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ABSTRACT

SOME GENERALIZATIONS OF QUASI-PROJECTIVE MODULES

Berke KALEBOGAZ
Doctor of Philosophy, Department of Mathematics
Supervisor: Prof. Dr. Derya KESKIN TUTUNCU
December 2014, 88 pages

Our main goal in this dissertation is to investigate semi-projective modules,
direct projective modules and SGQ-projective modules, which are generalizations of
quasi-projective modules and to discover new properties and new characterizations
of these modules.

This dissertation consists of five chapters. In the first chapter, we give preliminary
notions and some results that are used in the further sections.

The second chapter is devoted to semi-projective modules. First, we study some
basic properties of such modules and provide some new characterizations. Next,
direct sum and direct summand properties of semi-projective modules are investiga-
ted. In particular, we are interested in direct sums of semi-projective modules over
Ore domains. In this chapter, we also define semi-projective cover of a module and
give some new characterizations of semiperfect, perfect, semihereditary, hereditary
and semisimple rings by using semi-projective modules and semi-projective covers.
Finally we investigate rings over which every submodule of semi-projective right
R-module is semi-projective.

In the third chapter, we define a new concept, namely, SGQ-projective modu-
les, which is another generalization of quasi-projective modules. Some properties of
SGQ-projective modules and its endomorphism rings are studied. We characterize
semisimple rings by means of SGQ-projective modules.

In the fourth chapter, we first investigate some connections between the notions
of epi projectivity, epi C-projectivity, epi K*-projectivity. Then the characterizati-

ons of semisimple rings in terms of quasi-epi K-projective, quasi-epi K*-projective
i



modules are given. Finally, we investigate the relationship between quasi(-epi) K*-
projective modules and Hopfian modules.

The last chapter, Chapter 5, is concerned with modules over formal triangular
matrix rings. First, we give detailed background about modules, submodules, quoti-
ent modules over triangular matrix rings from related papers. In this last chapter,

our results focus on relative projectivity and lifting properties of modules.

Keywords: Ore Domain, semi-projective module, semi-projective cover, SGQ-projec-

tive module, epi C-projective module, formal triangular matrix ring.
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OZET

QUASI-PROJEKTIF MODULLERIN BAZI GENELLEMELERI

Berke KALEBOGAZ
Doktora, Matematik Bolimu
Tez Danigsmani: Prof. Dr. Derya KESKIN TUTUNCU
Aralik 2014, 88 sayfa

M bir sag R-modiil olsun. Eger M modiili M-projektif ise, M’ ye quasi-projektif
modiil denir. Quasi-projektif modiiller [11], [12], [14], [16], [17], [18], [35], [57] nolu
makalelerde detayli bir sekilde incelenmistir. Bu tezin amaci quasi-projektif modiille-
rin genellemeleri olan semi-projektif, direk projektif ve SGQ-projektif modiilleri in-
celemek ve bu modiillerin baz1 yeni ozelliklerini ve karakterizasyonlarini vermektir.

Bu tez bes ana bagliktan olusmaktadir. Tezin birinci boliimiinde, ¢caligma boyunca
ihtiyac duyulacak bazi temel kavramlar ve sonuclar verilmistir. Bu calismada R aksi
belirtilmedikge birimli, degigmeli olmasi gerekmeyen ve birlesmeli bir halkay1 temsil
etmektedir. Ayrica modiiller aksi belirtilmedikge birimsel sag R-modiillerdir.

Tezin ikinci bolimii tamamen semi-projektif modiillere ayrilmigtir ve bu bélim
beg alt boliimden olugsmaktadir. Birinci alt boliimde semi-projektif modiillerin bazi
temel Ozellikleri ve karakterizasyonlar: verilmisgtir.

Literatiire bakildig1 zaman semi-projektif modiiller bugtinkii kullanilan gekli ile
ilk olarak 1991 yilinda R. Wisbauer tarafindan tanimlanmigtir. R. Wisbauer [54,
p. 260] nolu ¢aligmada endomorfizmalar halkas1 S ile gosterilen bir modiiliin semi-
projektif olabilmesi icin gerekli ve yeterli kogulun her o : M — M i¢in aS =
Hompg (M, a(M)) oldugunu ispatlamigtir. Ayrica, eger M devirli altmodiilleri igin
azalan zincir kuralin1 saglayan bir sonlu iiretecli, semi-projektif R-modil ise M’
nin endomorfizmalar halkasinin da devirli sol idealleri i¢in azalan zincir kuralin
sagladigini ve eger M artin, semi-projektif bir modiil ise M’ nin endomorfizmalar
halkasinin semi-primary oldugunu gostermistir. 2002 yilinda, H. Tansee ve S. Wong-

wai M-principally injektif modiillerin duali olarak M-principally projektif modiilleri
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tanimlamiglardir ve [52, Theorem 2.7] nolu ¢aligmalarinda bir M modiiliintin M-
principally projektif olabilmesi icin gerekli ve yeterli kogulun onun semi-projektif
olmasi oldugunu ispatlamiglardir. 2007’ de, A. Haghany ve M. R. Vedadi [25] semi-
projektif retractable modiilleri ve onlarin endomorfizmalar halkalarini incelemislerdir.
‘Bir modiile gére’ semi-projektiflik kavrami, 2008 yilinda [53] nolu ¢alismada X.
Wang and J. Chen tarafindan ortaya atilmigtir. Eger N” den N’ nin M-devirli alt-
modiiliine olan bir homomorfizma N’ den M’ ye bir homomorfizmaya yiikseliyorsa,
N modiiliine M-semi-projektif demislerdir. Bu tanimda N = M almrsa M semi-
projektif olur. Bu tanim [52] numaral makalede H. Tansee ve S. Wongwai’ nin verdigi
M-principally projektif modil tanimina denktir. Ayrica onlar bu caligmada eger N
bir M-semi-projektif modiil ise M’ nin herhangi bir K altmodiilii icin N’ nin bir
M/ K-semi-projektif modiil oldugunu ve N’ nin herhangi bir P diktoplanani i¢in P’
nin M-semi-projektif modiil oldugunu ispatlamiglardir. 2011 yilinda, V. Kumar, A.
J. Gupta, B. M. Pandeya and M. K. Patel semi-projektif modiillerin bir genellemesi
olarak M-SP-projektif modiilleri ¢aligmiglardir.

Tezin bu ilk alt bolimiinde her tekil olmayan CS(extending) modiiliin ve her
Rickart modiiliin bir semi-projektif modiil oldugu ispatlanmigtir. Bilindigi gibi bir

M sag- R-modiilii i¢in agagidaki hiyerarsi her zaman vardir;
M quasi-projektif = M semi-projektif = M direk projektif.

Eger R bir Dedekind halka ve M modili devirli altmodiillerinin dik toplami
seklinde ise yukaridaki gerektirmelerin ¢ift yonlii oldugu bu tezde ispatlanmigtir.
Yani her sonlu tiretecli direk projektif Z-modil quasi-projektiftir.

Ayrica eger R halkasi bir asal PI-halka ve M bir boltinebilir R-modiil ise, o zaman

agagidaki ¢ift yonlii gerektirmelerin varligi verilmistir;
M semi-projektif < M direk projektif < M semi-Hopfian < M tekil olmayan.

Bu ilk alt boliimde semi-projektif bir modiiliin her dik toplananinin semi-projektif
oldugu fakat dik toplamlarinin semi-projektif olmadig: (hatta direk projektif bile ol-
madig1) gosterilmistir. / indeks kiimesindeki her ¢ # j icin Hompg(M;, M;) = 0
kosulu saglaniyorsa M = &;c; M, semi-projektiftir ancak ve ancak her bir ¢ € [ igin

M; semi-projektiftir sonucu elde edilmistir.
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Bu boliimiin ikinci alt béliimiinde semi-projektif modiillerin dik toplamlar:1 Ore
bolgeleri tizerinde ¢aligilmigtir. Eger R, kesirler cismi () olan bir sag Ore bolgesi ise
(g’ nin her altmodiiliiniin semi-projektif oldugu ispatlanmistir. Buna ek olarak, eger
R, kesirler cismi () # R olan bir sag Ore bolgesi ve X, g(Xgr) < g(Qgr) kosulunu
saglayan projektif bir sag R-modiil ise X @& @ semi-projektiftir. Burada g(Mg),
kardinalitesi  olan bir A indeks kiimesi ve M = X \cpyma R olacak sekildeki my €
M elemanlar1 var olan en kiiciik kardinal olan s’ dir. Bu ispatlanan teoremin cok
kullanigh ti¢ tane sonucu vardir. Bunlardan ilki; eger R kesirler cismi () # R olan bir
sag Ore bolgesi ve X serbest sag R-modiil ise Q@ X sag R-modiiliintin semi-projektif
olmasi igin gerek ve yeter kosul X’ den ()’ ya bir R-epimorfizmasinin olmamasidir.
Digeri; eger R kesirler cismi ) olan bir sag Ore bolgesi ise Q& R sag R-modiilii semi-
projektiftir. Ve sonuncusu da; eger R kesirler cismi () olan bir sag Ore bolgesi ve
X sonlu tiretegli projektif bir sag R-modiil ise ve eger R sag Noether yada sol Ore
bolgesi ise o zaman () @ X semi-projektiftir. Bu sonuglar sayesinde bir sonraki alt
boliimde bir ¢ok ornek elde edilmigtir.

Uciineii alt boliimde, ikinci altboliimden ¢ikarilabilen genel érnekler yer almak-
tadir. Eger R kesirler cismi () olan bir temel ideal bolgesi ise ve X, @)’ nun R’ yi
kapsayan bir 6zaltmodiilii ise M sonlu tireteclidir ancak ve ancak M projektiftir
ancak ve ancak M semi-projektiftir ancak ve ancak M direk projektiftir.

Bu béliimiin dordiincii alt boliimiinde bir M sag R-modiiliintin semi-projektif
ortiisi tamimlanmigtir, ayrica yaritam ve tam halkalarin semi-projektif modiiller ve
semi-projektif ortiiler kullanilarak baz karakterizasyonlar1 verilmistir. Bu karakte-
rizasyonlarin tamami [3], [11], [14], [16], [17], [35], [57] and [59] nolu galigmalarin
semi-projektif modiillere uyarlanmasiyla elde edilmistir.

Besinci alt boliimde ise yarikalitsal, kalitsal ve yaribasit halkalar semi-projektif
modiiller yardimiyla karakterize edilmistir. Ve semi-projektif bir modiiliin her alt-
modiiliiniin semi-projektif olmadigina dair bir 6rnek verilmistir. Daha sonra ise her
altmodiilii semi-projektif olan semi-projektif sag R-modiiller i¢cin R halkalar: ince-
lenmigtir.

M bir sag R-modiil, N, M’ nin bir altmodiilii ve S = End(M) olsun. [34] nolu
caligmada, Keskin-T1itiincii ve Tribak S’ nin sag ideali olan Hom(M, N)’ yi D(N) =



{p € S | Imp C N} ile gostermiglerdir ve eger M’ nin her N altmodiilii igin
D(N) = €S olacak gekilde S’ de bir € idempotenti varsa M modiiliinii dual Baer
olarak adlandirmiglardir.

M’ nin sifirdan farkh bir endomorfizmasi o : M — M alinsin. Yukaridaki tanim
yardimiyla, 2.1 numarali alt béliimde S’ nin bir sag ideali agagidaki gibi tanimlanmis

ve bu idealin bazi ozellikleri incelenmistir ;
D(a) ={p € S| Imp C Ima}

Tezin iigiincii bélimiinde M’ nin sifirdan farkli @ endomorfizmasi i¢in D(«) ideali
yardimiyla, quasi-projektif modiillerin baska bir genellemesi olarak, SGQ-projektif
modiiller tanimlanmig ve 6zellikleriyle birlikte incelenmistir.

M’ nin sifirdan farkh her s € S endomorfizmasi i¢in S’ nin D(s) = sS @& X
kosulunu saglayacak bir X ideali varsa, M’ye SGQ-projektif modiil denir. Ikinci
boliimiin ilk alt boliimiinde SGQ-projektif modiiliin genel 6zellikleri incelenmigtir.
Her semi-projektif modiiliin bir SGQ-projektif modiil oldugu, her SGQ-projektif
modiiliin bir semi-Hopfian modiil oldugu, her quasi-discrete SGQ-projektif modiiliin
bir discrete modiil oldugu ispatlanmigtir. Ayrica SGQ-projektif modiiller yardimiyla
yaribasit halkalar karakterize edilmistir. Son olarak ise bir SGQ-projektif modiiliin
her dik toplananinin yine bir SGQ-projektif modiil oldugu fakat dik toplamlarinin
bir SGQ-projektif modiil olmadig1 6rnekle gosterilmistir.

Bu boliimiin ikinci altboliimiinde ise SGQ-projektif modiillerin endomorfizmalar
halkasinin ozellikleri incelenmistir. Eger M bir zayif ttimlenmis, SGQ-projektif, 7-
projektif modiil ise endomorfizmalar halkasi diizenlidir ancak ve ancak V = 0 dir.
(Burada V M’nin endomorfizmalar halkasinm, goriintiileri M’ de dar(small) olan
endomorfizmalarini igeren bir sag idealidir).

Dordiinct boltimde oncelikle epi projektiflik, epi KC-projektiflik, epi K*-projektiflik
kavramlar: ve aralarindaki baglantilar incelenmistir. Daha sonra yaribasit halka-
lar quasi-epi K-projektif, quasi-epi K*-projektif modiiller yardimiyla karakterize
edilmigtir. Son olarak ise quasi(-epi) K*-projektif modiiller ile Hopfian modiiller
arasindaki iligki ¢aligilmigtir.

Son boliim, Bélim 5, formal tiggensel matris halkalar1 (bu boliimde bu tip hal-

kalar T ile gosterilmistir) tizerine kurulmus modiillerle ilgilidir. Oncelikle boliimiin
vi



basinda formal iiggensel matris halkalar1 tizerine kurulu modiil yapilari, bu modiille-
rin altmodiil ve béliim modiilii yapilar [24] nolu makaleden faydalamlarak ayrmtih
bir bigimde anlatilmigtir. Yine [24] numarali makalede formal {iggensel matris halka-
lar1 tizerine kurulmug uniform, hollow, sonlu gomiilmiig, projektif, iirete¢ veya pro-
tireteg modiiller karakterize edilmis, (X @Y )7’ nin Jacobson radicali Rad(X &Y )7 ve
sokulu Soc(X @ Y)r tanimlanmigtir. Ayrica [19]” da T iizerindeki projektif sag ide-
aller tamamen karakterize edilmistir. Bu tezin son boliimii 7" halkasi tizerine kurulu

lifting modiiller ve bir modiile gore projektiflik ile ilgilidir.

Anahtar Kelimeler: Ore bolgesi, semi-projektif modiil, semi-projektif ortii, SGQ-

projektif modiil, epi K-projektif modiil, formal iiggensel matris halkasi.
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1 PRELIMINARIES

In this chapter, we will give some basic notions and results which are frequ-
ently used in the following sections. Throughout this dissertation, R will denote an
associative ring with identity and modules will be unitary right R-modules unless

otherwise stated.

1.1 Basic Notions

Definitions 1.1.1 ([2]) A submodule N of an R-module M is called essential in
M or M is called an essential extension of N if every nonzero submodule of M
intersects N nontrivially, i.e. for every submodule L < M, NN L = 0 implies L = 0.
It is denoted by N <. M. If every nonzero submodule of an R-module is essential
in M, i.e., the intersection of any two nonzero submodules is nonzero then we say

that M is uniform.

Proposition 1.1.2 ([2]) Let M be an R-module with submodules K < N < M and
H < M. Then the following hold:

1. K <. M if and only if for each 0 # x € M, there exists an r € R such that
0#zreK.

2. K <. M if and only if K <, N and N <., M.
3. HNK <, M if and only if H <. M and K <., M.
4. If K <. M and f: L — M a homomorphism, then f~'(K) <, L.

5. LetKlnggM, KQSMQSM andM:MlEBMQ .ThenKl@Kg SeM
if and only of K1 <., My and Ky <, M.

The following definition dualizes the notion of an essential module;

Definition 1.1.3 ([2]) A submodule N of an R-module M is called a small submodule
of M provided K + N is a proper submodule of M whenever K is a proper sub-
module of M, i.e. for every submodule L < M, K + L = M implies L = M. It is
denoted by N < M. If every proper submodule of M is small, then M is called a

hollow module.



Proposition 1.1.4 ([2]) Let M be an R-module. Then the following statements hold
for K < N<Mand H< M:

~

. N< M ifand only if K < M and N/K < M/K.
2. H+ K< M if and only if H<K< M and K < M.

3. If K < M and f : M — L is an R-homomorphism, then f(K) < L. In
particular, if K < M < L, then K < L.

4. LetKlnggM, KQSMQSMandM:M1®M2 . ThenK169K2<<M
if and only iof K1 < My and Ky < M.

S Let K <L <M. IfK KM and L <4 M, then K < L. In particular, if
K< M and K <4 M, then K = 0.

The following definitions are taken from [2];

A simple module is a nonzero module M in which the only submodules are 0
and M. An R-module M is called semisimple if it is the direct sum of its simple
submodules. If Rp is semisimple, then R is called a (right) semisimple ring. Rg is
semisimple if and only if gR is semisimple. If M is an R-module, then the socle of
M, denoted by Soc(M), is the sum of all simple submodules of M and therefore it is
the largest semisimple submodule of M. It is equal to the intersection of all essential
submodules. Soc(M) = M if and only if M is semisimple. If a module M does not
contain any simple submodule, then we take Soc(M) = 0. The dual concept of socle
is radical. The Jacobson radical Rad(M) of an R-module M is the intersection of
all maximal submodules of M, or equivalently is the sum of all small submodules
of M. The Jacobson radical of a ring R is denoted by J(R), and it is an ideal of
R. A nonzero R-module M is said to be indecomposable if it is not a direct sum of
two nonzero submodules; and M is called local if it has a largest proper submodule

(namely Rad(M)). A local module is indecomposable.

Proposition 1.1.5 ([2]) A ring R is semisimple if and only if every right R-module

s semisimple.



Proposition 1.1.6 ([2]) For a ring R with radical J(R) the following statements

are equivalent;

~

. R/J(R) is semisimple

NS

. R/J(R) is right artinian

Co

. Every product of simple right R-modules is semisimple

B

. Every product of semisimple right R-modules is semisimple

5. For every right R-module M, Soc(M) = ry(J(R)) ={m € M | J(R)m = 0}.

The following definitions are from [2] and [19];

The set anng(M) = {r € R | Mr = 0} is the annihilator of right R-module M
in R. M is called faithful if anng(M) = 0. For any m € M, the set annly(m) = {r €
R | mr = 0} is the right annihilator of m in R, and it is a right ideal of R.

A prime ideal in a ring R is any proper ideal P of R such that, whenever I and J
are ideals of R with IJ C P, either I C P or J C P. A prime ring is a ring in which
0 is a prime ideal. An ideal P in a ring R is right primitive provided P = anng(A)
for some simple right R-module A. A right primitive ring is any ring in which 0 is
a right primitive ideal, i.e., any ring which has a faithful simple right module.

A semiprime ideal in a ring R is any ideal of R which is an intersection of prime

ideals. A semiprime ring is any ring in which 0 is a semiprime ideal.

Definitions 1.1.7 ([19]) For a right R-module M, the singular submodule of M is
the set

Z(M) ={m € M | mlI =0 for some essential right ideal I of R}.

An R-module M is called a singular module provided Z(M) = M and it is called a
nonsingular module provided Z(M) = 0.

Let M be an R-module and N < M. M/N is singular whenever N <, M. The

converse holds if M is nonsingular. The class of all nonsingular R-modules is closed
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under submodules, direct products, essential extensions and module extensions. The
class of all singular R-modules is closed under submodules, factor modules and direct

sums, ([19]).

Proposition 1.1.8 ([19]) If every principal right ideal of R is projective then R is

nonsingular.

