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The Neolithic transition in west Eurasia occurred in two main steps: the gra-

dual development of sedentism and plant cultivation in the Near East and

the subsequent spread of Neolithic cultures into the Aegean and across

Europe after 7000 cal BCE. Here, we use published ancient genomes to inves-

tigate gene flow events in west Eurasia during the Neolithic transition. We

confirm that the Early Neolithic central Anatolians in the ninth millennium

BCE were probably descendants of local hunter–gatherers, rather than

immigrants from the Levant or Iran. We further study the emergence of

post-7000 cal BCE north Aegean Neolithic communities. Although Aegean

farmers have frequently been assumed to be colonists originating from

either central Anatolia or from the Levant, our findings raise alternative pos-

sibilities: north Aegean Neolithic populations may have been the product of

multiple westward migrations, including south Anatolian emigrants, or they

may have been descendants of local Aegean Mesolithic groups who adopted

farming. These scenarios are consistent with the diversity of material cul-

tures among Aegean Neolithic communities and the inheritance of local

forager know-how. The demographic and cultural dynamics behind the ear-

liest spread of Neolithic culture in the Aegean could therefore be distinct

from the subsequent Neolithization of mainland Europe.
1. Introduction
The primary zone of Neolithization in western Eurasia encompassed the

Levant, Taurus-Zagros ranges of Mesopotamia, central Anatolia and Cyprus

[1–4]. The earliest evidence for sedentary life and food storage in this region

goes back to the Natufians (ca 12 500–10 800 cal BCE) [5,6]. Sedentary commu-

nities were established across this zone during the first phase of the Pre-Pottery

Neolithic (PPN, or Aceramic Neolithic, ca 10 000–8500 cal BCE), and the first

indications of plant cultivation appeared [7–9]. Between ca 8500 and 7000

cal BCE, community sizes increased, architectural elaboration intensified

and a subsistence economy based on agriculture gradually became the
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norm [10–14]. Meanwhile, portable artefacts such as figur-

ines and stamps evolved into staples of sedentary life, and

pottery production became widespread ca 7000 cal BCE

[10,11]. The elements of the subsequent Pottery Neolithic

culture (PN, ca 7000–5500 cal BCE), including integrated

cultivation practices of domestic plants and animals, the

architectural practices of sedentary life, together with porta-

ble artefacts, have been collectively described as the Near

Eastern ‘Neolithic Package’ [15–18].

During the same period, there were no signs of a

Neolithization in west Anatolia and the Aegean. Only after

ca 7000 cal BCE did elements of the ‘Neolithic Package’

appear in these regions, eventually spreading towards

Europe [19–21]. Some archaeologists suggest that the emer-

gence of the Neolithic elements in the Aegean and in Europe

without a preceding PPN development period indicates the

role of demic processes (i.e. migrations from the Neolithic pri-

mary zones through land and sea routes), frequently described

as a leap-frog model where migrants form enclaves in new

territory [15,16,22–27]. Others, in contrast, favour a role for

interaction between local foragers and primary zone

Neolithic populations, including the adoption of Neolithic

elements by locals and acculturation [16,18,28,29].

Recent archaeogenomic data have shown that the Neo-

lithization of central, western and northern Europe involved

migration from a single eastern source, frequently termed

‘Anatolian farmer’ [30–33], while in other regions, such as

in the Baltic [33,34] and in southern Greece [33], acculturation

may have played role. In most of Europe, there is limited gen-

etic evidence for early admixture between farmers and local

European Mesolithic (WHG) communities in the sixth millen-

nium BCE, such that early European farmers studied to date

(with few exceptions [35]) carry ancestry similar to farmers

from northwest Anatolian Barcın [31–33] (electronic sup-

plementary material, figure S1). In subsequent millenia,

however, WHG-like ancestry appears in Middle and Late

Neolithic European populations [36–38]. These observations

support a leap-frog model of Neolithic spread in Europe [28]:

farmers only occupied enclaves in the new territories while

Mesolithic groups persisted in the same regions [39–42].

The processes behind the earliest steps of Neolithization

and the Neolithic spread in the Aegean are less understood.

