by R. Comakli\*, S, Kahraman<sup>†</sup>, C. Balci<sup>‡</sup>, and D. Tumac<sup>‡</sup> ## **Synopsis** Specific energy (SE) is a very useful parameter for assessing rock excavation by machine. Predicting the SE from the brittleness will be practical, especially for preliminary studies, due to the fact that determining the SE from cutting tests is difficult and expensive. In this study, the predictability of the SE from different brittleness concepts was investigated for metallic ores such as chromite, haematite, galena, and smithsonite. Uniaxial compressive strength, Brazilian tensile strength, impact strength, and small-scale cutting tests were carried out in the laboratory. The SE values were calculated from the cutting tests and correlated with three different brittleness concepts. A significant correlation could not be found between the SE and the brittleness $B_3$ (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength). However, strong correlations were found between the SE and the both brittleness $B_5$ (the product of percentage fines in the impact strength test and compressive strength) and brittleness $B_8$ (half of the product of compressive strength and tensile strength). The validations of the derived equations were also checked. It is concluded that the SE in ore cutting can be reliably estimated from the brittleness concepts $B_5$ and $B_8$ . #### Keywords specific energy, ore cutting, brittleness indexes, regression analysis. #### Introduction Specific energy (SE) is an important parameter in mechanical rock excavation. It can be simply used for predicting the performance of roadheaders (Rostami, Ozdemir, and Neil, 1994). However, obtaining the SE from smallscale or full-scale cutting tests is very difficult and expensive. For this reason, some researchers have investigated the relationships between SE and rock properties and suggested empirical equations for the estimation of SE. McFeat-Smith and Fowell (1979) carried out experimental studies for correlating the SE obtained by small-scale cutting tests with some rock properties such as cone indenter index, cementation coefficient, Schmidt hammer rebound value, and compressive strength. They stated that the cone indenter test consistently proved to be the best predictor for SE. Copur et al. (2001) correlated the SE with the UCS and BTS for some rock and ore types. They found good correlation between SE and both UCS and BTS. They also showed that the relation between SE and the product of UCS and BTS has a better correlation coefficient than that of the relations between SE and both UCS and BTS. Balci et al. (2004) tested 23 different rock and ore types and investigated the predictability of SE from physical and mechanical properties. They found good or very good correlations between the SE and rock properties such as UCS. Brazilian tensile strength, static and dynamic elastic moduli, and the Schmidt hammer value. Tiryaki and Dikmen (2006) carried out mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests on sandstones. They investigated the relations between SE and rock properties using regression analysis. They showed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE. However, the felsic and mafic mineral contents of sandstones exhibited no significant correlation with SE. On the other hand, cementation coefficient, effective porosity, and pore volume indicated good correlations with SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations with SE. Tumac et al. (2007) investigated the predictability of rock cuttability from Shore hardness and compressive strength. They showed that there was a relation between Shore hardness values, optimum specific energy, and compressive strength. - \* Mining Engineering Department, Nigde University, Nigde, Turkey. - † Mining Engineering Department, Hacettepe University, Ankara, Turkey. - # Mining Engineering Department, Istanbul Technical University, Istanbul, Turkey. - © The Southern African Institute of Mining and Metallurgy, 2016. ISSN 2225-6253. Paper received Jul. 2015; revised paper received Oct. 2015. Some researchers have investigated the relations between the cuttability or SE and brittleness. Singh (1986) indicated that cuttability, penetrability, and the Protodyakonov strength index of coal strongly depended on the brittleness of coal. Singh (1987) also showed that a directly proportional relation existed between in situ SE energy and the brittleness of