Definition 1.1.9 ([2]) A two sided ideal I of a ring R is called right T-nilpotent
if for every sequence {x; | @ > 1} in I, there exists an integer n > 1 such that

Ty ...2Tox1 = 0.

Lemma 1.1.10 ([18]) Let I be a right T-nilpotent two sided ideal of a ring R. Then
for every right R-module M, M1 is small in M.

Definition 1.1.11 ([2]) Let U be a non-empty set (class) of objects in a category
C. An object A in C is said to be generated by U or U-generated if, for every pair
of distinct morphisms f,g : A — B in C, there is a morphism h : U — A with
U €U and hf # hg. In case U consists of just one U € Obj(C), we call U a generator
for A.

Let M be an R-module. A set § of submodules of M satisfies the ascending
chain condition (acc) in case for every chain M; < My, < ... < M, < ... in
S, there is an n with M,,; = M, (i = 1,2,...). Turn the inequalities around
for the descending chain condition (dcc). A module M is noetherian in case the
lattice S(M) of all submodules of M satisfies the acc. A module M is artinian in
case S(M) satisfies the decc. A ring R is called right noetherian (right artinian)
if Rp is noetherian (artinian). A similar definition may be made on the left. R is
noetherian (artinian) if it is both right and left noetherian (artinian). The artinian
and noetherian properties are inherited by submodules and factor modules. Those

definitions are from [2].

Proposition 1.1.12 ([2]) A right R-module M is noetherian if and only if every
submodule of M is finitely generated.

Proposition 1.1.13 ([2]) A ring R is right noetherian (artinian) if and only if

every finitely generated right R-module is noetherian (artinian).
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1.2 Projectivity Conditions of a Module

It is well-known that projectivity conditions on a module M often allow us to relate
properties of M to properties of its endomorphism ring. In this section we review

various forms of projectivity.

Definition 1.2.1 ([7]) An R-module P is called M -projective (or P is projective

relative to M) if every diagram in Mod — R with exact row

P

»

M N 0

can be extended commutatively by some morphism P — M, or, equivalently, the
functor Hom(P, —) is exact with respect to all exact sequences of R-modules of the
form

0 — K —-M-—N—70

An R-module P is called projective in case it is M-projective for every R-module
M. A ring is a projective module over itself. Every free module is a projective

module, ([2]).

Theorem 1.2.2 ([54]) Assume M € Mod — R and that {Ux}a is a family of R-
modules. The direct sum @, Uy is M-projective if and only if every Uy is M-

projective. In particular @, Uy is projective if and only if every Uy is projective.
Proposition 1.2.3 ([54]) Let P be an R-module. Then,

1. If0 — M — M — M"” — 0 is an exact sequence in Mod — R and P is

M -projective, then P is M'- and M"-projective.

2. For any finite family {M;}?, of R-modules P is @;_, M;-projective if and
only if P is M;-projective fori=1,2,...,n.

3. If P is finitely generated and My-projective for any family { M} of R-modules,
then P is also €, M-projective.



Note that Proposition 1.2.3 (2) is not true for infinite families. For example, if

R =7, then Q is Z-projective but is not ZM-projective.

Definition 1.2.4 ([51]) A short exact sequence 0 — A 5 B2 ¢ — 0 splits

if there exists a map 7 : C' — B with pj = 1¢.

Proposition 1.2.5 ([51]) If an ezact sequence 0 —» A — B 25 €' — 0 splits,

then B= Ao C.

Proposition 1.2.6 ([2]) The following statements are equivalent for an R-module

P:
1. P 1is projective.
2. Every epimorphism M — P — 0 splits.

3. P is isomorphic to a direct summand of a free R-module.

Definitions 1.2.7 ([2]) A ring R is called von Neumann regular if for every element
r € R there exists a € R such that » = rar. If R is a von Neumann regular ring

then every principal right ideal is direct summand.

Definition 1.2.8 ([2]) A projective R-module P is a projective cover of M if there
exists an epimorphism ¢ : P — M with small kernel, i.e. Keryp < P.

A module may not have a projective cover. Every projective R-module is a pro-

jective cover of itself. Note that the Z-modules Zy and Q have no projective covers.

Definitions 1.2.9 A ring R is called right perfect if every right R-module has a
projective cover. Perfect rings were characterized by H. Bass in [3]. A semiperfect
ring is a ring over which every finitely generated right module has a projective cover.

This property is left-right symmetric. Right perfect rings are semiperfect.

Theorem 1.2.10 ([2]) Let R be a ring with J(R). Then the following statements

are equivalent;

1. R s right perfect,



2. R/J(R) is semisimple and J(R) is right T-nilpotent,
3. Every flat right R-module is projective.

4. R satisfies the descending chain condition for cyclic ideals.

Definitions 1.2.11 ([54]) A ring R is called right (semi)hereditary if every (finitely
generated) right ideal of R is projective. Equivalently, R is right (semi)hereditary if
and only if every (finitely generated) submodule of a projective right R-module is
projective. R is called a right PP-ring if and only if every principal right ideal of R
is projective. It is clear that every right hereditary ring is right PP-ring. From the

Proposition 1.1.8 every PP-ring (so hereditary ring) is nonsingular.

Theorem 1.2.12 ([58]) R is right hereditary if and only if every submodule of a

projective R-module is direct projective.

Theorem 1.2.13 ([28]) Let R, be an n x n matriz ring with entries from R. R is
right (semi)hereditary if and only if R, is (semi)hereditary. R is right (semi)perfect
if and only if R, is (semi)perfect.

Definition 1.2.14 ([54]) An M-projective module M is called quasi-projective (or
self-projective).

Proposition 1.2.15 ([12]) The direct sum M; & M, is quasi-projective if and only
if M; is M;-projective for i, j € {1,2}.

Proposition 1.2.16 ([7]) Let M be quasi-projective and U < M :
1. If U is fully invariant, then M/U is quasi-projective.
2. If U < M and M/U is quasi-projective, then U is fully invariant in M.

Corollary 1.2.17 ([50]) Let I be a two sided ideal of a ring R. Then R/I is quasi-

projective as an R-module.

Proposition 1.2.18 ([17]) Let M be a right R-module and I a two sided ideal of
R contained in the annihilator of M. Then M is quasi-projective over R if and only

if it is quasi-projective over R/I.



Theorem 1.2.19 ([12]) An abelian group A is quasi-projective if and only if it is
free or a torsion group such that every p-component A, is a direct sum of cyclic

groups of the same order.

Theorem 1.2.20 ([1]) Let R be a Dedekind domain and M be a torsion R-module
(see, Definition 1.6.2). M is quasi-projective if and only if for each mazimal (prime)

tdeal P in R, the P-primary component of M 1is quasi-projective.

Definition 1.2.21 ([7]) An R-module M is called m-projective if, for any two sub-
modules U,V < M with U4+V = M, the following equivalent conditions are satisfied:

1. There exists f € End(M) with Im(f) C U and Im(1 — f) C V;
2. The canonical epimorphism U &V — M, (u,v) — u + v, splits;
3. End(M) = Hom(M,U) + Hom(M, V)

Definition 1.2.22 ([55]) An R-module M is said to be intrinsically projective if

every diagram with exact row

»

M™ - N -0

where n € N and N < M, can be extended commutatively by some M — M™.

M is called semi-projective if the above condition (only) holds for n = 1. It can
easily be seen that, M is semi-projective if and only if for every cyclic right ideal I
of End(Mg), I = Homg(M, M), ([55]).

Of course every quasi-projective module is intrinsically projective. However there

are also other types of examples:

Examples 1.2.23 ([55]) Let M be an R-module with S = End(Mpg).

1. If kernels of endomorphisms of M are M-generated and S is a right PP-ring,

then M is semi-projective.

2. It S is a von Neumann regular ring, then M is intrinsically projective.
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Definitions 1.2.24 ([7]) Let M be a nonzero right R-module. A submodule N < M
is called a weak supplement of a submodule L of M if N+ L =M and NNL < M.
The module M is called weakly supplemented if every submodule N of M has a weak
supplement.

For submodules N, L < M, the following are equivalent:
1. N is minimal in the set of submodules {K < M | L + K = M}.
2. L+ N=Mand LNN < N.

If one of these conditions holds, then N is called a supplement of L in M. A
submodule N of M is said to have ample supplements in M if, for every L C M
with N+ L = M, there is a supplement L’ of N with L' € L. The module M is called
supplemented if any submodule has a supplement, finitely supplemented if finitely
generated submodules have supplements, amply supplemented if all submodules have
ample supplements in M. Every amply supplemented module is supplemented.

Given submodules K C L C M, the inclusion K C L is said to be cosmall in
Mif L/K <« M/K. A submodule L C M is said to be coclosed in M, if L has
no proper submodule K for which K C L is cosmall in M. Thus L is coclosed in
M if and only if for any proper submodule K C L, there is a submodule N of M
such that L + N = M but K + N # M. Obviously, any direct summand L of M is

coclosed in M.

Proposition 1.2.25 ([7]) Let K C L C M be submodules. If K is coclosed in M,

then K is coclosed in L. The converse is true if L is coclosed in M.

Consider the following conditions for an R-module M:

(D7) M is amply supplemented and every coclosed submodule of M is a direct

summand of M.

(Dy) If M/N is isomorphic to a direct summand of M, then N is a direct summand
of M.

(D3) If My and M, are direct summands of M with M = M; + M,, then M; N M,

is a direct summand of M.



An R-module M is called lifting if M satisfies (D1). M is called discrete if it is
lifting and satisfies (Ds) and quasi-discrete if it is lifting and satisfies (D3). Every

discrete module is quasi-discrete, (see [45]).

Lemma 1.2.26 ([45]) Let M be a module with (D2). If My, My <4 M, then any

epimorphism M, — My splits.

As a dual version of projectivity, injective modules are defined as follows: A right
module A over a ring R is injective provided that, for any right R-module B and any
submodule C' of B, all homomorphisms C' — A extend to homomorphisms B — A.
An injective hull (or injective envelope) for a module A is any injective module which
is an essential extension of A. The notation E(A) is used for an injective hull of A.
A module A has finite rank provided E(A) is a finite direct sum of indecomposable
submodules. Goldie proved that a module A has finite rank if and only if A contains

no infinite direct sums of nonzero submodules. (][20])

1.3 Rings of Fractions

In this section we will introduce how a ring of fractions can be constructed. This

subsection is from [20].

Definition 1.3.1 ([20]) A regular element in a ring R is any nonzero-divisor, na-

mely, any element x € R such that ann(x) = 0 and annl(z) = 0.

Let R be a ring and X a set of regular elements in R; we seek to build a ring
whose elements are fractions with numerators from R and denominators from X. In
the commutative case, the elementary notation * is convenient and familiar, but in
the noncommutative case we must be more careful. When we divide by = (multiply
by 271), we must decide whether to place the denominator on the right or the left
of the numerator, i.e., whether we shall work with 7z~ or £=!r. Thus, we have two
possible rings of fractions, one with right-hand denominators and one with left-hand

denominators.

Definition 1.3.2 ([20]) A multiplicative set in a ring R is a subset X C R such

that 1 € X and X is closed under multiplication.
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Definition 1.3.3 ([20]) Let X be a multiplicative set in a ring R. Then X satisfies
the right Ore condition provided that for each z € X and r € R, there exist y € X
and s € R such that ry = s, that is, rX N xR # (). A multiplicative set satisfying

the right Ore condition is called a right Ore set for short.
Any multiplicative set in a commutative ring is an Ore set.

Lemma 1.3.4 ([20]) Let X be a right Ore set in a ring R. For given any elements
r1,...,T, € X, there exist sq,...,S, € R such that x151 = --- = x,8, and r151 € X

Jthat is, ;7yRNO---Nx, RN X # (.

Definition 1.3.5 ([20]) Let R be a ring and X C R a multiplicative set of regular
elements in R. A right ring of fractions (right quotient ring) for R with respect to X

is any overring S O R such that:
1. Every element of X is invertible in S.

2. Every element of S can be expressed in the form az~! for some a € R and

r € X.

Left rings of fractions are defined analogously. Note that here we have a necessary
condition for the existence of ring of fractions in general case (in commutative and
non-commutative): Given b € R and z € X, there must exist ¢ € R and z € X such
that 2710 = cz 1, that is, bz = xc. This is precisely the right Ore condition that we

met above.

Lemma 1.3.6 ([20]) Let R be a ring and X a multiplicative set of reqular elements
in R, and assume that there exists a right ring of fractions, say S, for R with respect

to X.
1. X is a right Ore set in R.

2. Giwen any S1,...,S, € S, there exists ai,...,a, € R and x € X such that

s; = a;x L.

3. Leta, be Rz, y € X. Then ax™ = by~ ! in S if and only if there exists

¢, d € R such that ac = bd and vc =yd € X.
11



The discussion above gives all the clues to construct rings of fractions. This
construction was developed by Ore and Asano in the 1930s and 1940s. Let X be a
right Ore set of regular elements in a ring R. The construction can be summarized

in the following five steps.

1. Define a relation ~ on R x X as follows: (a,x) ~ (b,y) if and only if there
exist ¢, d € R such that ac = bd and zc = yd € X. Then ~ is an equivalence
relation. Let [a, ] denote the ~-equivalence class of any pair (a,z) in R x X,

and let S denote the set of these equivalence classes.

2. Given [a,z] and [b,y] in S, choose ¢,d € R such that xc = yd € X, and set
[a,z] + [b,y] = [ac + bd, xc]. Then + is a well-defined operation on S.

3. Given [a,x] and [b,y] in S, choose ¢ € R and z € X such that bz = z¢, and

set [a,z] - [b,y] = [ac,yz]. Then - is a well-defined operation on S.
4. (S,+,-) is a ring.

5. The rule r — [r, 1] defines an isomorphism of R onto a subring of S, and when
R is identified with this subring, S becomes a right ring of fractions for R with
respect to X.

Now we will describe a ring of fractions as an R-module. Let X be a right Ore set
of regular elements in a ring R, and suppose that there exist a right ring of fractions

for R with respect to X, say it S. S is determined as a right R-module:
Sr={s € E(Rg) | sx € R for some x € X}.

Theorem 1.3.7 ([20]) Let R be a ring and X C R a multiplicative set of regular
elements. Then there exists a right ring of fractions for R with respect to X if and

only if X is a right Ore set.

1.4 Division Rings of Fractions

The definitions and the results in this subsection are from [20].
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Definition 1.4.1 ([20]) A classical right quotient ring for a ring R is a right ring
of fractions for R with respect to the set of all regular elements in R. If R has a

classical right quotient ring @, it is also said that R is a right order in Q.

By Theorem 1.3.7, R has a classical right quotient ring if and only if the set of
regular elements in R is a right Ore set. For example, every commutative ring has a
classical quotient ring. In the case of commutative domain, the classical quotient ring
is its quotient field. A non-commutative domain need not have a classical quotient

ring, but if one exists, it will be a division ring.

Definition 1.4.2 ([20]) A right Ore domain is any domain R in which the nonzero
elements form a right Ore set, i.e., for each nonzero x,y € R, there exists r,s € R

such that xr = ys # 0.

Every commutative domain and also right noetherian domain is right Ore and
if R is a right Bezout domain (i.e., a domain in which every finitely generated right

ideal is principal), R is right Ore.
Theorem 1.4.3 ([20]) For a ring R the following conditions are equivalent:

1. There exists a right Ore set X of reqular elements in R such that RX ™" is a

division ring.
2. R has a classical quotient ring which is a division ring.

3. R is a right Ore domain.

If R is a right Ore domain, its classical right quotient ring is usually called the

right quotient division ring of R.

1.5 Goldie’s Theorem

Goldie’s Theorem, provides necessary and sufficient conditions for a ring to have a
classical right quotient ring which is semisimple. In this subsection we give some

definitions and results from [20] and [44].
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Definition 1.5.1 ([20]) A right annihilator of a ring R is any right ideal of R which

equals the right annihilator of some subset of R.

Proposition 1.5.2 ([20]) Suppose that a ring R has a right noetherian classical
right quotient ring Q). Then Rg has finite rank and R has the acc (ascending chain
condition) on right annihilators. Moreover, if Q) is semisimple, then R must be se-

miprime.

Proposition 1.5.2 says that any ring which has a semisimple classical right quoti-
ent ring must be a semiprime right Goldie ring. The converse statement is the main

content of Goldie’s Theorem.

Definition 1.5.3 ([20]) A right Goldie ring is any ring R such that Rp has finite

rank and R has the acc on right annihilators.

For example, every right noetherian ring is right Goldie.

Proposition 1.5.4 ([20]) Let R be a semiprime right Goldie ring. For any x € R,

x 1s a regular element if and only if ann'y(x) = 0 if and only if xR <. Rpg.

A ring R is right bounded if every essential right ideal of R contains an ideal
which is essential as a right ideal in R. A prime ring R is right bounded if and only
if every essential right ideal of R contains a nonzero ideal. A polynomial identity
ring, or a PI-ring for short is defined as a ring all of whose elements satisfy some

polynomial identity.
Proposition 1.5.5 ([44]) A prime Pl-ring is a bounded Goldie ring.

Proposition 1.5.6 ([44]) Let R be a semiprime PI-ring with centre C' and let I be

a nonzero ideal of R. Then there exists a nonzero element in I N C.

Theorem 1.5.7 ([44]) If R is a primitive PI-ring of minimal degree d, then R is a

central simple algebra of dimension (d/2)* over its center.

Theorem 1.5.8 ([20]) (Goldie’s Regular Element Lemma) Let R be a semiprime
right Goldie ring and I a right ideal of R. Then I is an essential right ideal if and

only if I contains a reqular element.
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Corollary 1.5.9 ([20]) If R is a prime right Goldie ring, then every nonzero ideal

of R contains a reqular element.

Theorem 1.5.10 ([20]) (Goldie’s Theorem) A ring R has a semisimple classical

right quotient ring if and only if R is a semiprime right Goldie ring.

1.6 Torsion and Torsion-free Modules

All the definitions and the results in this subsection can be found in [20], [41], [13]
and [9].

Different kinds of ‘torsion’ already make appearances in the theory of abelian
groups. For instance, if A is an abelian group (written additively, as a Z-module),

then we have the torsion subgroup;
T(A) ={a € A| ma =0 for some nonzero m € Z}

and, for each prime p, the p-torsion (or p-primary) subgroup;
T,(A) ={a€ A|p"a =0 for some n € N}.

The common factor in these definitions is that each of the above subgroups has
the form {a € A | za = 0 for some x € X}, where X is a subset of Z which is closed
under multiplication. Although some restrictions will be needed in transferring this
idea to modules over a noncommutative ring, we can begin the discussion in complete
generality.

Let X be a multiplicatively closed set. Now let A be an R-module. It is said that
Ais X -torsion provided each element of A is annihilated by some element of X, and
that A is X-torsion-free if the only element of A annihilated by any element of X
is 0. In particular, if R = Z and X = Z — {0}, then X-torsion and X-torsion-free
coincide with the notions of torsion and torsion-free for abelian groups, while if we
take X = {p" | n € N} for a prime p, we get the concepts of p-torsion and p-torsion-
free abelian groups. Up to now we did not define a general notion of X-torsion
submodule for a right R-module A, namely, as the set tx(A) = {a € A | ax =

0 for some x € X}. The reason is that this set does not always produce submodules.
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Lemma 1.6.1 ([20]) Let X be a right Ore set in a ring R. Then for any right
R-module A, the set;

tx(A)={a € Al ax =0 for somex € X}
is a submodule of A.
Definition 1.6.2 ([20]) The torsion submodule of a right R-module A is the set
t(A) ={a € A|ax = 0 for some regular element = € R}

(this is a submodule of A by Lemma 1.6.1), and we say that A is torsion when

t(A) = A and torsion-free when t(A) = 0.

Lemma 1.6.3 ([20]) Let X be a right Ore set in a ring R. Then;

1. If A is any right R-module, then tx(A) is an X -torsion module and A/tx(A)

15 an X -torsion-free module.

2. All submodules, factor modules, and sums (direct or not) of X-torsion right

R-modules are X -torsion.

