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Abstract. We prove the existence of attractors for higher dimensional wave
equations with nonlinear interior damping which grows faster than polynomials
at infinity.

1. Introduction. The main purpose of the paper is to investigate the long-time
behaviour of the following wave equation:

utt − ∆u+ g(ut) + f(u) = 0 in (0, + ∞) × Ω (1.1)

with boundary condition

u = 0 on (0, + ∞) × ∂Ω (1.2)

and with initial data condition

u(0, ·) = u0 , ut(0, ·) = u1 in Ω, (1.3)

where Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary.
The problem of the existence of attractors for autonomous wave equations with

linear interior damping was investigated in [1], [2], [5], [9], [12], [17] and references
therein. In [3], [6], [15] the existence of attractors for wave equations with nonlinear
interior damping was established assuming a large value for the damping. In [13]
attractors were studied without assuming large value for the damping in the two-
dimensional case. For the three-dimensional case the large damping restriction has
been removed in [16] and later the result of [16] is improved in [10].

In all articles mentioned above attractors were studied under a polynomial growth
condition at infinity on the damping term. In [7] the attractors were investigated
for one-dimensional wave equations without upper restriction on the growth of
the damping term, where the embedding H1(Ω) ⊂ C(Ω) available in the one-
dimensional case is critically used.

In this paper, we study the existence of attractors for higher dimensional wave
equations with nonlinear interior damping which grows faster than polynomials at
infinity. The paper organized as follows: In the next section we state our main result,
in Section 3 we establish the asymptotic compactness property of solutions of (1.1)-
(1.3), and finally in Section 4 we prove the existence of a global (H,H)B−attractor
for the problem (1.1)-(1.3).
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2. Statement of the main result. We begin with the assumptions on the func-
tions f and g.

Assumption 2.1.

• g ∈ C1(R), g(0) = 0, g is odd function and g′(·) ≥ α > 0, (2.1)

• |g′(s)| ≤ c(1 + g2(s)), 0 s ∈ R, (2.2)

• lim inf
|s|→∞

g(ks)

g(s)
> 1 for some k > 1, (2.3)

• |g(s− t)| ≤ β |g(s) − g(t)| , 0 s, t ∈ R, for some β > 0, (2.4)

• f ∈ C1(R), | f ′(s)| ≤ c, lim inf
|s|→∞

f(s)

s
> −λ1, (2.5)

where λ1is the first eigenvalue of −∆ with zero Dirichlet data.

Remark 2.1. The class of functions which satisfy conditions (2.1)-(2.4) is quite
large. It is easy to see that if a function satisfying (2.1)-(2.2) also has non-decreasing
derivative on R+, then it satisfies (2.3) and (2.4). For example, g1(s) = |s|p s + s

(p ≥ 0) and g2(s) =

{
es − 1, if s ≥ 0
−e−s + 1, if s < 0

are such functions.

Applying Galerkin’s method one can prove the following existence theorem.

Theorem 2.1. Assume that Assumption 2.1 holds and

u0 ∈ H2(Ω) ∩H1
0 (Ω), u1 ∈ H1

0 (Ω) ∩ C(Ω).

Then for every T > 0 there exists a unique strong solution u(t, x) of problem
(1.1)-(1.3) on [0, T ] × Ω, that is u ∈ W 2,∞(0, T ;L2(Ω)) ∩ W 1,∞(0, T ;H1

0(Ω)) ∩
L∞(0, T ;H2(Ω) ∩H1

0 (Ω)) and

utt − ∆u+ g(ut) + f(u) = 0, a.e. on [0, T ]× Ω.

Remark 2.2. In the case when g and f satisfy certain polynomial growth conditions
Theorem 2.1 was proved in [8] for initial data (u0, u1) such that u0 ∈ H2(Ω)∩H1

0 (Ω),
u1 ∈ H1

0 (Ω) and g(u1) ∈ L2(Ω). In [4], the existence of strong solutions of wave
equations with nonlinear damping satisfying some polynomial growth conditions
was studied for a larger class of initial data.

Let us define a generalized solution:

Definition 2.1. A function u ∈ C([0, T ]; H1
0 (Ω)) ∩ C1([0, T ]; L2(Ω)) possessing

the properties u(0, ·) = u0 and ut(0, ·) = u1 is said to be generalized (weak) solution
to problem (1.1)-(1.3) on [0, T ] × Ω, iff there exists a sequence of strong solutions
{un(t, x)} to problem (1.1)-(1.3) with initial data (un

0 , u
n
1 ) instead of (u0, u1) such

that

lim
n→∞

(
‖u− un‖C([0,T ]; H1

0
(Ω)) + ‖ut − un

t ‖C([0,T ]; L2(Ω))

)
= 0.