For instance, whether Aegean Neolithic populations were

recent colonists originating from areas of the primary zone

of Neolithization (e.g. [27]), descendants of indigenous

foragers (e.g. [20]) or admixed groups (e.g. [15,16]) is still con-

tentious. Additionally, whether Aegeans’ demographic or

cultural relationships were stronger with central Anatolians

[16] or with the Levantine seafaring populations [27] remains

unclear. We re-analyse published ancient human genomes to

answer these questions and to dissect the demographic

dynamics behind the Neolithic transition in Anatolia and

the Aegean.

2. Material and methods
(a) Compiling and mapping genomic data
We obtained DNA sequencing data of 99 published ancient indi-

viduals (electronic supplementary material, table S1), generated

using whole-genome shotgun sequencing and/or sequencing

of libraries enriched by hybridization capture [30–32,

35,37,38,42–46]. We mapped sequencing reads to the human

reference genome (hs37d5) using the Burrows–Wheeler Aligner
(BWA, v. 0.7.12) [47], with the parameters ‘-l 16500, -n 0.01,

-o 2’. We filtered PCR duplicates using FilterUniqSAMCons.py

[48]. We filtered reads shorter than 35 base pairs, with greater

than 10% mismatches to the reference, and less than 30 mapping

quality per read.

(b) Preparation of population genetics analysis datasets
We restricted our analysis to known present-day DNA variants to

minimize false positives. We used two different modern refer-

ence panels, calling genotypes of ancient individuals for SNPs

overlapping with (i) the Human Origins genotype dataset

[42,49] and (ii) the 1000 Genomes whole-genome sequence data

[50] using SAMtools mpileup (v. 1.3) [51]. For (i) we obtained a

curated version of the Human Origins panel of 594 924 autoso-

mal SNP genotype calls for 2730 present-day individuals from

Lazaridis et al. [42]. We determined the SNPs of the ancient

samples overlapping with this dataset. We encoded transitions

as missing to avoid confounding with cytosine deamination in

ancient DNA. To prepare (ii), we obtained the BAM and VCF

files for the African Yoruba individuals from 1000 Genomes Pro-

ject phase 3 from McVean et al. [50]. Using vcftools [52], we

extracted a total of 1 938 919 transversion SNPs with minor

allele frequencies of greater than or equal to 10% in the Yoruba

population to avoid false positive calls [36,40]. We determined

the positions in the ancient samples overlapping with this data-

set. We merged ancient genotypes with these two datasets using

PLINK [53] requiring base quality greater than or equal to 30 per

overlapping position. We haploidized each full dataset by

randomly selecting one allele per position. The Human Ori-

gins-merged dataset, which has higher number of present-day

populations, was used for principal component analysis (PCA)

and for calculating f3-statistics. The 1000 Genomes-merged data-

set, with a higher number of SNPs, was used for D-statistics,

where we require high statistical power.

(c) Principal component analysis
We performed PCA by calculating principal components using

west Eurasian populations from the Human Origins dataset

using the smartpca program of EIGENSOFT [54], with the

‘numoutlieriter:0’ parameter. We projected ancient genomes

onto the reference space using the ‘lsqproject:YES’ option and

plotted the results using R (v. 3.3.0).

(d) D- and f3-statistics
We computed D-statistics using the qpDstat program of the

ADMIXTOOLS package [49]. We assessed statistical significance

by calculating standard errors using a block jacknife of 0.5 Mbp.

We used the Yoruba population as outgroup for the D-statistics

[32]. We computed f3-statistics (i.e. genetic affinity between

pairs of populations based on an estimate of shared drift between

them as their divergence from an outgroup population) using the

qp3Pop program of the ADMIXTOOLS package [49]. The Human

Origins dataset’s African Mbuti population was used as outgroup

for calculating f3-statistics [42]. We performed multiple testing cor-

rection using Benjamini–Yekutieli method for all 207 D-statistics

results and reported adjusted p-values together with Z scores

per each test [55]. For the pairwise f3-statistics, as genetic distance

measure between a pair of populations, X and Y, we used: 1-f3-

(Mbuti;X,Y) [30]. These pairwise distances were summarized

with the multidimensional scaling (MDS) method using the

cmdscale function of R. We evaluated the goodness of fit for

MDS using ‘GOF’ component obtained from cmdscale function.