3. If B < A are right R-modules with B and A/B both X-torsion, then A is

X -torsion.

4. All submodules and direct products of X -torsion-free right R-modules are X -

torsion-free.

5. Let B < A be right R-modules such that B is X -torsion-free. If B <., A, then

A is X -torsion-free.

6. If B < A are right R-modules with B and A/B both X -torsion-free, then A is

X -torsion-free.

Definition 1.6.4 ([20]) A right module A over a ring R is divisible provided Az =

A for all regular elements x € R.
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For example, every injective module is divisible. Over Z, more generally, over
any principal right ideal domain, the divisible right modules are exactly the injective
right modules. Over other domains, however, divisible modules need not be injective.
But over a commutative domain all torsion-free divisible modules are injective and

the same result holds for semiprime Goldie rings, as follows.

Proposition 1.6.5 ([20]) (Gentile, Levy) Let A be a torsion-free right module over
a semiprime right Goldie ring R. Then A s divisible if and only if it is injective.

Proposition 1.6.6 ([41)) A ring R is semiprime right Goldie if and only if Z(M) =
t(M) for all right R-modules M.

Proposition 1.6.7 ([13]) Let R be a domain. Then a torsion-free divisible R-module

1s a vector space over the quotient field Q) of R, i.e., it is a direct sum of copies of

Q.

Proposition 1.6.8 ([9, p.773]) A finitely generated module over a Dedekind domain

15 projective if and only if it is torsion-free.
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2 SEMI-PROJECTIVE MODULES

Semi-projective modules were first defined as a generalization of quasi-projective
modules in 1991 by R. Wisbauer in [54, p. 260]. An R-module M is called semi-
projective provided for all endomorphisms a and 8 of M with 5(M) C a(M) there

exists an endomorphism ~ of M such that 5 = a.

M

»
[0}

M —2 a(M) —— 0

It is observed in [54, p. 260] that an R-module M with endomorphism ring
S = End(Mpg) is semi-projective if and only if &S = Hompg(M, a(M)) for all a € S.
In 1996, in [55], R. Wisbauer defined a module M to be intrinsically projective

if every diagram with exact row

»

M™ - N -0

where n € N and N < M, can be extended commutatively by some M — M". M
is semi-projective if the above condition only holds for n = 1. So being intrinsically
projective is stronger than being semi-projective, and every quasi-projective module
is intrinsically projective.

He gave in [54] that if M is a finitely generated, semi-projective R-module satisf-
ying dcc (descending chain condition) for cyclic submodules, then Endz (M) satisfies
dcc for cyclic left ideals. In [54], it is also given that if M is an artinian and semi-
projective module, then S is semi-primary (i.e. S/Jac(S) is semisimple and Jac(.S)
is nilpotent).

In [55], he gave that My is a module with endomorphism ring S is semi-projective
if §'is a right PP-ring and kernels of endomorphisms of M are M-generated.

In 2002, H. Tansee and S. Wongwai, in [52], defined M-principally projective

modules as a dual version of M-principally injective modules. They called a right
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R-module N M-principally projective if every R-homomorphism from N to an M-
cyclic submodule of M (If a submodule K of M is isomorphic to a factor module
of M, then it is an M -cyclic submodule of M) can be lifted to an R-homomorphism
from N to M. In [52, Theorem 2.7] they proved that a module M is M-principally
projective if and only if it is semi-projective.

In 2007, A. Haghany and M. R. Vedadi investigated semi-projective retractable
modules and endomorphism rings of such modules in [25].

In 2008, in [53] the ‘relative’ version of semi-projectivity was considered by X.
Wang and J. Chen. They defined N to be M-semi-projective if any homomorphism
from N to an M-cyclic submodule f(M) of N can be factored through a homo-
morphism from N to M and f, where f € Hom(M,N). If N = M, then M is
semi-projective. This condition is equivalent to M-principally projectivity in [52].
They proved that if N is M-semi-projective, then N is M /K-semi-projective for any
submodule K of M and if N is M-semi-projective then for any direct summand P
of N, P is M-semi-projective.

In 2011, V. Kumar, A. J. Gupta, B. M. Pandeya and M. K. Patel [40] studied
M-SP-projective modules as a generalization of semi-projective modules.

This section concerns semi-projective modules and has four subsections. In the
first subsection we give some basic properties of semi-projective modules and provide
some characterizations. We prove that every nonsingular extending module is semi-

projective. In general, for an R-module M we have the following hierarchy:
M is quasi-projective = M is semi-projective = M is direct projective.

For the converse, we show that if R is a Dedekind domain and if M is an R-module

which is a direct sum of cyclic submodules, then
M is quasi-projective < M is semi-projective < M is direct projective.

And in this chapter we also prove that if R is a prime Pl-ring and M is a divisible
R-module, then;

M is semi-projective < M is direct projective < M is semi-Hopfian < M is nonsingular.

It is shown that every direct summand of a semi-projective module inherits the

property, while a direct sum of semi-projective modules need not be semi-projective.
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We show that a module M = &;c;M; with Hompg(M;, M;) = 0 for all ¢ # j in [ is
semi-projective if and only if M; is semi-projective for all ¢ € I.

In the second part of this section we study direct sums of semi-projective modules
over right Ore domains. We show that if R is a right Ore domain, then every R-
submodule of the right quotient division ring () is semi-projective. We prove that
if R is a right Ore domain with the right quotient division ring ) # R and X is a
free right R-module then the right R-module ) & X is semi-projective if and only
if there does not exist an R-epimorphism from X to Q. It is also proved that if R
is a right Ore domain with right quotient division ring () then the right R-module
@ ® R is semi-projective.

Third subsection is related directly to the second subsection. In this part we give
general examples which are deduced from the preceding part. We observe that if
R is a PID (Principal Ideal Domain) with field of fractions () and X is a proper
submodule of ) such that R C X, then M = X & R is finitely generated iff it is
projective iff it is semi-projective iff it is direct projective.

Then, we define the semi-projective cover of an R-module M and give some
characterizations of semiperfect, perfect rings using semi-projective covers. We prove
that a ring R is (semi)perfect if and only if every (finitely generated) right R-module
has a semi-projective cover.

Finally, the rings over which submodules of semi-projective right R-modules are
semi-projective are investigated. Semihereditary, hereditary and semisimple rings

also characterized using semi-projective modules.

2.1 Some Properties of Semi-Projective Modules

Definition 2.1.1 Let R be a ring and let X and M be right R-modules. Then we
shall say that X is M-sprojective provided for every endomorphism « of M and
homomorphism g : X — M with 5(X) C «(M) there exists a homomorphism
v : X — M such that f = ay.

Recall that an R-module M is called semi-projective provided for all endomorp-
hisms « and § of M with (M) C «(M) there exists an endomorphism v of M such

that 0 = av.
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It is clear that a module M is semi-projective if and only if M is M-sprojective.
Note the following elementary fact which should be compared with Definition 1.2.1.

We give the proof for completeness.

Proposition 2.1.2 Given R-modules X and M, X is M-sprojective if and only if
for every submodule L of M such that M /L embeds in M and every homomorphism
B : X — M/L there exists a homomorphism v : X — M such that f = 77y, where

w: M — M/L is the canonical projection.

Proof. The necessity is clear. Conversely, suppose that X and M have the stated
condition. Let a be an endomorphism of M and let 5 : X — M be a homomorphism
such that S(X) C a(M). Let N = a(M) and let K denote the kernel of o. Then
N = M/K. For each © € N there exists m € M such that © = a(m). Define the
isomorphism 6 : N — M/K by 6(x) = m + K. Note that 7 = fa. By hypothesis,
there exists a homomorphism v : X — M such that 7y = 65. This implies that
B = 0"try = av. It follows that X is M-sprojective. O

Proposition 2.1.3 Given a module M, every direct sum of M -sprojective modules

1$ also M -sprojective.
Proof. Adapt the proof of Theorem 1.2.2. O

It is not clear if there is an analogue of Proposition 1.2.3 for M-sprojective

modules.

Definition 2.1.4 An R-module M is called direct projective if for every direct sum-

mand K of M every epimorphism from M to K splits (see [7, 4.21] or [54, p. 365]).

It is pointed out in [7, p. 33| that M is direct projective if every submodule
N of M such that M/N is isomorphic to a direct summand of M is also a direct
summand of M. In [45, p. 57], direct projective modules are defined to be modules

which satisfy the condition (Ds). Note the following elementary fact.

Lemma 2.1.5 A module M 1is direct projective if and only if for all endomorphisms
a and B of M with (M) C (M) and a(M) a direct summand of M there exists

an endomorphism v of M such that B = ary.
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Proof. Suppose first that M is direct projective. Let a and § be endomorphisms
of M with S(M) C a(M) and K = a(M) is a direct summand of M. Because M
is direct projective, there exists a homomorphism 6 : K — M such that ad = 1g.
Now v = ¢/ is an endomorphism of M such that 5 = a.

Conversely, suppose that M has the stated condition. Let L be a direct summand
of M and ¢ : M — L be an epimorphism. There exists a submodule L’ of M such
that M = L& L'. Let 6 : M — L be the canonical projection. Clearly (M) = L =
©(M). By hypothesis, there exists an endomorphism A of M such that 6 = pA. Let
t: L — M denote the inclusion mapping. For ally € L, y = 0(y) = pA(y) = pAi(y).
It follows that ¢(A\¢) = 1 and hence ¢ : M — L splits. Thus M is direct projective.
O

Lemma 2.1.5 shows that we have the following hierarchy:
projective = quasi-projective = semi-projective = direct projective.

Examples 2.1.6 1. Every semisimple module, being quasi-projective, is semi-

projective.

2. Let N denote the set of natural numbers 1,2, ..., Z the ring of integers and
Q the rational field. It is clear that, for any prime p in Z, the Priifer p-group

Z(p*) is not direct projective and hence not semi-projective.

Let N < M and S = End(M). In [34], Keskin-Tiitlincii and Tribak denote the
right ideal Hom(M, N) of S by the notation D(N) = {¢ € S | Imp C N} of S.
They call a module M dual Baer if for every N < M, there exists an idempotent €
in S such that D(NN) = €S.

Let 0 # a: M — M be an endomorphism of M. We define the right ideal

D(a) ={p € S |Imp C Ima} of S.

Actually D(«) = Hom(M,Ima) for any endomorphism « of M. Of course if we
take N = Imq, then D(a) = D(N). And, if N is a nonzero direct summand of M,
then there exists a nonzero idempotent € of S such that D(e) = D(N). Note that

D(«a) = S if and only if « is epic.
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Lemma 2.1.7 Let € be any idempotent endomorphism of a module M with endo-

morphism ring S. Then €S = D(e).

Proof. Let 5 € D(e). This means that 5 is an endomorphism of M such that
B(M) C e(M). Then ¢ = € implies that (1 — €)3(M) C (1 — €)e(M) = 0. Thus
(1 —¢)p =0 and hence = ¢f € €S. O

Let a be an endomorphism of a module M with endomorphism ring S such
that (M) is a direct summand of M. Then (M) = e(M) for some idempotent
endomorphism € of M. Clearly, D(a) = D(€). Now we consider an endomorphism

of M whose kernel is a direct summand of M.

Lemma 2.1.8 Let a be an endomorphism of a module M with endomorphism ring

S such that the kernel of v is a direct summand of M. Then D(a) = asS.

Proof. Let K = Kera. Then there exists a submodule L of M such that M = K& L.
Note that a(M) = a(K) + a(L) = a(L). Let A\ : L — «(M) be the homomorphism
defined by A(x) = a(z) for all z € L. Note that A is an isomorphism with aA\™' =
Laay. If B is any endomorphism of M such that 3(M) C «(M) then v = X715 is
an endomorphism of M such that 8 = a~. It follows that D(a) = a.S. O

It is given in [7, 4.20] that M is semi-projective if and only if for every cyclic
right ideal I C End(M), I = Hom(M, IM), or equivalently, for any f € End(M),
fEnd(M) = Hom(M, f(M)). Then, it is easy to see that;

Lemma 2.1.9 Let M be a module. M is semi-projective if and only if oS = D(«)

for every nonzero a € S.

Definition 2.1.10 ([42]) A module M is called Rickart if the kernel of any endo-

morphism of M is a direct summand of M.

Therefore if we combine by Lemma 2.1.8 and Lemma 2.1.9, we get the following

corollary;

Corollary 2.1.11 Let M be a Rickart module. Then M is semi-projective.
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Note that any Rickart module satisfies the sufficient condition of Examples 1.2.23,

2).

Corollary 2.1.12 Let M be a module with endomorphism ring S such that S is a

von Neumann reqular ring. Then M is semi-projective.

Proof. If the endomorphism ring of M is von Neumann regular, then M is a Rickart

module by [49, Theorem 4]. Thus M is semi-projective by Corollary 2.1.11. O

Definition 2.1.13 ([7]) A module M is called extending provided every submodule

is essential in a direct summand of M.

For example, semisimple modules are extending, as are uniform modules and

injective modules.
Corollary 2.1.14 FEvery nonsingular extending module is semi-projective.

Proof. Let M be any nonsingular extending module. Let o be any endomorphism
of M and let K = Kera. There exists a direct summand L of M such that K is
an essential submodule of L. Now M/K = o(M) < M, which is nonsingular. Thus
L/K is nonsingular. Since L/K is also singular, hence K = L. This means that K
is a direct summand of M. Therefore M is a Rickart module. By Corollary 2.1.11,

M is semi-projective. O

Note that the Z-module Q is semi-projective by Corollary 2.1.14 but since it is

torsion-free and not free it is not quasi-projective from Theorem 1.2.19.

Now we investigate the direct summand property of semi-projective modules. It
is not difficult to check that every direct summand of a semi-projective (respectively,
direct projective) module is semi-projective (respectively, direct projective), as we

show next for completeness.

Lemma 2.1.15 FEwvery direct summand of a semi-projective (respectively, direct pro-

jective) module is also semi-projective (respectively, direct projective).

24



Proof. Let a semi-projective module M = M; & Ms be a direct sum of submodules
M, M. Let o and 8 be endomorphisms of M; such that 5(M;) C a(M;). Now define
endomorphisms A and p of M as follows: A(my + ms) = a(my) and pu(my + msg) =
B(my) for all my € My and my € Ms. Clearly pu(M) C A(M). By hypothesis, there
exists an endomorphism v of M such that gy = Av. If « : M; — M denotes the
inclusion mapping and 7 : M — M, the canonical projection then let v denote the
endomorphism 7ve of M. ay(my) = amv(m,) for all my € M;. Since v(m,) € M
there exists a; € M; and ay € M, such that v(m;) = a1 + a. Then ay(m;) =
arm(a + az) = ala;) = AMay + ag) = Av(my) = u(my) = B(my) for all my € M.
Therefore g = ary. It follows that M; is a semi-projective module. The case of a

direct summand of a direct projective module can be proved similarly. O

It is stated in [52, Remark 2.3 that the direct sum of any collection of semi-
projective modules is also semi-projective. This is not true in general. Haghany and
Vedadi [25, p. 490] prove that if R is a commutative domain with field of fractions
F. then the R-module R & F' is semi-projective. We shall show that an arbitrary
direct sum of semi-projective modules need not be semi-projective, nor even direct
projective. Then we shall go on to investigate when the direct sum of semi-projective

modules is semi-projective.

Lemma 2.1.16 Let R be a ring and let X and Y be R-modules such that the R-

module X &Y 1s direct projective. Then every epimorphism ¢ : X — Y splits.
Proof. Clear by Lemma 1.2.26. O

Corollary 2.1.17 Given any semi-projective R-module Y which is not projective,
there exists a projective R-module X such that the R-module X &Y 1is not direct

projective (and hence not semi-projective).

Proof. Take a semi-projective R-module Y which is not projective. There exists a
free R-module X and an epimorphism ¢ : X — Y. Suppose that X & Y is direct
projective. By Lemma 2.1.16, ¢ is a splitting epimorphism. So Ker ¢ <; X. By the
isomorphism X/Kerp = Y, Y is a projective R-module which contradicts to our

assumption. Therefore the module X @ Y is not direct projective. O
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Corollary 2.1.18 The Z-module Z®Q is semi-projective but the Z-module Z™ ®Q

is not direct projective (and hence not semi-projective).

Proof. The module Z&Q is semi-projective by [25, p. 490]. As there is a non-splitting
epimorphism from Z®™ to Q, Lemma 2.1.16 shows that the Z-module ZM™ & Q is

not direct projective. O

Let R be a Dedekind domain, let M be a torsion R-module and let P be a
nonzero prime ideal in R. The P-primary component of M is the set of all elements
of M that are annihilated by some positive power of P. The P-primary component
is a submodule of M. By I. Kaplansky’s well known result in [27, p. 332] that every
torsion R-module is uniquely a direct sum of its P-primary submodules (in virtually
the same way as for principal ideal rings), each P-primary submodule is a direct
sum of cyclic primary R-modules that are also torsion.

Now we show that every finitely generated direct projective Z-module is quasi-
projective. In fact, more is true. Let R be a Dedekind domain and let M be a
nonzero torsion cyclic R-module. From the above paragraph M is a direct sum of
cyclic primary R-modules. Let X be a nonzero primary cyclic R-module. Being
cyclic, X = R/A for some proper ideal A of R and being primary, P" C A for some
nonzero prime P and a positive integer n. Now every nonzero ideal of R is invertible
and A is a product of maximal ideals. It follows that A = P* for some positive

integer k with 1 < k < n.

Theorem 2.1.19 Let R be any Dedekind domain. Then the following statements
are equivalent for an R-module M which is a direct sum of cyclic submodules.

(i) M is quasi-projective.

(ii) M is semi-projective.

(i1i) M s direct projective.

Proof. (i) = (ii) = (iii) Clear.
(ili) = (i) Let M = @;er M; be a direct sum of cyclic submodules M; (i € I) and
suppose that M is direct projective. Suppose that M is not torsion. Then there exists

a direct summand M; (j € I) which is not torsion. Since M, is cyclic M; = R/A
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for some right ideal A of R. On the other hand R/A is torsion for all nonzero right
ideal A of R. As Mj is not torsion, then M; = R for j € I. Now we claim that
M is a free R-module. If M is not free then there exists & € I such that M; % R.
That means that there exists & € I such that M is torsion cyclic and hence there
exists a non-splitting epimorphism ¢ : M; — M. Suppose that ¢ is a splitting
epimorphism. Since Ker ¢ is a direct summand of M;, M is a projective R-module.
By Proposition 1.6.8 Mj, is a torsion-free module that gives us a contradiction. By
Lemma 2.1.16, M; & M}, is not direct projective and, by Lemma 2.1.15 neither is
M. Thus M is free, so it is quasi-projective.

Now suppose that M is a torsion R-module. From the well-known fact by Kap-
lansky [27, p. 332], M can be written as a direct sum of its P-primary compo-
nents for all nonzero prime (maximal) ideals P of R. Let N denote a nonzero P-
primary components of M for any prime (maximal) ideal P in R. By the above
remarks, N = @,cp N, for some index set A and nonzero cyclic P-primary sub-
modules N, (A € A). Again by the above remarks, for each A € A there exists a
positive integer my such that Ny = R/P™. Our claim is that m, = m, for all
different p,v. If m, < m, for some p # v then there is a non-splitting epimorp-
hism R/P™ — R/P™*. By Lemmas 2.1.15 and 2.1.16, N is not a direct projective
module and hence neither is M. Thus m, = m, for all © # v in A. Therefore
N = @ueAp_Ijm- As % is a quasi-projective module from Corollary 1.2.17, then N
is quasi-projective from Proposition 1.2.3. It is proved that every P-primary com-
ponent of M is quasi-projective and hence so also is M from Theorem 1.2.20. This

proves the result. O

Corollary 2.1.20 FEvery finitely generated direct projective Z-module is quasi-projec-

tive.

