Burger�s equation respectively. He constructed NSFD schemes for these equations.

The NSFD method is successfully applied to �nd the approximate solution of

many real life problem which are modeled by both PDEs and ODEs. In [16] Chen,

B.M. and Kojouharov described a nonstandard method for simulation of reactive

bacterial transport in porus media. In their model numerical instabilities which

comes from the incorrect modeling of some terms is eliminated and they acquired

e¢ cient numerical results.

Marcus and Mickens found nonstandard forward Euler schemes for tripled non-

linear ODEs that have some applications in photo-conductivity and by this way

they eliminated some instabilities occurring in the equation [17]. In the same year

Mickens published two papers about this topic. In [18], he described some NSFD

schemes for some ODEs such as logistic, cubic, Monod and these proposed method

gives correct numerical results for all values of the step size. He also presented

NSFD schemes for a particular class of PDEs which are 1-dimensional. And he

also gave a description about how to construct NSFD schemes for several types of
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PDE systems [19].

Lotka-Volterra system is a coupled nonlinear ordinary di¤erential equation

which is widely used to model biological phenomena such as population dynam-

ics. Al-Kahby constructed a NSFD method which is dynamically consistent for

Lotka-Volterra system [20].

In [21] and [22] Kantartzis, N.V presented a �nite di¤erence time domain

(FDTD) schemes for the �rst time. He e¢ cently used both standard and non-

standard techniques. Then this method has been applied to many problems

[23,24,25,26,27].

Hassan in [28] used NSFD method for time variable to construct an algorithm

for the Jager and Kacur schemes and showed that their method was stable and

convergent.

Jordan employed a NSFD for an initial boundary value problem and obtained

a solution which has numerical stability [29].

There are lots of numerical methods used in the solutions of systems of ODEs.

One of them is �-method where � is generally between 0 and 1. For some values of

�, the linear stability properties of its �xed points does not coincide with the �xed

point of the di¤erential equation. In [30] Lubuma and Roux presented a �-method

in nonstandard form and also they gained elementary stabilities in their method

for sti¤ systems.

Rucker [31] proposed an exact �nite di¤erence scheme for a nonlinear advection-

reaction PDE with zero di¤usion by using the exact solution of the equation.

Another interesting work done by Anguleov and Lubuma in [32], they �rstly

described a general �nite di¤erence schemes which has the same monotonicity with

the equation. They also proposed a NSFD schemes for which the nonlinear terms

are modeled in an original approach.

In [33] Chen and Gumel proposed a semi-explicit and an implicit nonstandard

discretizations of the generalized Nagumo reaction-di¤usion equation respectively.

Their methods give relatively accurate results when compared the standard meth-

ods like the Euler and Runge-Kutta. Then they applied the proposed method for

a mathematical model which is about the formation of bio-barrier.

NSFD schemes have wide range applications in numerical solutions of math-

ematical model of biological phenomena. For instance Alexander in [34] proposed
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a NSFD schemes for a biological model which is related to infectious diseases.

When compared the standard methods, his model has some prior properties since

it preserves some qualitative behavior of the model.

Another work done by Mickens is about the Fisher PDE which can be used

so as to model some phenomena in ecology. In [35] and [36] Mickens constructed

some NSFD schemes for Fisher and Burger�s equations and he obtained some

relationship between time and space steps.

In [37] Gumel and Moghadas examined a food-chain model which is about

struggling among three-species. They studied about the stability properties of

their models and then employed a nonstandard method for that problem.

Gumel, A.B., Moghadas, S.M. and Mickens, R.E. investigated a sophisticated

biological model in which they focused on the behavior of HIV infection in a com-

munity and they obtained some remarkable results about the threshold values for

which the disease tends to decrease in that media. In [38], they used a NSFD

method in order to solve the corresponding equation .Their model are also numer-

ically stable in many aspects such as preserving the positivity of the equation.

Moghadas at al. [39] employed a NSFD schemes for a predator-prey model

in Gaussian-form. They showed that the discrete model bears the same qualit-

ative properties with the main model. They also prove that unlike the standard

�nite di¤erence models, their model re�ects correct qualitative behaviour with the

asymptotic behavior of the predator-prey itself.

This thesis is organized as follows:

In Chapter 1, we reviewed the standard �nite di¤erence(SFD) method for dif-

ferential equations. We described �nite di¤erence models for some ordinary di¤er-

ential equations; decay equation, logistic equation, harmonic oscillator

In Chapter 2, numerical instability notion in �nite di¤erence models has been

introduced. Various discrete models have been constructed for decay equation and

harmonic oscillator and then behaviour of the solutions to discrete models and

the exact solution of the corresponding di¤erential equations have been compared.

In this way, we have discussed when the numerical instabilities occur in discrete

modelling of di¤erential equations. We have also introduced the linear stability

analysis of a �rst order autonomous ODEs. This method enable us to understand

the behaviour of the solutions of some types di¤erential equation near their �xed
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points. By using this approach, we have discussed the numerical instability with

a di¤erent point of view.

In Chapter 3, we introduced the notion of exact �nite di¤erence and nonstand-

ard �nite di¤erence (NSFD) schemes for some di¤erential equations. After giving

some preliminary informations, we have described the construction rules of NSFD

and provided some examples about NSFD schemes for di¤erential equations. To

test the performance of the method, we have compared the numerical results ob-

tained by NSFD and SFD method. It has been seen that NSFD method could

eliminate some numerical instabilities occuring in standard discretizations . In Sec-

tion 3.7, we have reviewed a NSFD method proposed for second order boundary

value problems. Corresponding nonstandard method has fourth order truncation

error and numerical experiments show that the method gives reliable numerical

results for some mathematical models. In section 3.8, we have considered a theory

which proposes a criteria for �nite di¤erence models to preserve linear stability

properties of �xed points and monotonicity of solutions. Although this theorem

does not provide a general procedure to construct a �nite di¤erence scheme which

has correct qualitative behaviour with the cooresponding di¤erential equation, it

enable us to check wheather any proposed �nite di¤erence scheme preserves the

signi�cant proporties of the original problem. By following this work, we presen-

ted a NSFD scheme for a �rst order autonomous ODE which has three distinct

real �xed points. In Section 3.9, we have reviewed a NSFD scheme for Lotka-

Volterra di¤erential equations. While the standard discretizations show numerical

instabilities in modelling of this system, NSFD scheme preserves the monotonicity

of solutions and re�ects correct qualitative behaviour near the �xed points.

In Chapter 4, we have �rst described the construction of standard �nite di¤er-

ence models for partial di¤erential equations and then we have reviewed a work

which proposes a prodecure to construct NSFD scheme for some class of PDEs.

By this way, a NSFD scheme has been described for nonlinear Huxley equation.
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1. STANDARD FINITE DIFFERENCE MODELS

In this chapter, we will introduce the standard �nite di¤erence (SFD) approx-

imation for some ordinary di¤erential equations.We know that it can rarely be

found an analytic solutions for any di¤erential equation. For that reason lots of

methods has been found in order to obtain a numerical solutions to di¤erential

equations. Throughout this thesis, our main goal will also be to introduce a par-

ticular method which is called nonstandard �nite di¤erence method (NSFD). First,

we will review numerical solutions of ordinary di¤erential equations by means of

some standard �nite di¤erence discretization.

1.1 Standard Finite Discretizations
A �nite di¤erence method proceeds by replacing the derivatives in the di¤erential

equations by �nite di¤erence approximations. Consider the numerical solutions of

the following well-posed IVP

dy

dt
= f(t; y), a � t � b; y(a) = � (1.1.1)

Main concern is to be able to obtain approximate solutions to y(t) at several

values, called mesh points. The mesh points can be considered as equally spaced

throughout the interval [a; b]: To do this, choose a positive integer N and select

mesh points

tk = t0 + hk; k = 0; 1; 2; ::N

The distance between two subsequent mesh points becomes

h =
b� a

N
= tk+1 � tk

which is called step size. Suppose that y(t) is the unique solution to (1.1.1) with

continuous derivatives on the interval [a; b]: Taylor�s theorem is used to derive the

�nite di¤erence models. To approximate the �rst derivative of the function y(t),

7



there are many known discrete approximations. Some of them are the followings:

y0 =
yk+1 � yk

h
� h

2
y00(�k) forsome �k 2 (tk; tk+1) (1.1.2)

y0 =
yk � yk�1

h
+
h

2
y00(�k) for some �k 2 (tk�1; tk) (1.1.3)

y0 =
yk+1 � yk�1

2h
� h2

6
y000(�k) for some �k 2 (tk�1; tk+1) (1.1.4)

y0 =
�yk+2 + 4yk+1 � 3yk

2h
� h2

3
y000(�k) for some �k 2 (tk; tk+1) (1.1.5)

where

y(tk) = yk

These representations are known forward-di¤erence,backward-di¤erence,central-

di¤erence and three-point di¤erence models, respectively. The expression �k is the

truncation term of the method and its structure has a great importance for a good

approximation.

For the second derivative of the function y(t), discrete model

y00 =
yk+1 � 2yk + yk�1

h2
� h2

12
y(iv)(�k) for some �k 2 (tk�1; tk+1)

is in generally used.

It is obvious that these representations are reduced to the conventional de�ni-

tion of derivative of the function y(t) as h! 0; k !1 and tk = t = fixed:

At this stage we will provide some example about the construction of stand-

ard �nite di¤erence models for the di¤erential equations. One can propose many

di¤erent �nite di¤erence model for a di¤erential equation. The main concern will

be to �nd which of them gives qualitatively correct behaviour with the solution

of the di¤erential equations. For this, we motivated on decay equation, logistic

di¤erential eqaution and harmonic oscillator equation.
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1.2 Decay Equation
Consider the decay di¤erential equation

dy

dt
= �y (1.2.1)

Using the approximations (1.1.2-1.1.5) for the �rst derivative, we can consider the

following �nite di¤erence models for (1.2.1)

yk+1 � yk
h

= �yk

yk � yk�1
h

= �yk (1.2.2)

yk+1 � yk�1
2h

= �yk

These models are known as forward Euler, backward Euler and central di¤er-

ence models, respectively. After making some algebraic operations, these equations

can be rewriten as

yk+1 � (1� h)yk = 0 (1.2.3)

yk+1 � (
1

1 + h
)yk = 0 (1.2.4)

yk+2 + 2hyk+1 � yk = 0 (1.2.5)

respectively. These type of equations are known as di¤erence equations.

Here equations (1.2.3) and (1.2.4) are �rst-order linear di¤erence equation and

(1.2.5) is the second-order linear di¤erence equation:These equations have di¤erent

constant coe¢ cents depends on the step size h. For that reason they have di¤erent

solutions. We should note that the behaviour of the solutions will depend on the

values of step-size h since the coe¢ cents are also depend on it. We will argue this

phenomenon in the next chapters.
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1.3 Logistic Di¤erential Equation
Logistic di¤erential equation is a �rst order linear ODE of the form

dy

dt
= y(1� y) (1.3.1)

For (1.3.1) , the forward Euler, backward Euler and central di¤erence discretization

of the equation (1.3.1) are given as

yk+1 � yk
h

= yk(1� yk)

yk � yk�1
h

= yk(1� yk) (1.3.2)

yk+1 � yk�1
2h

= yk(1� yk)

Note that a nonlocal represantation for the backward Euler model is used. That

is, the vector �eld in the equation (1.3.1) is evaluated at the grid point t = tk+1

instead of the point t = tk. The equations in (1.3.2) can be rewriten as

yk+1 � (1 + h)yk � hy2k = 0

hy2k+1 + (1� h)yk+1 � yk = 0 (1.3.3)

yk+2 � 2hyk+1(1� yk+1)� yk = 0

respectively. These are all non-linear di¤erence equations. As in the discrete mod-

els of decay equation, all coe¢ cents in (1.3.3) depends on the step size h: Therefore,

we can say that these three �nite di¤erence schemes have di¤erent solutions
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1.4. Harmonic Oscillator
Consider the damped harmonic oscillator equation

d2y

dt2
+ 2�

dy

dt
+ y = 0 (1.4.1)

We can construct the following discrete models for the harmonic oscillator equa-

tion:

yk+1 � 2yk + yk�1
h2

+ 2�

�
yk+1 � yk

h

�
+ yk = 0

yk+1 � 2yk + yk�1
h2

+ 2�

�
yk � yk�1

h

�
+ yk = 0 (1.4.2)

yk+1 � 2yk + yk�1
h2

+ 2�

�
yk+1 � yk�1

h

�
+ yk = 0

The all three models are second order-linear di¤erence equations with di¤er-

ent coe¢ cents which are depend on the value of h: Hence they have all di¤erent

solutions.

We implemented some standard �nite di¤erence models to three di¤erential

equations and obtained di¤erent discete models. However there exists some am-

biguous points in these models. First of all, standard rules yield us di¤erent

models. At this stage, we have no information about which of them can be used to

obtain the numerical solutions for the corresponding di¤erential equation. In fact

we can not guarantee that one of them can be used to obtain a reliable numerical

solution for the related di¤erential equation. On the other hand we must take into

account the relationship between the solutions of the di¤erence equations and the

corresponding di¤erential equations. That is, we should �nd a discrete model that

qualitatively gives the correct behaviour with the solution of the di¤erential equa-

tion. Furthermore when we consider a discrete model for a particular di¤erential

equation then we need to �nd an optimal step-size h for a good approximation .