(e) Heterozygosity estimates
We calculated heterozygosity as a measure of genetic diversity

in a population, using genome sequence data of (i) Bon002
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(from Boncuklu, central Anatolia, pre-7000 cal BCE) [30], Tep003

(Tepecik-Çiftlik, central Anatolia, post-7000 cal BCE) [30], Bar8

(Barcın, north Aegean, post-7000 cal BCE) [31] and Rev5 (Reve-

nia, north Aegean, post-7000 cal BCE) [31]. We calculated

genome coverage per sample using GenomeCoverageBed [56].

We downsampled the genome sequences of Bon002 and Bar8

to similar levels as the other two samples using SAMtools

(v. 1.3) [51]. We calculated heterozygosity per sample using

ANGSD [57] as ‘angsd -GL 1 -doGlf 2 -doMajorMinor 1 -sites Refer-

enceSNP.pos -bam bamlist -doSaf 1 -anc referencegenome.fasta’. To

minimize false positives, we only considered transversions overlap-

ping with of Yoruba individuals from 1000 Genomes Project phase

3 from McVean et al. [50].

( f ) Modelling of admixture
We used the qpWave/qpAdm framework [38,58] in the ADMIX-

TOOLS package [49] to model populations as mixtures of two

or more sources. The following worldwide set of ancient and

present-day outgroups, which most probably did not experience

any post-split gene flow from Anatolian/Aegean populations,

was used: Mbuti, Yoruba, Ust Ishim, El Miron, Goyet Q116,

Villabruna, Kostenki14, Vestonice16, Papuan, Onge, Karitiana,

Mixe, Chipewyan, Oroqen, Koryak, Dai, Japanese. Adding East

European hunter–gatherers (EHG) as a close outgroup to

increase the resolution did not change the results.

(g) Serial coalescent simulations
We performed serial coalescent simulations using fastsimcoal

[59] under four various demographic models involving Neolithic

central Anatolians, Aegeans, Iranians and WHG (not including

the Levantine populations, for whom we lack whole-genome

data). The simulations were designed to mimick the data with

respect to tree topology, divergence times and sample sizes.

We then performed D-statistics on the simulated DNA and com-

pared these with the observed data to gain understanding into

the plausibility of different models. Specifically, we generated

data to represent Iranian Neolithics (10 000 BP), WHGs (Losch-

bour: 7200 BP), central Anatolian Neolithics (Tepecik-Çiftlik:

8500 BP; Boncuklu: 10 000 BP), the Aegean Neolithics (Revenia:

8300 BP) and present-day sub-Saharan Africans (Yoruba-YRI).

We launched 100 runs for each model defined in the parameter

file (input.par) for testing different population histories. For all

models, we sampled 30 Mb DNA sequences for: five present-

day Yoruba, two Iranian Neolithics, two WHGs, four central

Anatolian Neolithics (two Tepecik-Çiftlik, two Boncuklu) and

two Aegean Neolithics (Revenia). We assumed a mutation rate

of 1.00 � 1029 bp yr21, and a recombination rate of 1.00 �
1028 bp yr21, and assumed 25 years per generation, again fol-

lowing [45]. We set the effective population size (Ne) of these

populations and times of divergence between Anatolian Neo-

lithic, WHGs and Iranian Neolithic populations based on [45].

We converted all outputs (arp file) to plink format and computed

D-statistics with topology of D(YRI, Test, central Anatolian N,
Aegean N) to test the relationships among populations via

ADMIXTOOLS [49]. Note that the tree topology involving the

Anatolian/Aegean populations, Iran, WHG and the Africans,

were based on the phylogenetic analysis from Broushaki et al.
[45]. The Anatolian/Aegean populations were assumed to

diverge simultaneously from the same source (star shaped).
3. Results
(a) Early Holocene gene pools of west Eurasia and

the Anatolian/Aegean gene pool
We compiled published genome sequence data of 99 ancient

individuals (sample ages: ca 11 840–4360 cal BCE) (electronic
supplementary material, figure S2, table S1). Both a PCA

using present-day and ancient populations (electronic sup-

plementary material, figure S1) and an MDS analysis using

only ancient genomes (figures 1 and 2; electronic supplemen-

tary material, table S2) revealed the presence of four distinct

gene pools in Early Holocene west Eurasia: (a) a ‘Caucasia/

Iran gene pool’, (b) a ‘Levant gene pool’, (c) a ‘European

pre-Neolithic gene pool’ and (d) an ‘Anatolian/Aegean

gene pool’. To objectively measure clustering in gene pools

(a)–(c), we used D-statistics of the form D(Yoruba, p1; p2,

p3) where ‘p’ refers to the Caucasia/Iran, the Levant or Euro-

pean pre-Neolithic gene pools, correcting for multiple testing.