Proof. By Theorem 2.1.19. O

If R is a commutative domain which is not a field and U a simple R-module
then the R-module R & U is not a semi-projective module. To prove this, suppose
that R& U is a semi-projective module. So it is direct projective. Since U is simple,

there exists 0 # « € U such that U = 2R =
27
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¢ : R — U with ¢(r) = zr. As R® U is direct projective, ¢ is a splitting
epimorphism. Then Ker ¢ = anng(z) is a direct summand of a commutative domain
R. So anng(z) = 0 or anng(z) = R. But both gives us a contradiction. Therefore

R & U can’t be semi-projective.

Here note that Homg(U, R) = 0 but Homg(R,U) # 0. Compare this fact with

the following result.

Remark 2.1.21 Let a module M = @5 M; be a direct sum of submodules M; (i €
I) such that Homg(M;, M;) =0 for alli # j in 1. Then M is semi-projective if and

only if M; is semi-projective for all i € I.

Proof. The necessity follows by Lemma 2.1.15. Conversely, suppose that M; is semi-
projective for all© € I. For each k € I, let 1y, : M — M denote the inclusion mapping
and let m; : M — M}, denote the canonical projection. Let a be any endomorphism
of M. For all j # k in I, mjau, € Hompg(My, M;) = 0. Thus a(M;) € M, for all
k € I. And this implies that a(M) = @®;e; a(M;). Now let 5 be an endomorphism
of M such that f(M) C a(M). For each k € I, B(M;) C a(My) and hence there
exists an endomorphism ~; of M such that awyr = Biy. Define v = Zke[ L YET R
which is an endomorphism of M. It is easy to check that 8 = a~. It follows that M

is semi-projective. O

Note the following corollary of Remark 2.1.21 which provides many examples of

semi-projective modules as follows.

Corollary 2.1.22 Let R be a prime right Goldie ring such that R is not right
primitive and let a right R-module M = X &Y be a direct sum of a torsion-free
divisible submodule X and a torsion semisimple submodule Y. Then M 1is semi-

projective.

Proof. Suppose that R is prime right Goldie ring which is not primitive. So R has
a semisimple classical right quotient ring, by Theorem 1.5.10 (Goldie’s Theorem).
Say it ). Since X is a torsion-free module over prime right Goldie ring, then X is
nonsingular from Proposition 1.6.6 and X is injective from Theorem 1.6.5. Therefore
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X is semi-projective by Corollary 2.1.14. On the other hand, let ¢ € Hompg(Y, X)
and let y € Y. As Y is torsion, there exists a regular element d € R such that
yd = 0 and hence p(y)d = p(yd) = 0. Because X is torsion-free, it follows that
©(y) =0 for all y € Y and hence ¢ = 0. Thus Hompg(Y, X)) = 0. Now suppose that
Hompg(X,Y) # 0. Then, since X is a direct sum of copies of @) from Proposition
1.6.7 and since Y is semisimple, Homg(Q, V') # 0 for some simple R-module V. Let
a : (Q — V be a nonzero epimorphism. Because R is not right primitive, V' has
nonzero annihilator in R and hence V¢ = 0 for some regular element ¢ of R from
Theorem 1.5.9. Since @ is divisible R-module over semiprime right Goldie ring R,
@ = Qc for the regular element ¢ € R. Then a(Q) = a(Qc) = a(Q)c = Ve =0 and
hence a = 0, a contradiction. It follows that Homg(X,Y) = 0. By Remark 2.1.21,

M is semi-projective. O

In particular, if R is a prime ring and R satisfies a polynomial identity (R is

called a ”PI ring” for short, (see [44])) then we have the following result.

Corollary 2.1.23 Let R be a prime PI ring which is not Artinian and let a right
R-module M = X &Y be a direct sum of a torsion-free divisible submodule X and

a torsion semisimple submodule Y. Then M is semi-projective.

Proof. By Proposition 1.5.5 R is right Goldie. Since R is not Artinian, it is not a
central simple algebra. So by Theorem 1.5.7 R is not right primitive. Then apply
Corollary 2.1.22. O

We close this subsection by semi-Hopfian property of semi-projective modules.

Definition 2.1.24 ([7]) A module M is called semi-Hopfian if the kernel of every
epimorphism ¢ : M — M is a direct summand of M, equivalently, if M/A = M
with A < M, then A is a direct summand of M.

Note the following fact.

Lemma 2.1.25 FEvery direct projective module is semi-Hopfian.

29



Proof. It is clear since every epimorphism from M to M splits. O

But the converse of this lemma is not true. For example, Z/nZ @ Z is a semi-

Hopfian module but it is not direct projective.

Semi-Hopfian modules are semi-projective in the case of divisible modules over

prime PI rings and this may be true more generally.

Proposition 2.1.26 Let R be a prime PI ring. Then the following statements are
equivalent for a divisible R-module X .

(i) X is semi-projective.

(i1) X is direct projective.

(iii) X is semi-Hopfian.

(iv) X is nonsingular.

Moreover, in this case X 1is injective.

Proof. (i) = (ii) By Lemma 2.1.5.

(ii) = (ili) By Lemma 2.1.25.

(iii) = (iv) Suppose that X is not nonsingular. By Proposition 1.6.6, X is not
torsion-free. Then there exist a nonzero element x € X and a regular element a € R
such that xa = 0. From Proposition 1.5.4, aR <., R. Since R is right bounded by
Proposition 1.5.5, there exists a nonzero right ideal A of aR. Then from Proposition
1.5.6, there exists a nonzero element ¢ € C'N A where C is the center of R. So ¢
is a nonzero central element with ¢ = ar for some r € R such that zc = xzar = 0.
Let Y = {u € X : uc = 0}. It is easy to check that Y is a submodule of X. Now
X = Xc because c is a regular element of the prime ring R and X is divisible. Define
a mapping 6 : X — X by 0(w) = wec for all w € X. It is easy to check that 6 is an
epimorphism with kernel Y. Suppose that Y is a direct summand of X. There exists
a submodule T of X such that X =Y @ T If we intersect both sides of the equality
X =XcbyY, then we get Y = XcNY. Take y € Y = XcNY. There exists x € X
such that y = zc. Since X =Y & T, x can be written as x = 3/ + ¢, where ¢/ € Y
and t € T. Then zc = y'c+tc. Since y € Y, xc =tc =y € Y N'T = 0. Therefore
Y = 0, a contradiction. Thus Y is not a direct summand of X and hence X is not

semi-Hopfian.
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(iv) = (i) Suppose that X is nonsingular. Then it is torsion-free by Proposition
1.6.6 and X is injective by Proposition 1.6.5. Then X is semi-projective by Corollary
2.1.14.

The last part follows from Proposition 1.6.5. O

2.2 Direct Sums of Semi-Projective Modules

Over Ore Domains

Let X be a multiplicative set in a ring R. Then X satisfies the right Ore condition
provided that for each x € X and r € R, there exist y € X and s € R such that
ry = xs. A multiplicative set satisfying the right Ore condition is called a right Ore
set. Any multiplicative set in a commutative ring is an Ore set. A reqular element

in a ring R is any nonzero-divisor, i.e., any element x € R such that annj(z) = 0
and annh(x) = 0. If X C R a multiplicative set of regular elements in R, then a
right ring of fractions for R with respect to X is any overring S O R such that
every element of X is invertible in S and every element of S can be expressed in the
form ax™! for some a € R and x € X. A right ring of fractions need not exist. If
a multiplicative set of regular elements X in a ring R is a right Ore set, then there
exists a right ring of fractions for R with respect to X. Converse is also true. A right
ring of fractions @) for R with respect to X is called classical right quotient ring (or
R is right order in Q) if X is the set of all regular elements in R. So R has a classical
right quotient ring if and only if the set of regular elements in R is a right Ore set.
Every commutative ring has a classical quotient ring. In the case of commutative
domain, the classical quotient ring is its quotient field. A non-commutative domain
need not have a classical quotient ring, but if one exists, it will be a division ring. A
right Ore domain is any domain R in which the nonzero elements form a right Ore
set. For any ring R, R is a right Ore domain if and only if R has a classical quotient
ring which is a division ring. It is called right quotient division ring of R., (see [20]).

Given a submodule X of the right R-module ) we define
OX)={qeQ :¢X X}

Note that O(X) is a subring of Q.
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Lemma 2.2.1 Let a ring R be a right order in a quotient ring Q and let X be a
submodule of the right R-module @) such that X contains a reqular element of R.
Then « is an endomorphism of the right R-module X if and only if there exists
q € O(X) such that a(x) = qx for all x € X.

Proof. Given ¢ € O(X), it is clear that the mapping a : X — X defined by a(x) =
qr (x € X) is an R-homomorphism. For the converse, let 8 be an endomorphism of
X. By our assumption, let ¢ be a regular element of R such that ¢ € X. There exists
p € X such that 3(c) = p. Let x € X < Q. Then z = ab™! for some a € R and
regular element b € R. Note that b = a € R. Since R is a right order in a quotient
ring () (that means that @ is a classical right quotient ring of R), the set of regular
elements in R is a right Ore set by Theorem 1.3.7. For a € R and a regular element
¢ € R there exist a; € R and a regular element ¢; € R such that ac; = ca;. Then

xbc; = ca; and hence

B(x)bey = B(xbey) = B(car) = B(c)a; = pay.

It follows that 8(x) = paic; b~ = pclab™! = (pc~')z. Thus B(x) = (pc~ )z for all
r € X. Note that (pc ') X = B(X) C X and hence pc! € O(X). O

Proposition 2.2.2 Let R be a right Ore domain with right quotient division ring
Q. Then every submodule of the right R-module () is semi-projective.

Proof. Let X be any submodule of Q. If X = 0 then X is clearly semi-projective.
Suppose that X # 0. Let 0 # x € X < @. For a € R and a regular element
b€ R, v =ab™!. Then 0 # 2b = a € X N R and this nonzero element a = zb is a
regular element because R is a domain. So X contains a regular element of R. Let
S = End(Xg) and let o, 8 € S with B(X) C a(X). If @« = 0 then § = 0 and hence
B € aS, so X is semi-projective. Suppose that a # 0. By Lemma 2.2.1, there exist
p,q € O(X) with a(z) = pxr and f(x) = gz for all z € X. Clearly p # 0 and

qX = B(X) Ca(X)=pX CQ.

Because p is nonzero we have p~'q € Q. Moreover, p~'q € O(X). Now define a

mapping v : X — X by v(z) = (p~'¢q)z, (z € X). Then v € S by Lemma 2.2.1 and

ay(z) = alp~qz) = pp~'qr = qv = B(z), Vr € X.
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Therefore g = ay € aS. It follows that X is semi-projective. O
The next lemma is elementary but is included for completeness.

Lemma 2.2.3 Let a module M = X @Y be the direct sum of a projective submodule
X and a submodule Y. Then M 1is semi-projective if and only if for all endomorp-
hisms o, B of M with B(X) =0 and B(Y') C a(M) there exists an endomorphism ~y
of M such that f = «ary.

Proof. The necessity is clear. Conversely, suppose that M, X and Y have the stated
property. Let ¢, 60 be endomorphisms of M with ¢(M) C 0(M). Let ¢ : X — M
denote the inclusion mapping. Because X is projective, there exists a homomorphism
A X — M such that oo = 6X. Let pu be the endomorphism Ar of M, where
m: M — X is the canonical projection. Then v = ¢ — 0 is also an endomorphism

of M. Now
V(X) = (¢ = 0p)(X) € o(X) = 0u(X) € p(X) — 0An(X) =0 and

V(M) = U(Y) = (p—0p)(Y) € p(Y)~0u(Y) C oY) ~0Am(Y) = o(¥) C p(M) C O(M).

By hypothesis, there exists an endomorphism ~ of M such that v = 6+ and hence
¢ =0(p+ 7). Thus M is semi-projective. O

Before proving the next result we note the following well known fact which we

shall prove for completeness.

Lemma 2.2.4 Let R be a right Ore domain with right quotient division ring QQ # R.
Then Homg(Q, R) = 0.

Proof. Let ¢ € Homg(Q, R). Since @ is a divisible module @) = Qc for each nonzero
element ¢ of R (Note that each nonzero element of R is a regular element because
R is an Ore domain). Hence ¢(Q) = ¢(Qc) = ¢(Q)c C Re for each regular element
¢ € R. Suppose that ¢(Q) # 0. We claim that Rp(Q) is a minimal left ideal of
R. Let 0 # J < Ryp(Q) be the another left ideal of R. There exists an element
0 # ¢ € J < R which is regular. R/ C J C Rp(Q) = Rp(Qcd) = Re(Q)d C RC.

So J = Rd = Ryp(Q). So Rp(Q) is a minimal left ideal of R. Take an element
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0 # d € ¢(Q) which is a regular element of R. 0 # Rd C Rp(Q). Since Ry(Q)
is minimal, Rp(Q) = Rp(Q)d = Rd implies Rp(Q)) = R. Then R = Rp(Q) =
Ro(Q)c = Re, so Re = R and R = @, a contradiction. Thus Homg(Q, R) =0. O

Let R be a ring and M an right R-module. We shall denote by ¢g(Mg) the
least cardinal x such that there exists an index set A of cardinality x and elements
mx (XA € A) with M = 7, ., myR. We have already noted that the Z-module
Q @ ZM is not semi-projective by Corollary 2.1.18. Compare this fact with the

following result.

Theorem 2.2.5 Let R be a right Ore domain with right quotient division ring Q)
and let X be a projective right R-module such that g(Xgr) < g(Qr). Then the right

R-module M = Q @& X is semi-projective.

Proof. As X is projective, it is a direct summand of a free R-module Y such that
9(Xgr) < ¢g(Yr). By Lemma 2.1.15 we can suppose without loss of generality that
X is free. Let {e;}qer be a basis of X with |I| = x. First let us introduce some
homomorphisms that we will need. If ¢ is an endomorphism of M then mget is an
endomorphism of the R-module @), where ¢ : ) — Q@ X is the inclusion mapping and
7o 1 Q®X — @ the canonical projection. By Lemma 2.2.1 there exists p € O(Q) <
@ such that moei(u) = pu for all u € Q. Next note that if 7y : Q@ & X — X is the
canonical projection then mxpr : Q — X is an R-homomorphism. By using Lemma
224, mxpr € Hom(Q, X) = Hom(Q,®R) C > Hom(Q, R) = 0. This gives that
mxpt = 0. Then we get mop(u,0) = pu and mxp(u,0) = 0. Thus ¢(u,0) = (pu,0)
for all w € Q. And p(0,2) = p(0,>;e1m:) =D (0, e;)r;.

Let a and S be nonzero endomorphisms of M such that 3(Q) C a(M) and
B(X) = 0. There exist elements ¢ € O(Q) C Q and ¢; € Q (¢ € I) and elements
a; € X (i € I) such that a(u,0) = (qu,0) (v € Q) and (0, ¢;) = (g;,a;) for all 1 € T
by above paragraph. Next again by previous paragraph there exists an element
¢ € O(Q) < @ such that B(u,0) = (¢'u,0) for all u € Q and 5(0, ¢;) = 0. Note that
B # 0 implies that ¢’ # 0. Since S(Q) C a(M), for each element u € @, there exist

an element w € @), a finite non-empty subset F' of [ and elements r; € R (i € F)
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such that

(¢'u,0) = B(u,0) = a(w, Z e;ri) = a(w, O)—l—z a(0,e)r; = (qw—l—z ¢, Z air;i).

i€F i€F i€F i€F
It follows that ¢'u = qw + .. qiri. Suppose that ¢ = 0. Then ¢'u =}, 5 ¢i7s.
This implies that
Q=4dQC Z g R.

i€F

In this case, g(Qr) < g(Xgr) = |I| = k, a contradiction by our assumption.

Thus g # 0. There exist an element w’ € @, a finite non-empty subset G of [
and elements s; € R (i € G) such that

¢ =qu +> gsi=qw' + ) ¢ gs) = q@,
i€eG i€eG

where § = w' + 3 ,c ¢ '¢;s; € Q. Now define a mapping v : M — M by ~(u, z) =
(qu,0) for all u € @ and z € X. It is clear that v is an endomorphism of M.

Moreover, for all u € @), z € X we have:
B(u,z) = B(u,0) = (¢'u,0) = (qqu, 0) = ay(u, z).
Thus 8 = ay. By Lemma 2.2.3, the module M is semi-projective. O

Theorem 2.2.5 has a number of immediate useful corollaries.

Corollary 2.2.6 Let R be a right Ore domain with right quotient division ring
Q # R and let X be a free right R-module. Then the right R-module M = Q & X is

semi-projective if and only if there does not exist an epimorphism from X to Q).

Proof. Suppose first that M is not semi-projective. By Theorem 2.2.5, ¢(Q) < g(X)
and hence there is an epimorphism from X to (). Conversely, suppose that there is
an epimorphism ¢ : X — ). Now suppose that M is semi-projective. By Lemma
2.1.16, ¢ splits. Then Qg is projective. So Hompg(Q, R) # 0, contradicting Lemma

2.2.4. Thus M is not semi-projective. O

Corollary 2.2.7 Let R be a right Ore domain with right quotient division ring Q).

Then the R-module Q) & R s semi-projective.
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Proof. Suppose that g(Qr) < g(Rg). Clearly g(Rg) = 1 and hence g(Qr) = 1. This
means that () = ¢R for some ¢ € (). In this case () = R as right R-modules and
thus @ @ R is a projective, and hence semi-projective R-module. If g(Rg) < g(Qr)
then @ & R is semi-projective by Theorem 2.2.5. O

Corollary 2.2.8 Let R be a right Ore domain with right quotient division ring @)
and let X be a finitely generated projective right R-module. Suppose that R is right
noetherian or left Ore. Then the R-module Q) & X is semi-projective.

Proof. If @ is not finitely generated then g(Qr) = oo and g(Xg) < g(@r). Then
@ @ X is semi-projective by Theorem 2.2.5. Suppose that Qg is finitely generated.
If R is right noetherian then finitely generated module Qi is also noetherian from

Proposition 1.1.13. For any nonzero element ¢ € R, the ascending chain:
RCc'RCc?RC...

must terminate. There exists a positive integer n such that ¢ ™R = ¢ " 'R. This
gives ¢! = ¢7"b and hence cb = 1 for some b € R. Take any element ¢ € Q.
Then ¢ = rz~! for r € R and a regular element x € R. As in the above sentence,
there exists & € R such that b’ = 1. Hence ¢ = qzb/ = rb’ € R. So Q = R and
hence Q @ X is a projective R-module. Now suppose that R is a left Ore domain. In
this case there exists a positive integer k such that Q = (¢;'r))R + -+ + (¢;'r1)R
for some r;, € R,0 # ¢; € R (they are regular), (1 < i < k). By a standard
argument we can suppose without loss of generality that ¢; = -+ = ¢,. Then
Q=cQQ=rR+---+r,RC RCQ. Thus Q = R and again () & X is a projective

R-module. In any case, ) & X is semi-projective. O

2.3 Some Examples

We saw in Proposition 2.2.2 that if R is a right Ore domain with right quotient divi-
sion ring () then every R-submodule X of () is semi-projective. Moreover, Corollary
2.2.7 shows that if X = @) then the R-module X & R is semi-projective. Of course, if
X = R then the R-module X & R is projective and hence semi-projective. We shall
show in this section that in case R = Z then these (Q and Z) are the only possible

choices for a submodule X of Q so that the R-module X & R is semi-projective.
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Let R be any ring and consider an R-module M = X & R where X is an R-
module such that Homg(X, R) = 0. Let ¢ be any endomorphism of the R-module
M. Let tx : X — M denote the inclusion mapping and let 7x : M — X and
mr : M — R denote the canonical projections. Note that mrptx € Hompg(X, R) =0
and that f = mxpix € End(Xg). Thus ¢(z,0) = (f(x),0) for all x € X. Next there
exist y € X and a € R such that ¢(0,1) = (y, a). It follows that

p(z,r) = (f(z) +yr,ar) (x € X,r € R),
for that kind of modules M.
It is now easy to prove the following result.

Lemma 2.3.1 With the above notation, ¢ is an endomorphism of M if and only
if there exists an endomorphism f of X and elements y € X,a € R such that
o(x,r) = (f(z)+yr,ar) for allz € X andr € R.