Using density argument and Theorem 2.1 we have the following theorem.

Theorem 2.2. Assume that Assumption 2.1 holds and (u0, u1) ∈ H := H1
0 (Ω) ×

L2(Ω). Then for every T > 0 the problem (1.1)-(1.3) has a unique generalized
solution on [0, T ]× Ω, which satisfies

E(u(t), ut(t)) +

t∫

τ

∫

Ω

g(ut(s, x))ut(s, x)dxds +

∫

Ω

F (u(t, x))dx
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≤ E(u(τ), ut(τ)) +

∫

Ω

F (u(τ, x))dx, 0 ≤ τ ≤ t < T. (2.6)

Moreover if v(t, x) is a generalized solution to (1.1)-(1.3) on [0, T ]× Ω with initial
data (v0, v1) and max {‖(u0, u1)‖H , ‖(v0, v1)‖H} ≤ R, then there exists C = C(R) >
0 such that

E(u(t) − v(t), ut(t) − vt(t)) ≤ CE(u0 − v0, u1 − v1), 0 t ∈ [0, T ],

where F (u) =
u∫

0

f(v)dv, E(u, v) = 1
2

(
‖∇u‖

2
+ ‖v‖

2
)

and ‖·‖ is a norm in L2(Ω).

Thus under Assumption 2.1, problem (1.1)-(1.3) generates a continuous semi-
group {S(t)}t≥0 in H by the formula S(t)(u0, u1) = (u(t), ut(t)), where u(t, x) is a
generalized solution with initial data (u0, u1).

Now let us introduce the following family of sets:

B = {B : B is a bounded subset of H and for any ε > 0, there exists

m = m(ε,B) > 0 such that sup
(u,v)∈B

∫

{x:x∈Ω, |u(x)|>m}

|∇u(x)|
2
dx ≤ ε





.

Definition 2.2. We say that a set A ∈ B is a global (H,H)B−attractor for the
semigroup {S(t)}t≥0 iff

• A is compact in H ;
• A is invariant, i.e. S(t)A = A, 0 t ≥ 0;
• lim

t→∞
sup
v∈B

inf
u∈A

‖S(t)v − u‖H = 0 for each B ∈ B.

Our main result is:

Theorem 2.3. Under Assumption 2.1 the semigroup {S(t)}t≥0 generated by the
problem (1.1)-(1.3) possesses a global (H,H)B−attractor.

Remark 2.3. By the definition we see that the projection of an element of B

on H1
0 (Ω) is a bounded set which has a “compactness” (or regularity) property in

some sense. We will use this property to prove asymptotic compactness (see proof
of Lemma 3.2).

Remark 2.4. By the definition it follows that a global (H,H)B−attractor is max-
imal as invariant set belonging to B and minimal as closed attractor attracting
every element of B. Since every bounded subset of (H1

0 (Ω) ∩ L∞(Ω)) × L2(Ω)
and W 1, 2+ε(Ω) × L2(Ω) belongs to B, a global (H,H)B−attractor attracts each
bounded subset of (H1

0 (Ω)∩L∞(Ω))×L2(Ω) andW 1, 2+ε(Ω)×L2(Ω) in the topology
of H, where ε > 0.

3. Asymptotic compactness. Let u(t, x) be a strong solution of (1.1)-(1.3) with
initial data (u0, u1). We use decomposition used in [5], [6] and [8]. So we decompose
u(t, x) as a sum w(t, x)+ v(t, x), where






wtt − ∆w + g(wt) + f(u) = 0 in (0, + ∞) × Ω
w = 0 on (0, + ∞) × ∂Ω
w(0, ·) = 0 , wt(0, ·) = 0 in Ω

(3.1)
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and





vtt − ∆v + g(vt + wt) − g(wt) = 0 in (0, + ∞) × Ω
v = 0 on (0, + ∞) × ∂Ω
v(0, ·) = u0 , vt(0, ·) = u1 in Ω

(3.2)

Lemma 3.1. Let Assumption 2.1 holds. Then for every (u0, u1) ∈ H, there
exists a unique strong solution w ∈ W 2,∞(0,∞;L2(Ω)) ∩ W 1,∞(0,∞;H1

0 (Ω)) ∩
L∞(0,∞;H2(Ω) ∩H1

0 (Ω)) of (3.1) such that

‖∆w(t)‖ + ‖∇wt(t)‖ + ‖wtt(t)‖ ≤ c(‖(u0, u1)‖H), 0 t ≥ 0, (3.3)

where c(·) : R+ → R+ is a nondecreasing function.