three Utah coals. Goktan (1991) investigated the relation between SE and a brittleness concept derived from the UCS and BTS and concluded that the brittleness concept adopted in his study might not be a representative measure of specific energy consumption during rock cutting. Altindag (2003) investigated the relations between SE and brittleness concepts using the raw data obtained from previous experimental studies on rocks. He showed that the SE was strongly correlated with the brittleness $B_3$ (the area under the line relating compressive strength and tensile strength). In this study, eight different metallic ores such as chromite, haematite, galena, and smithsonite were tested in the laboratory and the predictability of the SE from different brittleness concepts was investigated. #### **Brittleness** There is no common agreement as to the definition, concept, or measurement of brittleness. Different researchers express and use the concept differently. Morley (1944) and Hetényi (1966) define brittleness as lack of ductility. Materials such as cast iron and many rocks, which usually fail by fracture at or only slightly beyond the yield stress, are defined as brittle by Obert and Duvall (1967). Ramsay (1967) defines brittleness as follows: 'when the internal cohesion of rocks is broken, the rocks are said to be brittle.' The definition of brittleness as a mechanical property varies from author to author. Different definitions of brittleness summarized by Hucka and Das (1974) are formulated as follows: $$B_1 = \frac{\mathcal{E}_r}{\mathcal{E}_t} \tag{1}$$ where $B_1$ is the brittleness determined from the percentage of reversible strain as determined from the stress-strain curve, $\varepsilon_r$ is the reversible strain, and $\varepsilon_t$ is the total strain. $$B_2 = \frac{W_r}{W_t} \tag{2}$$ where $B_2$ is the brittleness determined from the percentage of reversible energy as determined from the stress-strain curve, $W_r$ is the reversible energy, and $W_t$ is the total energy. $$B_3 = \frac{\sigma_c - \sigma_t}{\sigma_c + \sigma_t} \tag{3}$$ where $B_3$ is the brittleness determined from the compressive and tensile strengths, $\sigma_c$ is the uniaxial compressive strength, and $\sigma_r$ is the tensile strength. $$B_{A} = \sin \theta \tag{4}$$ where $B_4$ is the brittleness determined from Mohr's envelope (at $\sigma_n = 0$ ), and $\theta$ is the angle of internal friction. $$B_5 = q\sigma_c \tag{5}$$ where, $B_5$ is the brittleness from the Protodyakonov (1962) impact test, $\sigma_c$ is the UCS, and q is the percentage of fines (-28 mesh) formed in the Protodyakonov impact test. $$B_6 = \frac{H_{\mu} - H}{K} \tag{6}$$ where $B_6$ is the brittleness from macro-hardness and micro-hardness, $H\mu$ is the micro-indentation hardness, H is the macro-indentation hardness, and K is a constant. Hucka and Das (11975) defined a brittleness obtained from load-deformation curves. This definition of brittleness can be formulated as follows: $$B_{7} = \frac{W_{rs}}{W_{c}} \tag{7}$$ where $B_7$ is the penetration brittleness determined from the percentage of reversible energy in the load-deformation curve, $W_{rs}$ is the reversible strain energy just before failure, and $W_t$ is the total energy supplied just before failure. Altindag (2000) suggested a brittleness index obtained from compressive and tensile strength. This brittleness index is defined as the area under the curve of compressive strength versus tensile strength and can be formulated as follows: $$B_8 = \frac{\sigma_c \sigma_t}{2}$$ [8] where $B_8$ is the brittleness determined from compressive and tensile strength, $\sigma_c$ is the uniaxial compressive strength, and $\sigma\tau_c$ is the tensile strength. Recently, Yagiz (2009) introduced a new brittleness index obtained from the punch penetration test: $$B_9 = \frac{F_{\text{max}}}{P}$$ [9] where $B_9$ is the brittleness determined from force-penetration curve, $F_{\text{max}}$ is the maximum applied force on a rock sample (kN), and P is the corresponding penetration at maximum force (mm). ## Sampling Mineral deposits are common in the Taurus Mountain Belt, which runs from west to east in the south of Turkey. This mountain belt is subdivided into three parts: the western, the middle, and the eastern Taurus Mountains. The boundary between the middle and the eastern part is the Aladaglar region. Block samples of chromite, haematite, galena, and smithsonite were collected from