Corollary 2.3.2 Let R be a right Ore domain with right quotient division ring @)
and let X be a nonzero submodule of the right R-module Q such that Homgr(X, R) =
0. Let M = X & R. Then ¢ is an endomorphism of the R-module M if and only
if there exist ¢ € O(X), y € X and a € R such that ¢(z,r) = (qx + yr,ar) for all
re X,reR.

Proof. By Lemmas 2.2.1 and 2.3.1. O

Now we prove a theorem about modules over a commutative PID (see also The-

orem 2.1.19).

Theorem 2.3.3 Let R be a PID with field of fractions ) and let X be a proper
submodule of Q) such that R C X. Then the following statements are equivalent for
the R-module M = X & R.

(i) M is finitely generated.

(ii) M is projective.

(#ii) M is semi-projective.

(iv) M is direct projective.
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Proof. (i) = (ii) = (iii) = (iv) Clear by Lemma 2.1.5 and Proposition 1.6.8.

(iv) = (i) Suppose that X is not finitely generated. Since Qg is a uniform module,
the proper submodule Xy of Qg is also uniform. Suppose that X is projective. As
R is a PID, X is free. That means that X = € Rg. Since uniform modules are
indecomposable, X is indecomposable. This is a contradiction. So X being uniform
implies that X is not projective. Note that Homg(X, R) = 0. For, if ¢ : X — R
is a nonzero homomorphism then ¢(X) is a nonzero projective ideal of R. This
implies that X/Keryp is also projective so Kerp <; X. Suppose that Kerp # 0. As
X is uniform, Kerp <. X. Then X = Kery and ¢(X) = 0, a contradiction. So
Kerp = 0 and hence X = p(X) < R. Since R is a PID, X is finitely generated, that
contradicts with the assumption. This contradiction shows that Hompg(X, R) = 0.
Let T = End(Xg). Suppose that 7' = Q. Then for any 0 # a € R, X = Xa. It
follows that the R-module X is divisible. Since R is PID, X is injective so X is a
direct summand of Q). As @ is indecomposable X = @), a contradiction. Thus T' # Q.
There exists a prime element p of R such that p is not a unit in 7.

Now suppose that X/R = p(X/R). Then X = pX + R. Let a denote the en-
domorphism of M defined by a(x,r) = (px + r,0) for all x € X, r € R. Clearly
a(M)=X&0=mn(M) where 7 : M — X &0 is the canonical projection. Suppose
that M is direct projective. There exist an endomorphism 7 of M such that 7 = a~y.
By Lemma 2.3.1, there exists ¢ € T'= End(X) and elements y € X and a € R such
that v(z,7) = (qx + yr,ar) for all x € X and r € R. Then;

(,0) =7m(x,r) = ay(z,r) = a(qr + yr,ar) = (pgx + pyr + ar,0).

So 1 = pq for some g € T, a contradiction since p is not unit in 7. Thus in this case
M is not direct projective.

Next suppose that X/R # p(X/R). Since Q/R is a torsion module over PID, it
is isomorphic to the direct sum of injective envelopes of the simple modules R/ Rgq,
where Rq is a maximal ideal of R. The submodule X/R of Q)/R is torsion and hence
is a direct sum of its primary components. If Y is the submodule of X containing R
such that Y/ R is the p-primary component of X/R then Y = R(1/p")+R = R(1/p"),
for some positive integer n. If Y’ is the submodule of X containing R such that Y'/R

is the sum of the other primary components of X/R then X =Y + Y’. Moreover
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Y'/R = p(Y'/R) so that Y’ = pY’ + R. Let 8 be the endomorphism of M defined
by B(z,r) = (px +1/p",0) for all z € X,;r € R. So (M) = (X D®R) C X 0.
For all ¢y € Y there exist z € Y',b € R such that ¢ = pz + b and hence (y/,0) =
(pz+0b,0) = (pz+1;:;b,0) = [(z,p"b). Next note that (1/p™,0) = (pO—l—}%,O) = (5(0,1).
Take (y +y',0) € X & 0 such that y € Y and ¢/ € Y’. There exist z € Y, b,r € R

such that y = .= and Yy =pz+0b.

r T
(y+y,0) = (y,0)+(¥,0) = (};70) +(pz+0,0) = 8(0,7) + B(z,p"b) = B(z,p"b+r)
which is in B(X @ R) = B(M). It follows that (M) = X & 0 = «(M) for the
canonical projection 7. Suppose that M is direct projective. Then there exists an
endomorphism 0 of M such that # = $6. Lemma 2.3.1 gives that 1 = pq’ for some
q € T, acontradiction. Thus M is not direct projective in this case also. We conclude

that M is not direct projective if M, and hence X, is not finitely generated. O

Corollary 2.3.4 Let R be a PID with field of fractions (Q and let X be any nonzero
submodule of Q). Then the following statements are equivalent for the R-module
M=X@&R.

(i) M is semi-projective.

(ii) M is direct projective.

(1)) X 2 R or X = Q.

Proof. (i) = (ii) By Lemma 2.1.5.
(ii) = (iii) Since X # 0, there exists 0 # x € X C Q. Then 0 # z = cz~! for

some regular element z in R and an element ¢ € R. So 0 # ¢ = xz in X. Clearly;
M=Mc'=Xc'®@Rc'2Xc'DR.

In addition, R = (Re)c™' € Xc™ . Suppose that Xc¢™! is a proper submodule of Q.
Then by applying Theorem 2.3.3 for Xc¢™!, X! is finitely generated module. Since
finitely generated modules over PID are isomorphic to direct sum of cyclic modules
and since X is indecomposable then Xc¢™' = R. If Xc™! = @ then Xc¢ ' = Q and it
follows that X = R or X = Q).
(iii) = (i) By Corollary 2.2.7. O
39



Up to now, we concerned with rings R and R-modules M such that M = X & R
for some R-module X with the property that Homg(X, R) = 0. It has been seen
that such modules M need not be semi-projective. In other words, from Lemma
2.1.9, if S is the endomorphism ring of the R-module M then in many cases there
exists a € S such that @S # D(«a). Now we show that oS is an essential submodule

of the right S-module D(«).

Theorem 2.3.5 Let R be a ring, X an R-module, M the R-module X & R and let
S be the endomorphism ring of the R-module M. Then oS is an essential submodule

of the S-module D(a) for every 0 # a € S.

Proof. There exists an epimorphism ¢ : F = R® — M. Let 0 # a € S and
0 # g € D(«). By the projectivity of F', there exists a homomorphism h : FF — M
such that ah = gp. Moreover if gpey, = 0 for all index set A € A where ¢, is the
inclusion map from R to F', then gp(R) = 0. Then

9g(M) = gp(F) = gp(BR) = ®gp(R) =0

a contradiction. So there exists an index A € A such that gpey # 0. Consider the
projection map w : M — R. Hence a(heym) = g(pe ) is a nonzero element of

aS N ¢S, which shows that oS is essential in D(a). O

2.4 Semi-Projective Covers

Recall that a module M has a projective cover P, if there is an epimorphism
f P — M such that P is projective and Kerf is small in P. A ring R is called
right perfect if every right R-module has a projective cover. Perfect rings were cha-
racterized by H. Bass in [3]. In 1967, L. E. T. Wu and J. P. Jans introduced the
quasi-projective cover as follows in [57]: The module P is called a quasi-projective
cover of a module M if; there exists an epimorphism f : P — M such that (1)
P is quasi-projective (2) Kerf is small in P (3) if 0 # B C Kerf, then P/B is not
quasi-projective. Note that similar to the case of projective covers, quasi-projective
covers of a module need not exist. For example, the Z-module M = @, Z/p*Z does
not have a quasi-projective cover (see [11, Example 4]). Also, it is not known whet-

her quasi-projective cover of a module (if it exists) is unique up to isomorphism. L.
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E. T. Wu and J. P. Jans proved in [57, Proposition 2.6] that when the projective
cover f: P — M exists, then the quasi-projective cover of M exists and is unique.
This quasi-projective cover is given by the induced map f’': P/T — M, where T
is the largest fully invariant submodule of P contained in Kerf.

In 1970; K. R. Fuller and D. A. Hill [14, Theorem 4.1], J. Golan [16, Theorem
3.1] and A. Koehler [35, Corollary 1.2] proved that (the condition (3) is not needed
for the proof) a ring R is right perfect if every right R-module has a quasi-projective
cover and they also investigated semiperfect rings via quasi-projective covers of fini-
tely generated modules. After that, in 1983, T. G. Faticoni studied quasi-projective
covers in [11] and in 1996, W. Xue defined the locally projective cover (without the
condition (3)) and proved that a ring R is right perfect if and only if every right
R-module has a locally projective cover in [59, Theorem 3.10]; he also investigated
semiperfect rings via locally projective covers.

In this chapter firstly we define semi-projective covers and investigate right per-
fect rings. We say that a module P is a semi-projective cover of any module M if,
there exists an epimorphism f : P — M such that P is semi-projective and Ker f
is small in P. Since this definition does not stipulate an analogue of the condition
(3), the semi-projective cover may not be unique up to isomorphism. Clearly, every
(quasi-)projective cover is a semi-projective cover. But the converse is not true. Since
the Z-module Q is semi-projective (see, Corollary 2.1.14), Q7 is a semi-projective
cover of itself and of the Z-module Q/Z.

In this part of the dissertation, we give some characterizations of semiperfect and
perfect rings by using semi-projective covers. We obtain that a ring R is right perfect
if and only if every right R-module has a semi-projective cover and R is semiperfect
if and only if every finitely generated right (left) R-module has a semi-projective
cover. This characterizations have been completely inspired by the earlier related

studies from [3], [11], [14], [16], [17], [35], [57] and [59].

The following theorem is an analogue of [17, Theorem 2.2].

Theorem 2.4.1 Let M be a module and let f : P — M be an epimorphism with
P projective. Then

1. M s projective if and only if P @& M is semi-projective.
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2. M has a projective cover if and only if P & M has a semi-projective cover.

Proof. (1) Assume M is projective. Then clearly P & M is semi-projective. Con-
versely assume that P & M is semi-projective, so it is direct projective. Then the
epimorphism f : P — M splits from Lemma 2.1.16. Then Kerf <; P from Defi-
nition 1.2.4. Thus by the isomorphisms M = P/Kerf = T <; P and by Theorem
1.2.2, M is projective.

(2) For the necessity, assume that the epimorphism p : P* — M — 0 be the
projective cover of M, with P’ projective and Kery < P’. Then the epimorphism
idp®du : PGP — P& M be the semi-projective cover of P@® M. For the sufficiency
we will use the Koehler’s technique in [35, Theorem 1.1]. By hypothesis, there exists
an epimorphism g : () — P & M such that () is semi-projective and Kerg is small
in Q. Let m be the projection map from P & M to P. Because of the projectivity
of P, there exists a monomorphism « : P — () such that mga = 1p. That means
that g splits. By Proposition 1.2.5, Q = P @ Ker(wg). Without loss of generality,

we can assume Q = P @ Ker(ng). Let M = Ker(mg) and g, = g |57
91(M) = g |57 (M) = g(M) = g(Ker(rg)) = Kerm = M

implies that ¢, : M — M is an epimorphism. Now we will prove that M is the
projective cover of M with the epimorphism g;. Since Kerg = Kerg;, Kerg; is small
in M. Since P is projective, there is a homomorphism f’ : P — M such that

g1f" = f, namely the following diagram is commutative:

M—=M—0
Since f is epic, g1 f'(P) = f(P) = M, so f'(P) + Kerg, = M. Since Kerg, is small
in M, f'(P) = M. Therefore since @ is semi-projective and f' : P — M is an

epimorphism then M is projective by (1). O

Corollary 2.4.2 [f every (finitely generated) module has a semi-projective cover,

then every (finitely generated) module has a projective cover.
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Proof. Suppose that every (finitely generated) module has a semi-projective cover.
Take a (finitely generated) module M. Since every (finitely generated) module is an
epimorphic image of a (finitely generated) free module, there exists an epimorphism
¢ : F'—> M — 0. From the hypothesis, F'& M has a semi-projective cover. Then
by Theorem 2.4.1 (2), M has a projective cover. O

In [16], J. S. Golan characterized perfect (semiperfect) rings as rings over which
every (finitely generated) module has a quasi-projective cover. Now, we characterize

perfect and semiperfect rings by using semi-projective cover.

Corollary 2.4.3 1. A ring R is semiperfect if and only if every finitely generated

right (left) R-module has a semi-projective cover.

2. A ring R is right perfect if and only if every right R-module has a semi-

projective cover.
Proof. By Corollary 2.4.2. O

Now applying the same technique in the proof of [17, Theorem 3.1], we get the

following, where R, is the ring of n x n matrices over R:

Theorem 2.4.4 If R is a ring, then the following conditions are equivalent for R:
1. R is semiperfect.
2. For allmn > 1, every cyclic right (left) R,-module has a semi-projective cover.

3. There exists an n > 1 such that every cyclic right (left) R,-module has a

semi-projective cover.

Proof. (1)=-(2): Assume that R is semiperfect. By Theorem 1.2.13, R,, semiperfect
for all n > 1. Then every cyclic right (left) R,-module has a semi-projective cover
for all n > 1 by Corollary 2.4.3.

(2)=(3): Trivial

(3)=(1): Let n > 1 and assume that every cyclic right R,-module has a semi-
projective cover. Let N be a cyclic right R-module. There exists a right ideal L of R

such that N = R/L. Now we will show that R/L has a semi-projective cover. L, is
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the right ideal of R,, consisting of all matrices with entries from L. Let ¢;; € R,, be the
matrix with 1g in the (4, 7) position and zeros elsewhere. Then R,, /ey, L, = P & M,
where M = ey R, /en1 L, and P = 3 ", e;R,. P is clearly a projective R,-module
and the map A : P — M which sends [a;;] to eja]a;;]+e11 L, is an R,-epimorphism.
By hypothesis P @& M has a semi-projective cover and by Theorem 2.4.1 (2), M has
a projective cover over R,. Call the epimorphism g : P/ — M where P’ is a
projective R,-module and Kerg is small in P’. And g(P’e;1) = g(P')e;; = Meyy
which is isomorphic to R/L as an R-module. Let o be the isomorphism from Mey;
to R/L. P is a projective R,-module, so P’ey; is a projective R-module by [28] and
ag is an epimorphism with Ker(ag) < P’ej;. Therefore, (ag) : P'e;y — R/L is a

projective cover of R/L, proving (1). O

In 2014 Yousif, Amin and Ibrahim studied D3-cover of a module in [60].

2.5 Rings Over Which Submodules of Semi-projective Right

R-modules are Semi-projective

Golan in [17, Theorem 4.4] proved that a ring R is right hereditary if and only if
every submodule of a projective right R-module is quasi-projective if and only if
every principal right ideal of End(F') is quasi-projective for any free right R-module
F and in [17, Theorem 4.3] he also proved that R is right semihereditary if and
only if every finitely generated submodule of a projective right R-module is quasi-
projective if and only if every principal right ideal of R,, is quasi-projective, for all
n > 1. Now we will adapt these two results to semi-projective modules.

First we need the following result of R. R. Colby and E. A. Rutter Jr. from [8,
Theorem 2.3];

Theorem 2.5.1 [8] A ring R is right (semi)hereditary if and only if the endomorp-
hism ring of every (finitely generated) free right R-module is a right PP-ring.

Theorem 2.5.2 The following conditions are equivalent for a ring R:
1. R is right hereditary.

2. Fvery submodule of a projective right R-module is semi-projective.
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3. Every principal right ideal of End(F') is semi-projective for any free right R-
module F.

Proof. (1)=(2): Obvious from the definition of right hereditary rings.

(2)=-(1): Assume that every submodule of a projective right R-module is semi-
projective and let N be a submodule of a projective right R-module P. There exist
a projective module F' which maps epimorphically onto N. F' & N is a submodule
of a projective module F' & P and so is semi-projective from the hypothesis. From
Theorem 2.4.1(1), N is projective. Therefore R is right hereditary.

(1)=(3): It is clear from Theorem 2.5.1.

(3)=-(1): Assume that every principal right ideal of End(F') = FE is semi-projective
for any free right R-module F'. Let F' be any free right R-module. F'& F' is free with
the endomorphism ring which is isomorphic to Es (2 by 2 matrix with entries belong
to E). From the hypothesis, every principal right ideal of Ej is semi-projective. We
will show that every principal right ideal of F is projective. Let a € F and K be

a 0
principal right ideal of Es generated by . Then K is semi-projective over Fj
0 1

and so Key; = aF & FE is semi-projective over E. Since £ maps epimorphically onto
aF, this implies that aF is projective by Theorem 2.4.1 (1). Then every principal
right ideal of E = End(F) is projective (E is a PP-ring) for any free module F. By
Theorem 2.5.1, R is right hereditary. O

Theorem 2.5.3 The following conditions are equivalent for a ring R:
1. R s right semuhereditary.

2. Every finitely generated submodule of a (finitely generated) projective right R-

module is semi-projective.

3. Every finitely generated (principal) right ideal of R, is semi-projective for all

n > 1.

Proof. (1)=-(3): As R is right semihereditary, R, is also right semihereditary for
all n > 1, from Theorem 1.2.13.

The other parts of the proof is along the same lines as that of Theorem 2.5.2.
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O

Submodules of semi-projective modules need not be semi-projective as the follo-

wing example shows.

Example 2.5.4 Let M be the semi-projective Z-module Z/p*Z & Z/p*Z, where
p is any prime integer. (Since p*Z is a two sided ideal of Z, then Z/p*Z is quasi-
projective Z-module. By Proposition 1.2.15, Z/p*Z® Z/p*Z is quasi-projective then
it is semi-projective.) Let N be the submodule pZ/p3Z & Z/p3Z of M. Suppose that
Nz is semi-projective, so it is direct projective. Then the nonzero epimorphism f :
Z/p*7 — pZ/p*Z defined by f(x+p*Z) = px + p3Z will split and so 0 # Ker f will
be a direct summand of the hollow module Z/p3Z. Hence Kerf = 0, a contradiction.

Therefore N is not semi-projective.

In [17], it is studied at rings R over which (finitely generated) submodules of
a quasi-projective right R-module are quasi-projective. Similarly we investigate the
rings over which every (finitely generated) submodule of a semi-projective right R-
module is semi-projective. This condition is stronger than right hereditary and in
fact we will show in Theorem 2.5.5 that every factor ring of that kind of ring is right
(semi)hereditary. If R is right perfect, then the converse also holds. We will now

characterize these rings in detail by the same methods as in [17] and [18].

Theorem 2.5.5 Let R be a ring. If every (finitely generated) submodule of a semi-
projective right R-module is semi-projective, then every factor ring of R is right

(semi)hereditary.

Proof. Note that if M and N are two R/I-modules where I is two sided ideal
of R, then Homp,;(M,N) = Homp(M,N). Now let I be a two sided ideal of R
and S = R/I. Let P be a projective right S-module with (finitely generated) S-
submodule M. P is semi-projective right R-module by Proposition 1.2.18. Then by
hypothesis, M is a semi-projective right R-module and so it is a semi-projective right
S-module. Therefore by Theorem 2.5.2 (Theorem 2.5.3), S is right (semi-)hereditary.
O
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Note that the arguments in the proofs below are based on the techniques of [18,
Proposition 2.2, Theorem C, Corollary 2.4, Lemma 2.5, Corollary 2.6 and Theorem
D], respectively.

Proposition 2.5.6 Let R be a ring. If every submodule of a semi-projective right
R-module is semi-projective and H is a right T-nilpotent two-sided ideal of R, then
H? =0.

Proof. Since H is a right T-nilpotent two-sided ideal of R, H = RH is small in R
by Lemma 1.1.10. Therefore H is contained in the Jacobian Radical J(R) = J of
R. Let S = R/H?. By Theorem 2.5.5, S is right hereditary, so in particular J/H?
is a projective right S-module since it is a right ideal of S. Let Us = J/H?® and
Vs = H?/H?3. As U/V is S isomorphic to J/H?, U/V is projective over S. Therefore
V' is a direct summand of U. On the other hand, V C UH < U implies that V < U.
Thus V' = 0. This proves that H> = H?. Again by applying Lemma 1.1.10 for an
R-module H?, H?> = H? is small in H%. And so H? = 0. O

Theorem 2.5.7 If R is right perfect and every submodule of a semi-projective right

R-module is semi-projective, then every singular right R-module is injective.