Proof. Since uniqueness of the strong solution is trivial, we will prove the existence
of a solution which satisfies (3.3). Let {ϕi}

∞
i=1 be eigenfunctions of −∆ in H1

0 (Ω),
i.e.

{
−∆ϕi = λiϕi, in Ω,
ϕi |Ω= 0,

, i = 1, 2, ... .

Since Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary, by standard
elliptic theory we have ϕi ∈ C∞(Ω), i = 1, 2, ... . Set wm(t) =

∑m
j=1 amj(t)ϕj and

consider the following system of ordinary differential equations:

d2

dt2
〈wm(t), ϕj〉 + 〈∇wm(t),∇ϕj〉 +

〈
g(
d

dt
wm(t)), ϕj

〉

+ 〈f(u(t)), ϕj〉 = 0, j = 1,m (3.4)

with initial conditions

amj(0) = 0, a′mj(0) = 0, j = 1,m (3.5)

where 〈w,ϕ〉 =
∫

Ω

w(x)ϕ(x)dx and u(t, x) is the generalized solution of (1.1)-(1.3)

with initial data (u0, u1). Existence theory of ordinary differential equations implies
that there exists a solution of (3.4)-(3.5) on [0, Tm). Multiplying both sides of (3.4)
by 2λj

d
dt
amj(t), summing from 1 to m and integrating over [0, t] ⊂ [0, Tm) we obtain

‖∇wm
t (t)‖2 + ‖∆wm(t)‖2 + 2

t∫

0

∫

Ω

g′(wm
t (s, x)) |∇wm

t (s, x)|2 dxds

= − 2

n∑

j=1

t∫

0

∫

Ω

f ′(u(s, x))uxj
(s, x)wm

txj
(s, x)dxds,

which together with (2.1), (2.5) and (2.6) yields

‖∇wm
t (t)‖

2
+ ‖∆wm(t)‖

2
≤ c1(‖(u0, u1)‖H)Tm, 0 ≤ t < Tm.

Hence wm(t, ·) can be extended to an interval [0, T ] and

‖∇wm
t (t)‖

2
+ ‖∆wm(t)‖

2
≤ c1(‖(u0, u1)‖H)T, 0 ≤ t ≤ T. (3.6)
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Differentiating both sides of (3.4), multiplying by 2 d2

dt2
amj(t), summing from 1 to

m and integrating over [0, t] we obtain

‖wm
tt (t)‖

2
+ ‖∇wm

t (t)‖
2

+ 2

t∫

0

∫

Ω

g′(wm
t (s, x)) |wm

tt (s, x)|
2
dxds

= ‖wm
tt (0)‖

2
− 2

t∫

0

∫

Ω

f ′(u(s, x))ut(s, x)w
m
tt (s, x)dxds,

which again together with (2.1), (2.5) and (2.6) yields

‖wm
tt (t)‖

2
+ ‖∇wm

t (t)‖
2
≤ c2(‖(u0, u1)‖H), 0 t ≥ 0. (3.7)

On the other hand multiplying both sides of (3.4) by d
dt
amj(t), summing from 1 to

m and integrating over [0, T ] we find

T∫

0

∫

Ω

g(wm
t (s, x))wm

t (s, x)dxds ≤ c3(‖(u0, u1)‖H)T

and consequently

T∫

0

∫

Ω

N(g(wm
t (s, x)))dxds ≤ c3(‖(u0, u1)‖H)T, (3.8)

where N(x) =
x∫

0

g−1(y)dy. Taking into account (3.6), (3.7) and applying [11, The-

orem 14.4, p. 131] to (3.8) we can say that there exists a subsequence {mk} such
that






wmk → w weakly star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω))

wmk

t → wt weakly star in L∞(0, T ;H1
0(Ω))

wmk

tt → wtt weakly star in L∞(0, T ;L2(Ω))
T∫

0

∫

Ω

g(wmk

t )ψdxds →
T∫

0

∫

Ω

g(wt)ψdxds, 0 ψ ∈ L∞((0, T ) × Ω)

(3.9)

Now passing to limit in (3.4) we obtain

〈wtt(t), ϕj〉 + 〈∆w(t), ϕj〉 + 〈g(wt(t)), ϕj〉

+ 〈f(u(t)), ϕj〉 = 0, a.e. on [0, T ], j = 1, 2...

from which we find that g(wt) ∈ L∞(0, T ;L2(Ω)) and
w ∈ W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1

0(Ω)) ∩ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)) satisfies

(3.1)1 a.e. on [0, T ]× Ω.
Now let us prove inequality (3.3). Passing to limit in (3.7) we have

‖wtt(t)‖
2
+ ‖∇wt(t)‖

2
≤ c2(‖(u0, u1)‖H), for a.a. t ≥ 0. (3.10)