In 80% comparisons ( p , 0.05; Z � 3), populations belonging

to the same gene pool shared more alleles with each other

compared to external populations (figure 1a; electronic sup-

plementary material, figure S3a, table S3). The only

exceptions were comparisons involving a single pre-Neolithic

individual from Iran for which we had relatively few SNPs

and low statistical power.

We then investigated the relationships among ancient

Anatolians and other west Eurasian gene pools, using the

oldest Anatolian population yet sequenced: Boncuklu from

central Anatolia (sample ages: ca 8300–7952 cal BCE), an

Aceramic Neolithic population previously predicted to be

the descendants of local Epipalaeolithic groups [30,60]. We

computed D-statistics of the form D(Yoruba, p1; p2, Boncuklu),
where ‘p1’ and ‘p2’ refer to populations belonging to different

gene pools: Caucasia/Iran, the Levant or the European pre-

Neolithic. In 56% of the comparisons ( p , 0.05; Z � 2.8), all

three regional gene pools showed higher affinity to Boncuklu

than to each other (figure 1a,b; electronic supplementary

material, table S4). Using the qpWave/qpAdm algorithm

[38,58], we further modelled the Boncuklu population as

a mixture of CHG (59.1%), the Levant (31.4%) and WHG

(9.5%) (electronic supplementary material, table S5).

We next included three post-7000 cal BCE Neolithic

populations from Anatolia and Aegean in the analyses: Tepe-

cik-Çiftlik in central Anatolia [30,61], Barcın in northwest

Anatolia [31,37,62] and ‘Revenia’ in Pieria of northeast

Greece [31]. We computed D-statistics of the form D(Yoruba,
p1; p3, p2) where ‘p1’ and ‘p2’ are Anatolian/Aegean popu-

lations, and ‘p3’ is an external population (Caucasia/Iran,

the Levant or European pre-Neolithic). In 94% of the

comparisons (p , 0.05; Z � 2.8) all Anatolian/Aegean popu-

lations were genetically closer to each other than to any other

gene pool (electronic supplementary material, figure S3b,

table S5).

Given archaeological indication that Aegean Neolithic

was influenced by east Mediterranean sources [27], we

further studied the genetic affinities of Aegean Neolithic

people to central Anatolian Neolithics and to the Levantines.

Calculating D-statistics of the form D(Yoruba, northAegean;
Levant, centralAnatolia) revealed that the post-7000 cal BCE

Neolithic north Aegean individuals (Barcın and Revenia) con-

sistently share more alleles with central Anatolians compared

to south Levantines, where 50% of the comparisons were

significant (p , 0.05; Z � 2.8) (electronic supplementary

material, figure S3b, table S5).
(b) Notable genetic diversity in the Aegean
To assess demographic events in the Near East during the

Neolithic transition, we studied signatures of regional
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admixture using diachronic populations from the same

region (figure 1c). In 83% of the comparisons, pre-7000 cal

BCE Neolithic populations of the Levant and of Iran were
genetically closer to all post-7000 cal BCE Anatolian/

Aegean populations (Tepecik, Barcın, Revenia) compared

with the pre-7000 cal BCE Anatolian Boncuklu (p , 0.05;
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Z � 3) (electronic supplementary material, figure S3c, table

S6). Considering the radiocarbon dates of the investigated

individuals, this is consistent with gene flow from both the

Levant and from Iran into Anatolia, within a period ranging

from the PPN to the PN (figure 1c, arrows ‘e’ and ‘f’). These

results are also compatible with a regional increase in the

levels of admixture during the Neolithic [30,32], although

alternative explanations to gene flow remain plausible, such

as population structure confounding the analysis results [63].

Next, to gain understanding into Aegean Neolithization,

we studied the population genetic characteristics of the PN

Aegean groups relative to central Anatolian groups. We

first compared heterozygosity estimates among these popu-

lations. If the Aegeans were recent colonists from a single

origin, due to a founder effect, one might expect lower hetero-

zygosity in the Aegean than in central Anatolia. By contrast,

Barcın and Revenia individuals had higher heterozygosity

levels (mean 0.25 and 0.26, respectively) than those of Bon-

cuklu and Tepecik (0.22 and 0.19, respectively) (electronic

supplementary material, table S7).