These arguments will lead us to some important notions like stability and

instability of solutions. We will deal with these subjects in the next chapters.
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2. NUMERICAL INSTABILITIES

If one uses a method to obtain the numerical solutions of a particular di¤erential

equation, one of the most important questions is wheather the numerical method

is able to preserve the qualitative properties of the corresponding problem, such as

monotonicity, positivity, convergency etc. For instance, if the particular solution

of the di¤erential equation has monotonicity on a domain then we expect that the

�nite di¤erence scheme of the di¤erential equation is also monotonic on the same

domain. It is because preserving particular properties enable us to make profound

interpretion about the qualitative structure of the di¤erential equation. Here, the

stability notion is used to express this idea [41]. Hence within this chapter, we

introduce the concept of stability.

When we consider the �nite di¤erence methods, a discrete model of a di¤er-

ential eqaution is said to have numerical stabilities if there exist solution to the

�nite-di¤erence eqautions that is accordance with the qualitative properties of any

possible solutions of the di¤erential equation. Otherwise that model is said to have

numerical instabilities. Of course that the reason of numerical instabilities occur

in a method can arise from lots of factors like the range of step-size, boundedness,

positive de�nite case, etc. That is, if the �nite di¤erence model is not coincide with

the related di¤erential equation according to these factors, it will appear numerical

instabilites in discrete model. Throughout this thesis, our main propose will be to

construct �nite di¤erence schemes that re�ect the correct qualitative behaviour of

the corresponding di¤erential equation.

There are some reasons that cause numerical instabilities in �nite di¤erence

models. One of the most fundemental reason is that the discrete models contain

larger paramater than the corresponding di¤erential equations. In general, the step

size h can appear in the modelling as an additional paramater . Hence numerical

instabilities may occur according to the step size h and its range. For that reason,

we will generally focus on eliminating the numerical instabilities which stem from

the step size h:
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In this chapter, we consider two ordinary di¤erential equations, decay equa-

tion and harmonic oscillator in order to illustrate the numerical instability notion.

Various discrete models were constructed for these equations and compared the

properties of the discrete model and the corresponding di¤erential equations. We

specify the values of the step size h for which the numerical instabilities occur

in discrete models. In this way, it has been possible to eliminate the instabilities

arising from the step size h:

2.1. Decay Equation
Consider the decay di¤erential equation with initial condition

dy

dt
= �y (2.1.1)

y(t0) = y0

Its exact solution is given by

y(t) = y0e
�(t�t0) (2.1.2)

From the exact solution (2.1.2), it is easy to see that solutions of decay equation

monotonically approach to zero as t ! 1 . This can be seen in the Figure 2.1

13



with initial conditions y(0) = 0:5 and y(0) = 0:5

0 0.5 1 1.5 2 2.5 3

0

y0>0
y0<0

Figure 2.1: Typical trajectories for Decay

equation

Now consider the forward Euler model

yk+1 � yk
h

= �yk (2.1.3)

where h is the step-size. Its reduced form, that is, the related di¤erence equation

will be

yk+1 = (1� h)yk

whose solution is

yk = y0(1� h)k (2.1.4)

This solution yields the following results:
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� if 0 < h < 1 then yk approaches monotonically to 0

� if h = 1 then yk = 0 for k � 1
� if 1 < h < 2 then yk approaches to zero with an oscillating amplitude by

changing sign at each step

� if h = 2 then yk oscillates with a constant amplitude y0
� if h > 2 then yk oscillates with an increasing amplitude.

As a result if

0 < h < 1

then the numerical scheme (2.1.3) has same qualitative behaviour with the exact

solution of the decay equation. The other values of h gives inconsistent solutions.

So qualitative agreement between y(t) and yk only holds for small values of

the step size h

0 < h << 1 (2.1.5)

All these cases can be seen in Figure 2.2 for the initial condition y(0) = 0:5

0 5 10
0

0.5

k

y(
k)

0<h<1

0 5 10 15 20
0

0.5

k

y(
k)

h=1

0 10 20 30
­0.5

0

0.5

k

y(
k)

1<h<2

0 10 20 30 40
­0.5

0

0.5

k

y(
k)

h=2

0 20 40 60
­2000

0

2000

k

y(
k)

h>2

Figure 2.2 Plots of solutions for 2.1.4
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We now examine the central di¤erence form for the decay equation, that is

yk+1 � yk�1
2h

= �yk (2.1.6)

Some algebraic operations give the second order linear di¤erence equation with

constant coe¢ cent.

yk+2+2hyk+1�yk= 0 (2.1.7)

To solve (2.1.7), setting yk = rk then the characteristic equation of the di¤erence

equation is given by

r2+(2h)r � 1 = 0 (2.1.8)

By using the characteristic equation, general solution of the di¤erence equation

can be written as

yk= c1(r1(h))
k+c2(r2(h))

k (2.1.9)

where c1; c2 are arbitarary constants and r1; r2 are the solutions of the characteristic

equation (2.1.8). When we observe the charcteristic equation we can write

r1(h)r2(h) = �1 (2.1.10)

where (
r1(h) = �h+

p
1 + h2

r1(h) = �h�
p
1 + h2

(2.1.11)

which means that di¤erence equation (2.1.7 ) yields oscillatory solutions for all

values of the step size h. Therefore the central di¤erence scheme shows numerical

instabilities for all values of h. A typical plot of (2.1.7) can be seen in the Figure
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2.3.

0 2 4 6 8 10
­3

­2

­1

0

1

2

3

4

5
x 104

k

y(
k)

Figure 2.3 Plots of solution (2.1.7)

When we use the backward Euler scheme for the decay equation, we obtain the

following discrete model
yk � yk�1

h
= �yk (2.1.12)

which can be writen as

yk+1= (
1

1 + h
)yk

The solution of this di¤erence equation can given by

yk= y0(
1

1 + h
)k (2.1.13)

It is obvious that

0 <
1

1 + h
< 1 for all h > 0

Hence all solutions of (2.1.13) approach monotonically to 0 for all step-sizes. The

Figure 2.4 represents a numerical solution of (2.1.12) for h = 0:5 and y0 = 0:5:
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Figure 2.4 Plots of solutions (2.1.12)

As a result, three discrete models for the decay equation are implemented. For

0 < h < 1; the forward Euler and for h > 0 the backward Euler gives the same

qualitative behaviour with exact solution of the decay equation. However, the

central di¤erence scheme produce unexpected results for any value of h:

These results show that the central di¤erence scheme (2.1.12) generates nu-

merical instabilities for all step sizes h. If we put some restrictions on the value

of h then the forward Euler scheme will give correct numerical results and we can

use the backward Euler for any step size h.

2.2. Harmonic Oscillator
Now we will implement some �nite di¤erence methods to the Harmonic Oscillator

which is a second order ordinary di¤erential equation and will discuss for which

situation of the step size h numerical instabilities occur in the discrete model for

the di¤erential equation.
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The harmonic oscillator is a second order linear ordinary di¤erential equation

d2y

dt2
+y = 0 (2.2.1)

Its general solution is given by

y(t) = c1e
it+c2e

�it (2.2.2)

where c1 and c2 are arbitrary constants.We can rewrite this expression as

y(t) = c�1 sin (t) + c�2 cos (t) (2.2.3)

where c�1 and c
�
2 are arbitrary constants. From here, we conclude that solutions

of the harmonic oscillator has periodic. For the harmonic oscillator we will discuss

three central di¤erence models such that one of them has local representation for

the linear term y while the others has nonlocal representations for y:

The central di¤erence scheme with local representation for the linear term is

given by

yk+1 � 2yk + yk�1
h2

+yk= 0; (2.2.4)

which can be converted to a di¤erence equation of the form

yk+1�(2� h2)yk+yk�1= 0: (2.2.5)

This is a second order linear di¤erence equation with constant coe¢ cent in terms

of the step size h: Its characteristic equation can be written as

r2�2(1�h
2

2
)r + 1 = 0 (2.2.6)

The roots of characteristic eqution can be easily found as(
r1(h) = (1�h2

2
) + (h

2
)
p
(h2 � 4)

r2(h) = (1�h2

2
)� (h

2
)
p
(h2 � 4):

(2.2.7)
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Then the general solution of the corresponding di¤erence equation is writen as

yk= C1(r1(h))
k+C2(r2(h))

k (2.2.8)

where C1and C2 are arbitrary constants. When we observe the values of the step

size h, we can make the following discussions.

Case 1 : 0 < h < 2 : In this case,

r1(h) and r2(h) will be complex valued since h2 � 4 < 0: Then the roots of char-
acteristic equation (2.2.7) becomes

r1(h) = (1�
h2

2
) + (

ih

2
)
p
4� h2;

r2(h) = (1�
h2

2
)� (ih

2
)
p
4� h2:

Modulus of these roots are equal to 1; i.e

jr1(h)j= jr2(h)j= 1

From here we can rewrite the roots in polar form as

r1(h) = ei'1(h);

r2(h) = ei'2(h);

where

tan ('1(h)) =
h
2

p
4� h2

(1� h2

2
)
;

tan ('2(h)) = �
h
2

p
4� h2

(1� h2

2
)
;

Using the fact that

'1(h) = �'2(h)

denote

'(h) = '1(h) = �'2(h)
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Then we obtain

r1(h)= e i'(h)

r2(h)= e �i'(h)

As a result general solution of the corresponding di¤erence equation (2.2.5) can

be writen as

yk = C�1e
i'(h)k + C�2e

�i'(h)k (2.2.9)

where C�1 and C
�
2 are arbitrary constants. The solution (2.2.9) is periodic for all

0 < h < 2: Hence, this result agree with the general solution of the di¤erential

equation. Therefore the choice of the step size like

0 < h < 2

will give us consistent results for the numerical solution of the corresponding dif-

ferential equation (2.2.1).

Case 2 : h = 2: In this case

r1(h) = r2(h) = �1

and since the roots are equal, the general solution becomes

yk= (C
�
1+C

�
2k)(�1)

k (2.2.10)

where C�1 and C
�
2 are arbitrary constants. The solution (2.2.10) oscillates with an

increasing amplitutes by changing sign. Therefore, (2.2.10) is not consistent with

the general solution of the harmonic oscillator given in (2.2.3).

Case 3 : h > 2 : In this case, the roots of (2.2.6) will be real valued as

r1(h) = (1�
h2

2
) + (

h

2
)
p
(h2 � 4)

r2(h) = (1�
h2

2
)� (h

2
)
p
(h2 � 4)

If we di¤erentiate r2(h) with respect to h then
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d

dh
(r2(h)) = �h�

1

2

h2p
h2 � 4

�1
2

p
h2 � 4 < 0 for all h > 2

means that r2(h) is strictly decreasing over [2;1] and also

lim
x!2+

(r2(h)) = �1:

This fact leads us to the following result

r2(h) < �1 for h > 2:

and from the characteristic equation (2.2.6), we have

r1(h)r2(h) = 1: (2.2.11)

which implies that

�1 < r1(h) < 0 for h > 2:

Then we can write the general solution of the corresponding di¤erence equation

for h > 2 in a form

yk= C�1(r1(h))
k+C�2(r2(h))

k

However by using the fact that

r1(h)
k = jr1(h)jk (�1)k

r2(h)
k= jr2(h)jk (�1)k

the general solution can be described as

yk = (C
�
1 jr1(h)j

k + C�2 jr2(h)j
k)(�1)k (2.2.12)

Thus for this case the solutions fykg will increase exponentially with an oscillating
amplitute. For example,
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C�1 jr1(h)j
k ! 0

C�2 jr2(h)j
k ! 1

as a result of (2.2.11). When we consider three possible cases, we conclude that

this central di¤erence model for harmonic oscillator gives numerically consistent

result only if the value of step size is between 0 and 2, i.e, for the interval [0; 2]

Now we will examine two central di¤erence schemes which has nonlocal forms

for the linear term:

yk+1 � 2yk + yk�1
h2

+ yk�1 = 0 (2.2.13)

yk+1 � 2yk + yk�1
h2

+ yk+1 = 0 (2.2.14)

We can write the characteristic equation for (2.2.13) as

r2 � 2r + (1 + h2) = 0 (2.2.15)

The solution of (2.2.15) can be written as

r1(h) = 1 + ih

r2(h) = 1� ih

These roots can be expressed in polar form

r1(h) = (
p
1 + h2)ei'1(h)

r2(h) = (
p
1 + h2)ei'2(h)

where

tan('1(h) = h

tan('2(h) = �h
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If we denote

'(h) = '1(h) = �'2(h)

we conclude that the general solution of the equation (2.2.13) becomes

yk= C�1(r1(h))
k+C�2(r2(h))

k

or

yk= C�1((
p
1 + h2)ei'(h))

k
+C�2((

p
1 + h2)e�i'(h))

k
(2.2.16)

where C�1 and C
�
2 are abitrary constants.

Since the magnitude of the roots r1(h) and r2(h) are greater than 1 then we

obtain oscillatory solutions with an exponentially increasing amplitute. Similarly,

we can write the characteristic equation of the equation (2.2.14) as follows

r2 � ( 2

1 + h2
)r + (

1

1 + h2
) = 0 (2.2.17)

The solutions of (2.2.17) becomes

r1(h) =
ih+ 1

h2 + 1

r2(h) =
ih� 1
h2 + 1

The magnitudes of the roots are

jr1(h)j = jr2(h)j =
r

1

1 + h2

and these roots can be expressed in polar form as

r1(h) = (

r
1

1 + h2
)ei'1(h);

r2(h) = (

r
1

1 + h2
)ei'2(h);

where
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tan('1(h)) = h;

tan('2(h)) = �h:

From here if we denote

'(h) = '1(h) = �'2(h)

then the general solution of the equation (2.2.14) is written as

yk = C�1((
1p
1 + h2

)ei'(h))k + C�2((
1p
1 + h2

)e�i'(h))k (2.2.18)

In this case, the magnitudes of the roots of the characteristic equation are less

than 1. This fact leads us that the scheme (2.2.14) yields an oscillatory solution

but it has an amplitude which decreases exponentially.