Proof. Let M be a singular right R-module. Let H be an essential right ideal
of R, A\ : H — R be the inclusion map and o« : H — M any nonzero R-
homomorphism. We want to find a homomorphism g : R — M such that S\ = «.
Write Kerae = K and assume that K is not essential in R. Then there exists a
nonzero right ideal I of R such that KNI = 0. Since H is essential in R, I' = HN I
is nonzero and I'NK = HNINK = 0, i.e Keraw |p= 0. Thus the restriction of
a to I’ is a monomorphism and so I’ = «(I’), which is a submodule of a singular
module M and so is singular. On the other hand, R is ,in particular, right hereditary
from Theorem 2.5.2 and so is nonsingular from Proposition 1.1.8. Therefore I’ <
R is also nonsingular. Now I’ = 0, a contradiction. Thus K is essential in Rp.
Since R is a right perfect ring R/J(R) is semisimple and J(R) is right T-nilpotent.
By Proposition 2.5.6 J(R)? = 0 and by Proposition 1.1.6 Soc(Rgr) = rr(J(R)).
Therefore J(R) C Soc(Rg). So J(R) C K. Therefore R/K is aright R/J(R)-module
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and thus semisimple from Proposition 1.1.5. The map « induces a monomorphism
@: H/K — M. Since R/K is semisimple, H/K is a direct summand of R/K and
so we have a canonical projection 7 : R/K — H/K. Finally let v : R — R/K be
the canonical epimorphism. Then anv : R — M and for every h € H, anv(h) =

ar(h+ K)=a(h+ K) = a(h). So = arv is the homomorphism we seek. 0

Corollary 2.5.8 If R is right perfect and every submodule of a semi-projective right
R-modules is semi-projective, then Z (M) is a direct summand of M for every right

R-module M .

Lemma 2.5.9 Let R be a left perfect ring. Assume that every finitely generated
submodule of a semi-projective right R-module is semi-projective. If e and f are
tdempotents of R with eR and fR indecomposables, and eRf and fRe are nonzero,
then eR = fR and in fact this isomorphism is given by left multiplication by any

nonzero element of eRf or fRe.

Proof. Let a and b be elements of R such that eaf and fbe are nonzero. Define
a:eR — fR by er — fber. Then eR & fbeR is a finitely generated submodule
of R ® R and so is semi-projective by hypothesis. Then « splits since it is epic
from eR to fbeR by Theorem 2.1.16. Therefore, since eR is indecomposable, « is
monic. Similarly the homomorphism 3 : fR — eR given by fr — eafr is in fact
a monomorphism. Now we will show that eR = Imfa = eafbeR. Clearly we have
the descending chain eR 2 Ba(eR) 2 (Sa)?(eR) D ... of principal right ideals of
R which must terminate since R is left perfect (see Theorem 1.2.10). Then there
exists an integer n such that (8a)"(eR) = (Ba)"™(eR). In particular for all r € R
(Ba)™(er) = (Ba)™™(er’) for some r' € R and so er — Ba(er’) € Ker(Sa)". But
and « are monomorphisms. Thus er = (fa)(er’) and so eR = fa(eR) = eafbeR.

Therefore § is an epimorphism. This completes the proof. O

Corollary 2.5.10 Let R be a left perfect ring. Assume that every finitely genera-
ted submodule of a semi-projective right R-module is semi-projective and e is an

tdempotent of R with eR indecomposable. Then eRe is a division ring.
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Theorem 2.5.11 If R is left perfect and every finitely generated submodule of a
semi-projective right R-module is semi-projective, then Ry = S @ J(R), where S is

a semisimple subring of R containing 1.

Proof. Since R is left perfect, there exists a set {eq,...,e,} of orthogonal idempo-
tents of R such that R = @& ,e;R, each e;R is indecomposable and e; R/Rad(e; R)
is a simple right R-module by [2, Theorem 27.12, (a=-b)]. Furthermore we have
the Z-decomposition B = @}, ®]_; e;Re;. Fix some index k, 1 < k£ < n and let
Sk = > _ e;Re;, where the sum ranges over all indices ¢, j such that e, R = e; R = e, R.
Then Sy is a subring of R which is isomorphic to the full matrix rings (exRex):,
where t is the number of different indices 7 in the above sum. Since e, Re;, is a di-
vision ring by Corollary 2.5.10, Sy, is a simple ring. Now let S = >~ | Sk. Then
this is a subring of R and, since each Sy is simple, S is semisimple and contains
l=e+...+e, Let T'=>e;Re;, where the sum ranges over all indices 4, j such
that e;R % e;R. We will be done if we can show that J(R) = T Let e;ae; ¢ J(R).
Then e;ae;R ¢ e;J(R) = Rad(e;R). Since e;R/Rad(e;R) is simple and Rad(e;R)
is maximal in ¢;RR, e;ae;R = e;R. Now the homomorphism e;R — ¢;R given by
e;1 +— e;ae;r is an isomorphism since the kernel is both small and a direct summand.
Thus by the definition of 7', e;ae; ¢ T'. Hence T' C J(R). To show that "= J(R) it
suffices to show that 7T is a two sided ideal of R. T is clearly closed under addition.
Let ejae; € T and consider 0 # y = ejae;bey. If e, R 2 ¢; R, then y € ejRe; CT'. So
TR CT. Hence assume that e;,R = e;R. If §: ¢,R — ¢; R and o : ;R — ¢ R are
the R-homomorphisms respectively given by eyr — e;beyr and e;r +— ejae;r then
by the same reasoning in Lemma 2.5.9, each of these maps is a monomorphism. Let
exr € exR. Then af(exr) = alebeyr) = ejae;berr = yerr. Namely af is just the
map given by left multiplication by y and so by Lemma 2.5.9 is an isomorphism
from e R to e;R. Therefore a must be an epimorphism so is an isomorphism from
e;R to e;R, a contradiction since ejae; € T'. Hence y = 0 for ¢, R = ;R and so

TR CT. A similar proof shows that RT C T. So T is two sided ideal. O

If M is an R-module and A is any non-empty set, then the direct product (sum)
of |A|-copies of M is denoted by MA(M)), and M is said to be >_-semi-projective

if M) is semi-projective for any A. Now using the same proof as in Theorem 7 in
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[58], we can give the following result, which generalizes Theorem 7 in [58].

Theorem 2.5.12 If R is a ring over which submodules of ¥-semi-projective modules

are direct-projective, then every factor ring of R is right hereditary.

Proof. Let I be an ideal of R and S = R/I. Let Ps be a projective S-module
with a submodule N. For any non-empty set A, P is still a projective S-module.
By Propositon 1.2.18, P is quasi-projective and hence semi-projective R-module.
Therefore P is a ) -semi-projective R-module. By hypothesis, N is direct projective
S-module. Then by Theorem 1.2.12, S is right hereditary. O

In [35] and [36] Koehler characterized semisimple rings using quasi-projective
modules and quasi-injective modules. Using her results and ideas we have our conc-

luding result by using the same techniques in [58].

Theorem 2.5.13 The following conditions are equivalent for a ring R:
1. R is semusimple.
2. Every (finitely generated) right R-module is semi-projective.
3. Every 2-generated right R-module is semi-projective.
4. The direct sum of two semi-projective right R-modules is semi-projective.
5. The direct sum of two quasi-projective right R-modules is semi-projective.
6. For alln > 1, every cyclic right R,,-module is semi-projective.

7. There exists some n > 1 such that every cyclic right R,-module is semi-

projective.

Proof. (1)=(2)=(3), (1)=(4)=-(5) and (1)=-(6)=(7) are trivial.

(3)=-(1): Let I be aright ideal of R. Since R® R/I semi-projective by hypothesis,
R/I is projective by Theorem 2.4.1 (1). Hence [ is a direct summand of R, proving
(1).

(5)=(1): If T is a simple R-module, then R & T is semi-projective by (5). It

follows from Theorem 2.4.1 (1) that T is projective, hence R is semisimple.
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(7)=-(1): Let I be a right ideal of R. We show that R/I is projective. First we
denote by I, the right ideal of R,, consisting of all n by n matrices with entries from
I. Let e;; € R, be the matrix unit. Then R,,/e11l, = P @& M as right R,-modules,
where M = e R, /en1 ], and P =3, e; R, (as the proof of Theorem 2.4.4). Hence
P & M is semi-projective R,-module by (7). Clearly, P is projective and there is
an R,-epimorphism P — M via (r;;) — e21(ri;) + €111, It follows from Theorem
2.4.1 that M is projective R,-module. In [28], S. M. Kaye proved that there is a
Morita equivalence between R,-modules and R-modules via M — Meq;. Since M

is a projective R,-module, Me;; = R/I is a projective R-module. O
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3 SGQ-PROJECTIVE MODULES

Let M be an R-module with the endomorphism ring S and let 0 # s € S. Recall
the definition of the right ideal;

D(s) ={p € S |Imyp C Ims}

of S. D(s) = Hom(M,Ims) for any endomorphism s of M. If we take N = Ims,
then D(s) = D(N). And, if N is a nonzero direct summand of M, then there exists
a nonzero idempotent e of S such that D(e) = D(N). Note that D(s) = S if and
only if s is epic; and D(e) = eS for every idempotent element e in S.

In this part of the dissertation we introduce SGQ-projective modules by means
of D(s) as an another generalization of quasi-projective modules. Let M be any
module. Then we call M SGQ- projective if for any 0 # s € S, there exists a right
ideal X of S such that D(s) = sS & X.

3.1 Some Properties of SGQ-projective Modules

In this subsection we introduce some basic properties of SGQ-projective modules.
And we characterize semisimple rings with the help of SGQ-projective modules. We
also investigate the direct sum and direct summand properties of SGQ-projective
modules.

Let N < M. We will say that N is co-M-cyclic if there is a submodule K
of M with M/N = K. Clearly, every submodule of the Priifer p-group Z(p*) is
co-M-cyclic.

Let M and N be two modules. Let us say that N is M-K-projective if the
following diagram

N

B

»

M —"—~ M/L — 0
is commutative, where L is a co-M-cyclic submodule of M and 7 is the natural

epimorphism. It is easy to show that N is M-K-projective if and only if the following
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diagram
N

B

»
«

M - K -0

is commutative, where K is any submodule of M. Note that in the above diagram
actually K is an M-cyclic submodule of M. We say that M is quast K-projective
(or semi-projective) if N = M in the above definition. Note that saying “N is M-K-
projective” is equivalent to saying that “IV is M-principally projective” in [52] and is
equivalent to saying that “N is M-semi-projective” in [53] and “N is M-sprojective”

in Definition 2.1.1.

Lemma 3.1.1 (see also [52, Lemma 2.2]) Let M and N be two modules with S =
End(M). Then N is M-K-projective if and only if for every nonzero s € S,
sHom(N,M)={f: N — M| Imf C Ims}.

Proof. Assume N is M-K-projective. Let 0 # s € S. Clearly sHom(N, M) C {f :
N — M | Imf C Ims}. Let f: N — M and Imf C Ims. Since N is M-K-
projective, there exists a homomorphism ¢ : N — M such that st = f. Therefore
f € sHom(N, M).

Conversely, assume that sHom(N,M) = {f : N — M | Imf C Ims}. Let
¢ : N — K < M be a homomorphism and s : M — K an epimorphism. By
hypothesis, since Imp C Ims there exists a homomorphism f : N — M such that

@ = sf. Therefore N is M-K-projective. O

Definition 3.1.2 Let M be any module. Then we call M SGQ-projective if for any
0 # s € S, there exists a right ideal X of S such that D(s) = sS @ X.

Comparing Lemma 2.1.9 with this definition, we get the following hierarchy;

Corollary 3.1.3 FEvery quasi-projective module is semi-projective and every semi-

projective module is SGQ)-projective.
quasi-projective = semi-projective = SGQ-projective.

Theorem 3.1.4 Let M be a module with S s regular. Then M is SGQ-projective.
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Proof.It is clear from Corollaries 2.1.12 and 3.1.3. O

Examples 3.1.5 1. The Z-module Qy is semi-projective and hence SGQ-projective,
but it is not quasi-projective by Theorem 1.2.19.

2. Let R be any integral domain with quotient field F' # R. Then Mr = F @& R
is semi-projective by [25] and hence SGQ-projective.

3. Let R be a prime ring such that its Martindale ring of quotients Q) satis-
fies Homg(Q, R) # 0. Then Qg is semi-projective by [25] and hence SGQ-

projective.
Now some explanations are given to use in the next part;

Note that if any nonzero homomorphism s : M — M is right invertible, there
exits an endomorphism f € S such that sf = 1. So sS = 5. Then M = sf(M) C
s(M) € M. Therefore s is epic. For the converse, M needs to be SGQ-projective:

Lemma 3.1.6 Let M be an SGQ-projective module. Any nonzero homomorphism

s: M — M is epic if and only if s is right invertible.

Proof. Assume that 0 # s : M — M is epic. Then D(s) = S and s(M) = M. If
M is SGQ-projective, then D(s) = sS @ X for some right ideal X of S. Now there
exists a nonzero idempotent e € S such that sS = eS. So s = et, for some t € S.
Then M = s(M) = et(M) C e(M) C M. Thus e is epic and so D(e) = S. On the
other hand since e is an idempotent, D(e) = eS = sS. Therefore S = sS and s is

right invertible. Converse is clear from the above paragraph. O

Definition 3.1.7 ([7]) M is called Hopfian if every surjective endomorphism of M

is an isomorphism.

It is clear that every Hopfian module is semi-Hopfian. Recall that direct-projective

modules are also semi-Hopfian.

Lemma 3.1.8 If M is SGQ-projective, then M 1is semi-Hopfian.
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Proof. Take a nonzero epimorphism s : M — M. Since M is SGQ-projective and s
is epic, s is right invertible from Lemma 3.1.6. There exists a homomorphism f € S
such that sf = 1. Then Imf & Kers = M so kernel of s is a direct summand of M

for every epimorphism s € S. Therefore M is semi-Hopfian. O

Note that the converse of this lemma cannot be true; namely, any semi-Hopfian
module need not be SGQ-projective. The Z-module My, = Z/nZ & 7Z with n any
positive integer is not SGQ-projective (see Example 3.1.13) but it is semi-Hopfian.

Proof. We will show that M = Z/nZ®Z is a Hopfian module. Take an epimorphism
0 : M — M — 0 with ¢(0,1) = (a,b) and ¢(1,0) = (¢, 0), where a, b, ¢ € Z. Then
for all z, y € Z,

o(T,y) = vp(1,0) + yp(0,1) = z(¢,0) + y(a@,b) = (vc+ ya, yb).

And Kerp = {(Z,y) | zc+ ya = 0 (mod n), yb = 0}. Since ¢ is an epimorphism,
then b # 0. Therefore Kerp = {(Z,0) | z¢ = 0 (mod n)}. In the case of ¢ = 0,
Kerp C Z/nZ & 0. M = M/Kerp = Z/mZ @ Z implies that m = n. So Kery = 0.
In the case of ¢ # 0, z divides n. If n = x, Kerp = 0. If n # z, then n = zd for
some d € Z. So M = M /Kerp = Z/dZ & Z, which is a contradiction. Therefore M

is Hopfian, so it is semi-Hopfian. O

Every discrete module is quasi-discrete, but the converse is not always true. It
is proved in [45, Lemma 5.1] that if M is quasi-discrete, semi-Hopfian module then

M is discrete.

Proposition 3.1.9 Let M be a quasi-discrete SGQ-projective module. Then M is

discrete.

Proof. Since M is SGQ-projective, then M is semi-Hopfian. Thus by [45, Lemma
5.1], M is discrete. O

Example 3.1.10 The Priifer p-group Z(p>) is not SGQ-projective by Proposition
3.1.9.

Any factor module of an SGQ-projective module need not be SGQ-projective:
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Example 3.1.11 Let R be a discrete valuation ring. Let K be its quotient field
with Kg quasi-projective. As an R-module, K /R is quasi-discrete but not discrete
by [45, Example 4.46]. So, K/R cannot be SGQ-projective by Proposition 3.1.9.
But Ky is SGQ-projective.

It is natural to investigate whether or not a notion is inherited by direct sum-
mands and direct sums. We show that a direct summand of an SGQ-projective mo-
dule inherits the property. It is shown that a direct sum of SGQ-projective modules
is not SGQ-projective, in general. We focus on when a direct sum of SGQ-projective

modules is also SGQ-projective.
Any direct summand of an SGQ-projective module is SGQ-projective:

Theorem 3.1.12 Let M be any module and K any direct summand of M. If M is
SGQ-projective, then K is SGQ-projective.

Proof. Let : : K — M be the inclusion map and 7 : M — K be the projection
map. Let T = End(Kg) and S = End(Mg). For all 7 € T, let 7 = i7m and note
that 77k = 7. Let 7 € T'. It is not hard to see that Dp(7) = {a € T | & € Dg(7)}.
Since M is SGQ-projective, Dg(7) = 75 @ A for some right ideal A of S. Let
B = {m\k | A € A}. Assume a € Dy(7). Then & = 70 + A for some A € A and
o€ S. Nowa =7dx = 7(70) |k +TA\x = TT0O|k +7T Ak = T(T0K)+7T Ak € TT+B.
Therefore Dy (1) C 77 4 B. Clearly, B C D¢ (7). Therefore Dy(7) = 7T + B. Now
we will show that 77" B = 0. Let 70 € B with ¢ € T. Then 76 = 7\ for
some A € A. Note that 76w = wAir and iro = o for all 0 € Dg(7). Therefore
70 = itmidmw = itém = irhir = Nir € AN+S = 0. So, 76 = (%5)|K = 0. Thus
Dr(7) =7T @ B. Hence K is SGQ-projective. O

Any direct sum of two SGQ-projective modules need not be SGQ-projective as

we see in the following example.

Example 3.1.13 Let nZ be an ideal of Z. Let My = Z/nZ & Z. It is not hard
to see that M is not semi-projective. By Theorem 2.3.5, aEnd(M) is an essential
submodule of the End(M)-module D(«) for every nonzero endomorphism « of M.

Therefore M cannot be SGQ-projective. Note that Z/nZ and Z are SGQ-projective.
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In this vein we give the following:

Theorem 3.1.14 Let A; be SGQ-projective module for each i € I such that M =
Bicr A If every A; is fully invariant in M, then M is SGQ-projective.

Proof. Let S = End(M) and S; = End(A;). Clearly, S = [[,.,; Si- Let 0 = {6;}icr €
S. Let Dg(0) = {a = {a;}ier | a(M) C O(M)} and Dg,(0;) = {fi € Si | fi(A;) C
0;(A;)} for each i € I. It is not hard to see that Dg(0) = [],.; Ds,(0;). Since each
A; is SGQ-projective, there exists a right ideal X; of S; for each ¢ € I such that
Dg,(0;) = 0;S; © X;. So Dg(0) = [[,c,(0:S:) ® [,c; Xi- Let X = [[,c; Xi. Note that
X is a right ideal of S and [],.,(6;S;) = 0S. Hence Dg(f) = 6S @ X. Thus M is

SGQ-projective. O

Now we characterize the class of rings R for which every R-module is SGQ-

projective as precisely that of the semisimple rings.

Theorem 3.1.15 The following are equivalent for an R-module M :
(1) Every R-module is SGQ-projective.
(2) Every R-module is semi-Hopfian.
(3) R is semisimple.