Denoting zm(t) = wm(t+ ∆t) − wm(t), from (3.4) we obtain

〈zm
tt (t), ϕj〉 + 〈∇zm(t),∇ϕj〉 + 〈g(wm

t (t+ ∆t)) − g(wm
t (t)), ϕj〉

+ 〈f(u(t+ ∆t)) − f(u(t)), ϕj〉 = 0, j = 1,m (3.11)
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Multiplying both sides of (3.11) by d
dt

( amj(t+ ∆t) − amj(t)), summing from 1 to
m and integrating over [0, T ] we find

T∫

0

∫

Ω

(g(wm
t (t+ ∆t)) − g(wm

t (t)))(wm
t (t+ ∆t)) − wm

t (t))dxdt

≤l(‖zm
t (0)‖

2
+ ‖∇zm(0)‖

2
+

T∫

0

‖u(t+ ∆t) − u(t)‖
2
dt)

which together with (2.1), (2.5), (2.6) and (3.7) yields

1

(∆t)2

T∫

0

∫

Ω

(g(wmk

t (t+ ∆t)) − g(wmk

t (t)))(wmk

t (t+ ∆t) − wmk

t (t))dxdt ≤

≤c4(‖(u0, u1)‖H), for ∆t > 0,

where l > 0 and c4(·) : R+ → R+ is a nondecreasing function. Taking into account
(3.9) and applying Fatou’s lemma from last inequality we obtain

1

(∆t)2

T∫

0

∫

Ω

(g(wt(t+ ∆t)) − g(wt(t)))(wt(t+ ∆t) − wt(t))dxdt

≤c4(‖(u0, u1)‖H), for ∆t > 0,

and consequently

T∫

0

∫

Ω

g′(wt(t, x)) |wtt(t, x)|
2
dxds ≤ c4(‖(u0, u1)‖H), 0 T ≥ 0. (3.12)

Now differentiating (3.1)1 with respect to t we obtain

∂

∂t
wtt − ∆wt +

∂

∂t
g(wt) + f ′(u)ut = 0. (3.13)

By (2.2) and (3.12) we find ∂
∂t
g(wt) = g′(wt)wtt ∈ L1((0, T ) × Ω), which to-

gether with g(wt) ∈ L∞(0, T ;L2(Ω)) yields g(wt) ∈ C(0, T ;L1(Ω)). Applying
[14, Lemma 8.1, p.275] we have g(wt) ∈ Cs(0, T ;L2(Ω)). On the other hand
since ∆wt ∈ L∞(0, T ;H−1(Ω)) and f ′(u)ut ∈ L∞(0, T ;L2(Ω)) from (3.13) we
find ∂

∂t
wtt ∈ L1(0, T ;L1(Ω) +H−1(Ω)), which together with wtt ∈ L∞(0, T ;L2(Ω))

yields wtt ∈ C(0, T ;L1(Ω) +H−1(Ω)). Applying again [14, Lemma 8.1, p.275] we
have wtt ∈ Cs(0, T ;L2(Ω)).

Denote

gn(z) =






g(−n), z < −n,
g(z), − n ≤ z ≤ n,

g(n), z > n

.
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Since gn(wt) ∈ L∞(0, T ;L∞(Ω) ∩H1
0 (Ω)) by (3.13) have

t∫

0

〈
∂

∂t
wtt(s), gn(wt(s))

〉
ds+

t∫

0

〈∇wt(s),∇gn(wt(s))〉 ds

+

t∫

0

〈
∂

∂t
g(wt(s)), gn(wt(s))

〉
ds+

t∫

0

〈f ′(u)ut, gn(wt)〉 ds = 0. (3.14)

Let us estimate each integral in (3.14):

t∫

0

〈
∂

∂t
wtt(s), gn(wt(s))

〉
ds = 〈wtt(t), gn(wt(t))〉 −

t∫

0

〈
wtt(s),

∂

∂t
gn(wt(s))

〉
ds

= 〈wtt(t), gn(wt(t))〉 −

t∫

0

∫

{x:x∈Ω, |wt(s,x)|≤n}

g′n(wt(s, x)) |wtt(s, x)|
2
dxds

≥− ‖wtt(t)‖ ‖g(wt(t))‖ −

t∫

0

∫

Ω

g′(wt(s, x)) |wtt(s, x)|
2
dxds. (3.15)

t∫

0

〈∇wt(s),∇gn(wt(s))〉 ds

=

t∫

0

∫

{x:x∈Ω, |wt(s,x)|≤n}

g′n(wt(s, x)) |∇wt(s, x)|
2
dxds ≥ 0. (3.16)

t∫

0

〈
∂

∂t
g(wt(s)), gn(wt(s))