eight different mines or outcrops in the Aladaglar region (Figure 1). The sampling locations are listed in Table I. Samples 70 mm in diameter were cored from the blocks for cutting tests, and 38 mm diameter samples for physico-mechanical tests. ## **Experimental studies** ## Uniaxial compressive strength (UCS) test Uniaxial compressive strength tests were conducted on trimmed core samples, which had a diameter of 38 mm and a length-to-diameter ratio of 2–2.5. The stress rate was applied within the limits of 0.5–1.0 MPa/s. The tests were repeated at least five times for each ore type and the average value recorded as the UCS. | Table I | | | | | | | | | |---------------------------------------------------------|--------------------|-------------------------------------|---------------------------|---------------------------|----------------------------|--|--|--| | Average results of physico-mechanical and cutting tests | | | | | | | | | | Ore type | Location | Uniaxial compressive strength (MPa) | Tensile<br>strength (MPa) | Impact strength index (%) | Specific energy<br>(MJ/m³) | | | | | Hematite | Mentes/Yahyali | 32.37 | 4.85 | 71.3 | 12.6 | | | | | Hematite | Dundarli/Nigde | 31.47 | 3.86 | 78.3 | 9.4 | | | | | Hematite | Attepe/Yahyali | 27.42 | 3.99 | 81.5 | 12.6 | | | | | Chromite | Kapiz mine/Pozanti | 66.27 | 7.44 | 72.1 | 28.1 | | | | | Chromite | Guven mine/Aladag | 7.89 | 1.12 | 40.9 | 10.1 | | | | | Chromite | Andizli/Pozanti | 58.98 | 5.98 | 68.6 | 20.1 | | | | | Galena | Delikkaya/Yahyali | 19.83 | 2.93 | 38.2 | 9.0 | | | | | Smithsonite | Derebag/Yahyali | 22.35 | 3.99 | 66.7 | 11.5 | | | | Figure 1-Location map of sampling area ## Brazilian tensile strength (BTS) test Brazilian tensile strength tests were conducted on core samples with a diameter of 38 mm and a height-to-diameter ratio of 0.5–1.0. A tensile loading rate of 200 N/s was applied until failure occurred. At least six samples were tested for each ore type and the results were averaged. ## Impact strength test The impact strength test was first developed by Proto- dyakonov (1962), and later modified by Evans and Pomeroy (1966). The device designed by Evans and Pomeroy (1966) was used in the impact strength tests in this study. A 100 g sample of rock in the size range 3.175–9.525 mm is placed inside a cylinder 42.86 mm in diameter and a 1.8 kg weight is dropped 20 times from a height of 30.48 cm onto the sample. The amount of rock remaining in the initial size range after the test is termed the impact strength index. The test was repeated three times for each ore type and the average value recorded as the impact strength index $(I_s)$ . ## Small-scale cutting test Details of this test were presented by McFeat-Smith and Fowell (1979). In the current study, 70 mm core samples were fixed in the table of a shaping machine (Figure 2) and cut by a chisel pick having a rake angle of –5 degrees, a clearance angle of 5 degrees, and a tool width of 12.7 mm. The depth of cut was selected as 5 mm. The tool forces in three directions were recorded (Figure 3) using a force dynamometer, and the SE calculated by dividing the mean cutting force by the yield (volume of cut material). The cutting tests were repeated three times for each rock type and the results were averaged. #### **Evaluation of the results** Table I presents the average results of all tests. As shown, the UCS values range from 7.89 MPa for the Guven Figure 2-Small-scale cutting rig Figure 3-Tool forces in three directions Mine/Aladag chromite to 66.27 MPa for the Kapiz Mine/Pozanti chromite. The BTS values range from 1.12 MPa for the Guven Mine/Aladag chromite to 7.44 MPa for the Kapiz Mine/Pozanti chromite. $I_s$ values range from 38.2% for the Delikkaya/Yahyali galena to 81.5% for the Attepe/Yahyali haematite. The brittleness concepts $B_3$ , $B_5$ , and $B_8$ were used in the statistical analysis. The calculated brittleness values are given in Table II. The brittleness values and SE values were analysed using least squares regression. Linear, logarithmic, exponential, and power curve fitting approximations were executed and the best approximation equation with the highest correlation coefficient was determined for each regression. No significant correlation between SE and brittleness $B_3$ was found (Figure 4). However, a strong correlation between SE and brittleness $B_5$ was found (Figure 5). The relationship follows an exponential function. The SE increases