As a conclusion we observed that the only use of the central di¤erence scheme

with local represantation for linear term gives us a discrete model which oscillates

with a constant amplitude and this model has the same qualitative behaviour with

the general solution of the harmonic oscillator di¤erential equation if we choose

the step size like:

0 < h < 2

The other models also yield oscillatory solution but they have amplitudes either

increasing or decreasing.

We examined two ordinary di¤erential equation and obtain some results when

the numerical instabilities occur in discrete models to the corresponding di¤erential

equation.It is obvious that the structure of the corresponding di¤erence equation

is closely related with the di¤erential equation. When we would like to analyze

the discrete models of higher order and nonlinear di¤erential equations, we will

generally obtain complicated higher-order and nonlinear discrete models. Since

any general solution method for di¤erence equations are not known as general

di¤erential equation, fully analyzing of the numerical instabilities of these types

of equations are not be possible lots of time. We can get some results for only a
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limited range of di¤erence equation. Hence we do not have any general method for

determining when the numerical instabilities occur in the discrete models. How-

ever , for many ordinary di¤erential equation, a linear stability analysis of the �xed

points provides a determination of which values of the step size h, the numerical

instabilities arise in the discrete models. For this purpose, we demostrate the lin-

ear stability analysis for the �rst order autonomous ordinary di¤erential equations

which have simple �xed points.

2.3. Linear Stability Analysis
Consider the following �rst order autonomous ordinary di¤erential equation

dy

dt
= f(y) (2.3.1)

where f(y) is a given function: Let f(y) has n-simple zeros

�
y(i)j i = 1; 2; :::n

	
(2.3.2)

where

f(y(i)) = 0 for all i = 1; 2::n (2.3.3)

The points y(i) are sometimes called as �xed point, equilibrium point, critical point.

We will generally prefer to use �xed point in this thesis. Consider the constant

functions

y(t) = y(i) for i = 1; 2; ::n

which are also particular solutions of the equation (2.3.1): We will investigate the

linear stability properties of the solutions by making small perturbations about

them. For equation (2.3.1), numerical instabilities arise if the linear stability

properties of the �xed-points for the discrete model are not coincide with that

of di¤erential equation.

Consider the �xed points y(i) and its any su¢ cient smal perturbation 0 <j�(t)j
<< y(i): Our aim is to check the behaviour of the perturbed function

y(t) = y(i) + �(t) (2.3.4)
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Substituting (2.3.4) into (2.3.1) yields

d

dt
(y(i) + �(t)) = f(y(i) + �(t)) =) d�

dt
= f(y(i) + �(t)) (2.3.5)

If we expand f in a Taylor series about the �xed point y(i); we get

f(y(i) + �(t)) = f(y(i)) +
df

dy

����
y=y(i)

�(t) +
d2f

dy2

����
y=�i

�2(t)

where �i is between y
(i) and y(i) + �(t) then we obtain

f(y(i) + �(t)) =
df

dy

����
y=y(i)

�(t) +O(�2)

since f(y(i)) = 0: If we ignore the non-linear terms �2 and denote Ri =
df
dy

���
y=y(i)

then we obtainf(y(i) + �(t)) = Ri�(t)

By using the equation (2.3.5), we get

d�(t)

dt
= Ri�(t) for i = 1; 2:::n (2.3.6)

Then the general solution of (2.3.6) can be writen as

�(t) = �0e
Rit (2.3.7)

where �(0) = �0: We can conclude the following results from (2.3.7).

If Ri > 0 then �(t) is an increasing function and the perturbed function y(t)

moves away from the �xed-points y(i): In this case the �xed point y(i) is said to be

linearly unstable.

If Ri < 0 then �(t) is a decreasing function and the perturbed function y(t) moves

towards the �xed-points y(i): In this case y(i) is called linearly stable.

We can use the linear stability analysis of �xed points in order to identify when
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the numerical instabilities occur without making any deeper calculations. By using

this approach, we can compare the linear stability properties of �xed points of the

discrete model with the corresponding autonomous �rst order ODE.

Now we will discuss the numerical instabilities of the discrete models of (2.3.1)

for the central di¤erence scheme, forward Euler and backward Euler.

First construct a central di¤erence scheme for (2.3.1) such that:

yk+1 � yk�1
2h

= f(yk) (2.3.8)

Small perturbation about the �xed points yk = y(i) of the equation (2.3.8), we have

yk = y(i) + �k (2.3.9)

where �k > 0:

If (2.3.9) is subsitituted into (2.3.8), we have

y(i) + �k+1 � y(i) � �k�1
2h

= f(y(i) + �k) =)
�k+1 � �k�1

2h
= Ri�k (2.3.10)

Then we obtain the following second order di¤erence equation with respect to �k :

�k+1 � (2hRi)�k � �k�1 = 0 (2.3.11)

If we write �k = rk then the characteristic equation of the linear di¤erence eqaution

(2.3.11) becomes

r2 � (2hRi)r � 1 = 0 (2.3.12)

If we denote the roots of (2.3.12) by r+ and r� and then we can write the general

solution of (2.3.11) as

�k = c1(r+)
k + c2(r�)

k
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where c1 and c2 are arbitrary constants. It can be easily seen that

(r+)(r�) = �1 (2.3.13)

which means that r+ and r� have opposite signs and one of them is larger than in

magnitude. From here, we conclude that �k oscillates with an increasing amplitudes

in magnitude. This means that the �xed point

yk = y(i)

is linearly unstable. However we know that the �xed-point of the di¤ferential

equation is stable for Ri < 0. Hence the using of central di¤erence scheme for

the equation (2.3.1) gives us a discrete model for which all its �xed points are lin-

early unstable. That is, central di¤erence discretization (2.3.8) for the di¤erential

equation (2.3.1) yields numerical instabilities for all values of step size h:

Now we will examine the linear stability properties of the �xed points of the

forward Euler scheme for the equation (2.3.1)

yk+1 � yk
h

= f(yk) (2.3.14)

In this case, substituting (2.3.4) into (2.3.14) gives

�k+1 � �k
h

= Ri�k (2.3.15)

where Ri =
df
dy

���
y=y(i)

: Equation (2.3.15) is a �rst order di¤erence equation which

can be written as

�k+1 � (1 + hRi)�k = 0

Its general solution is given by

�k+1 = �0(1 + hRi)
k (2.3.16)
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where

j�0j << jy(i)j

We can write the following from the equation (2.3.16).

If Ri > 0 then we have 1 + hRi > 1 so that the �xed-points y(i) are linearly

unstable for both (2.3.1) and the di¤erence equation (2.3.16)

If Ri < 0 then we know that the �xed-point y(i) is linearly stable for (2.3.1).

However y(i) will be linearly stable for a limited range. This is because

j1 + hRij < 1() �1 < 1 + hRi < 1() �2 < hRi < 0

From here, we conclude

jhRij < 2() h <
2

jRij
If we de�ne R� as

R� = supfjRij : i = 1; 2; ::ng

we obtain the following results:

0 < h <
2

R�
=) yk = y(i) is linearly stable

h � 2

R�
=) yk = y(i) is linearly unstable

As a result, the �xed-points of the forward Euler scheme (2.3.14) and the (2.3.1)

have the same linear stability properties under the following restriction on the step

size h.

0 < h <
2

jR�j
This type of instabilities are called "threeshold instability" [3].

As a last example, we consider an implicit model for (2.3.1). The backward

Euler scheme for (2.3.1) is given

yk � yk�1
h

= f(yk) (2.3.17)
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where Ri =
df
dy

���
y=y(i)

:Small perturbation about the �xed point yk = y(i) leads us

to the following equation
�k � �k�1

h
= Ri�k

which can be written as

�k � �k�1 = hRi�k =) �k = �k�1(
1

1� hRi

)k (2.3.18)

whose general solution is

�k = �0(
1

1� hRi

)k (2.3.19)

then we conclude the following results:

If Ri < 0 then

0 < �hRi () 1 < 1� hRi , 0 <
1

1� hRi

< 1

since h > 0: So that from the equation (2.3.19) �k ! 0 as k !1:Thus the �xed-

points of the equation (2.3.17) are linearly stable for all values of the step size

h > 0: Hence the linear stability properties of the equation (2.3.17) and (2.3.1) are

compatiblewith each other.

If Ri > 0 then we know that the �xed point y(i) for (2.3.1) will be linearly unstable.

However since h > 0 then we conclude the following results:

hRi > 0() �hRi < 0() 1-hRi < 1 (2.3.20)

Note that 1� hRi can not be zero since

1� hRi = 0 =) Ri =
1

h

then from the left part of the eqaution (2.3.18) we obtain

�k � �k�1 = h
1

h
�k
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then �k�1 = 0: This results contradicts with the assumption which is

0 < j�kj for all k

That is

1� hRi 6= 0, for all h > 0

If we consider the the inequality (2.3.20), we can examine it in two cases

1� hRi < �1 or � 1 < 1� hRi < 1

If

1� hRi < �1

then we obtain

1 <
1

1� hRi

< 0 (2.3.21)

We conclude from the equation (2.3.19), �k approaches to zero with a decreasing

amplitude. So that the �xed points yk = y(i) are linearly stable. If

�1 < 1� hRi < 1

then we have
1

1� hRi

< �1 or 1

1� hRi

> 1

We conclude from the equation (2.3.19), �k oscillates with an incresing amplitude

as k !1: Hence the �xed points yk = y(i) are linearly unstable. If we reconsider

the situtaion (2.3.1) for which the �xed points yk = y(i) becomes linearly stable,

we can write

1� hRi < �1, hRi > 2

If we de�ne R as

R = inffjRij : i = 1; 2; :::ng

Then for

h >
2

R
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all the �xed points of the implicit scheme (2.3.17) are linearly stable. This is an

interesting result. The corresponding ordinary di¤erential equation has unstable

behaviour for some ranges of the step size h but the related discrete models for

it has stable behaviour for some values of h in the same range. This phenomena

is known as super-stability [42]. There are lots of papers about the structure of

super-stability and its applications to real life problem [42].

In this section, we obtained some results about the linear stability properties

of the �xed points for a certain type of ODEs. In the next chapters, we will use

these results in order to construct discrete models which gives correct qualitative

behaviour with the corresponding di¤erential equation.
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3. NONSTANDARD FINITE DIFFERENCE MODELS

In the previous chapter we have presented some standard di¤erence methods

for some ordinary di¤erential equations. Even if using SFD models in di¤erential

equation give some consistent result for some values of the step size h, numerical

instabilities occur in modelings for a broad range of h:When we use SFD method

for numerical solutions of di¤erential equation, numerical instabilities generally

stem from the modelling of terms including derivatives.

There are some ways to prevent the instabilities in computations. One of them

is to use a smaller step size h: Nonetheless lots of time this reducing increases the

computational requirements. For example computational load is proportional to
1

hd+1
for standard discretization of d�dimensional wave equation. This means that

halving the step size h for 3�dimensional wave equation requires 8 times as much
computer memory and 16 times as many computations [43]. Hence using smaller

step size for this equation causes compuational costs. This result is observed in

lots of �nite di¤erence models.Another way that can be used for decreasing the

errors in methods is to use higher order methods for derivative terms. For instance

we generally use the following form for the modelling of second order derivative

term of a function y = y(t):

y00(tk) =
y(tk+1)� 2y(tk) + y(tk�1)

h2
� h2

12
y0000(�k)

where �k 2 [tk�1; tk+1]. This model has a second order accuracy. By using Taylor
series representation we can also obtain the fourth order approximation

y00(tk) =
�y(tk+2) + 16y(tk+1)� 30y(tk) + 16y(tk�1)� y(tk�2)

12h2
� 1

90
h4y(6)(tk)

where �k 2 [tk�2; tk+2]: Higher order models generally give more accurate results.
However they require much more operations in computations. Here our aim is to

present nonstandard �nite di¤erence(NSFD) models which is �rstly constructed

by Mickens R.E. [3]. This method enables us to obtain reliable numerical results

by means of low order �nite di¤erences without changing the step size or using the

higher order methods for derivative terms. In this chapter we will provide some
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information about the general structure of NSFD models and introduce some rules

given by Mickens in [3]

In the �rst chapter we have given a brief information about the SFD models

for di¤erential equations. The structure of denominator function and the mod-

eling of nonlinear terms are two main di¤erences between the SFD and NSFD.

Nonstandard models generally include more complicated denominator functions.

In this chapter, we will construct NSFD schemes for some particular ODEs. The

rules of NSFD schemes are consequence of exact �nite di¤erence schemes of ODEs.

3.1 Exact Di¤erence Schemes and Nonstandard Finite Di¤erence Schemes
In this section, we will construct exact �nite di¤erence scheme for some ordin-

ary di¤erential equations. They are obtained from the exact solution of di¤erential

equation. Exact �nite di¤erence model has a great importance for numerical com-

putations since they do not have any numerical instablities.