〉
ds = 〈g(wt(t)), gn(wt(t))〉

−

t∫

0

〈
gn(wt(s)),

∂

∂t
gn(wt(s))

〉
ds = 〈g(wt(t)), gn(wt(t))〉 −

1

2
‖gn(wt(t))‖

2

≥
1

2
‖gn(wt(t))‖

2
. (3.17)

Using (2.5) and Young inequality (see [11]) we have

t∫

0

〈f ′(u)ut, gn(wt)〉 ds ≥ −c

t∫

0

∫

Ω

|ut(s, x)| |gn(wt(s, x))| dxds

≥− c

t∫

0

∫

Ω

|ut(s, x)| |g(wt(s, x))| dxds ≥ −c

t∫

0

∫

Ω

g(ut(s, x))ut(s, x)dxds

− c

t∫

0

∫

Ω

g(wt(s, x))wt(s, x)dxds. (3.18)
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Taking into account (3.15)-(3.18) in (3.14) we find

1

2
‖gn(wt(t))‖

2
≤‖wtt(t)‖ ‖g(wt(t))‖ +

t∫

0

∫

Ω

g′(wt(s, x)) |wtt(s, x)|
2
dxds

+ c




t∫

0

∫

Ω

g(ut(s, x))ut(s, x)dxds +

t∫

0

∫

Ω

g(wt(s, x))wt(s, x)dxds





which together with (2.6), (3.10) and (3.12) implies

‖g(wt(t))‖ ≤ c5(‖(u0, u1)‖H) +

t∫

0

∫

Ω

g(wt(s, x))wt(s, x)dxds, t ≥ 0, (3.19)

where c5(·) : R+ → R+ is a nondecreasing function.
Denote by K(t) a solution operator of (3.1), i.e. (w(t), wt(t)) = K(t)(u0, u1).

Let (u0, u1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H1

0 (Ω) ∩ C(Ω)), (u(t), ut(t)) = S(t)(u0, u1),
(w(t), wt(t)) = K(t)(u0, u1) and v(t, ) = u(t, ) − w(t, ). As shown above w ∈
W 2,∞(0, T ;L2(Ω))∩W 1,∞(0, T ;H1

0 (Ω))∩L∞(0, T ;H2(Ω)∩H1
0 (Ω)). Then by The-

orem 1.1, v ∈ W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω) ∩H1

0 (Ω))
satisfies (3.2)1 a.e. on (0, T ) × Ω for every T > 0. Multiplying (3.2)1 by vt, inte-
grating over (s, t) × Ω and taking into account (2.4) we obtain

E(v(t), vt(t)) +
1

β

t∫

s

∫

Ω

g(vt(s, x))vt(s, x)dxds ≤ E(v(s), vt(s)), 0 t ≥ s ≥ 0,

(3.20)
and using Young inequality (see [11])

t∫

0

∫

Ω

g(wt(s, x))wt(s, x)dxds

≤β

t∫

0

∫

Ω

(g(ut(s, x)) − g(vt(s, x)))(ut(s, x) − vt(s, x))dxds

≤3β




t∫

0

∫

Ω

g(ut(s, x))ut(s, x)dxds +

t∫

0

∫

Ω

g(vt(s, x))vt(s, x)dxds





≤c6(‖(u0, u1)‖H), 0 t > 0. (3.21)

where c6(·) : R+ → R+ is a nondecreasing function. Using density argument it is
easy to see that (3.21) also holds for every (u0, u1) ∈ H1

0 (Ω) × L2(Ω).
By (3.19) and (3.21) we have

‖g(wt(t))‖ ≤ c7(‖(u0, u1)‖H), t ≥ 0,

where c7(·) : R+ → R+ is a nondecreasing function. Taking into account the last
inequality together with (2.6) and (3.10) in equation (3.1)1 we obtain (3.3).

Lemma 3.2. Assume that Assumption 2.1 holds and B ∈ B. Then for any ε > 0
there exist δ = δ(ε) > 0 and T0 = T0(ε,B) > 0 such that

‖S(T )θ −K(T )θ‖H ≤ ε, 0 T ≥ T0 and 0 θ ∈ Oδ(B), (3.22)
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where Oδ(B) is δ−neighbourhood of B in H.

Proof. Let θ = (u0, u1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × (H1

0 (Ω) ∩ C(Ω)), (u(t), ut(t)) =
S(t)(u0, u1) and (w(t), wt(t)) = K(t)(u0, u1). Then as mentioned in proof of Lemma
3.1, the function

v = u− w ∈W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω) ∩H1

0 (Ω))

satisfies (3.2)1 a.e. on (0, T )× Ω for every T > 0.