with increasing brittleness $B_5$ . The equation of the curve is $$SE = 7.64e^{0.0002 B_5}$$ $r = 0.89$ [10] where SE is the specific energy (MJ/m<sup>3</sup>) and $B_5$ is the brittleness. | Table II Brittleness values | | | | | | | | | | |------------------------------|---------------------|-----------------------|-----------------------|-----------------------|--|--|--|--|--| | Ore type | Ore location | <b>B</b> <sub>3</sub> | <b>B</b> <sub>5</sub> | <b>B</b> <sub>8</sub> | | | | | | | Hematite | Mentes/Yahyali | 0.74 | 2308.0 | 78.5 | | | | | | | Hematite | Dundarli/ Nigde | 0.78 | 2463.2 | 60.7 | | | | | | | Hematite | Attepe/ Yahyali | 0.75 | 2233.6 | 54.7 | | | | | | | Chromite | Kapiz mine/ Pozanti | 0.80 | 4775.4 | 246.5 | | | | | | | Chromite | Guven mine/ Aladag | 0.76 | 322.4 | 4.3 | | | | | | | Chromite | Andizli/ Pozanti | 0.82 | 4043.7 | 176.4 | | | | | | | Galena | Delikkaya/ Yahyali | 0.74 | 757.5 | 29.1 | | | | | | | Smithsonite | Derebag/ Yahyali | 0.70 | 1490.7 | 44.6 | | | | | | Figure 4-Correlation between specific energy and brittleness B<sub>3</sub> Figure 5—Correlation between specific energy and brittleness B<sub>5</sub> Figure 6—Correlation between specific energy and brittleness B<sub>o</sub> A very strong correlation between SE and the brittleness $B_8$ was also found (Figure 6). The relation follows a linear function. SE increases with increasing brittleness $B_8$ . The equation of the line is $$SE = 0.078B_8 + 7.37$$ $r = 0.97$ [11] where SE is the specific energy (MJ/m<sup>3</sup>) and $B_8$ is the brittleness. Altindag (2003) combined some data for the regression analysis and derived the following equation between SE and brittleness $B_8$ : $$SE = 1.005B_8^{0.61}$$ $r = 0.84$ [12] where SE is the specific energy (MJ/m<sup>3</sup>) and $B_8$ is the brittleness. Figure 7 was plotted to compare Equations [11] and [12]. Although Equation [11] is a linear relation and Equation [12] is a power relation, there is not a large difference between the two trends, as shown in Figure 7. The difference between the two trends may be due to the fact that Altindag's data covers a wide strength range. The ores tested in this study have UCS values less than 66 MPa and brittleness $B_8$ values less than 300. However, Altindag's data includes UCS values up to 559 MPa and brittleness $B_8$ values up to 2491. An important point is that Altindag's data shows an almost linear trend for rock with brittleness values less than 300. On the other hand, some of the methods for measuring SE are different in Altindag's study. For example, Altindag used published data and some of his data is derived from to disc cutter tests, not a chisel pick test. As shown above, the correlation coefficients of Equations [10] and [11] are very good, but they do not necessarily identify the valid model. Validation of these equations was checked by the *t*-test and the *F*-test. The significance of r-values can be determined by the t-test, assuming that both variables are normally distributed and the observations are chosen randomly. The test compares the computed t-value with the tabulated t-value using the null hypothesis. In this test, a 95% level of confidence was chosen. If the computed t-value is greater than tabulated t-value, the null hypothesis is rejected. This means that r is significant. If the computed t-value is less than the tabulated t-value, the null hypothesis is not rejected. In this case, r is not significant. As seen in Table III, the computed t-values Figure 7—Comparison between Equations [11] and [12] | Table III | | | | | | | | | | | |-----------------------|-------------------|---------|-------------------|---------|--|--|--|--|--|--| | t- and F-test results | | | | | | | | | | | | Equation no. | Tabulated t-value | t-value | Tabulated F-ratio | F-ratio | | | | | | | | Equation no. | rabalatou t talao | · value | | | | | | | | | are greater than the tabulated t-values for Equations [10] and [11]. Equation [10] and [11] are therefore valid according to the t-test. The significance of regressions was determined by analysis of variance. In this test, a 95% level of confidence was chosen. If the computed *F*-value is greater than tabulated *F*-value, the null hypothesis is rejected, and there is a real relation between the dependent and independent variables. Since the computed *F*-values are greater than the tabulated *F*-values for Equations [10] and [11], the null hypothesis