Consider the �rst order ODE

dy

dt
= f(t; y) (3.1.1)

where f(t; y) is a given function for which the equation (3.1.1) has a unique solu-

tion. One of the standard modelings of this general equation can be

yk+1 � yk
h

= f(tk; yk)

where the denominator function '(h) = h is in the classical form. However we can

make the following observations.

Assume that '1 and '2 be two function satisfying the conditions(
'1(h) = h+O(h2)

'2(h) = h+O(h2)
(3.1.2)

As h! 0, we can retain the terms O(h2) and then we can write:

lim
h!0

y(t+'1(h))�y(t)
'2(h)

= lim
h!0

y(t+h+O(h2))�y(t)
h+O(h2)

= lim
h!0

y(t+h)�y(t)
h

= dy
dt

(3.1.3)
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as de�nition of derivative. This observation is valid for h! 0: However behaviour

of the left hand side of the eqaution (3.1.3) will be di¤erent from the classical

de�niton of derivative for the �nite values of the step size h:With an inspration

from here, we will generally consider denominator functions such as '1(h) and

'2(h) instead of classical forms and then we will focus on discrete forms:

dy

dt
=
yk+1 � yk
'(h)

(3.1.4)

where '(h) is a function satisfying the condition '(h) = h+O(h2) :We will �rstly

deal with �rst order ODEs in the form (3.1.1) whose exact solution can be written

as

y(t) = '(y0; t0; t) (3.1.5)

with the initial condition

y0 = '(y0; t0; t0)

If we consider a discrete scheme

yk+1 = u(h; yk; tk) tk = hk (3.1.6)

for (3.1.1), the solution to this explicit model can be expressed in a form

yk = �(h; y0; t0; tk) (3.1.7)

We will say that equation (3.1.1) and (3.1.6) have the same general solution if and

only if

y(tk) = yk (3.1.8)

for all values of the step size h:

De�nition 1. [3] If the solution of a discrete model has the same general solution
with the corresponding di¤erential equation then the di¤erence scheme is called

an exact �nite di¤erence scheme for corresponding di¤erential equation

Theorem [4] The equation (3.1.1) has an exact �nite-di¤erence scheme given by

yk+1 = �(h; yk; tk; tk+1)
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where the function � is de�ned in (3.1.7) [3]. It would be useful to emphasize

that this theorem is an existance theorem. In other word, it does not provide any

information about how to construct the exact di¤erence schemes for the related

di¤erential equations. Actually, there is no general procedure in order to con-

struct an exact schemes. Now we will provide some examples for NSFD schemes

discussed in [3,5,32]. When the exact scheme is obtained, by using some algebraic

manipulation, one can reformulate the exact scheme to obtain a NSFD scheme.

Using the exact �nite di¤erence scheme, Mickens [3] list some rules to construct a

NSFD scheme for some certain ODEs and PDEs.

3.2. Logistic Di¤erential Equation
Consider the logistic di¤erential equation with two parameters �1 and �2 such that

dy

dt
= �1y � �2y

2 (3.2.1)

with the initial condition

y(t0) = y0 (3.2.2)

Some algebric manipulations yield that

1

�1y � �2y2
=
1=�1
y

+
�2=�1
�1 � �2y

Then we can write

dy

�1y � �2y2
= dt)

Z
dy

�1y � �2y2
=

Z
dt)

Z
(
1=�1
y

+
�2=�1
�1 � �2y

)dy =

Z
dt

from here

1

�1
ln(y)� �2

�1
(
�1
�2
) ln(�1 � �2y) = t+ c) ln(y1=�1(�1 � �2y)

�1=�1) = t+ C

1

�1
ln(

y

�1 � �2y
) = t+ C
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Some additional operation gives us the following expression

ye��1t

�1 � �2y
= e�1C

where c is a real constant. If we impose the initial condition (3.2.2), then we obtain

e�1C =
y0e

��1t0

�1 � �2y0

Consequently we will obtain an expression for a particular solution of (3.2.1-3.2.2)

such that
ye��1t

�1 � �2y
=

y0e
��1t0

�1 � �2y0
) y

�1 � �2y
=
y0e

��1(t�t0)

�1 � �2y0

Then the general solution for the initial value problem (3.2.1-3.2.2) can be written

as

y(t) =
�1y0

(�1 � �2y0)e��1(t�t0) + �2y0
(3.2.3)

At this step we make the following subsitutions in order to obtain a di¤erence

scheme for (3.2.1) [3]. 8>>>><>>>>:
y(t)! yk+1

y0 ! yk

t0 ! tk

t! tk+1

(3.2.4)

These subtitutions comes from the group properties of the solutions of the ordinary

di¤erential equations [48]. Then by making these subsitutions into (3.2.3) we

obtain the following discete model

yk+1 =
�1yk

(�1 � �2yk)e��1h + �2yk
(3.2.5)

since tk+1 � tk = h: Now by using this expression, we make some algebraic opera-

tions like

�1yk+1 � �2yk+1yk = �1yke
�1h � �2yk+1yke

�1h
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or equivalently we have the following equations:

�1yk+1 � �2yk+1yk + �2yk+1yke
�1h � �1yke

�1h = 0 (3.2.6)

Adding and substracting the term �1yk to (3.2.6), we obtain

(yk+1 � yk) = (�1yk � �2yk+1yk)(
1� e�1h

�1
)

As a result we obtain the following NSFD scheme for the initial value problem

(3.2.1-3.2.2)

yk+1 � yk
1�e�1h
�1

= �1yk � �2yk+1yk (3.2.7)

It is obviously seen that this nonstandard scheme is di¤erent from the standard

ones for (3.2.1)-(3.2.2)

yk+1 � yk
h

= �1yk � �2y
2
k (3.2.8)

yk � yk�1
h

= �1yk � �2y
2
k

The discrete model is exact �nite di¤erence scheme for the equation (3.2.5), i.e,

yk+1 = y(tk+1); k = 0; 1; 2::: for all h (3.2.9)

To show this, we use mathematical induction for k: If k = 0; then from (3.2.7)

y1 =
�1y0

(�1 � �2y0)e��1h + �2y0
=

�1y0
(�1 � �2y0)e��1(t1�t0) + �2y0

= y(t1)

So that

y1 = y(t1)
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Suppose that the assumption (3.2.9) is true for all k < k + 1, i.e,

yk = y(tk); k = 1; 2:::k + 1 for all h (3.2.10)

Then

yk+1 =
�1yk

(�1 � �2yk)e��1h + �2yk
=

�1y(tk)

(�1 � �2y(tk))e��1h + �2y(tk)

by the assumption (3.2.10), we write

yk+1 =
�1

�1y0
(�1��2y0)e��1(tk�t0)+�2y0

(�1 � �2
�1y0

(�1��2y0)e��1(tk�t0)+�2y0
)e��1h + �2

�1y0
(�1��2y0)e��1(tk�t0)+�2y0

yk+1 =
�1y0

((�1 � �2y0)e��1(tk�t0) + �2y0 � �2y0| {z })e��1h + �2y0

since then we obtain

yk+1 =
�1y0

(�1 � �2y0)e��1(tk�t0+h) + �2y0

since tk+1 = tk + h then we write

yk+1 =
�1y0

((�1 � �2y0)e��1(tk+1�t0) + �2y0
= y(tk+1)

implies that the claim is true, i.e

yk+1 = y(tk+1); k = 0; 1; 2::: for all h

This shows that the NSFD scheme (3.2.6) or its equivalent statement (3.2.5) is an

exact �nite di¤erence scheme for the initial value problem (3.2.1-3.2.2). It should
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be noted that the nonlinear term y2 in (3.2.1) is modelled nonlocally by

y2 ! yk+1yk

Indeed these type of representations are one of the most important properties

of the NSFD schemes that di¤er from the standard forms. However we can not

guarrente that nonlocal modelling of nonlinear terms for any di¤erential equation

yields consistent discrete models. There are some numerically stable models that

use both local and nonlocal modelling for some nonlinear terms [40]. Main reason

for this point is that there are lots of nonlocal representations of a nonlinear term.

For instance

y2 ! yk+1yk , yk(
yk+1 + yk

2
); ::

y3 ! yk+1y
2
k , yk+1yk(

yk+1 + yk
2

); ::

Hence in addition to identifying a suitable denominator function, �nding an ap-

propriate model for nonlinear terms in a di¤erential equation is very important to

obtain consistent results. However we do not have a general method to overcome

this point.

The following �gure presents numerical solutions obtained from the equation

(3.2.7). We use y(0) = y0 = 0:5 as initial condition and three step sizes h =
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0:01; 1:5; 2:5: We choose �1 = �2 = 1 for simplicity.
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Figure 3.1. NSFD scheme (3.2.7) for h = 0:01:
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Figure 3.2. NSFD scheme (3.2.7) for h = 1:5
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Figure 3.3. NSFD scheme (3.2.7) for h = 2:5

The following graphs shows some SFD schemes for the equation (3.2.1). We use

y(0) = y0 = 0:5 as initial condition and same step sizes h = 0:01; 1:5; 2:5
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Figure 3.4. SFD schemes (3.2.8) for h = 0:01
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Figure 3.5. SFD schemes (3.2.8) for h = 1:5
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Figure 3.6. SFD schemes (3.2.8) for h = 2:5

Figure 3.7 represent the exact solution (3.2.3) of the di¤erential equation (3.2.1)

with the initial condition y0 = 0:5: From the �gure we see that the trajectory of
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the solution approaches to the �xed point y = 1: This behaviour is seen in NSFD

scheme (3.2.7) for all step sizes h = 0:01; 1:5; 2:5: However, forward Euler scheme

in (3.2.8) fails to approach the �xed point y = 1 for large step sizes, while backward

Euler scheme perform well for all step sizes (See Figure (3.4-3.6))
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Figure 3.7. Exact solution of (3.2.1)

3.3. A First Order Nonlinear ODE
Consider the following ordinary di¤erential eqaution

2
dy

dt
+ y =

1

y
(3.3.1)

y(t0) = y0 (3.3.2)

Note that as t ! 1; the solution approaches to the �xed point y = �1: The
solution of (3.3.1)-(3.3.2) is given by

y2(t) = 1� ce�t; c 2 R (3.3.3)

If we make the subsitutions in (3.2.4) then we obtain the following discrete model

y2k+1 = 1� (1� y2k)e
�h (3.3.4)
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It can be seen that this model is an exact �nite di¤erence scheme for the IVP

(3.3.1)-(3.3.2). Adding and substracting y2k to (3.3.4) and making some simple

algebraic manipulation we get

(yk+1 � yk)(yk+1 + yk)

1� e�h
+ y2k = 1

Multiplying both sides by
1

(yk+1+yk
2

)
we obtain the following NSFD schemes for

the equation (3.3.1)

2(
yk+1 � yk
1� e�h

) +
y2k

yk+1 + yk
2

=
1

yk+1 + yk
2

(3.3.5)

For (3.3.1), the scheme

2(
yk+1 � yk

h
) + yk =

1

yk
(3.3.6)

2(
yk � yk�1

h
) + yk =

1

yk

can be proposed as a SFD scheme. Note that the equation (3.3.5) has denominator

function '(h) = 1 � e�h and di¤erent nonlocal representations for the nonlinear

terms. Figure (3.8) represents the solution of (3.3.1) with the initial condition

y(0) = 0:5: Note that solution approaches to the �xed point y = 1:This behaviour

can be seen for NSFD scheme (3.3.5) in the Figure (3.9-3.11) for the step sizes h =

0:01; 1:5 and 2:5 respectively. However, forward Euler scheme (3.3.6) represents

the correct qualitative behaviour only for small step size h = 0:01:(See Figure

3.12). Figure (3.13) and (3.14) represent the failure of forward Euler scheme in

(3.3.6) for large step sizes h = 1:5 and h = 2:5: However we observe that backward

Euler scheme in (3.3.6) gives realible numerical results for all step sizes. This fact

can be seen in Figures (3.12-3.14).
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Figure 3.8. Exact solution of (3.3.1) with

y0 = 0:5
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Figure 3.9. Plots of (3.3.5) for h = 0:01
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Figure 3.10. Plots of (3.3.5) for h = 1:5
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Figure 3.11. Plots of (3.3.5) for h = 2:5
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Figure 3.12. Plots of (3.3.6) for h=0.1
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Figure 3.13. Plots of (3.3.6) for h=1.5
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Figure 3.14. Plots of (3.3.6) for h=2.5

It is obvious that it can be di¤ucult to �nd a NSFD schemes for a di¤eren-

tial equation only by making such algebraic operations.To overcome this di¢ culty,

some new approches are developed in [3,5,44,45].

3.4. A New Finite Di¤erence Scheme
In the �rst chapter we have investigated the linear stability properties of �xed

points of di¤erential equations and related di¤erence equations.We have discussed

that the elementary numerical instabilities occur in discrete modelling if the linear

stability properties of �xed points of di¤erential and di¤erence equations are not

same. Therefore if this point could ovecome then it would be possible to construct

a consistent discrete models. In this section we will �nd a �nite di¤erence scheme

which has correct linear stability properties for all step size h: Consider the IVP

dy

dt
= f(y); y(t0) = y0 (3.4.1)

Assume (3.4.1) has a uniqe solution. Let us denote the set of �xed point of (3.4.1)
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as

fy(i)j f(y(i)) = 0, i = 1; 2::ng

where we assume that all y(i)�s are real and distinct. De�ne

Ri =
df

dy

����
y=y(i)

(3.4.2)

and

R� = supfjRij j i = 1; 2::ng

also we have obtained the following results from the section (2.4) by means of

linear stability analysis of �xed points mentioned in the Section 2.4:

If Ri < 0 then the �xed-point y(t) = y(i) is linearly stable

If Ri > 0 then the �xed-point y(t) = y(i) is linearly unstable

Now pick an arbitrary function '(s) satisfying the conditions:

'(s) = s+O(s2) as s! 0 (3.4.3)

0 < '(s) < 1 for s > 0 (3.4.4)

Theorem: [3] The �xed point of the �nite discrete model

yk+1 � yk
'(hR�)
R�

= f(yk) (3.4.5)

has the same linear stability properties with the di¤erential equation (3.4.1).