Set û0(x) =






u0(x) +m, u0(x) < −m
0, |u0(x)| ≤ m

u0(x) −m, u0(x) > m

.

Multiplying (3.2)1 by 1
t+1 (v(t, x) − û0(x)) and integrating over (0, T )× Ω we have

T∫

0

1

t+ 1
‖∇v(t)‖

2
dt−

T∫

0

1

t+ 1
〈∇v(t),∇û0〉 dt−

T∫

0

1

t+ 1
‖vt(t)‖

2
dt

≤

T∫

0

∫

Ω

g(wt(t, x))
1

t+ 1

t∫

0

vt(s, x)dsdxdt −

T∫

0

∫

Ω

g(ut(t, x))
1

t + 1

t∫

0

vt(s, x)dsdxdt

+

T∫

0

∫

Ω

g(wt(t, x))
1

t + 1
(u0(x) − û0(x))dxdt

−

T∫

0

∫

Ω

g(ut(t, x))
1

t + 1
(u0(x) − û0(x))dxdt

+
1

2
‖u0 − û0‖

2
−

1

T + 1
〈vt(T ), v(T ) − û0〉 + 〈u1, u0 − û0〉 . (3.23)

Now let us estimate first four terms on the right side of (3.23).
Using Young and Jensen inequalities (see [11]) we find

∣∣∣∣∣∣

T∫

0

∫

Ω

g(wt(t, x))
1

t+ 1

t∫

0

vt(s, x)dsdxdt

∣∣∣∣∣∣
≤

T∫

0

∫

Ω

N(λg(wt(t, x)))dxdt

+

T∫

0

∫

Ω

M



 1

λ(t+ 1)

t∫

0

vt(s, x)ds



 dxdt ≤

T∫

0

∫

Ω

N(λg(wt(t, x)))dxdt

+

T∫

0

∫

Ω

t

λ(t+ 1)
M



1

t

t∫

0

vt(s, x)ds



 dxdt ≤

T∫

0

∫

Ω

N(λg(wt(t, x)))dxdt

+

T∫

0

∫

Ω

1

λ(t+ 1)

t∫

0

M(vt(s, x))dsdxdt, 0 λ > 1, (3.24)

where M(z) =
z∫

0

g(x)dx and N(z) =
z∫

0

g−1(x)dx. By (2.1) and (2.3) there exists

l(k) > 1 such that

g(kx) ≥ l(k)g(x), 0 x ∈ R,
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and consequently

g(knx) ≥ (l(k))ng(x), 0 x ∈ R.

The last inequality together with (2.1) yields that

T∫

0

∫

Ω

N((l(k))ng(wt(t, x)))dxdt

≤(l(k))n

T∫

0

∫

Ω

g(wt(t, x))g
−1((l(k))ng(wt(t, x)))dxdt

≤(l(k))nkn

T∫

0

∫

Ω

g(wt(t, x))wt(t, x)dxdt. (3.25)

Setting λ = (l(k))n, by (3.24)-(3.25) we obtain

∣∣∣∣∣∣

T∫

0

∫

Ω

g(wt(t, x))
1

t + 1

t∫

0

vt(s, x)dsdxdt

∣∣∣∣∣∣

≤(l(k))nkn

T∫

0

∫

Ω

g(wt(t, x))wt(t, x)dxdt

+
ln(T + 1)

(l(k))n

T∫

0

∫

Ω

g(vt(t, x))vt(t, x)dxdt,

which together with (3.21) implies

∣∣∣∣∣∣

T∫

0

∫

Ω

g(wt(t, x))
1

t + 1

t∫

0

vt(s, x)dsdxdt

∣∣∣∣∣∣

≤

(
(l(k))nkn +

ln(T + 1)

(l(k))n

)
c6(‖(u0, u1)‖H), 0 T ≥ 0, n = 1, 2, ... . (3.26)

By the same way we find

∣∣∣∣∣∣

T∫

0

∫

Ω

g(ut(t, x))
1

t+ 1

t∫

0

vt(s, x)dsdxdt

∣∣∣∣∣∣

≤

(
(l(k))nkn +

ln(T + 1)

(l(k))n

)
c8(‖(u0, u1)‖H), 0 T ≥ 0, n = 1, 2, ... , (3.27)
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where c8(·) : R+ → R+ is a nondecreasing function. By definition of û0(x), we have
∣∣∣∣∣∣