Second, we calculated D-statistics focused on the

Aegeans, which suggested higher admixture in this region

than in central Anatolia:

(i) D(Yoruba, Natufian; centralAnatolia, northAegean) revealed

that pre-Neolithic population of the Levant had stronger

genetic affinity to the two north Aegean Neolithic popu-

lations (Barcın and Revenia, post-7000 cal BCE) than to

the two central Anatolian Neolithic groups (Boncuklu

and Tepecik, pre- and post-7000 cal BCE) (p , 0.05;

Z � 3) (figure 2a, arrow ‘a’; electronic supplementary

material, figure S4a, table S8). Given the above-proposed

gene flow event from the Levant into Anatolia during

the Neolithic, this result might imply additional genetic
interactions between Natufian-related populations and

the ancestors of north Aegean populations that bypassed

central Anatolia.

(ii) D(Yoruba, Caucasia/Iran; centralAnatolia, northAegean)
revealed that in 50% of the comparisons CHGs and Neo-

lithic Iran individuals shared more alleles with the two

north Aegean PN populations than with the two central

Anatolians (p , 0.05; Z � 2.8) (figure 2a, arrows ‘b’

and ‘c’; electronic supplementary material, figure S4a,

table S9).

(iii) Likewise, WHG individuals showed higher affinity to

the two north Aegean PN populations than PN central

Anatolian group groups ( p , 0.05; Z � 3) (figure 2a,

arrow ‘d’; electronic supplementary material, figure

S4a, table S10).

(iv) Natufians, WHGs and Iranian PPN individuals were

consistently more similar to the Revenia individual

than to those in Barcın (electronic supplementary

material, figure S4b, table S11).

(v) Both the Boncuklu (PPN) and the Tepecik (PN) groups

of central Anatolia had stronger affinity to the north

Aegean PN populations, Barcın and Revenia, than to

each other (figure 2b; electronic supplementary material,

table S12). Likewise, all Anatolian groups (Boncuklu,

Tepecik-Çiftlik and Barcın) were genetically closer to

Revenia than they were to each other (figure 2b;

electronic supplementary material, table S13).

(vi) All European early farmer populations examined were

genetically closer to Revenia than to each other

(electronic supplementary material, figure S4c, table S14)

Observations (ii), (iii) and in particular (v) are intriguing. We

asked whether these could be consistent with a number of

demographic scenarios, assuming a phylogenetic topology
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that included Iran, WHG and Aegean/Anatolian populations,

estimated by [45]. We considered the following scenarios: (a)

separate extreme bottlenecks in the ancestors of the two central

Anatolian populations (possibly causing differentiation

between the central Anatolian populations from each other,

and from all other groups, (b) independent gene flow events

from external sources (WHG and Iran) into the two central

Anatolian groups (possibly causing differentiation between

the two), (c) independent gene flow from WHG and Iran

into the Aegean, and (d) independent gene flow from WHG,

Iran and the two central Anatolian lineages into the Aegean.

We performed serial coalescent simulations using realistic set-

tings and compared the results with the observed D-statistics.

We could only replicate the observed results under scenario

(d) that describes rampant admixture in the Aegean (electronic

supplementary material, figure S5).
84:20172064
4. Discussion
The analyses presented here highlight two points regarding

the process of Neolithization. First, the observation that the

two central Anatolian populations cluster together to the

exclusion of Neolithic populations of south Levant or of

Iran restates the conclusion that farming in central Anatolia

in the PPN was established by local groups instead of immi-

grants, which is consistent with the described cultural

continuity between central Anatolian Epipalaeolithic and

Aceramic communities [9,64]. This reiterates the earlier

conclusion [32] that the early Neolithization in the primary

zone was largely a process of cultural interaction instead of

gene flow.

The second point relates to whether Aegean Neolithiza-

tion (post-7000 cal BCE) involved similar acculturation

processes, or was driven by migration similar to Neolithiza-

tion in mainland Europe—a long-standing debate in

archaeology [16,20,22,27,28]. Here, we discuss the two

scenarios based on the genetic analysis.