Proof: Making a small perturbation about the �xed point y(i) such that

yk = y(i) + "k (3.4.6)

where "k > 0: Then substituting (3.4.6) into (3.4.5) and using the Taylor�s series

expansion of f(y(i) + "k) around f(y(i)), we get

"k+1 � "k
'(hR�)
R�

= Ri"k (3.4.7)

51



Equation (3.4.7) can be rewriten as

"k+1 = (1 +
Ri

R�
'(hR�))k"0 (3.4.8)

If Ri > 0 we know that the �xed points y(i) of (3.4.1) are linearly unstable. Since

1 +
Ri

R�
'(hR�) > 0

From (3.4.8) we get "k+1 !1 as k !1. Therefore the �xed points y(i) of (3.4.5)
are also linearly unstable.

If Ri < 0 then the �xed points y(i) of (3.4.1) are linearly stable. Using the fact

that 0 < jRij � R� we can write �R� � �jRij < 0 hence �R� � Ri < 0 (since

Ri < 0): Then we have �1 � Ri
R� < 0 . On the other hand since hR

� > 0 then by

using (3.4.4) we get 0 < '(hR�) < 1 which implies that

�1 < Ri

R�
'(hR�) < 0) 0 < 1 +

Ri

R�
'(hR�) < 1

Then from (3.4.7), we get "k+1 ! 0 as k ! 1. This means that the �xed-point
y(i) of (3.4.5) are also linearly stable for all h which completes the proof.

This theorem enables us to construct discrete models in which the elemantary

numerical instabilities do not appear.

Now we will apply this theorem to some di¤erential equations.

3.5. Decay Equation
Consider the decay di¤erantial equation

dy

dt
= ��y; y(t0) = y0 (3.5.1)

where � > 0 is a parameter. Here f(y) = ��y and y(1) = 0 is the only �xed point.
Then from (3.4.2)

R1 =
df
dy

���
y=0

= �� and so R� = �: The function

'(h) = 1� e�h (3.5.2)
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satis�es the conditions (3.4.3)- (3.4.4). Then the denominator function in (3.4.5)

becomes
'(hR�)

R�
=
1� e��h

�

We can construct the following NSFD scheme for (3.5.1)

yk+1 � yk
1�e��h

�

= ��yk (3.5.3)

It is an exact �nite di¤erence for the equation (3.5.1). In fact (3.5.3) is reduced to

the following di¤erence equation

yk+1 = (e
��h)yk

whose general solution can be writen as

yk = (e
��h)ky0

The solution of (3.5.1) can be expressed as

y(t) = y0e
��(t�t0) (3.5.4)

Then

y(tk) = y0e
��(tk�t0) = y0e

��(hk) = y0(e
��h)k = yk for all h

means that the discrete scheme (3.5.3) is an exact �nite di¤erence scheme for the

equation (3.5.1). One of the SFD schemes for the equation (3.5.1) can be written

as
yk+1 � yk

h
= ��yk (3.5.5)

The following numerical computations enable us to see the comparison of two

methods (3.5.3) and (3.5.5) for various step sizes with the exact solution. We

impose the initial condition y(0) = y0 = 0:5; � = 2 , and h = 0:1; 0:75; 1:2 in each

computation.
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h=1.2

As a result, we see that the nonstandard scheme (3.5.2) has correct qualitative be-

haviours with the di¤erential equation (3.5.1) for all step sizes. However standard

scheme (3.5.4) fails for large step sizes, h = 0:75; 1:2

3.6 ODE with three �xed-point
Consider the following ODE

dy

dt
= y(a� y2), a > 0 (3.6.1)

which has three �xed points: The equation (30) has three �xed points which are

y(1) = 0; y(2) =
p
a; y(3) = �

p
a

and then we have

R1 =
df

dy

����
y=y(1)=0

= a

R2 =
df

dy

����
y=y(2)=

p
a

= R3 =
df

dy

����
y=y(2)=�

p
a

= �2a
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So that

R� = 2a

Using '(h) from (3.5.2) and equation (3.4.5) we obatin the NSFD scheme

yk+1 � yk
1�e�2ha

2a

= yk(a� y2k) (3.6.2)

for the equation (3.6.1). This is an exact �nite di¤erence for the equation (3.6.1).

Note that the NSFD scheme has the denominator function '(h) = 1�e�2ha
2a

and its

nonlinear term is modelled locally. For the purpose of comparison, consider a SFD

scheme
yk+1 � yk

h
= yk(a� y2k) (3.6.3)

for the equation (3.6.1). When we compare these two schemes for various step

sizes, we see that NSFD scheme has exactly same qualitative behaviour as the

solution of (3.6.1). Numerical solutions of (3.6.2), (3.6.3) and the exact solution

of (3.6.1) are displayed in Figures (3.18-3.20) for y0 = 0:5; a = 2 and various step-

sizes h = 0:1; 0:75 and h = 1: We see that the NSFD scheme (3.6.2) approaches

monotonically to the �xed point y =
p
2: This is exactly the same qualitative

behaviour with the exact solution of (3.6.1). Note that the SFD scheme (3.6.3)

56



fails to preserve monotonicity of the solution for all selected step sizes.
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Figure 3.18. Comparison of methods (3.6.2)

and (3.6.3) for (3.6.1) with h=0.1
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and (3.6.3) for (3.6.1) with h=1

We would like to emphasize that this theorem proposes the local representation

for both linear and nonlinear terms in the right hand side of the equation (3.4.1).

In Section 3.8, we will present a work which focuses on the nonlocal representation

of the nonderivative terms in the equation (3.4.1).

We discussed four ordinary di¤erantial equations whose general form is

dy

dt
= f(y)

and obtained NSFD models these four di¤erential equations. Numerical calcu-

lations have shown that even if the SFD schemes work well for small sizes-as

expected, it does not re�ect the correct qualitative behaviour of the exact solution

of the corresponding di¤erential equations for large step sizes. Here, we have seen

that NSFD schemes resolve this point. On the other hand, we have seen that

the use of nonstandard denominator function (it is sometimes called renormalized

function) has an important in�uence on the behaviour of the discrete model.

As said before, there are no general procedure for �nding a NSFD models of

a di¤erential equation. As a result of those analytical and numerical studies, the
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following rules are generally used in order to construct a consistent NSFD scheme

[2,3]

Rule 1. The order of the discrete derivatives must be the same with the corres-

ponding di¤erential equation.

Rule 2. Instead of classical used, sophisticated denominator functions must be

choosen for discrete models.

Rule 3. Nonlinear term must be modelled nonlocally.

Rule 4. Special conditions that hold for the solution of the di¤erential equation

should also hold for the solutions of the �nite di¤erence scheme.

Rule 5. The scheme should not introduce irrevelant solutions.

In the following sections, we will review two recent papers about NSFD mod-

elling of di¤erential equations . One of them is about a boundary value problem

and the other one is about a general discrization of ODEs with three �xed points

[44,45].

3.7. A NSFD Scheme for Second Order BVP
In this section, we will review the work [44] about nonstandard �nite discretization

of any second order BVPs. Consider the following BVP

y
00
= f(x; y); a < x < b (3.7.1)

with boundary conditions are

y(a) = �; y(b) = � (3.7.2)

Here f(x; y) is a given function for which the BVP (3.7.1) - (3.7.2) has a unique

solution in the interval (a; b): We consider the equally spaced points fx0; x1;:::xng
with step size h = b�a

n
for the interval [a; b] such that

a = x0 < x1:: < xn�1 < xn = b:

The main motivation of this work is based on an approximation in which the frozen
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coe¢ cients are used. First of all, �rst order ODE

y0 = f(x; y) (3.7.3)

will be exaimed. Let ey = ey(x) be an approximating function to y = y(x) in the

subinterval (xi�1; xi+1) such that

dey
dx
= fi (3.7.4)

where fi is a constant number which is called frozen coe¢ cent at x = xi and

fi = f(xi; eyi); eyi = ey(xi): (3.7.5)

The general solution of (3.7.4) is

ey(x) = fix+ c (3.7.6)

Imposing the continuity of the function ey = ey(x) at the mesh points x = xi�1 and

x = xi+1, set eyi�1 = ey(xi�1) , eyi+1 = ey(xi+1)
Then by using (3.7.6), it is obtained

eyi+1 = fixi+1 + ceyi�1 = fixi�1 + c

from here, we write

fi =
eyi+1 � eyi�1
xi+1 � xi�1

=
eyi+1 � eyi�1

2h

This characterize an approximation such that

dey
dx
=
eyi+1 � eyi�1

2h
(3.7.7)

which is the central di¤erence formula for
dey
dx

in the subinterval [xi�1; xi+1]: For-
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ward and backward Euler formulas can be obtained by using the subintervals

[xi; xi+1] and [xi�1; xi] respectively. Now freezing f at the mesh point x = xi in

the interval (xi; xi+1) and adding a parameter w 2 (xi; xi+1) it can be obtained

ey0 � wey = fi � weyi (3.7.8)

which is a linear �rst order ODE. Its general solution can be written as

ey(x) = �1
w
(fi � weyi) + cewx (3.7.9)

By using the conditions

eyi = ey(xi) , eyi+1 = ey(xi+1)
fi can be obtained as

fi =
eyi+1 � eyi�1

ewh�1
2

=
dey
dx

(3.7.10)

Note that (3.7.10) has a denominator function '(h) = ewh�1
2

which is the same

with function described by Mickens [3]. Now let ey = ey(x) be an approximation to
y = y(x) in the interval (xi�1; xi+1) and

d2ey
dx2

= fi (3.7.11)

where fi is the frozen coe¢ cient at x = xi: With an inspiration from (3.7.8), it

is possible to construct a NSFD scheme for the BVP (3.7.1-3.7.2). Construct the

following di¤erential equation

ey00 � w2ey = fi � w2eyi (3.7.12)

Equation (3.7.12) can be rewritten as

ey00 � w2(ey + fi
w2
� eyi) = 0 (3.7.13)
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If we denote u = ey + fi
w2
� eyi then the equation (3.7.13) becomes

u00 � w2u = 0

whose general solution is

u(x) = c1e
wx + c2e

�wx

Then the general solution of the equation (3.7.13) is

ey(x) = c1e
wx + c2e

�wx � fi
w2
+ eyi (3.7.14)

If we use the conditions

eyi�1 = ey(xi�1); eyi = ey(xi) , eyi+1 = ey(xi+1)
fi can be found as

fi =
eyi+1 � 2eyi + eyi�1

'(w; h)
(3.7.15)

where

'(w; h) = 2(
cosh(wh)� 1

w2
) (3.7.16)

As a result the following NSFD scheme is presented for the BVP (3.7.1-3.7.2)

yi+1 � 2yi + yi�1
'(w; h)

� f(xi; yi) = 0; i = 0; 1; ::n� 1 (3.7.17)

y0 = �; yn = �

It should be noted that w can be in pure imaginary form, i.e,

w ! iw or w ! �iw

However '(w; h) will be a real number again. Since cos(wh) =
ewh � e�wh

2
then

cosh((iw)h) =
eiwh � e�iwh

2
=
cos(wh) + i sin(wh) + cos(wh)� i sin(wh)

2
= cos(wh)
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where i2 = �1:
Now if we use Taylor series expansion for the hyperbolic function cosh(wh)

cosh(wh) = 1 +
1

2
w2h2 +

1

24
w4h4 +

1

720
w6h6 +O(w8h8) (3.7.18)

Using (3.7.18), Taylor series for (3.7.16) will be

'(w; h) = h2 +
h4w2

12
+
h6w4

360
+
h8w6

20160
+ ::: (3.7.19)

for small h and w. It can be observed that

'(w; h)! h2 as w ! 0:

This situation is the conventional �nite di¤erence form of the problem (3.7.1-3.7.2).

On the other hand it can be �nd an expression for the local truncation error of

the equation (3.7.17). If we use the Taylor series for the function y = y(x) in the

subinterval (xi�1; xi+1); it can be found that

y(xi+1)� 2y(xi) + y(xi�1) = h2y00(xi) +
h4

12
y(iv)(xi) +

h6

360
y(6)(�i) (3.7.20)

where �i 2 (xi�1; xi+1): If we divide both sides by '(w; h) then substract f(xi; yi)
from both sides

y(xi+1)�2y(xi)+y(xi�1)
'(w;h)

� f(xi; yi) =
h2y00(xi)
'(w;h)

+
h4

12
y(iv)(xi)
'(w;h)

+ h6y(vi)(�i)
360'(w;h)

� f(xi; yi)

since y00(xi) = f(xi; yi) , we obtain

y(xi+1)� 2y(xi) + y(xi�1)

'(w; h)
�f(xi; yi) = f(xi; yi)(

h2

'(w; h)
�1)+h

4

12

y(iv)(xi)

'(w; h)
+
h6

360

y(vi)(�i)

'(w; h)
(3.7.21)

As a result, local truncation error of the scheme (3.7.17) can be written as
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� i = f(xi; yi)(
h2

'(w; h)
� 1) + h4

12

y(iv)(xi)

'(w; h)
+

h6

360

y(vi)(�i)

'(w; h)
(3.7.22)

Now for small w , '(w; h) � h2 and then � i ! 0 as h ! 0: This shows that the

method (3.7.17) is second order. However it is possible to obtain an optimal w

which depends on the values of mesh points. Hence it can be possible to �nd a

local truncation error which behaves like fourth order.