T∫

0

∫

Ω

g(wt(t, x))
1

t + 1
(u0(x) − û0(x))dxdt

∣∣∣∣∣∣
≤ m

T∫

0

∫

Ω

1

t+ 1
|g(wt(t, x))| dxdt

≤m

T∫

0

∫

{x:x∈Ω, |wt(t,x)|≤ρ}

1

t+ 1
|g(wt(t, x))| dxdt

+m

T∫

0

∫

{x:x∈Ω, |wt(t,x)|>ρ}

1

t+ 1
|g(wt(t, x))| dxdt

≤mg(ρ) ln(T + 1)mesΩ +
m

ρ

T∫

0

∫

Ω

1

t+ 1
g(wt(t, x))wt(t, x)dxdt

≤mg(ρ) ln(T + 1)mesΩ +
m

ρ
c6(‖(u0, u1)‖H), 0 T ≥ 0, 0 ρ > 0. (3.28)

Similarly we have
∣∣∣∣∣∣

T∫

0

∫

Ω

g(ut(t, x))
1

t + 1
(u0(x) − û0(x))dxdt

∣∣∣∣∣∣

≤mg(ρ) ln(T + 1)mesΩ +
m

ρ
c8(‖(u0, u1)‖H), 0 T ≥ 0, 0 ρ > 0. (3.29)

Taking into account (3.26)-(3.29) in (3.23) we find

1

2

T∫

0

1

t+ 1
‖∇v(t)‖

2
dt ≤

1

2
ln(T + 1) ‖∇û0‖

2
+

T∫

0

1

t+ 1
‖vt(t)‖

2
dt

+

(
(l(k))nkn +

ln(T + 1)

(l(k))n
+
m

ρ

)
(c6(‖(u0, u1)‖H) + c8(‖(u0, u1)‖H))

+ 2mg(ρ) ln(T + 1)mesΩ +
1

T + 1
‖vt(T )‖ ‖v(T ) − û0‖ +

1

2
‖u0 − û0‖

2

+ ‖u1‖ ‖u0 − û0‖ , 0 T ≥ 0, 0 ρ > 0, 0 m > 0, n = 1, 2, ...,

which together with (2.1) and (3.20) yields

ln(T + 1)E(v(T ), vt(T )) ≤

T∫

0

1

t+ 1
E(v(t), vt(t))dt

≤
1

2
ln(T + 1)

∫

{x:x∈Ω, |u0(x)|>m}

|∇u0|
2
dx+ 2mg(ρ) ln(T + 1)mesΩ

+ c9(‖(u0, u1)‖H)

(
(l(k))nkn +

ln(T + 1)

(l(k))n
+
m

ρ

)

+ c9(‖(u0, u1)‖H), 0 T > 0, 0 ρ > 0, 0 m > 0, n = 1, 2, ... ,

where c9(·) : R+ → R+ is a nondecreasing function. Choosingm and n large enough
then ρ small enough, from the last inequality we obtain (3.22) for large T.
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Now we can prove the asymptotic compactness property of solutions, which is
included in the following theorem:

Theorem 3.1. Assume Assumption 2.1 holds and B ∈ B. Then any sequence of the
form {S(tn)θn}

∞
n=1, tn → ∞, θn ∈ Oεn

(B), εn ց 0, has a convergent subsequence
in H.

Proof. Since by Lemma 3.1 the sequence {K(tn)θn}
∞
n=1 is relatively compact in H,

there exists a subsequence {K(tnm
)θnm

}∞m=1 which converges in H. So for any ε > 0
there exists N1 = N1(ε), such that

‖K(tnm
)θnm

−K(tnk
)θnk

‖H ≤
ε

3
, 0 m, k ≥ N1. (3.30)

On the other hand by Lemma 3.2, there exists N2 = N2(ε), such that

‖S(tnm
)θnm

−K(tnm
)θnm

‖H ≤
ε

3
, 0 m ≥ N2,

which together with (3.30) gives that

‖S(tnm
)θnm

− S(tnk
)θnk

‖H ≤ ε, 0 m, k ≥ max {N1, N2} .

In other words {S(tnm
)θnm

}∞m=1 is a Cauchy sequence in H and consequently con-
verges in H.

From this theorem immediately the following corollary follows.

Corollary 1. Under Assumption 2.1 for every B ∈ B, the sets ω(B) = ∩
t≥0

∪
τ≥t

S(τ)B

and ω̂(B) = ∩
ε>0

∩
t≥0

∪
τ≥t

S(τ)Oε(B) are nonempty invariant compacts which attract

B.

4. Proof of Theorem 2.3. Since θ ∈ B, for every θ ∈ H, by Corollary 3.1 the set

ω(θ) = ∩
t≥0

∪
τ≥t

S(τ)θ is nonempty invariant compact which attracts a semitrajectory

beginning from θ. Set

Z = {ϕ ∈ H, S(t)ϕ = ϕ, 0 t ≥ 0} .