(a) Model 1: migration from Anatolia to the Aegean
A recent study reported that by the seventh millennium BCE

the eastward border of the WHG gene pool extended to the

Iron Gates (on the border between Romania and Serbia)

[33]. Plausibly, during the Early Holocene, the WHG popu-

lation could also have been present along the Aegean

coastline, such that the border between central Anatolian

and WHG gene pools ran along west Anatolia. If so, the

Aegean Neolithization must have involved replacement of a

local, WHG-related Mesolithic population by incoming

easterners.

If migration occurred, where did it originate? Because

Revenia and Barcın cluster with PPN and PN central Anato-

lian Neolithic groups to the exclusion of the south Levant

(figure 1c; electronic supplementary material, figure S3c),

the latter is unlikely to be the source, leaving central Anatolia

or south Anatolia (north Levant) as potential origins.

Notably, the north Aegeans (Revenia and Barcın) show

higher diversity than the central Anatolians. We had earlier

shown that the highest-quality Barcın genome carries a smal-

ler proportion of short runs of homozygosity than the highest

quality Boncuklu genome [30], which also supports the

notion that the ancestral effective population size of the

Aegeans was larger than those of central Anatolians.
Moreover, we find that the north Aegeans share more alleles

with eastern, western and southern gene pools, as estimated

using the D-statistic (figure 2). Although the D-statistic can

be sensitive to technical biases, our result is unlikely to be a

technical artefact because (a) the north Aegean data were

derived from two independent studies [31,37], (b) the

Barcın data were produced using two different techniques,

whole-genome shotgun sequencing and SNP capture, and

(c) both Barcın and Revenia display the same population gen-

etic patterns, suggesting that the admixture signals in the

Aegean individuals are reproducible. In addition, although

unknown population structure can complicate interpretation

of the D-statistic [63], we note that the admixture estimates

are consistent with the estimated higher genetic diversity in

the Aegean.

If the Revenia and Barcın individuals studied here were

descendants of Anatolian Neolithic immigrants, they must

have been recent settlers, as all samples analysed here date

to early stages of the Aegean Neolithic (Revenia: 6438–6264

and Barcın: 6500–6200 cal BCE). Furthermore, if the

migration was directly of central Anatolian origin (rep-

resented by Boncuklu and Tepecik-Çiftlik), the putative

migrants must have admixed with populations carrying

alleles of distinct gene pools (the Levant, Caucasus/Iran

and WHG) within a few centuries, in order to explain our

observations above (figure 2a).

Alternatively, the migration event could have originated

from the Anatolian south coast or north Levant [27] (cur-

rently no genome data are available from these groups).

This region could have hosted a hypothetical central

Anatolian-related population exposed to admixture from

CHG-, Iran- and the Levant-related gene pools in earlier

millenia. A south Anatolian population could have been in

contact with different central Anatolian populations from

the Konya Plain (Boncuklu) and Cappadocia (Tepecik-

Çiftlik), explaining the affinity of both Boncuklu and

Tepecik-Çiftlik to Barcın. A seafaring population could also

be in genetic contact with putative WHG-related populations

of the Aegean. This hypothetical population could have

initiated the Cyprus Neolithic in the eleventh millennium

BCE and later Aegean Neolithic communities in the seventh

millennium BCE [27].

One surprising observation here is the apparent absence

of WHG-like ancestry in Late Neolithic/Chalcolithic

Aegean genomes: admixture analysis results from two indi-

viduals from northwest Anatolia (Kumtepe, approx. 5000

BCE) [65] and four individuals from south Greece (Franchti

Cave and Diros, approxi. 4000 BCE) [33] all lack noticeable

WHG-like ancestry components [30,31,33]. This contrasts

with WHG admixture emerging in European farmer popu-

lations in the Middle and Late Neolithic [36,38], and

perhaps earlier in the Balkans [33], indicating the persistence

of Mesolithic populations in Europe after Neolithic

migrations. Therefore, if the Mesolithic populations of the

Aegean coast had indeed been WHG-related, they must

have been fully replaced by the eastern migrant farmers.