If the local truncation error is chopped in the fourth order then the local truncation

error reduced to

� i = f(xi; yi)(
h2

'(w; h)
� 1) + h4

12

y(iv)(�i)

'(w; h)
(3.7.23)

If we impose

� i = 0

then

f(xi; yi)(
h2

'(w; h)
� 1) + h4

12

y(iv)(�i)

'(w; h)
= 0) f(xi; yi)('(w; h)� h2) =

h4

12
y(iv)(�i)

implies that

'(w; h)� h2 =
h4

12

y(iv)(�i)

f(xi; yi)
) 2(

cosh(wh)� 1
w2

)� h2 =
h4

12

y(iv)(�i)

f(xi; yi)

If we use the expansion (3.7.18) up to the fourth order then it is obtained

2(
1 + 1

2
w2h2 + 1

24
w4h4 � 1

w2
)�h2 � h4

12

y(iv)(�i)

f(xi; yi)
) h2+

1

12
w2h2�h2 � h4

12

y(iv)(�i)

f(xi; yi)

then
1

12
w2h4 � h4

12

y(iv)(�i)

f(xi; yi)
(3.7.24)

Since w is depends on the values of the mesh points in the interval (xi�1; xi+1); we

denote it by wi and then get
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w2i �
y(iv)(xi)

f(xi; yi)
(3.7.25)

where we imposed the condition �i � xi: As a result, the NSFD scheme (3.7.17)

can be updated as

yi+1 � 2yi + yi�1
'(wi; h)

� f(xi; yi) = 0; i = 0; 1; ::n� 1 (3.7.26)

y0 = �; yn = �

where wi is of the form (3.7.25). In this way, (3.7.26) behaves like fourth order.

3.8. A NSFD Scheme Preserving the Linear Stability Properties of
Fixed Points and Monotonicity of Solutions
One of the most important reason for using NSFD method is to be able con-

struct discrete models which have corrrect qualitative behaviour with the corres-

ponding di¤erential equation. Although there is no general prodecure to achieve

this point, there has been some powerful results for some types of di¤erential equa-

tion. For instance when considered �rst order autonomous di¤erential equation,

numerical instabilities occur in discrete modelling if the linear stability properties

of any �xed-points of di¤erence equation is not concordance with those di¤erential

equation. This means that if it can be found any method which enable to achieve

this point, it would be possible to eliminate numerical instabilities which stem

from this fact. On the other hand it is a natural expectation that any discrete

scheme should preserve the qualitative properties of di¤erential equation such as

positivity, monotonicity, asymptotic behaviour of the solution. In this section, we

will cover some material in [32] which proposes criteria for �nite di¤erence models

to preserve linear stability properties of �xed points and monotonicity of solutions.

Consider the following IVP

dy

dt
= f(y) (3.8.1)

y(t0) = y0
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where t 2 [t0; T ] (T is allowed to be1) and also assume that (3.8.1) has a unique
solution. At the mesh points tk := t0 + hk ( h > 0), we will consider the following

explicit model for (3.8.1)

yk+1 = F (h; yk) (3.8.2)

where yk � y(tk). Now supppose that the solution of (3.8.1) y(t) satis�es any

property }(monotonicity, positivity etc). If the discerete scheme (3.8.2) also sat-

is�es } for all step sizes h > 0 then we will say that the solutions fykg of (3.8.2)
is stable with respect to }: Assume that the function F (h; y) has continuous �rst

partial derivatives w.r.t h and y. Also assume F (h; y) satisfy

@F

@h
(0; y) = f(y) and F (0; y) = y (3.8.3)

De�nition 2. Let F(U) be a set of functions such that

F(U) := ff j f : U � R! Rg

and let f; g 2 F(U): We say that the set F(U) is monotonically depend on the
initial value at t0 2 U; if

f(t0) � g(t0) implies f(t) � g(t); 8t 2 U

If we consider the solution set of the equation (3.8.1), then we know that it is

monotonically depend on the initial value at t0; because of the assumption of

uniqueness. Now set U := ftk : k = 0; 1; ::g i.e. F(U) := fyk j yk : U � R! Rg.
Theorem 1. [32] The scheme (3.8.2) is stable w.r.t monotone dependence on
initial value if

@F

@y
(h; y) � 0; y 2 R; h > 0 (3.8.4)

Proof . Let yk, zk 2 F(f): @F
@y
(h; y) � 0 means that the function F (h; y) is

increasing in y: If y0 � z0 then F (h; y0) � F (h; z0) this gives y1 � z1 implies that

F (h; y1) � F (h; z1) then y2 � z2. If we continue in this manner we obtain yk � zk:

This completes the proof.
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De�nition 3. [32] The scheme (3.8.2) is stable w.r.t monotonicity of solutions if
the solution (yk) for all y0 2 R is increasing or decreasing whereever the solution
y(t) of (3.8.1) is incresing or decreasing.

Theorem 2. [32] Suppose that the scheme (3.8.2) is stable w.r.t monotone de-
pendence on initial value and suppose that the following equations

y = F (h; y) and f(y) = 0 (3.8.6)

have the same roots in y according to their multiplicity.Then the scheme (3.8.2) is

stable w.r.t monotonicity of solutions.

Proof . Let y0 2 R be an initial condition for (3.8.1) :If y0 is a �xed point then
the unique solution of (3.8.1) becomes the constant function y(t) = y0: By the

assumtion of the theorem, y0 is also a �xed point of the scheme (3.8.2), that is, y0
satis�es

F (h; y0) = y0

This yields that y1 = F (h; y0) = y0. If we continue in this way, we obtain

yk = y0; k = 1:2:::

This shows that the monotonicity is preserved in discrete scheme (3.8.2). For that

reason, assume that f(y0) > 0: Now let ey be the smallest �xed point greater than
y0:Then we know that the solution y(t) of (3.8.1) for the initial value y(t0) = y0 is

increasing on [t0;1] such that y(t) 2 [y0; ey]:(If there is no �xed point greater than
y0, we can set ey =1 then f(y) > 0 means that the solution y(t) is increasing over

the interval [t0;1] and y(t) 2 [y0;1]): Our aim is to prove the solution (yk) of

(3.8.2) is increasing sequence. First of all we prove the following clai ·m

F (h; y) > y for h > 0; y 2 [y0; ey] (3.8.7)

Assume the contrary, i.e, 9h > 0 and 9y 2 [y0; ey) such that
F (h; y) < y (3.8.8)
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From (3.8.3) ;
@F

@h
(0; y) = f(y) > 0 and F (0; y) = y: Since F (0; y) is increasing in

y 2 [y0; y) then this means that for very small h

F (h; y) > y (3.8.9)

(3.8.8) and (3.8.9) implies that 9ĥ 2 (0; h) such that

F (ĥ; y) = y

means that y 2 [y0; ey) is a �xed point for the scheme (3.8.2). This contradicts
our assumption since the scheme (3.8.2) has no �xed point on [y0; ey):That is, the
claim (3.8.7) is true. Now consider the solution (yk) of the scheme (3.8.2). We

know that yk = ey is also a solution for the scheme (3.8.2) such that y0 < ey since
we accept that (yk) is stable w.r.t monotone dependence on initial values then

yk � ey; k = 1; 2:::
(3.8.2-3.8.7) implies that

ey > yk = F (h; yk�1) > yk�1

From here it can be shown by means of induction that

y0 < y1 < ::: < yk�1 < yk < ::: < ey
means that (yk) is an increasing sequence. The other parts of the proof can be

made with a similar way. That is, (yk) will be a decreasing sequence if it is initiated

at y0 as to be f(y0) < 0: This completes the proof.

In Chapter 2, we have examined the behaviour of the solutions of (3.8.1) about

the single-real distinct �xed points ey; i.e,
f(ey) = 0 and f 0(ey) 6= 0 (3.8.10)

These points are sometimes called hyperbolic �xed points. We will also use this

notion for this rewiew. We obtained that behaviour of the solutions of (3.8.1) with

initial value near the �xed point ey can be characterized by the behaviour of the
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solution of the following equation

d�

dt
= R� (3.8.11)

where

R =
df

dy

����
y=ey and j�(t)j << jeyj (3.8.12)

for the hyperbolic �xed point ey:We called ey as linearly stable �xed point if �(t)! 0

as t!1: In fact this condition is satis�ed if

R =
df

dy

����
y=ey < 0 (3.8.13)

since the general solution of (3.8.11) can be written as

�(t) = �0e
Rt (3.8.14)

Otherwise we called the �xed point ey as linearly unstable. Now we can interpret
the equation (3.8.11) in discrete form. When we consider the �rst order di¤erence

equation (3.8.2), its �xed point will be numbers ey satisfying the following equation
ey = F (h; ey)

Let us consider the perturbed solution

yk = ey + �k (3.8.15)

where j�kj << jeyj . Direct subsitution of (3.8.15) into (3.8.2) yields the result
ey + �k+1 = F (h; ey + �k) (3.8.16)

Using the linerization of the right hand side of (3.8.16) about the �xed point ey; we
can obtain

F (h; ey + �k) � F (h; ey) + �k
@F

@y
(h; ey) = ey + �k

@F

@y
(h; ey) (3.8.17)
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Equation (3.8.16) and (3.8.17) imply that

�k+1 = �k
@F

@y
(h; ey) (3.8.18)

which is a �rst order di¤erence equation whose general solution can be written as

�k = �0(Rh)
k (3.8.19)

where

Rh =
@F

@y
(h; ey) (3.8.20)

Thus, we will call ey as a linearly stable �xed point of the discrete scheme (3.8.2)
if �k ! 0 as k !1 which is satis�ed if

jRhj = j
@F

@y
(h; ey)j < 1 (3.8.21)

Otherwise ey is called a linearly unstable �xed point.
De�niton 4. [32] Let ey be an hyperbolic �xed point of (3.8.1) and also be a
solution of the di¤erence equation (3.8.2). If linear stability properties of all ey�s
are same for both (3.8.1) and the scheme (3.8.2) for all step size h > 0; then the

scheme (3.8.2) is called elementary stable.

Theorem 3. [32] The scheme (3.8.2) is elemenary stable under the assumptions
of the Theorem 2.

Proof . First we can say that condition (3.8.6) implies that the equation (3.8.1)
and the scheme (3.8.2) has the same �xed points for all h > 0: Let ey be a linearly
stable �xed point of (3.8.1). From (3.8.13), df

dy

���
y=ey = fy(ey) < 0: Also F (h; ey) = ey

since ey is a �xed point of (3.8.2). Our aim is to show

0 � @F

@y
(h; ey) < 1; for all h > 0

which will mean that ey is a linearly stable �xed point of (3.8.2). Since fy(ey) < 0
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then for small �y > 0(
fy(ey) = lim�y!0

f(ey)�f(ey��y)
�y

< 0 implies f(ey ��y) > f(ey) = 0
fy(ey) = lim�y!0(

f(ey+�y)�f(ey)
�y

) < 0 implies f(ey +�y) < f(ey) = 0 (3.8.23)

(3.8.23) means that neither ey � �y nor ey + �y are �xed points for (3.8.1). For
that reason they are also not �xed points for the scheme (3.8.2). From (3.8.7) we

can write

F (h; ey ��y) > ey ��y (3.8.24)

In addition, it can be shown that

F (h; ey +�y) < ey +�y (3.8.25)

(3.8.24) and (3.8.25) implies that

F (h; ey +�y)� F (h; ey ��y)
2�y

< 1 (3.8.26)

then as �y ! 0, we can obtain

@F

@y
(h; ey) < 1 (3.8.27)

which means that ey is a linearly stable �xed point for the scheme (3.8.2). It can be
shown that if ey is a linearly unstable �xed point for (3.8.1) then ey is also a linearly
unstable �xed point for the scheme (3.8.2). In that case we use

@F

@y
(h; ey) > 1: This

completes the proof .

Theorem 3 enable us to make a direct investigation under which conditions

a corresponding discrete scheme is elementary stable for (3.8.1). However there

exist some di¢ culties in application of this theorem. For instance, any discrete

scheme must enable us to express the term yk+1 in terms of yk: In other words,

representation of nonlinear terms in the equation (3.8.1) must be done in such a

way that yk+1 can be written explicitly in terms of yk: It is not easy to obtain

such a representation for higher order nonlinear term since there can be found lots

71



of ways to model nonlinear terms. However by using this theorem we can choose

an appropriate form among the candidates for discrete modelling of (3.8.1). To

do this, it is useful to use additional parameters in modelling of nonlinear terms.

After �nding a discrete scheme for (3.8.1) in a form

yk+1 = F (h; yk)

we will try to put some restrictions on free parameters so that we can obtain an

elementary stable discrete scheme. We provide an example from to clarify this

point [45].