Proof. We only need to prove (2)=-(3). Let Xz be a module. There exists an
epimorphism ¢ : FF — X such that F'is free. Let Mr =X & F & F & ---. Define

the epimorphism

‘9M—>Mby 0(x7f17f27"' 7fn70707"') = (¢(f1)7f27f37"' 7fn70707'”)'

Then Ker = X @ Kerp 0B 0@ --- is a direct summand of M. Hence Keryp is a

direct summand of F. So, X is projective. Thus R is semisimple. O

3.2 The Endomorphism Ring of SGQ-projective Modules

Now denote;

V={seS|Ims < M}

J(S)={s € S|1— stisright invertible for all ¢t € S}
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V ={seS|1+stisepicfor all t € S}
Tot(M) =Tot(S) ={s € S| s is not pi}

where s is not pi means that there is no homomorphism ¢ € S for which st = e (or

equivalently, ts = e) is a nonzero idempotent in S (see [7, Lemmas 14.1 and 14.3]).

It is clear that J(S) C V. Also V C V. To show this take an element s € V.
Since Ims <« M and M = Ims + Im(1 + st) for all s,t € S, M = Im(1 + st). So
s € V. Another fact is J(S) C Tot(S). Assume that s € J(S) and s ¢ Tot(9).
There exists a homomorphism ¢ € S for which st = e is a nonzero idempotent in
S. And also (1 — st) is right invertible. So (1 — st)g = (1 —e)g = 1. Thene =0, a

contradiction.

Theorem 3.2.1 Let M be an SGQ-projective module. Then
(1) VCJ(S)=V.

(2) If every proper submodule of M is contained in a proper co-M -cyclic submodule

of M, then V = J(S).
(3) If S is local, then J(S) =V = Tot(S) = {s € S | s is not epic}.
(4) If S/V is reqular, then J(S) =V = V.
(5) If S/J(S) is regular, then S/V is regular if and only if J(S) = V.

(6) If M is hollow, then S is local and J(S) =V =V = Tot(S) = {s € S | s

is not epic}.
(7) For s € S, if M is hollow and s is right invertible, then s is invertible.

(8) M is hollow if and only if S is local and M is m-projective.

Proof. (1) Let s € V and t € S. Since Ims < M, then Imst < M. So 1 — st is epic
and 1 — st # 0. As M is SGQ-projective 1 — st is right invertible from Lemma 3.1.6.
Therefore s € J(S). Now let s € V. Then for all t € S, 1 + st is epic. Since M is
SGQ-projective, 1 + st is right invertible for all ¢ € S. Thus s € J(S5).
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(2) V C J(S) from (1). We need only to prove that J(S) C V. Let s € J(95).
Assume that s ¢ V. There exists a proper submodule N of M such that M =
N + s(M). By hypothesis, there exists a proper co-M-cyclic submodule K of M
such that N C K and M/K = T for some submodule 7" of M. Therefore we have
an epimorphism « : M — T with Kera = K. Then M = Kera + s(M) and
T = o(M) = as(M). Thus a € D(as). Note that as # 0. Since M is SGQ-
projective, then there exists a right ideal X of S such that D(as) = X & (as)S.
Since a € D(as), a = x4+ asf for some elements z € X and f € S. Since s € J(5),
1 — sf is (right) invertible. Therefore a(1 — sf)(1 —sf) 's = as € X N (as)S = 0,
a contradiction. Hence s € V.

(3) It is clear that J(S) C Tot(S). Let s ¢ J(S). There exist an element t € S
such that 1 — st is not right invertible. Since S is local st is (right) invertible, so s is
invertible. Therefore s ¢ Tot(S). J(S) = V by (1). Now let s € J(S). Assume s is
epic. Since M is SGQ-projective, s is right invertible and sS = S, a contradiction.
Therefore J(S) C {s € S| s is not epic}. The converse inclusion is easy.

(4) By (1), V C J(S) = V. Let s € J(S). Since S/V is regular, there exists
a € S such that s — sas = s(1 — as) € V. Since (1 — as) is invertible, s € V. This
shows that J(5) C V.

(5) By (4).

(6) By [7, 4.28(1)], S is local. By (3), the equalities J(S) = V = Tot(S) = {s €
S | s is not epic} hold. And from (1) V C J(S). Take an element s € S which is not
epic. Then Ims < M. Since M is hollow Ims < M. Therefore s € V.

(7) Since s has a right inverse, s is epic. Since M is hollow, J(S) = {s € S|
s is not epic} by (6). So s € J(S). Hence s is invertible.

(8) Suppose that M is w-projective and S is local. Let N be a proper submodule
of M. Assume M = N + L for a submodule L of M. Since M is m-projective, there
exists a homomorphism f : M — M such that f(M) C N and (1 — f)(M) C L.
Since N is proper, f cannot be epic. Therefore by (3), f € J(S). Thus 1 — f
is invertible. There exists a homomorphism ¢ € S such that (1 — f)t = 1. Then
LCM=>01-fHt(M)C(1—-f)(M)C L. Hence M = L. 0
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Theorem 3.2.2 Let M be a weakly supplemented SGQ-projective m-projective mo-
dule. Then S is reqular if and only if V = 0.

Proof. Assume S is regular. Then J(S) = 0, and hence V = 0 by Theorem 3.2.1(1).

Conversely, assume that V = 0. Let 0 # a € S. Then Ima is not small in M. Now
there exists a proper submodule K of M such that M = Ima+ K and ImaNK < M.
By hypothesis, S = D(a) + D(K). Let f € D(a) N D(K). Then Imf C Ima N K
implies that Imf < M. Thus f € V and hence f = 0. Therefore S = D(a) ® D(K).
Since M is SGQ-projective, S = aS @ X & D(K) for some right ideal X of S. It

follows that S is regular. O

Corollary 3.2.3 Let M be a weakly supplemented quasi-projective module. Then S
is reqular if and only if V = 0.

Some dual characterizations of Theorem 3.2.1 exist in [56] and [61].

Following [46], a ring R is called semiregularif R/J(R) is regular and idempotents
can be lifted modulo J(R). By [54, 42.11], R is semiregular if and only if every
finitely generated left ideal (right ideal) has a supplement in g R (Rg), namely, it
is left (right) f-semiperfect. Note that Lomp proved that for a ring R, R/J(R) is
regular if and only if every principal left (right) ideal of R has a weak supplement
in RR (Rg) in [43, Proposition 3.18].

Theorem 3.2.4 Let M be SGQ-projective. If S is semiregular, then for every s €

S — J(S), there exists a nonzero idempotent o € S such that s — s is not epic.

Proof. Let s € S—J(S5). Because S/J(S) is regular, there exists an element ¢+ .J(.5)
in S/J(S) such that sts —s € J(S). Since st + J(S) is a nonzero idempotent in
S/J(S), there exists a nonzero idempotent o € S such that a — st € J(S). Thus

s —as € J(S). Since M is SGQ-projective, s — s cannot be epic. O

Lemma 3.2.5 Let M and N be two modules. Then for every o : M — N, Ima is

a direct summand of N if and only if Zle Imay; is a direct summand of N for any

finite set {avg, -+ ,ar} € Hom(M,N).
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Proof. See the proof of (2) = (3) of [47, Theorem 4]. O
Theorem 3.2.6 The following are equivalent for a module M :

(1) S is regular.
(2) for every a € S, Ima is a direct summand of M and M is semi-projective.
(3) for every a € S, Ima is a direct summand of M and M is SGQ-projective.

(4) ¥ Imay is a direct summand of M for any finite set {ay,--- ,ar} € S and

M is semi-projective.

(5) Zle Imay; is a direct summand of M for any finite set {an,--- ,ap} €S and
M is SGQ-projective.

(6) for every a € S, Ima is a direct summand of M and M is (D).

(7) Zle Imay is a direct summand of M for any finite set {ay, -+ , a4} €S and
M s (Dg)

Proof. (1)= (2) By Corollary 2.1.12 and [54, 37.7].

(2)=(3) and (4)=(5)=(3) are clear.

(3)=(1) Let a € S. Then M = Ima @ N for some submodule N of M. Clearly,
S = D(Ima) @& D(N). Since M is SGQ-projective, D(Ima)) = aS @& X for some right
ideal X of S. Hence aS is a direct summand of S. Thus S is regular by [54, 3.10].

(2)=(4) By Lemma 3.2.5.

(1)&(6)<(7) By [47, Corollary 5]. O

Corollary 3.2.7 Let M be any module such that for every a € S, Ima is a direct
summand of M (namely, M is dual Rickart according to [42]). Then the following
are equivalent:

(1) S is regular.

(2) M is semi-projective.

(3) M is SGQ-projective.

(4) M is (Ds).

Note that any SGQ-projective module need not be dual Baer and any dual Baer

module need not be SGQ-projective (see [34, Example 2.18] and Example 3.1.10).
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4 A STUDY ON K-PROJECTIVITY AND
K*-PROJECTIVITY

Given two R-modules M and N, N is called epi M-projective if, for any submo-
dule A of M, every epimorphism from N to M/A can be lifted to a homomorphism
from N to M. N is called epi-projective if N is epi-N-projective (see [7] and [32]).
Let M and N be two R-modules. Remember that N is M-K-projective if every ho-
momorphism from N to M /A, where A is any co-M-cyclic submodule of M, can be
lifted to a homomorphism from N to M. We say that M is quasi KC-projective if it is
M-K-projective. Now we generalize M-K-projective modules to epi M-K-projective
modules as follows: Let M and N be two R-modules. N is called epi M-KC-projective
if every epimorphism from N to M/A with A any co-M-cyclic submodule of M
can be lifted to a homomorphism from N to M. We will say that M is quasi-epi
KC-projective if it is epi M-K-projective. Note that N is (epi) M-K-projective iff for
every (epimorphism) homomorphism f from N to A with A < M and any epi-
morphism « from M to A there exists a homomorphism g from N to M such that
ag=f.

In the definitions above, it should be noted that we may consider the case when
M /A to be isomorphic to a coclosed submodule of M. Namely, we will say that N is
(epi) M-K*-projective if every (epimorphism) homomorphism from N to M /A with
M /A isomorphic to a coclosed submodule of M can be lifted to a homomorphism
from N to M. Note that N is (epi) M-K*-projective iff for every (epimorphism)
homomorphism f from N to A with A a coclosed submodule of M and any epi-
morphism « from M to A there exists a homomorphism ¢ from N to M such that
ag = f. Similarly, we will say that M is quasi(-epi) K*-projective if it is (epi)
M-K*-projective. Note that quasi K*-projective modules were studied in [29] as
GQ-projective modules and in [30] as modules satisfying (77). A ring R is called
right V -ring if every right R-module has the zero Jacobson radical. A ring is a right
V-ring if and only if every simple module is injective. In [15, Proposition 2.1], it is
proved that a ring R is a right V-ring if and only if for any R-module M, every
submodule is coclosed in M. By this Proposition, if R is a right V-ring, then (epi)

KC-projectivity and (epi) K*-projectivity of any module N are the same notions.
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In this section, we investigate the connections between the notions of epi projecti-
vity, epi KC-projectivity and epi K*-projectivity, firstly. Then we show that if M@ M,
is quasi-epi K (K*)-projective, then M; and M are relatively IC (K*)-projective. La-
ter, we characterize semisimple rings in terms of quasi-epi K-projective and quasi-epi
K*-projective modules. Finally, we investigate the connections between the quasi(-

epi) K*-projective modules and the Hopfian modules.

4.1 Properties of epi-I(K*)-projectivity

Example 4.1.1 Let R be a local artinian ring with radical W such that W? = 0,
Q) = R/W is commutative, dim(oW) = 2 and dim(Wg) = 1. Let S = R/W, the
simple R-module.

(1) Consider the indecomposable injective right R-module U = [(R & R)/D]g
with D = {(ur,—vr) | r € R}, where W = Ru + Rv. U has length 3 and is 2-
generated. On the other hand, U has only two coclosed submodules, U and any
cyclic submodule with length 2 (which is isomorphic to R). So if U/N = X and X
is coclosed in U, then N = 0. Therefore U is quasi K*-projective.

(2) Consider the right R-module M = U & S. Let C' be any cyclic submodule of
U with length 2. Let N =C @& S. Then M/N = (U S)/(C& S) 2 U/C = S. Let
f: M — M/N be a homomorphism with Kerf = U. Then f cannot be lifted to

an endomorphism of M. Therefore M is not quasi K*-projective.

Note that we have;
ept M — projective = epi M — K — projective = epi M — K* — projective.

The following example shows that an epi M-K*-projective module need not be epi

M-projective.

Example 4.1.2 Let Mz = Q® ZM. Qg is epi ZM-K* (also epi ZM-K)-projective
since every homomorphism from Qg to A, where A is any submodule of Z™ | is zero.

But it is not epi ZM-projective. Suppose that Qz is epi Z™M-projective. Then it is

(N

easy to see that every epimorphism from Z®M to Qy splits. But it is a contradiction,

since the obvious epimorphism from Z®™ to Q7 does not split.
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Proposition 4.1.3 1. Let C be a co-M-cyclic submodule of M. If M/C is epi
M -K-projective, then C' is a direct summand of M.

2. Let C be a submodule of M with M/C = D and D a coclosed submodule of
M. If M/C is epi M-K*-projective, then C' is a direct summand of M.

Proof. Straightforward. O

Proposition 4.1.4 Let B be a direct summand of A and N a direct summand of

M.
1. If A is epi M-K-projective, then B is epi N-K-projective.
2. If A is epi M-K*-projective, then B is epi N-K*-projective.
Proof. Let A=B® B and M = N & N'.

1. Let T be any submodule of N and « : N — T and f : B — T any
epimorphisms. Consider the projection maps 7y : M — N and ng : A — B.
Then, since A is epi M-IC-projective, there exists a homomorphism g : A —
M such that aryg = frp. It is easy to see that the homomorphism 7x(g5)

lifts f.

2. Let T be any coclosed submodule of N and a: N — T and f: B — T any
epimorphisms. By Proposition 1.2.25, T" is a coclosed submodule of M. Now

we can apply the same proof in (1).

O

Corollary 4.1.5 Any direct summand of a quasi-epi K (K*)-projective module is
again quasi-epi K (KC*)-projective.

Proposition 4.1.6 Any quasi-epi K*-projective module satisfies the condition (Ds).

In particular, every semi-projective module satisfies the condition (D3).

Proof. Let A and B be two submodules of a quasi-epi K*-projective module M
with A a direct summand of M and M/B = A. Now we will show that B is a direct
summand of M. By Proposition 4.1.4, A is epi M-K*-projective and hence M/B is

epi M-K*-projective. By Proposition 4.1.3, B is a direct summand of M. O
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Theorem 4.1.7 Let M be any module. Then M is quasi-epi K*-projective and lif-
ting if and only if it is discrete.

Proof. By Propositions 4.1.6 and [29, Lemma, 2.6]. O

Note that in [29, Theorem 2.7], D.Keskin proved that for a module M, M is
discrete if and only if M is lifting and GQ-projective. Theorem 4.1.7 generalizes the
Theorem 2.7 in [29].

Theorem 4.1.8 1. If My & M, is quasi-epi K-projective, then My and My are

relatively KC-projective.

2. If My @& My is quasi-epi K*-projective, then My and My are relatively K*-

projective.
Proof.

1. Let My & M, be quasi-epi KC-projective. We will show that M; is My-K-
projective. Let A < My, o : My — A be any epimorphism and f: M; — A
any homomorphism. Define g : M7 & My — A by g(a1 + as) = f(a1) + a(az)
for ay € My and as € Ms. Then ¢ is an epimorphism. By Proposition 4.1.4,
My @& My is epi Ms-K-projective. Then g can be lifted to a homomorphism
h: My @ My — M,. Let 1 := hjps, © My — M, be the restriction of h to
M. Tt is easy to see that an = f.

2. By the same argument as the proof of (1).

O

Corollary 4.1.9 If My @ Ms is quasi K (K*)-projective, then My and My are rela-
tively IC (KC*)-projective.

Corollary 4.1.10 Let M = @ | M; be quasi-epi K (K*)-projective. Then M; is
M;-K (K*)-projective for all distinct 1,5 € {1,...,n}.

Proof. By Proposition 4.1.4, Theorem 4.1.8 and induction. O

Next we characterize semisimple rings in terms of quasi-epi K-projective and

quasi-epi K*-projective modules.
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Theorem 4.1.11 For a ring R the following are equivalent:

1. The direct sum of any two quasi-epit KC-projective modules is quasi-ept K-

projective.
2. Every cyclic quasi-epi K-projective module is projective.

3. The direct sum of any two quasi-ept K*-projective modules is quasi-epi K*-

projective.
4. Bvery cyclic quasi-epi KC*-projective module is projective.
5. R is semisimple.

Proof. (1) = (2) Let M be a cyclic quasi-epi K-projective module. Suppose N =
M @ R. By assumption, N is quasi-epi K-projective. Hence M is epi N-IC-projective
by Proposition 4.1.4. Let M = xR for some element x € M. Then M = R/I for
some right ideal I of R. Clearly, (M & R)/(M & I) = M. By Proposition 4.1.3,
M & I is a direct summand of N, and hence [ is a direct summand of R. Thus R/I
is projective, so is M.

(2) = (5) Let M be a simple R-module. Since M is cyclic and quasi-epi K-
projective, it is projective by assumption. Thus R is semisimple.

(5) = (1) Clear.

(3) & (4) & (5) By the same argument. O

4.2 Connections Between the Quasi(-epi) K(K*)-projective
Modules and the Hopfian Modules

A module M is said to be co-Hopfian if every injective endomorphism f: M — M
is an isomorphism, (see [7]). An R-module M is directly finite if it is not isomorphic
to a proper direct summand of M. A ring R is directly finite if for any elements
a,b € R, ab= 1 implies ba = 1. Ry is directly finite if and only if R is directly finite,
(see [7]).

Proposition 4.2.1 1. Let M be a quasi-epi K-projective module and N be a fully
wmwvartant small submodule of M such that N is a co-M-cyclic submodule of

M. Then M is Hopfian if and only if M/N is Hopfian.
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2. Let M be a quasi-epi KC*-projective module and N be a fully invariant small
submodule of M such that M /N is isomorphic to a coclosed submodule of M.
Then M is Hopfian if and only if M/N is Hopfian.

Proof.

1. Assume M is Hopfian. Let f : M/N — M/N be any surjective homomorp-
hism and 7 : M — M/N be the natural epimorphism. Since M is quasi-epi
K-projective, there exists a homomorphism h : M — M such that 7h = fr.
Then M = h(M) + N and so h is epic since N is small in M. Thus h is an
isomorphism since M is Hopfian. Now A(N) = h™'(N) = N since N is fully
invariant in M. Then Ker(f) = 0. Hence f is an isomorphism. This means

that M/N is Hopfian.

Conversely, assume that M /N is Hopfian. Let f : M — M be any epi-
morphism. Since N is fully invariant in M, f(N) € N and hence we have
the homomorphism f : M/N — M/N defined by f(m + N) = f(m) + N
(m € M). Clearly f is an epimorphism. Then by hypothesis, f is an isomorp-
hism. Ker(f) = f~Y(N)/N = 0 implies that Ker(f) C f~'(N) = N. Since N
is small in M, Ker(f) is small in M. On the other hand, since f : M — M is
an epimorphism and M is quasi-epi K-projective, Ker(f) is a direct summand

of M by Proposition 4.1.6. Thus Ker(f) = 0. This means that M is Hopfian.
2. The same proof as (1).

O

Corollary 4.2.2 Let M be a quasi K (K* )-projective module and N be a fully inva-
riant small submodule of M such that M /N is isomorphic to a (coclosed) submodule

of M. Then M is Hopfian if and only if M/N is Hopfian.

Lemma 4.2.3 [45, Proposition 1.25] An R-module M is directly finite if and only
if fg =1 implies that gf =1 for any f,g: M — M.

Proposition 4.2.4 Let M be a quasi-epi K*-projective directly finite module. Then

M is Hopfian.
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Proof. Let f be any epimorphism from M to M and 1: M — M be the identity
map. Since M is quasi-epi K*-projective, there exists a homomorphism g : M — M
such that fg = 1. By Lemma 4.2.3, gf = 1 which shows that f is a monomorphism.
Thus M is Hopfian. O

Corollary 4.2.5 Let M be a quasi K*-projective directly finite module. Then M is
Hopfian.