is rejected (Table III). Therefore, it is concluded that Equations [10] and [11] are valid according to the *F*-test. #### **Conclusions** The prediction of specific energy (SE) from three different brittleness concepts was investigated for metallic ores such as chromite, haematite, galena, and smithsonite. It was concluded that there is no correlation between SE and the brittleness $B_3$ . However, strong correlations were found between SE and brittleness concepts $B_5$ and $B_8$ . The derived equations were also checked by the t- and F-tests and the models were shown to be valid. It was concluded that SE in ore cutting can be reliably predicted from brittleness concepts $B_5$ and $B_8$ . ## **Acknowledgement** This study was supported by the Scientific Research Project Unit of Nigde University under the project number FEB 2009/04. The automatic cutting machine used for sample preparation was financed by the Alexander von Humboldt Foundation. The authors thank Professor Nuh Bilgin and his colleagues from Istanbul Technical University for their support in performing the linear cutting tests. ## References - ALTINDAG, R. 2000. The role of brittleness on the analysis of percussive drilling performance. *Proceedings of the 5th Turkish National Rock Mechanics Symposium*, Isparta, Turkey, 30-31 October 2000. pp. 105–112. - ALTINDAG, R. 2003. Correlation of specific energy with rock brittleness concepts on rock cutting. *Journal of the South African Institute of Mining and Metallurgy*, vol. 103. pp. 163–171. - Balci, C., Demircin, M.A., Copur, H., and Tuncdemir, H. 2004. Estimation of optimum specific energy based on rock properties for assessment of roadheader performance. *Journal of the South African Institute of Mining and Metallurgy*, vol. 11. pp. 633–641. - COPUR, H., TUNCDEMIR, H., BILGIN N., and DINCER, T. 2001. Specific energy as a criterion for the use of rapid excavation systems in Turkish Mines. \*Transactions of the Institution of Mining and Metallurgy Section A:\* \*Mining Technology\*, vol. 110. pp. A149–157. - Evans, I., and Pomeroy, C.D. 1966. The Strength, Fracture and Workability of Coal. Pergamon Press, London. - GOKTAN, R.M. 1991. Brittleness and micro-scale rock cutting efficiency. *Mining Science and Technology*, vol. 13. pp. 237–241. - HETÉNYI, M. 1966. Handbook of Experimental Stress Analysis. Wiley, New York. - Hucka, V. and Das, B. 1974. Brittleness determination of rocks by different methods. *International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts*, vol. 11. pp. 389–392. - Hucka, V., and Das, B. 1975. Laboratory investigations of penetration of complete coal series. *International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts*, vol. 12. pp. 213–217. - McFeat-Smith, I. and Fowell, R.J. 1979. The selection and application of roadheaders for rock tunneling. *Proceedings of the Rapid Excavation and Tunnelling Conference*, Atlanta, GA. Maevis, A.C. and Hustrulid, W.A. (eds). AIME. pp. 261–279. - Morley, A. 1944. Strength of Materials. Longman, London. - OBERT, L. and DUVALL, W.I. 1967. Rock Mechanics and the Design of Structures in Rock. Wiley, New York. - Protodyakonov, M.M. 1962. Mechanical properties and drillability of rocks. Proceedings of the 5th Symposium on Rock Mechanics, University of Minnesota. Fairhurst, C. (ed.). Pergamon Press, Oxford. pp. 103–118. - RAMSAY, J.G. 1967. Folding and Fracturing of Rocks. McGraw-Hill, London. - ROSTAMI, J., OZDEMIR, L., and NEIL, D.M. 1994. Performance prediction: a key issue in mechanical hard rock mining. *Mining Engineering*, November 1994. pp. 1263–1267. - SINGH, S.P. 1986. Brittleness and the mechanical winning of coal. *Mining Science and Technology*, vol. 3. pp. 173–180. - SINGH, S.P. 1987. Criterion for the assessment of the cuttability of coal. \*Underground Mining Methods and Technology\*, vol. 8. pp. 225–239. - TIRYAKI, B. and DIKMEN, A.C. 2006. Effects of rock properties on specific cutting energy in linear cutting of sandstones by picks. *Rock Mechanics and Rock Engineering*, vol. 39, no. 2. pp. 89–120. - Tumac, D., Bilgin, N., Feridunoglu, C., and Ergin, H. 2007. Estimation of rock cuttability from shore hardness and compressive strength properties. *Rock Mechanics and Rock Engineering*, vol. 40, no. 5. pp. 477–490. - YAGIZ, S. 2009. Assessment of brittleness using rock strength and density with punch penetration test. *Tunneling and Underground Space Technology*, vol. 24. pp. 66–74. 768