Consider the following �rst-order di¤erential equation which has three �xed-points

dy

dt
= f(y) = y(y � a)(1� y) = y3 � (1 + a)y2 � ay; 0 � a � 1; y � 0 (3.8.28)

The following discrete scheme is proposed in [45] for (3.8.28)

yk+1�yk
'(h)

= y2k[(�2+1)yk��2yk+1]�(1+a)yk[(�1+1)yk+1��1yk]+a[(�0+1)yk��0yk+1]
(3.8.29)

where �0; �1; �2 are positive parameters and '(h) = h + O(h2): The equation

(3.8.29) can be expressed in a form like (3.8.2):

yk+1 = F (h; yk) = yk +
'(h)yk(yk � a)(yk � 1)

1 + '(h)(�2y2k + (1 + �1)(1 + a)yk + a�0)
(3.8.30)

Then

F (h; y) = y +
'(h)f(y)

1 + '(h)g(y)
(3.8.31)

where f(y) = y(y � a)(y � 1) and g(y) = �2y
2 + (1 + �1)(1 + a)y + a�0. Then

@F

@y
=
(1 + 'g)2 + 'f 0 + '2(f 0g � fg0)

(1 + 'g)2
=
b4y

4 + b3y
3 + b2y

2 + b1y + b0
(1 + 'g)2

(3.8.32)

where bi�s are constant numbers such that
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8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

b0 = 1 + a'+ a'�0

b1 = 2'�1(1 + a)(1 + a'�0)

b2 = [a(3�0 + 2�0�2 + 2�1 + 2�
2
1 � �2) + �1(1 + a

2)(1 + �1)]'
2 + (�2 + 2)'

b3 = 2(1 + �2)(1 + �1)(1 + a)'2

b4 = �2(1 + �2)'
2

(3.8.33)

We will try to justify the conditon (3.8.4) and (3.8.6). Note that, the denominator

of (3.8.32) is positive. Numerator of (3.8.32) will be positive if

b2 � 0

since other coe¢ cents are positive. If b2 � 0 is positive then

[a(3�0 + 2�0�2 + 2�1 + 2�
2
1 � �2) + �1(1 + a

2)(1 + �1)]'
2 + (�2 + 2)' � 0

which is satis�ed when the �rst term

3�0 + 2�0�2 + 2�1 + 2�
2
1 � �2 � 0 (3.8.34)

is positive. Under the condition that (3.8.34) is satis�ed, the scheme (3.8.29) will

be monotonically depend on initial value. On the other hand, for the scheme

(3.8.29)

F (h; y) = y , f(y) = 0 (3.8.35)

since

y = F (h; y) = y +
'(h)f(y)

1 + '(h)g(y)
which gives

'(h)f(y)

1 + '(h)g(y)
= 0, f(y) = 0; for all h > 0

this means that the equation (3.8.28) and the scheme (3.8.29) have the same
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�xed points. Therefore the scheme satis�es the conditios of Theorem 3. Hence if

we choose appropriate parameters satisfying (3.8.34), the scheme (3.8.29) will be

elementary stable and stable w.r.t monotonicity of solutions according to Theorem

2 and 3. For instance if �0 = �1 = �2 = 0 then the NSFD scheme (3.8.29) will be

in a form
yk+1 � yk
'(h)

= y3k � (1 + a)ykyk+1 + ayk (3.8.36)

where '(h) = h+O(h2): Some other applications of this theorem can be found in

[45,46,47].

We see that theorem 3 enables us to check whether the proposed scheme pre-

serves some properties (such as monotonicity, stability of �xed points) of the cor-

responding autonomous di¤erential equation in the form (3.8.1).

Another discrete scheme can be proposed for the autonomous di¤erential equa-

tion which has three distinct �xed points. Consider the following di¤erential equa-

tion
dy

dt
= f(y) = y(1� y)(y � p) = �y3 + y2(1 + p)� yp (3.8.37)

where p is a paramater such that p > 1: Equation (3.8.37) has three distinct �xed

points whose linear stability properties are given as follow·s:

y = 0 and y = p are linearly stable �xed points,

y = 1 is linearly unstable �xed point.
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These properties can also be seen in the Figure 3.21.

0 0.5 1 1.5 2 2.5 3

0

1

2

Figure 3.21 Typical trajectories for (3.8.37)

We will propose a nonstandard scheme for the equation (3.8.37). We use the

following nonlocal representations for non-derivative terms in (3.8.37) [32].

y3 ! ay3k + (1� a)y2kyk+1 (3.8.38)

y2 ! by2k + (1� b)ykyk+1

where a and b are arbitrary parameters that we specify their values according to

the condition (3.8.4). By using these representations the following discrete scheme

is proposed for (3.8.37)

yk+1 � yk
'(h)

= �ay3k � (1� a)y2kyk+1 + (by
2
k + (1� b)ykyk+1)(1 + p)� pyk (3.8.39)

where '(h) = h+O(h2): We can explicitly express (3.8.39) as follows

yk+1 = F (h; yk) =
yk(a'y

2
k � bp'yk � b'yk + p'� 1)

a'y2k � bp'yk � b'yk + p'yk � 'y2k + 'yk � 1
(3.8.40)

If we consider the right hand side of the equation as a function of y, then (3.8.40)
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can be written as

F (h; y) =
y(a'y2 � bp'y � b'y + p'� 1)

a'y2 � bp'y � b'y + p'y � 'y2 + 'y � 1 (3.8.41)

We can make the following observation about this equation

F (h; y)� y =
'y(1� y) (y � p)

y2'� y'+ by'� py'� ay2'+ bpy'+ 1

=
'f(y)

y2'� y'+ by'� py'� ay2'+ bpy'+ 1

implies that

F (h; y)� y = 0, f(y) = 0

This means that the scheme (3.8.40) and the equation (3.8.37) share the same

�xed points. We will �nd appropriate values for the parameters a and b such that

@F

@y
(h; y) � 0 (3.8.43)

for all y 2 R and h > 0: When we consider the denominator portion of (3.8.43),

it will be positive. Then for positivity of the numerator of (3.8.43), the following

condition should be satis�ed

(a(a � 1)y2 + (�2abp + 2ap + 2a)y + b2p2 + 2b2p � bp2 � ap + b2 � 2bp � b +

p)'2y2 + ((�2a� 1)y2 + 2b(p+ 1))y � p)' � 0

If we impose the positive solutions of the equation (3.8.37), we obtain the follow-

ing restrictions for the parameters a and b which enable us to justify the condition

(3.8.43) 8>><>>:
�2 � a � �0:5

b � a+ p

p+ 1

(3.8.44)

If the parameters a and b are chosen in this way then the scheme (3.8.39) re�ects
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correct qualitative behaviour with the di¤erential equation of the form (3.8.37). We

can make some comparison between the standard and nonstandard �nite di¤erence

schemes of the equation (3.8.37). Let us impose the following conditions

y(0) = 1:1 (3.8.45)

p = 2

a = �0:5;�1:5
b = 0:6; 3

'(h) = 1� e�h

The following SFD scheme can be proposed for (3.8.37)

yk+1 � yk
h

= yk(1� yk)(yk � p) (3.8.46)

Now let�s compare the two NSFD schemes obtained by using the speci�ed values

in (3.8.45) and the SFD scheme (3.8.46) for the equation (3.8.37) using the initial

condition y(0) = 1:1 with two di¤erent step sizes h = 0:5; 1:5: From the pictures,

we see that NSFD schemes gives qualitatively correct behaviour for all step sizes

while SFD schemes work only for small step size h = 0:5: The same results are
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obtained for other values of p and initial conditions.
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Figure 3.22 Comparison of the schemes (3.8.39)

and (3.8.45) for h = 0:5
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Figure 3.23 Comparison of the schemes (3.8.39)

and (3.8.45) for h = 1:5
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3.9 A NSFD Scheme for Lotka-Volterra System
In this section we will consider a nonstandard discretization of Lotka-Volterra

system, proposed by Mickens in [50]. Lotka-Volterra system is the following non-

linear systems of di¤erential equation

dx

dt
= ax� bxy (3.9.1)

dy

dt
= �cy + dxy

where (a; b; c; d) are positive parameters. This system is mostly used in biological

phenomena especially for modelling the interactions between two species living

in same habitat. An exact solution of Lotka-Volterra system is given in [52] in

quadrature form. That form can be used to identify the qualitative properties of

the system. When considered the positive initial conditons, all the solutions of the

system (3.9.1) are periodic except the �xed point solution (x�; y�) = (c=d; a=b) [51].

It would be useful to note that the standard �nite di¤erence modellings of (3.9.1)

produce numerical solution that does not re�ect the same qualitative behaviours

with the system (3.9.1). Hence nonstandard modelling of (3.9.1) has a remarkable

importance since it preserves the periodicity of solutions. Now without lose the

generality, the following normalized form can be used

dx

dt
= x� xy (3.9.2)

dy

dt
= �y + xy

The following nonstandard scheme is proposed for (3.9.1)

xk+1 � xk
�

= 2xk � xk+1 � xk+1yk (3.9.3)

yk+1 � yk
�

= �yk+1 + 2xk+1yk � xk+1yk+1 (3.9.4)
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where � = h+O(h2): If positive initial conditions are imposed for (3.9.2) such as

x(0) = x0 > 0 (3.9.5)

y(0) = y0 > 0

then the scheme (3.9.3-3.9.4) will guarentee the positivity property of the Lotka-

Volterra system. We can explicitly express the corresponding nonstandard scheme

as follows

xk+1 = [
1 + 2�

1 + �+ �yk
]xk (3.9.6)

yk+1 = [
1 + 2�xk+1
1 + �+ �xk+1

]yk (3.9.7)

Numerical procedure can be proceeded �rst by selecting the initial values (x0; y0):

Then we can compute x1 and lastly use x1; y0 in order to compute y1:Typical

solutions of the scheme (3.9.6) and (3.9.7) are periodic and also xkyk phase space

curves are closed surrounding about the �xed point (1; 1):These results are fullly

suited with the behaviour of the solutions of the Lotka-Volterra system. However,

when we consider a standard discretization of the system (3.9.2) as

xk+1 � xk
h

= xk � xkyk (3.9.8)

yk+1 � yk
h

= �yk + xkyk

we observe that standard schemes produce numerical results that spiral into or

away from the �xed point (1; 1): These cases can be seen in the following �gures.

It would be useful to emhasize that although we use a small step size, SFD scheme
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(3.9.8) shows numerical instabilities in modelling of Lotka-Volterra equation.
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Figure 3.24 Numerical solution of (3.9.8) with h = 0:01 x0 = 20 y0 = 1
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Figure 3.25 Numerical solution of (3.9.6) and (3.9.7) with h = 0:01 x0 = 20 y0 = 1
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4. PARTIAL DIFFERENTIAL EQUATIONS

Partial Di¤erential Equations (PDE) have broad usage in modelling of biolo-

gical and psyhical phenomena depends on time and space variables. These equa-

tions have some special solutions such as solutions under some conditions. When

the exact solution is not avaliable, numerical solutions of PDE is necessary to

understand the behaviour of its solutions such as evaluation of solitons. Finite

di¤erence method (FDM), �nite element method (FEM), discontinous galarkin

method (DGM) are some of the known methods for numerical solutions of PDEs.

It is signi�cantly di¢ cult to �nd exact schemes for PDEs, when compared the

ordinary di¤erential equation. Unlike the ODEs, we have no theorem to guarantee

the existence of exact schemes for partial di¤erental equations. However, there are

many studies about exact schemes for PDEs, such as advection-reaction equation

in [31], Burgers and Burgers-Fisher equations in [49].

4.1 Standard Di¤erence Models for Partial Di¤erential Equations
In this chapter, we study the construction of NSFD schemes for some type of

partial di¤erential equations. We start with the standard �nite disceretization of a

PDE. The application of Finite-Di¤erence method in two dimension is very similar

to one dimensional case. Consider the function

u = (x; t)

which depends on two independent variables x and t and assume that u(x; t) is

de�ned on a rectangle

R = f(x; t)ja < x < b; c < t < dg

with continuous partial derivatives up to an appropriate order. We de�ne two

positive integers n and m. Then divide the interval [a; b] into n equal partitions

whose width h = b�a
n
and the interval [c; d] into m equal partitions whose width
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�t = c�d
m
: Hence we can de�ne the following points on the coordinate axes

xi = a+ ih; i = 0; 1; :::n� 1 (4.1.1)

tj = b+ j�t; j = 0; 1; :::m� 1

Here x = xi , t = tj are called grid lines and their intersection points (xi; tj) are

called mesh points. Consider the mesh point

(xi; tj), i = 0; 1; ::n� 1; j = 0; 1; ::m� 1 (4.1.2)

If we use the Taylor series in x about the point x = xi and in t about the point

t = tj; we can obtain the following �nite di¤erence formulas for the �rst and second

partial derivatives of the function u = u(x; t):

@u

@x
(xi; tj) =

u(xi+1; tj)� u(xi; tj)

h
� h

2

@2u

@x2
(�i; tj) (4.1.3)

for some �i 2 (xi; xi+1)

@2u

@x2
(xi; tj) =

u(xi+1; tj)� 2u(xi; tj) + u(xi�1; tj)

h2
� h2

12

@4u

@x4
(�i; tj) (4.1.4)

for some �i 2 (xi; xi+1)

@u

@t
(xi; tj) =

u(xi; tj+1)� u(xi; tj)

�t
� �t
2

@2u

@t2
(xi; �j) (4.1.5)

for some �j 2 (tj; tj+1)

@2u

@t2
(xi; tj) =

u(xi; tj+1)� 2u(xi; tj) + u(xi; tj�1)

�t2
� �t

2

12

@4u

@t4
(xi; �j) (4.1.6)

for some �j 2 (tj; tj+1): If we retain the local trucation errors in expressions above
then we can obtain the following abbreviated forms for partial derivatives:

@u

@x
(xi; tj)!

uji+1 � uji
h

(4.1.7)
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@2u

@x2
(xi; tj)!

uji+1 � 2u
j
i + uji�1

h2
(4.1.8)

@u

@t
(xi; tj)!

uj+1i � uji
�t

(4.1.9)

@2u

@t2
(xi; tj)!

uj+1i � 2uji + uj�1i

�t2
(4.1.10)

where uji is an approximation to u(xi; tj): Using these formulas, we �rstly replace

the terms in the given partial di¤erential equation by the discrete terms described

in (4.1.7 - 4.1.10). We will obtain a partial di¤erence equation after these op-

erations. Similar to the ordinary di¤erential equation, we have more than one

�nite-di¤erence representation for any partial di¤erential equation. Here, main

concern is to be able to construct the most suitable �nite-di¤erence form which

enable us to obtain consistent numerical results with the corresponding partial

di¤erential equation. However, this process is very sophisticated when compared

ordinary di¤erential equations. In this section, we will focus on the nonstandard

discretization of Burgers and Burgers-Fisher equations [49].