Proposition 4.2.6 Let M be a quasi-epi K*-projective co-Hopfian module. Then
M is Hopfian.

Proof. Since M is co-Hopfian, it is directly finite. Thus by Proposition 4.2.4, M is
Hopfian. O

Corollary 4.2.7 Let M be a quasi K*-projective co-Hopfian module. Then M 1is
Hopfian.

Note that dualizations of the above results can be found in [4].
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5 MODULES OVER FORMAL TRIANGULAR
MATRIX RINGS

At the beginning of this section, we will first explain the notions that we will
be adopting. The following backgrounds were taken from [24]. For more details on
formal triangular matrix rings we refer to [24], [22], [23], [5], [39], [37], [38].

For any left B, right A bimodule g M 4 we write T for the formal triangular matrix

A
T = . Let  denote the category whose objects are triples (X,Y"); where

M B
X € Mod-A, Y € Mod-B and f : Y ®p M — X is a map in Mod-A. If (X,Y);

and (U, V), are two objects in 2, then the morphisms from (X,Y); to (U,V), in
are pairs (@1, @2) where ¢ : X — U is an A-homomorphism, ¢, : Y — V is a
B-homomorphism satisfying the condition ¢ f = g(2 ® 1/). It is well known from
[21] that the category (2 is equivalent to the category Mod-T'. The right T-module
corresponding to the triple (X, Y) is the additive group X &Y with the right action

given by
@y | e (za+ f(y @ m),yb).
m b
Then we write (X @ Y)r for this right T-module. It not only depends on X and Y
but also on f.

Furthermore, if (p1,92) : (X,Y); — (U, V), is a map in 2, the associated T-
homomorphism ¢ : (X ®Y)r — (U @ V)7 is given by o(z,y) = (¢1(x), p2(y)) for
any v € X and y € Y. It is clear that ¢ is injective (resp. surjective) if and only if
01: X — U, vy : Y — V are injective (resp. surjective). It is convenient to view
such triples as T-modules and the morphisms between them as T-homomorphisms.
Here we should note that the T-module T corresponds to (A& M, B), where f is
the A-homomorphism B ® M — A @& M given by f(b® m) = (0,bm).

Let (X,Y); € Obj(2) and (X @ Y)r be the associated right T-module. Under

00
the right T-action on X & Y we have (0 ¢ Y) = (f(Y ® M),0). In
M 0
general the submodule f(Y ® M) of X, is denoted by Y M. Now consider Y’ <
00
Yp and let jo 1 Y/ — Y denote the inclusion map. Then (0 & Y”) =
M 0
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(f(jo ® 13)(Y' @ M),0). In general, the submodule f(j, @ 13,)(Y’ @ M) of X4
is denoted by Y'M. Let X' < X, satisfy Y'M C X'. Writing f’ for f(jo ® 1)
and denoting the inclusion X’ — X by j; we see that (X', Y")y € Obj(2) and
(J1,J2) : (X, Y")pp — (X, Y) s is a map in  realizing (X' @Y”)r as a T-submodule
of (X ®@Y)7. Therefore when we take a submodule (X' ®Y")r of (X ®Y')r we have
X' < XA,V <V, fle@1p) (Y @ M) < X'. Themap [ : YV @ M — X'is
completely determined; it has to be f(jo ® 1).

Let X” (resp. Y”) be a quotient of X4 (resp. Yp) with n; : X — X" (resp.
n2 : Y — Y”) the canonical maps. Let Kern; = X’ and Kerny = Y’. Assume that
Y'M < X' Let j; : X' — X, jo : Y/ — Y be the inclusion maps. Clearly we
have the A-homomorphism f” : Y"” @ M — X" rendering the following diagram

commutative

VieM 22 yeonu Y yrom — 0

Lk

X/ I X n b 0

In this diagram f" = f(jo» ® 1)) and the rows are exact. Also it is clear that
(m,m2) + (X,Y) — (X", Y")pr is a map in Q realizing (X” @& Y"”)r as a quotient
of (X @ Y)r. The kernel of the associated T-homomorphism 7 : (X & Y)r —
(X" ®Y")r is precisely (X' @ Y')r. Now when we deal with a quotient (X" @Y")r
of (X ®Y)r the A-homomorphism f”:Y” ® M — X" is completely determined.

In 2000, in [24], A. Haghany and K. Varadarajan characterized uniform, hollow,
finitely embedded, projective, generator or progenerator modules over T'. They de-
termined the Jacobson radical Rad(X @Y")r and the socle Soc(X @Y ) of (X®Y)y.
Projective right ideals over T" are completely characterized in [19]. A. Haghany and
K. Varadarajan described an explicit method to constract a dual basis for projective
modules. Also they give the necessary and sufficient conditions for a T-module to
admit a projective cover.

This section of dissertation is devoted to the study of modules over formal trian-
gular matrix rings and the results focus on relative projectivity and lifting properties
of modules. We prove that if a right T-module (X & Y)r is lifting, then (X/Y M)4
and Yp are lifting. We also prove that if a right T-module (X @& Y)r is quasi-
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projective, then (X/Y M), and Yp are quasi-projective and if a right T-module
(X ®@Y)r has a quasi-projective cover, then (X/Y M) 4 and Yp have semi-projective

covers.

5.1 Lifting Modules Over T

As an easy observation we can give the following:

Proposition 5.1.1 (X' @ Y')r is a direct summand of (X @ Y)r if and only if
Xa=X X" Yo=Y &Y with f7, 1) = f, F(Y' @ M) C X' and
FGl @ 1m) = [, F(Y" @ M) C X" where - Y' — Y, j0 : Y" — Y are the

inclusion maps.

The following proposition from [24] gives necessary and sufficient conditions for

(X' ®Y")r to be small (X @ Y)r.

Proposition 5.1.2 ([24]) (X'@Y")r is small in (X @Y )7 if and only if Y’ is small
in Yg and n(X') is small in (X/f(Y ® M))a wheren : X — (X/f(Y ® M)) is the

canonical quotient map.

Any module N is called lifting if for any submodule H of N, there exists a
decomposition N = Ny & N, such that Ny C H and NoNH < N,. Now we will give

a characterization of lifting modules over the ring 7"

Theorem 5.1.3 If the right T-module (X &Y )r determined by (X,Y ) is lifting,
then (X/Y M)4 and Yg are lifting.

Proof. Assume that (X & Y)r is lifting. Let Y’ < Yp. Consider the submodule
(X ®Y')r of (X ®Y)r with the A-homomorphism [’ = f(j, ® 157) such that j, :
Y’ — Y is the inclusion map. Since (X ®Y')r is lifting, there exists a decomposition
(XeY)r=(H & K)ra (H"® K")r such that (H' & K')r C (X @& Y’')r and
(H'"&K")rN(X DY) = (H'&(K"NY"))r < (H'@&K")p. Assume that (H"&K");
and (H' @ K')r associate with the objects (H”, K")¢» and (H', K') s in € such that
fr=rUgse1y), " = f(j5 ® 1y), where ji : K' — Y and jj : K" — Y are
the inclusion maps and f(K'® M) C H' and f(K” ® M) C H". Now we have that
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X=HoH"Y =K &K" K' <Y’ By Proposition 5.1.2, K" NY’ < K”. Thus
Yp is lifting.

Now let X’/Y M be an A-submodule of X/Y M. Then (X'@®Y)r is a submodule
of (X ®Y)r with the homomorphism f. Then there is a decomposition (X ®Y)r =
(Li1®Ky)r®(La® Ko)7 such that (L& Ky)r C (X' BY )7, (La® Ko)rN(X'@Y)r =
(LaN X' @& Ko)r < (Le ® Ky)r. Now X = L1 @ Ly and Y = K; & K,. Also by
Proposition 5.1.2; Ky =0 (so f(Ko® M) =0) and Ly N X' < Ly. Then X/YM =
L/YM @ (L & YM)/YM, Li/YM C X'/JYM and [X' 0 (L ® YM)]/YM =
YM & (X' N L)|/)YM < (Ly @YM)/Y M. Thus (X/Y M) 4 is lifting. 0

A ring R is called generalized uniserial ring if it is artinian serial ring (see [10]).
In 1995, K. Oshiro and R. Wisbauer proved in [48, Corollary 2.5] that every right
R-module is lifting if and only if R is generalized uniserial ring with J(R)? = 0.

Using this corollary, we can give a part of a well-known fact in the following:

Corollary 5.1.4 If T is a generalized uniserial ring with J(T)?> = 0, then B is a

generalized uniserial ring with J(B)* = 0.

Proof. Let T is a generalized uniserial ring with J(7)*> = 0. Then every right T-
module is lifting from [48, Corollary 2.5]. Then every right B-module is lifting from
Theorem 5.1.3. So B is a generalized uniserial ring with J(B)? = 0 again from [48,
Corollary 2.5]. O

R 0

M Z
Consider the right T-module Vi = (M @ Z)r associated to the triple (M, Z) where

Example 5.1.5 Let R be a ring and M a right R-module. Let T =

f:Z® M — M defined by n ® m — nm for all n € Z and m € M. Since Z is not
lifting, Vr is not lifting.

5.2 Relative Projectivity of Modules Over T

Let Vp = (X @Y)r be a right T-module corresponds to (X, YY) in Q. Then we can
define the following B-homomorphism:
f:Y — Hom(M, X) given by f(y)(m) = f(y@m) fory € Y, m € M.
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If the right T-module Vr = (X & Y)7 corresponds to (X,Y ) in Q and (X' @ Y')r
is a submodule of (X @ Y)7 with the homomorphism f* = f(j, ® 1)) such that
jo : Y' — Y is the inclusion map and Y'M C X', then we will have the B-

homomorphism:

fiyr : Y' — Hom(M, X") given by fiy:(y/)(m) = f(y' @ m) for y/ €Y', m € M.

A. Haghany and K. Varadarajan give the complete description of the projective
right T-modules in [24, Theorem 3.1]. Also in [22] A. Haghany and in [5] J. Chen and
X. Zang investigate the relatively injectivity of right T-modules. Now we investigate

the relatively projectivity of right T-modules in the following two theorems.

Theorem 5.2.1 Let V; and Vs be two right T-modules with (Xq1,Y1)r,, (Xz,Y2)y, the
corresponding triples. If Xy is Xi-projective in Mod-A and flIYf 1S an isomorphism

for every submodule (X] ® Y{)r of Vi, then Vs is Vi-projective in Mod-T .

Proof. Take a quotient V{" = (XY, Y{")sr of V1. Then X{ = X;/X1,Y)" = V1 /Y],
m s Xp — X{ and ny : Y7 — Y]" are the natural epimorphisms, (X1,Y{)y is a
submodule of V; with the homomorphism f| = fi(75 ® 1p) (j5 : Y — Y] is the
inclusion map) and f{' : Y/ ® M — X/ is the A-homomorphism which makes the

following diagram commutative:

Jh®1

vieM 22 vieM "2 yeoM — 0

lf{ lfl lf{’

X! X, n X 0

where j; : X] — Xj is the inclusion map. Now the corresponding natural 7T-
homomorphism 7 from V; to V{" is the map (n;,72). Let o : Vo — V] be any
T-homomorphism . Then o corresponds to the pair (01, 03) such that oy : Xy —
X/ is an A-homomorphism, o5 : Yo — Y/ is a B-homomorphism and o f, =

V(oo ® 1pr) and o (22, y2) = (01(x2), 02(y2)). Since X, is X;-projective, there exists
an A-homomorphism &7 : X9 — X such that m,6; = 0,. Now we want to define
a B-homomorphism 73 : Yo — Y] such that the pair (o7,03) lifts ¢ with the
corresponding T-homomorphism @. Take any element ys € Y5. Then we can define a
homomorphism 0 : M — X; with 8(m) = &7 f2(y2®m). Since fi1 is an isomorphism,
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there exists a unique y; € Y; such that f; (y1) = 0. Now let a3(y2) = y1. Clearly 75 is a
B-homomorphism. Let y; € Yo and m € M. Then fi(d2® 1y)(y2@m) = f1(02(y2) ®
m) = filyy @m) = fi(y)(m) = 0(m) = Fifa(y> ® m), where 73(ys) = 31 and
fl(yl) = §. Therefore fi(o3 ® 1p) = 71 fo. Thus (771,02) : (X2, Y2)r, — (X1, Y1) g
is a morphism in §2 which corresponds to a T-homomorphism & : V5 — V;, namely
(z2,y2) = (71(22),02(y2)). Now we should see that ng = o. It is enough to show
that 1905 = 09. Let yo € Ys. Since o1 fo = f{ (02 ® 1), for all m € M, (o1 f2)(ya ®
m) = o1(f2(y2®m)) = [f{(02(y2) ®@m), hence ma1(f2(y2@m)) = f1(02(y2) @m). Let
o9(y2) = 21 + Y/ (21 € Y1). On the other hand, f'(ne ® 1p) = n1f1. Thus, f7'((ne ®
L)z om)) = mfi(z@m) = fi(z1)(m) = mor fo(ys @ m), for all m € M. Since
fi(aa @ 1) =71 fo, morfa(ya @ m) =1 f1(02 @ 1) (2 @ m) = m1 f1(2(y2) @ m) =
m f1(@3(y2))(m), for all m € M. Now ny fi(z1)(m) = 1 f1(@2(y2)) (m), for all m € M.
This means that fi(z; —33(y2)) is an A-homomorphism from M to X}. Since fl‘yll is
an isomorphism, there exists an element ¢} € Y/ such that flm(yi) = fi(z1—72(y2))

and so y; = z1 — 03(y2). Thus o2(y2) = 1202(y2), namely oy = 7905. 0

Note that in [6, 4.1.1], it is proven that if Y7 is Ys-projective and f; : Y@ M —
X is an A-isomorphism, then Vj is Vi-projective. Therefore we deduce that the
converse of Theorem 5.2.1 may not be true. Namely there exist right T-modules V}

and V5 such that V5 is Vi-projective but X5 is not X;-projective:

Example 5.2.2 Let R be a ring and M a right R-module such that ;M is torsion-
0

free which is not quasi-projective. Again let T = and consider the right

M Z
T-module Vi = (M & Z)r associated to the triple (M, Z); where f: Z® M — M

defined by n ® m — nm for all n € Z and m € M. Since M is a torsion-free abelian
group, f is one-to-one and also epic. Therefore by [6, 4.1.1], V7 is quasi-projective.

On the other hand, M is not quasi-projective.

Theorem 5.2.3 Let V; and Vs be two right T-modules with (X1,Y1) s, (X2, Y2)y, the
corresponding triples. If Vy is Vi-projective, then Ys is Yi-projective and Xo/ fo(Ya ®
M) is X1/ fi(Y1 ® M)-projective.

Proof. Let n; : Y1 — Y;/K; be the natural epimorphism and «; : Yo — Y, /K,

be any B-homomorphism, where K; < Yj. Then we can construct the quotient
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(08 Y1/K;)r of (X; & Y1)y with the following commutative diagram:

KioM 22 vieM "2 y/KioM —s 0
lf{ Lfl lo
X, L X, 0 0 0

Now we can construct those morphisms in {2:
(0,0q) : (X2, Y2)p, — (0,Y1/K1)o
and
(0,m) : (X1, Y1)y, — (0,Y1/K1)o.
Thus we have the T-homomorphisms
a: (Xo®Ys)r — (08 Y1/Ky)r with a(xs, y2) = (0, a1 (y2))
and
n: (X1 @ V) — (00 Y1/ K1) with n(zy, 41) = (0,7(31))-

Note that 7 is the natural epimorphism from (X;®Y))r to its quotient (0BY:/K)7.
Since V5 is Vi-projective, there is a T-homomorphism £ : Vo — Vj such that n8 = a.
Namely, there exists a B-homomorphism £ : Y5 — Y] and an A-homomorphism
By : Xo — Xy such that 51 f, = f1(B2 ® 1) and (2, y2) = (B1(x2), B2(y2)). Thus
m P2 = aq. Hence Y5 is Yj-projective.

Now consider the following diagram:

X/ f2(Yo @ M)

lﬂ
X/ fi(Yi © M) —— e 0

where v is the natural epimorphism, p is any A-homomorphism and X|/f;(Y1 ® M)
is a submodule of X;/f1(Y; ® M). Let v be the isomorphism from (X;/f;(Y1 ®
M)/(X]//i(Y1 @ M)) to X1/X1, m : X1 — Xq/A(Y1 ® M) and mp @ Xy —
X/ fo(Yo® M) be the natural epimorphisms. It is clear that (X] @ Y1)z is a submo-
dule of Vi with f{ = fi and ((X;/X}) @ 0)r is a factor module of Vi with f{ = 0,
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namely we have the following commutative diagram:

1y, ®1m

VoM 2~ vieM -2 09M —= 0

jf{ﬁ Lﬁ Lf{’O

X/ I X, n X1/X|

0

Now (yums,0) : (Xa2,Y2)r, — (X1/X{,0)0 is a T-homomorphism and (yvmy,0) :
(X1, Y1), — (X1/X7,0) is a T-epimorphism. Since V5 is Vi-projective, we have a
T-homomorphism with the pair (uq, p2) @ (Xa, Ya2) s, — (X1, Y1), which makes the

following diagram commutative:

(X2 ,Ys ) f2
(“1’521 - (yp2,0)

-
£

(X0, Y1) gy o= (X1/ X1, 0)o —=0

Note that we have the compositions uyfo = fi(u2 ® 1y) and vy = pms. Let us
define the A-homomorphism 7z : X5/ fo(Yo@ M) — X1/ f1(Y1Q M) by 2o+ fo(Yo®
M) — py(z2) + f1(Y1 ® M). Since pyfo = fi(pe ® 1ar), 11 is well-defined and since

vy = pme, Vi = i. Therefore the following diagram is commutative:

Xz//fz(Y2®M)

- l
— M

A
X YiQM
X1/ fi(Vi @ M) —— 3phben 0

Therefore X5/ fo(Yo @ M) is X1/ f1(Y1 ® M)-projective. O

Let V4 and V5 be two right T-modules with (X;,Y7)y, and (X, Y2)s, the corres-
ponding triples. If V5 is Vi-projective, the relative projectivity of Y5 with respect to
Y] is also proven in [6, 4.1.3] and under the assumption that f;(Y; ® M) <, X, the
relative projectivity of X/ fo(Yo® M) with respect to X/ f1(Y1® M) is proven in [6,
4.1.4]. In the above Theorem 5.2.3 we prove the relative projectivity of X5/ fo(Yo®@ M)
with respect to X;/f1(Y) ® M) without the condition fi(Y; @ M) <; X;.

Corollary 5.2.4 If (X ®Y)r is quasi-projective, then (X/Y M) and Yy are quasi-

projective.
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Example 5.2.5 Let R be a ring and M be a right R-module. Consider the ring

R 0
T = . Let K be a nonzero submodule of Q7 with K 2 Z and K 2 Q.

M Z
By Corollary 2.3.4, K ¢ 7Z is not semi-projective hence not quasi-projective over Z.

Then by Corollary 5.2.4, none of the right 7-modules in the form (X & (K © Z))r

is quasi-projective, where X is any right R-module.

Corollary 5.2.6 If (X @ Y)r has a quasi-projective cover, then (X/Y M) and Yp

have semi-projective covers.

Proof. Let ¢ : (U@ V)r — (X @ Y)r be a quasi-projective cover of (X & Y)r.
Assume that the objects (U,V), and (X,Y) in Q determine the right T-modules
(U V) and (X @Y)r, respectively. Then there exist homomorphisms ¢; : Uy —
X4, w2 : Vg — Yp such that (¢1,¢2) : (U, V), — (X,Y); is a morphism in
Q with 19 = f(p2 @ 1) and (¢1(u), pa(v)) = (u,v). By [5, Theorem 2.4], the
epimorphism ¢, : Vg — Y has small kernel and we have the epimorphism oy :
U/VM — X/Y M with small kernel. Thus (X/Y M), and Yp have semi-projective

covers with the epimorphisms 7 and ¢, respectively by Corollary 5.2.4. O
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