It is easy to see that under condition (2.5) the set Z belongs to B.

Let θ = (u0, u1) ∈ H and (ϕ0, ϕ1) ∈ ω(θ). By the definition of ω(θ) there exists
a sequence {tn}

∞
n=1 such that tn → ∞ and

S(tn)(u0, u1) → (ϕ0, ϕ1) strongly in H. (4.1)

On the other hand by (2.6) the Lyapunov function L(u(t), ut(t)) := E(u(t), ut(t))+∫

Ω

F (u(t, x))dx is nonincreasing and lower bounded on any semitrajectory

∪
t≥0

(u(t), ut(t)). So there exists a constant l, such that

lim
t→∞

L(S(t)(u0, u1)) = l,

which together with (4.1) yields

L(ϕ0, ϕ1) = l, 0 (ϕ0, ϕ1) ∈ ω(θ). (4.2)

Set (ϕ(t), ϕt(t)) = S(t)(ϕ0, ϕ1). Since (ϕ(t), ϕt(t)) ∈ ω(θ), by (2.1), (2.6) and (4.2)
we have ϕ(t) ≡ ϕ0, ϕ1 = 0 and consequently (ϕ0, ϕ1) ∈ Z. Thus ω(θ) ⊂ Z for every
θ ∈ H.
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Now let us show that ω̂(Z) = ∩
ε>0

∩
t≥0

∪
τ≥t

S(τ)Oε(Z) is a global (H,H)B− attrac-

tor. By Corollary 3.1 the set ω̂(Z) is invariant and compact. Hence it is sufficient
to prove that ω̂(Z) attracts every element of B. Assume it is not true. Then there
exist ε0 > 0, B ∈ B, {vn} ⊂ B, tn → ∞ such that

inf
u∈ω̂(Z)

‖S(tn)vn − u‖ ≥ ε0, n = 1, 2, ... . (4.3)

By Theorem 3.1 and Corollary 3.1 for any δ > 0 there exists T (δ) > 0 such that

S(t)B ⊂ Oδ(ω(B)), 0 t ≥ T (δ). (4.4)

On the other hand as shown above for any ε > 0 and ϕ ∈ ω(B) there exists
t(ε, ϕ) > 0 such that

S(t)ϕ ∈ Oε(ω(ϕ)) ⊂ Oε(Z), 0 t ≥ t(ε, ϕ). (4.5)

By the continuity of S(t) and (4.5) there exists δ(t(ε, ϕ), ϕ) > 0 such that

S(t(ε, ϕ))Oδ(t(ε,ϕ),ϕ)(ϕ) ∈ Oε(Z).

Since ω(B) is compact and ω(B) ⊂ ∪
ϕ∈ω(B)

Oδ(t(ε,ϕ),ϕ)(ϕ), there exist δε > 0 and a

finite number Oδε
i
(ϕε

i ), t
ε
i (i = 1, kε) such that





Oδε

(ω(B)) ⊂
kε

∪
i=1
Oδε

i
(ϕε

i )

S(tεi )Oδε
i
(ϕε

i ) ∈ Oε(Z), i = 1, kε

.

Now let εm ց 0. Then by the argument above done for every m ∈ N, there exist

δm > 0, km ∈ N, {ϕm
i }

km

i=1 ⊂ ω(B), δm
i > 0 (i = 1, km) and tmi > 0 (i = 1, km) such

that 



Oδm

(ω(B)) ⊂
km

∪
i=1
Oδm

i
(ϕm

i )

S(tmi )Oδm
i

(ϕm
i ) ∈ Oεm

(Z), i = 1, km

. (4.6)

Since tn → ∞, for every m ∈ N there exists nm ∈ N such that

tnm
≥ m+ T (δm) + max

1≤i≤km

tmi .

On the other hand by (4.4) and (4.6) for every vnm
there exists

tmim
(im ∈ {1, 2, ..., km}) such that S(T (δm) + tmim

)vnm
∈ Oεm

(Z). So setting τm =
tnm

− T (δm)− tmim
and wm = S(T (δm) + tmim

)vnm
we have τm → ∞ as m→ ∞ and

wm ⊂ Oεm
(Z) for every m ∈ N. Consequently by Theorem 3.1 and Corollary 3.1

there exists a subsequence {mν} such that

lim
ν→∞

inf
u∈ω̂(Z)

‖S(τmν
)wmν

− u‖ = 0,

or

lim
ν→∞

inf
u∈ω̂(Z)

∥∥S(tnmν
)vnmν

− u
∥∥ = 0.

The last equality contradicts (4.3). Thus ω̂(Z) is a global (H,H)B− attractor.
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