(b) Model 2: adoption of Neolithic elements
by local foragers

Alternatively, the Aegean coast Mesolithic populations may

have been part of the Anatolian-related gene pool that occu-

pied the Aegean seaboard during the Early Holocene. Under
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this scenario, the north Aegean PN populations would be at

least partial descendants of local hunter–gatherers who

adopted Neolithic lifestyle post-7000 cal BCE, triggered by

contacts with central Anatolian and the Levantine popu-

lations. The following events would be conceivable. (a)

during the Last Glacial Maximum (LGM), the Aegean

evolved into a refuge hosting a significant human population,

which is in line with climatic modelling [66–69]; estimates of

human population density during the Marine Isotope Stage 2

in west (but not central) Anatolia reach one of their highest

levels in Europe [70,71]. The existence of an Aegean human

population going back to the LGM is also consistent with

mitochondrial haplogroup-based analyses [72], and that Ana-

tolian-like mitochondrial haplogroups are found also in

Mesolithic Balkan and Aegean populations [31,33]. (b) Fol-

lowing the LGM, Aegean emigrants dispersed into central

Anatolia and established populations that eventually gave

rise to the local Epipalaeolithic and later Neolithic commu-

nities, in line with the earliest direct evidence for human

presence in central Anatolia ca 14 000 cal BCE [60]. This

hypothetical out-of-the-Aegean event coincides with the

post-LGM Near East-related migration signatures in Euro-

pean Mesolithic genomes [73]. (c) Between the LGM and

post-7000 cal BCE Neolithization, WHG, Natufian and

Caucasus/Iran-related groups admixed with north Aegeans,

differentiating the latter from their central Anatolian relatives

and leading to our observations in figure 2a. (d) Post-7000 cal

BCE, there occurred additional, albeit limited central Anato-

lian gene flow back into the Aegean, giving rise to our

observation in figure 2b.
(c) The archaeological evidence
Both the migration and acculturation models for Aegean

Neolithization enjoy support from material culture investi-

gations, but the overall evidence points to a complex

process where Aegean societies were culturally influenced

by diverse sources, including the central Anatolian Neolithic,

the Levant Neolithic and possibly local Mesolithic traditions.

In contrast to the relative homogeneity of European Neolithic

cultures, such as the LBK and Cardial, the Aegean Neolithic

is noted for its diversity [64]. Variation in Neolithic Package

elements and primary zone traditions is notable across

Aegean sites, among regions (e.g. east and west of Marmara),

even between closely neighbouring villages [16,17,20,64,

74–79]. This diversity includes, for example, obsidian, with

Greek Aegean (Melos) [80,81] or mainland Anatolian (Cappa-

docian) [82] sources being preferred in some settlements, and

yet other settlements showing no evidence of obsidian use

[64]. Cultural trait diversity involves architecture, tool
types, ceramics and symbolic elements (such as figurines

and intramural burial), which may show partial similarities

to either central Anatolia or to the Levant, or may be

unique [16,64,75]. For instance, intramural burial, a

common feature among primary zone sites, is also wide-

spread in east Marmara early Neolithic villages (including

Barcın), but totally absent in settlements only 200 km west

[16]. Mesolithic-like lithic industries and the prominence of

seafood in some settlements further imply the continuing

presence of Aegean Mesolithic traditions into the Neolithic

[16,20,27,83,84]. Indeed, lively seafaring activity was preva-

lent in the Mediterranean and the Aegean already by the

eleventh millennium BCE [85,86], as evidence from Cyprus,

Crete, Franchti, Cyclops Cave, Ouirakos and other Aegean

island and coastal mainland Mesolithic sites demonstrates

[20,27,83,86–94].

Instead of a single-sourced colonization process, the

Aegean Neolithization may thus have flourished upon

already existing coastal and interior interaction networks

connecting Aegean foragers with the Levantine and central

Anatolian PPN populations, and involved multiple cultural

interaction events from its early steps onward [16,20,64,74].

This wide diversity of cultural sources and the potential

role of local populations in Neolithic development may set

apart Aegean Neolithization from that in mainland Europe.

While Mesolithic Aegean genetic data are awaited to fully

resolve this issue, researchers should be aware of the possi-

bility that the initial emergence of the Neolithic elements in

the Aegean, at least in the north Aegean, involved cultural

and demographic dynamics different than those in European

Neolithization.
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75. Düring BS. 2013 Breaking the bond: investigating
the neolithic expansion in Asia Minor in the seventh
millennium BC. J. World Prehistory 26, 75 – 100.
(doi:10.1007/s10963-013-9065-6)

76. Thissen L. 2011 The Neolithic – Chalcolithic
sequence in the SW anatolian lakes region. Doc.
Praehist. 37, 269. (doi:10.4312/dp.37.23)
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