Consider the Burgers partial di¤erential equation

ut = uxx � uux (4.1.11)

The solitary wave solution of (4.1.11) is given

u(x; t) =
1

1 + e(1=2)(x�t=2)
(4.1.12)

Note that this solution satis�es the condition 0 � u(x; t) � 1: A nonstandard �nite
di¤erence scheme can be constructed based on the exact solitary wave solution

(4.2.12). The following discrete derivatives in nonstandard form can be used for

this scheme.

ut !
un+1j � unj
�(�t; �)

ux !
unj+1 � unj
 (h; �)
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where �(�t; �) = h+O(h2);  (h; �) = h+O(h2) and �,� are various parameters

than can be appeared in the equation. Use the approximations

unj � u(xj; tn)

where xj = jh, tn = n�t: A standard �nite di¤ference scheme for (4.1.11) can be

written as follows

un+1j � unj
�t

=
unj+1 � 2unj + unj�1

h2
� un+1j

unj � unj�1
h

(4.1.13)

By using this discretization, the NSFD scheme

un+1j � unj
�

=
unj+1 � 2unj + unj�1

	
� un+1j

unj � unj�1
�

(4.1.14)

is proposed in [49] where �;� and 	 are denominator functions (step functions)

such that 	 = �2: An appropriate form for this step function � can be found based

on the selection of �. We can explicitly express � as follows

� =
(un+1j � unj )	�

(unj+1 � 2unj + unj�1)�� un+1j (unj � unj�1)	

Denote s ! snj = e(1=2)(xj�tn=2) for simplicity and choose � = 2(eh=2 � 1) so
	 = 4(eh=2 � 1)2 then the following expression is obtained by means of the exact
solution (4.1.12).

� =
4(1� e��t=4)(1 + eh=2s)(eh=2 + s)

(1 + e��t=4)(s� 1) + 2(1 + eh=2s)

We can observe that s ! 1 as �t ! 0; h ! 0 implies that � ! 4(1� e��t=4). In

this case, � = �t+O(�t2): As a result, the following nonstandard scheme can be

obtained
un+1j � unj

�
=
unj+1 � 2unj + unj�1

	
� un+1j

unj � unj�1
�

(4.1.15)
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where

� = 4(1� e��t=4)

	 = 4(eh=2 � 1)2

� = 2(eh=2 � 1)

Denote R = �
	
and r = �

�
then the nonstandard scheme (4.1.15) can be explicitly

explained as

un+1j =
R(unj+1 + unj�1) + (1� 2R)uni

1 + r(unj � unj�1)
(4.1.16)

Note that 1 � 2R � r � 0 then the positivity and boundedness properties of the
exact solution (4.2.12) are preserved in numerical modelling, i.e, the numerical

solutions unj satis�es

0 � unj � 1) 0 � un+1j � 1 (4.1.17)

for all possible n and j: This approach enable us to construct a nonstandard

schemes for some partial di¤erential equations.

4.2 NSFD Schemes for Huxley Equation
In this section we will describe a nonstandard scheme for Huxley equation [57]

ut � uxx = �u(1� u)(u� 
) (4.2.1)

where � and 
 are constants, � � 0: It is used to understand the how action

potential in neurons are initiated and propagated [55]. Solutary wave solution of

(4.2.1) is given [56]

u(x; t) =



2
+



2
tanh[

�
1
2

8
(x+

(2� 
)
p
2

2
�
1
2 t)] =




1 + e�
p

�
2
x�( 2�


2
)�t

(4.2.2)

Typical standard �nite di¤erence model for (4.2.1) can be given as

uj+1i � uji
�t

=
uji+1 � 2u

j
i + uji�1

h2
+ �uji (1� uji )(u

j
i � 
) (4.2.3)

If we consider the nonstandard discrization rules proposed in [3], we can use the
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following denominator functions instead of conventional ones.

ut !
uj+1i � uji
�(�t; �)

; �(�t; �) = �t+O(�t2) (4.2.4)

uxx !
uji+1 � 2u

j
i + uji�1

 (h; �)
;  (h; �) = h2 +O(h4) (4.2.5)

ux !
uji+1 � uji
 (h; �)

or ux !
uji+1 � uji�1
2 (h; �)

;  (h; �) = h+O(h2) (4.2.6)

where � and � are several parameters appearing in equation. Now retaining the

nonlinear term in the equation (4.2.1), we consider the general NSFD scheme for

(4.2.1)
uj+1i � uji

�
=
uji+1 � 2u

j
i + uji�1

 
(4.2.7)

where � and  are denominator functions. If we solve (4.2.7) for � then we will

obtain

� =
(uj+1i � uji ) 

uji+1 � 2u
j
i + uji�1

(4.2.8)

Based on the solutary wave solution (4.2.1) and the approximation uji � u(xi; tj);

we can compute a value for �: For simplicity we de�ne

s! sji = e�
p

�
2
xi�( 2�
2 )�tj (4.2.9)

then by using (4.2.1), we have

� =
(1� e�(

2�

2
)��t) (1 + se�

p
�
2
h)(1� se

p
�
2
h)

(1� se�(
2�

2
)��t)s(s� 1)(1� e�

p
�
2
h)2e

p
�
2
h

(4.2.10)

If we choose

 =
2

�
(e
p

�
2
h � 1)2 (4.2.11)

then by using a similar approach with Burgers equation mentioned above, we can
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obtain the following form for �:

� =
2

(2� 
)�
(1� e�(

2�

2
)��t) (4.2.12)

Space independent form of the Huxley equation is

ut = �u(1� u)(u� 
) (4.2.13)

Note that it is an ODE having three �xed points. In the previous chapters, we

have shown that NSFD schemes give qualitatively correct results comparing with

SFD schemes. Here we propose the NSFD

uj+1i � uji
�

= �uji (1� uji )(u
j
i � 
) (4.2.15)

for (4.2.12) where � is of the form (4.2.10). Combining (4.2.7) and (4.2.15) we

propose the following NSFD schemes for (4.3.1)8>><>>:
uj+1i �uji

�
=

uji+1�2u
j
i+u

j
i�1

 
+ �uji (1� uji )(u

j
i � 
)

� = 2
(2�
)� (1� e�(

2�

2
)��t)

 = 2
�
(e
p

�
2
h � 1)2

(4.2.16)

To test the performance of the scheme, we use the following initial conditions

and set of parameters. Numerical experiments also show that the scheme gives

accurate results for the corresponding equation (4.3.16). Initial conditions are the

followings

u(x; 0) =
1

2
+
1

2
tanh(�
x) � = 1; � =

p
8�

8
; 
 = 0:001

where

0 � x � 1; �x = 0:1; 0 � t � 5; �t = 0:005

We used the L1 error accuracy

jErrj1 = max
0�j�M

fju(xj; tn)� unj jg
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and the absolute error at each mesh point

AbsErr = ju(xj; tn)� unj j j = 1; 2::M; n = 0; 1; ::N

Numerical results is obtained as follows.

0
1

2
3

4
5

0

0.2

0.4

0.6

0.8

1
5

5.005

5.01

5.015

x 10 ­4

t

Exact solution

x

u(
x,

t)

Figure 4.1 Plot of exact solution (4.2.2)
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Figure 4.2 Plots of NSFD scheme
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Analytical and numerical solution of Huxley Equation (4.2.1) with standard scheme

(4.2.3) and NSFD scheme (4.2.16) are seen in the Figure 4.1-4.4
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Figure 4.5 L1 error for numerical solutions

(4.2.3) and (4.2.16)
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Figure 4.6 L1 error for numerical solutions

(4.2.3) and (4.2.16)

L1 error for numerical solutions of the equation (4.2.1) using standard and NSFD

schemes are seen in the Figures 4.5 and 4.6. Numerical experiments also show that

the scheme gives accurate results for the NSFD scheme (4.2.16).
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CONCLUSION

Throughout this thesis, we considered the numerical solutions of some di¤eren-

tial equations by using �nite di¤erence methods. First, we observed that if one uses

the standard discretizations to obtain numerical solution of any di¤erential equa-

tion, more than one model (or di¤erence equation) emerge for the corresponding

di¤erential equation. Second observation is that standard �nite di¤erence schemes

contain a larger parameter set than the corresponding di¤erential equation. For in-

stance, step size h appears as an additional parameter in all SFD schemes. Because

of two situations, we encounter some di¢ culties to construct discrete schemes that

re�ect correct qualitative behaviour with the original problem. For the discretiz-

ation of the decay equation, we have seen in the section 2.1 that backward Euler

scheme gives reliable numerical for all step sizes while the forward Euler scheme

perform well under some restrictions on step size h and central di¤erence scheme

shows numerical instabilities for all possible step sizes.

Hence after choosing an appropriate �nite di¤erence representation for a di¤er-

ential equation, we have mainly focused on the re�nement of step size h by means

of various ways. Indeed, it is possible to construct SFD schemes which do not arise

numerical instabilities for some di¤erential equation by putting restrictions on the

step size h. It is known that the standard �nite di¤erence models generally perform

well for smaller step size. However lots of time this reducing increases the com-

putational requirements. On the other hand, some mathematical models requires

long time computation. These kind of arguments lead us to seek discrete models

which gives correct qualitative behaviour with the original problem for all step

sizes. For this purpose, the notion of exact �nite di¤erence scheme is introduced

in the third chapter. Local truncation error of these schemes are zero [sec 3.1] and

they give qualitatively correct numerical results regardless of the choice of the step

size h: It has been proven that if a �rst order di¤erential equation has a unique

solution, then it has an exact �nite di¤erence scheme. The corresponding theorem

does not provide any information how to �nd exact scheme. Hence there exist

some di¢ culties here. Firstly, exact solution of the di¤erential equation should be

known to construct an exact �nite di¤erence scheme. On the other hand, even if

we have the analytical solutions of the corrseponding di¤erential equation, it can
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be very di¤ucult to �nd an appropriate �nite di¤erence representation. Neverthe-

less there are many exact �nite di¤erence schemes for both ordinary and partial

di¤erential equations in literature. We reviewed some of them in Section 3.1 and

4.2 . Some exact �nite di¤erence scheme has been described in the third chapter.

For example, logistic di¤erential equation

dy

dt
= �1y � �2y

2

has the exact �nite di¤erence scheme

yk+1 � yk
1�e�1h
�1

= �1yk � �2yk+1yk

One of the standard discretization of logistic di¤erential equation can be written

as
yk+1 � yk

h
= �1yk � �2y

2
k

Note that the exact scheme has denominator function '(h) =
1� e�1h

�1
which is

remarkably di¤erent from the conventional usage '(h) = h: On the other hand,

nonlinear term y2 in the equation is modeller nonlocally as to be y2 ! yk+1yk

instead of y2 ! y2k in exact scheme. While the NSFD scheme performs well for

all step sizes, SFD gives correct numerical results if the step size h is chosen as to

be 0 < h < 1:

When we examine the general structure of the exact �nite di¤erence scheme,

we observe that they generally di¤ers from the SFD schemes at two points: �rst

is the denominator function and second is the representation of nonlinear term.

Many experiments show that using nonlocal representation and di¤erent denomin-

ator functions enable to construct discrete schemes which do not show numerical

instabilities. Here the main topic of this thesis NSFD schemes draw its inspira-

tion from the exact �nite di¤erence scheme. Nonstandard discretization is mainly

based on using unconventional denominator function and nonlocal modelling of

nonlinear terms. Throughout this thesis, we have provided many examples for

which the nonstandard discretization eliminate the numerical instabilities that oc-

cur in standard modelling. Even if there is no general prodecure to �nd a NSFD
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scheme that gives correct qualitative behaviour with the original problem, there

are some powerful tools which enable use to �nd such schemes. Section 3.4, 3.7,

3.8, 4.3 all provide important strategies to construct NSFD schemes.

In the last chapter, we brie�y discussed some applications of NSFD method

for partial di¤erential equations. It is obvious that numerical solutions of PDEs

by �nite di¤erence method require much more e¤ort than the ODEs. Moreover

unlike the �rst order ODEs, we can not guarantee that any PDE has an exact

di¤erence scheme. In this thesis, we reviewed NSFD scheme for Burger�s PDE and

then following the similar way, a NSFD scheme is described for Huxley equation.
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